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Abstract 

LEARNING TO GENERATE INDIVIDUAL SEQUENCE DATA FROM POPULATION 

STATISTICS USING DYNAMIC BAYESIAN NETWORKS 

 

MOHAMMED AZMAT QURESHI, MS 

The University of Texas at Arlington, 2018   

Supervising Professor: Manfred Huber 

Data collection rose exponentially with the dawn of the 21st Century, However the 

most important data to humans, individual health data, is difficult to get approved for public 

research, as medical history is very sensitive to be distributed. The only available public 

data which can be retrieved from institutions like the Centre for Disease Control (CDC), 

World Health Organization (WHO), National Health Interview Survey (NHIS), etc. largely 

only contain population statistics for different attributes of a person.  

What we propose here is a generative model which would learn to create data 

sequences for a population, each sequence mimicking an individual person’s behavior, 

such that the set of generated sequences represents this entire population by matching 

the available population statistics using Dynamic Bayesian Networks. The data would 

contain a population in which each person will have their exercise, injury and illness data 

over time. Various factors are interlinked within and between time slices, e.g. the amount 

of exercise a person does at time t, depends on factors [Age, Health-Status, Person Type] 

at time t, and exercise done at time t-1. Although the data generated by the learning model 

is not real, it should be closer to it, supporting algorithm development and initial testing. 
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1 INTRODUCTION 

1.1 Motivation 

As of 2016 total health care expenditure in United States Alone is $3.3 trillion or 

$10 grand per person. [12] Although enough data is collected by the hospitals and 

insurance firms, it is never distributed. Even anonymized data doesn’t often see the light 

of day in the world of public research as the data itself is very sensitive. 

1.1.1 Health and Fitness 

Health is defined as a state of complete physical, mental and social well-being and 

not merely the absence of disease or infirmity. 

Over the years many advancements have been made in health care and with 

technology we have revolutionized our approach towards health and its care. With the 

dawn of information age, data collection has grown exponentially, with data being 

collected for literally every possible preference of a person, their music preference, 

movie preference, food preference etc. However, there is often no emphasis given to 

collecting sequential data, and if at all any heed is paid towards it, the data is often not 

made public due to privacy concerns. Thereby we end up in a situation where we 

virtually have no publicly available sequential data in the health care domain. 

1.1.2 Sequential Data 

Sequential Data is important in many aspects of science and engineering. This 

sequential data can be a time series, which can be analyzed either online where data 

arrives in real discrete intervals of time, or offline where all the data is gathered 

beforehand. 
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To do any type of research on sequential health and fitness data, we need those 

data points, so that different types of research can be done. Our aim here is to develop a 

generative learning model out of population statistics that are made available either by 

Center for Disease Control, World Health Organization, etc. The model should be able to 

generate individual person’s health trajectories, given his personal attributes. The data 

generated for each person, although not real, should give a sense of realism for each 

individual and for the entire population as it matches expert knowledge and the population 

statistics. 

1.2 Approach 

A person’s age, their Injuries and diseases causes changes to their regular 

physical activity or normal routines of life, while few illnesses like heart attack; if survived 

could cause a dramatic change in physical fitness and getting rid of bad habits such as 

smoking. Smoking internally could potentially make a person twice as likely to get cancer 

than otherwise. While these dependencies are not generally contained in available 

healthcare statistics, they are available in qualitative form from experts and other health 

data sources. On the other hand, population statistics available from diverse health 

organizations provide quantitative information regarding prevalence of conditions. To 

consider both information sources and simulate these events to obtain individual data 

sequences for subsequent algorithm development and testing, we use a Dynamic 

Bayesian Network as the core of our model, with structure largely derived from qualitative 

expert knowledge and parameters such as transition from one-time step to another learned 

to conform with the quantitative population statistics. To achieve this, we use forward and 

backward inference in our model to generate a sample data for us to learn. Parameters are 

learned using a hill climbing approach. 
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2 BACKGROUND 

2.1 Health 

2.1.1 History 

Health has been key objective of humans, thus since the very beginning huge 

importance has been given to health and wellbeing. Since the time of ancient Greece 

medicine has been there, and proper study of human health is evolving since that time. 

Over the course of the last century science and technology has grown exponentially and 

humans as a species have learnt a lot about maintaining a healthy lifestyle and staying fit. 

With the advent of the industrial revolution, human started mass producing everything 

including food, drinks, clothes etc. With the rise in the number of machines humans use 

we have recently seen a reduction in the physical effort of the average individual. This, in 

turn, has given rise to obesity in large numbers. Over the last few generations obesity has 

been increasing, leading to significant health side-effects that have burdened health care 

systems. This development, in turn, has given rise lately to increased awareness towards 

healthy lifestyles and more health self-management.  

2.1.2 Health Maintenance 

Healthy lifestyle can be achieved and maintained by bringing discipline in one’s life, 

in a few basic areas: 

• Diet 

• Exercise 

• Sleep 
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2.1.3 Role of Science 

Science has always been part of health, from finding cures for diseases to making 

modern machines detect tumors and cancers within our body. Science has always stressed 

research to increase our quality of life, life expectancy, the recovery rate of a person from 

the state of sickness to the state of health and well-being. 

2.2 Fitness 

Fitness is one aspect of health that relates to maintaining a healthy body by 

performing physical activities. With the increase in obesity in humans it has become 

imperative that a person maintains some amount of physical activity in their daily routine. 

A person can do exercises such as walking, jogging, running, cycling, aerobics, 

swimming etc. With busy modern life many people turn to gymnasiums to do their daily 

exercises and use machines to effectively work on specific muscles. 

2.2.1 Exercise   

As mentioned above exercise has become an essential part of modern life. Doing 

exercise can reduce obesity in people. A person doing exercise feels great, stays away 

from comfort food, and receives positive feedback about himself or herself, and continuing 

the same path accumulates his rewards. 

Every exercise has an exercise rate which determines exertion and with it how fast 

a person is burning calories. The higher the rate of exercise, the faster the calories are 

burned by a person.  
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3 TECHNICAL BACKGROUND 

3.1 Bayesian Networks 

3.1.1 Background 

A Bayesian network is a directed acyclic graphical model, which 

represents a probabilistic relation between random variables, i.e. every node in a 

Bayesian network can be thought of as a random variable and every edge as a 

probabilistic dependency among the corresponding random variables. Each node 

is associated with a probability function which takes as input a set of values for 

that node’s parents and provides a probability or probability distribution as an 

output. 

 

Figure 1. Simple Bayesian Network for Health Data. 

The above figure is a simple Bayesian Network, where Health Status 

depends on a person’s Age and Exercise depends on Age, Health-Status and 

Person Type. 

The joint probability function for the network in the above figure would be 

Person-Type Age 

Exercise 

Health Status 
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P (E, A, PT, PHS) = P (E| A, PT, PHS) * P (PHS| A) * P(PT) * P(A) 

where the name of the above variables is abbreviated to E = Exercise, A 

= Age, PT = Person-Type and PHS = Health Status. 

This representation as a graphical model is intuitive and provides an 

effective representation and computational structure for the joint probability 

distribution of a given set of random variables. [4] 

The structure of a Bayesian network is defined by nodes (vertices) and 

directed edges. The nodes represent random variables and are usually visualized 

as circles/ellipses that bear the name of the corresponding random variable. The 

edges represent dependencies between the variable they connect. The tail of the 

arrow represents the parent or serves as an evidence variable; the head 

represents the variable which is conditionally dependent on its parents. 

The acyclic nature of the Bayesian network ensures that we do not have 

cyclic dependencies, i.e. that a parent cannot be a descendant of its descendants. 

[4] 

The main aim of this representation of conditional dependencies is to 

permit the reduction of the size of the joint distribution table which generally grows 

exponentially with the number of variable. Using knowledge of conditional 

dependencies, this can be reduced to a complexity that gross exponentially only 

in the number of parents, thus providing a more efficient and effective way to 

compute posterior probabilities as the complexity of the inference is reduced. 
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Consider the following example [5] shown in Figure 2; it represents a 

model of a person going to work on time, given certain events that can occur with 

some given probabilities. 

Figure 2. Simple Bayesian Network (from [5]). 

The events that can occur are that a person hears an alarm, that a person 

wakes up on time given he has heard the alarm (denoted by Wake up). That a 

person catches the bus on time (denoted by Catch the bus) given there was a long 

line for coffee (denoted by Long Line for coffee) and he woke up on time. Get to 

work represents the event of him/her getting to work on time. 

The joint probability for an event that the person hears his alarm, does not get up 

in time, is lucky and does not find a long line at the coffee shop, misses the bus 

and does not get to the work on time is represented by 

P (Alarm, ~Wakeup, ~Longline Coffee, ~Catch the Bus, ~Get to Work) =  

P(Alarm) * P (~ Wakeup | Alarm) * P(~longline) * P (~Catch the Bus | ~wakeup, 

~longline) * P (~Get to work | ~ Cath the bus) = 0.80*0.20*0.4*0.9*0.90 = 0.05184 
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3.1.2 Inference in Bayesian Networks 

“Inference is the task of computing the probability of each state of a node 

in a Bayesian Network when other variables are known”. For us to perform 

inference we must do belief propagation, i.e. update the beliefs in each variable 

given observations of some variables. [1] 

Consider the following  

 P (Alarm | Get to Work) = 
𝑃(𝐴𝑙𝑎𝑟𝑚,𝐺𝑒𝑡 𝑡𝑜 𝑊𝑜𝑟𝑘)

𝑃(𝐺𝑒𝑡 𝑡𝑜 𝑊𝑜𝑟𝑘)
 

where,  

𝑃(𝐴𝑙𝑎𝑟𝑚, 𝐺𝑒𝑡 𝑡𝑜 𝑊𝑜𝑟𝑘)

=  ∑𝑃(𝐴𝑙𝑎𝑟𝑚, 𝑊𝑎𝑘𝑒𝑈𝑝, 𝐿𝑜𝑛𝑔𝐿𝑖𝑛𝑒, 𝐶𝑎𝑡𝑐ℎ 𝐵𝑢𝑠, 𝐺𝑒𝑡 𝑡𝑜 𝑊𝑜𝑟𝑘) 

𝑠𝑢𝑚𝑚𝑒𝑑 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑊𝑎𝑘𝑒𝑢𝑝, 𝐿𝑜𝑛𝑔𝑙𝑖𝑛𝑒, 𝐶𝑎𝑡𝑐ℎ 𝐵𝑢𝑠 

Since inference in Bayesian networks can be NP hard, approximate 

inferences can be done using Markov Chain Monte Carlo which uses different 

sampling algorithms such as Gibbs sampling, Metropolis Hastings algorithm, 

rejection sampling, importance sampling, or the forward-backward propagation 

algorithm. [4] 

3.1.3 Learning Bayesian Networks 

Learning Bayesian Network parameters is slightly easier that learning the 

structure (i.e. the conditional dependencies between nodes) of the network itself. 

For a known Bayesian network structure with partial observability, expectation 

maximization (or gradient ascent) and MCMC are good tools for learning the 

problem.  
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3.2 Hidden Markov Model 

3.2.1 Markov Chain 

A Markov chain is an observed Markov model which contains the 

information about states and state transition probabilities. It models the probabilistic 

evolution of a system over time by allowing propagation and inference of the state 

distribution over time from observation sequences. The transition probabilities are 

represented by a transition matrix. A Markov chain works on the principle of the Markov 

Assumption, which states that the probability to go to the next state depends only on 

the current state and not on any state or transition we have made so far. 

3.2.2 Hidden Markov Model (HMM) 

Hidden Markov Models (HMMs) are a formal representation for Markov 

chains, aimed at permitting inference about the state of the underlying process from a 

sequence of observations. To do this, HMM models include the (hidden – i.e. 

unobservable) system state, the observations, as well as the probabilistic relations 

between observations and states and between states in consecutive time steps, 

assuming the Markov assumption holds. Inference can then be used to determine the 

probability distribution over the possible states given the available observation 

sequence as well as to determine the best model parameters given a larger set of 

observed data sequences.  

Figure 3 shows a general representation of an HMM. Here States X1…. Xt 

are hidden states of the model and Y1…. Yt are observations. Along with the above 

state and observation sets a hidden Markov model also contains Initial probabilities of 

the states, transition probabilities and overserved probabilities. 
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Figure 3. Hidden Markov Model 

Likelihood in a Hidden Markov Model can be computed by 

P(Y) = P(Y|X) * P(Y) 

𝑃(𝑌) =  ∑ 𝑃(𝑌, 𝑋)

𝑋

=  ∑ 𝑃(𝑌|𝑋) ∗ 𝑃(𝑋)

𝑋

 

The forward algorithm used to compute likelihood is given as: 

 

function FORWARD (observations of Len T, state-graph of Len N)  

returns forward-prob create a probability matrix forward [N+2, T] 

for each state s from 1 to N do 

  forward[s,1] ←a0, s ∗ bs(o1) 

for each time step t from 2 to T do 

for each state s from 1 to N do  

forward [s, t] ← ∑ forward [s’, t −1] ∗ as’,s ∗ bs(ot) 

forward [qF, T] ← ∑ forward [s, T] ∗ as, qF 

return forward [qF, T] [6] 

 

X1 

Y1 

X2 

Y2 

X3 

Y3 

X4 

Y4 

Xt 

Yt 
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3.3 Dynamic Bayesian Network 

3.3.1 Introduction 

Most events in our life can’t be based on a point of time, but rather 

described through multiple states of observations that collectively lead to one final 

event. [1] Hidden Markov Models are a commonly used representation for such 

temporal processes. However, inference in HMMs can become rapidly intractable as 

the number of states needed to represent the system increases. 

Since temporal analysis is an important part of AI and reasoning, it is 

important to build models that reduce the complexity of the inference process to allow 

for real-world problems to be represented. In the case of non-temporal systems, 

Bayesian networks, as indicated before, allow the reduction of the complexity of the 

inference process by utilizing known dependency relations between the random 

variables describing the system state. However, they do not account for time and 

provide no features representing temporal dependencies. To address this, the 

concepts in Bayesian networks and HMMs can be combined, leading to Dynamic 

Bayesian Networks which are a way to represent factored HMMS, where the state and 

transitions are structured around dependency relations and thus inference can be 

accelerated.  

According to [1,7] a dynamic Bayesian network should represent a system 

that evolves over time. The model should be able to update the user as time proceeds 

and predicts further behavior of the system. A dynamic model can be classified as a 

temporal model where each time slice of that temporal model is a state of a system 
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and moving across different time slices corresponds to the change in the state across 

time. 

 

Figure 4. Dynamic Bayesian Network [8] 

The above figure shows a basic Dynamic Bayesian network where the 

entire network is divided into discretized time slices. Each node is represented by 

its name and the time step they are in. The nodes can have intra time step 

dependencies or inter time step dependency or both. 

Parents of a node are all the nodes in the same time step on which this 

node directly depends, and all the nodes in the previous time steps which have a 

direct relation with that node. In Figure 4, for example, the parents of N2, t+1 are N1, 

t+1, N2, t0, N3, t0. 

Figure 5 below shows a Dynamic Bayesian Network in a single time step. 
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Figure 5. Single Time Slice of a Dynamic Bayesian Network 

This figure is very similar to the Bayesian network in Figure 1, the only 

difference it has that it now contains a time step tag, which in the case above is 

zero. Using the above Bayesian Network, we can construct an arbitrary long 

dynamic Bayesian network. A Dynamic Bayesian Network for the single step 

network shown in Figure 5 is shown in Figure 6. 

Figure 6. Dynamic Bayesian Network with State Dependencies as in 

Figure 5. 

Person-Type
(0)

 Age(0) 

Exercise
(0)

 

Health Status
(0)

 

Pers
on-

Age 

Exer
cise 

Heal
th 

Time = t 

Pers
on-

Age 

Exer
cise 

Heal
th 

Time = t+1 
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Figure 6 is like Figure 4; here we can see that Exercise at time t+1 depends 

on the Age, Person-Type and Health Status at time t+1, and Exercise at time t. 

An unrolled Dynamic Bayesian Network model can be divided into three 

major components: i) its Transition Model, ii) its conditional distribution, and iii) its 

dependency model. 

Given random variables X1…. Xn, and observations Y1…. Yn, at time t and 

random variables X1’…. Xn’ and observations Y1’…. Yn’, at time t+1, then ([1]) 

𝑃(𝑋′, 𝑌′) = 𝑃(𝑋′|𝑋) ∗ 𝑃(𝑌′|𝑋′) ∗ 𝑃(𝑋) 

Here the conditional distribution is given by, 

𝑃(𝑋′|𝑋) =  ∏ 𝑃(𝑋𝑖
′|𝑃𝑎𝑥𝑖

′)

𝑛

𝑖=1

 

and the dependency model for both state t and state t+1 is, 

𝑃(𝑌′|𝑋′) =  ∏ 𝑃(𝑦𝑖|𝑥𝑖 )

𝑛

𝑖=0

 

Using these equations our DBN can be used to model and perform inference for 

arbitrarily long sequence of states. 

 

3.3.2 Inference 

 Only 1-time step of the observation nodes and none of the hidden state variables 

can be observed at a time in a DBN. That means that to determine the hidden variables at 
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a different time step or to predict possible observations at a later point in time, we must 

infer all the unknowns in the network. To do inference in a Dynamic Bayesian network we 

need to calculate P (𝑋0
𝑇−1 | 𝑌0

𝑇−1) where 𝑌0
𝑇−1 represents a set of observations made until 

the last time step while the hidden variables are represented by 𝑋0
𝑇−1  = {x1, …, xT-1}. This 

can be achieved using forward-backward propagation. [1,2] 

3.3.2.1 Forwards Propagation 

Let αt(xt) be a forward probability distribution that describes the joint probability 

observation, collected until time t and hence can be represented as 

𝛼𝑡(𝑥𝑡) = 𝑃(𝑌0
𝑡, 𝑥𝑡) 

With initial condition  

𝛼0(𝑥0) = 𝑃(𝑥0) 

we get 

𝛼𝑡+1(𝑥𝑡+1) = 𝑃(𝑦𝑡+1 | 𝑥𝑡+1) ∑ 𝑃(𝑥𝑡+1 | 𝑥𝑡)𝛼𝑡(𝑥𝑡)

𝑥𝑡

 

As described in [1], one of the interesting results of forward propagation is the term 

for likelihood of the observation data sequence 𝑌0
𝑇−1. From the definition of the forward 

factor 𝛼𝑡(𝑥𝑡) in the equation above we can say that 

𝑃(𝑌0
𝑇−1) =  

𝛼𝑇−1(𝑥𝑇−1)

∑ 𝛼𝑡(𝑥𝑡)𝑥𝑡
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It can be observed that the probability of the observation sequence is proportional 

to the forward factor of the last hidden state, the equation above can be useful in 

determining how well a DBN can perform for a given sequence in an MLE framework. [1] 

 

3.3.2.2 Backward Propagation 

 In the backwards approach we have the conditional probability of the observations 

from time t+1 until time T-1 conditioned on the values of the state t, and its distribution is 

given by βt(xt). [1] 

𝛽𝑡(𝑥𝑡) = 𝑃(𝑌𝑡+1
𝑇−1| 𝑥𝑡) 

With its final value as 

𝛽𝑇(𝑥𝑇−1) = 1 

we get 

𝛽𝑡−1(𝑥𝑡−1) = ∑ 𝑃(𝑥𝑡 | 𝑥𝑡−1)𝛽𝑡(𝑥𝑡)𝑃(𝑦𝑡 | 𝑥𝑡)

𝑥𝑡

 

The smoothing can be given by 

𝛾𝑡(𝑥𝑡) =  𝑃(𝑥𝑡 | 𝑌0
𝑇−1) =  

𝛼𝑡(𝑥𝑡)𝛽𝑡(𝑥𝑡)

∑ 𝛼𝑡(𝑥𝑡)𝑥𝑡
𝛽𝑡(𝑥𝑡)

 

Where γ is the smoothing operator. [1]  
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4 DATA GENERATION 

4.1 Base Statistics 

4.1.1 Overview 

As mentioned earlier, temporal data for health and fitness of a person is either 

virtually inexistent or that type of data is very difficult to obtain publicly. However, we do 

get statistical data for diseases and injuries from agencies such as the World Health 

Organization, the Centre of Disease Control, and other reliable sources of their fields. 

These data sets tend to contain population statistics (rather than individual data) and 

include a range of aspects of health, including injury, diseases, and traits. Similarly, basic 

exercise and fitness data is available that can be correlated. 

4.1.2 Injury 

Injury can happen in many ways, some due to negligence some due to work 

hazards, some just due to bad luck. According to the World Health Organization (WHO), 

about 5.8 million people die each year because of injuries. This accounts for 10% of the 

world’s deaths, 32% higher than the number of fatalities that result from malaria, 

tuberculosis, and HIV/AIDS combined. [22] 

Injuries also effect the rate of activeness of a person, which directly effects the 

amount of exercise a person is doing. Also, about 121 out of every 10,000 injured people 

get injured while doing exercise or recreational sports, thus further complicating and 

emphasizing the link between injury and exercise. 
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4.1.3 Diseases 

Disease often happens when the immunity and self-repair capabilities of the 

human body are stressed or overwhelmed, which can be made more likely by many factors 

but one which stands out is age. Although during the initial growth years immunity of the 

body increases with the increase, it starts to drop with the advent of old age. 

A disease can be as small as general fever, a mild flu, simple cold, mild cough to 

as grave and life changing as cancer, or heart attack, and potentially lead to death. 

4.1.3.1 Heart Attacks 

About 720,000 people in the U.S. suffer heart attacks each year. Of these, 515,000 

are a first heart attack and 205,000 happen in people who have already had a heart attack. 
In 2011, about 326,200 people experienced out-of-hospital cardiac arrests in the United 

States. Of those treated by emergency medical services, 10.6 percent survived. Of the 

19,300 bystander-witnessed out-of-hospital cardiac arrests in the same year, 31.4 percent 

survived. [9] 

4.1.3.2 Cancer 

Cancer is the second-leading cause of death among Americans. Almost one of 

every four deaths in the United States is due to cancer. The 2017 United States Cancer 

Statistics report indicates in 2014 (the most recent year of incidence* data available), 

1,596,486 Americans received a new diagnosis of invasive cancer† and 591,686 

Americans died from this disease. [9] 

4.1.3.3 Influenza 

According to WHO Influenza is spread by influenza virus and can vary in symptoms 

from mild to severe. Its symptoms include running nose, fever, sore throat, cough 
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headache etc. There are 3 types of influenza virus, Type – A, B and C. Nearly 12% of the 

people catch flu in a season, with a mortality rate of 1 in 6000. 

4.1.4 Traits 

4.1.4.1 Obesity 

A person whose weight is higher than what is considered as a normal weight 

adjusted for height is described as overweight or having obesity. [9] 

According to the National Health and Nutrition Examination Survey (NHANES) 

• More than 1 in 3 adults were overweight. 

• More than 2 in 3 adults were overweight or have obesity. 

• More than 1 in 3 adults were considered to have obesity. 

• About 1 in 13 adults were considered to have extreme obesity. 

• About 1 in 6 children and adolescents ages 2 to 19 were considered to have 

obesity. 

Factors that may contribute to weight gain among adults and youth include genes, 

eating habits, physical inactivity, TV, computer, phone, and other screen time, sleep habits, 

medical conditions or medications, and where and how people live, including their access 

to healthy foods and safe places to be active. [9,11] 

4.1.4.2 Smoking 

According to the CDC and US Dept of Health and Human Services Cigarette 

smoking is the leading cause of preventable disease and death in the United States, 

accounting for more than 480,000 deaths every year, or about 1 in 5 deaths. 
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Cigarette smoking is found to be higher in the younger population, the distribution 

by age is as follows, [9] 

• About 13 of every 100 adults aged 18–24 years (13.1%) 

• Nearly 18 of every 100 adults aged 25–44 years (17.6%) 

• 18 of every 100 adults aged 45–64 years (18.0%) 

• Nearly 9 of every 100 adults aged 65 years and older (8.8%) 

4.2 Structure and States 

To translate health factors and population statistics into a Dynamic Bayesian 

Network that can subsequently be used to derive individual observation and state 

sequences that match the available data, a state and observation representation as well 

as a temporal transition structure must be designed that matches the available knowledge 

and that can be adapted using learning algorithms to produce a sample distribution that 

recreates the population statistics as closely as possible.  

4.2.1 Introduction 

Our aim is to generate the data for a population of people who have different attributes that 

are interlinked according to our Dynamic Bayesian Network. Figure 7 below Illustrates our 

DBN for a single time slice. 
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Figure 7. Time Slice of the State attributes in Our Health DBN 

The different random variables mentioned Figure 7 are: 

• Person-Type (PT) 

• Person Sub Type (PST) 

• Person Health Status (PHS) 

• Exercise (Ex) 

• Age  

• Traits 

Age 

PT 

Ex 

PST 

PHS 

Trait
s
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4.2.1.1 Person Type 

The random variable Person Type can take on 3 values, namely Active, Sedentary 

and Obese and states the type of the person at a given time. The possible temporal 

transitions between these values can be seen by the following figure 

Figure 8. Person Type Values and Transitions between them.  

Clearly it can be seen that the person cannot jump from Active to Obese and vice 

versa directly, since an active person cannot suddenly become sedentary. Therefore, we 

have another random variable, Person Sub Type, so that the population is not just defined 

by 3 values, but rather a set of many values. 

4.2.1.2 Person Sub Type 

As the name suggests it is a sub category of person type and has values between 

0-99, this random variable directly influences exercise in the current time step and gets 

influenced by the exercise done in the previous time step. It directly influences Person Type 

as Person type will transition to a higher level or lower level based on its value. 

An example for this is can be observed as a Person whose current Person Type 

is Sedentary and Person Subtype is 97. If, for example, while exercising for that time step 

Active 

Sedentary 

Obese 
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the person observes a change of +5 in its Person Subtype value, then instead of having a 

102 as the final value, we would roll the value to 02 and Change the person type to Active. 

An important thing to note is that if the <Person-Type, Person Subtype> has values 

<Active, 97> and then, they get a +5 increase in subtype, in that case we restrict a roll over 

and value stays at maximum of 99, i.e. <Active, 99>; the same goes for a person who is 

<Obese, 3> and we observe a -5 decrease In the person subtype; it will not go below 

<Obese, 0>. This use of a type and numeric sub type allows for a fine grained and more 

realistic evolution and simulation of an individual, considering more accurately the actual 

effects of exercise and treatment. 

4.2.1.3 Person Health Status 

Person Health Status not only provides the current health state of a person, which 

can be one of the followings: 

• Active 

• Normal 

• Recovering 

• Injured 

• Ill 

• Deceased  

Along with the health status it also provides key observations for us, such as Injuries, 

accidents, diseases. The transitions of different values of this variable are, 



33 
 

  

Figure 9. Person Health Status Internal Transitions. 

It can be observed from Figure 9 that Injury and Illness can happen when the 

person is in an Active state or a Normal state. It is assumed in our case that the person 

cannot get injured or sick again when the person is in a Recovering state. The person can 

be Deceased only through Illness or Injury. The simulation for the Deceased person stops 

at the time step when the value of person health status becomes Deceased. 

4.2.1.4 Exercise 

Exercise just represents a relative amount of exercise based on the pervious time 

step’s exercise, and the current time step’s Age, Person Health Status and Person 

Subtype, i.e. the random variable just contains the probability of doing more exercise, or 

less exercise, based on the previous state’s value. 

4.2.1.5 Age 

Age is a linearly increasing value of a person and puts them in their respective 

categories based on how much they have aged. This variable allows to model the effects 

of age on the other factors, such as exercise and disease. For example, a 50-year 

Normal 
Active 

Injury Ill 

Recovering 

Deceased 
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simulation of a teenager should put him in senior citizens category, and then the person 

should be susceptible to the probabilities pertaining to that category. 

4.2.1.6 Traits 

Traits are special features which can boost criteria for certain events for certain 

individuals. For example, a person is twice being like to get cancer if the person smokes 

than a person who does not. 

 

4.2.2 Structure 

4.2.2.1 Unrolled Dynamic Bayesian Network 

               Time = t       Time = t+1 

Figure 10: An Unrolled DBN with Variable in States at Time t and t+1 

As discussed previously each random variable at a given time t can be inferred 

using its parents in the current state and in the state at time t-1. An example derived from 

the structure in Figure 10 is as follows: 

𝑃 (𝑃𝐻𝑆′) = 𝑃(𝑃𝐻𝑆′ | 𝐴𝑔𝑒′, 𝑇𝑟𝑎𝑖𝑡𝑠′, 𝑃𝐻𝑆) 
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4.2.3 Data Structures 

To implement the DBN illustrated above, the data structures for the network must be 

fleshed in. In this work, this is divided into personal, fitness, illness, and calendar data.  

4.2.3.1 Person Data 

A person’s data contains the information about each person in our population data: 

Person Data Structure 

Attribute Comments 

Id Unique Identification of a person 

Type Corresponds to the observed value of person type 

Subtype Contains information of the current value of person sub type variable. 

DOB 
Date of Birth of a person, to be increased by 1/52 for each time step (since our time 

step is 1 week). 

Health Status 
Maintains the current health state a person is, it can take values as mentioned in 

Section 4.2.1.3 

DOD Holds the date when Person Health Status became Diseased, remains Null otherwise. 

Traits 
Special features of a person are reflected in the attribute, a person can have zero or 

multiple traits. 

Average 

Contains a list of averages such as average sleep time, average active time, average 

inactive heart rate, average active heart rate, these averages help in inferring future 

values of the person’s trajectory. 

Fitness Data Contains a list of exercises for a person. 

Illness Data Contains a list of Illness and Injuries of person over time. 

Table 1: Attributes of the Person Data Structure  
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4.2.3.2 Fitness Data 

Each fitness data point corresponds to an activity done by a person. 

Fitness Data Structure 

Attribute Comments 

Id Unique Identifier for an exercise done by a person in a week. 

Person Id Belongs to the person who has performed this exercise. 

Exercise Type Contains information about the exercise itself that was performed. 

Exercise Rate Is a parameter that gives us a multiplier which is used to modify person subtype.  

Heart Rate Active Maintains an active heart rate while the exercise is performed 

Table 2: Attributes of the Fitness Data Structure  

4.2.3.3 Illness and Injury Data 

Each entry denotes any injury or illness incurred by a person. 

Illness Data Structure 

Attribute Comments 

Id Unique Identification for an injury or illness that happened to a person 

Person Id Belongs to the person who has performed this illness or injury. 

Illness Type Contains information about the Illness or injury itself. 

Recovery Rate 

Recovery Rate determines how fast the person can recover and move from 

Person.HealthStatus.Recovery to Person.HealthStatus.Normal as can be seen in 

Figure 9. 

Recovery Time Defines the time needed for a person to recover from the ailment. 

Table 3: Attributes of the Illness Data Structure  
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4.2.3.4 Calendar Data 

This data accounts represents a summary for all the activity that is done in the 

population and maintains a sparsity vector that avoids people getting stuck in cycles to 

maintain overall population statistics.  

Calendar Data Structure 

Attribute Comments 

Id Unique Identification for calendar entry, equivalent to week number,  

Fitness Id Contains fitness id for that person 

Illness Id Contains illness id for that person 

Illness this week Number of people this week getting injured or sick for each type of Illness. 

Table 4: Attributes of the Calendar Data Structure 

 

4.3 Inference 

Inference on our DBN is performed using the forward and backward algorithm. For 

a population over increasing intervals of time, 1 year, then 2 years, then 3, and so on, this 

is done in terms of weeks, so we do 52 iterations of forward pass, then we do 52 iterations 

of backward pass. The choice of 1 week as the step size was chosen as a compromise 

between the level of detail provided for an individual and the computational complexity of 

doing inference to generate extended duration individual trajectories while maintaining 

overall population statistics. 
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4.4 Initial Sampling 

To generate “individuals” that match the intended population, a population is created 

based on the data structures discussed above, with random initial values for time step t = 

0, except for the variable age, which is defined by the random DOB given to a person. The 

random initial values for the other attributes are drawn according to the appropriate 

population statistics for the specific age. 

4.5 Forward Algorithm 

The belief of each variable at each time step is calculated according to the values 

of their observed variables in the previous state and the conditional probability distribution 

table of that variable. The belief state can be calculated at each time step, but doing 

this does not, in a strict sense, produce the most likely state sequence, but rather the 

most likely state at each time step, given the previous history. (Toman, 2014) [13] This 

distinction is important mainly when analyzing a given data sequence in the context of 

observed values (e.g. the population statistics). 

4.6 Importance Sampling 

Importance sampling uses samples generated from a distribution to estimate 

properties of another distribution. It can be used in simulations done using Monte Carlo 

methods to reduce variance. Where preference is given to certain values of the input 

random variable over others with the goal that these preferred values are generated more 

often than others, thereby reducing the  variance. The tricky part in importance sampling 

is to have a biased distribution that prefers key regions of the input variables. [24] 
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Designing a good importance sampling distribution becomes exponentially difficult 

with the increase in the complexity of the model. However, the idea remains the same. So, 

for a random variable X with p(x) as its pdf, then to calculate 

𝜇𝑓 = 𝐸𝑝[𝑤(𝑋)𝑓(𝑋)] 

With 

𝜇𝑓 =  ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥 

and for a sampling probability density q(x), where q(x) > 0 if f(x)p(x) ≠ 0, we have  

𝜇𝑓 = 𝐸𝑞[𝑤(𝑋)𝑓(𝑋)] 

Here w(x) is the ratio of p(x) and q(x) and Eq[] is the expectation w.r.t q(x). So, a 

sample of independent draws of x1…xn from q(x) can be estimated by [25] 

𝜇𝑓′ =
1

𝑚
∑ 𝑤(𝑥(𝑖))𝑓(𝑥(𝑖))

𝑚

𝑖=1

 

4.7 Learning 

Given our population statistics, internal variable constraints, and the defined 

structure of Dynamic Bayesian network, we learn our parameters by adjusting the CPD’s 

such that after sufficient training, the data generated by our network, follows the guidelines 

of our population statistics. 

Here we learn conditional probability distribution tables for each of the nodes in our 

Dynamic Bayesian network at time t and at time t+1. A conditional probability distribution 

Table (CPD) is a concise version of a joint probability distribution table. The CPD of a 
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variable X1 at time t, contains all the possible values the variable can take given all its 

observations of the variables that it conditionally depends on 

CPDs can be visualized as a 2d array where rows represent cardinality of the 

variable, and columns represent the product of cardinality of all the observed variables. Let 

us take the following example 

 

Figure 11: A simple Bayesian Network. 

Given that variable A can have 3 values, B can have 4 values, and C can have 2 

values, the CPD for variable C will form a matrix with dimensions as (2,12). That is a matrix 

with 2 rows and 12 columns. A sample representation of CPD can be seen in the table 

below 

 A_1 A_1 A_1 A_1 A_2 A_2 A_2 A_2 A_3 A_3 A_3 A_3 

 B_1 B_2 B_3 B_4 B_1 B_2 B_3 B_4 B_1 B_2 B_3 B_4 

C_1 0.1 0.3 0.3 0.2 0.4 0.5 0.1 0.3 0.3 0.2 0.4 0.5 

C_2 0.9 0.7 0.7 0.8 0.6 0.5 0.9 0.7 0.7 0.8 0.6 0.5 

Table 5: A Sample Conditional Probability Table 

A 
B 

C 
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4.7.1 Hill Climbing 

Hill Climbing is used for optimization problems that are computationally hard to solve 

and is best suited for situations where the state description itself has all the information 

required to find a solution. Hill Climbing does not need to maintain a search tree as it looks 

only at the current state to determine the next state. An evaluation function is used to 

iteratively improve the current state. It considers all possible states and measures them 

using the evaluation function of the state at that point. [23] 

A major roadblock in hill climbing is local maxima of the functions which indicates to  

the algorithm that there are no more states nearby that are as good as that local maximum. 

To avoid getting stuck in a local maximum we can implement methods like simulated 

annealing and random restart hill climbing. 

The most generic form of the hill climbing algorithm involves evaluating all neighbors 

of a given point and greedily selecting the point which results in the highest value of the 

function we are maximizing. The choice of neighbors is defined by the temperature factor, 

which is used to "jitter" the variables with some controlled variance. Hill climbing algorithms 

are typically used in scenarios where no inherent gradient is observable in the system. In 

such cases, only a few noisy or sparse, indirect evaluation functions are available which 

can be used to derive the step direction of each variable by searching locally in a greedy 

fashion. 

The temperature value defines the amount of random noise to be added to a given 

variable in a system. There is an apparent trade-off induced by this variable. In situations 

where the search space is stuck in a plateau or possible a small local optimum, a high 
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temperature value is more likely to get unstuck. However, lowering the temperature allows 

the system to fine tune the results. 

In this work, hill climbing is used to optimize our constraint functions in terms of our 

defined probabilities. Thus, it finds probabilities that maximize the separate predefined, 

constrained statistics evaluation functions. 

The following brief pseudo code describes the basic operation of the hill climbing 

scheme: 

 

Hill Climbing Pseudo code: 

   current Node = start Node; 

   temperature=tau 

   loop do 

      neighbor list = find neighbors (current Node, temperature); 

      next Node=argmax (neighbor list) 

      if EVAL (next Node) <= EVAL (current Node) 

         return current Node; 

      current Node = next Node; 
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4.8 Results 

The following example is a miniaturized version of our model, shown here as a proof 

of concept. The DBN of the example looks like the figure below. 

 

Figure 12: An example Dynamic Bayesian Network 

Here, each random variable is a Boolean variable, each having a cardinality of two. 

To perform hill climbing to learn parameters, we need to define the performance metric to 

ascend on. In this case, we can at each time step during training consider the similarity of 

the properties of a set of generated individual trajectories from the given population 

statistics. The metric to optimize the sum of all the similarities throughout the duration of 

the generated trajectories. Considering this akin to a Reinforcement Learning problem, we 

could consider this similarity at each step the reward, and the change in transitions as the 

Flu1 

Flu2 Flu2 

Flu1 

Ex 

Injury 

Ex 

Injury 
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actions (in this case corresponding to virtual action that maintain or change the subsequent 

values, such as performing exercise, taking medication, etc.). For each step during 

generation, we perform the “actions” according to the current probabilities and then obtain 

a “reward” corresponding to the appropriateness of the generated state values in the 

context of the available population statistics. 

In this example we have five additional variables that have fixed transition structures 

but influence state transitions, these variables represent additional constraints on 

the behavior of the system: 

• Flu2_History: It imposes a constraint on Flu2, such that P(Flu1 | 

Flu2_History) in the same year is zero, i.e. if a person had flu2 sometime 

earlier in a year he will not have flu1. 

• Flu1_History: Maintains the fact that a person got sick with flu1 in the 

current year. 

• Week: This is a discretized slice of time in our DBN, and it helps maintain 

seasons (Spring, Summer, Fall, Winter). 

• Average_Week_Activity_Level: It helps to maintain the amount of time 

person choose to do exercise in a given week. 

• Injury_history: It allows the network to know that the person suffered from 

the injury in previous week, which would affect his choice in choosing this 

week’s observations. 

Our observation variables as shown in Figure 12 are Flu1, Flu2, Injury and Exercise. 

For these variables, several statistical relations are used for training that relate to their 

efficacy and frequency as indicated below: 
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4.8.1 Flu1 

It is a type of sickness that, although milder than Flu2, causes havoc during the 

outdoorsy days of sunshine during summer. A person upon getting this flu, sees a drop in 

their exercise routine for the next week. 

4.8.2 Flu2  

This sickness is a bit more severe than Flu1, i.e. its statistics indicate longer duration 

and more sever reduction in exercise. It also is such that a recipient of this sickness is 

temporarily immune to Flu1. 

4.8.3 Injury 

Injury in this example corresponds to exercise related hazard, hence on observing 

that a person suffered an injury, a drop in their exercise can also be observed. Injury is 

saved for the state at time t into the Injury_History state variable and is used to make 

decisions for next state. 

4.8.4 Exercise 

Exercise is an observation variable which gives us the information about how many 

times a person chooses this action. To differentiate between an active person from an 

obese person, a probabilistic policy is implemented. The person is more likely to do more 

exercise given he did more exercise in last time step (for active person type), and less 

exercise if he did less last time (for obese person type). The exercise takes a dive if a 

person is unwell, reduced exercise also reduces chances of getting injured due to too much 

exercise. 
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4.8.5 Graphs 

The following graphs show sample learning curves for model training, illustrating that the 

hill climbing approach can successfully increase the performance of the model a 

represented by an increase in the similarity (reward) of the generated transition sequences 

with the underlying quantitative statistics. In these cases, the target of the training is a 

population of highly active population.  

 

Figure 13: Learning Curves for a moderately active person 

Once model parameters are learned, these can be used to generate individual data 

sequences which correspond loosely to samples of individuals in the population. The 

following figures show three examples of generated persons in terms of important variable 

attributes (Flu 1, Flu 2, Activity, and Injury). Examples shown here loosely correspond to 
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samples picked from trained networks to correspond to types of individuals. In each of the 

examples, the X axis represents a year with three events per week for a person, while the 

Y axes indicate the state of the corresponding variable at that time. 

 

Figure 14. Observations of a moderately active person 

Here the X axis represents a year with three events per week for a person the graph 

of flu1_hist, displays the amount of time person got flu, and it can be easily observed that 

the person got flu’s during summer a lot more than any other time. Also, it can be observed 
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that when he got flu2, his exercise levels dropped considerably, considering that the person 

was not well enough to either exercise or do any sort of extensive, physical activity. 

The following graph shows how different types of sickness, both flu1 and flu2 affects 

a person’s exercise habits over the course of a year. It can be seen, that the person, 

reduced their activity level once they are not well. 

 

Figure 15: Observations for person who was not well for quite some time. 
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Figure 16: Observations of a sedentary person 

Here the X axis represents a year with three events per week for a person 

The above graph depicts the effects of flu2 on flu1 and the effects of flu2 and flu1 on 

exercise, for a person who does seldom exercise and as a result they are less susceptible 

to any injury. Also, we can see that a person on getting sick with flu2, reduces their chance 

of getting flu1 along with It can clearly depict that the injury occurs on doing extensive high 

intensity exercise. 
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The below graph displays the learning curve for a person, where it can be observed 

that the jumps get smaller and smaller over time, as we start to learn more and more about 

the parameters. 

 

Figure 17: Shows the learning curve for the data generated for a sedentary person. 
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5 FUTURE WORK AND CONCLUSION 

5.1 Conclusion 

A dynamic Bayesian network which learns the parameters to generate a temporal 

data has been implemented in this thesis. The model is still in its infant stage and can be 

scaled and learned more efficiently going forward. 

The main motivation behind this was to have a system which can generated 

reasonably realistic individual health data trajectories with which different types of research 

can be done without relying on insurance firms and hospitals which are reluctant in sharing 

their data or which have data which is in a format too sensitive to be made public. To be 

realistic, the proposed approach combines general health expert knowledge regarding the 

relations between different health and lifestyle attributes (encoded into qualitative structural 

attributes of the DBN), with available population statistics which are translated through the 

learning framework into appropriate generative parameters (represented as quantitative 

parameters inside the model). The goal here is to ensure that the individual data sequences 

generated using the DBN as closely as possible recreate the known population statistics. 

Using this generated data, it should then be possible to perform initial tests and evaluations 

of machine learning based analysis and intervention algorithms as to their ability to operate 

on individual health sequence data. While the resulting learned parameters might not be 

completely correct for real human data, the basic characteristics of the algorithms should 

be reflected on the simulated data due to its incorporation of expert knowledge and its 

conformity with basic real-world statistics. 

Below is some immediate future work that can extend the applicability of this 

approach. 
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5.2 Improving the Network 

The network needs to have an even better learning algorithm which takes less 

computation and learns faster. 

5.3 Features and Traits 

More features to the network can be added, so that the Dynamic Bayesian Network 

can grow and can generate more parameters than before. 

5.4 Collaborative Filtering on Generated Data 

A collaborative filtering approach can be implemented on the data that is generated 

by our DBN to identify similar people on various trends we get from the data itself. 
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