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Abstract 

 
FROM TEXT CLASSIFICATION TO IMAGE CLUSTERING, 

PROBLEMS LESS OPTIMIZED 

 

Amirhossein Herandi, MS  

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Heng Huang 

Machine Learning is thriving. Every industry is using its techniques in some way 

to improve their efficiency and revenue. However, the focus on research is not divided 

equally between all of the different areas and problems that this field can tackle and 

analyze. Currently, Computer Vision is the one area that is being focused very 

extensively by researchers and companies alike, and as a result has seen an amazing 

boost in the recent years. This ranges from the well-known problems of classification that 

use discriminative models all the way to more novel problems that use generative models 

such as style transfer, super resolution, and description generation. Yet, some other 

problems have not been worked on nearly as much as of now. These problems include 

some Natural Language Processing tasks like Sentence Classification and even 

Computer Vision problems such as Image Clustering. Each of these tasks has their own 

set of difficulties and obstructions that need to be tackled before they can be researched 

properly and used in the industry which is a great driving force for research. Specifically, 

the case of clustering seems to be interesting to look into as more and more lable-less 

and unknown data is being generated every day without means to process and analyze 

them efficiently. We will discuss these problems that have been focused on less 

throughout the recent years.
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Chapter 1  

Introduction 

With the advent of the internet and more recently, digitization of data, the need to 

process and interpret data has become a prevalent and interesting problem. There are 

massive amounts of data available publicly and privately today, a large portion of which 

has not been utilized yet, mostly because the techniques currently available are not 

sufficiently robust to interpret them in their present state. 

Current data is noisy and unstructured, it is unlabeled and vague, making most 

available algorithms unable to process them without spending significant time and effort 

for structuring and cleaning the data. 

On the other hand, when the data is sufficiently organized, with the emergence of 

a multitude of new ways of looking at data and interpreting them, it has been shown that 

not only there are various methods to approach any data related problem, e.g. fully or 

semi-supervised classification as well as unsupervised learning, but also using the same 

data more novel and groundbreaking tasks could be accomplished, e.g. segmentation 

and image captioning. 

However, as mentioned before, almost all the current tasks need sufficiently 

clean data with correct labeling to be usable in real world tasks. While some huge 

datasets like ImageNet (Deng, Dong et al. 2009) have been successfully and acceptably 

labeled using crowd-sourcing websites like Amazon Turk (Buhrmester, Kwang et al. 

2011), more difficult data like medical images or even some text reports cannot be 

correctly cleaned or labeled by ordinary people on these websites. This is one of the 

biggest problems that still holds the Machine Learning and Data Mining back from fully 

exploiting the huge amounts of unused data available online, and alleviating this problem 
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could save a lot of money for companies. It is for this reason that Unsupervised Learning 

will probably be very successful in the near future as it does not have a need for labeling. 

Typically, classic Machine Learning methods perform well with moderate 

numbers of data, while Deep Learning methods tend to work well when large amounts of 

data are available. The fact that companies and websites accumulate more and more 

data as we progress through the years makes these Deep Learning algorithms even 

more promising in dealing with these data efficiently as the databases grow. 

Most current methods are offline algorithms, meaning that by adding any new 

data points the entirety of the learning process needs to be redone to improve the model 

based on all the available data. While sometimes this might be possible and may even be 

necessary in order to achieve the best performance possible, it wouldn't be feasible for 

gigantic datasets from companies like Netflix or Amazon to retrain their algorithms every 

time they add new data points, new customers or products. This emphasizes the need for 

novel and effective online deep learning algorithms which can handle scaling datasets, 

while maintaining their robust data analyzing power to an acceptable extent.  
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Chapter 2  

Text Classification 

Introduction 

Classification of images has been extensively researched in the last couple of 

decades in the field of Machine Learning, and specially now with Deep Learning, 

however, text classification has not been pursued to that extent yet. There could be 

several reasons for this phenomenon. One could argue that most companies are 

investing more in Computer Vision right now and its applications compared to Natural 

Language Processing which focuses on text processing and manipulation. 

Most current models use word embeddings, which were initially introduced by 

(Bengio, Ducharme et al. 2003) and later with the introduction of the very popular 

word2vec word embeddings (Mikolov, Sutskever et al. 2013) became widely used, and 

for most word based NLP tasks is the standard word representation model. Not unlike 

computer vision, it is believed that the model will learn hierarchical features from the text, 

n-grams, phrases, sentences are essentially combinations of several words.  

However, when analyzing sentences on the word level, inputs, which are 

sentences, can become relatively small. These small networks would usually prohibit the 

use of deep networks. To alleviate this problem some models have been reproduced that 

work on the character level (Zhang, Zhao et al. 2015) making the inputs much longer and 

enabling the use of very deep networks (Conneau, Schwenk et al. 2016), but these 

methods cannot use word embeddings. Currently there is no consensus on which 

approach, word level or character level models, is better, and there are advantages and 

disadvantages for both. 
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Related Works 

As with most areas in machine learning, classification, text classification here 

specifically, is an important part of Natural Language processing as well, and just like any 

other area in machine learning researchers have started exploiting machine learning 

models and techniques in the past few years for text classification like convolutional 

networks (Kim 2014, Yosinski, Clune et al. 2014, Conneau, Schwenk et al. 2016, Le, 

Cerisara et al. 2017) as well as recurrent neural networks (Xiao and Cho 2016, 

Yogatama, Dyer et al. 2017). However, traditional methods typically use linear classifiers 

for text classification (Joachims 1998, McCallum and Nigam 1998, Fan, Chang et al. 

2008). It has been shown that with a good rank constraint and fast loss approximation 

they could be scaled to large datasets rapidly as well (Joulin, Grave et al. 2016). 

Machine Translation has been one of the hottest topics in the field of NLP. 

Recent works have been using novel neural machine translation techniques like encoder 

decoder models for human-like translations (Gehring, Auli et al. 2016, Gehring, Auli et al. 

2017, Klein, Kim et al. 2017). The source sentences are fed through the encoder, the 

decoder gets the last hidden state from the encoder as input and generates the 

translation word by word to the target language. This method is at the core of the Google 

Translation service. 

In Natural Language Processing Convolutional Neural Networks were first used 

by (Collobert and Weston 2008, Collobert, Weston et al. 2011). As an alternative to the 

local max pooling layer in the original LeNet model (LeCun, Bottou et al. 1998) they have 

used a new global max pooling layer which is shown to be effective for text. Furthermore, 

by co-training several deep models on various tasks, they proposed to transfer task 

specific information. With slight modification to (Collobert and Weston 2008) a simpler 

model was proposed by (Mikolov, Sutskever et al. 2013) which uses fixed, or in some 
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cases fine-tuned, word embeddings, word2vec, and its combination as multi-channel. 

Their work demonstrates that even this simple model could achieve state-of-the-art 

performance on several small datasets. In order to handle variable length inputs as is 

common with text input, dynamic k-max pooling was proposed by (Kalchbrenner, 

Grefenstette et al. 2014), which is a generalization of the max pooling operator with k is 

dynamically set as part of the network. 

All of the research mentioned previously uses word embeddings as their basis, 

which was introduced by (Bengio, Ducharme et al. 2003) in order to alleviate the curse of 

dimensionality by using distributed representations. The problem with these methods is 

that each sentence or even paragraphs only has a few number of words, thus preventing 

models from becoming very deep as input size is a limiting factor. It has been shown that 

word representation based inputs might not be inclusive for many inputs specially in 

social media as typos, hashtags, and other non-conventional writing habits are often 

seen (Severyn and Moschitti 2015). Hence, they proposed a convolutional model that 

would work on the character level which avoids the need for any word preprocessing or 

tokenization. Later on, (Conneau, Schwenk et al. 2016) introduced a much simpler model 

which could be made much deeper as a results. 

Method 

Here, we have focused on experimenting with several well-known Deep Learning 

architectures and methods for text classification such as different types of Recursive 

Neural Networks like LSTMs (Hochreiter and Schmidhuber 1997) and GRUs (Cho, Van 

Merriënboer et al. 2014, Chung, Gulcehre et al. 2014) as well as traditional CNNs 

(LeCun, Haffner et al. 1999) that have recently been shown to work well with text as well. 
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LSTMs and GRUS 

LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Unit) are both 

replacements for conventional RNN models that avoid the vanishing and exploding 

gradient problems. They also have another advantage, all recurrent models deal with 

sequential data it is better to have mechanisms available to control how much past 

elements from the sequence or past states can effect cell and hidden state updates. Both 

are widely used right now but they have a few differences that sets them apart. LSTMs 

use four gates called input, forget, cell, and output gates as well as two states by the 

names of cell and hidden states. The input gate decides on how of the new cell state 

should be kept and the forget gate decides how much of the current memory should be 

forgotten. The output gate oversees how much of the cell state should be given to the 

next layer, and the cell gate is a candidate for the hidden state which is calculated using 

a combination of the current input and the previous hidden state. GRUs similarly have 

reset, Input, and new gates and only the hidden state. Unlike LSTMs, GRUs don’t have 

any internal memory or a cell state and neither do they have an output gate. The reset 

gate determines how the previous memory should be combined with the new input, and 

the update gate decides how much of the previous memory should be used. 

• LSTMs have more gates and usually produce with more consistent 

results. 

• GRUs have 1 fewer gate compared to LSTMs and are somewhat faster 

to train and mostly achieve better performance on smaller datasets. 
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LSTM 

it = σ(Wiixt + bii + Whih(t−1) + bhi)    input gate 

ft = σ(Wifxt + bif + Whfh(t−1) + bhf)   forget gate 

gt = tanh(Wigxt + big + Whgh(t−1) + bhg)    cell gate 

ot = σ(Wioxt + bio + Whoh(t−1) + bho)    output gate 

ct = ftc(t−1) + itgt      cell state 

ht = ot tanh(ct)       hidden state 

GRU 

rt = σ(Wirxt + bir + Whrh(t−1) + bhr)    reset gate 

zt = σ(Wizxt + biz + Whzh(t−1) + bhz)    input gate 

nt = tanh (Winxt + bin + rt(Whnh(t−1) + bhn))   new gate 

ht = (1 − zt)nt + zth(t−1)     hidden state 

As you can see, GRUs have fewer parameters compared to LSTMs so during 

training they will finish training faster. Even though GRUs are more recent that LSTMs 

they are not necessarily better, and while they surpass LSTMs in some cases they still 

cannot consistently outperform them. 

CNNs 

LSTMs and GRUs are the standard in most sequential tasks like text, however, 

there is a big problem that they cannot be parallelized very well which in practice makes 

them much slower to use compared to parallelizable models like convolutional neural 

network (CNNs). In our work we are using a simple one-dimensional CNN model as one 

of our methods in the ensemble learning that we are doing. The CNN network actually 

performs really well as we will see in the experiments section. 
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Figure 1 One dimensional Convolutional Neural Network on word embeddings. 

Experiments 

The key here is that while each individual network works well by its own, using an 

ensemble (Hansen and Salamon 1990) created by the output probability of all of the 

networks always gives us a probability that is as good as the best and often better than 

each one individually. 

To be able to compare our results with previous work, we have used standard 

text classification datasets available at (http://goo.gl/JyCnZq), which we will explain in 

more detail later on. 

As you know, most Machine Learning algorithms can only process numbers and 

not actual raw text. There are several methods to convert text input into a numeral format 

and then feed them to the algorithm for learning and analysis. One way would be to do 

this at the character level and look at each character as an individual entity or feature in 

the data. Another approach would be to take a word level approach, in which each word 

would have its own unique representation instead. As mentioned by (Le, Cerisara et al. 

2017) word level implementations seem to be the most effective between these two 

http://goo.gl/JyCnZq
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models. Moreover, character level modelling means that each letter is considered one 

feature instead of a word, and as a result, each sentence is seen as a much larger input 

from the model’s point of view, because one sentence contains far more letters than 

words. This drastic increase in the number of features consequently requires the model 

to be deeper with more parameters to learn, which would not be practical. 

Furthermore, the use of word level classification enables us the use of pretrained 

word embeddings, like GloVe (Pennington, Socher et al. 2014) or Word2Vec (Mikolov, 

Chen et al. 2013, Mikolov, Sutskever et al. 2013) instead of learning them from scratch. 

We have decided to use the Global Vectors for Word Representation (GloVe) for our 

word vector representations of words, these embeddings are one of the more recent 

ones trained on a very large dataset that was collected by Common Crawl1 which 

maintains a corpus of web crawl data. We use the embeddings which have 300 

dimensions. 

One of the advantages of using word embedding vectors is that being pretrained 

on a gigantic dataset, they contain a lot of information, meaning, as well as context for 

each word, which would make the whole training process much faster and more efficient. 

In our experiments we have seen using these embeddings and fixing them throughout 

the training process give us the best results with the least overfitting. However, finetuning 

them by training them further using our own dataset during training makes our models 

significantly slower and prone to overfitting. 

The CNN model has 3 one dimensional convolutional layers each followed by a 

one dimensional max pooling layer. We have used similar models for our BiLSTM and 

BiGRU models. We are using two layers stacked on top of each other and use only the 

last output from each direction from the second layer for our inference, because we are 

                                                 
1 http://commoncrawl.org/ 
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doing sentence classification we only need the last output from the LSTM or GRU and as 

we are using the Bidirectional models we need one output per direction. We have used a 

window size of 72, hidden dimension size 48 for LSTM and GRU and 196 for CNN, 

learning rate of 5e-4, regularization value of 2e-6 with a batchsize of 256 over 250 

epochs to train all 3 models and for all 3 datasets. We decided to use Self Normalizing 

Linear Units (Klambauer, Unterthiner et al. 2017) for all of our activations other than the 

softmax layers at the end of the models which are used for classification. The convolving 

done in CNNs slides a filter window across the input which in this case with text it is 

sequentially going over the words. Depending on the filter size it would be similar to 

sequentially feeding the networks n-grams with n being the filter size. 

Alternative Models: We compare our ensemble model with various state of the art as 

well as baseline models and report the results in Table 2. These models consist of: 

• Naïve Bayes, which uses a simple count based unigram language model 

(Yogatama, Dyer et al. 2017) 

• Kneser–Ney Bayes, similar to Naïve Bayes but uses a more sophisticated 

method that uses trigrams and Kneser-ney smoothing (Yogatama, Dyer et al. 

2017) 

• MLP Naïve Bayes, a version similar to Naïve Bayes that is an extension of the 

Naïve Bayes by using a feed forward neural network (Yogatama, Dyer et al. 

2017) 

• Bag of words, which uses most frequent words from training data (Zhang and 

Wallace 2015) 

• Ngrams, similar to Bag of words but instead of words it uses most frequent 

ngrams (pairs of n words that appear together) (Zhang and Wallace 2015) 
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• Ngrams TFIDF, which is similar to the Ngrams model but instead uses TFIDF 

features (Text Frequency Inverse Document Frequency) (Zhang and Wallace 

2015) 

• Discriminative LSTM, the top performing model from (Yogatama, Dyer et al. 

2017) that uses logistic regression on top of a normal LSTM model. 

• Fasttext, very simply model that trains its own word embeddings which are the 

only parameters in the model that are trained for the actual classification, it has a 

rank constraint and a fast loss approximation (Joulin, Grave et al. 2016) 

• Word-DenseNet, a word-level implementation of the Densenet architecture 

(Huang, Liu et al. 2017) from (Le, Cerisara et al. 2017), specifically chose one 

with most of the highest values for this comparison, specifically the Word-

DenseNet Nb= (4−4−4−4) Global Average-Pooling model. 

• Word shallow-and-wide CNN, the model with the best performance from (Le, 

Cerisara et al. 2017) in which 3 convolutional layers with varying filter sizes are 

used on the input and their outputs are concatenated together to be fed to a fully 

connected layer. 

 

Dataset # Training Samples # Test Samples # Classes 

AG News 120,000 7,600 4 

Yelp Review 

Polarity 

560,000 7,600 2 

DBPedia 560,000 60,000 14 

Table 1 Text Classification Datasets 

Datasets: We have used several baseline text classification datasets for out 

comparisons which are explained below: 
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• AG News, news articles from the internet consisting of titles as well as 

descriptions from 4 different classes, 120,000 training and 7,600 test samples 

(Del Corso, Gulli et al. 2005) 

• Yelp Review Polarity, (Yelp Bin) From the Yelp Dataset challenge in 2015 that 

consists of 560,000 training and 7,600 test samples from 2 classes. 

• DBPedia, 14 different classes have been chosen from DBPedia 2014 

(Wikipedia), with 560,000 training and 60,000 test samples. 

 

Model AGNews Yelp Bin DBPedia 

Naïve Bayes 90.0 86.0 96.0 

Kneser–Ney Bayes 89.3 81.8 95.4 

MLP Naïve Bayes 89.9 73.6 87.2 

Discriminative LSTM 92.1 92.6 98.7 

Fasttext 92.5 95.7 98.6 

Word-DenseNet 91.7 95.8 98.7 

Word shallow-and-wide CNN 92.2 95.8 98.7 

CNN 92.9 94.0 98.6 

BiLSTM 93.6 92.7 98.6 

BiGRU 93.3 92.5 98.5 

Ensemble 93.8 93.7 98.7 

Table 2 Text Classification performance comparison on AG News, Yelp Binary, and 

DBPedia Datasets. 

Moreover, Because the nature of our experiment is to boost our performance 

using ensembles of different models we have done several things to take these 

ensemblings even further. We have tried the ensemble of the best models based on the 
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best validation error with the model at the last epoch, calling these best and final 

respectively. Furthermore, as we are using dropout layers in all of our models, because 

of the stochastic nature of dropout and its randomness we decided that at inference, 

aside from using the clean network without any dropout to get the probabilities for 

classification decision, we also used corrupted paths that still apply dropouts. We passed 

the test data once through the clean network and 19 times with dropouts and take their 

average and we call this method Noisy Ensemble, you can see that in the BiLSTM and 

BiGRU models this actually produces a significant boost in accuracy, this is done for both 

best models and final models, and finally for the last model we have averaged all of these 

probabilities for our final ensemble which we call Best+Final Noisy Ensemble and mostly 

produces the best overall result. These results are detailed in Table 3. 
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Model Inference Method AGNews Yelp Bin DBPedia 

CNN 

Final 92.4 93.9 98.5 

Best 92.7 94.0 98.5 

Best+Final 92.7 94.0 98.6 

Final Noisy Ensemble 92.9 93.9 98.6 

Best Noisy Ensemble 92.8 93.9 98.5 

Best+Final Noisy Ensemble 92.9 94.0 98.6 

BiLSTM 

Final 92.2 75.0 98.3 

Best 92.5 89.9 98.5 

Best+Final 92.5 87.1 98.5 

Final Noisy Ensemble 93.5 93.3 98.5 

Best Noisy Ensemble 93.3 90.3 98.5 

Best+Final Noisy Ensemble 93.6 92.7 98.6 

BiGRU 

Final 92.3 88.0 97.9 

Best 92.6 90.3 98.3 

Best+Final 92.5 90.3 98.3 

Final Noisy Ensemble 93.3 92.5 98.5 

Best Noisy Ensemble 93.0 91.6 98.4 

Best+Final Noisy Ensemble 93.3 92.5 98.5 

Ensemble of all 

Final 93.6 93.6 98.7 

Best 93.6 93.7 98.7 

Best+Final 93.7 93.8 98.7 

Final Noisy Ensemble 93.8 93.9 98.7 

Best Noisy Ensemble 93.6 93.3 98.6 

Best+Final Noisy Ensemble 93.8 93.7 98.7 

Table 3 Classification performance comparison between our own models with different 

inference methods. 
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Chapter 3  

Image Clustering 

In this chapter we will be mostly going through our work published at ICCV 2017 

(Dizaji, Herandi et al. 2017). As mentioned previously, clustering is one of the problems in 

Machine Learning and Computer vision that has been focused on less in the recent 

years. One of the main reasons for this is that in the practical case, clustering and more 

generally unsupervised learning means that the amount of information available on 

available data is far less than supervised learning and classification. 

Deep Learning is preforming extremely well with supervised learning, but with 

deep learning and the current large complicated and complicated models, each one of 

these models has several hyperparameters the tuning of which could alter the end results 

significantly. In supervised problems this matter is extremely helpful and produces results 

much higher than anything before them. These hyper parameters range from the depth 

and the width of the networks to learning rates and regularization values. These 

hyperparameter tuning need to be done for each dataset individually to ensure best 

results. Even though, these tunings help supervised learning to a great extent, it is 

actually an obstacle for unsupervised learning. 

In unsupervised learning, at least in real world problems, there is no label to be 

used for optimizing and selecting the best hyperparameters. This makes it important to 

create universal models that would work well with as many datasets as possible, 

meaning models as small and as simple as possible with the least number of 

hyperparameters to optimize. Before Deep Learning, methods like K-means and 

Agglomerative Clustering where the baselines for unsupervised learning, but with the 

need for methods that work efficiently with larger datasets while producing results usable 
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in the industry, scalable algorithm like one’s based on Deep Learning are becoming more 

and more desirable. 

In this chapter we will be mostly going through our work published at ICCV 2017 

(Dizaji, Herandi et al. 2017). As mentioned previously, clustering is one of the problems in 

Machine Learning and Computer vision that has been focused on less in the recent 

years. One of the main reasons for this is that in the practical case, clustering and more 

generally unsupervised learning means that the amount of information available on 

available data is far less than supervised learning and classification. 

Deep Learning is preforming extremely well with supervised learning, but with 

deep learning and the current large complicated and complicated models, each one of 

these models has several hyperparameters the tuning of which could alter the end results 

significantly. In supervised problems this matter is extremely helpful and produces results 

much higher than anything before them. These hyper parameters range from the depth 

and the width of the networks to learning rates and regularization values. These 

hyperparameter tuning need to be done for each dataset individually to ensure best 

results. Even though, these tunings help supervised learning to a great extent, it is 

actually an obstacle for unsupervised learning. 

In unsupervised learning, at least in real world problems, there is no label to be 

used for optimizing and selecting the best hyperparameters. This makes it important to 

create universal models that would work well with as many datasets as possible, 

meaning models as small and as simple as possible with the least number of 

hyperparameters to optimize. Before Deep Learning, methods like K-means and 

Agglomerative Clustering where the baselines for unsupervised learning, but with the 

need for methods that work efficiently with larger datasets while producing results usable 
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in the industry, scalable algorithm like one’s based on Deep Learning are becoming more 

and more desirable. 

Here I will include our complete paper published in ICCV 2017 titled “Deep 

Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy 

Minimization”. 

Authors: 

Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, Heng Huang 

Introduction 

Clustering is one of the fundamental topics in machine learning and computer 

vision research, and it has gained significant attention for discriminative 

representation of data points without any need for supervisory signals. The 

clustering problem has been extensively studied in various applications; however, 

the performance of standard clustering algorithms is adversely affected when 

dealing with high-dimensional data, and their time complexity dramatically 

increases when working with large-scale datasets. Tackling the curse of 

dimensionality, previous studies often initially project data into a low-dimensional 

manifold, and then cluster the embedded data in this new subspace (Roth and 

Lange 2004, Tian, Gao et al. 2014, Wang, Chang et al. 2016)}. Handling large-

scale datasets, there are also several studies which select only a subset of data 

points to accelerate the clustering process (Shinnou and Sasaki 2008, Chen and 

Cai 2011). 
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(a) Raw data  (b) NonJoint DEPICT            (c) Joint DEPICT 

Figure 2 Visualization to show the discriminative capability of embedding subspaces 

using MNIST-test data. (a) The space of raw data. (b) The embedding subspace of non-

joint DEPICT using standard stacked denoising autoencoder (SdA). (c) The embedding 

subspace of joint DEPICT using our joint learning approach (MdA). 

However, dealing with real-world image data, existing clustering 

algorithms suffer from different issues: 1) Using inflexible hand-crafted features 

(e.g. SIFT, HOG), which do not depend on the input data distribution; 2) Using 

shallow and linear embedding functions, which are not able to capture the non-

linear nature of data; 3) Non-joint embedding and clustering processes, which do 

not result in an optimal embedding subspace for clustering; 4) Complicated 

clustering algorithms that require tuning the hyper-parameters using labeled data, 

which is not feasible in real-world clustering tasks. 

To address the mentioned challenging issues, we propose a new clustering 

algorithm, called deep embedded regularized clustering (DEPICT), which exploits 

the advantages of both discriminative clustering methods and deep embedding 

models. DEPICT generally consists of two main parts, a multinomial logistic 

regression (soft-max) layer stacked on top of a multi-layer convolutional 
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autoencoder. The soft-max layer along with the encoder pathway can be 

considered as a discriminative clustering model, which is trained using the 

relative entropy (KL divergence) minimization. We further add a regularization 

term to this objective based on a prior distribution for the frequency of cluster 

assignments. This regularization term penalizes unbalanced cluster assignments 

and prevents allocating clusters to outlier samples. 

Although this deep clustering model is flexible enough to discriminate the 

complex real-world input data, it can easily get stuck in non-optimal local minima 

during training and result in undesirable cluster assignments. In order to avoid 

overfitting the deep clustering model to spurious data correlations, we utilize the 

reconstruction loss function of autoencoder models as a data-dependent 

regularization term for training parameters.  

In order to benefit from a joint learning framework for embedding and 

clustering, we introduce a unified objective function including our clustering and 

auxiliary reconstruction loss functions. We then employ an alternating approach 

to efficiently update the parameters and estimate the cluster assignments. It is 

worth mentioning that in the standard learning approach for training a multi-layer 

autoencoder, the encoder and decoder parameters are first pretrained layer-wise 

using the reconstruction loss, and the encoder parameters are then fine-tuned 

using the objective function of the main task (Vincent, Larochelle et al. 2010). 

However, it has been argued that the non-joint fine-tuning step may overwrite the 
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encoder parameters entirely and consequently cancel out the benefit of the layer-

wise pretraining step (Zhao, Mathieu et al. 2015). To avoid this problem and 

achieve optimal joint learning results, we simultaneously train all of the encoder 

and decoder layers together along with the soft-max layer. To do so, we sum up 

the squared error reconstruction loss functions between the decoder and their 

corresponding (clean) encoder layers and add them to the clustering loss function. 

Figure 1 demonstrates the importance of our joint learning strategy by 

comparing different data representations of MNIST-test data points (LeCun, 

Bottou et al. 1998) using principle component analysis (PCA) visualization. The 

first figure indicates the raw data representation; The second one shows the data 

points in the embedding subspace of non-joint DEPICT, in which the model is 

trained using the standard layer-wise stacked denoising autoencoder (SdA); The 

third one visualizes the data points in the embedding subspace of joint DEPICT, 

in which the model is trained using our multi-layer denoising autoencoder 

learning approach (MdA). As shown, joint DEPICT using MdA learning approach 

provides a significantly more discriminative embedding subspace compared to 

non-joint DEPICT using standard SdA learning approach. 

Moreover, experimental results show that DEPICT achieves superior or 

competitive results compared to the state-of-the-art algorithms on the image 

benchmark datasets while having faster running times. In addition, we compared 

different learning strategies for DEPICT, and confirm that our joint learning 
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approach has the best results. It should also be noted that DEPICT does not 

require any hyper-parameter tuning using supervisory signals, and consequently is 

a better candidate for the real-world clustering tasks. 

Thus, we summarize the advantages of DEPICT as: 

• Providing a discriminative non-linear embedding subspace via the deep 

convolutional autoencoder; 

• Introducing an end-to-end joint learning approach, which unifies the 

clustering and embedding tasks, and avoids layer-wise pretraining; 

• Achieving superior or competitive clustering results on high-dimensional 

and large-scale datasets with no need for hyper-parameter tuning using 

labeled data. 

Related Works  

There is a large number of clustering algorithms in literature, which can be 

grouped into different perspectives, such as hierarchical (Williams 2000, Heller and 

Ghahramani 2005, Zhang, Wang et al. 2012) centroid-based (Lloyd 1982, Bezdek, 

Ehrlich et al. 1984, Bahmani, Moseley et al. 2012, Nie, Wang et al. 2014),graph-based 

(Shi and Malik 2000, Nie, Wang et al. 2016, Nie, Wang et al. 2016, Wang, Nie et al. 

2016), sequential (temporal) (Keogh, Chu et al. 2001, Sargin, Yemez et al. 2008, Zhou, 

De la Torre et al. 2013, Sadoughi and Busso 2015, Sadoughi, Liu et al. 2015) and 

subspace clustering models (Agrawal, Gehrke et al. 1998, Kailing, Kriegel et al. 2004, 

Gao, Nie et al. 2015, Nie and Huang 2016). In another sense, they are generally divided 

into two subcategories, generative and discriminative clustering algorithms. The 

generative algorithms like K-means and Gaussian mixture model (Biernacki, Celeux et al. 
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2000) explicitly represent the clusters using geometric properties of the feature space, 

and model the categories via the statistical distributions of input data. Unlike the 

generative clustering algorithms, the discriminative methods directly identify the 

categories using their separating hyperplanes regardless of data distribution. Information 

theoretic (Li, Zhang et al. 2004, Barber and Agakov 2006, Krause, Perona et al. 2010)\,  

max-margin (Xu, Neufeld et al. 2005, Zhao, Wang et al. 2008), and spectral graph (Ng, 

Jordan et al. 2002) algorithms are examples of discriminative clustering models. 

Generally it has been argued that the discriminative models often have better results 

compared to their generative counterparts, since they have fewer assumptions about the 

data distribution and directly separate the clusters, but their training can suffer from 

overfitting or getting stuck in undesirable local minima (Ng and Jordan 2002, Raina, Shen 

et al. 2004, Krause, Perona et al. 2010). Our DEPICT algorithm is also a discriminative 

clustering model, but it benefits from the auxiliary reconstruction task of autoencoder to 

alleviate this issue in training of our discriminative clustering algorithm. 

There are also several studies regarding the combination of clustering with 

feature embedding learning. Ye et al. introduced a kernelized K-means algorithm, 

denoted by DisKmeans, where embedding to a lower dimensional subspace via linear 

discriminant analysis (LDA) is jointly learned with K-means cluster assignments (Ye, 

Zhao et al. 2008). Combination of linear embedding with spectral clustering is also 

presented in (Yang, Xu et al. 2010, Nie, Zeng et al. 2011). But these models all suffer 

from having shallow and linear embedding functions, which cannot represent the non-

linearity of real-world data. 

 

A joint learning framework for updating code books and estimating image clusters was 

proposed in (Xie and Xing 2015) while SIFT features are used as input data.  
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A deep structure, named TAGnet was introduced in (Wang, Chang et al. 2016), where 

two layers of sparse coding followed by a clustering algorithm are trained with an 

alternating learning approach. Similar work is presented in (Wang, Yang et al. 2015) that 

formulates a joint optimization framework for discriminative clustering and feature 

extraction using sparse coding. However, the inference complexity of sparse coding 

forces the model in (Wang, Yang et al. 2015) to reduce the dimension of input data with 

PCA and the model in (Wang, Chang et al. 2016) to use an approximate solution. Hand-

crafted features and dimension reduction techniques degrade the clustering performance 

by neglecting the distribution of input data. 

Tian et al. learned a non-linear embedding of the affinity graph using a stacked 

autoencoder, and then obtained the clusters in the embedding subspace via K-means 

(Tian, Gao et al. 2014). Trigeorgis et al. extended semi non-negative matrix factorization 

(semi-NMF) to stacked multi-layer (deep) semi-NMF to capture the abstract information in 

the top layer.  Afterwards, they run K-means over the embedding subspace for cluster 

assignments (Trigeorgis, Bousmalis et al. 2014). More recently, Xie et al. employed 

denoising stacked autoencoder learning approach, and first pretrained the model layer-

wise and then fine-tuned the encoder pathway stacked by a clustering algorithm using 

Kullback-Leibler divergence minimization (Xie, Girshick et al. 2016). Unlike these models 

that require layer-wise pretraining as well as non-joint embedding and clustering learning, 

DEPICT utilizes an end-to-end optimization for training all network layers simultaneously 

using the unified clustering and reconstruction loss functions.  

Yang et al. introduced a new clustering model, named JULE, based on a 

recurrent framework, where data is represented via a convolutional neural network and 

embedded data is iteratively clustered using an agglomerative clustering algorithm (Yang, 

Parikh et al. 2016). They derived a unified loss function consisting of the merging process 
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for agglomerative clustering and updating the parameters of the deep representation. 

While JULE achieved good results using the joint learning approach, it requires tuning of 

a large number of hyper-parameters, which is not practical in real-world clustering tasks. 

In contrast, our model does not need any supervisory signals for hyper-parameter tuning. 

Deep Embedded Regularized Clustering 

In this section, we first introduce the clustering objective function and the 

corresponding optimization algorithm, which alternates between estimating the 

cluster assignments and updating model parameters. Afterwards, we show the 

architecture of DEPICT and provide the joint learning framework to 

simultaneously train all network layers using the unified clustering and 

reconstruction loss functions. 

DEPICT Algorithm 

Let's consider the clustering task of N samples, X = [x1, … , xn], into K categories, 

where each sample xi ∈ Rdx.  Using the embedding function, φW: X → Z, we are able to 

map raw samples into the embedding subspace Z = [z1, … , zn], where each zi ∈ Rdz has a 

much lower dimension compared to the input data (i.e. dz ≪ dx). Given the embedded 

features, we use a multinomial logistic regression (soft-max) function fθ: Z → Y to predict 

the probabilistic cluster assignments as follows. 

𝑝𝑖𝑘 = 𝑃(𝑦𝑖 = 𝑘|𝐳𝐢, 𝚯) =
𝑒𝑥𝑝(𝜽𝒌

𝑻𝐳𝐢)

∑ 𝑒𝑥𝑝𝐾
𝑘′=1 (𝜽𝒌′

𝑻 𝐳𝐢)
 

1 

where Θ = [θ1, … , θk] ∈ Rdz×K are the soft-max function parameters, and pik 

indicates the probability of the i-th sample belonging to the k-th cluster. 
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In order to define our clustering objective function, we employ an auxiliary target 

variable 𝐐 to refine the model predictions iteratively. To do so, we first use Kullback-

Leibler (𝐊𝐋) divergence to decrease the distance between the model prediction P and the 

target variable Q. 

ℒ = KL(Q|P) =
1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

 

2 

In order to avoid degenerate solutions, which allocate most of the samples to a 

few clusters or assign a cluster to outlier samples, we aim to impose a regularization term 

to the target variable. To this end, we first define the empirical label distribution of target 

variables as: 

fk = P(y = k) =
1

N
∑ qik

i

 

3 

where 𝑓𝑘 can be considered as the soft frequency of cluster assignments in the 

target distribution. Using this empirical distribution, we are able to enforce our preference 

for having balanced assignments by adding the following KL divergence to the loss 

function. 

ℒ = KL(Q||P) + KL(f||u) 

= [
1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

] + [
1

N
∑ fk log

fk

uk

K

k=1

] 

=
1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

+ qik log
fk

uk
 

4 
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where u is the uniform prior for the empirical label distribution. While the first term 

in the objective minimizes the distance between the target and model prediction 

distributions, the second term balances the frequency of clusters in the target variables. 

Utilizing the balanced target variables, we can force the model to have more 

balanced predictions (cluster assignments) P indirectly. It is also simple to change the 

prior from the uniform distribution to any arbitrary distribution in the objective function if 

there is any extra knowledge about the frequency of clusters. 

An alternating learning approach is utilized to optimize the objective function. 

Using this approach,  we estimate the target variables Q via fixed parameters 

(expectation step), and update the parameters while the target variables Q  are assumed 

to be known (maximization step). The problem to infer the target variable Q has the 

following objective: 

min
Q

1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

+ qik log
fk

uk

 

5 

where the target variables are constrained to ∑ qikk = 1. This problem can be 

solved using first order methods, such as gradient descent, projected gradient descent, 

and Nesterov optimal method (Nesterov 2013), which only require the objective function 

value and its (sub)gradient at each iteration. In the following equation, we show the 

partial derivative of the objective function with respect to the target variables. 

∂ℒ

∂qik

∝ log (
qikfk

pik

) +
qik

∑ qi′k
N
i′=1

+ 1 

6 

Investigating this problem more carefully, we approximate the gradient in Eq. 6 

by removing the second term, since the number of samples N is often big enough to 
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ignore the second term. Setting the gradient equal to zero, we are now able to compute 

the closed form solution for Q accordingly. 

qik =
pik/(∑ pi′ki′ )

1
2

∑ pik′/(∑ pi′k′i′ )
1
2k′
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For the maximization step, we update the network parameters 𝝍 = (𝚯, 𝐖) using 

the estimated target variables with the following objective function. 

min
ψ

 −
1

N
∑ ∑ 1k=1

K qik log pik

N

i=1

 

8 

Interestingly, this problem can be considered as a standard cross entropy loss 

function for classification tasks, and the parameters of soft-max layer Θ and embedding 

function W can be efficiently updated by backpropagating the error. 
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Figure 3 Architecture of DEPICT for CMU-PIE dataset. DEPICT consists of a 

soft-max layer stacked on top of a multi-layer convolutional autoencoder. In order 

to illustrate the joint learning framework, we consider the following four 

pathways for DEPICT: Noisy (corrupted) encoder, Decoder, Clean encoder and 

Soft-max layer. The clustering loss function, 𝐿𝐸, is applied on the noisy pathway, 

and the reconstruction loss functions, 𝐿2, are between the decoder and clean 

encoder layers. The output size of convolutional layers, kernel sizes, strides (S), 

paddings (P) and crops (C) are also shown. 

DEPICT Architecture 

In this section, we extend our general clustering loss function using a denoising 

autoencoder. The deep embedding function is useful for capturing the non-linear nature 
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of input data; However, it may overfit to spurious data correlations and get stuck in 

undesirable local minima during training. To avoid this overfitting, we employ 

autoencoder structures and use the reconstruction loss function as a data-dependent 

regularization for training the parameters. Therefore, we design DEPICT to consist of a 

soft-max layer stacked on top of a multi-layer convolutional autoencoder. Due to the 

promising performance of strided convolutional layers in (Radford, Metz et al. 2015, Yeh, 

Chen et al. 2016), we employ convolutional layers in our encoder and strided 

convolutional layers in the decoder pathways, and avoid deterministic spatial pooling 

layers (like max-pooling). Strided convolutional layers allow the network to learn its own 

spatial upsampling, providing a better generation capability. 

Unlike the standard learning approach for denoising autoencoders, which 

contains layer-wise pretraining and then fine-tuning, we simultaneously learn all of the 

autoencoder and soft-max layers. As shown in Figure 3, DEPICT consists of the 

following components: 

1. Corrupted feedforward (encoder) pathway maps the noisy input data into the 

embedding subspace using a few convolutional layers followed by a fully 

connected layer. The following equation indicates the output of each layer in 

the noisy encoder pathway. 

z l̃ = Dropout[g(We
lzl−1̃)] 

9 

where z l̃ are the noisy features of the l-th layer, Dropout is a stochastic mask 

function that randomly sets a subset of its inputs to zero (Srivastava, Hinton et al. 2014), 

g is the activation function of convolutional or fully connected layers, and We
l  indicates the 
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weights of the l-th layer in the encoder. Note that the first layer features, z0̃, are equal to 

the noisy input data, x̃. 

2. Followed by the corrupted encoder, the decoder pathway reconstructs the 

input data through a fully connected and multiple strided convolutional layers 

as follows, 

zl−1̂ = g(Wd
l z l̂) 

10 

where z l̂ is the l-th reconstruction layer output, and Wd
l  shows the weights for the 

l-th layer of the decoder. Note that input reconstruction, x̂, is equal to z0̂. 

3. Clean feedforward (encoder) pathway shares its weights with the corrupted 

encoder, and infers the clean embedded features. The following equation 

shows the outputs of the clean encoder, which are used in the reconstruction 

loss functions and obtaining the final cluster assignments. 

zl = g(We
lzl−1) 

11 

where zl is the clean output of the l-th layer in the encoder. Consider the first 

layer features z0 equal to input data x. 

4. Given the top layer of the corrupted and clean encoder pathways as the 

embedding subspace, the soft-max layer obtains the cluster assignments 

using eq. 1. 

Note that we compute target variables Q using the clean pathway, and model 

prediction P̃ via the corrupted pathway. Hence, the clustering loss function KL(Q||P̃) 

forces the model to have invariant features with respect to noise. In other words, the 

model is assumed to have a dual role: a clean model, which is used to compute the more 
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accurate target variables; and a noisy model, which is trained to achieve noise-invariant 

predictions. 

As a crucial point, DEPICT algorithm provides a joint learning framework that 

optimizes the soft-max and autoencoder parameters together. 

min
ψ

−
1

N
∑ ∑ qik log pik̃

K

k=1

N

i=1

+
1

N
∑ ∑

1

|zi
l|

L−1

l=0

||

N

i=1

zi
l − zi

l̂||2
2 

12 

where |zi
l| is the output size of the l-th hidden layer (input for l = 0), and L is the 

depth of the autoencoder model. 

The benefit of joint learning frameworks for training multi-layer autoencoders is 

also reported in semi-supervised classification tasks (Rasmus, Berglund et al. 2015, 

Zhao, Mathieu et al. 2015). However, DEPICT is different from previous studies, since it 

is designed for the unsupervised clustering task, it also does not require max-pooling 

switches used in stacked what-where autoencoder (SWWAE) (Zhao, Mathieu et al. 

2015), and lateral (skip) connections between encoder and decoder layers used in ladder 

network (Rasmus, Berglund et al. 2015). Algorithm 1 shows a brief description of 

DEPICT algorithm. 

 

 

 

 

 

 

 

 



32 

Algorithm 1 DEPICT Algorithm 

Initialize 𝐐 using a clustering algorithm 

𝐖𝐡𝐢𝐥𝐞 not converged  do 

min
ψ

−
1

N
∑ qik log pik̃

ik

+
1

N
∑

1

|zi
l|

il

|zi
l − zi

l̂|2
2 

pik
(t)

∝ exp(θk
Tzi

L) 

qik
(t)

∝ pik/ (∑ pi′k

i′

)

1
2

 

𝐞𝐧𝐝 

 Experiments 

In this section, we first evaluate DEPICT2 in comparison with state-of-the-art 

clustering methods on several benchmark image datasets. Then, the running speed of 

the best clustering models are compared. Moreover, we examine different learning 

approaches for training DEPICT. Finally, we analyze the performance of DEPICT model 

on semi-supervised classification tasks. 

Datasets: 

In order to show that DEPICT works well with various kinds of datasets, we have 

chosen the following handwritten digit and face image datasets. Considering that 

clustering tasks are fully unsupervised, we concatenate the training and testing samples 

when applicable. 

MNIST-full: A dataset containing a total of 70,000 handwritten digits with 60,000 training 

and 10,000 testing samples, each being a 32 by 32 monochrome image (LeCun, Bottou 

et al. 1998). 

MNIST-test: A dataset which only consists of the testing part of MNIST-full data. 

                                                 
2 Our code is available in https://github.com/herandy/DEPICT 

https://github.com/herandy/DEPICT
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USPS: It is a handwritten digits dataset from the USPS postal service, containing 11,000 

samples of 16 by 16 images. 

CMU-PIE: A dataset including 32 by 32 face images of 68 people with 4 different 

expressions (Sim, Baker et al. 2002). 

Youtube-Face (YTF): Following (Yang, Parikh et al. 2016), we choose the first 41 

subjects of YTF dataset. Faces inside images are first cropped and then resized to 55 by 

55 sizes (Wolf, Hassner et al. 2011). 

FRGC: Using the 20 random selected subjects in (Yang, Parikh et al. 2016) from the 

original dataset, we collect 2,462 face images. Similarly, we first crop the face regions 

and resize them into 32 by 32 images. 

Dataset # Samples # Classes # Dimensions 

MNIST-full 70,000 10 1×28×28 

MNIST-test 10,000 10 1×28×28 

USPS 11,000 10 1×16×16 

FRGC 2,462 20 3×32×32 

YTF 10,000 41 3×55×55 

CMU-PIE 2,856 68 1×32×32 

Table 4 Clustering Dataset Descriptions 

Clustering Metrics: We have used 2 of the most popular evaluation criteria widely used 

for clustering algorithms, accuracy (ACC) and normalized mutual information (NMI). The 

best mapping between cluster assignments and true labels is computed using the 

Hungarian algorithm (Kuhn 1955) to measure accuracy. NMI calculates the normalized 

measure of similarity between two labels of the same data (Xu, Liu et al. 2003). Results 

of NMI do not change by permutations of clusters (classes), and they are normalized to 

have [0,1] range, with 0 meaning no correlation and 1 exhibiting perfect correlation. 
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Evaluation of Clustering Algorithms 

Alternative Models: We compare our clustering model, DEPICT, with several baseline 

and state-of-the-art clustering algorithms, including 𝐾-means, normalized cuts (N-Cuts) 

(Shi and Malik 2000), self-tuning spectral clustering (SC-ST) (Zelnik-Manor and Perona 

2005), large-scale spectral clustering (SC-LS) (Chen and Cai 2011), graph degree 

linkage-based agglomerative clustering (AC-GDL) (Zhang, Wang et al. 2012), 

agglomerative clustering via path integral (AC-PIC) (Zhang, Zhao et al. 2013), spectral 

embedded clustering (SEC) (Nie, Zeng et al. 2011), local discriminant models and global 

integration (LDMGI) (Yang, Xu et al. 2010), NMF with deep model (NMF-D) (Trigeorgis, 

Bousmalis et al. 2014), task-specific clustering with deep model (TSC-D) (Wang, Chang 

et al. 2016), deep embedded clustering (DEC) (Xie, Girshick et al. 2016), and joint 

unsupervised learning (JULE) (Yang, Parikh et al. 2016). 

Implementation Details: We use a common architecture for DEPICT and avoid tuning 

any hyper-parameters using the labeled data in order to provide a practical algorithm for 

real-world clustering tasks. For all datasets, we consider two convolutional layers 

followed by a fully connected layer in encoder and decoder pathways. While for all 

convolutional layers, the feature map size is 50 and the kernel size is about 5 × 5, the 

dimension of the embedding subspace is set equal to the number of clusters in each 

dataset. We also pick the proper stride, padding and crop to have an output size of about 

10 × 10 in the second convolutional layer. Inspired by (Radford, Metz et al. 2015), we 

consider leaky rectified (leaky RELU) non-linearity (Maas, Hannun et al. 2013) as the 

activation function of convolutional and fully connected layers, except in the last layer of 

encoder and first layer of decoder, which have Tanh non-linearity functions. 

Consequently, we normalize the image intensities to be in the range of [−1,  1]. Moreover, 

we set the learning rate and dropout to 10−4 and 0.1 respectively, adopt adam as our 
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optimization method with the default hyper-parameters β1 = 0.9, β2 = 0.999, ϵ = 1e − 08 

(Kingma and Ba 2014). The weights of convolutional and fully connected layers are all 

initialized by Xavier approach (Glorot and Bengio 2010). Since the clustering 

assignments in the first iterations are random and not reliable for clustering loss, we first 

train DEPICT without clustering loss function for a while, then initialize the clustering 

assignment qik by clustering the embedding subspace features via simple algorithms like 

𝐾-means or AC-PIC. 

Quantitative Comparison: We run DEPICT and other clustering methods on each 

dataset. We followed the implementation details for DEPICT and report the average 

results from 5 runs. For the rest, we present the best reported results either from their 

original papers or from (Yang, Parikh et al. 2016). For unreported results on specific 

datasets, we run the released code with hyper-parameters mentioned in the original 

papers, these results are marked by (*) on top.  But, when the code is not publicly 

available, or running the released code is not practical, we put dash marks (-) instead of 

the corresponding results. Moreover, we mention the number of hyper-parameters that 

are tuned using supervisory signals (labeled data) for each algorithm. Note that this 

number only shows the quantity of hyper-parameters, which are set differently for various 

datasets for better performance. 

Table 5 reports the clustering metrics, normalized mutual information (NMI) and 

accuracy (ACC), of the algorithms on the aforementioned datasets. As shown, DEPICT 

outperforms other algorithms on four datasets and achieves competitive results on the 

remaining two. It should be noted that we think hyper-parameter tuning using supervisory 

signals is not feasible in real-world clustering tasks, and hence DEPICT is a significantly 

better clustering algorithm compared to the alternative models in practice. For example, 

DEC, SEC, and  LDMGI report their best results by tuning one hyper-parameter over nine 
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different options, and  JULE-SF and JULE-RC achieve their good performance by 

tweaking several hyper-parameters over various datasets. However, we do not tune any 

hyper-parameters for  DEPICT using the labeled data and only report the result with the 

same (default) hyper-parameters for all datasets. 

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE 
#Tuned 

HPs 

 NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC  

K-means 0.500* 0.534* 0.501* 0.547* 0.450* 0.460* 0.287* 0.243* 0.776* 0.601* 0.432* 0.223* 0 

N-Cuts 0.411 0.327 0.753 0.304 0.675 0.314 0.285 0.235 0.742 0.536 0.411 0.155 0 

SC-ST 0.416 0.311 0.756 0.454 0.726 0.308 0.431 0.358 0.620 0.290 0.581 0.293 0 

SC-LS 0.706 0.714 0.756 0.740 0.681 0.659 0.550 0.407 0.759 0.544 0.788 0.549 0 

AC-GDL 0.017 0.113 0.844 0.933 0.824 0.867 0.351 0.266 0.622 0.430 0.934 0.842 1 

AC-PIC 0.017 0.115 0.853 0.920 0.840 0.855 0.415 0.320 0.697 0.472 0.902 0.797 0 

SEC 0.779* 0.804* 0.790* 0.815* 0.511* 0.544* - - - - - - 1 

LDMGI 0.802* 0.842* 0.811* 0.847* 0.563* 0.580* - - - - - - 1 

NMF-D 0.152* 0.175* 0.241* 0.250* 0.287* 0.382* 0.259* 0.274* 0.562* 0.536* 0.920* 0.810* 0 

TSC-D 0.651 0.692 - - - - - - - - - - 2 

DEC 0.816* 0.844* 0.827* 0.859* 0.586* 0.619* 0.505* 0.378* 0.446* 0.371* 0.924* 0.801* 1 

JULE-SF 0.906 0.959 0.876 0.940 0.858 0.922 0.566 0.461 0.848 0.684 0.984 0.980 3 

DEPICT 0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883 0 

Table 5 Clustering performance of different algorithms on image datasets based 

on accuracy (ACC) and normalized mutual information (NMI). The numbers of 

tuned hyper-parameters (# tuned HPs) using the supervisory signals are also 

shown for each algorithm. The results of alternative models are reported from 
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original papers, except the ones marked by (∗) on top, which are obtained by us 

running the released code. We put dash marks (-) for the results that are not 

practical to obtain. 

Running Time Comparison 

In order to evaluate the efficiency of our clustering algorithm in dealing with large-

scale and high dimensional data, we compare the running speed of DEPICT with its 

competing algorithms, JULE-SF and JULE-RC. Moreover, the fast versions of JULE-SF 

and JULE-RC are also evaluated. Note that JULE-SF(fast) and JULE-RC(fast) both 

require tuning one extra hyper-parameter for each dataset to achieve results similar to 

the original JULE algorithms in Table 5 (Yang, Parikh et al. 2016). We run DEPICT and 

the released code for JULE algorithms3 on a machine with one Titan X pascal GPU and a 

Xeon E5-2699 CPU. 

                                                 
3 https://github.com/jwyang/JULE-Torch 

https://github.com/jwyang/JULE-Torch
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Figure 4 Running time comparison of DEPICT and JULE clustering algorithms on image 

datasets. 

 Figure 4 illustrates the running time for DEPICT and JULE algorithms on all 

datasets. Note that running times of JULE-SF and JULE-RC are shown linearly from 0 to 

30,000 and logarithmically for larger values for the sake of readability. In total, JULE-RC, 

JULE-SF, JULE-RC(fast), JULE-SF(fast) and DEPICT take 66.1, 35.5, 11.0, 6.6 and 4.7 

hours respectively to run over all datasets.  While all algorithms have approximately 

similar running times on small datasets (FRGC and CMU-PIE), when dealing with the 

large-scale and high-dimensional datasets (MNIST-full and YTF), DEPICT almost shows 

a linear increase in the running time, but the running times of original JULE algorithms 
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dramatically grow with the size and number of input data.  This outcome again 

emphasizes the practicality of DEPICT for real-world clustering tasks. 

Evaluation of Learning Approach 

In order to evaluate our joint learning approach, we compare  several strategies 

for training  DEPICT. For training a multi-layer convolutional autoencoder, we analyze the 

following three approaches : 1) Standard stacked denoising autoencoder (SdA), in which 

the model is first pretrained using the reconstruction loss function in a layer-wise manner, 

and the encoder pathway is then fine-tuned using the clustering objective function 

(Vincent, Larochelle et al. 2010). 2) Another approach (RdA)  is suggested in (Xie, 

Girshick et al. 2016) to improve the SdA learning approach, in which all of the 

autoencoder layers are retrained after the pretraining step, only using the reconstruction 

of input layer while data is not corrupted by noise. The fine-tuning step is also done after 

the retraining step. 3) Our learning approach (MdA), in which the whole model is trained 

simultaneously using the joint reconstruction loss functions from all layers along with the 

clustering objective function. 

Furthermore, we also examine the effect of clustering loss (through error back-

prop) in constructing the embedding subspace. To do so, we train a similar multi-layer 

convolutional autoencoder (Deep-ConvAE) only using the reconstruction loss function to 

generate the embedding subspace. Then, we run the best shallow clustering algorithm 

(AC-PIC) on the embedded data. Hence, this model (Deep-ConvAE+AC-PIC) differs from 

DEPICT in the sense that its embedding subspace is only constructed using the 

reconstruction loss and does not involve the clustering loss. 
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Dataset  MNIST-full MNIST-test USPS FRGC YTF CMU-PIE 

  NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC 

Deep-

ConvAE 

+ AC-

PIC 

SdA 

RdA 

M

MdA 

0.255 0.348 0.313 0.345 0.223 0.290 0.120 0.230 0.414 0.302 0.354 0.266 

0.615 0.455 0.859 0.900 0.886 0.866 0.443 0.363 0.597 0.425 0.912 0.817 

0.729 0.506 0.876 0.942 0.906 0.878 0.583 0.427 0.640 0.448 0.931 0.883 

DEPICT 

SdA 

RdA 

M

MdA 

0.365 0.427 0.353 0.390 0.328 0.412 0.211 0.300 0.414 0.302 0.354 0.266 

0.808 0.677 0.899 0.950 0.901 0.923 0.551 0.444 0.652 0.450 0.951 0.926 

0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883 

Table 6 Clustering performance of different learning approaches, including SdA, RdA and 

MdA, for training DEPICT and Deep-ConvAE+AC-PIC models. 

Table 6 indicates the results of DEPICT and Deep-ConvAE+AC-PIC when using 

the different learning approaches. As expected, DEPICT trained by our joint learning 

approach (MdA) consistently outperforms the other alternatives on all datasets. 

Interestingly, MdA learning approach shows promising results for Deep-ConvAE+ AC-

PIC model, where only reconstruction losses are used to train the embedding subspace. 

Thus, our learning approach is an efficient strategy for training autoencoder models due 

to its superior results and fast end-to-end training. 

Semi-Supervised Classification Performance 

Representation learning in an unsupervised manner or using a small number of 

labeled data has recently attracted great attention. Due to the potential of our model in 

learning a discriminative embedding subspace, we evaluate DEPICT in a semi-

supervised classification task. Following the semi-supervised experiment settings 

(Rasmus, Berglund et al. 2015, Zhao, Mathieu et al. 2015), we train our model using a 
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small random subset of MNIST-training dataset as labeled data and the remaining as 

unlabeled data. The classification error of DEPICT is then computed using the MNIST-

test dataset, which is not seen during training.  Compared to our unsupervised learning 

approach, we only utilize the clusters corresponding to each labeled data in training 

process. In particular, only for labeled data, the cluster labels (assignments) are set using 

the best map technique from the original classification labels once, and then they will be 

fixed during the training step. 

Model 100 1000 3000 

T-SVM (Vapnik 1999) 16.81 5.38 3.45 

CAE (Rifai, Vincent et 

al. 2011) 

13.47 4.77 3.22 

MTC (Rifai, Dauphin et 

al. 2011) 

12.03 3.64 2.57 

PL-DAE (Lee 2013) 10.49 3.46 2.69 

AtlasRBF 

(Pitelis, Russell et al. 

2014) 

8.10 3.68 - 

M1+M2 

(Kingma, Mohamed et 

al. 2014) 

3.33±0.14 2.40±0.05 2.18±0.04 

SWWAE (Zhao, 

Mathieu et al. 2015) 

8.71±0.34 2.83±0.10 2.10±0.22 

Ladder 

(Rasmus, Berglund et 

al. 2015) 

1.06±0.37 0.84±0.08 - 

DEPICT 2.65±0.35 2.10±0.11 1.91±0.06 

Table 7 Comparison of DEPICT and several semi-supervised classification models in 

MNIST dataset with different numbers of labeled data. 
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 Table 7 shows the error results for several semi-supervised classification models 

using different numbers of labeled data. Surprisingly, DEPICT achieves comparable 

results with the state-of-the-art, despite the fact that the semi-supervised classification 

models use 10,000 validation data to tune their hyper-parameters, DEPICT only employs 

the labeled training data (e.g. 100) and does not tune any hyper-parameters. Although 

DEPICT is not mainly designed for classification tasks, it outperforms several models 

including SWWAE (Zhao, Mathieu et al. 2015), M1+M2 (Kingma, Mohamed et al. 2014), 

and AtlasRBF (Pitelis, Russell et al. 2014), and has comparable results with the 

complicated Ladder network (Rasmus, Berglund et al. 2015). These results further 

confirm the discriminative quality of the embedding features of DEPICT. 
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Chapter 4  

Conclusion 

We have utilized various ensembling methods with the use of well-known models 

for Natural Language Processing tasks to build a robust and efficient classifier for text 

data. We have used CNNs, LSTMs, GRUs, as well as the inherent ensembling nature of 

dropouts while making use of both best and last models to build this model. 

We proposed a new deep clustering model, DEPICT, consisting of a soft-max 

layer stacked on top of a multi-layer convolutional autoencoder. We employed a 

regularized relative entropy loss function for clustering, which leads to balanced cluster 

assignments. Adopting our autoencoder reconstruction loss function enhanced the 

embedding learning. Furthermore, a joint learning framework was introduced to train all 

network layers simultaneously and avoid layer-wise pretraining. Experimental results 

showed that DEPICT is a good candidate for real-world clustering tasks, since it achieved 

superior or competitive results compared to alternative methods while having faster 

running speed and not needing hyper-parameter tuning. Efficiency of our joint learning 

approach was also confirmed in clustering and semi-supervised classification tasks. 
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Chapter 5  

Future Work 

Although word embeddings like GloVe provide models with a lot of analysis 

power, these methods are by no means ideal. Even though the data used to train these 

embeddings was enormous and contained more than 1.9 million words, it still does not 

contain all of the words in every dataset, this is especially evident when working with 

specialized datasets like medical text data. This introduces the problem of Out Of 

Vocabulary (OOV) words. For now we have decided to overlook this flaw as the 

embeddings seem to work well even considering these out of vocabulary words. 

However, there can be many ways to tackle this problem and it is one of the problems 

being researched right now. In their current form there is 3 things that could happen when 

an out of vocabulary word is fed through the word embedding layer, it might provide a 

completely random set of vectors, a fixed vector set reserved for OOV words, or just the 

average of all the vectors in the embeddings. 

One method worth experimenting with would be to train a small network on the 

vocabulary set so that given each word it would output the corresponding embedding. If 

the model achieves a sufficiently high accuracy to reproduce word vectors it might be 

usable instead of the word embedding layer at the base of the network. The advantage 

here would be that the word embedding process could be more deeply integrated into 

networks and more importantly, because this is an actual network trained on words to 

produce their word vectors even given Out Of Vocabulary words it should output vectors 

at least more usable than random or average over all vectors. Another advantage here 

would be space usage, currently the GloVe word embeddings are 5 GBs, by using a 

network that reproduces the same vectors through learning and referencing, this space 

requirement can be significantly reduced. Our early tests show that using a simple LSTM 
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model can reduce the space requirement at least by 10 times.  
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