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ABSTRACT 

 

IMPROVED INITIALIZATION FOR THE 

MULTI LAYER PERCEPTRON 

 

ABHISHEK MAINKAR 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Dr. Michael T. Manry 

A Multilayer Perceptron (MLP) neural network is used for solving nonlinear functional problems like function 

approximation, classification, data processing etc. MLP neural networks are usually trained using back 

propagation, which is a non-convex optimization problem for most of the loss functions. As there are 

multiple local minima, non-convex optimization curves generally converge to different optimal points for 

different initial conditions. So it not only affects the speed of the convergence but optimality as well. Initial 

parameters of neural networks are as important as the network architecture and initialization has been 

thoroughly studied in the past. This report discusses the fusion method and modified sigmoid method which 

are used for network initialization. Both initialization methods discussed in this report are based on the 

regular Hidden weight optimization – Multiple optimal learning factors (HWO-MOLF) MLP. Due to non-

convex optimization, training an MLP for large networks has the possibility of finding local minima instead 

of the global minima. The network has a possibility to stick at saddle points when minimizing the error 

function. Both the initialization procedures in this report, try to avoid the likelihood of finding a local minimum. 

The training experiments and results obtained are demonstrated in this report. We can see that using both 

the initialization methods for training HWO-MOLF network, helps mitigate local minima problem, hidden 

units saturation problem, and dependent hidden units. 
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CHAPTER 1 

Introduction 

1.1 Machine Learning 

Machine learning is a field of computer science that gives computer systems the ability to "learn" (i.e., 

progressively improve performance on a specific task) with data, without being explicitly programmed [1]. 

Machine learning is a subfield of artificial intelligence (AI). The goal of machine learning generally is to 

understand the structure of data and fit that data into models that can be understood and utilized by people 

[27]. Machine learning is most successful subfield of AI, and has enjoyed remarkable success in recent 

days on a wide range of tasks – e.g. spam filtering [28], recommender systems [29], image classification 

[30], speech recognition [31], and anomaly detector [32].  

Machine learning algorithms are broadly divided into two categories, 

i. Supervised learning [40] - The computer is presented with example inputs and their desired 

outputs, and the goal is to learn a general rule that maps inputs to outputs. Examples of supervised 

learning algorithms are Decision Tree [33], Random Forest [34], KNN [35], Logistic Regression 

[36], SVM [37], Artificial neural network (ANN) [24] etc. 

ii. Unsupervised learning [40] - No labels are given to the learning algorithm, leaving it on its own to 

find structure in its input. Examples of unsupervised algorithms are Apriori algorithm [38], K-means 

[39] etc. 

In recent years, due to increase in computation power, large amounts of data and efficient algorithms, 

artificial neural networks (ANN) have become a dominant machine learning algorithm in the industry.  

1.2 Artificial Neural Network (ANN) 

Artificial neural networks (ANNs) or connectionist systems are computing systems vaguely inspired by the 

biological neural networks that constitute animal brains. Such systems "learn" (i.e. progressively improve 

performance on) tasks by considering examples, generally without task-specific programming. For 

example, in image recognition, they might learn to identify images that contain cats by analyzing example 

images that have been manually labeled as "cat" or "no cat" and use the results to identify cats in other 

images. They do this without any a priori knowledge about cats, e.g., that they have fur, tails, whiskers and 
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cat-like faces. Instead, they evolve their own set of relevant characteristics from the learning material that 

they process. [2] 

Collection of connected units or nodes called artificial neurons form ANN. Each connection between artificial 

neurons can transmit a signal from one to another. The artificial neuron that receives the signal can process 

it and then signal artificial neurons connected to it. The connections between neuron have numeric weights 

that can be tuned based on experience, making neural nets adaptive to inputs and capable of learning. [3] 

ANNs have been used on a variety of tasks, including computer vision [41], speech recognition [31], 

machine translation [42], social network filtering [43], playing board and video games [44] and medical 

diagnosis [45]. 

 

1.2.1 Structure and Components of an Artificial Neural Network 

 

Components of an Artificial Neural Network [2] 

Neurons 

A neuron with label j receiving an input pj(t) from predecessor neurons consists of the following components:  

 an activation aj(t) depending on a discrete time parameter, 

 possibly a threshold θj, which stays fixed unless changed by a learning function, 

 an activation function f that computes the new activation at a given time t + 1 from aj(t) , θj and 

the net input pj(t) giving rise to the relation 

𝑎𝑗(𝑡 + 1) = 𝑓(𝑎𝑗(𝑡), 𝑝𝑗(𝑡), 𝜃𝑗) 

 and an output function fout computing the output from the activation 

𝑜𝑗(𝑡) = 𝑓𝑜𝑢𝑡(𝑎𝑗(𝑡)) 

Often the output function is simply the Identity function. An input neuron has no predecessor but serves as 

input interface for the whole network. Similarly an output neuron has no successor and thus serves as 

output interface of the whole network. 
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Connections and weights 

The network consists of connections, each connection transferring the output of a neuron i to the input of a 

neuron j. In this sense i is the predecessor of j and j is the successor of i. Each connection is assigned a 

weight wij. 

 

Propagation Function  

The propagation function computes the input pi(t) to the neuron j from the outputs oi(t) of predecessor 

neurons and typically has the form 

𝒑𝒋(𝒙) =  ∑ 𝑜𝑖(𝑡)𝑤𝑖𝑗

𝑖

 

 

Learning rule 

The learning rule is a rule or an algorithm which modifies the parameters of the neural network, in order for 

a given input to the network to produce a favored output. This learning process typically amounts to 

modifying the weights and thresholds of the variables within the network. 

 

 

 

 

 

Structures of an Artificial Neural Networks 

Structural arrangement and training procedure are the important factors for classification of Neural 

Networks. The training algorithm for neural network would differ from network to network based on structural 

arrangement of neural network. Some of the most commonly used neural networks are mentioned below. 
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1. Radial Basis Function Networks 

Radial basis function (RBF) network [4, 5] is a type of neural network which uses the radial basis 

functions as activation functions. Distance from the input vector x to a center vector mk is radial 

basis function. 

∅(𝒙) =  ∅(||𝒙 − 𝒎𝒌||) 

 

 

 

 

  

  

Radial basis function networks have neurons with nonlinear RBF activations in the hidden layer. 

For higher dimensional hidden space i.e. when hidden layer has more neurons than the number of 

inputs, Radial basis functions are the best choice. Such RBF networks can better approximate a 

smooth input-output mapping. [6] 

2. Single Layer Perceptron 

The simplest kind of neural network is a Single-Layer Perceptron [7,8], which consist of no hidden 

layer i.e. input layer is directly connected to output layer. Each input neuron is connected to each 

output neuron by real valued weight. At each output neuron, sum of the products of the weights 

and inputs is calculated. The single layer perceptron has a unidirectional flow of data, since the 

data always flows forward and strictly one directional. 

Figure 1.1: Radial Basis Function Network 
Figure 1.1: Radial Basis Function Network 
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3. Multilayer Perceptron (MLP) Neural Networks 

A multilayer perceptron (MLP) [9,10] is a feedforward artificial neural network model that maps 

input data space into desired output space. An MPL consists of multiple layers of nodes in a 

directed graph, with each layer fully connected to the next one.  Each node in MLP (except input 

nodes) performs non-linear operation. Due to non-linear operation at each node MLP can 

distinguish data that is not linearly separable. So, MLP networks are like linear networks but with 

non-linearity added at each node. [11] MLP is trained using supervised learning algorithm called 

back propagation. [12, 13] 

 

 

 

 

 

 

 

 

 

Figure 1.2: Single Layer Perceptron Network 

Figure 1.3: MLP with single hidden layer 
Figure 1.3: MLP with Single Hidden Layer 
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1.2.2 Training of ANN 

 

Learning process is one of most fundamental thing in Neural Network.  Training of ANN differs based on 

application, training data size, number of parameters etc. After creating Neural Network model based on 

application, the next step is to train the model based on different learning algorithms like gradient descent 

[46], stochastic gradient descent [47], conjugate gradient [48], RMSProp [49], AdaGrad [50], momentum 

[51], Adam [52] etc. Learning of neural network is a process to change parameters of the network so that 

the model can map inputs of training data very close to outputs of training data. In process of learning, 

activation function of hidden neuron is kept constant. Learning of neural can be supervised in which correct 

choice of output is provided in training data or, unsupervised in which no output is provided. In this thesis, 

training of ANN is done by using supervised learning algorithm. 

Minimum training error while training neural network does not give best performance in a test environment. 

This can be due to overfitting of the model to training data. So, training is about finding the best parameters 

for the model by using training data, so that testing error is minimum. And, testing is evaluating parameters 

learned while training, to unseen data. This means that parameters of model found out during training, 

which give minimum test error are selected as final parameters of the model.  

Supervised Learning  

In supervised learning, inputs and expected outputs are given in data file. The inputs are then fed to the 

network, and the outputs of the network are compared with the desired output in training data. Error in the 

comparison is fed back to the network from output to input, and the parameters of the network are adjusted 

to minimize the error between output of network, and the desired output of the network. This process is 

repeated multiple times till minimum error is reached.  

 

                                                              Figure 1.4: Supervised Training Method 
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Supervised learning can be used for both classification and regression [53]. Supervised learning is giving 

best results in machine learning domain, to learn object behavior in certain tasks. Since this may produce 

input to output mapping faster and more accurate than humans, the machines trained with supervised 

learning perform better [54].  

1.2.3 Properties of ANN 

An ANN is composed of artificial neurons or nodes connected to form a network which basically uses a 

mathematical or a computational model for processing information. It is capable of changing its structure 

depending on the information transmitted through the system. Due to this property, ANN can be used to 

model complex relationships about input and output, and to find patterns in given data. 

Representation Power – Every Boolean function can be represented exactly by some network with two 

layers of units. The number of hidden units required may grow exponentially with the number of network 

inputs. 

Universal Approximation Function – Any function can be approximated to arbitrary accuracy by a 

network with three layers of units [55]. A three-layer network can approximate any reasonable function to 

any degree of required precision as long as the hidden layer can be arbitrarily large.  

Feature Extractor – ANN particularly Convolution neural network (CNN) are extremely good at finding 

features in data. This property has reduced a lot of data analysis time and manual finding of the best feature 

in data set. 

Due to these properties, neural networks are extremely successful machine learning algorithms in modern 

times. 

1.3 Parameter initialization of Neural Network Model 

In the training process of a neural network, after creation of the model of a neural network, parameters of 

the model are initialized by using random number generator (normal distribution). The problem with random 

weight generation is that in this non-convex optimization problem of neural network there is a chance that 

the model training might get stuck in a local minima instead of reaching the global minima. This happens 

because parameters are randomly assigned initially on an optimization curve. While training, parameters 

get stuck to local minima which is near to initialized parameter values on multi-dimensional non-convex 



16 
 

optimization curve. This will not reduce training error further. There are other problems with random 

initialization like hidden neuron saturation and dependent hidden neuron. 

In this thesis, better parameter initialization techniques than random initialization are suggested. In chapter 

2, Multilayer Perceptron (MLP) notation and training are discussed. In chapter 3, problems with parameter 

initialization and proposed work are given. Chapter 4 discusses about the algorithm and results of fusion 

method of parameter initialization. Chapter 5 describes the algorithm and the results of modified sigmoid 

method. Lastly, chapter 6 is the conclusion of the thesis. 
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CHAPTER 2 

Multilayer Perceptron Notation and Training 

 

2.1 Structure of the Multilayer Perceptron 

Figure 2.1 shows the structure of the multilayer perceptron with a single hidden layer. The structure of the 

multilayer perceptron in the figure consists of an input layer, one or more hidden layers and one output 

layer. In general, multilayer perceptron consists of one or more hidden layers. Each input node is connected 

to each node in first hidden layer, each node in the first layer is connected to each node in second layer 

and so on till output is generated. In modern literature, a multilayer perceptron with more than one hidden 

layer is called a Deep Learning architecture. [14] In this thesis, all the study is done for multilayer perceptron 

with single hidden layer. Single hidden layer multilayer perceptrons are powerful enough to approximate 

any continuous function. [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: MLP with single hidden layer 
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The multilayer perceptron network is a highly hierarchical system since every layer is connected to the next 

layer. Also, multilayer perceptron has highly connected topology, since every input is connected to all the 

nodes in the first hidden layer, and every unit in the hidden layers is connected to all the nodes in the next 

layer. In a multilayer perceptron, as data flows from input layer to output layer, traversing through each 

hidden layer connected in sequence, it is called a feed forward network. 

The hidden layer neuron performs multiplication of input values and weight matrix. Then adds threshold 𝜃 

to form the net function, followed by an application of a nonlinear activation function f(net) to the net function. 

There are different nonlinear activation functions available for multilayer perceptron, some of them are 

shown in figure 2.2 [16] 

 

Figure 2.2: Nonlinear Activation Functions 

 

Sigmoid activation function is used as the activation function in this report for all the analysis.  

The sigmoid activation function is given as follows 

𝑂𝑝 =  𝑓(𝑛𝑝) =  
1

1 + 𝑒−𝑛𝑝
 

(2.1) 
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2.2 Multilayer Perceptron Notation 

In the training data {𝒙𝒑, 𝒕𝒑} for a fully connected MLP, 𝒙𝒑 represents pth input vector having dimension N 

and, 𝒕𝒑 represents pth output vector having dimension M. Let the input vectors be augmented by an extra 

element 𝑥𝑝(𝑁 + 1) where 𝑥𝑝(𝑁 + 1) such that 𝒙𝒑 = [𝑥𝑝(1), 𝑥𝑝(2), … … . . , 𝑥𝑝(𝑁 + 1)]
𝑇
. And p is a pattern 

number which varies from 1 to Nv.  

Additional parameters are 𝑤𝑘(𝑘, 𝑛), 𝑤𝑜ℎ(𝑘, 𝑛) and 𝑤𝑜𝑖(𝑖, 𝑛). Input weights 𝑤𝑘(𝑘, 𝑛) connect the nth input to 

the kth hidden unit. Output weights 𝑤𝑜ℎ(𝑖, 𝑘) connect the kth hidden units activation 𝑂𝑝(𝑘) to the ith 

output 𝑦𝑝(𝑖), which has a linear activation. The bypass weight 𝑤𝑜𝑖(𝑖, 𝑛) connects the nth input to the ith output. 

For the pth pattern, the kth hidden units net function 𝑛𝑝(𝑘) is given as 

 
𝑛𝑝(𝑘) = ∑ 𝑤(𝑘, 𝑛)𝑥𝑝(𝑛)

𝑁+1

𝑛=1

 
 (2.2) 

Which when written in matrix notation could be given as 

 𝒏𝒑 = 𝑾 ∙ 𝒙𝒑  (2.3) 

Here 𝒏𝒑 denotes the Nh dimensional column vector of a net function values and W is Nh by (N+1). For the 

pth pattern, the kth hidden units activation is denoted as 𝑂𝑝(𝑘) where 𝑂𝑝(𝑘)  =  𝑓(𝑛𝑝(𝑘)) and f denotes the 

hidden layer activation. 

Figure 2.3: Sigmoid Activation Function 
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For the pth pattern, the ith element 𝑦𝑝(𝑖) of the M dimensional output vector 𝒚𝒑 is given as 

 

𝑦𝑝(𝑖) =  ∑ 𝑤𝑜𝑖(𝑖, 𝑛) 𝑥𝑝(𝑛) +  ∑ 𝑤𝑜ℎ(𝑖, 𝑘)𝑂𝑝(𝑘)

𝑁ℎ

𝑘=1

𝑁+1

𝑛=1

 

(2.4) 

This can also be denoted in matrix form as  

 𝒚𝒑 = 𝑾𝒐𝒊 ∙ 𝒙𝒑 +  𝑾𝒐𝒉 ∙ 𝑶𝒑 (2.5) 

where, Op is the Nh dimensional hidden unit activation vector. 

The error used in training MLP is the mean – squared error (MSE), which is 

 

𝐸 =  
1

𝑁𝑣

∑ ∑[𝑡𝑝(𝑖) −  𝑦𝑝(𝑖)]
2

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 

(2.6) 

2.3 MLP Training 

Training a neural network is a non-convex optimization problem in which weights are adjusted in such a 

way that error in desired output and actual output is minimum. Learning algorithm is the most important 

thing in neural network, because it will decide the speed of convergence and ability to find global minima 

instead of local minima. There are different techniques for optimization like stochastic gradient descent 

(SGD), SGD with momentum, Adagrad, RMSProp etc. In this report, training algorithm used for MLP is 

called HWO – MOLF.  

Training algorithms can be classified into two types as follows, 

a) Two-stage training – Input and output weights are trained alternately 

b) One-stage training – All weights are updated simultaneously 

HWO-MOLF algorithm uses OWO-BP [17], which denotes Output Weight Optimization – Backpropagation. 

This OWO-BP is a two-stage algorithm. Steps in two-stage algorithm are – 

1) Weight Initialization – Randomize input weights, OWO for output weights. 

2) Repeated iterations in which 
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a) Use steepest descent (BP) to modify input weights 

b) OWO for output weights 

2.3.1 Weight Initialization 

If some inputs have much larger standard deviation than others, they can dominate the training, even if 

they are relatively useless. By calculating input’s standard deviation, input weights can be normalized later. 

Let ran(i) denote a zero-mean Gaussian random number with variance of 1, where i denotes self-changing 

random number seed. These randomly generated weights are divided by the input standard deviation, thus 

removing dominance of large variance inputs.   

2.3.2 Net Control [18] 

Training of input weights is strongly dependent on the slopes of hidden unit activation functions in response 

to inputs. Training of a weight ceases if the unit it feeds into has an activation function derivative of zero for 

all patterns. Therefore, adjust mean and standard deviations of all hidden unit net functions so that they 

have values of 𝑚𝑑 = 0.5 and 𝜎𝑑 =  1. This control is accomplished as follows – 

a) For hidden layer, make a pass through the training data and calculate 𝑚(2, 𝑘) and  𝜎(2, 𝑘) which 

are respectively hidden layer net function mean and standard deviations for the k th unit. 

b) For the kth hidden unit, multiply the threshold and all incoming weights by 
𝜎𝑑

𝜎(2,𝑘)
 to adjust the net 

function standard deviation to the desired value. 

c) For the kth hidden unit, update the threshold as  

 𝜃(2, 𝑘) =  𝜃(2, 𝑘) −  𝑚(2, 𝑘).
𝜎𝑑

𝜎(2, 𝑘)
+ 𝑚𝑑 (2.7) 

 

2.3.3 Solving for Output Weights (Output Weight Optimization (OWO)) 

At this point, we have determined the initial input weights and therefore the initial network basis function. 

We can now find the output weights [19 – 21]. 

 𝒚𝒑 = 𝑾𝒐𝒊 ∙ 𝒙𝒑 +  𝑾𝒐𝒉 ∙ 𝑶𝒑 (2.8) 
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 𝒚𝒑 = 𝑾𝒐 ∙ 𝑿𝒑 (2.9) 

where, 𝑾𝒐 = [𝑾𝒐𝒊 ∶ 𝑾𝒐𝒉] 

𝑿𝒑 = [𝒙𝒑
𝑇 , 𝑶𝒑

𝑇  ]
𝑇
 

 

L is the total number of basis functions i.e. N+Nh+1. The basis functions are as follows, 

X(n) = x(n) for n between 1 and N 

X(N+1) = 1 

X(N+1+k) = Ok for k between 1 and Nh 

We have M sets of L equations in L unknowns which leads us to, 

                                                𝑹. 𝑾𝒐
𝑻 = 𝑪                       (2.10) 

 

where R is the Autocorrelation matrix of size (N+1+Nh) by (N+1+Nh) which is given as, 

                                          𝑟(𝑘, 𝑛) =
1

𝑁𝑣
∑ 𝑋𝑝(𝑘). 𝑋𝑝(𝑛)

𝑁𝑣
𝑝=1  (2.11) 

 

Also C is the Cross correlation matrix of size (N+1+Nh) by M 

 

𝑐(𝑘, 𝑖) =
1

𝑁𝑣

∑ 𝑋𝑝(𝑘). 𝑡𝑝(𝑖)

𝑁𝑣

𝑝=1

 

(2.12) 

 

Equation 2.10 is often ill-conditioned, meaning that the determinant of R is close to 0, it is often unsafe to 

use Gauss-Jordan elimination, so orthogonal least squares (OLS) algorithm is used to solve the equation. 
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2.3.4 Schimdt Procedure and Orthogonal Least Squares (OLS) for Output Weights 

The Schmidt procedure is used for the normalization of the basis functions. The Schmidt procedure can be 

described as follows [22]. 

Given the basis functions X(m), form the first orthonormal basis function X’(1) as  

 
𝑋′(1) =

𝑋(1)

||𝑋(1)||
 

(2.13) 

which yields ||X’(1)|| =  1. 

The second orthonormal basis function is found as  

 𝑐1 = < 𝑋′(1), 𝑋(2) > (2.14) 

 

 
𝑋′(2) = 𝑋(2) −

𝑐1𝑋′(1)

||𝑋(2) −  𝑐1𝑋′(1)||
 

(2.15) 

 

Similarly the third orthonormal basis function is found as 

 𝑐1 = < 𝑋′(1), 𝑋(3) >    𝑐2 = < 𝑋′(2), 𝑋(3) > (2.16) 

 

 
𝑋′(3) =

𝑋(3) −  𝑐1𝑋′(1) −  𝑐2𝑋′(2)

||𝑋(3) −  𝑐1𝑋′(1) −  𝑐2𝑋′(2)||
 

(2.17) 

 

The Schmidt procedure requires at least one pass through the training data file for each new basis function. 

Since X’(m) is a weighted sum of the X(j), we can calculate all inner products <X(m),X’(j)> as weighted 

sums of < 𝑋(𝑚), 𝑋(𝑘) > = 𝑟(𝑚, 𝑘), which means only one data pass is required to calculate the R matrix 

given in equation (2.10). 

Reformulating the Schmidt procedure we can get the form as, 
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𝑋′(𝑚) =  ∑ 𝑎𝑚𝑘𝑋(𝑘)

𝑚

𝑘=1

 
(2.18) 

The above in the matrix form can be given as 

𝑿′ = 𝑨 ∙ 𝑿 

Orthogonal least squares training approach makes use of the Schmidt procedure to calculate the output 

weights and Error for the system. First we calculate the output weights of the orthonormal system and then 

convert the weights to the original system. 

The orthonormal output weights for the system is given as, 

 𝑤𝑜′(𝑖, 𝑚) =  𝐸[𝑋′(𝑚)𝑡(𝑖)] (2.19) 

Substituting X’(m) from equation (2.18) 

 
𝑤𝑜′(𝑖, 𝑚) =  ∑ 𝑎𝑚𝑘𝐸[𝑋(𝑘)𝑡(𝑖)] =  ∑ 𝑎𝑚𝑘𝑐(𝑘, 𝑖)

𝑚

𝑘=1

𝑚

𝑘=1

 
(2.20) 

 

In matrix form we can write the above as  

 𝑾𝒐
′ = 𝑪𝑻 ∙ 𝑨𝑻 (2.21) 

 

Now we have the weights for the orthonormal system, we now need to convert the weights from the 

orthonormal system to our original system, we can achieve that as follows 

 

𝑦(𝑖) =  ∑ 𝑤𝑜(𝑖, 𝑘)𝑋(𝑘) =  ∑ 𝑤𝑜
′ (𝑖, 𝑚)𝑋′(𝑚)

𝑁𝑢

𝑚=1

𝑁𝑢

𝑘=1

 

(2.22) 

 

We can replace X’(m) from equation (2.18) as follows 



25 
 

 

∑ [ ∑ 𝑤𝑜
′ (𝑖, 𝑚)𝑋′(𝑚)

𝑁𝑢

𝑚=1

]

𝑁𝑢

𝑘=1

𝑋(𝑘) 

(2.23) 

On changing the limits for the inner summation 

 

𝑤𝑜(𝑖, 𝑘) =  ∑ 𝑤𝑜
′ (𝑖, 𝑚)𝑎𝑚𝑘

𝑁𝑢

𝑘=𝑚

 

(2.24) 

Therefore we have the output weights for the original system as follows 

 𝑾𝒐 = 𝑾𝒐′𝑨 (2.25) 

2.3.5 Backpropagation for Solving Input Weights 

Backpropagation [23, 24] is a common method of training neural networks, usually used to find the input 

gradient matrix and to compute the input weights. This report would focus on implementing backpropagation 

with HWO to compute the overall input gradient. The backpropagation gradient matrix and the delta 

functions can be calculated as follows, 

Consider the mean squared error as mentioned in equation (2.6) 

 

𝐸 =  
1

𝑁𝑣

∑ ∑[𝑡𝑝(𝑖) −  𝑦𝑝(𝑖)]
2

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 

 

The delta functions for the pth pattern for output and hidden layer is given as 

 𝛿𝑝𝑜(𝑖) = 2(𝑡𝑝(𝑖) −  𝑦𝑝(𝑖)) (2.26) 

 
𝛿𝑝(𝑘) = 𝑓′(𝑛𝑝(𝑘)) ∑ 𝛿𝑝𝑜(𝑖)𝑤𝑜ℎ(𝑖, 𝑘)

𝑀

𝑖=1

 
(2.27) 

Now on partially differentiating the Error function with respect to the input weights we get the gradient as, 

 

𝑔(𝑘, 𝑛) =  
−𝜕𝐸

𝜕𝑊(𝑘, 𝑛)
=

1

𝑁𝑣

∑ 𝛿𝑝(𝑘)𝑥𝑝(𝑛)

𝑁𝑣

𝑝=1

 

(2.28) 

In the matrix form the input gradient equation can be given as, 
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𝑮 =
1

𝑁𝑣

∑ 𝜹𝒑(𝒙𝒑)
𝑇

𝑁𝑣

𝑝=1

 

(2.29) 

2.3.6 Hidden Weight Optimization (HWO) 

After calculating the input gradient matrix G from the backpropagation algorithm, we can use this gradient 

in training the input weights using HWO as [25], 

  

 𝑾 = 𝑾 + 𝑧 ∙ 𝑫 (2.30) 

 

The 𝑫 matrix is the hidden weight changes. The hidden weights are updated by minimizing a separate error 

function for each hidden unit. This error function is generated by the difference between the desired net 

function and the actual net function. The input training is similar to OWO-BP but in this case we use the 

hidden weight changes matrix 𝑫. Now for the pth pattern the desired net function is calculated as [26] 

 𝑛𝑝𝑗 ≅ 𝑛𝑝𝑗 + 𝑧 ∙ 𝛿𝑝𝑗 (2.31) 

 

In this equation 𝛿𝑝𝑗 is the delta function for the jth hidden unit as in (2.27) 

The hidden weight changes are derived using, 

 
𝑛𝑝𝑗 +  𝑧 ∙ 𝛿𝑝𝑗 ≅ ∑[𝑤ℎ(𝑗, 𝑛)

𝑁+1

𝑛=1

+  𝑧 ∙ 𝑒(𝑗, 𝑛)] ∙ 𝑥(𝑝, 𝑛) 
(2.32) 

From the above equation we have, 

 
𝛿𝑝𝑗 =  ∑ 𝑒(𝑗, 𝑛) ∙ 𝑥(𝑝, 𝑛)

𝑁+1

𝑛=1

 
(2.33) 

The error function of each hidden unit is taken separately into consideration and the error for the jth Hidden 

unit is given as 
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𝐸𝛿(𝑗) =
1

𝑁𝑣

∑ [𝛿𝑝𝑗 − ∑ 𝑒(𝑗, 𝑛)𝑥𝑝𝑛

𝑁+1

𝑛=1

]

2𝑁𝑣

𝑝=1

 

(2.34) 

 

Now on taking the partial derivative of the above error function with respect to e(j,n) we get 

 𝑫 ∙ 𝑹𝒊 = 𝑮 (2.35) 

 

Ri  is the same as input autocorrelation matrix from equation  (2.10) 

The equation (2.35) can be written in form of the hidden weight change matrix as, 

 𝑫 = 𝑮 ∙ 𝑹𝒊
−𝟏 

 

(2.36) 

The above hidden weight change matrix can be used to train the input weights as follows, 

 𝑾 = 𝑾 + 𝑧 ∙ 𝑫 (2.37)  

 

2.3.7 Multiple Optimal Learning Factor (MOLF) 

Multiple optimal training factor (MOLF) [26] is a higher order training algorithm. In this technique of training 

we find a vector z of optimal learning factors which has one element for each hidden unit. 

Assuming that a separate OLF zk is being used to update each hidden units input weights, w(k,n), where 

1 ≤ 𝑛 ≤ (𝑁 + 1). The total error function 𝑦𝑝(𝑚) to be minimized is given as, 

 

𝑦𝑝(𝑚) =  ∑ 𝑤𝑜𝑖(𝑚, 𝑛)𝑥𝑝(𝑛) +  ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑓(∑(𝑤(𝑘, 𝑖) + 𝑧𝑘 ∙ 𝑔(𝑘, 𝑖))𝑥𝑝(𝑖))

𝑁+1

𝑖=1

𝑁ℎ

𝑘=1

𝑁+1

𝑛=1

 

 

 (2.38) 

 

where, 𝑔(𝑘, 𝑛) is an element of the negative Jacobian matrix G. Now the partial of E with respect to 𝑧𝑗 



28 
 

 
𝜕𝐸

𝜕𝑧𝑗

=  −
2

𝑁𝑣

∑ ∑ [ 𝑡𝑝̅

𝑀

𝑚=1

𝑁𝑣

𝑝=1

(𝑚) − ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑂𝑝(𝑧𝑘) ] ∙ 𝑤𝑜ℎ(𝑚, 𝑗)𝑂𝑝(𝑗)∆𝑛𝑝(𝑗)    

𝑁ℎ

𝑘=1

  

(2.39) 

where, 
𝑡𝑝̅(𝑚) = 𝑡𝑝(𝑚) − ∑ 𝑤(𝑚, 𝑛)𝑥𝑝(𝑛)  ,

𝑁+1

𝑛=1

       ∆𝑛𝑝(𝑗) =  ∑ 𝑥𝑝(𝑛) ∙ 𝑔(𝑛, 𝑗)

𝑁+1

𝑛=1

 
 

 

 
𝑂𝑝(𝑧𝑘) = 𝑓(∑(𝑤(𝑘, 𝑛) +  𝑧𝑘 ∙ 𝑔(𝑘, 𝑛))𝑥𝑝(𝑛)

𝑁+1

𝑛=1

 
 

 

Using the Gauss – Newton updates, the second partial derivative elements of the Hessian 𝐻𝑚𝑜𝑙𝑓 are 

 

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) ≈
𝜕2𝐸

𝜕𝑧𝑙𝜕𝑧𝑗

=
2

𝑁𝑣
 ∑ 𝑤𝑜ℎ(𝑚, 𝑙)𝑤𝑜ℎ(𝑚, 𝑗) ∑ 𝑂𝑝

′ (𝑙)𝑂𝑝
′ (𝑗)∆𝑛𝑝(𝑙)∆𝑛𝑝(𝑗)

𝑁𝑣

𝑝=1

𝑀

𝑚=1

 
 

(2.40) 

 

 

=  ∑ ∑[
2

𝑁𝑣

𝑢(𝑙, 𝑗) ∑ 𝑥𝑝(𝑖)𝑥𝑝(𝑛)𝑂𝑝
′ (𝑙)𝑂𝑝

′ (𝑗)] 𝑔(𝑙, 𝑖) ∙ 𝑔(𝑗, 𝑛)

𝑁𝑣

𝑝=1

𝑁+1

𝑛=1

𝑁+1

𝑖=1

 

 

(2.41) 

 

The Gauss-Newton update guarantees that 𝐻𝑚𝑜𝑙𝑓 is non-negative definite.  

Now given the negative gradient vector 𝑔𝑚𝑜𝑙𝑓 = [
−𝜕𝐸

𝜕𝑧1
,

−𝜕𝐸

𝜕𝑧2
… … ,

−𝜕𝐸

𝜕𝑧𝑁ℎ
 ]

𝑇

 and the Hessian 𝐻𝑚𝑜𝑙𝑓 , we can 

minimize E with respect to the vector z using Newton’s method. 

Now using the 𝒛𝒌 vector of optimal learning factors we can update the input weights as follows, 

  

𝑤(𝑘, 𝑛) = 𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ 𝑑(𝑘, 𝑛) 

 

(2.42) 

where the vector 𝑧 can be given as 

  

𝒛 = 𝑯𝒎𝒐𝒍𝒇
−𝟏 ∙ 𝒈𝒎𝒐𝒍𝒇 

 

(2.43) 
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CHAPTER 3 

Problems and Proposed Work 

3.1 Problems with Initialization of MLP 

To design and train a highly efficient and robust Neural Network involves a lot of fundamental challenges. 

Initialization of parameters of neural network model is one of them. In this thesis, parameter initialization 

problem is addressed and, two better parameter initialization methods namely fusion method, and 

modified sigmoid method are shown. 

There are three main problems with random parameter initialization. First is difficulty in finding global 

minima on optimization curve, second is saturation of hidden units of neural network and third is possibility 

of dependent hidden units in neural network.  

MLP are used to solve optimization problem. But, central problem with this optimization is that optimization 

curve is of non-convex nature. Plus, optimization curve is continuous and high dimensional. Gradient 

descent methods are used to solve this optimization problem. So, starting point on this optimization curve 

is decided by randomly initialized parameter. Gradient descent methods while trying to optimize may get 

stuck in local minima, hence parameter update by using gradient descent becomes difficult. Thus, gradient 

descent methods are not sufficient enough to find global minima. This shows that starting point on an 

optimization curve which is decided by random weight initialization is of prime importance. 

Another problem with random parameter initialization is saturation of hidden units. This happens because 

product of weights and inputs, puts outputs of net function on to the saturation region of sigmoid. Though 

net control is provided to keep it below saturation, it is not always possible to keep output of net function 

below saturation. Problem with saturation of sigmoid is that during back propagation gradient will not get 

passed through hidden units to input weights. This affects learning of input weights of model. This makes 

those input weights useless in optimization curve. Not saturating hidden units are of prime importance in 

training of neural network. 

Third problem with random initialization is of dependent hidden units. While training, there is chance that 

due to random initialization some of the hidden units become dependent. Dependent hidden units means 
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they extract same features from data. So, while optimizing, dependent hidden units will not give new 

information for optimization. 

To overcome this problem with initialization, in this thesis, I have proposed two different algorithm namely 

fusion method and modified sigmoid method. 

3.2 Proposed Methods 

3.2.1 Fusion Method 

In the fusion method, instead of creating single network model with random initialization for 

training, create different network models which have the same model structure as a single 

network model, with random initialization. Train those models for some amount of iterations 

and then take hidden units from those different networks and create a single network. While 

taking hidden units from different networks, their weights are copied from the models to create 

one network. The idea behind this is, due to merging of different network, problem of network 

converging to local minima may be eliminated. Also, saturated hidden units due to random 

initialization can be removed while making new single network. Detailed explanation of this 

algorithm is given in chapter 4. 

3.2.2 Modified Sigmoid Method 

In this method, after randomly initializing weights, we perform addition of additive and scaling 

parameters after net function. These additive and scaling parameters are trained using 

Newton’s method. After training, we update the input weights of the model using these additive 

and scaling parameters. This helps to keep hidden units in active region of activation function. 

Details explanation of this algorithm is given in chapter 5. 
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CHAPTER 4 

Fusion Method 

4.1 Algorithm 

In parameter initialization of MLP, common problems are hidden units saturation, dependent hidden units 

and network stuck to local minima which were discussed in chapter 3. Instead of creating single network 

with random initialization and training it for some iterations, multiple networks with the same network model 

architecture are created, randomly initialized, trained for some iteration and, then merged into a single 

network by taking average of parameters of models or selecting some hidden units from different networks. 

This is called fusion process. Final fused network is also trained for some iterations. 

 

The advantage of fusion method is that, initially created individual networks are randomly initialized, so 

each network is started at different point on optimization curve. Thus, even if some network gets stuck into 

a local minima, there is a chance that it will be removed from the local minima when the fusion of networks 

takes place. This mitigates the problem of local minima.  

 

The second problem of saturated hidden units is resolved, because the fused network formed by randomly 

selecting hidden units from multiple different networks, alleviates the chances of saturation of hidden units. 

This method also removes dependent hidden units in network, by randomly selecting hidden units to form 

the final fusion network. 

 

In this algorithm, the method used to fuse the networks together is an important factor. In this thesis, two 

methods of parameter fusion are discussed, 

1. Average of the input weights of three networks 

2. Select 1/3 of hidden units from individual network 

To find best method for fusion, create 1000 MLP networks with 51 hidden units and perform 500 iterations 

to train the networks. First, we train 1000 MLP networks without using fusion method on dataset Oh17. 
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Histogram of this is shown in figure 4.1

 

Figure 4.1: Histogram of Error without using Fusion Method 

  

1000 MLP networks are trained using fusion method on dataset Oh17. In this method, initially, three 

different networks with 51 hidden units are created. These networks are trained with random initialization 

for 50 iterations. Then, these three networks are fused into one network by taking average of the parameters 

of the three networks, and then again trained for 450 iterations. Histogram of this is shown in figure 4.2 
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Figure 4.2: Histogram of Error with Fusion Method by Average of 3 NNs 

 

 

1000 MLP networks are trained using fusion method on dataset Oh17. In this method, initially, three 

different networks with 51 hidden units are created. Trained with random initialization for 50 iterations. Then, 

these three networks are fused into one network by taking one third hidden units from each network and 

then again trained for 450 iterations. Histogram of this is shown in figure 4.2 
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Figure 4.3: Histogram of Error With Fusion Method by Combination of 3 NNs 

 

 

To determine best method for fusion, further analysis of standard deviation and mean is done. 
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Figure 4.4: Histogram of Error with Different NN Initialization Techniques 
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Table 4.1 - Error Analysis for Fusion Method using HWO-MOLF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 shows that, fusion method with combination of one third hidden neurons from each network gives 

best result. So, for further study, this method is used in this thesis. 

After finalizing method for fusion, we need to decide the number of iterations required to train these initial 

networks before fusing them into one network. For this analysis, number of initial iterations to train the three 

different neural networks selected was 0, 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, and 499. But total number 

of iterations i.e. number of iterations before fusion and after fusion is kept constant at 500. Data file used 

for training is oh17 and number of hidden units is 51, in each network. That means 17 hidden units from 

each network are taken and merged into single fused network.   

 

 

 

 

 

Table 4.1 – Error Analysis for Fusion Method 

using HWO-MOLF 

 

Method  

 

Standard 
Deviation of 

Error 

 

Error 

Mean 

 
 

Without Fusion 

Method 

 

 

0.0276 

 

1.1637 

 

With Average of 

3 NNs 

 

 

0.0295 

 

1.1306 

 

With 

Combination of 

3 NNs 

 

0.0241 

 

1.1219 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 0 1 500 

 

 

Figure 4.5: Histogram of Error with 0 iteration for initial training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 1 1 499 

 

 

 

Figure 4.6: Histogram of Error with 1 iteration for initial training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 5 1 495 

 

 

Figure 4.7: Histogram of Error with 5 iterations for initial training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 10 1 490 

 

 

Figure 4.8: Histogram of Error with 10 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 25 1 475 

 

 

Figure 4.9: Histogram of Error with 25 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 50 1 450 

 

 

Figure 4.10: Histogram of Error with 50 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 75 1 425 

 

 

Figure 4.11: Histogram of Error with 75 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 100 1 400 

 

Figure 4.12: Histogram of Error with 100 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 200 1 300 

 

 

Figure 4.13: Histogram of Error with 200 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 300 1 200 

 

 

Figure 4.14: Histogram of Error with 300 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 400 1 100 

 

 

Figure 4.15: Histogram of Error with 400 Iterations for Initial Training 
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Data file = Oh7.tra     Inputs = 20     Outputs = 3      Nh = 51 

Total Nit  No Of Networks 

Before Fusion 

Nit before 

Fusion 

No of Network 

After Fusion 

Nit after Fusion 

 500  3 499 1 1 

 

 

Figure 4.16: Histogram of Error with 499 Iterations for Initial Training 
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Now, analysis for mean and standard deviation for each of above histogram is done. This is shown in table 

4.2 

Table 4.2 - Error Analysis for Number of Iterations before Fusion into Single Network using HWO-
MOLF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 – Error Analysis for Number of Iterations 

Before Fusion into Single Network using HWO-MOLF 

Number of 
Iterations 

before Fusing 
into Single 
Network 

 

Standard 
Deviation of 

Error 

 

Error 

Mean 

 
0 0.0276 1.1637 

1 0.0253 1.1457 

5 0.0251 1.1326 

10 0.0254 1.1272 

25 0.0236 1.1244 

50 0.0241 1.1219 

75 0.0237 1.1223 

100 0.0232 1.1230 

200 0.0234 1.1292 

300 0.0216 1.1379 

400 0.0200 1.1526 

499 0.0463 1.4704 
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Figure 4.17: Mean Error with Different Iterations 

 

Figure 4.18: Std Deviation of Error with Different Iterations 

 

Table 4.2 shows that for initial iterations of value 100 to train three different networks before merging into 

one gives best result considering mean error and standard deviation. So, all three networks are trained for 

100 iterations before merging into one network. 



51 
 

4.2 Final Algorithm 

1. Decide number of hidden units Nh (Nh= 51) for MLP networks. 

2. Create 3 different MLP with given Nh and initialize parameters randomly for each    network. 

3. Train 3 networks separately for 100 iterations by using HWO-MOLF Algorithm. 

4. Take one third hidden units from each network and create final network which has Nh same 

as initial Nh. 

5. Train final network for 400 iterations by using HWO-MOLF algorithm. 

 

4.3 Results 

 

Table 4.3 - Performance Comparison with Fusion Method and without Fusion Method 

Table 4.3 – Compares performance of MLP with fusion method and without fusion method. 𝑁ℎ = 51.  

𝑁𝑖𝑡 = 500. For fusion method, three MLP are created and fused after 100 iterations. 

Dataset Number of 

inputs 

Number of 

outputs 

Training 

Error 

Without 

Fusion 

Method 

Testing 

Error 

Without 

Fusion 

Method 

Training 

Error With 

Fusion 

Method 

Testing 

Error With 

Fusion 

Method 

Twod 8 7 0.102378 0.1369 0.098858 0.1360 

Oh7 20 3 0.101961 0.1175 0.091258 0.1136 

Mat 4 4 0.000873 0.0011 0.000419 0.000501 

Weather 

Forecasting 

71 3 255.7176 290.0440 255.42914 289.037872 
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CHAPTER 5 

Modified Sigmoid Method 

5.1 Algorithm 

1. Create MLP network with required hidden units 𝑁ℎ. 

2. Perform net control.  

3. Perform OWO and save net function vector to an unformatted file with 𝑖𝑐(𝑝). 

4. Create scaling factor 𝑎𝑘 and additive factor 𝑏𝑘 for each hidden neuron, where 𝑘 stands for hidden 

neuron number. Initialize 𝑎𝑘  to 1 and 𝑏𝑘  to 0. 

5. Choose number of iterations 𝑁𝑖𝑡. 

6. Calculate 𝑔𝑎(𝑘) and 𝑔𝑏(𝑘), where 𝑔𝑎(𝑘) is gradient of 𝑎 for 𝑘𝑡ℎ hidden neuron and 𝑔𝑏(𝑘) is gradient 

of 𝑏 for 𝑘𝑡ℎ hidden neuron, as 

                𝑔𝑎(𝑘) =  −
𝜕𝐸

𝜕𝑎(𝑘)
=  

2

𝑁𝑣
∑ ∑  [𝑡𝑝`(𝑖) −  𝑦𝑝(𝑖)]𝑀

𝑖=1  
𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑘)𝑝         (5.1) 

𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑘)
=  𝑤𝑜ℎ(𝑖, 𝑘)𝑠` (𝑛𝑝(𝑘)) 𝑛𝑝(𝑘) 

Where, 𝑠`(𝑛𝑒𝑡) = 𝑠(𝑛𝑒𝑡) ∗ (1 − 𝑠(𝑛𝑒𝑡)) 

𝑠(𝑛𝑒𝑡) =  
1

1 + 𝑒−𝑛𝑒𝑡
 

𝑔𝑏(𝑘) =  −
𝜕𝐸

𝜕𝑏(𝑘)
=  

2

𝑁𝑣
∑ ∑  [𝑡𝑝`(𝑖) −  𝑦𝑝(𝑖)]𝑀

𝑖=1  
𝜕𝑦𝑝(𝑖)

𝜕𝑏(𝑘)𝑝            (5.2) 

𝜕𝑦𝑝(𝑖)

𝜕𝑏(𝑘)
=  𝑤𝑜ℎ(𝑖, 𝑘)𝑠` (𝑛𝑝(𝑘)) 

7. For iteration 𝑖𝑡 = 1 to 𝑁𝑖𝑡, where 𝑁𝑖𝑡 is the total number of iterations 

8. Initialize 𝑔𝑎(𝑘) and 𝑔𝑏(𝑘) as zero for all values hidden units. 

9. Initialize 𝐸 equal to zero. 

10. Calculate 𝑂(𝑘)𝑎𝑛𝑑 𝑂`(𝑘) as 
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𝑂(𝑘) =  𝑠(𝑛𝑝(𝑘)𝑎(𝑘) + 𝑏(𝑘)) 

𝑂`(𝑘) =  𝑂(𝑘) ∗ (1 − 𝑂(𝑘)) 

11. Calculate y as, 

𝒚 = 𝒙 ∗ 𝑾𝒐` 

12. For classification, calculate 𝑡𝑝` for 𝑖𝑐 and 𝑦 using OR. 

13. Calculate E as,  

𝐸 =  
1

𝑁𝑣

∑ ∑ [𝑡`𝑝(𝑖) − 𝑦𝑝(𝑖)]2
𝑀

𝑖=1
𝑝

 

 

14. Calculate 𝑔𝑎(𝑘) and 𝑔𝑏(𝑘) using equation 5.1 and 5.2. 

15. Print 𝑖𝑡 and 𝐸. 

16. Find hessian matrix 𝑯 for 𝑎𝑘and 𝑏𝑘. 

17. Use OLS (Orthogonal Least Squares) to solve  

𝑯 ∙ 𝒛 = 𝒈 

where, z is learning factor for 𝑎𝑘  and 𝑏𝑘 

                                              𝒛 = [𝑧𝑎1 , 𝑧𝑎2, … … ,  𝑧𝑏𝑁ℎ] 
𝑇
        

𝒈 is negative gradient vector 

𝒈 = [
−𝜕𝐸

𝜕𝑧𝑎1

,  
−𝜕𝐸

𝜕𝑧𝑎2

… … ,  
−𝜕𝐸

𝜕𝑧𝑏𝑁ℎ

 ]
𝑇

 

𝐻(𝑚, 𝑛) =  
𝜕𝑦

𝜕𝑧𝑚

𝜕𝑦

𝜕𝑧𝑛

 

18. Perform OWO (Output Weight Optimization) to find 𝑊𝑜. 

19. Increase 𝑖𝑡 by 1. If 𝑖𝑡 <  𝑁𝑖𝑡, go to 4 

20. End iterations. Finished getting 𝑎𝑘 and 𝑏𝑘. 

21. Update input weights by using 𝑎𝑘 and 𝑏𝑘. 

𝑤(𝑘, 𝑛)  ←  𝑎𝑘𝑤(𝑘, 𝑛) 

𝑤(𝑘, 𝑁 + 1)  ←  𝑤(𝑘, 𝑁 + 1) + 𝑏𝑘 
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22. 𝑤 from step 21 is initialized 𝑤 and use that 𝑤 to further train MLP. 

 

5.2 Result 

Table 5.1 - Performance Comparison with Modified Sigmoid and without Modified Sigmoid 

Table 5.1 – Compares performance of MLP with modified sigmoid method and without modified 

sigmoid method. 𝑁ℎ = 51.  𝑁𝑖𝑡 = 500. For modified sigmoid method, scaling and addition factor for each 

hidden neuron are created and trained for 200 iteration. 

Dataset Number of 

inputs 

Number of 

outputs 

Training 

Error 

Without 

Modified 

Sigmoid 

Method 

Testing 

Error 

Without 

Modified 

Sigmoid  

Method 

Training 

Error With 

Modified 

Sigmoid 

Method 

Testing 

Error With 

Modified 

Sigmoid 

Method 

Twod 8 7 0.102378 0.1369 0.097071 0.1355 

Oh7 20 3 0.101961 0.1175 0.090968 0.1135 

Mat 4 4 0.000873 0.0011 0.0004 0.000477 

Weather 

Forecasting 

71 3 255.7176 290.0440 253.827720 290.2045 
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CHAPTER 6 

Conclusion 

 

In this thesis, improved parameter initialization techniques like fusion method and modified sigmoid are 

proposed for training MLP network HWO - MOLF by using a supervised learning approach. The results 

show a considerable improvement in performance for both algorithms compared to random parameter 

initialization technique for HWO – MOLF network. A possible reason for this could be that both the 

algorithms are able to remove problems like local minima convergence, saturated hidden units and 

dependent hidden units, faced during parameter initialization to some extent. Also, Modified sigmoid 

method gives slightly better results when compared to fusion method. 

Depending upon different configuration of HWO – MOLF network and also on the random initialization of 

the network, final error in training the HWO – MOLF network differs. In the result of both the algorithms, it 

is observed that for the same number of training iterations, training error is significantly reduced in 

comparison to random parameter initialization. Time to train HWO – MOLF network by using fusion method 

is more than Modified sigmoid method because of creating multiple networks of same architecture and 

training them individually.  
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Appendix A 

Description of datasets 
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TWOD 

This file has 8 inputs, 7 outputs and 1768 training patterns. This training file is used in the task of inverting 

the surface scattering parameters from an inhomogeneous layer above a homogeneous half space, where 

both interfaces are randomly rough. The inputs consist of eight theoretical values of back scattering 

coefficient parameters at V and H polarization and four incident angles. The outputs were the corresponding 

values of permittivity, upper surface height, lower surface height, normalized upper surface correlation 

length, normalized lower surface correlation length, optical depth and single scattering albedo which had a 

joint uniform pdf. [56, 57] 

OH7 

This file has 20 inputs, 3 outputs and 10,453 training patterns. The training set contains VV and HH 

polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding 

unknowns rms surface height, surface correlation length, and volumetric soil moisture content in g / cubic 

cm. [58]  

MAT 

This file has 4 inputs and 4 outputs and 2000 training patterns. This training file provides the data set for 

inversion of random two-by-two matrices. Each pattern consists of 4 input features and 4 output features. 

The input features, which are uniformly distributed between 0 and 1, represent a matrix and the four output 

features are elements of the corresponding inverse matrix. The determinants of the input matrices are 

constrained to be between .3 and 2. [61] 

WEATHER FORECASTING DATA 

This file has 71 inputs and 3 outputs and 72,050 training patterns. The weather data made from the years 

2010 to 2013. First 4 inputs are time inputs (encoded in continuous form); Inputs 5 to 8 are spatial variables 

(latitude, longitude) that indicate the monitoring site/station and city the pattern comes from; Inputs 9 to 71 

comprise time delayed data up to 3 days of Daily Mean, Daily Min, and Daily Max values of meteorological 
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variables (temperature, solar radiation, wind speed and wind direction encoded together in continuous form) 

and pollutant variables (nitric oxide, nitrogen dioxide, 8 - hour average ozone concentration). Outputs are 

Daily Maximum 8- hour average ozone concentration up to 3 days ahead. [62] 
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