
1

IMPROVED INITIALIZATION FOR THE

MULTI LAYER PERCEPTRON

By

ABHISHEK VINAY MAINKAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERISTY OF TEXAS AT ARLINGTON

May 2018

2

Copyright © by Abhishek Vinay Mainkar 2018

All Rights Reserved

3

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advising professor Dr. Michael T Manry for his continuous

support throughout my master study and related research, for his patience, guidance and immense

knowledge. His guidance helped me throughout my research and writing of this thesis.

I would also like to thank Dr. Ioannis D. Schizas and Dr. R Stephen Gibbs for their time, valuable comments

and, for being a member of my thesis defense committee.

Finally, I must express my sincere gratitude to my family for their love and support. I dedicate this thesis to

my parents, Mr. Vinay Mainkar and Mrs. Medha Mainkar, my brother, Mr. Anup Mainkar and my sister in

law Mrs. Purva Mainkar.

April 26, 2018

4

ABSTRACT

IMPROVED INITIALIZATION FOR THE

MULTI LAYER PERCEPTRON

ABHISHEK MAINKAR

The University of Texas at Arlington, 2018

Supervising Professor: Dr. Michael T. Manry

A Multilayer Perceptron (MLP) neural network is used for solving nonlinear functional problems like function

approximation, classification, data processing etc. MLP neural networks are usually trained using back

propagation, which is a non-convex optimization problem for most of the loss functions. As there are

multiple local minima, non-convex optimization curves generally converge to different optimal points for

different initial conditions. So it not only affects the speed of the convergence but optimality as well. Initial

parameters of neural networks are as important as the network architecture and initialization has been

thoroughly studied in the past. This report discusses the fusion method and modified sigmoid method which

are used for network initialization. Both initialization methods discussed in this report are based on the

regular Hidden weight optimization – Multiple optimal learning factors (HWO-MOLF) MLP. Due to non-

convex optimization, training an MLP for large networks has the possibility of finding local minima instead

of the global minima. The network has a possibility to stick at saddle points when minimizing the error

function. Both the initialization procedures in this report, try to avoid the likelihood of finding a local minimum.

The training experiments and results obtained are demonstrated in this report. We can see that using both

the initialization methods for training HWO-MOLF network, helps mitigate local minima problem, hidden

units saturation problem, and dependent hidden units.

5

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... 3

ABSTRACT ... 4

TABLE OF CONTENTS .. 5

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

CHAPTER 1 Introduction .. 9

1.1 Machine Learning .. 9

1.2 Artificial Neural Network (ANN) ... 9

1.2.1 Structure and Components of an Artificial Neural Network .. 10

1.2.2 Training of ANN ... 14

1.2.3 Properties of ANN ... 15

1.3 Parameter initialization of Neural Network Model ... 15

CHAPTER 2 Multilayer Perceptron Notation and Training ... 17

2.1 Structure of the Multilayer Perceptron ... 17

2.2 Multilayer Perceptron Notation .. 19

2.3 MLP Training ... 20

2.3.1 Weight Initialization ... 21

2.3.2 Net Control [18] ... 21

2.3.3 Solving for Output Weights (Output Weight Optimization (OWO)) ... 21

2.3.4 Schimdt Procedure and Orthogonal Least Squares (OLS) for Output Weights 23

2.3.5 Backpropagation for Solving Input Weights .. 25

6

2.3.6 Hidden Weight Optimization (HWO) ... 26

2.3.7 Multiple Optimal Learning Factor (MOLF) .. 27

CHAPTER 3 Problems and Proposed Work ... 29

 3.1 Problems with Initialization of MLP…………………………………………………………………… 28

3.2 Proposed Methods .. 30

3.2.1 Fusion Method ... 30

3.2.2 Modified Sigmoid Method .. 30

CHAPTER 4 Fusion Method ... 31

4.1 Algorithm ... 31

4.2 Final Algorithm .. 51

4.3 Results .. 51

CHAPTER 5 Modified Sigmoid Method .. 52

5.1 Algorithm ... 52

5.2 Result... 54

CHAPTER 6 Conclusion ... 55

Appendix A Description of datasets .. 56

REFERENCES .. 59

7

LIST OF FIGURES

Figure 1.1: Radial Basis Function Network ... 12

Figure 1.2: Single Layer Perceptron Network ... 13

Figure 1.3: MLP with Single Hidden Layer .. 13

Figure 1.4: Supervised Training Method ... 14

Figure 2.1: MLP with single hidden layer .. 17

Figure 2.2: Nonlinear Activation Functions ... 18

Figure 2.3: Sigmoid Activation Function ... 19

Figure 4.1: Histogram of Error without using Fusion Method ... 32

Figure 4.2: Histogram of Error with Fusion Method by Average of 3 NNs .. 33

Figure 4.3: Histogram of Error With Fusion Method by Combination of 3 NNs .. 34

Figure 4.4: Histogram of Error with Different NN Initialization Techniques .. 35

Figure 4.5: Histogram of Error with 0 iteration for initial training ... 37

Figure 4.6: Histogram of Error with 1 iteration for initial training ... 38

Figure 4.7: Histogram of Error with 5 iterations for initial training ... 39

Figure 4.8: Histogram of Error with 10 Iterations for Initial Training ... 40

Figure 4.9: Histogram of Error with 25 Iterations for Initial Training ... 41

Figure 4.10: Histogram of Error with 50 Iterations for Initial Training ... 42

Figure 4.11: Histogram of Error with 75 Iterations for Initial Training ... 43

Figure 4.12: Histogram of Error with 100 Iterations for Initial Training ... 44

Figure 4.13: Histogram of Error with 200 Iterations for Initial Training ... 45

Figure 4.14: Histogram of Error with 300 Iterations for Initial Training ... 46

Figure 4.15: Histogram of Error with 400 Iterations for Initial Training ... 47

Figure 4.16: Histogram of Error with 499 Iterations for Initial Training ... 48

Figure 4.17: Mean Error with Different Iterations .. 50

Figure 4.18: Std Deviation of Error with Different Iterations ... 50

file:///D:/Academia/Thesis/Abhishek%20Mainkar%20Thesis%20V2.1.docx%23_Toc512511160
file:///D:/Academia/Thesis/Abhishek%20Mainkar%20Thesis%20V2.1.docx%23_Toc512511161
file:///D:/Academia/Thesis/Abhishek%20Mainkar%20Thesis%20V2.1.docx%23_Toc512511162
file:///D:/Academia/Thesis/Abhishek%20Mainkar%20Thesis%20V2.1.docx%23_Toc512511164
file:///D:/Academia/Thesis/Abhishek%20Mainkar%20Thesis%20V2.1.docx%23_Toc512511166

8

LIST OF TABLES

Table 4.1 - Error Analysis for Fusion Method using HWO-MOLF... 36

Table 4.2 - Error Analysis for Number of Iterations before Fusion into Single Network using HWO-MOLF

 .. 49

Table 4.3 - Performance Comparison with Fusion Method and without Fusion Method 51

Table 5.1 - Performance Comparison with Modified Sigmoid and without Modified Sigmoid………………54

9

CHAPTER 1

Introduction

1.1 Machine Learning

Machine learning is a field of computer science that gives computer systems the ability to "learn" (i.e.,

progressively improve performance on a specific task) with data, without being explicitly programmed [1].

Machine learning is a subfield of artificial intelligence (AI). The goal of machine learning generally is to

understand the structure of data and fit that data into models that can be understood and utilized by people

[27]. Machine learning is most successful subfield of AI, and has enjoyed remarkable success in recent

days on a wide range of tasks – e.g. spam filtering [28], recommender systems [29], image classification

[30], speech recognition [31], and anomaly detector [32].

Machine learning algorithms are broadly divided into two categories,

i. Supervised learning [40] - The computer is presented with example inputs and their desired

outputs, and the goal is to learn a general rule that maps inputs to outputs. Examples of supervised

learning algorithms are Decision Tree [33], Random Forest [34], KNN [35], Logistic Regression

[36], SVM [37], Artificial neural network (ANN) [24] etc.

ii. Unsupervised learning [40] - No labels are given to the learning algorithm, leaving it on its own to

find structure in its input. Examples of unsupervised algorithms are Apriori algorithm [38], K-means

[39] etc.

In recent years, due to increase in computation power, large amounts of data and efficient algorithms,

artificial neural networks (ANN) have become a dominant machine learning algorithm in the industry.

1.2 Artificial Neural Network (ANN)

Artificial neural networks (ANNs) or connectionist systems are computing systems vaguely inspired by the

biological neural networks that constitute animal brains. Such systems "learn" (i.e. progressively improve

performance on) tasks by considering examples, generally without task-specific programming. For

example, in image recognition, they might learn to identify images that contain cats by analyzing example

images that have been manually labeled as "cat" or "no cat" and use the results to identify cats in other

images. They do this without any a priori knowledge about cats, e.g., that they have fur, tails, whiskers and

10

cat-like faces. Instead, they evolve their own set of relevant characteristics from the learning material that

they process. [2]

Collection of connected units or nodes called artificial neurons form ANN. Each connection between artificial

neurons can transmit a signal from one to another. The artificial neuron that receives the signal can process

it and then signal artificial neurons connected to it. The connections between neuron have numeric weights

that can be tuned based on experience, making neural nets adaptive to inputs and capable of learning. [3]

ANNs have been used on a variety of tasks, including computer vision [41], speech recognition [31],

machine translation [42], social network filtering [43], playing board and video games [44] and medical

diagnosis [45].

1.2.1 Structure and Components of an Artificial Neural Network

Components of an Artificial Neural Network [2]

Neurons

A neuron with label j receiving an input pj(t) from predecessor neurons consists of the following components:

 an activation aj(t) depending on a discrete time parameter,

 possibly a threshold θj, which stays fixed unless changed by a learning function,

 an activation function f that computes the new activation at a given time t + 1 from aj(t) , θj and

the net input pj(t) giving rise to the relation

𝑎𝑗(𝑡 + 1) = 𝑓(𝑎𝑗(𝑡), 𝑝𝑗(𝑡), 𝜃𝑗)

 and an output function fout computing the output from the activation

𝑜𝑗(𝑡) = 𝑓𝑜𝑢𝑡(𝑎𝑗(𝑡))

Often the output function is simply the Identity function. An input neuron has no predecessor but serves as

input interface for the whole network. Similarly an output neuron has no successor and thus serves as

output interface of the whole network.

11

Connections and weights

The network consists of connections, each connection transferring the output of a neuron i to the input of a

neuron j. In this sense i is the predecessor of j and j is the successor of i. Each connection is assigned a

weight wij.

Propagation Function

The propagation function computes the input pi(t) to the neuron j from the outputs oi(t) of predecessor

neurons and typically has the form

𝒑𝒋(𝒙) = ∑ 𝑜𝑖(𝑡)𝑤𝑖𝑗

𝑖

Learning rule

The learning rule is a rule or an algorithm which modifies the parameters of the neural network, in order for

a given input to the network to produce a favored output. This learning process typically amounts to

modifying the weights and thresholds of the variables within the network.

Structures of an Artificial Neural Networks

Structural arrangement and training procedure are the important factors for classification of Neural

Networks. The training algorithm for neural network would differ from network to network based on structural

arrangement of neural network. Some of the most commonly used neural networks are mentioned below.

12

1. Radial Basis Function Networks

Radial basis function (RBF) network [4, 5] is a type of neural network which uses the radial basis

functions as activation functions. Distance from the input vector x to a center vector mk is radial

basis function.

∅(𝒙) = ∅(||𝒙 − 𝒎𝒌||)

Radial basis function networks have neurons with nonlinear RBF activations in the hidden layer.

For higher dimensional hidden space i.e. when hidden layer has more neurons than the number of

inputs, Radial basis functions are the best choice. Such RBF networks can better approximate a

smooth input-output mapping. [6]

2. Single Layer Perceptron

The simplest kind of neural network is a Single-Layer Perceptron [7,8], which consist of no hidden

layer i.e. input layer is directly connected to output layer. Each input neuron is connected to each

output neuron by real valued weight. At each output neuron, sum of the products of the weights

and inputs is calculated. The single layer perceptron has a unidirectional flow of data, since the

data always flows forward and strictly one directional.

Figure 1.1: Radial Basis Function Network
Figure 1.1: Radial Basis Function Network

13

3. Multilayer Perceptron (MLP) Neural Networks

A multilayer perceptron (MLP) [9,10] is a feedforward artificial neural network model that maps

input data space into desired output space. An MPL consists of multiple layers of nodes in a

directed graph, with each layer fully connected to the next one. Each node in MLP (except input

nodes) performs non-linear operation. Due to non-linear operation at each node MLP can

distinguish data that is not linearly separable. So, MLP networks are like linear networks but with

non-linearity added at each node. [11] MLP is trained using supervised learning algorithm called

back propagation. [12, 13]

Figure 1.2: Single Layer Perceptron Network

Figure 1.3: MLP with single hidden layer
Figure 1.3: MLP with Single Hidden Layer

14

1.2.2 Training of ANN

Learning process is one of most fundamental thing in Neural Network. Training of ANN differs based on

application, training data size, number of parameters etc. After creating Neural Network model based on

application, the next step is to train the model based on different learning algorithms like gradient descent

[46], stochastic gradient descent [47], conjugate gradient [48], RMSProp [49], AdaGrad [50], momentum

[51], Adam [52] etc. Learning of neural network is a process to change parameters of the network so that

the model can map inputs of training data very close to outputs of training data. In process of learning,

activation function of hidden neuron is kept constant. Learning of neural can be supervised in which correct

choice of output is provided in training data or, unsupervised in which no output is provided. In this thesis,

training of ANN is done by using supervised learning algorithm.

Minimum training error while training neural network does not give best performance in a test environment.

This can be due to overfitting of the model to training data. So, training is about finding the best parameters

for the model by using training data, so that testing error is minimum. And, testing is evaluating parameters

learned while training, to unseen data. This means that parameters of model found out during training,

which give minimum test error are selected as final parameters of the model.

Supervised Learning

In supervised learning, inputs and expected outputs are given in data file. The inputs are then fed to the

network, and the outputs of the network are compared with the desired output in training data. Error in the

comparison is fed back to the network from output to input, and the parameters of the network are adjusted

to minimize the error between output of network, and the desired output of the network. This process is

repeated multiple times till minimum error is reached.

 Figure 1.4: Supervised Training Method

15

Supervised learning can be used for both classification and regression [53]. Supervised learning is giving

best results in machine learning domain, to learn object behavior in certain tasks. Since this may produce

input to output mapping faster and more accurate than humans, the machines trained with supervised

learning perform better [54].

1.2.3 Properties of ANN

An ANN is composed of artificial neurons or nodes connected to form a network which basically uses a

mathematical or a computational model for processing information. It is capable of changing its structure

depending on the information transmitted through the system. Due to this property, ANN can be used to

model complex relationships about input and output, and to find patterns in given data.

Representation Power – Every Boolean function can be represented exactly by some network with two

layers of units. The number of hidden units required may grow exponentially with the number of network

inputs.

Universal Approximation Function – Any function can be approximated to arbitrary accuracy by a

network with three layers of units [55]. A three-layer network can approximate any reasonable function to

any degree of required precision as long as the hidden layer can be arbitrarily large.

Feature Extractor – ANN particularly Convolution neural network (CNN) are extremely good at finding

features in data. This property has reduced a lot of data analysis time and manual finding of the best feature

in data set.

Due to these properties, neural networks are extremely successful machine learning algorithms in modern

times.

1.3 Parameter initialization of Neural Network Model

In the training process of a neural network, after creation of the model of a neural network, parameters of

the model are initialized by using random number generator (normal distribution). The problem with random

weight generation is that in this non-convex optimization problem of neural network there is a chance that

the model training might get stuck in a local minima instead of reaching the global minima. This happens

because parameters are randomly assigned initially on an optimization curve. While training, parameters

get stuck to local minima which is near to initialized parameter values on multi-dimensional non-convex

16

optimization curve. This will not reduce training error further. There are other problems with random

initialization like hidden neuron saturation and dependent hidden neuron.

In this thesis, better parameter initialization techniques than random initialization are suggested. In chapter

2, Multilayer Perceptron (MLP) notation and training are discussed. In chapter 3, problems with parameter

initialization and proposed work are given. Chapter 4 discusses about the algorithm and results of fusion

method of parameter initialization. Chapter 5 describes the algorithm and the results of modified sigmoid

method. Lastly, chapter 6 is the conclusion of the thesis.

17

CHAPTER 2

Multilayer Perceptron Notation and Training

2.1 Structure of the Multilayer Perceptron

Figure 2.1 shows the structure of the multilayer perceptron with a single hidden layer. The structure of the

multilayer perceptron in the figure consists of an input layer, one or more hidden layers and one output

layer. In general, multilayer perceptron consists of one or more hidden layers. Each input node is connected

to each node in first hidden layer, each node in the first layer is connected to each node in second layer

and so on till output is generated. In modern literature, a multilayer perceptron with more than one hidden

layer is called a Deep Learning architecture. [14] In this thesis, all the study is done for multilayer perceptron

with single hidden layer. Single hidden layer multilayer perceptrons are powerful enough to approximate

any continuous function. [15]

Figure 2.1: MLP with single hidden layer

18

The multilayer perceptron network is a highly hierarchical system since every layer is connected to the next

layer. Also, multilayer perceptron has highly connected topology, since every input is connected to all the

nodes in the first hidden layer, and every unit in the hidden layers is connected to all the nodes in the next

layer. In a multilayer perceptron, as data flows from input layer to output layer, traversing through each

hidden layer connected in sequence, it is called a feed forward network.

The hidden layer neuron performs multiplication of input values and weight matrix. Then adds threshold 𝜃

to form the net function, followed by an application of a nonlinear activation function f(net) to the net function.

There are different nonlinear activation functions available for multilayer perceptron, some of them are

shown in figure 2.2 [16]

Figure 2.2: Nonlinear Activation Functions

Sigmoid activation function is used as the activation function in this report for all the analysis.

The sigmoid activation function is given as follows

𝑂𝑝 = 𝑓(𝑛𝑝) =
1

1 + 𝑒−𝑛𝑝

(2.1)

19

2.2 Multilayer Perceptron Notation

In the training data {𝒙𝒑, 𝒕𝒑} for a fully connected MLP, 𝒙𝒑 represents pth input vector having dimension N

and, 𝒕𝒑 represents pth output vector having dimension M. Let the input vectors be augmented by an extra

element 𝑥𝑝(𝑁 + 1) where 𝑥𝑝(𝑁 + 1) such that 𝒙𝒑 = [𝑥𝑝(1), 𝑥𝑝(2), … … . . , 𝑥𝑝(𝑁 + 1)]
𝑇
. And p is a pattern

number which varies from 1 to Nv.

Additional parameters are 𝑤𝑘(𝑘, 𝑛), 𝑤𝑜ℎ(𝑘, 𝑛) and 𝑤𝑜𝑖(𝑖, 𝑛). Input weights 𝑤𝑘(𝑘, 𝑛) connect the nth input to

the kth hidden unit. Output weights 𝑤𝑜ℎ(𝑖, 𝑘) connect the kth hidden units activation 𝑂𝑝(𝑘) to the ith

output 𝑦𝑝(𝑖), which has a linear activation. The bypass weight 𝑤𝑜𝑖(𝑖, 𝑛) connects the nth input to the ith output.

For the pth pattern, the kth hidden units net function 𝑛𝑝(𝑘) is given as

𝑛𝑝(𝑘) = ∑ 𝑤(𝑘, 𝑛)𝑥𝑝(𝑛)

𝑁+1

𝑛=1

 (2.2)

Which when written in matrix notation could be given as

 𝒏𝒑 = 𝑾 ∙ 𝒙𝒑 (2.3)

Here 𝒏𝒑 denotes the Nh dimensional column vector of a net function values and W is Nh by (N+1). For the

pth pattern, the kth hidden units activation is denoted as 𝑂𝑝(𝑘) where 𝑂𝑝(𝑘) = 𝑓(𝑛𝑝(𝑘)) and f denotes the

hidden layer activation.

Figure 2.3: Sigmoid Activation Function

20

For the pth pattern, the ith element 𝑦𝑝(𝑖) of the M dimensional output vector 𝒚𝒑 is given as

𝑦𝑝(𝑖) = ∑ 𝑤𝑜𝑖(𝑖, 𝑛) 𝑥𝑝(𝑛) + ∑ 𝑤𝑜ℎ(𝑖, 𝑘)𝑂𝑝(𝑘)

𝑁ℎ

𝑘=1

𝑁+1

𝑛=1

(2.4)

This can also be denoted in matrix form as

 𝒚𝒑 = 𝑾𝒐𝒊 ∙ 𝒙𝒑 + 𝑾𝒐𝒉 ∙ 𝑶𝒑 (2.5)

where, Op is the Nh dimensional hidden unit activation vector.

The error used in training MLP is the mean – squared error (MSE), which is

𝐸 =
1

𝑁𝑣

∑ ∑[𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)]
2

𝑀

𝑖=1

𝑁𝑣

𝑝=1

(2.6)

2.3 MLP Training

Training a neural network is a non-convex optimization problem in which weights are adjusted in such a

way that error in desired output and actual output is minimum. Learning algorithm is the most important

thing in neural network, because it will decide the speed of convergence and ability to find global minima

instead of local minima. There are different techniques for optimization like stochastic gradient descent

(SGD), SGD with momentum, Adagrad, RMSProp etc. In this report, training algorithm used for MLP is

called HWO – MOLF.

Training algorithms can be classified into two types as follows,

a) Two-stage training – Input and output weights are trained alternately

b) One-stage training – All weights are updated simultaneously

HWO-MOLF algorithm uses OWO-BP [17], which denotes Output Weight Optimization – Backpropagation.

This OWO-BP is a two-stage algorithm. Steps in two-stage algorithm are –

1) Weight Initialization – Randomize input weights, OWO for output weights.

2) Repeated iterations in which

21

a) Use steepest descent (BP) to modify input weights

b) OWO for output weights

2.3.1 Weight Initialization

If some inputs have much larger standard deviation than others, they can dominate the training, even if

they are relatively useless. By calculating input’s standard deviation, input weights can be normalized later.

Let ran(i) denote a zero-mean Gaussian random number with variance of 1, where i denotes self-changing

random number seed. These randomly generated weights are divided by the input standard deviation, thus

removing dominance of large variance inputs.

2.3.2 Net Control [18]

Training of input weights is strongly dependent on the slopes of hidden unit activation functions in response

to inputs. Training of a weight ceases if the unit it feeds into has an activation function derivative of zero for

all patterns. Therefore, adjust mean and standard deviations of all hidden unit net functions so that they

have values of 𝑚𝑑 = 0.5 and 𝜎𝑑 = 1. This control is accomplished as follows –

a) For hidden layer, make a pass through the training data and calculate 𝑚(2, 𝑘) and 𝜎(2, 𝑘) which

are respectively hidden layer net function mean and standard deviations for the k th unit.

b) For the kth hidden unit, multiply the threshold and all incoming weights by
𝜎𝑑

𝜎(2,𝑘)
 to adjust the net

function standard deviation to the desired value.

c) For the kth hidden unit, update the threshold as

 𝜃(2, 𝑘) = 𝜃(2, 𝑘) − 𝑚(2, 𝑘).
𝜎𝑑

𝜎(2, 𝑘)
+ 𝑚𝑑 (2.7)

2.3.3 Solving for Output Weights (Output Weight Optimization (OWO))

At this point, we have determined the initial input weights and therefore the initial network basis function.

We can now find the output weights [19 – 21].

 𝒚𝒑 = 𝑾𝒐𝒊 ∙ 𝒙𝒑 + 𝑾𝒐𝒉 ∙ 𝑶𝒑 (2.8)

22

 𝒚𝒑 = 𝑾𝒐 ∙ 𝑿𝒑 (2.9)

where, 𝑾𝒐 = [𝑾𝒐𝒊 ∶ 𝑾𝒐𝒉]

𝑿𝒑 = [𝒙𝒑
𝑇 , 𝑶𝒑

𝑇]
𝑇

L is the total number of basis functions i.e. N+Nh+1. The basis functions are as follows,

X(n) = x(n) for n between 1 and N

X(N+1) = 1

X(N+1+k) = Ok for k between 1 and Nh

We have M sets of L equations in L unknowns which leads us to,

 𝑹. 𝑾𝒐
𝑻 = 𝑪 (2.10)

where R is the Autocorrelation matrix of size (N+1+Nh) by (N+1+Nh) which is given as,

 𝑟(𝑘, 𝑛) =
1

𝑁𝑣
∑ 𝑋𝑝(𝑘). 𝑋𝑝(𝑛)

𝑁𝑣
𝑝=1 (2.11)

Also C is the Cross correlation matrix of size (N+1+Nh) by M

𝑐(𝑘, 𝑖) =
1

𝑁𝑣

∑ 𝑋𝑝(𝑘). 𝑡𝑝(𝑖)

𝑁𝑣

𝑝=1

(2.12)

Equation 2.10 is often ill-conditioned, meaning that the determinant of R is close to 0, it is often unsafe to

use Gauss-Jordan elimination, so orthogonal least squares (OLS) algorithm is used to solve the equation.

23

2.3.4 Schimdt Procedure and Orthogonal Least Squares (OLS) for Output Weights

The Schmidt procedure is used for the normalization of the basis functions. The Schmidt procedure can be

described as follows [22].

Given the basis functions X(m), form the first orthonormal basis function X’(1) as

𝑋′(1) =

𝑋(1)

||𝑋(1)||

(2.13)

which yields ||X’(1)|| = 1.

The second orthonormal basis function is found as

 𝑐1 = < 𝑋′(1), 𝑋(2) > (2.14)

𝑋′(2) = 𝑋(2) −

𝑐1𝑋′(1)

||𝑋(2) − 𝑐1𝑋′(1)||

(2.15)

Similarly the third orthonormal basis function is found as

 𝑐1 = < 𝑋′(1), 𝑋(3) > 𝑐2 = < 𝑋′(2), 𝑋(3) > (2.16)

𝑋′(3) =

𝑋(3) − 𝑐1𝑋′(1) − 𝑐2𝑋′(2)

||𝑋(3) − 𝑐1𝑋′(1) − 𝑐2𝑋′(2)||

(2.17)

The Schmidt procedure requires at least one pass through the training data file for each new basis function.

Since X’(m) is a weighted sum of the X(j), we can calculate all inner products <X(m),X’(j)> as weighted

sums of < 𝑋(𝑚), 𝑋(𝑘) > = 𝑟(𝑚, 𝑘), which means only one data pass is required to calculate the R matrix

given in equation (2.10).

Reformulating the Schmidt procedure we can get the form as,

24

𝑋′(𝑚) = ∑ 𝑎𝑚𝑘𝑋(𝑘)

𝑚

𝑘=1

(2.18)

The above in the matrix form can be given as

𝑿′ = 𝑨 ∙ 𝑿

Orthogonal least squares training approach makes use of the Schmidt procedure to calculate the output

weights and Error for the system. First we calculate the output weights of the orthonormal system and then

convert the weights to the original system.

The orthonormal output weights for the system is given as,

 𝑤𝑜′(𝑖, 𝑚) = 𝐸[𝑋′(𝑚)𝑡(𝑖)] (2.19)

Substituting X’(m) from equation (2.18)

𝑤𝑜′(𝑖, 𝑚) = ∑ 𝑎𝑚𝑘𝐸[𝑋(𝑘)𝑡(𝑖)] = ∑ 𝑎𝑚𝑘𝑐(𝑘, 𝑖)

𝑚

𝑘=1

𝑚

𝑘=1

(2.20)

In matrix form we can write the above as

 𝑾𝒐
′ = 𝑪𝑻 ∙ 𝑨𝑻 (2.21)

Now we have the weights for the orthonormal system, we now need to convert the weights from the

orthonormal system to our original system, we can achieve that as follows

𝑦(𝑖) = ∑ 𝑤𝑜(𝑖, 𝑘)𝑋(𝑘) = ∑ 𝑤𝑜
′ (𝑖, 𝑚)𝑋′(𝑚)

𝑁𝑢

𝑚=1

𝑁𝑢

𝑘=1

(2.22)

We can replace X’(m) from equation (2.18) as follows

25

∑ [∑ 𝑤𝑜
′ (𝑖, 𝑚)𝑋′(𝑚)

𝑁𝑢

𝑚=1

]

𝑁𝑢

𝑘=1

𝑋(𝑘)

(2.23)

On changing the limits for the inner summation

𝑤𝑜(𝑖, 𝑘) = ∑ 𝑤𝑜
′ (𝑖, 𝑚)𝑎𝑚𝑘

𝑁𝑢

𝑘=𝑚

(2.24)

Therefore we have the output weights for the original system as follows

 𝑾𝒐 = 𝑾𝒐′𝑨 (2.25)

2.3.5 Backpropagation for Solving Input Weights

Backpropagation [23, 24] is a common method of training neural networks, usually used to find the input

gradient matrix and to compute the input weights. This report would focus on implementing backpropagation

with HWO to compute the overall input gradient. The backpropagation gradient matrix and the delta

functions can be calculated as follows,

Consider the mean squared error as mentioned in equation (2.6)

𝐸 =
1

𝑁𝑣

∑ ∑[𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)]
2

𝑀

𝑖=1

𝑁𝑣

𝑝=1

The delta functions for the pth pattern for output and hidden layer is given as

 𝛿𝑝𝑜(𝑖) = 2(𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)) (2.26)

𝛿𝑝(𝑘) = 𝑓′(𝑛𝑝(𝑘)) ∑ 𝛿𝑝𝑜(𝑖)𝑤𝑜ℎ(𝑖, 𝑘)

𝑀

𝑖=1

(2.27)

Now on partially differentiating the Error function with respect to the input weights we get the gradient as,

𝑔(𝑘, 𝑛) =
−𝜕𝐸

𝜕𝑊(𝑘, 𝑛)
=

1

𝑁𝑣

∑ 𝛿𝑝(𝑘)𝑥𝑝(𝑛)

𝑁𝑣

𝑝=1

(2.28)

In the matrix form the input gradient equation can be given as,

26

𝑮 =
1

𝑁𝑣

∑ 𝜹𝒑(𝒙𝒑)
𝑇

𝑁𝑣

𝑝=1

(2.29)

2.3.6 Hidden Weight Optimization (HWO)

After calculating the input gradient matrix G from the backpropagation algorithm, we can use this gradient

in training the input weights using HWO as [25],

 𝑾 = 𝑾 + 𝑧 ∙ 𝑫 (2.30)

The 𝑫 matrix is the hidden weight changes. The hidden weights are updated by minimizing a separate error

function for each hidden unit. This error function is generated by the difference between the desired net

function and the actual net function. The input training is similar to OWO-BP but in this case we use the

hidden weight changes matrix 𝑫. Now for the pth pattern the desired net function is calculated as [26]

 𝑛𝑝𝑗 ≅ 𝑛𝑝𝑗 + 𝑧 ∙ 𝛿𝑝𝑗 (2.31)

In this equation 𝛿𝑝𝑗 is the delta function for the jth hidden unit as in (2.27)

The hidden weight changes are derived using,

𝑛𝑝𝑗 + 𝑧 ∙ 𝛿𝑝𝑗 ≅ ∑[𝑤ℎ(𝑗, 𝑛)

𝑁+1

𝑛=1

+ 𝑧 ∙ 𝑒(𝑗, 𝑛)] ∙ 𝑥(𝑝, 𝑛)
(2.32)

From the above equation we have,

𝛿𝑝𝑗 = ∑ 𝑒(𝑗, 𝑛) ∙ 𝑥(𝑝, 𝑛)

𝑁+1

𝑛=1

(2.33)

The error function of each hidden unit is taken separately into consideration and the error for the jth Hidden

unit is given as

27

𝐸𝛿(𝑗) =
1

𝑁𝑣

∑ [𝛿𝑝𝑗 − ∑ 𝑒(𝑗, 𝑛)𝑥𝑝𝑛

𝑁+1

𝑛=1

]

2𝑁𝑣

𝑝=1

(2.34)

Now on taking the partial derivative of the above error function with respect to e(j,n) we get

 𝑫 ∙ 𝑹𝒊 = 𝑮 (2.35)

Ri is the same as input autocorrelation matrix from equation (2.10)

The equation (2.35) can be written in form of the hidden weight change matrix as,

 𝑫 = 𝑮 ∙ 𝑹𝒊
−𝟏

(2.36)

The above hidden weight change matrix can be used to train the input weights as follows,

 𝑾 = 𝑾 + 𝑧 ∙ 𝑫 (2.37)

2.3.7 Multiple Optimal Learning Factor (MOLF)

Multiple optimal training factor (MOLF) [26] is a higher order training algorithm. In this technique of training

we find a vector z of optimal learning factors which has one element for each hidden unit.

Assuming that a separate OLF zk is being used to update each hidden units input weights, w(k,n), where

1 ≤ 𝑛 ≤ (𝑁 + 1). The total error function 𝑦𝑝(𝑚) to be minimized is given as,

𝑦𝑝(𝑚) = ∑ 𝑤𝑜𝑖(𝑚, 𝑛)𝑥𝑝(𝑛) + ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑓(∑(𝑤(𝑘, 𝑖) + 𝑧𝑘 ∙ 𝑔(𝑘, 𝑖))𝑥𝑝(𝑖))

𝑁+1

𝑖=1

𝑁ℎ

𝑘=1

𝑁+1

𝑛=1

 (2.38)

where, 𝑔(𝑘, 𝑛) is an element of the negative Jacobian matrix G. Now the partial of E with respect to 𝑧𝑗

28

𝜕𝐸

𝜕𝑧𝑗

= −
2

𝑁𝑣

∑ ∑ [𝑡𝑝̅

𝑀

𝑚=1

𝑁𝑣

𝑝=1

(𝑚) − ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑂𝑝(𝑧𝑘)] ∙ 𝑤𝑜ℎ(𝑚, 𝑗)𝑂𝑝(𝑗)∆𝑛𝑝(𝑗)

𝑁ℎ

𝑘=1

(2.39)

where,
𝑡𝑝̅(𝑚) = 𝑡𝑝(𝑚) − ∑ 𝑤(𝑚, 𝑛)𝑥𝑝(𝑛) ,

𝑁+1

𝑛=1

 ∆𝑛𝑝(𝑗) = ∑ 𝑥𝑝(𝑛) ∙ 𝑔(𝑛, 𝑗)

𝑁+1

𝑛=1

𝑂𝑝(𝑧𝑘) = 𝑓(∑(𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ 𝑔(𝑘, 𝑛))𝑥𝑝(𝑛)

𝑁+1

𝑛=1

Using the Gauss – Newton updates, the second partial derivative elements of the Hessian 𝐻𝑚𝑜𝑙𝑓 are

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) ≈
𝜕2𝐸

𝜕𝑧𝑙𝜕𝑧𝑗

=
2

𝑁𝑣
 ∑ 𝑤𝑜ℎ(𝑚, 𝑙)𝑤𝑜ℎ(𝑚, 𝑗) ∑ 𝑂𝑝

′ (𝑙)𝑂𝑝
′ (𝑗)∆𝑛𝑝(𝑙)∆𝑛𝑝(𝑗)

𝑁𝑣

𝑝=1

𝑀

𝑚=1

(2.40)

= ∑ ∑[
2

𝑁𝑣

𝑢(𝑙, 𝑗) ∑ 𝑥𝑝(𝑖)𝑥𝑝(𝑛)𝑂𝑝
′ (𝑙)𝑂𝑝

′ (𝑗)] 𝑔(𝑙, 𝑖) ∙ 𝑔(𝑗, 𝑛)

𝑁𝑣

𝑝=1

𝑁+1

𝑛=1

𝑁+1

𝑖=1

(2.41)

The Gauss-Newton update guarantees that 𝐻𝑚𝑜𝑙𝑓 is non-negative definite.

Now given the negative gradient vector 𝑔𝑚𝑜𝑙𝑓 = [
−𝜕𝐸

𝜕𝑧1
,

−𝜕𝐸

𝜕𝑧2
… … ,

−𝜕𝐸

𝜕𝑧𝑁ℎ
]

𝑇

 and the Hessian 𝐻𝑚𝑜𝑙𝑓 , we can

minimize E with respect to the vector z using Newton’s method.

Now using the 𝒛𝒌 vector of optimal learning factors we can update the input weights as follows,

𝑤(𝑘, 𝑛) = 𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ 𝑑(𝑘, 𝑛)

(2.42)

where the vector 𝑧 can be given as

𝒛 = 𝑯𝒎𝒐𝒍𝒇
−𝟏 ∙ 𝒈𝒎𝒐𝒍𝒇

(2.43)

29

CHAPTER 3

Problems and Proposed Work

3.1 Problems with Initialization of MLP

To design and train a highly efficient and robust Neural Network involves a lot of fundamental challenges.

Initialization of parameters of neural network model is one of them. In this thesis, parameter initialization

problem is addressed and, two better parameter initialization methods namely fusion method, and

modified sigmoid method are shown.

There are three main problems with random parameter initialization. First is difficulty in finding global

minima on optimization curve, second is saturation of hidden units of neural network and third is possibility

of dependent hidden units in neural network.

MLP are used to solve optimization problem. But, central problem with this optimization is that optimization

curve is of non-convex nature. Plus, optimization curve is continuous and high dimensional. Gradient

descent methods are used to solve this optimization problem. So, starting point on this optimization curve

is decided by randomly initialized parameter. Gradient descent methods while trying to optimize may get

stuck in local minima, hence parameter update by using gradient descent becomes difficult. Thus, gradient

descent methods are not sufficient enough to find global minima. This shows that starting point on an

optimization curve which is decided by random weight initialization is of prime importance.

Another problem with random parameter initialization is saturation of hidden units. This happens because

product of weights and inputs, puts outputs of net function on to the saturation region of sigmoid. Though

net control is provided to keep it below saturation, it is not always possible to keep output of net function

below saturation. Problem with saturation of sigmoid is that during back propagation gradient will not get

passed through hidden units to input weights. This affects learning of input weights of model. This makes

those input weights useless in optimization curve. Not saturating hidden units are of prime importance in

training of neural network.

Third problem with random initialization is of dependent hidden units. While training, there is chance that

due to random initialization some of the hidden units become dependent. Dependent hidden units means

30

they extract same features from data. So, while optimizing, dependent hidden units will not give new

information for optimization.

To overcome this problem with initialization, in this thesis, I have proposed two different algorithm namely

fusion method and modified sigmoid method.

3.2 Proposed Methods

3.2.1 Fusion Method

In the fusion method, instead of creating single network model with random initialization for

training, create different network models which have the same model structure as a single

network model, with random initialization. Train those models for some amount of iterations

and then take hidden units from those different networks and create a single network. While

taking hidden units from different networks, their weights are copied from the models to create

one network. The idea behind this is, due to merging of different network, problem of network

converging to local minima may be eliminated. Also, saturated hidden units due to random

initialization can be removed while making new single network. Detailed explanation of this

algorithm is given in chapter 4.

3.2.2 Modified Sigmoid Method

In this method, after randomly initializing weights, we perform addition of additive and scaling

parameters after net function. These additive and scaling parameters are trained using

Newton’s method. After training, we update the input weights of the model using these additive

and scaling parameters. This helps to keep hidden units in active region of activation function.

Details explanation of this algorithm is given in chapter 5.

31

CHAPTER 4

Fusion Method

4.1 Algorithm

In parameter initialization of MLP, common problems are hidden units saturation, dependent hidden units

and network stuck to local minima which were discussed in chapter 3. Instead of creating single network

with random initialization and training it for some iterations, multiple networks with the same network model

architecture are created, randomly initialized, trained for some iteration and, then merged into a single

network by taking average of parameters of models or selecting some hidden units from different networks.

This is called fusion process. Final fused network is also trained for some iterations.

The advantage of fusion method is that, initially created individual networks are randomly initialized, so

each network is started at different point on optimization curve. Thus, even if some network gets stuck into

a local minima, there is a chance that it will be removed from the local minima when the fusion of networks

takes place. This mitigates the problem of local minima.

The second problem of saturated hidden units is resolved, because the fused network formed by randomly

selecting hidden units from multiple different networks, alleviates the chances of saturation of hidden units.

This method also removes dependent hidden units in network, by randomly selecting hidden units to form

the final fusion network.

In this algorithm, the method used to fuse the networks together is an important factor. In this thesis, two

methods of parameter fusion are discussed,

1. Average of the input weights of three networks

2. Select 1/3 of hidden units from individual network

To find best method for fusion, create 1000 MLP networks with 51 hidden units and perform 500 iterations

to train the networks. First, we train 1000 MLP networks without using fusion method on dataset Oh17.

32

Histogram of this is shown in figure 4.1

Figure 4.1: Histogram of Error without using Fusion Method

1000 MLP networks are trained using fusion method on dataset Oh17. In this method, initially, three

different networks with 51 hidden units are created. These networks are trained with random initialization

for 50 iterations. Then, these three networks are fused into one network by taking average of the parameters

of the three networks, and then again trained for 450 iterations. Histogram of this is shown in figure 4.2

33

Figure 4.2: Histogram of Error with Fusion Method by Average of 3 NNs

1000 MLP networks are trained using fusion method on dataset Oh17. In this method, initially, three

different networks with 51 hidden units are created. Trained with random initialization for 50 iterations. Then,

these three networks are fused into one network by taking one third hidden units from each network and

then again trained for 450 iterations. Histogram of this is shown in figure 4.2

34

Figure 4.3: Histogram of Error With Fusion Method by Combination of 3 NNs

To determine best method for fusion, further analysis of standard deviation and mean is done.

35

Figure 4.4: Histogram of Error with Different NN Initialization Techniques

36

Table 4.1 - Error Analysis for Fusion Method using HWO-MOLF

Table 4.1 shows that, fusion method with combination of one third hidden neurons from each network gives

best result. So, for further study, this method is used in this thesis.

After finalizing method for fusion, we need to decide the number of iterations required to train these initial

networks before fusing them into one network. For this analysis, number of initial iterations to train the three

different neural networks selected was 0, 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, and 499. But total number

of iterations i.e. number of iterations before fusion and after fusion is kept constant at 500. Data file used

for training is oh17 and number of hidden units is 51, in each network. That means 17 hidden units from

each network are taken and merged into single fused network.

Table 4.1 – Error Analysis for Fusion Method

using HWO-MOLF

Method

Standard
Deviation of

Error

Error

Mean

Without Fusion

Method

0.0276

1.1637

With Average of

3 NNs

0.0295

1.1306

With

Combination of

3 NNs

0.0241

1.1219

37

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 0 1 500

Figure 4.5: Histogram of Error with 0 iteration for initial training

38

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 1 1 499

Figure 4.6: Histogram of Error with 1 iteration for initial training

39

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 5 1 495

Figure 4.7: Histogram of Error with 5 iterations for initial training

40

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 10 1 490

Figure 4.8: Histogram of Error with 10 Iterations for Initial Training

41

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 25 1 475

Figure 4.9: Histogram of Error with 25 Iterations for Initial Training

42

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 50 1 450

Figure 4.10: Histogram of Error with 50 Iterations for Initial Training

43

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 75 1 425

Figure 4.11: Histogram of Error with 75 Iterations for Initial Training

44

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 100 1 400

Figure 4.12: Histogram of Error with 100 Iterations for Initial Training

45

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 200 1 300

Figure 4.13: Histogram of Error with 200 Iterations for Initial Training

46

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 300 1 200

Figure 4.14: Histogram of Error with 300 Iterations for Initial Training

47

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 400 1 100

Figure 4.15: Histogram of Error with 400 Iterations for Initial Training

48

Data file = Oh7.tra Inputs = 20 Outputs = 3 Nh = 51

Total Nit No Of Networks

Before Fusion

Nit before

Fusion

No of Network

After Fusion

Nit after Fusion

 500 3 499 1 1

Figure 4.16: Histogram of Error with 499 Iterations for Initial Training

49

Now, analysis for mean and standard deviation for each of above histogram is done. This is shown in table

4.2

Table 4.2 - Error Analysis for Number of Iterations before Fusion into Single Network using HWO-
MOLF

Table 4.2 – Error Analysis for Number of Iterations

Before Fusion into Single Network using HWO-MOLF

Number of
Iterations

before Fusing
into Single
Network

Standard
Deviation of

Error

Error

Mean

0 0.0276 1.1637

1 0.0253 1.1457

5 0.0251 1.1326

10 0.0254 1.1272

25 0.0236 1.1244

50 0.0241 1.1219

75 0.0237 1.1223

100 0.0232 1.1230

200 0.0234 1.1292

300 0.0216 1.1379

400 0.0200 1.1526

499 0.0463 1.4704

50

Figure 4.17: Mean Error with Different Iterations

Figure 4.18: Std Deviation of Error with Different Iterations

Table 4.2 shows that for initial iterations of value 100 to train three different networks before merging into

one gives best result considering mean error and standard deviation. So, all three networks are trained for

100 iterations before merging into one network.

51

4.2 Final Algorithm

1. Decide number of hidden units Nh (Nh= 51) for MLP networks.

2. Create 3 different MLP with given Nh and initialize parameters randomly for each network.

3. Train 3 networks separately for 100 iterations by using HWO-MOLF Algorithm.

4. Take one third hidden units from each network and create final network which has Nh same

as initial Nh.

5. Train final network for 400 iterations by using HWO-MOLF algorithm.

4.3 Results

Table 4.3 - Performance Comparison with Fusion Method and without Fusion Method

Table 4.3 – Compares performance of MLP with fusion method and without fusion method. 𝑁ℎ = 51.

𝑁𝑖𝑡 = 500. For fusion method, three MLP are created and fused after 100 iterations.

Dataset Number of

inputs

Number of

outputs

Training

Error

Without

Fusion

Method

Testing

Error

Without

Fusion

Method

Training

Error With

Fusion

Method

Testing

Error With

Fusion

Method

Twod 8 7 0.102378 0.1369 0.098858 0.1360

Oh7 20 3 0.101961 0.1175 0.091258 0.1136

Mat 4 4 0.000873 0.0011 0.000419 0.000501

Weather

Forecasting

71 3 255.7176 290.0440 255.42914 289.037872

52

CHAPTER 5

Modified Sigmoid Method

5.1 Algorithm

1. Create MLP network with required hidden units 𝑁ℎ.

2. Perform net control.

3. Perform OWO and save net function vector to an unformatted file with 𝑖𝑐(𝑝).

4. Create scaling factor 𝑎𝑘 and additive factor 𝑏𝑘 for each hidden neuron, where 𝑘 stands for hidden

neuron number. Initialize 𝑎𝑘 to 1 and 𝑏𝑘 to 0.

5. Choose number of iterations 𝑁𝑖𝑡.

6. Calculate 𝑔𝑎(𝑘) and 𝑔𝑏(𝑘), where 𝑔𝑎(𝑘) is gradient of 𝑎 for 𝑘𝑡ℎ hidden neuron and 𝑔𝑏(𝑘) is gradient

of 𝑏 for 𝑘𝑡ℎ hidden neuron, as

 𝑔𝑎(𝑘) = −
𝜕𝐸

𝜕𝑎(𝑘)
=

2

𝑁𝑣
∑ ∑ [𝑡𝑝`(𝑖) − 𝑦𝑝(𝑖)]𝑀

𝑖=1
𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑘)𝑝 (5.1)

𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑘)
= 𝑤𝑜ℎ(𝑖, 𝑘)𝑠` (𝑛𝑝(𝑘)) 𝑛𝑝(𝑘)

Where, 𝑠`(𝑛𝑒𝑡) = 𝑠(𝑛𝑒𝑡) ∗ (1 − 𝑠(𝑛𝑒𝑡))

𝑠(𝑛𝑒𝑡) =
1

1 + 𝑒−𝑛𝑒𝑡

𝑔𝑏(𝑘) = −
𝜕𝐸

𝜕𝑏(𝑘)
=

2

𝑁𝑣
∑ ∑ [𝑡𝑝`(𝑖) − 𝑦𝑝(𝑖)]𝑀

𝑖=1
𝜕𝑦𝑝(𝑖)

𝜕𝑏(𝑘)𝑝 (5.2)

𝜕𝑦𝑝(𝑖)

𝜕𝑏(𝑘)
= 𝑤𝑜ℎ(𝑖, 𝑘)𝑠` (𝑛𝑝(𝑘))

7. For iteration 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations

8. Initialize 𝑔𝑎(𝑘) and 𝑔𝑏(𝑘) as zero for all values hidden units.

9. Initialize 𝐸 equal to zero.

10. Calculate 𝑂(𝑘)𝑎𝑛𝑑 𝑂`(𝑘) as

53

𝑂(𝑘) = 𝑠(𝑛𝑝(𝑘)𝑎(𝑘) + 𝑏(𝑘))

𝑂`(𝑘) = 𝑂(𝑘) ∗ (1 − 𝑂(𝑘))

11. Calculate y as,

𝒚 = 𝒙 ∗ 𝑾𝒐`

12. For classification, calculate 𝑡𝑝` for 𝑖𝑐 and 𝑦 using OR.

13. Calculate E as,

𝐸 =
1

𝑁𝑣

∑ ∑ [𝑡`𝑝(𝑖) − 𝑦𝑝(𝑖)]2
𝑀

𝑖=1
𝑝

14. Calculate 𝑔𝑎(𝑘) and 𝑔𝑏(𝑘) using equation 5.1 and 5.2.

15. Print 𝑖𝑡 and 𝐸.

16. Find hessian matrix 𝑯 for 𝑎𝑘and 𝑏𝑘.

17. Use OLS (Orthogonal Least Squares) to solve

𝑯 ∙ 𝒛 = 𝒈

where, z is learning factor for 𝑎𝑘 and 𝑏𝑘

 𝒛 = [𝑧𝑎1 , 𝑧𝑎2, … … , 𝑧𝑏𝑁ℎ]
𝑇

𝒈 is negative gradient vector

𝒈 = [
−𝜕𝐸

𝜕𝑧𝑎1

,
−𝜕𝐸

𝜕𝑧𝑎2

… … ,
−𝜕𝐸

𝜕𝑧𝑏𝑁ℎ

]
𝑇

𝐻(𝑚, 𝑛) =
𝜕𝑦

𝜕𝑧𝑚

𝜕𝑦

𝜕𝑧𝑛

18. Perform OWO (Output Weight Optimization) to find 𝑊𝑜.

19. Increase 𝑖𝑡 by 1. If 𝑖𝑡 < 𝑁𝑖𝑡, go to 4

20. End iterations. Finished getting 𝑎𝑘 and 𝑏𝑘.

21. Update input weights by using 𝑎𝑘 and 𝑏𝑘.

𝑤(𝑘, 𝑛) ← 𝑎𝑘𝑤(𝑘, 𝑛)

𝑤(𝑘, 𝑁 + 1) ← 𝑤(𝑘, 𝑁 + 1) + 𝑏𝑘

54

22. 𝑤 from step 21 is initialized 𝑤 and use that 𝑤 to further train MLP.

5.2 Result

Table 5.1 - Performance Comparison with Modified Sigmoid and without Modified Sigmoid

Table 5.1 – Compares performance of MLP with modified sigmoid method and without modified

sigmoid method. 𝑁ℎ = 51. 𝑁𝑖𝑡 = 500. For modified sigmoid method, scaling and addition factor for each

hidden neuron are created and trained for 200 iteration.

Dataset Number of

inputs

Number of

outputs

Training

Error

Without

Modified

Sigmoid

Method

Testing

Error

Without

Modified

Sigmoid

Method

Training

Error With

Modified

Sigmoid

Method

Testing

Error With

Modified

Sigmoid

Method

Twod 8 7 0.102378 0.1369 0.097071 0.1355

Oh7 20 3 0.101961 0.1175 0.090968 0.1135

Mat 4 4 0.000873 0.0011 0.0004 0.000477

Weather

Forecasting

71 3 255.7176 290.0440 253.827720 290.2045

55

CHAPTER 6

Conclusion

In this thesis, improved parameter initialization techniques like fusion method and modified sigmoid are

proposed for training MLP network HWO - MOLF by using a supervised learning approach. The results

show a considerable improvement in performance for both algorithms compared to random parameter

initialization technique for HWO – MOLF network. A possible reason for this could be that both the

algorithms are able to remove problems like local minima convergence, saturated hidden units and

dependent hidden units, faced during parameter initialization to some extent. Also, Modified sigmoid

method gives slightly better results when compared to fusion method.

Depending upon different configuration of HWO – MOLF network and also on the random initialization of

the network, final error in training the HWO – MOLF network differs. In the result of both the algorithms, it

is observed that for the same number of training iterations, training error is significantly reduced in

comparison to random parameter initialization. Time to train HWO – MOLF network by using fusion method

is more than Modified sigmoid method because of creating multiple networks of same architecture and

training them individually.

56

Appendix A

Description of datasets

57

TWOD

This file has 8 inputs, 7 outputs and 1768 training patterns. This training file is used in the task of inverting

the surface scattering parameters from an inhomogeneous layer above a homogeneous half space, where

both interfaces are randomly rough. The inputs consist of eight theoretical values of back scattering

coefficient parameters at V and H polarization and four incident angles. The outputs were the corresponding

values of permittivity, upper surface height, lower surface height, normalized upper surface correlation

length, normalized lower surface correlation length, optical depth and single scattering albedo which had a

joint uniform pdf. [56, 57]

OH7

This file has 20 inputs, 3 outputs and 10,453 training patterns. The training set contains VV and HH

polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding

unknowns rms surface height, surface correlation length, and volumetric soil moisture content in g / cubic

cm. [58]

MAT

This file has 4 inputs and 4 outputs and 2000 training patterns. This training file provides the data set for

inversion of random two-by-two matrices. Each pattern consists of 4 input features and 4 output features.

The input features, which are uniformly distributed between 0 and 1, represent a matrix and the four output

features are elements of the corresponding inverse matrix. The determinants of the input matrices are

constrained to be between .3 and 2. [61]

WEATHER FORECASTING DATA

This file has 71 inputs and 3 outputs and 72,050 training patterns. The weather data made from the years

2010 to 2013. First 4 inputs are time inputs (encoded in continuous form); Inputs 5 to 8 are spatial variables

(latitude, longitude) that indicate the monitoring site/station and city the pattern comes from; Inputs 9 to 71

comprise time delayed data up to 3 days of Daily Mean, Daily Min, and Daily Max values of meteorological

58

variables (temperature, solar radiation, wind speed and wind direction encoded together in continuous form)

and pollutant variables (nitric oxide, nitrogen dioxide, 8 - hour average ozone concentration). Outputs are

Daily Maximum 8- hour average ozone concentration up to 3 days ahead. [62]

59

REFERENCES

[1] Wikipedia contributors. “Machine Learning” Wikipedia, The Free Encyclopedia. Wikipedia, The

Free Encyclopedia.

[2] Wikipedia contributors. “Artificial Neural Network” Wikipedia, The Free Encyclopedia. Wikipedia,

The Free Encyclopedia.

[3] Sudhirkumar Menon, “Growing Training And Initialization For Multilayer Perceptron Neural

Network” (2016)

[4] Park, Jooyoung, and Irwin W. Sandberg. "Universal approximation using radial-basis-function

networks." Neural computation 3.2 (1991): 246-257.

[5] Musavi, Mohamad T., et al. "On the training of radial basis function classifiers." Neural networks 5.4

(1992): 595-603.

[6] Niyogi, Partha, and Federico Girosi. "On the relationship between generalization error, hypothesis

complexity, and sample complexity for radial basis functions." Neural Computation 8.4 (1996):

819-842.

[7] Raudys, Šarūnas. "Evolution and generalization of a single neurone: I. single-layer perceptron as

seven statistical classifiers." Neural Networks11.2 (1998): 283-296.

[8] Knerr, Stefan, Léon Personnaz, and Gérard Dreyfus. "Single-layer learning revisited: a stepwise

procedure for building and training a neural network."Neurocomputing. Springer Berlin Heidelberg,

1990. 41-50.

[9] Gardner, Matt W., and S. R. Dorling. "Artificial neural networks (the multilayer perceptron)—a

review of applications in the atmospheric sciences."Atmospheric environment 32.14 (1998):

2627-2636.

[10] Ruck, Dennis W., et al. "The multilayer perceptron as an approximation to a Bayes optimal

discriminant function." Neural Networks, IEEE Transactions on 1.4 (1990): 296-298.

[11] Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of

control, signals and systems 2.4 (1989): 303-314.

60

[12] Rosenblatt, Frank. Principles of neurodynamics. perceptrons and the theory of brain

mechanisms. No. VG-1196-G-8. CORNELL AERONAUTICAL LAB INC BUFFALO NY, 1961.

[13] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal

representations by error propagation. No. ICS-8506. CALIFORNIA UNIV SAN DIEGO LA

JOLLA INST FOR COGNITIVE SCIENCE, 1985.

[14] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature521.7553 (2015):

436-444.

[15]Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of

control, signals and systems 2.4 (1989): 303-314.

[16] http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture4.pdf page 96

[17] Manry, M. T., Dawson, M. S., Fung, A. K., Apollo, S. J., Allen, L. S., Lyle, W. D., & Gong, W.

(1994). Fast training of neural networks for remote sensing. Remote sensing reviews, 9(1-2), 77-

96.

[18] Olvera, J., X. Guan, and M. T. Manry. "Theory of monomial networks." InProc. Symp. Implicit

and Nonlinear Systems, pp. 96-101. 1992.

[19] Barton, Simon A. "A matrix method for optimizing a neural network." Neural Computation 3.3

(1991): 450-459.

[20] Sartori, Michael A., and Panos J. Antsaklis. "A simple method to derive bounds on the size and to

train multilayer neural networks." Neural Networks, IEEE Transactions on 2.4 (1991): 467-471.

[21] Rohani, Kamyar, Mu-Song Chen, and Michael T. Manry. "Neural subnet design by direct

polynomial mapping." Neural Networks, IEEE Transactions on 3.6 (1992): 1024-1026.

[22] Dettman, John W. Mathematical methods in physics and engineering. Courier Corporation, 2013.

[23] Werbos, Paul. "Beyond regression: New tools for prediction and analysis in the behavioral

sciences." (1974).

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture4.pdf%20page%2096

61

[24] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations

by error propagation. No. ICS-8506. CALIFORNIA UNIV SAN DIEGO LA JOLLA INST FOR

COGNITIVE SCIENCE, 1985.

[25] Yu, Changhua, and Michael T. Manry. "A modified hidden weight optimization algorithm for

feedforward neural networks." Signals, Systems and Computers, 2002. Conference Record of the

Thirty-Sixth Asilomar Conference on. Vol. 2. IEEE, 2002.

[26] Jesudhas, P., Manry, M. T., Rawat, R., & Malalur, S. (2011, July). Analysis and improvement of

multiple optimal learning factors for feed-forward networks. In Neural Networks (IJCNN), The 2011

International Joint Conference on (pp. 2593-2600). IEEE.

[27] Pedro Domingos, “A few useful things to know about machine learning” Magazine

Communications of the ACM, Volume 55 Issue 10, October 2012 Pages 78-87

[28] M. N. Marsono, M. W. El-Kharashi, and F. Gebali, “Binary LNS-based naïve Bayes inference

engine for spam control: Noise analysis and FPGA synthesis”, IET Computers & Digital

Techniques, 2008

[29] G. Adomavicius, A. Tuzhilin, “Toward the next generation of recommender systems: a survey of

the state-of-the-art and possible extensions”, IEEE Transactions on Knowledge and Data

Engineering (Volume: 17, Issue: 6, June 2005)

[30] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural

networks. In NIPS, 2012.

[31] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Large vocabulary continuous speech

recognition with context-dependent DBN-HMMS. In ICASSP, pages 4688–4691. IEEE, 2011.

ISBN 978-1-4577- 0539-7

[32] Chandola, V.; Banerjee, A.; Kumar, V. (2009). "Anomaly detection: A survey". ACM Computing

Surveys. 41 (3): 1–58.

[33] Quinlan, J. R. (1987). "Simplifying decision trees". International Journal of Man-Machine Studies.

[34] Ho, Tin Kam (1995). Random Decision Forests (PDF). Proceedings of the 3rd International

Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995. pp. 278–

282.

62

[35] Campos, Guilherme O.; Zimek, Arthur; Sander, Jörg; Campello, Ricardo J. G. B.; Micenková,

Barbora; Schubert, Erich; Assent, Ira; Houle, Michael E. (2016). "On the evaluation of

unsupervised outlier detection: measures, datasets, and an empirical study". Data Mining and

Knowledge Discovery.

[36] Cox, DR (1958). "The regression analysis of binary sequences (with discussion)". J Roy Stat Soc

B. 20: 215–242.

[37] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995):

273-297.

[38] Rakesh Agrawal and Ramakrishnan Srikant, “Fast algorithms for mining association rules.”

Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-

499, Santiago, Chile, September 1994.

[39] Hartigan, J. A.; Wong, M. A. (1979). "Algorithm AS 136: A K-Means Clustering Algorithm". Journal

of the Royal Statistical Society. Series C (Applied Statistics). 28 (1): 100–108.

[40] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar (2012) Foundations of Machine Learning,

The MIT Press

[41] Dana H. Ballard; Christopher M. Brown (1982). Computer Vision. Prentice Hall.

[42] Rowe, Sam Del (2017-06-12). "SDL Adds Neural Machine Translation to Its Enterprise Translation

Server". CRM Magazine. Retrieved 2017-06-23.

[43] D.T. Nguyen et al. “Automatic Image Filtering on Social Networks Using Deep Learning and

Perceptual Hashing During Crises”, Proceedings of the 14th ISCRAM Conference – Albi, France,

May 2017

[44] "Google's AI beats human champion at Go". CBC News. 27 January 2016. Retrieved 28 January

2016.

[45] F. Amato et al. “Artificial neural networks in medical diagnosis” , J Appl Biomed. 11: 47–58, 2013

[46] LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer Berlin

Heidelberg, 2012. 9-48

[47] Hinton, Geoffrey. "Overview of mini-batch gradient descent" (PDF). pp. 27–29. Retrieved 27

September 2016.

63

[48] Hestenes, Magnus R.; Stiefel, Eduard (December 1952). "Methods of Conjugate Gradients for

Solving Linear Systems". Journal of Research of the National Bureau of Standards. 49 (6).

[49] Tieleman, Tijmen and Hinton, Geoffrey (2012). Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning

[50] Perla, Joseph (2014). "Notes on AdaGrad"

[51] Sutskever, Ilya; Martens, James; Dahl, George; Hinton, Geoffrey E. (June 2013). Sanjoy

Dasgupta and David Mcallester, ed. On the importance of initialization and momentum in deep

learning. In Proceedings of the 30th international conference on machine learning (ICML-13). 28.

Atlanta, GA. pp. 1139–1147.

[52] Diederik, Kingma; Ba, Jimmy (2014). "Adam: A method for stochastic optimization"

[53] B. G. Don R. Hush, "Progress in Supervised Neural Networks," IEEE SIGNAL PROCESSING

MAGAZINE, 1993.

[54] Y. W. Qiong Liu, "Supervised Learning".

[55] Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of

Control, Signals, and Systems, 2 (4), 303-314

[56] M. S. Dawson, A. K. Fung and M. T. Manry, "Surface parameter retrieval using fast learning neural

networks," Remote Sensing Reviews, 1993, Vol. 7(1), pp. 1-18.

[57] M. S. Dawson, J. Olvera, A. K. Fung and M. T. Manry, "Inversion of surface parameters using fast

learning neural networks," Proc. of IGARSS'92, Houston, Texas, May 1992, Vol II, pp 910 - 912.

[58] An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces,"

in IEEE Trans. on Geoscience and Remote Sensing, pp. 370-381, 1992.

[59] http://www.uta.edu/faculty/manry/new_mapping.html MAT.TRA data file on the webpage.

[60] Gautam R. Eapi (2015). Comprehensive neural network forecasting system for ground level ozone

in multiple regions (Doctoral dissertation).

http://www.uta.edu/faculty/manry/new_mapping.html

