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Navigation systems play an important role for autonomous spacecraft.  Earth 

based navigation systems such as GPS provide accurate positioning for orbiting 

spacecraft.  In the case of lunar orbit, GPS is not available so other navigation techniques 

have to be used.  This thesis proposes a novel idea to use Laser Ranging 

Retroreflectors, placed on the Moon's surface during the Apollo program, as a means of 

providing position information to an orbiting autonomous spacecraft.  An Inertial 

Navigation System consisting of fusion of LRRR position data and Inertial Measurement 

Unit providing gyro and accelerometer data will be utilized during orbit about the Moon.  

Prior arriving in a lunar orbit, celestial navigation using the stars will provide positioning 

information as the vehicle translates along a lunar intercept path.  The entire lunar 

operational profile will be evaluated using nonlinear filter techniques (Extended Kalman 

Filter and Unscented Kalman Filter).  Trade-offs between filter accuracy, computational 

cost and ease of implementation will be assessed.  
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CHAPTER 1  

MOTIVATION 

Spacecraft navigation about the Moon is limited to a few options for obtaining 

tracking data.  The Deep Space Network (DSN) has the capability to provide this service 

only if a vehicle has line of sight to the radar sites.  This service is highly utilized by the 

space community that perform interplanetary operations.  As a consequence, the amount 

of time a vehicle can use this service is limited to perform vehicle tracking as well as 

availability.  Due to the DSN scheduling constraints, proposals have been made including 

use of lunar satellites to provide service to vehicles in lunar orbit.  Since lunar tracking 

and communication satellites are not in existence, other means of positioning data were 

investigated to perform navigation.  This thesis proposes another way to provide 

positioning data to a spacecraft using available tracking sources.   

For this analysis, the vehicle’s trajectory will be analyzed in two parts, cislunar 

and lunar orbit. Cislunar navigation estimation will utilize celestial navigation techniques 

to determine position and velocity.  Star trackers data will provide position measurements 

to the filters for calculation of the estimated state of the vehicle.   Once the vehicle is in 

lunar orbit, the filters will incorporate gyro and accelerometer data along with Lidar-based 

laser ranging measurements reflected from Laser Ranging Retro-Reflectors (LRRR) 

arrays located on the Moon’s surface.  These LRRRs were placed on the lunar surface 

during lunar surface operations of the Apollo program.  They are still in use today 

providing Earth-based laser ranging of the Moon.  The Lidar measurements will be 

analogous to measurements from ground-based tracking sites on the Earth providing 

range, azimuth and elevation information.  This type of Lidar application using LRRRs is 

a novel approach to providing tracking data for a vehicle in orbit.  Lidars have been used 

for mapping of the Earth’s surface and can be modified to provide the tracking data 
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analyzed in this thesis.  Also, Lidar data fused with an Integrated Navigation System 

(INS) has been previously investigated as an alternative option to a GPS/INS system 

where GPS is not available [12]. 

This thesis will investigate nonlinear Kalman filtering techniques to process the 

proposed tracking data and compare them to each other.  The accuracy of the estimated 

state is based on how precise sensors can measure and how well the system dynamics 

are modeled. The most common filter is the Extended Kalman Filter (EKF).  It is used 

extensively in spacecraft navigation systems because of its ease of computation through 

linearization of error and its computational speed.  This was advantageous when memory 

space and processing speed was at a premium during the 1960’s.  The processing power 

and memory of today’s computers have vastly increased, which allows for other types of 

filter applications.  Coinciding with processing speed, computer architecture has evolved 

to include parallel processing.  This is advantageous for reducing computation time for 

nonlinear filter applications. 

Advances in filtering have provided other means of estimating more precise 

navigation states over the EKF by using other methods.  For this analysis, another 

nonlinear filter called the Unscented Kalman Filter (UKF) will be compared to the EKF.  

Comparisons in the form of accuracy and convergence will be investigated as well as the 

computational speed.  The UKF provides more accurate initial estimates given a small 

amount of data compared to the EKF.  This type of filter propagates a number of sigma 

points through a time step which will increase processing time.  This processing is more 

straightforward than the EKF which needs to calculate partial derivatives.  Computational 

speed is sacrificed for accuracy and will factor into determining whether this is an 

acceptable method. 
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CHAPTER 2  

NAVIGATION TECHNIQUES 

 
History 

First published by Dr. Rudoplh Kalman in 1960 [1], the Kalman filter was 

designed for linear systems with continuous measurements.  A nonlinear system with 

discrete time measurements was needed for lunar navigation for the Apollo program.  A 

modified version of the Kalman filter was developed called the extended Kalman filter 

(EKF) [2].  This modified filter constructed a linear system about the estimate of the state.  

The linear system provided an accurate navigation estimate of the truth state while 

keeping computations and memory allocations at a minimum.  This allowed Apollo 

program to be able to navigate to the moon [3].  Since then other methods of filtering 

have been created to make it more accurate and efficient.  The Unscented Kalman Filter 

and Particle Filter are two nonlinear filters that have been developed to estimate 

nonlinear systems.  These types of filters will be used for the analysis in this thesis. 

 

Vehicle Trajectory 

The trajectory will start after the vehicle performs a Trans-Lunar Injection (TLI) 

burn on an intercept course with the Moon.  A patched conic will be used to calculate a 

hyperbolic trajectory for lunar approach [8].  Assuming a burn targeted minimum 

approach distance, the vehicle will be placed in a 315 x 200 km orbit (170 x 108 nmi) for 

2 orbits.  The orbit will be circularized to 200 x 200 km (108 x 108 nmi).  The vehicle will 

orbit the Moon twice when the simulation ends. This type of lunar insertion and orbit 

scheme is similar to Apollo missions. The altitude of the orbit is higher than the Apollo 
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mission to allow the vehicle line of sight to the retro reflector arrays located on the lunar 

surface.  These arrays will be used for ranging measurements discussed later. 

   

Celestial Navigation 

Celestial navigation is a method of determining position [7,13,14].  The method 

involves the use line of sight angle measurements from two known celestial objects, 

measuring planetary object angular diameter, observing star occultation by an object, or 

radar measurements. For this analysis, two of the four types of measurements will be 

utilized.   

Line of sight angle measurements between a star and a planetary object will be 

taken at specific intervals during cislunar travel.  The planetary objects will be either the 

Earth or the Moon dependent upon distance to the object.  Also, the observed angular 

diameter of either the Earth or Moon will be used to provide a measured range value that 

will be included in the position determination from the angle measurements.  The position 

of the vehicle can be determined by taking measurements from these two sources.  In 

order to make the system observable the combination of angle measurements, star-

planet, star-planet, and planet-diameter were used.  The two star-planet angles provide 

the foundation for obtaining a navigation fix.  The angle sets the vehicle's position on the 

surface of a cone with its apex at the planet's centroid and its axis parallel to the vehicle's 

line of sight.  The second star-planet provides another cone with its own apex and axis.  

The intersection of the two cones create two straight lines with one being the line of 

position of the vehicle.  If a third star-planet angle were taken, it would confirm the two 

lines.  However, there may be difficulty in determining the correct one and can result in 

an unobservable system.  Including the angular diameter measurement provides the 

radial distance of the vehicle from the planet and establishes the position fix along the 
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line of position obtained from the two star-planet measurements above.  A navigation fix 

can be obtained with this method.  The more orthogonal the line of sight vectors are to 

the stars the more accurate the position.  Therefore, star selection for taking 

measurements factor into position estimation.   

 

Optical Measurements 

The vehicle will use star trackers to obtain measurements using line of sight of 

stars using known locations of those stars.  As stated earlier, the star tracker will observe 

the angle between a star and planetary object.  Figure 2-1 shows the relative geometry of 

the stars, planet (P0) and vehicle (S0).  Due to the timing of when the measurements are 

taken along the cislunar trajectory, the Earth will be used as the reference body.  Similar 

to Apollo missions, the star sighting measurements will be taken around six hours and 

twenty-four hours after the TLI burn to provide an update to the trajectory prior to planned 

midcourse correction burns referred to as MC1 and MC2.  These measurement periods 

will also be referred to as MC1 and MC2 in the analysis since they take place before the 

burns.  
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Figure 2-1 Star-Planet Angle Geometry 

From Figure 2-1, the relationship between the observable and vehicle position is 

taken by the dot product of the two vectors if the form 

 cos 𝜃 =
𝑹 ∙ 𝒊𝑠

𝑟
 (3.1) 

where θ is the observed angle measurement, 𝑹 is the vector of spacecraft 

relative to the planetary body, 𝑟 is the radial distance to the planet, and 𝒊𝑠 is the unit 

vector in the direction of the star.  Due to the distance of stars, their directions are 

assumed to be fixed and independent of any observation.  The Astronomical Almanac, a 

yearly publication provided by the US Navy [11], provides star locations in sidereal hour 

angle (𝜆) and declination (𝜙).  The unit vector of the star can be determined by 

transforming the spherical direction to Cartesian direction  

i
r
 

P
0
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0
 

Star 

i
s
 

 
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  𝒊𝑠 =
1

𝑟
[

cos cos 
cos sin 

sin
] (2.2) 

The derivative of the angle 𝜃 with respect to the position state also known as the 

measurement geometry vector is 

 𝒉 =
1

𝑟 sin 𝜃
(cos 𝜃 𝒊𝑟 + 𝒊𝑠) (2.3) 

 with 𝑖𝑟 being the unit vector of the vehicle relative to the planet.  Next, using 

Figure 3-2, the measured angular diameter of a planet is found from 

 𝑟 sin
1

2
𝜃 =

1

2
𝐷 (2.4) 

where θ is the observed angular diameter, 𝑟 is the radial distance from the 

planet, and 𝐷 is the actual diameter of the planet.  The measurement geometry vector is 

derived to be 

 𝒉 = −
𝐷

𝑟2 cos
1
2

𝜃
𝒊𝑟 (2.5) 

 

Figure 2-2 Angular Diameter of Planet 

D/2 

i
r
 

S
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0
 

 
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A 3x3 measurement geometry matrix, 𝑯, is formed by taking the above 

transformation from a star-planet, star-planet, angular diameter combination. 

 𝑯 = 

[
 
 
 
 
 
 

1

𝑟 sin 𝜃𝑠1

(cos 𝜃 𝒊𝑟
𝑇 + 𝒊𝑠1

𝑇 )

1

𝑟 sin 𝜃𝑠2

(cos 𝜃 𝒊𝑟
𝑇 + 𝒊𝑠2

𝑇 )

−
𝐷

𝑟2 cos
1
2

𝜃3

𝒊𝑟
𝑇

]
 
 
 
 
 
 

 (2.6) 

 

Lunar Orbit Navigation 

Orbit navigation about the Moon will consist of estimating attitude, position and 

velocity.  This will be accomplished using laser ranging observations with IMU input 

forming an INS.   An IMU will provide gyro and accelerometer data to incorporate into the 

attitude and translation motion respectively.  A Lidar onboard the spacecraft and will 

measure the time of reflected light to the sensor using Lunar Ranging Retro-Reflector 

(LRRR) arrays located on the lunar surface.  These LRRRs were placed on the surface of 

the Moon during Apollo missions (11, 14 and 15) and have been used extensively for 

determining the range of the Moon from the Earth through the Lunar Ranging 

Experiment.  This analysis will assume the Lidar will provide range, azimuth and 

elevation measurement that will be incorporated as position into the filters.  The vehicle 

will maintain a constant angular rate in order to keep the Lidar onboard the vehicle 

pointed at the LRRR as it passes over the array.  This angular rate along with sensed 

accelerations will be fed into the navigation state estimate. 
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Integrated Navigation System 

The measurement model of the IMU provides accelerometer and gyro sensors 

[5].  There will be three gyros and accelerometers.  Each single axis sensor will be 

aligned with the body axes of the vehicle.  The gyro rate model for a single axis is given 

as 

 𝝎̃𝐵/𝐼
𝐵 = 𝝎𝐵/𝐼

𝐵 + 𝜷𝑔 + 𝜼𝑔𝑣 (2.7) 

 𝜷̇𝑔 = 𝜼𝑔𝑢 (2.8) 

where 𝛽𝑔 is the gyro bias and 𝜂𝑔𝑣 and 𝜂𝑔𝑢 are zero mean Gaussian white noise 

processes.  The superscript indicates the reference frame: B for body frame, I for inertial 

frame, or N for navigation frame.  The subscript indicates the relation.  In this case, the 

angular rate relative to B (body) frame/expressed in I (inertial) coordinates. 

The accelerometer is similar to the gyro model 

 𝒂̃𝐵 = 𝒂𝐵 + 𝜷𝑎 + 𝜼𝑎𝑣 (2.9) 

 𝜷̇𝑎 = 𝜼𝑎𝑢 (2.10) 

In addition to IMU data the navigation system will receive range and bearing 

measurements from a Lidar onboard the spacecraft that receives reflected light from 

LRRR arrays on the lunar surface.  Measurements will be given in azimuth, elevation and 

range for a given LRRR location. 

The integrated navigation system estimates attitude, position and velocity as well 

as biases for the accelerometers and gyros.  The attitude will be represented by the 

quaternion, 𝒒.  The quaternion is a four-dimensional vector defined as 

 𝒒 = [
𝝔
𝑞4

] (2.11) 

where 𝝔 is the vector part and 𝑞4 is the scalar part.  Use of the quaternion is 

advantageous as it does not have singularities versus other means of attitude 
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representations such as Euler angles or Modified Rodrigues Parameters.  Successive 

rotations of a quaternion are achieved through quaternion multiplication.  The attitude 

quaternion kinematics equation is  

 𝒒̇̂ =
1

2
Ω(𝝎̂𝐵/𝑁

𝐵 )𝒒̂ (2.12) 

 𝝎̂𝐵/𝑁
𝐵 = 𝝎̃𝐵/𝐼

𝐵 − 𝜷̂𝑔 − 𝐴𝑁
𝐵 (𝒒̂)𝝎̂𝑁/𝐼

𝑁  (2.13) 

 

𝝎̂𝑁/𝐼
𝑁 = 𝜔𝑚 [

cos 𝜙̂
0

−sin 𝜙̂

] +

[
 
 
 
 
 
 

𝑣̂𝐸

𝑅̂𝑚

𝑣̂𝑁

𝑅̂𝑚

−
𝑣̂𝐸 tan 𝜙̂

𝑅̂𝑚 ]
 
 
 
 
 
 

 

(2.14) 

where 

 
Ω(𝜔) = [

−[𝜔 ×] 𝜔

−𝜔𝑇 0
] 

(2.15) 

and the attitude matrix is defined as 

 𝐴(𝒒) = Ξ𝑇(𝒒)Ψ(𝒒) (2.16) 

 
Ξ(𝒒) = [

𝑞4𝐼3×3 + [𝝔 ×]

−𝝔𝑇 ] 
(2.17) 

 
Ψ(𝒒) = [

𝑞4𝐼3×3 − [𝝔 ×]

−𝝔𝑇 ] 
(2.18) 

The attitude matrix, A, subscript indicates the "rotation from" frame and the 

superscript indicates the "rotation to" frame.  The parameter 𝝎𝑚 is rotation rate of the 

Moon. 

Estimating a quaternion using the UKF presents a problem with dimensions.  The 

four-dimensional quaternion needs to be represented as a three dimensional component 

vector.  Using a version of the generalized Rodrigues parameters [9] can solve this issue 

where the local error quaternion,  𝛿𝒒 = [𝛿𝝔𝑇 𝛿𝑞4]
𝑇 can be represented as   



11 

 
𝛿𝒑 ≡ 𝑓

𝛿𝝔

𝑎 + 𝛿𝑞4

 
(2.19) 

Setting the parameters 𝑎 = 1, and 𝑓 = 2(𝑎 + 1) yields a set of Modified 

Rodrigues Parameters that are used for this filter.  The inverse transformation from 𝛿𝒑 to 

𝛿𝒒 is given by 

 
𝛿𝑞4 =

−𝑎‖𝛿𝒑‖2 + 𝑓√𝑓2 + (1 − 𝑎2)‖𝛿𝒑‖2

𝑓2 + ‖𝛿𝒑‖2
 

(2.20) 

 𝛿𝝔 = 𝑓−1(𝑎 + 𝛿𝑞4)𝛿𝒑 (2.21) 

Position will be represented by latitude, longitude and range from center of the 

Moon.  Normally height above the surface is used in place of range from center of the 

planetary object.  However, the Moon is a spheroid and does not have a flattening effect 

like the Earth's ellipsoid shape so the range from center of the Moon is used rather than 

height above the surface.  Velocity will be maintained in a North East Down (NED) 

coordinate frame.  This type of state is more intuitive and is used frequently with 

integrated navigation systems.  Biases of the three single axis gyros and accelerometers 

complete the rest of the navigation state.  All of these parameters make up the state 

vector written as 

 𝒙 = [𝒒𝑻 𝜙 𝜆 𝑟 𝑣𝑁 𝑣𝐸  𝑣𝐷  𝜷𝑔
𝑇  𝜷𝑎

𝑇]
𝑇
 (2.22) 

The governing equations of motion for the navigation state are given below.  

 
𝜙̇̂ =

𝑣̂𝑁

𝑅̂𝑚

 
(2.23) 

 
𝜆̇̂ =

𝑣̂𝐸

𝑅̂𝑚 cos 𝜙̂
 

(2.24) 

 𝑟̇̂ = −𝑣̂𝐷 (2.25) 

 
𝑣̇̂𝑁 = − [

𝑣̂𝐸

𝑅̂𝑚 cos 𝜙̂
+ 2𝜔𝑚] 𝑣̂𝐸 sin 𝜙̂ +

𝑣̂𝑁𝑣̂𝐷

𝑅̂𝑚

+ 𝑎̂𝑁 
(2.26) 
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𝑣̇̂𝐸 = [

𝑣̂𝐸

𝑅̂𝑚 cos 𝜙̂
+ 2𝜔𝑚] 𝑣̂𝑁 sin 𝜙̂ +

𝑣̂𝐸𝑣̂𝐷

𝑅̂𝑚

+ 2𝜔𝑚𝑣̂𝐷 cos 𝜙̂ + 𝑎̂𝐸 
(2.27) 

 
𝑣̇̂𝐷 = −

𝑣̂𝐸
2

𝑅̂𝑚

−
𝑣̂𝑁

2

𝑅̂𝑚

+ 2𝜔𝑚𝑣̂𝐸 cos 𝜙̂ + 𝑔 + 𝑎̂𝐷 
(2.28) 

where 

 𝒂̂𝑁 = [

𝑎̂𝑁

𝑎̂𝐸

𝑎̂𝐷

] = 𝐴𝐵
𝑁(𝒒̂)𝒂̂𝐵 (2.29) 

 𝒂̂𝐵 = 𝒂̃𝐵 − 𝛽̂𝑎 (2.30) 

 𝛽̇̂𝑎 = 𝟎 (2.31) 

 𝛽̇̂𝑔 = 𝟎 (2.32) 

 

The Lidar will provide azimuth, elevation and range in relation from the LRRR.  

The measurements are converted to Moon Centered-Moon Fixed (MCMF) coordinates 

before being rotated to NED coordinates.  Then the measurements will be processed by 

the filters and output in latitude, longitude and range from center of the Moon.  First the 

LRRR's latitude and longitude are converted to MCMF using the radius of the Moon. 

 

 𝜌𝑋
𝐿𝑅𝑅𝑅 = 𝑅𝑚 cos𝜙𝐿𝑅𝑅𝑅 cos 𝜆𝐿𝑅𝑅𝑅 (2.33) 

 𝜌𝑌
𝐿𝑅𝑅𝑅 = 𝑅𝑚 cos 𝜙𝐿𝑅𝑅𝑅 sin 𝜆𝐿𝑅𝑅𝑅 (2.34) 

 𝜌𝑍
𝐿𝑅𝑅𝑅 = 𝑅𝑚 sin𝜙𝐿𝑅𝑅𝑅  (2.35) 

Next the measurements are converted from azimuth, elevation, and range to 

NED by the following 

 

 𝜌𝑁
𝑜𝑏𝑠 = 𝑅𝑚sin (𝑒𝑙) (2.36) 

 𝜌𝐸
𝑜𝑏𝑠 = 𝑅𝑚 cos(𝑒𝑙) sin(𝑎𝑧) (2.37) 
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 𝜌𝐷
𝑜𝑏𝑠 = 𝑅𝑚 cos(𝑒𝑙) cos(𝑎𝑧) (2.38) 

Then the measurement is rotated to MCMF with 

 [

𝜌𝑋
𝑜𝑏𝑠

𝜌𝑌
𝑜𝑏𝑠

𝜌𝑍
𝑜𝑏𝑠

] = [

−sin 𝜙𝐿𝑅𝑅𝑅 cos 𝜆𝐿𝑅𝑅𝑅 −sin 𝜆𝐿𝑅𝑅𝑅 −cos𝜙𝐿𝑅𝑅𝑅 cos 𝜆𝐿𝑅𝑅𝑅

−sin𝜙𝐿𝑅𝑅𝑅 sin 𝜆𝐿𝑅𝑅𝑅 cos 𝜆𝐿𝑅𝑅𝑅 −cos𝜙𝐿𝑅𝑅𝑅 sin 𝜆𝐿𝑅𝑅𝑅

cos𝜙𝐿𝑅𝑅𝑅 0 sin 𝜙𝐿𝑅𝑅𝑅

] [

𝜌𝑁
𝑜𝑏𝑠

𝜌𝐸
𝑜𝑏𝑠

𝜌𝐷
𝑜𝑏𝑠

] (2.39) 

The LRRR vector and measurement vectors are added together to obtain the 

position of the vehicle in MCMF denoted as S/C. 

 𝝆𝑀𝐶𝑀𝐹
𝑆/𝐶

= 𝝆𝑀𝐶𝑀𝐹
𝑜𝑏𝑠 + 𝝆𝑀𝐶𝑀𝐹

𝐿𝑅𝑅𝑅  (2.40) 

 

The above position is input into the filters and subtracted from the estimated 

position to obtain the residual. 
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CHAPTER 3  

NAVIGATION TECHNIQUES 

 

Extended Kalman Filter 

The Extended Kalman Filter is a very common application for nonlinear systems 

that is used extensively for spacecraft navigation systems.  This type of filter assumes the 

estimated state and the truth state are near to each other.  This allows for a first order 

linearization of the estimate about the mean and covariance to be given as an accurate 

representation.  The probability density function (pdf) of the output estimate can be 

approximately Gaussian from the linear assumption.  Due to the linearization of the 

system and small error between the estimated and truth state, the EKF has a known 

problem with filter initialization if there is a large difference between estimated state and 

the truth. 

The EKF utilized for this analysis uses a nonlinear model given in continuous 

time, which is common for this type of application.   

 𝒙̇(𝑡) = 𝒇(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝐺(𝑡)𝑤(𝑡), 𝑤(𝑡)~𝑁(0, 𝑄(𝑡)) (4.1) 

 𝒚̃𝑘 = 𝒉(𝒙𝑘) + 𝒗𝑘 , 𝒗𝑘~𝑁(0, 𝑅𝑘) (4.2) 

The algorithm for the EKF begins with initialization of state vector and associated 

covariance.  At each time step, the Kalman gain is calculated.  This is defined below 

along with the sensitivity matrix, 𝐻𝑘.  The sensitivity matrix transforms measurement state 

space to navigation state space. 

 
𝐻𝑘(𝒙𝑘

−) =
𝜕𝒉

𝜕𝒙
|
𝒙̂𝑘
−
 

(4.3) 

 𝑲𝑘 = 𝑷𝑘
−H𝑘

𝑇(𝒙𝑘
−)[H𝑘(𝒙𝑘

−)𝑷2𝑘
− H𝑘

𝑇(𝒙𝑘
−) + R𝑘]

−1 (4.4) 

Next the Kalman update of the vehicle state is performed incorporating Lidar 

measurements.   Also the covariance is updated based on the Kalman gain. 
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 𝒙𝑘
+ = 𝒙𝑘

− + 𝑲𝑘[𝒚̃𝑘 − 𝒉(𝒙𝑘
−)] (4.5) 

 𝑷𝑘
+ = [𝑰 − 𝑲𝑘H𝑘

𝑇(𝒙𝑘
−)]𝑷𝑘

− (4.6) 

Then the state and covariance are propagated to the next time step and the 

process is repeated.  The propagation of the state and measurements use a fourth order 

Runge-Kutta integration scheme.  The IMU sensors utilize the model given in equations 

2.7 through 2.10 for gyro and accelerometers.  The covariance propagation equations 

can be found in Appendix A. 

 

 

Unscented Kalman Filter 

Given the extended Kalman filter has a known problem with initialization where 

the initial state may be far from the truth state, other approaches have been developed.    

One of these approaches is called the Unscented Kalman Filter developed by Julier, 

Uhlmann, and Durrant-Whyte [4].  This filter uses the instinct that it is easier to 

approximate a probability distribution than an arbitrary nonlinear function.  The main goal 

of the UKF is to find a group of points, or sigma points, with a sample probability density 

function that is similar to the true probability density function.  These points are not 

selected at random but chosen deterministically to yield a mean and covariance.  The 

process captures higher order information than the EKF by using a nonlinear 

transformation of a select number of points.  This type of approach yields an increase 

accuracy but comes with a computational cost due to the propagation of sigma points. 

For the UKF the Kalman filter update equations are rewritten as   

 𝒙𝑘
+ = 𝒙𝑘

− + 𝑲𝑘[𝒆𝑘
− ] (4.7) 

 𝑷𝑘
+ = 𝑷𝑘

− − 𝑲𝑘𝑷𝑘

𝑒𝑦𝑒𝑦𝑲𝑘
𝑇 (4.8) 
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where 𝒆𝑘
− ≡ 𝒚̃𝑘 − 𝒚̂𝒌

− and the covariance of 𝒆𝑘
− is 𝑷

𝑘

𝑒𝑦𝑒𝑦
.  The Kalman gain is 

defined as 

 𝑲𝑘 = 𝑷𝑘

𝑒𝑥𝑒𝑦(𝑷𝑘

𝑒𝑦𝑒𝑦)
−1

 (4.9) 

The algorithm for the UKF starts with creating a the number of sigma points, 𝑖,  

for an augmented state. 

 𝝈𝑘 ← 2𝐿 columns from ± 𝛾√𝑃𝑘
𝑎 (4.10) 

 𝝌𝑘
𝑎(0)

= 𝒙𝑘
𝑎 (4.11) 

 𝝌𝑘
𝑎(𝑖)

= 𝝈𝑘
(𝑖)

+ 𝒙𝑘
𝑎 (4.12) 

The augmented state 𝒙𝑘
𝑎 is defined as 

 

𝒙𝑘
𝑎 = [

𝒙𝑘

𝒘𝑘

𝒗𝑘

],   𝒙𝑘
𝑎 = [

𝒙𝑘

𝟎𝑞×1

𝟎𝑚×1

] 

(4.13) 

where 𝐿 is the size of the vector 𝒙𝑘
𝑎.  The parameter 𝛾 is  

 𝛾 = √𝐿 + 𝜆 (4.14) 

and the composite scaling parameter 𝜆 is 

 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿 (4.15) 

where 𝛼 determines the spread of the sigma points and 𝜅 is used to take 

advantage of knowledge about higher moments of a distribution.  The square root of the 

above covariance matrix is determined by using the Cholesky decomposition. 

The weights used for the calculating estimates of the mean and covariance are 

given as 

 
𝑊0

𝑚𝑒𝑎𝑛 =
𝜆

𝐿 + 𝜆
 

(4.16) 

 
𝑊0

𝑐𝑜𝑣 =
𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

(4.17) 
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𝑊𝑖

𝑚𝑒𝑎𝑛 = 𝑊𝑖
𝑐𝑜𝑣 =

1

2(𝐿 + 𝜆)
, 𝑖 = 1,2, … ,2𝐿 

(4.18) 

where 𝛽 is a parameter used to incorporate prior knowledge of the distribution.  

The augmented state with sigma points are propagated to the next measurement time 

step.  The estimation for the current measurement is calculated.  Then the calculation of 

the prediction for state, covariance and measurement are determined from the weighting 

of the sigma points. 

 
𝒙𝑘

− = ∑ 𝑊𝑖
𝑚𝑒𝑎𝑛𝝌𝑘

𝑥(𝑖)

2𝐿

𝑖=0

 
(4.19) 

 
𝑷𝑘

− = ∑ 𝑊𝑖
𝑐𝑜𝑣[𝝌𝑘

𝑥(𝑖)
− 𝒙𝑘

−][𝝌𝑘
𝑥(𝑖)

− 𝒙𝑘
−]

𝑻
2𝐿

𝑖=0

 
(4.20) 

 
𝒚̂𝑘

− = ∑𝑊𝑖
𝑚𝑒𝑎𝑛

2𝐿

𝑖=0

𝛾𝑘
(𝑖)

 
(4.21) 

 𝛾𝑘
(𝑖)

= 𝒉(𝝌𝑘
𝑥(𝑖)

, 𝒖𝑘, 𝝌𝑘
𝜐(𝑖)

, 𝑘) (4.22) 

The filter gain in equation 4.9 is determined through the following covariance and 

cross correlation matrix equations. 

 
𝑷𝑘

𝑦𝑦
= ∑𝑊𝑖

𝑐𝑜𝑣[𝛾𝑘
(𝑖)

− 𝒚̂𝑘
−][𝛾𝑘

(𝑖)
− 𝒚̂𝑘

−]
𝑻

2𝐿

𝑖=0

 
(4.23) 

 𝑷
𝑘

𝑒𝑦𝑒𝑦 = 𝑷𝑘
𝑦𝑦

+ 𝑹𝑘 (4.24) 

 
𝑷

𝑘

𝑒𝑥𝑒𝑦 = ∑𝑊𝑖
𝑐𝑜𝑣[𝝌𝑘

𝑥(𝑖)
− 𝒙𝑘

−][𝛾𝑘
(𝑖)

− 𝒚̂𝑘
−]

𝑻
2𝐿

𝑖=0

 
(4.25) 

The filter updates the state vector using equation 4.7 with the gain determined 

above.  Then the process is repeated for each measurement time step. 
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CHAPTER 4  

SIMULATION 

Trajectory 

The initial state given in Keplerian elements in Table 4-1 is a post-Translunar 

Injection (TLI) burn vector.  The orbit will place the vehicle on a free return trajectory from 

the Moon.  This is based on data from the Apollo 11 mission.      

Table 4-1 Keplerian Elements for Initial State 

Parameter Description Value  

Semi-major Axis, km 286535.8 

Eccentricity 0.976965 

Inclination, deg 31.383 

Argument of Periapse, deg 4.4102 

Longitude of Ascending Node, deg 358.380 

Time of Periapse, sec 10054 

 

For the cislunar trajectory propagation of the truth state, perturbations to the orbit 

included a gravity model and third body accelerations [6].  The truth used the degree and 

order of 32x32 harmonic coefficient EGM96 model.  The filters used in this analysis 

propagated with 4x4 EGM96 (Earth Gravity Model) coefficients.  The lunar orbit trajectory 

for the truth state used the 32x32 harmonic coefficients from the GRAIL 660 (ref) lunar 

gravity model (Gravity Recovery And Interior Laboratory) while the filter propagated with 

the 4x4 coefficients.  Using a less accurate model for gravity for spacecraft is typical in 

order to keep an accurate enough estimate to satisfy trajectory requirements while 

keeping computational cost down. 

A patched conic approximation was used to determine time of flight until the 

vehicle entered the Moon's gravity sphere of influence.  During this time measurements 

were generated at approximately six hours post-TLI and also around the 12 hour mark.  

Star selection was based on those used during Apollo missions and are listed in Table 4-
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2.  The vehicle was propagated until it entered the Moon's gravitational sphere of 

influence known to be 66,100 km from the Moon.  Then the spacecraft was placed on a 

hyperbolic trajectory to the Moon.  Once at the time of closest approach to the Moon, the 

vehicle was assumed to perform a burn to place it into a 315x200 km orbit.  After two 

orbit the orbit was circularized to 200x200 km.  These heights were selected to provide 

views of the LRRRs for tracking purposes during each orbit of the Moon.  Lidar 

measurements were generated for the lunar orbits using the LRRRs on the lunar surface.  

The LRRR locations are listed in Table 4-3.  Tracking arcs were generated based on line 

of sight of the spacecraft to the LRRR through determination of line of sight Acquisition of 

Satellite (AOS) and Loss of Satellite (LOS) times for each LRRR.    Tracking arcs were 

generally around 16 minutes in length.  It was determined that the Apollo 11 and 15 

LRRRs provided similar tracking arcs.  The Apollo 14 LRRR provides additional line of 

sight coverage.  Therefore, the spacecraft could point at the Apollo 11 LRRR then rotate 

and point at the Apollo 14 LRRR.  This allows for a larger section of the orbit to be 

measured. 

Table 4-2 Star and Earth Locations  

Star 
Celestial Latitude 

(deg N) 
Celestial Longitude 

(deg E) 

Altair 30 302 

Diphda -22 2 

Earth -4 326 

 

Table 4-3 Lunar Ranging Retroreflector Locations 

Mission 
Lunar Latitude 

(deg N) 
Lunar Longitude 

(deg E) 

Apollo 11 0.67377 23.47293 

Apollo 14 -3.64422 -17.47880 

Apollo 15 26.13333 3.62837 
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A pitch rate 0.05 degree per second was applied through the tracking arc to 

emulate the vehicle tracking the LRRR on the lunar surface. 

 

Filters 

The filters were coded in MATLAB.  They employed an ode45 solver for 

propagation.  The propagation step was set to 10 seconds since the measurements were 

taken at the same interval for both cislunar and lunar orbit.  For the cislunar portion, the 

tracking arc was over a 10 minute period at the 10 second interval.  These periods 

occurred around six and twelve hours after the TLI burn, which is consistent with the 

times of midcourse burns during Apollo transit to the Moon.  For the lunar portion, the 

tracking arcs were based on line of sight.  This time interval is consistent with ground-

based radar output from the DSN. 

For the cislunar trajectory, star tracker angle measurements were generated at 

10 second intervals during the two ten minute selection periods identified earlier with an 

accuracy of 0.01 deg.  The initial covariance was set fairly large in position due to the 

distance of the vehicle from the Earth at 130 km in position with a velocity of 10 m/s. 

During lunar orbit, tracking measurements were synthesized every 10 seconds.  

This meant the gyro and accelerometer sensors were sampled at the same rate.  The 

gyro and accelerometer noise parameters detailed in Chapter 3 were set to 𝜼𝑔𝑣 = √10 ×

10−7 rad/sec1/2,  𝜼𝑔𝑢 = √10 × 10−10 rad/sec3/2, 𝜼𝑎𝑣 = 1.62 × 10−7 m/sec3/2, and 𝜼𝑎𝑢 = 6 ×

10−5 m/sec5/2.  The initial biases for the gyro and accelerometer were 0.01 deg/hr and 

0.003 m/sec2, respectively.  The Lidar sensor data provided an accuracy of .01 deg in 

angle and 10 meter in range.  The initial covariance values were set to 0.33 deg/axis for 

attitude, 0.1 radians for latitude and longitude, 5 km for range, 0.1 km/s for velocity, 1 

deg/hr for gyro bias, and 0.005 m/s2 for accelerometer bias. 
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The UKF parameters were set to appropriate values for this analysis (equations 

4.15 and 4.17).  For cislunar estimation, alpha (𝛼) was set to one for maximum spread of 

the sigma points.  Beta (𝛽) was set to two and kappa (𝜅) was set to zero.  The lunar orbit 

estimation used the same values for beta and kappa, however, the alpha parameter was 

reduced to 0.1.  This improved the attitude estimation of the given system.  A smaller 

alpha value that reduces the spread of the sigma points is considered acceptable given 

an assumed Gaussian distribution. 
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CHAPTER 5  

SIMULATION RESULTS 

 
Cislunar Trajectory 

The MC1 and MC2 cases were able to show that a vehicle can provide a good 

estimation of the vehicle state using celestial navigation techniques in the form of planet-

star angles and planet angular diameter.  Figures 5-1 through 4 plot the errors in Earth 

Centered Inertial (ECI) coordinates for both EKF and UKF and provide similar results for 

the MC1 case.  They compare the estimated state to the truth and associated covariance 

error.  The large covariance error associated with the position estimate is expected since 

a small error in angle measurement can result in large range error at the range the 

vehicle is from the Earth.  Comparison of the output of both filter estimate versus the truth 

is shown in Figures 5-5 and 5-6 show the EKF and UKF have similar estimates. 

 
Figure 5-1 MC1 EKF Position Errors (TLI+6 hrs) 
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Figure 5-2 MC1 UKF Position Errors (TLI+6 hrs) 

 

 
Figure 5-3 MC1 EKF Velocity Errors (TLI+6 hrs) 
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Figure 5-4 MC1 UKF Velocity Errors (TLI+6 hrs) 

 

 
Figure 5-5 MC1 Filter Position Estimation Compare (TLI+6 hrs) 
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Figure 5-6 MC1 Velocity Estimation Compare (TLI+6 hrs) 

The MC2 case was about twelve hours after TLI and provided similar estimation 

and associated error to the MC1 timeframe for both filters.  Figures 5-7 through 10 show 

filter error.  Figures 5-11 and 5-12 compare the estimation the filters position and velocity.  

Both filters show that the error in the estimate is larger than MC1 case.  Since the vehicle 

is much further away from the Earth, this amount of error is expected.  As the vehicle 

travels farther away from the Earth, noise in the measurement will show an increase in 

estimated error.  This can be offset by taking measurement using the Moon since the 

spacecraft will be approaching this planetary body. 
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Figure 5-7 MC2 EKF Position Errors (TLI+12 hrs) 

 

 
Figure 5-8 MC2 UKF Position Errors (TLI+12 hrs) 
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Figure 5-9 MC2 EKF Velocity Errors (TLI+12 hrs) 

 

 
Figure 5-10 MC2 UKF Velocity Errors (TLI+12 hrs) 
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Figure 5-11 MC2 Position Estimation Compare (TLI+12 hrs) 

 

 
Figure 5-12 MC2 Velocity Estimation Compare (TLI+12 hrs) 
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The EKF and UKF performed well for both MC1 and MC2 cases.  The UKF 

performed slightly better than the EKF in the Z-axis with respect to 1-sigma performance.  

Also, the UKF appeared to be sensing better in the Y-axis.  The Y-position did not vary 

much and the EKF shows little affect to input as opposed to the other axes. 

 
Lunar Orbit 

The autonomous vehicle utilized an integrated navigation system once lunar orbit 

was achieved.  Estimate of the attitude was needed to ensure the vehicle's Lidar is 

pointed accurately at the LRRRs on the lunar surface.  Gyro and accelerometer data 

were incorporated along with the Lidar ranging measurements to provide attitude, 

position and velocity.  Gyro and accelerometer biases were estimated as well.  The filters 

were analyzed for an elliptical orbit (315x200 km) and circular orbit (200x200 km).  

Tracking passes for each orbit were examined for a total of four measurement (2 per type 

of orbit) gathering periods along with both EKF and UKF processing the data.  The first 

tracking pass tracking was initialized with the truth state.  The state estimate at the end of 

the first tracking pass was propagated to the next tracking pass on the following orbit.  

This used a 4x4 gravitational model.  This was performed to ensure the filters would 

perform well under ideal conditions for the first pass and realistic conditions for the 

second pass.  

For discussion purposes here the first tracking pass of the elliptical orbit will be 

examined.  The output for all tracking arcs were similar even with the slight offset in initial 

state for the second tracking pass of each orbit.  The data for the three other periods are 

included in Appendices C, D and E. 
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The filter output estimates showed good performance in attitude.  The filters were 

within 0.1 deg of each other.  Figures 5-13 and 5-14 show error bounded by the 3-sigma 

performance.  Figure 5-15 compares the attitude output of the filters. 

  

 

 

 
Figure 5-13 Elliptical Orbit 1 EKF Attitude Error 
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Figure 5-14 Elliptical Orbit 1 UKF Attitude Error 

 
Figure 5-15 Elliptical Orbit 1 EKF vs UKF Attitude Error 
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The position estimates for both filter performed very well.  Figures 5-16 and 5-17 

illustrate this.  The latitude and longitude output shown in Figure 5-18 show 10-3 error in 

latitude and longitude and under 50-meter accuracy in range. 

 
Figure 5-16 Elliptical Orbit 1 EKF Position Error 
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Figure 5-17 Elliptical Orbit 1 UKF Position Error 

 
Figure 5-18 Elliptical Orbit 1 EKF vs UKF Position Error 
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The velocity components of the state performed well.  The UKF velocity was 

sensitive to position measurement noise.  Velocity determined from position 

measurements can cause inconsistencies with its determination.  The UKF converged 

quickly, but as the tracking pass proceeded the 3-sigma performance varied as position 

measurements were processed.  Also, the system modeled velocity in local NED 

coordinates for this analysis. Modeling in a Moon Center Moon Fixed coordinate system 

could provide better results. 

 
 

Figure 5-19 Elliptical Orbit 1 EKF Velocity Error 
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Figure 5-20 Elliptical Orbit 1 UKF Velocity Error 

 
Figure 5-21 Elliptical Orbit 1 EKF vs UKF Velocity Error 
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The gyro and accelerometer biases are given in Figures 5-22 through 25.  The 

filters were able to track the small amount of initial bias input into the system.  The gyro 

bias 3-sigma performance was large and could perform better with filter tuning to the 

system. 

 
Figure 5-22 Elliptical Orbit 1 EKF Gyro Bias 
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Figure 5-23 Elliptical Orbit 1 UKF Gyro Bias 

 
Figure 5-24 Elliptical Orbit 1 EKF Accelerometer Bias 
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Figure 5-25 Elliptical Orbit 1 UKF Accelerometer Bias 

Overall the EKF and UKF performed similarly.  The UKF was not as well 

behaved in velocity than the EKF.  The UKF is expected to perform as well or better than 

the EKF.  However, the UKF is more sensitive to measurements than the EKF and can 

benefit from more analysis to tune the UKF filter to the system.  This scope of this 

analysis was to perform an initial assessment of the filters and determine the feasibility of 

each one.  As such, both filters perform well for the given task with the EKF providing a 

slightly better state estimate for propagation to the next tracking arc. 

 

 Computational Speed 

The last piece of this analysis was to examine the computational speed for the 

cislunar filters and the lunar orbit filters.  This helps assess which filter to implement for 

real-time operations.  The filter used an ode45 solver in Matlab for the propagator.  This 

increased the computation burden on the UKF tremendously as expected.  The UKF 
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propagates its n-element state 2n+1 times compared to the single propagation of the 

EKF.  This leads to large time differences for the lunar orbit filter.  Table 5-1 shows the 

average time the filter took to process each measurement in seconds. 

 
Table 5-1 Filter Computational Speed 

Tracking Case EKF UKF 

MC1 0.9006 9.9389 

MC2 0.7509 10.2349 

Elliptical Orbit 1 1.1691 35.3384 

Elliptical Orbit 2 1.0413 32.6466 

Circular Orbit 1 1.1208 32.0274 

Circular Orbit 2 1.0636 32.5209 

 

 
The 10 second sampling rate for all tracking periods during cislunar transit and 

lunar orbit was 10 seconds.  Therefore, the EKF would be selected for processing real-

time.  A different propagator can be used such as an RK4 (fourth order Runge-Kutta) to 

reduce computational time for the UKF.  Also, parallel processing could be investigated 

as a reduction measure.
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 
This thesis presents an initial investigation into using available navigation 

techniques as a way to place autonomous vehicle in orbit about the Moon.  The use of 

laser ranging from the lunar surface located LRRRs provide an acceptable means of 

maintaining a navigation state in lunar orbit without relying on the DSN to provide tracking 

data.  This approach should be considered for future projects involving lunar orbit 

operations.  This should keep operational costs low for a lunar orbit mission. 

Applying either Kalman filter to celestial navigation provides method suitable for 

spacecraft navigation during cislunar transit to the Moon.  Both filters processing of Lidar 

measurements yield excellent results.  The EKF is more suitable due to computational 

performance for the given measurement time interval.   

Future work of this analysis can be performed through tuning of the system to 

particular sensors.  Lidar sensor evaluation for LRRR application can be investigated. 

Evaluation of equations of motion in a Moon-centered rotational coordinate system could 

provide better results than the one in this analysis.  Using other means of propagation or 

parallel processing architecture could be investigated to increase computational speed of 

the UKF. 

Another promising filter application that was not addressed in this analysis is the 

Rao-Blackwellized Particle Filter (RBPF).  The RBPF seeks to provide a more accurate 

estimation due to the large sampling of data points processed at each time step to give a 

better approximation.  Partitioning the state into nonlinear and linear part using the Rao-

Blackwell theorem.  The number of sampling points is reduced versus a conventional 
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particle filter thus lowering the computational load associated with propagating each 

particle.  The formulation for the RPBF is included in Appendix F.
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APPENDIX A: 

EXTENDED KALMAN FILTER COVARIANCE PROPAGATION 
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The covariance propagation for the EKF is given by the equation 

 Δ𝒙̇ = 𝐹Δ𝒙 + 𝐺𝒘 (A.1) 

The state, error state vector and process noise for the navigation system used during 

cislunar transit are defined by 

 Δ𝒙 = [
𝒑
𝒗
] , Δ𝒙 = [

Δ𝒑
Δ𝒗

] , 𝒘 = [
𝜼𝑝

𝜼𝑣
] (A.2) 

The state transition matrix and process noise transform are  

 𝐹 = [
03×3 𝐼3×3

𝐹21 03×3
] 

(A.3) 

 
𝐺 = [

𝐼3×3 03×3

03×3 𝐼3×3
] 

(A.4) 

with 𝐹21 defined as 

 

𝐹21 =

[
 
 
 
 
 
 
3𝜇𝑥2

‖𝒓‖5
−

𝜇

‖𝒓‖3

3𝜇𝑥𝑦

‖𝒓‖5

3𝜇𝑥𝑧

‖𝒓‖5

3𝜇𝑥𝑦

‖𝒓‖5

3𝜇𝑦2

‖𝒓‖5
−

𝜇

‖𝒓‖3

3𝜇𝑦𝑧

‖𝒓‖5

3𝜇𝑥𝑧

‖𝒓‖5

3𝜇𝑦𝑧

‖𝒓‖5

3𝜇𝑧2

‖𝒓‖5
−

𝜇

‖𝒓‖3]
 
 
 
 
 
 

 

(A.5) 

 

The state, error state vector and process noise for the integrated navigation system 

used during lunar orbit are defined by 

 

Δ𝒙 =

[
 
 
 
 
𝒒
𝒑

𝒗𝑁

𝜷𝑔

𝜷𝑎]
 
 
 
 

, Δ𝒙 =

[
 
 
 
 
𝛿𝜶
Δ𝒑

Δ𝒗𝑁

Δ𝜷𝑔

Δ𝜷𝑎]
 
 
 
 

, 𝒘 = [

𝜼𝑔𝑣

𝜼𝑔𝑢

𝜼𝑎𝑣

𝜼𝑎𝑢

] 

(A.6) 

The state transition matrix and process noise transform are  

 

𝐹 =

[
 
 
 
 
𝐹11 𝐹12 𝐹13 −𝐼3×3 03×3 𝐹16 03×3

03×3 𝐹22 𝐹23 03×3 03×3 03×3 03×3

𝐹31 𝐹32 𝐹33 03×3 𝐹35 03×3 𝐹37

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3]
 
 
 
 

 

(A.7) 
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𝐺 =

[
 
 
 
 
−𝐼3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 −𝐴𝐵
𝑁(𝒒̂)𝐼3×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3]
 
 
 
 

 

(A.8) 

The parts of the state transition matrix, F, identified above are defined as 

 𝐹11 = −[(𝝎̃𝐵/𝐼
𝐵 − 𝜷̂𝑔) ×] (A.9) 

 
𝐹12 = −𝐴𝑁

𝐵(𝒒̂)
𝜕𝝎𝑁/𝐼

𝑁

𝜕𝒑
|
𝒑̂,𝒗̂𝑁

 
(A.10) 

 
𝐹13 = −𝐴𝑁

𝐵 (𝒒̂)
𝜕𝝎𝑁/𝐼

𝑁

𝜕𝒗𝑁
|
𝒑̂

 
(A.11) 

 𝐹16 = −(𝑑𝑖𝑎𝑔(𝝎̃𝐵/𝐼
𝐵 ) − 𝑑𝑖𝑎𝑔(𝜷̂𝑔)) (A.12) 

 
𝐹22 =

𝜕𝒑̇

𝜕𝒑
|
𝒑̂,𝒗̂𝑁

 
(A.13) 

 
𝐹23 =

𝜕𝒑̇

𝜕𝒗𝑁
|
𝒑̂
 

(A.14) 

 𝐹31 = −𝐴𝐵
𝑁(𝒒̂)[𝒂̂𝐵 ×] (A.15) 

 
𝐹32 =

𝜕𝒗̇𝑁

𝜕𝒑
|
𝒑̂,𝒗̂𝑁

 
(A.16) 

 
𝐹33 =

𝜕𝒗̇𝑁

𝜕𝒗𝑁
|
𝒑̂,𝒗̂𝑁

 
(A.17) 

 𝐹31 = −𝐴𝐵
𝑁(𝒒̂)[𝒂̂𝐵 ×] (A.18) 

 𝐹35 = −𝐴𝐵
𝑁(𝒒̂) (A.19) 

 𝐹35 = −𝐴𝐵
𝑁(𝒒̂)(𝑑𝑖𝑎𝑔(𝒂̃𝐵) − 𝑑𝑖𝑎𝑔(𝛽̂𝑎)) (A.20) 

The angular rate partials are given by 

 

𝜕𝝎𝑁/𝐼
𝑁

𝜕𝒑
=

[
 
 
 
 
 
 −𝜔𝑚 sin 𝜙 0 −

𝑣𝐸

𝑅𝑚
2

0 0
𝑣𝑁

𝑅𝑚
2

−𝜔𝑚 cos 𝜙 −
𝑣𝐸 sec2 𝜙

𝑅𝑚

0
𝑣𝐸 tan𝜙

𝑅𝑚
2 ]

 
 
 
 
 
 

 

(A.21) 
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𝜕𝝎𝑁/𝐼
𝑁

𝜕𝒗𝑁
=

[
 
 
 
 
 
 

−

0
1

𝑅𝑚

0

1

𝑅𝑚

0 0

0 −
tan𝜙

𝑅𝑚

0
]
 
 
 
 
 
 

 

(A.22) 

The position partials are given by 

 

𝜕𝒑̇

𝜕𝒑
=

[
 
 
 
 0 0 −

𝑣𝑁

𝑅𝑚
2

𝑣𝐸 sec 𝜙 tan𝜙

𝑅𝑚

0 −
𝑣𝐸 sec 𝜙

𝑅𝑚
2

0 0 0 ]
 
 
 
 

 

(A.23) 

 

𝜕𝒑̇

𝜕𝒗𝑁
=

[
 
 
 
 

1

𝑅𝑚

0 0

0
sec 𝜙

𝑅𝑚

0

0 0 −1]
 
 
 
 

 

(A.24) 

The velocity partials are given by 

 𝜕𝒗̇𝑁

𝜕𝒑
= [

𝑌11 0 𝑌13

𝑌21 0 𝑌23

𝑌31 0 𝑌33

] 
(A.25) 

 
𝑌11 = −2𝜔𝑚𝑣𝐸 cos 𝜙 −

𝑣𝐸
2 sec2 𝜙

𝑅𝑚

 
(A.26) 

 
𝑌13 =

𝑣𝐸
2 tan𝜙

𝑅𝑚
2

−
𝑣𝑁𝑣𝐷

𝑅𝑚
2

 
(A.27) 

 
𝑌21 = 2𝜔𝑚𝑣𝑁 cos 𝜙 − 2𝜔𝑚𝑣𝐷 sin 𝜙 +

𝑣𝐸𝑣𝑁 sec2 𝜙

𝑅𝑚

 
(A.28) 

 
𝑌23 = −𝑣𝐸 [

𝑣𝑁 tan𝜙 + 𝑣𝐷

𝑅𝑚
2

] 
(A.29) 

 
𝑌31 = 2𝜔𝑚𝑣𝐷 sin𝜙 +

𝜕𝑔

𝜕𝜙
 

(A.30) 

 
𝑌33 =

𝑣𝐸
2

𝑅𝑚
2

+
𝑣𝑁

2

𝑅𝑚
2

+
𝜕𝑔

𝜕ℎ
 

(A.31) 
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𝜕𝒗̇𝑁

𝜕𝒗𝑁
=

[
 
 
 
 
 
 

𝑣𝐷

𝑅𝑚

𝜔𝑚 sin𝜙 −
2𝑣𝐸 tan 𝜙

𝑅𝑚

𝑣𝑁

𝑅𝑚

2𝜔𝑚 sin 𝜙 +
𝑣𝐸 tan𝜙

𝑅𝑚

𝑣𝐷 + 𝑣𝑁 tan𝜙

𝑅𝑚

2𝜔𝑚 cos 𝜙 +
𝑣𝐸

𝑅𝑚

−
2𝑣𝑁

𝑅𝑚

−2𝜔𝑚 cos 𝜙 −
2𝑣𝐸

𝑅𝑚

0
]
 
 
 
 
 
 

 

(A.32) 
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APPENDIX B: 

COORDINATE SYSTEMS 
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Coordinate systems used in this thesis are defined in this appendix. 

Body Frame (B) - The center of the body frame is located at the center of gravity 

of the vehicle.  The X-axis points in the direction of the front of the vehicle.  The z-axis 

points in the direction of the bottom of the vehicle.  The Y-axis completes the right-

handed system. 

Earth Centered Inertial (ECI) - The Z-axis points in the direction of the North pole.  

The X-axis points in the direction of the vernal equinox through the equatorial plane.  The 

Y-axis completes the right-handed system.  

Earth Centered-Earth Fixed (ECEF) - The Z-axis points in the direction of the 

North pole.  The X-axis points in the direction of the prime meridian in the equatorial 

plane.  The Y-axis completes the right-handed system. 

Moon Centered-Moon Fixed (MCMF) - Similar to the Z-axis points in the direction 

of the Moon's North pole.  The X-axis points in the direction of the Moon's prime meridian 

in the equatorial plane.  The Y-axis completes the right-handed system. 

North East Down (NED) - This reference frame is local to the object's position 

and is formed to a tangent plane to the object's reference ellipsoid.  The North-axis points 

in the direction of true North.  The East-axis points in the East direction.  The Down-

direction completes the right-handed system and points in the direction of the center of 

the planetary object. 
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APPENDIX C: 

SECOND ELLIPTICAL ORBIT DATA (315X200 KM) 
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The following plots are filter output for the second tracking pass of the elliptical 

315x200 km orbit. 

 

Figure C-1 Elliptical Orbit 2 EKF Attitude Error 
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Figure C-2 Elliptical Orbit 2 UKF Attitude Error 

 

Figure C-3 Elliptical Orbit 2 EKF vs UKF Attitude Error 
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Figure C-4 Elliptical Orbit 2 EKF Position Error 

 
Figure C-5 Elliptical Orbit 2 UKF Position Error 
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Figure C-6 Elliptical Orbit 2 EKF vs UKF Position Error 

 

 
Figure C-7 Elliptical Orbit 2 EKF Velocity Error 
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Figure C-8 Elliptical Orbit 2 UKF Velocity Error 

 
Figure C-9 Elliptical Orbit 2 EKF vs UKF Velocity Error 
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Figure C-10 MC1 Elliptical Orbit 2 EKF Gyro Bias 

 
Figure C-11 Elliptical Orbit 2 UKF Gyro Bias 
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Figure C-12 Elliptical Orbit 2 EKF Accelerometer Bias 

  

Figure C-13 Elliptical Orbit 2 UKF Accelerometer Bias 
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APPENDIX D: 

FIRST CIRCULAR ORBIT DATA (200X200 KM) 
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The following plots are filter output for the first tracking pass of the circular 

200x200 km orbit. 

 
Figure D-1 Circular Orbit 1 EKF Attitude Error 

 
Figure D-2 Circular Orbit 1 UKF Attitude Error 
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Figure D-3 Circular Orbit 1 EKF vs UKF Attitude Error 

 
Figure D-4 Circular Orbit 1 EKF Position Error 
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Figure D-5 Circular Orbit 1 UKF Position Error 

 
Figure D-6 Circular Orbit 1 EKF vs UKF Position Error 
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Figure D-7 Circular Orbit 1 EKF Velocity Error 

 
Figure D-8 Circular Orbit 1 UKF Velocity Error 
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Figure D-9 Circular Orbit 1 EKF vs UKFVelocity Error 

 
Figure D-10 Circular Orbit 1 EKF Gyro Bias 
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Figure D-11 Circular Orbit 1 UKF Gyro Bias 

 
Figure D-12 Circular Orbit 1 EKF Accelerometer Bias 
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Figure D-13 Circular Orbit 1 UKF Accelerometer Bias 
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APPENDIX E: 

SECOND CIRCULAR ORBIT DATA (200X200 KM) 
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The following plots are filter output for the second tracking pass of the circular 

200x200 km orbit. 

Figure E-1 Circular Orbit 2 EKF Attitude Error  
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Figure E-2 Circular Orbit 2 UKF Attitude Error 

 
Figure E-3 Circular Orbit 2 EKF vs UKF Attitude Error 
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Figure E-4 Circular Orbit 2 EKF Position Error 

 
Figure E-5 Circular Orbit 2 UKF Position Error 
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Figure E-6 Circular Orbit 2 EKF vs UKF Position Error 

 
Figure E-7 Circular Orbit 2 EKF Velocity Error 
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Figure E-8 Circular Orbit 2 UKF Velocity Error 

 
Figure E-9 Circular Orbit 2 EKF vs UKF Velocity Error 
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Figure E-10 Circular Orbit 2 EKF Gyro Bias 

 
Figure E-11 Circular Orbit 2 UKF Gyro Bias 
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Figure E-12 Circular Orbit 2 EKF Accelerometer Bias 

 
Figure E-13 Elliptical Orbit 2 UKF Accelerometer Bias 



 

73 

APPENDIX F: 

RAO-BLACKWELLIZED PARTICLE FILTER 
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Particle filters are another method to approximate a nonlinear system.  The 

particle filter seeks to provide an accurate representation of the posterior probability 

distribution function.  The filter propagates a large number of particles that are randomly 

sampled and weights them using a likelihood function to determine which particles 

closely match the measurements.  The particles will that are weighted more allows for the 

filter to provide a more accurate approximation of the estimate compared to the truth.  

The performance of the filter depends the sampling of the particles.  Particle filters tend to 

suffer from particle degeneracy because the samples are more than likely outside the 

significant region of the state space.  The method for sampling of the particles plays an 

important role in how well the filter will perform.   

Sampling of all elements of a state leads to a high computational cost due to the 

large number of particles that are propagated.  A method has been developed using the 

Rao-Blackwell theorem that can reduce these computations.  The system state can be 

partitioned into nonlinear and conditionally linear parts.  This is called the Rao-

Blackwellized Particle Filter (RBPF).  The RBPF treats a part of the system as 

conditionally linear, which allows for the estimate to be determined by a Kalman filter or 

extended Kalman filter.  This arrangement is convenient for navigation systems.  The 

RBPF can apply a particle filter to the position state and the conditional linearity to the 

velocity state.  The same will hold true with the attitude state being considered as 

conditionally linear.  This reduces the amount of sampling data points compared to a 

particle filter, which reduces computational time. 

The RBPF uses the following equations for the partitioned state. 

 𝒙1𝑘+1 = 𝒇(𝒙1𝑘) + 𝚽1𝑘𝑥2𝑘 + 𝚼1𝑘𝒘1𝑘 (F.1) 

 𝒙2𝑘+1 = 𝚽2𝑘𝒙2𝑘 + 𝚼2𝑘𝒘2𝑘 (F.2) 

 𝒚̃𝑘 = 𝒉(𝒙1𝑘) + 𝒗𝑘 (F.3) 
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where 𝒙1𝑘 = [𝜙  𝜆  𝑟] and 𝒙2𝑘 = [𝜚  𝑣𝑁 𝑣𝐸  𝑣𝐷  𝜷𝑔 𝜷𝑎 ].  The matrices 𝚽1𝑘 and 𝚽2𝑘 

will be propagation matrices following the previous defined equations of motion.  The 

process noise variables 𝒘1𝑘 and 𝒘2𝑘 are assumed to be zero mean Guassian noise 

processes represented as  

 
[
𝒘1𝑘

𝒘2𝑘
] ~𝑁 ([

𝟎
𝟎
] , [

𝑄1𝑘 𝑄12𝑘

𝑄12𝑘
𝑇 𝑄2𝑘

]) 
(F.4) 

However, 𝒘1𝑘 , 𝑄1𝑘 and 𝑄12𝑘 are zero for this application.  The process noise 

vector, 𝒘2𝑘, and covariance, 𝑄2𝑘, are defined as 

 

𝑤2𝑘 = [

𝜂𝑔𝑣

𝜂𝑔𝑢

𝜂𝑎𝑣

𝜂𝑎𝑢

] 

(F.5) 

 

𝑄2𝑘 =

[
 
 
 
 
𝜎𝑔𝑣

2 𝐼3×3 03×3 03×3 03×3

03×3 𝜎𝑔𝑢
2 𝐼3×3 03×3 03×3

03×3 03×3 𝜎𝑎𝑣
2 𝐼3×3 03×3

03×3 03×3 03×3 𝜎𝑎𝑢
2 𝐼3×3]

 
 
 
 

 

(F.6) 

and the corresponding matrix transform to the 𝒙2 navigation state described in 

the RBPF algorithm is  

 

Υ2𝑘 = [

−𝐼3×3 03×3 03×3 03×3

03×3 03×3 −𝐴𝐵
𝑁(𝒒̂)𝐼3×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

] 

(F.7) 

 

The algorithm for the RBPF is as follows and can be found in both Crassidis [5] 

and Nordlund [10].  The first part consists of initialization by generating the particles for 

𝒙10 using 𝑝(𝒙10), which will can be arbitrary, but will be considered Gaussian.  Initialize 

the weights for each particle to 1 𝑁⁄ , where 𝑁 is the number of particles.  The Kalman 

filters are initialized with 𝒙20 and 𝑷20.   For each instance of time perform the following 

steps. 
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1. Update the weight for each particle 

 
𝑤𝑘

𝑖+1 = 𝑤𝑘
(𝑗)

𝑒𝑥𝑝 [−
1

2
(𝒚̃𝑘 − 𝒚𝑘

(𝑗)
)𝑅𝑘

−1(𝒚̃𝑘 − 𝒚𝑘
(𝑗)

)
𝑇
] 

(F.8) 

2. Re-normalize the weights 

 
𝑤𝑘+1

(𝑗)
←

𝑤𝑘+1
(𝑗)

∑ 𝑤𝑘+1
(𝑗)𝑁

𝑗=1

 
(F.9) 

 

3. If needed, resample the weights 

 𝒙2𝑘+1 = 𝚽2𝑘𝒙2𝑘 + 𝚼2𝑘𝒘2𝑘 (F.10) 

 𝒚̃𝑘 = 𝒉(𝒙1𝑘) + 𝒗𝑘 (F.11) 

4. Propagate the particles 

 𝒙1𝑘+1~𝑁(𝑓(𝒙1𝑘
(𝑗)

) + 𝚽1𝑘𝒙𝟐𝒌
−(𝒋)

, 𝚽1𝑘𝑷2𝑘𝚽1𝑘
𝑇 + 𝚼1𝑘𝑄1𝑘𝚼1𝑘

𝑇 ) (F.12) 

5. Compute the Kalman gain 

 𝑲𝑘 = 𝑷2𝑘
− 𝚽1𝑘

𝑇 [𝚽1𝑘𝑷2𝑘
− 𝚽1𝑘

𝑇 + Υ1𝑘𝑄1𝑘Υ1𝑘
𝑇 ]−1 (F.13) 

6. Perform update of Kalman filter for each particle 

 𝒙2𝑘
+(𝑗)

= 𝒙2𝑘
−(𝑗)

+ 𝑲𝑘[𝒙1𝑘+1
(𝑗)

− 𝒇(𝒙1𝑘
(𝑗)

) − 𝚽1𝑘𝒙2𝑘
−(𝑗)

] (F.14) 

 𝑷2𝑘
+ = [𝑰 − 𝑲𝑘𝚽1𝑘]𝑷2𝑘

−  (F.15) 

 

7. Propagate the Kalman filters for each particle 

 𝒙2𝑘+1
−(𝑗)

= 𝐷𝑘𝒙2𝑘
−(𝑗)

+ 𝑪𝑘[𝒙1𝑘+1
(𝑗)

− 𝒇(𝒙1𝑘
(𝑗)

)] (F.16) 

 𝑷2𝑘+1
− = 𝐷𝑘𝑷2𝑘

− 𝐷𝑘
𝑇 + Υ2𝑘𝑄̅2𝑘Υ2𝑘

𝑇  (F.17) 

where 

 𝑄̅2𝑘 = Q2𝑘 + 𝑄12𝑘
𝑇 𝑄1𝑘

−1𝑄12𝑘 (F.18) 

 𝐶𝑘 = Υ2𝑘𝑄12𝑘
𝑇 𝑄1𝑘

−1(Υ1𝑘
𝑇 Υ1𝑘)−1Υ1𝑘

𝑇  (F.19) 
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 𝐷𝑘 = 𝚽2𝑘 − 𝐶𝑘𝚽1𝑘 (F.20) 

 

8. Vehicle state and covariance at each time step are calculated  

 
𝒙𝑘 = ∑𝑤𝑘

(𝑗)
𝒙𝑘

(𝑗)

𝑁

𝑗=1

 
(F.21) 

 
𝑷𝑘 ≈ [

0𝑛1×𝑛1 0𝑛1×𝑛2

0𝑛2×𝑛1 𝑃2𝑘
+ ] + ∑𝑤𝑘

(𝑗)
𝒙𝑘

(𝑗)
𝒙𝑘

(𝑗)𝑇

𝑁

𝑗=1

 
(F.22) 

 𝒙𝑘
(𝑗)

= 𝒙𝑘
(𝑗)

− 𝒙𝑘 (F.23) 

where 𝒙𝑘
(𝑗)

= [𝒙1𝑘
(𝑗)𝑇

𝒙2
+(𝑗)𝑇]

𝑇
 and 𝑛1 and 𝑛2 are the lengths of 𝒙1 and 𝒙2 

respectively.  Since the process noise for 𝑄1𝑘 and 𝑄12𝑘 are zero, this reduces the above 

equations where these variables are called out. 
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