
FROM TEXT CLASSIFICATION TO IMAGE CLUSTERING,

PROBLEMS LESS OPTIMIZED

by

Amirhossein Herandi

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN Computer Science

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2018

ii

Copyright © by Amirhossein Herandi 2018

All Rights Reserved

iii

Acknowledgements

I would like to thank my hard-working professor and supervisor Dr. Heng Huang

for all his help and guidance during my research.

April 10, 2018

iv

Abstract

FROM TEXT CLASSIFICATION TO IMAGE CLUSTERING,

PROBLEMS LESS OPTIMIZED

Amirhossein Herandi, MS

The University of Texas at Arlington, 2018

Supervising Professor: Heng Huang

Machine Learning is thriving. Every industry is using its techniques in some way

to improve their efficiency and revenue. However, the focus on research is not divided

equally between all of the different areas and problems that this field can tackle and

analyze. Currently, Computer Vision is the one area that is being focused very

extensively by researchers and companies alike, and as a result has seen an amazing

boost in the recent years. This ranges from the well-known problems of classification that

use discriminative models all the way to more novel problems that use generative models

such as style transfer, super resolution, and description generation. Yet, some other

problems have not been worked on nearly as much as of now. These problems include

some Natural Language Processing tasks like Sentence Classification and even

Computer Vision problems such as Image Clustering. Each of these tasks has their own

set of difficulties and obstructions that need to be tackled before they can be researched

properly and used in the industry which is a great driving force for research. Specifically,

the case of clustering seems to be interesting to look into as more and more lable-less

and unknown data is being generated every day without means to process and analyze

them efficiently. We will discuss these problems that have been focused on less

throughout the recent years.

v

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ..vii

List of Tables ... viii

Chapter 1 Introduction... 1

Chapter 2 Text Classification .. 3

Introduction ... 3

Related Works .. 4

Method .. 5

LSTMs and GRUS .. 6

CNNs .. 7

Experiments .. 8

Chapter 3 Image Clustering .. 15

Introduction ... 17

Related Works .. 21

Deep Embedded Regularized Clustering ... 24

DEPICT Algorithm .. 24

DEPICT Architecture .. 28

Experiments .. 32

Evaluation of Clustering Algorithms ... 34

Running Time Comparison ... 37

Evaluation of Learning Approach ... 39

Semi-Supervised Classification Performance .. 40

Chapter 4 Conclusion .. 43

vi

Chapter 5 Future Work.. 44

References .. 46

Biographical Information ... 54

vii

List of Illustrations

Figure 1 One dimensional Convolutional Neural Network on word embeddings. 8

Figure 2 Visualization to show the discriminative capability of embedding subspaces. ... 18

Figure 3 Architecture of DEPICT .. 28

Figure 4 Running time comparison of DEPICT and JULE clustering algorithms. 38

viii

List of Tables

Table 1 Text Classification Datasets ... 11

Table 2 Text Classification performance comparison. .. 12

Table 3 Classification performance comparison between our own models with different

inference methods. .. 14

Table 4 Clustering Dataset Descriptions... 33

Table 5 Clustering performance of different algorithms on image datasets. 36

Table 6 Clustering performance of different learning approaches, including SdA, RdA and

MdA, for training DEPICT and Deep-ConvAE+AC-PIC models. 40

Table 7 Comparison of DEPICT and several semi-supervised classification models. 41

1

Chapter 1

Introduction

With the advent of the internet and more recently, digitization of data, the need to

process and interpret data has become a prevalent and interesting problem. There are

massive amounts of data available publicly and privately today, a large portion of which

has not been utilized yet, mostly because the techniques currently available are not

sufficiently robust to interpret them in their present state.

Current data is noisy and unstructured, it is unlabeled and vague, making most

available algorithms unable to process them without spending significant time and effort

for structuring and cleaning the data.

On the other hand, when the data is sufficiently organized, with the emergence of

a multitude of new ways of looking at data and interpreting them, it has been shown that

not only there are various methods to approach any data related problem, e.g. fully or

semi-supervised classification as well as unsupervised learning, but also using the same

data more novel and groundbreaking tasks could be accomplished, e.g. segmentation

and image captioning.

However, as mentioned before, almost all the current tasks need sufficiently

clean data with correct labeling to be usable in real world tasks. While some huge

datasets like ImageNet (Deng, Dong et al. 2009) have been successfully and acceptably

labeled using crowd-sourcing websites like Amazon Turk (Buhrmester, Kwang et al.

2011), more difficult data like medical images or even some text reports cannot be

correctly cleaned or labeled by ordinary people on these websites. This is one of the

biggest problems that still holds the Machine Learning and Data Mining back from fully

exploiting the huge amounts of unused data available online, and alleviating this problem

2

could save a lot of money for companies. It is for this reason that Unsupervised Learning

will probably be very successful in the near future as it does not have a need for labeling.

Typically, classic Machine Learning methods perform well with moderate

numbers of data, while Deep Learning methods tend to work well when large amounts of

data are available. The fact that companies and websites accumulate more and more

data as we progress through the years makes these Deep Learning algorithms even

more promising in dealing with these data efficiently as the databases grow.

Most current methods are offline algorithms, meaning that by adding any new

data points the entirety of the learning process needs to be redone to improve the model

based on all the available data. While sometimes this might be possible and may even be

necessary in order to achieve the best performance possible, it wouldn't be feasible for

gigantic datasets from companies like Netflix or Amazon to retrain their algorithms every

time they add new data points, new customers or products. This emphasizes the need for

novel and effective online deep learning algorithms which can handle scaling datasets,

while maintaining their robust data analyzing power to an acceptable extent.

3

Chapter 2

Text Classification

Introduction

Classification of images has been extensively researched in the last couple of

decades in the field of Machine Learning, and specially now with Deep Learning,

however, text classification has not been pursued to that extent yet. There could be

several reasons for this phenomenon. One could argue that most companies are

investing more in Computer Vision right now and its applications compared to Natural

Language Processing which focuses on text processing and manipulation.

Most current models use word embeddings, which were initially introduced by

(Bengio, Ducharme et al. 2003) and later with the introduction of the very popular

word2vec word embeddings (Mikolov, Sutskever et al. 2013) became widely used, and

for most word based NLP tasks is the standard word representation model. Not unlike

computer vision, it is believed that the model will learn hierarchical features from the text,

n-grams, phrases, sentences are essentially combinations of several words.

However, when analyzing sentences on the word level, inputs, which are

sentences, can become relatively small. These small networks would usually prohibit the

use of deep networks. To alleviate this problem some models have been reproduced that

work on the character level (Zhang, Zhao et al. 2015) making the inputs much longer and

enabling the use of very deep networks (Conneau, Schwenk et al. 2016), but these

methods cannot use word embeddings. Currently there is no consensus on which

approach, word level or character level models, is better, and there are advantages and

disadvantages for both.

4

Related Works

As with most areas in machine learning, classification, text classification here

specifically, is an important part of Natural Language processing as well, and just like any

other area in machine learning researchers have started exploiting machine learning

models and techniques in the past few years for text classification like convolutional

networks (Kim 2014, Yosinski, Clune et al. 2014, Conneau, Schwenk et al. 2016, Le,

Cerisara et al. 2017) as well as recurrent neural networks (Xiao and Cho 2016,

Yogatama, Dyer et al. 2017). However, traditional methods typically use linear classifiers

for text classification (Joachims 1998, McCallum and Nigam 1998, Fan, Chang et al.

2008). It has been shown that with a good rank constraint and fast loss approximation

they could be scaled to large datasets rapidly as well (Joulin, Grave et al. 2016).

Machine Translation has been one of the hottest topics in the field of NLP.

Recent works have been using novel neural machine translation techniques like encoder

decoder models for human-like translations (Gehring, Auli et al. 2016, Gehring, Auli et al.

2017, Klein, Kim et al. 2017). The source sentences are fed through the encoder, the

decoder gets the last hidden state from the encoder as input and generates the

translation word by word to the target language. This method is at the core of the Google

Translation service.

In Natural Language Processing Convolutional Neural Networks were first used

by (Collobert and Weston 2008, Collobert, Weston et al. 2011). As an alternative to the

local max pooling layer in the original LeNet model (LeCun, Bottou et al. 1998) they have

used a new global max pooling layer which is shown to be effective for text. Furthermore,

by co-training several deep models on various tasks, they proposed to transfer task

specific information. With slight modification to (Collobert and Weston 2008) a simpler

model was proposed by (Mikolov, Sutskever et al. 2013) which uses fixed, or in some

5

cases fine-tuned, word embeddings, word2vec, and its combination as multi-channel.

Their work demonstrates that even this simple model could achieve state-of-the-art

performance on several small datasets. In order to handle variable length inputs as is

common with text input, dynamic k-max pooling was proposed by (Kalchbrenner,

Grefenstette et al. 2014), which is a generalization of the max pooling operator with k is

dynamically set as part of the network.

All of the research mentioned previously uses word embeddings as their basis,

which was introduced by (Bengio, Ducharme et al. 2003) in order to alleviate the curse of

dimensionality by using distributed representations. The problem with these methods is

that each sentence or even paragraphs only has a few number of words, thus preventing

models from becoming very deep as input size is a limiting factor. It has been shown that

word representation based inputs might not be inclusive for many inputs specially in

social media as typos, hashtags, and other non-conventional writing habits are often

seen (Severyn and Moschitti 2015). Hence, they proposed a convolutional model that

would work on the character level which avoids the need for any word preprocessing or

tokenization. Later on, (Conneau, Schwenk et al. 2016) introduced a much simpler model

which could be made much deeper as a results.

Method

Here, we have focused on experimenting with several well-known Deep Learning

architectures and methods for text classification such as different types of Recursive

Neural Networks like LSTMs (Hochreiter and Schmidhuber 1997) and GRUs (Cho, Van

Merriënboer et al. 2014, Chung, Gulcehre et al. 2014) as well as traditional CNNs

(LeCun, Haffner et al. 1999) that have recently been shown to work well with text as well.

6

LSTMs and GRUS

LSTMs (Long Short-Term Memory) and GRUs (Gated Recurrent Unit) are both

replacements for conventional RNN models that avoid the vanishing and exploding

gradient problems. They also have another advantage, all recurrent models deal with

sequential data it is better to have mechanisms available to control how much past

elements from the sequence or past states can effect cell and hidden state updates. Both

are widely used right now but they have a few differences that sets them apart. LSTMs

use four gates called input, forget, cell, and output gates as well as two states by the

names of cell and hidden states. The input gate decides on how of the new cell state

should be kept and the forget gate decides how much of the current memory should be

forgotten. The output gate oversees how much of the cell state should be given to the

next layer, and the cell gate is a candidate for the hidden state which is calculated using

a combination of the current input and the previous hidden state. GRUs similarly have

reset, Input, and new gates and only the hidden state. Unlike LSTMs, GRUs don’t have

any internal memory or a cell state and neither do they have an output gate. The reset

gate determines how the previous memory should be combined with the new input, and

the update gate decides how much of the previous memory should be used.

• LSTMs have more gates and usually produce with more consistent

results.

• GRUs have 1 fewer gate compared to LSTMs and are somewhat faster

to train and mostly achieve better performance on smaller datasets.

7

LSTM

it = σ(Wiixt + bii + Whih(t−1) + bhi) input gate

ft = σ(Wifxt + bif + Whfh(t−1) + bhf) forget gate

gt = tanh(Wigxt + big + Whgh(t−1) + bhg) cell gate

ot = σ(Wioxt + bio + Whoh(t−1) + bho) output gate

ct = ftc(t−1) + itgt cell state

ht = ot tanh(ct) hidden state

GRU

rt = σ(Wirxt + bir + Whrh(t−1) + bhr) reset gate

zt = σ(Wizxt + biz + Whzh(t−1) + bhz) input gate

nt = tanh (Winxt + bin + rt(Whnh(t−1) + bhn)) new gate

ht = (1 − zt)nt + zth(t−1) hidden state

As you can see, GRUs have fewer parameters compared to LSTMs so during

training they will finish training faster. Even though GRUs are more recent that LSTMs

they are not necessarily better, and while they surpass LSTMs in some cases they still

cannot consistently outperform them.

CNNs

LSTMs and GRUs are the standard in most sequential tasks like text, however,

there is a big problem that they cannot be parallelized very well which in practice makes

them much slower to use compared to parallelizable models like convolutional neural

network (CNNs). In our work we are using a simple one-dimensional CNN model as one

of our methods in the ensemble learning that we are doing. The CNN network actually

performs really well as we will see in the experiments section.

8

Figure 1 One dimensional Convolutional Neural Network on word embeddings.

Experiments

The key here is that while each individual network works well by its own, using an

ensemble (Hansen and Salamon 1990) created by the output probability of all of the

networks always gives us a probability that is as good as the best and often better than

each one individually.

To be able to compare our results with previous work, we have used standard

text classification datasets available at (http://goo.gl/JyCnZq), which we will explain in

more detail later on.

As you know, most Machine Learning algorithms can only process numbers and

not actual raw text. There are several methods to convert text input into a numeral format

and then feed them to the algorithm for learning and analysis. One way would be to do

this at the character level and look at each character as an individual entity or feature in

the data. Another approach would be to take a word level approach, in which each word

would have its own unique representation instead. As mentioned by (Le, Cerisara et al.

2017) word level implementations seem to be the most effective between these two

http://goo.gl/JyCnZq

9

models. Moreover, character level modelling means that each letter is considered one

feature instead of a word, and as a result, each sentence is seen as a much larger input

from the model’s point of view, because one sentence contains far more letters than

words. This drastic increase in the number of features consequently requires the model

to be deeper with more parameters to learn, which would not be practical.

Furthermore, the use of word level classification enables us the use of pretrained

word embeddings, like GloVe (Pennington, Socher et al. 2014) or Word2Vec (Mikolov,

Chen et al. 2013, Mikolov, Sutskever et al. 2013) instead of learning them from scratch.

We have decided to use the Global Vectors for Word Representation (GloVe) for our

word vector representations of words, these embeddings are one of the more recent

ones trained on a very large dataset that was collected by Common Crawl1 which

maintains a corpus of web crawl data. We use the embeddings which have 300

dimensions.

One of the advantages of using word embedding vectors is that being pretrained

on a gigantic dataset, they contain a lot of information, meaning, as well as context for

each word, which would make the whole training process much faster and more efficient.

In our experiments we have seen using these embeddings and fixing them throughout

the training process give us the best results with the least overfitting. However, finetuning

them by training them further using our own dataset during training makes our models

significantly slower and prone to overfitting.

The CNN model has 3 one dimensional convolutional layers each followed by a

one dimensional max pooling layer. We have used similar models for our BiLSTM and

BiGRU models. We are using two layers stacked on top of each other and use only the

last output from each direction from the second layer for our inference, because we are

1 http://commoncrawl.org/

10

doing sentence classification we only need the last output from the LSTM or GRU and as

we are using the Bidirectional models we need one output per direction. We have used a

window size of 72, hidden dimension size 48 for LSTM and GRU and 196 for CNN,

learning rate of 5e-4, regularization value of 2e-6 with a batchsize of 256 over 250

epochs to train all 3 models and for all 3 datasets. We decided to use Self Normalizing

Linear Units (Klambauer, Unterthiner et al. 2017) for all of our activations other than the

softmax layers at the end of the models which are used for classification. The convolving

done in CNNs slides a filter window across the input which in this case with text it is

sequentially going over the words. Depending on the filter size it would be similar to

sequentially feeding the networks n-grams with n being the filter size.

Alternative Models: We compare our ensemble model with various state of the art as

well as baseline models and report the results in Table 2. These models consist of:

• Naïve Bayes, which uses a simple count based unigram language model

(Yogatama, Dyer et al. 2017)

• Kneser–Ney Bayes, similar to Naïve Bayes but uses a more sophisticated

method that uses trigrams and Kneser-ney smoothing (Yogatama, Dyer et al.

2017)

• MLP Naïve Bayes, a version similar to Naïve Bayes that is an extension of the

Naïve Bayes by using a feed forward neural network (Yogatama, Dyer et al.

2017)

• Bag of words, which uses most frequent words from training data (Zhang and

Wallace 2015)

• Ngrams, similar to Bag of words but instead of words it uses most frequent

ngrams (pairs of n words that appear together) (Zhang and Wallace 2015)

11

• Ngrams TFIDF, which is similar to the Ngrams model but instead uses TFIDF

features (Text Frequency Inverse Document Frequency) (Zhang and Wallace

2015)

• Discriminative LSTM, the top performing model from (Yogatama, Dyer et al.

2017) that uses logistic regression on top of a normal LSTM model.

• Fasttext, very simply model that trains its own word embeddings which are the

only parameters in the model that are trained for the actual classification, it has a

rank constraint and a fast loss approximation (Joulin, Grave et al. 2016)

• Word-DenseNet, a word-level implementation of the Densenet architecture

(Huang, Liu et al. 2017) from (Le, Cerisara et al. 2017), specifically chose one

with most of the highest values for this comparison, specifically the Word-

DenseNet Nb= (4−4−4−4) Global Average-Pooling model.

• Word shallow-and-wide CNN, the model with the best performance from (Le,

Cerisara et al. 2017) in which 3 convolutional layers with varying filter sizes are

used on the input and their outputs are concatenated together to be fed to a fully

connected layer.

Dataset # Training Samples # Test Samples # Classes

AG News 120,000 7,600 4

Yelp Review

Polarity

560,000 7,600 2

DBPedia 560,000 60,000 14

Table 1 Text Classification Datasets

Datasets: We have used several baseline text classification datasets for out

comparisons which are explained below:

12

• AG News, news articles from the internet consisting of titles as well as

descriptions from 4 different classes, 120,000 training and 7,600 test samples

(Del Corso, Gulli et al. 2005)

• Yelp Review Polarity, (Yelp Bin) From the Yelp Dataset challenge in 2015 that

consists of 560,000 training and 7,600 test samples from 2 classes.

• DBPedia, 14 different classes have been chosen from DBPedia 2014

(Wikipedia), with 560,000 training and 60,000 test samples.

Model AGNews Yelp Bin DBPedia

Naïve Bayes 90.0 86.0 96.0

Kneser–Ney Bayes 89.3 81.8 95.4

MLP Naïve Bayes 89.9 73.6 87.2

Discriminative LSTM 92.1 92.6 98.7

Fasttext 92.5 95.7 98.6

Word-DenseNet 91.7 95.8 98.7

Word shallow-and-wide CNN 92.2 95.8 98.7

CNN 92.9 94.0 98.6

BiLSTM 93.6 92.7 98.6

BiGRU 93.3 92.5 98.5

Ensemble 93.8 93.7 98.7

Table 2 Text Classification performance comparison on AG News, Yelp Binary, and

DBPedia Datasets.

Moreover, Because the nature of our experiment is to boost our performance

using ensembles of different models we have done several things to take these

ensemblings even further. We have tried the ensemble of the best models based on the

13

best validation error with the model at the last epoch, calling these best and final

respectively. Furthermore, as we are using dropout layers in all of our models, because

of the stochastic nature of dropout and its randomness we decided that at inference,

aside from using the clean network without any dropout to get the probabilities for

classification decision, we also used corrupted paths that still apply dropouts. We passed

the test data once through the clean network and 19 times with dropouts and take their

average and we call this method Noisy Ensemble, you can see that in the BiLSTM and

BiGRU models this actually produces a significant boost in accuracy, this is done for both

best models and final models, and finally for the last model we have averaged all of these

probabilities for our final ensemble which we call Best+Final Noisy Ensemble and mostly

produces the best overall result. These results are detailed in Table 3.

14

Model Inference Method AGNews Yelp Bin DBPedia

CNN

Final 92.4 93.9 98.5

Best 92.7 94.0 98.5

Best+Final 92.7 94.0 98.6

Final Noisy Ensemble 92.9 93.9 98.6

Best Noisy Ensemble 92.8 93.9 98.5

Best+Final Noisy Ensemble 92.9 94.0 98.6

BiLSTM

Final 92.2 75.0 98.3

Best 92.5 89.9 98.5

Best+Final 92.5 87.1 98.5

Final Noisy Ensemble 93.5 93.3 98.5

Best Noisy Ensemble 93.3 90.3 98.5

Best+Final Noisy Ensemble 93.6 92.7 98.6

BiGRU

Final 92.3 88.0 97.9

Best 92.6 90.3 98.3

Best+Final 92.5 90.3 98.3

Final Noisy Ensemble 93.3 92.5 98.5

Best Noisy Ensemble 93.0 91.6 98.4

Best+Final Noisy Ensemble 93.3 92.5 98.5

Ensemble of all

Final 93.6 93.6 98.7

Best 93.6 93.7 98.7

Best+Final 93.7 93.8 98.7

Final Noisy Ensemble 93.8 93.9 98.7

Best Noisy Ensemble 93.6 93.3 98.6

Best+Final Noisy Ensemble 93.8 93.7 98.7

Table 3 Classification performance comparison between our own models with different

inference methods.

15

Chapter 3

Image Clustering

In this chapter we will be mostly going through our work published at ICCV 2017

(Dizaji, Herandi et al. 2017). As mentioned previously, clustering is one of the problems in

Machine Learning and Computer vision that has been focused on less in the recent

years. One of the main reasons for this is that in the practical case, clustering and more

generally unsupervised learning means that the amount of information available on

available data is far less than supervised learning and classification.

Deep Learning is preforming extremely well with supervised learning, but with

deep learning and the current large complicated and complicated models, each one of

these models has several hyperparameters the tuning of which could alter the end results

significantly. In supervised problems this matter is extremely helpful and produces results

much higher than anything before them. These hyper parameters range from the depth

and the width of the networks to learning rates and regularization values. These

hyperparameter tuning need to be done for each dataset individually to ensure best

results. Even though, these tunings help supervised learning to a great extent, it is

actually an obstacle for unsupervised learning.

In unsupervised learning, at least in real world problems, there is no label to be

used for optimizing and selecting the best hyperparameters. This makes it important to

create universal models that would work well with as many datasets as possible,

meaning models as small and as simple as possible with the least number of

hyperparameters to optimize. Before Deep Learning, methods like K-means and

Agglomerative Clustering where the baselines for unsupervised learning, but with the

need for methods that work efficiently with larger datasets while producing results usable

16

in the industry, scalable algorithm like one’s based on Deep Learning are becoming more

and more desirable.

In this chapter we will be mostly going through our work published at ICCV 2017

(Dizaji, Herandi et al. 2017). As mentioned previously, clustering is one of the problems in

Machine Learning and Computer vision that has been focused on less in the recent

years. One of the main reasons for this is that in the practical case, clustering and more

generally unsupervised learning means that the amount of information available on

available data is far less than supervised learning and classification.

Deep Learning is preforming extremely well with supervised learning, but with

deep learning and the current large complicated and complicated models, each one of

these models has several hyperparameters the tuning of which could alter the end results

significantly. In supervised problems this matter is extremely helpful and produces results

much higher than anything before them. These hyper parameters range from the depth

and the width of the networks to learning rates and regularization values. These

hyperparameter tuning need to be done for each dataset individually to ensure best

results. Even though, these tunings help supervised learning to a great extent, it is

actually an obstacle for unsupervised learning.

In unsupervised learning, at least in real world problems, there is no label to be

used for optimizing and selecting the best hyperparameters. This makes it important to

create universal models that would work well with as many datasets as possible,

meaning models as small and as simple as possible with the least number of

hyperparameters to optimize. Before Deep Learning, methods like K-means and

Agglomerative Clustering where the baselines for unsupervised learning, but with the

need for methods that work efficiently with larger datasets while producing results usable

17

in the industry, scalable algorithm like one’s based on Deep Learning are becoming more

and more desirable.

Here I will include our complete paper published in ICCV 2017 titled “Deep

Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy

Minimization”.

Authors:

Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, Heng Huang

Introduction

Clustering is one of the fundamental topics in machine learning and computer

vision research, and it has gained significant attention for discriminative

representation of data points without any need for supervisory signals. The

clustering problem has been extensively studied in various applications; however,

the performance of standard clustering algorithms is adversely affected when

dealing with high-dimensional data, and their time complexity dramatically

increases when working with large-scale datasets. Tackling the curse of

dimensionality, previous studies often initially project data into a low-dimensional

manifold, and then cluster the embedded data in this new subspace (Roth and

Lange 2004, Tian, Gao et al. 2014, Wang, Chang et al. 2016)}. Handling large-

scale datasets, there are also several studies which select only a subset of data

points to accelerate the clustering process (Shinnou and Sasaki 2008, Chen and

Cai 2011).

18

(a) Raw data (b) NonJoint DEPICT (c) Joint DEPICT

Figure 2 Visualization to show the discriminative capability of embedding subspaces

using MNIST-test data. (a) The space of raw data. (b) The embedding subspace of non-

joint DEPICT using standard stacked denoising autoencoder (SdA). (c) The embedding

subspace of joint DEPICT using our joint learning approach (MdA).

However, dealing with real-world image data, existing clustering

algorithms suffer from different issues: 1) Using inflexible hand-crafted features

(e.g. SIFT, HOG), which do not depend on the input data distribution; 2) Using

shallow and linear embedding functions, which are not able to capture the non-

linear nature of data; 3) Non-joint embedding and clustering processes, which do

not result in an optimal embedding subspace for clustering; 4) Complicated

clustering algorithms that require tuning the hyper-parameters using labeled data,

which is not feasible in real-world clustering tasks.

To address the mentioned challenging issues, we propose a new clustering

algorithm, called deep embedded regularized clustering (DEPICT), which exploits

the advantages of both discriminative clustering methods and deep embedding

models. DEPICT generally consists of two main parts, a multinomial logistic

regression (soft-max) layer stacked on top of a multi-layer convolutional

19

autoencoder. The soft-max layer along with the encoder pathway can be

considered as a discriminative clustering model, which is trained using the

relative entropy (KL divergence) minimization. We further add a regularization

term to this objective based on a prior distribution for the frequency of cluster

assignments. This regularization term penalizes unbalanced cluster assignments

and prevents allocating clusters to outlier samples.

Although this deep clustering model is flexible enough to discriminate the

complex real-world input data, it can easily get stuck in non-optimal local minima

during training and result in undesirable cluster assignments. In order to avoid

overfitting the deep clustering model to spurious data correlations, we utilize the

reconstruction loss function of autoencoder models as a data-dependent

regularization term for training parameters.

In order to benefit from a joint learning framework for embedding and

clustering, we introduce a unified objective function including our clustering and

auxiliary reconstruction loss functions. We then employ an alternating approach

to efficiently update the parameters and estimate the cluster assignments. It is

worth mentioning that in the standard learning approach for training a multi-layer

autoencoder, the encoder and decoder parameters are first pretrained layer-wise

using the reconstruction loss, and the encoder parameters are then fine-tuned

using the objective function of the main task (Vincent, Larochelle et al. 2010).

However, it has been argued that the non-joint fine-tuning step may overwrite the

20

encoder parameters entirely and consequently cancel out the benefit of the layer-

wise pretraining step (Zhao, Mathieu et al. 2015). To avoid this problem and

achieve optimal joint learning results, we simultaneously train all of the encoder

and decoder layers together along with the soft-max layer. To do so, we sum up

the squared error reconstruction loss functions between the decoder and their

corresponding (clean) encoder layers and add them to the clustering loss function.

Figure 1 demonstrates the importance of our joint learning strategy by

comparing different data representations of MNIST-test data points (LeCun,

Bottou et al. 1998) using principle component analysis (PCA) visualization. The

first figure indicates the raw data representation; The second one shows the data

points in the embedding subspace of non-joint DEPICT, in which the model is

trained using the standard layer-wise stacked denoising autoencoder (SdA); The

third one visualizes the data points in the embedding subspace of joint DEPICT,

in which the model is trained using our multi-layer denoising autoencoder

learning approach (MdA). As shown, joint DEPICT using MdA learning approach

provides a significantly more discriminative embedding subspace compared to

non-joint DEPICT using standard SdA learning approach.

Moreover, experimental results show that DEPICT achieves superior or

competitive results compared to the state-of-the-art algorithms on the image

benchmark datasets while having faster running times. In addition, we compared

different learning strategies for DEPICT, and confirm that our joint learning

21

approach has the best results. It should also be noted that DEPICT does not

require any hyper-parameter tuning using supervisory signals, and consequently is

a better candidate for the real-world clustering tasks.

Thus, we summarize the advantages of DEPICT as:

• Providing a discriminative non-linear embedding subspace via the deep

convolutional autoencoder;

• Introducing an end-to-end joint learning approach, which unifies the

clustering and embedding tasks, and avoids layer-wise pretraining;

• Achieving superior or competitive clustering results on high-dimensional

and large-scale datasets with no need for hyper-parameter tuning using

labeled data.

Related Works

There is a large number of clustering algorithms in literature, which can be

grouped into different perspectives, such as hierarchical (Williams 2000, Heller and

Ghahramani 2005, Zhang, Wang et al. 2012) centroid-based (Lloyd 1982, Bezdek,

Ehrlich et al. 1984, Bahmani, Moseley et al. 2012, Nie, Wang et al. 2014),graph-based

(Shi and Malik 2000, Nie, Wang et al. 2016, Nie, Wang et al. 2016, Wang, Nie et al.

2016), sequential (temporal) (Keogh, Chu et al. 2001, Sargin, Yemez et al. 2008, Zhou,

De la Torre et al. 2013, Sadoughi and Busso 2015, Sadoughi, Liu et al. 2015) and

subspace clustering models (Agrawal, Gehrke et al. 1998, Kailing, Kriegel et al. 2004,

Gao, Nie et al. 2015, Nie and Huang 2016). In another sense, they are generally divided

into two subcategories, generative and discriminative clustering algorithms. The

generative algorithms like K-means and Gaussian mixture model (Biernacki, Celeux et al.

22

2000) explicitly represent the clusters using geometric properties of the feature space,

and model the categories via the statistical distributions of input data. Unlike the

generative clustering algorithms, the discriminative methods directly identify the

categories using their separating hyperplanes regardless of data distribution. Information

theoretic (Li, Zhang et al. 2004, Barber and Agakov 2006, Krause, Perona et al. 2010)\,

max-margin (Xu, Neufeld et al. 2005, Zhao, Wang et al. 2008), and spectral graph (Ng,

Jordan et al. 2002) algorithms are examples of discriminative clustering models.

Generally it has been argued that the discriminative models often have better results

compared to their generative counterparts, since they have fewer assumptions about the

data distribution and directly separate the clusters, but their training can suffer from

overfitting or getting stuck in undesirable local minima (Ng and Jordan 2002, Raina, Shen

et al. 2004, Krause, Perona et al. 2010). Our DEPICT algorithm is also a discriminative

clustering model, but it benefits from the auxiliary reconstruction task of autoencoder to

alleviate this issue in training of our discriminative clustering algorithm.

There are also several studies regarding the combination of clustering with

feature embedding learning. Ye et al. introduced a kernelized K-means algorithm,

denoted by DisKmeans, where embedding to a lower dimensional subspace via linear

discriminant analysis (LDA) is jointly learned with K-means cluster assignments (Ye,

Zhao et al. 2008). Combination of linear embedding with spectral clustering is also

presented in (Yang, Xu et al. 2010, Nie, Zeng et al. 2011). But these models all suffer

from having shallow and linear embedding functions, which cannot represent the non-

linearity of real-world data.

A joint learning framework for updating code books and estimating image clusters was

proposed in (Xie and Xing 2015) while SIFT features are used as input data.

23

A deep structure, named TAGnet was introduced in (Wang, Chang et al. 2016), where

two layers of sparse coding followed by a clustering algorithm are trained with an

alternating learning approach. Similar work is presented in (Wang, Yang et al. 2015) that

formulates a joint optimization framework for discriminative clustering and feature

extraction using sparse coding. However, the inference complexity of sparse coding

forces the model in (Wang, Yang et al. 2015) to reduce the dimension of input data with

PCA and the model in (Wang, Chang et al. 2016) to use an approximate solution. Hand-

crafted features and dimension reduction techniques degrade the clustering performance

by neglecting the distribution of input data.

Tian et al. learned a non-linear embedding of the affinity graph using a stacked

autoencoder, and then obtained the clusters in the embedding subspace via K-means

(Tian, Gao et al. 2014). Trigeorgis et al. extended semi non-negative matrix factorization

(semi-NMF) to stacked multi-layer (deep) semi-NMF to capture the abstract information in

the top layer. Afterwards, they run K-means over the embedding subspace for cluster

assignments (Trigeorgis, Bousmalis et al. 2014). More recently, Xie et al. employed

denoising stacked autoencoder learning approach, and first pretrained the model layer-

wise and then fine-tuned the encoder pathway stacked by a clustering algorithm using

Kullback-Leibler divergence minimization (Xie, Girshick et al. 2016). Unlike these models

that require layer-wise pretraining as well as non-joint embedding and clustering learning,

DEPICT utilizes an end-to-end optimization for training all network layers simultaneously

using the unified clustering and reconstruction loss functions.

Yang et al. introduced a new clustering model, named JULE, based on a

recurrent framework, where data is represented via a convolutional neural network and

embedded data is iteratively clustered using an agglomerative clustering algorithm (Yang,

Parikh et al. 2016). They derived a unified loss function consisting of the merging process

24

for agglomerative clustering and updating the parameters of the deep representation.

While JULE achieved good results using the joint learning approach, it requires tuning of

a large number of hyper-parameters, which is not practical in real-world clustering tasks.

In contrast, our model does not need any supervisory signals for hyper-parameter tuning.

Deep Embedded Regularized Clustering

In this section, we first introduce the clustering objective function and the

corresponding optimization algorithm, which alternates between estimating the

cluster assignments and updating model parameters. Afterwards, we show the

architecture of DEPICT and provide the joint learning framework to

simultaneously train all network layers using the unified clustering and

reconstruction loss functions.

DEPICT Algorithm

Let's consider the clustering task of N samples, X = [x1, … , xn], into K categories,

where each sample xi ∈ Rdx. Using the embedding function, φW: X → Z, we are able to

map raw samples into the embedding subspace Z = [z1, … , zn], where each zi ∈ Rdz has a

much lower dimension compared to the input data (i.e. dz ≪ dx). Given the embedded

features, we use a multinomial logistic regression (soft-max) function fθ: Z → Y to predict

the probabilistic cluster assignments as follows.

𝑝𝑖𝑘 = 𝑃(𝑦𝑖 = 𝑘|𝐳𝐢, 𝚯) =
𝑒𝑥𝑝(𝜽𝒌

𝑻𝐳𝐢)

∑ 𝑒𝑥𝑝𝐾
𝑘′=1 (𝜽𝒌′

𝑻 𝐳𝐢)

1

where Θ = [θ1, … , θk] ∈ Rdz×K are the soft-max function parameters, and pik

indicates the probability of the i-th sample belonging to the k-th cluster.

25

In order to define our clustering objective function, we employ an auxiliary target

variable 𝐐 to refine the model predictions iteratively. To do so, we first use Kullback-

Leibler (𝐊𝐋) divergence to decrease the distance between the model prediction P and the

target variable Q.

ℒ = KL(Q|P) =
1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

2

In order to avoid degenerate solutions, which allocate most of the samples to a

few clusters or assign a cluster to outlier samples, we aim to impose a regularization term

to the target variable. To this end, we first define the empirical label distribution of target

variables as:

fk = P(y = k) =
1

N
∑ qik

i

3

where 𝑓𝑘 can be considered as the soft frequency of cluster assignments in the

target distribution. Using this empirical distribution, we are able to enforce our preference

for having balanced assignments by adding the following KL divergence to the loss

function.

ℒ = KL(Q||P) + KL(f||u)

= [
1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

] + [
1

N
∑ fk log

fk

uk

K

k=1

]

=
1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

+ qik log
fk

uk

4

26

where u is the uniform prior for the empirical label distribution. While the first term

in the objective minimizes the distance between the target and model prediction

distributions, the second term balances the frequency of clusters in the target variables.

Utilizing the balanced target variables, we can force the model to have more

balanced predictions (cluster assignments) P indirectly. It is also simple to change the

prior from the uniform distribution to any arbitrary distribution in the objective function if

there is any extra knowledge about the frequency of clusters.

An alternating learning approach is utilized to optimize the objective function.

Using this approach, we estimate the target variables Q via fixed parameters

(expectation step), and update the parameters while the target variables Q are assumed

to be known (maximization step). The problem to infer the target variable Q has the

following objective:

min
Q

1

N
∑ ∑ qik log

qik

pik

K

k=1

N

i=1

+ qik log
fk

uk

5

where the target variables are constrained to ∑ qikk = 1. This problem can be

solved using first order methods, such as gradient descent, projected gradient descent,

and Nesterov optimal method (Nesterov 2013), which only require the objective function

value and its (sub)gradient at each iteration. In the following equation, we show the

partial derivative of the objective function with respect to the target variables.

∂ℒ

∂qik

∝ log (
qikfk

pik

) +
qik

∑ qi′k
N
i′=1

+ 1

6

Investigating this problem more carefully, we approximate the gradient in Eq. 6

by removing the second term, since the number of samples N is often big enough to

27

ignore the second term. Setting the gradient equal to zero, we are now able to compute

the closed form solution for Q accordingly.

qik =
pik/(∑ pi′ki′)

1
2

∑ pik′/(∑ pi′k′i′)
1
2k′

7

For the maximization step, we update the network parameters 𝝍 = (𝚯, 𝐖) using

the estimated target variables with the following objective function.

min
ψ

 −
1

N
∑ ∑ 1k=1

K qik log pik

N

i=1

8

Interestingly, this problem can be considered as a standard cross entropy loss

function for classification tasks, and the parameters of soft-max layer Θ and embedding

function W can be efficiently updated by backpropagating the error.

28

Figure 3 Architecture of DEPICT for CMU-PIE dataset. DEPICT consists of a

soft-max layer stacked on top of a multi-layer convolutional autoencoder. In order

to illustrate the joint learning framework, we consider the following four

pathways for DEPICT: Noisy (corrupted) encoder, Decoder, Clean encoder and

Soft-max layer. The clustering loss function, 𝐿𝐸, is applied on the noisy pathway,

and the reconstruction loss functions, 𝐿2, are between the decoder and clean

encoder layers. The output size of convolutional layers, kernel sizes, strides (S),

paddings (P) and crops (C) are also shown.

DEPICT Architecture

In this section, we extend our general clustering loss function using a denoising

autoencoder. The deep embedding function is useful for capturing the non-linear nature

29

of input data; However, it may overfit to spurious data correlations and get stuck in

undesirable local minima during training. To avoid this overfitting, we employ

autoencoder structures and use the reconstruction loss function as a data-dependent

regularization for training the parameters. Therefore, we design DEPICT to consist of a

soft-max layer stacked on top of a multi-layer convolutional autoencoder. Due to the

promising performance of strided convolutional layers in (Radford, Metz et al. 2015, Yeh,

Chen et al. 2016), we employ convolutional layers in our encoder and strided

convolutional layers in the decoder pathways, and avoid deterministic spatial pooling

layers (like max-pooling). Strided convolutional layers allow the network to learn its own

spatial upsampling, providing a better generation capability.

Unlike the standard learning approach for denoising autoencoders, which

contains layer-wise pretraining and then fine-tuning, we simultaneously learn all of the

autoencoder and soft-max layers. As shown in Figure 3, DEPICT consists of the

following components:

1. Corrupted feedforward (encoder) pathway maps the noisy input data into the

embedding subspace using a few convolutional layers followed by a fully

connected layer. The following equation indicates the output of each layer in

the noisy encoder pathway.

z l̃ = Dropout[g(We
lzl−1̃)]

9

where z l̃ are the noisy features of the l-th layer, Dropout is a stochastic mask

function that randomly sets a subset of its inputs to zero (Srivastava, Hinton et al. 2014),

g is the activation function of convolutional or fully connected layers, and We
l indicates the

30

weights of the l-th layer in the encoder. Note that the first layer features, z0̃, are equal to

the noisy input data, x̃.

2. Followed by the corrupted encoder, the decoder pathway reconstructs the

input data through a fully connected and multiple strided convolutional layers

as follows,

zl−1̂ = g(Wd
l z l̂)

10

where z l̂ is the l-th reconstruction layer output, and Wd
l shows the weights for the

l-th layer of the decoder. Note that input reconstruction, x̂, is equal to z0̂.

3. Clean feedforward (encoder) pathway shares its weights with the corrupted

encoder, and infers the clean embedded features. The following equation

shows the outputs of the clean encoder, which are used in the reconstruction

loss functions and obtaining the final cluster assignments.

zl = g(We
lzl−1)

11

where zl is the clean output of the l-th layer in the encoder. Consider the first

layer features z0 equal to input data x.

4. Given the top layer of the corrupted and clean encoder pathways as the

embedding subspace, the soft-max layer obtains the cluster assignments

using eq. 1.

Note that we compute target variables Q using the clean pathway, and model

prediction P̃ via the corrupted pathway. Hence, the clustering loss function KL(Q||P̃)

forces the model to have invariant features with respect to noise. In other words, the

model is assumed to have a dual role: a clean model, which is used to compute the more

31

accurate target variables; and a noisy model, which is trained to achieve noise-invariant

predictions.

As a crucial point, DEPICT algorithm provides a joint learning framework that

optimizes the soft-max and autoencoder parameters together.

min
ψ

−
1

N
∑ ∑ qik log pik̃

K

k=1

N

i=1

+
1

N
∑ ∑

1

|zi
l|

L−1

l=0

||

N

i=1

zi
l − zi

l̂||2
2

12

where |zi
l| is the output size of the l-th hidden layer (input for l = 0), and L is the

depth of the autoencoder model.

The benefit of joint learning frameworks for training multi-layer autoencoders is

also reported in semi-supervised classification tasks (Rasmus, Berglund et al. 2015,

Zhao, Mathieu et al. 2015). However, DEPICT is different from previous studies, since it

is designed for the unsupervised clustering task, it also does not require max-pooling

switches used in stacked what-where autoencoder (SWWAE) (Zhao, Mathieu et al.

2015), and lateral (skip) connections between encoder and decoder layers used in ladder

network (Rasmus, Berglund et al. 2015). Algorithm 1 shows a brief description of

DEPICT algorithm.

32

Algorithm 1 DEPICT Algorithm

Initialize 𝐐 using a clustering algorithm

𝐖𝐡𝐢𝐥𝐞 not converged do

min
ψ

−
1

N
∑ qik log pik̃

ik

+
1

N
∑

1

|zi
l|

il

|zi
l − zi

l̂|2
2

pik
(t)

∝ exp(θk
Tzi

L)

qik
(t)

∝ pik/ (∑ pi′k

i′

)

1
2

𝐞𝐧𝐝

 Experiments

In this section, we first evaluate DEPICT2 in comparison with state-of-the-art

clustering methods on several benchmark image datasets. Then, the running speed of

the best clustering models are compared. Moreover, we examine different learning

approaches for training DEPICT. Finally, we analyze the performance of DEPICT model

on semi-supervised classification tasks.

Datasets:

In order to show that DEPICT works well with various kinds of datasets, we have

chosen the following handwritten digit and face image datasets. Considering that

clustering tasks are fully unsupervised, we concatenate the training and testing samples

when applicable.

MNIST-full: A dataset containing a total of 70,000 handwritten digits with 60,000 training

and 10,000 testing samples, each being a 32 by 32 monochrome image (LeCun, Bottou

et al. 1998).

MNIST-test: A dataset which only consists of the testing part of MNIST-full data.

2 Our code is available in https://github.com/herandy/DEPICT

https://github.com/herandy/DEPICT

33

USPS: It is a handwritten digits dataset from the USPS postal service, containing 11,000

samples of 16 by 16 images.

CMU-PIE: A dataset including 32 by 32 face images of 68 people with 4 different

expressions (Sim, Baker et al. 2002).

Youtube-Face (YTF): Following (Yang, Parikh et al. 2016), we choose the first 41

subjects of YTF dataset. Faces inside images are first cropped and then resized to 55 by

55 sizes (Wolf, Hassner et al. 2011).

FRGC: Using the 20 random selected subjects in (Yang, Parikh et al. 2016) from the

original dataset, we collect 2,462 face images. Similarly, we first crop the face regions

and resize them into 32 by 32 images.

Dataset # Samples # Classes # Dimensions

MNIST-full 70,000 10 1×28×28

MNIST-test 10,000 10 1×28×28

USPS 11,000 10 1×16×16

FRGC 2,462 20 3×32×32

YTF 10,000 41 3×55×55

CMU-PIE 2,856 68 1×32×32

Table 4 Clustering Dataset Descriptions

Clustering Metrics: We have used 2 of the most popular evaluation criteria widely used

for clustering algorithms, accuracy (ACC) and normalized mutual information (NMI). The

best mapping between cluster assignments and true labels is computed using the

Hungarian algorithm (Kuhn 1955) to measure accuracy. NMI calculates the normalized

measure of similarity between two labels of the same data (Xu, Liu et al. 2003). Results

of NMI do not change by permutations of clusters (classes), and they are normalized to

have [0,1] range, with 0 meaning no correlation and 1 exhibiting perfect correlation.

34

Evaluation of Clustering Algorithms

Alternative Models: We compare our clustering model, DEPICT, with several baseline

and state-of-the-art clustering algorithms, including 𝐾-means, normalized cuts (N-Cuts)

(Shi and Malik 2000), self-tuning spectral clustering (SC-ST) (Zelnik-Manor and Perona

2005), large-scale spectral clustering (SC-LS) (Chen and Cai 2011), graph degree

linkage-based agglomerative clustering (AC-GDL) (Zhang, Wang et al. 2012),

agglomerative clustering via path integral (AC-PIC) (Zhang, Zhao et al. 2013), spectral

embedded clustering (SEC) (Nie, Zeng et al. 2011), local discriminant models and global

integration (LDMGI) (Yang, Xu et al. 2010), NMF with deep model (NMF-D) (Trigeorgis,

Bousmalis et al. 2014), task-specific clustering with deep model (TSC-D) (Wang, Chang

et al. 2016), deep embedded clustering (DEC) (Xie, Girshick et al. 2016), and joint

unsupervised learning (JULE) (Yang, Parikh et al. 2016).

Implementation Details: We use a common architecture for DEPICT and avoid tuning

any hyper-parameters using the labeled data in order to provide a practical algorithm for

real-world clustering tasks. For all datasets, we consider two convolutional layers

followed by a fully connected layer in encoder and decoder pathways. While for all

convolutional layers, the feature map size is 50 and the kernel size is about 5 × 5, the

dimension of the embedding subspace is set equal to the number of clusters in each

dataset. We also pick the proper stride, padding and crop to have an output size of about

10 × 10 in the second convolutional layer. Inspired by (Radford, Metz et al. 2015), we

consider leaky rectified (leaky RELU) non-linearity (Maas, Hannun et al. 2013) as the

activation function of convolutional and fully connected layers, except in the last layer of

encoder and first layer of decoder, which have Tanh non-linearity functions.

Consequently, we normalize the image intensities to be in the range of [−1,  1]. Moreover,

we set the learning rate and dropout to 10−4 and 0.1 respectively, adopt adam as our

35

optimization method with the default hyper-parameters β1 = 0.9, β2 = 0.999, ϵ = 1e − 08

(Kingma and Ba 2014). The weights of convolutional and fully connected layers are all

initialized by Xavier approach (Glorot and Bengio 2010). Since the clustering

assignments in the first iterations are random and not reliable for clustering loss, we first

train DEPICT without clustering loss function for a while, then initialize the clustering

assignment qik by clustering the embedding subspace features via simple algorithms like

𝐾-means or AC-PIC.

Quantitative Comparison: We run DEPICT and other clustering methods on each

dataset. We followed the implementation details for DEPICT and report the average

results from 5 runs. For the rest, we present the best reported results either from their

original papers or from (Yang, Parikh et al. 2016). For unreported results on specific

datasets, we run the released code with hyper-parameters mentioned in the original

papers, these results are marked by (*) on top. But, when the code is not publicly

available, or running the released code is not practical, we put dash marks (-) instead of

the corresponding results. Moreover, we mention the number of hyper-parameters that

are tuned using supervisory signals (labeled data) for each algorithm. Note that this

number only shows the quantity of hyper-parameters, which are set differently for various

datasets for better performance.

Table 5 reports the clustering metrics, normalized mutual information (NMI) and

accuracy (ACC), of the algorithms on the aforementioned datasets. As shown, DEPICT

outperforms other algorithms on four datasets and achieves competitive results on the

remaining two. It should be noted that we think hyper-parameter tuning using supervisory

signals is not feasible in real-world clustering tasks, and hence DEPICT is a significantly

better clustering algorithm compared to the alternative models in practice. For example,

DEC, SEC, and LDMGI report their best results by tuning one hyper-parameter over nine

36

different options, and JULE-SF and JULE-RC achieve their good performance by

tweaking several hyper-parameters over various datasets. However, we do not tune any

hyper-parameters for DEPICT using the labeled data and only report the result with the

same (default) hyper-parameters for all datasets.

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE
#Tuned

HPs

 NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means 0.500* 0.534* 0.501* 0.547* 0.450* 0.460* 0.287* 0.243* 0.776* 0.601* 0.432* 0.223* 0

N-Cuts 0.411 0.327 0.753 0.304 0.675 0.314 0.285 0.235 0.742 0.536 0.411 0.155 0

SC-ST 0.416 0.311 0.756 0.454 0.726 0.308 0.431 0.358 0.620 0.290 0.581 0.293 0

SC-LS 0.706 0.714 0.756 0.740 0.681 0.659 0.550 0.407 0.759 0.544 0.788 0.549 0

AC-GDL 0.017 0.113 0.844 0.933 0.824 0.867 0.351 0.266 0.622 0.430 0.934 0.842 1

AC-PIC 0.017 0.115 0.853 0.920 0.840 0.855 0.415 0.320 0.697 0.472 0.902 0.797 0

SEC 0.779* 0.804* 0.790* 0.815* 0.511* 0.544* - - - - - - 1

LDMGI 0.802* 0.842* 0.811* 0.847* 0.563* 0.580* - - - - - - 1

NMF-D 0.152* 0.175* 0.241* 0.250* 0.287* 0.382* 0.259* 0.274* 0.562* 0.536* 0.920* 0.810* 0

TSC-D 0.651 0.692 - - - - - - - - - - 2

DEC 0.816* 0.844* 0.827* 0.859* 0.586* 0.619* 0.505* 0.378* 0.446* 0.371* 0.924* 0.801* 1

JULE-SF 0.906 0.959 0.876 0.940 0.858 0.922 0.566 0.461 0.848 0.684 0.984 0.980 3

DEPICT 0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883 0

Table 5 Clustering performance of different algorithms on image datasets based

on accuracy (ACC) and normalized mutual information (NMI). The numbers of

tuned hyper-parameters (# tuned HPs) using the supervisory signals are also

shown for each algorithm. The results of alternative models are reported from

37

original papers, except the ones marked by (∗) on top, which are obtained by us

running the released code. We put dash marks (-) for the results that are not

practical to obtain.

Running Time Comparison

In order to evaluate the efficiency of our clustering algorithm in dealing with large-

scale and high dimensional data, we compare the running speed of DEPICT with its

competing algorithms, JULE-SF and JULE-RC. Moreover, the fast versions of JULE-SF

and JULE-RC are also evaluated. Note that JULE-SF(fast) and JULE-RC(fast) both

require tuning one extra hyper-parameter for each dataset to achieve results similar to

the original JULE algorithms in Table 5 (Yang, Parikh et al. 2016). We run DEPICT and

the released code for JULE algorithms3 on a machine with one Titan X pascal GPU and a

Xeon E5-2699 CPU.

3 https://github.com/jwyang/JULE-Torch

https://github.com/jwyang/JULE-Torch

38

Figure 4 Running time comparison of DEPICT and JULE clustering algorithms on image

datasets.

 Figure 4 illustrates the running time for DEPICT and JULE algorithms on all

datasets. Note that running times of JULE-SF and JULE-RC are shown linearly from 0 to

30,000 and logarithmically for larger values for the sake of readability. In total, JULE-RC,

JULE-SF, JULE-RC(fast), JULE-SF(fast) and DEPICT take 66.1, 35.5, 11.0, 6.6 and 4.7

hours respectively to run over all datasets. While all algorithms have approximately

similar running times on small datasets (FRGC and CMU-PIE), when dealing with the

large-scale and high-dimensional datasets (MNIST-full and YTF), DEPICT almost shows

a linear increase in the running time, but the running times of original JULE algorithms

39

dramatically grow with the size and number of input data. This outcome again

emphasizes the practicality of DEPICT for real-world clustering tasks.

Evaluation of Learning Approach

In order to evaluate our joint learning approach, we compare several strategies

for training DEPICT. For training a multi-layer convolutional autoencoder, we analyze the

following three approaches : 1) Standard stacked denoising autoencoder (SdA), in which

the model is first pretrained using the reconstruction loss function in a layer-wise manner,

and the encoder pathway is then fine-tuned using the clustering objective function

(Vincent, Larochelle et al. 2010). 2) Another approach (RdA) is suggested in (Xie,

Girshick et al. 2016) to improve the SdA learning approach, in which all of the

autoencoder layers are retrained after the pretraining step, only using the reconstruction

of input layer while data is not corrupted by noise. The fine-tuning step is also done after

the retraining step. 3) Our learning approach (MdA), in which the whole model is trained

simultaneously using the joint reconstruction loss functions from all layers along with the

clustering objective function.

Furthermore, we also examine the effect of clustering loss (through error back-

prop) in constructing the embedding subspace. To do so, we train a similar multi-layer

convolutional autoencoder (Deep-ConvAE) only using the reconstruction loss function to

generate the embedding subspace. Then, we run the best shallow clustering algorithm

(AC-PIC) on the embedded data. Hence, this model (Deep-ConvAE+AC-PIC) differs from

DEPICT in the sense that its embedding subspace is only constructed using the

reconstruction loss and does not involve the clustering loss.

40

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE

 NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Deep-

ConvAE

+ AC-

PIC

SdA

RdA

M

MdA

0.255 0.348 0.313 0.345 0.223 0.290 0.120 0.230 0.414 0.302 0.354 0.266

0.615 0.455 0.859 0.900 0.886 0.866 0.443 0.363 0.597 0.425 0.912 0.817

0.729 0.506 0.876 0.942 0.906 0.878 0.583 0.427 0.640 0.448 0.931 0.883

DEPICT

SdA

RdA

M

MdA

0.365 0.427 0.353 0.390 0.328 0.412 0.211 0.300 0.414 0.302 0.354 0.266

0.808 0.677 0.899 0.950 0.901 0.923 0.551 0.444 0.652 0.450 0.951 0.926

0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883

Table 6 Clustering performance of different learning approaches, including SdA, RdA and

MdA, for training DEPICT and Deep-ConvAE+AC-PIC models.

Table 6 indicates the results of DEPICT and Deep-ConvAE+AC-PIC when using

the different learning approaches. As expected, DEPICT trained by our joint learning

approach (MdA) consistently outperforms the other alternatives on all datasets.

Interestingly, MdA learning approach shows promising results for Deep-ConvAE+ AC-

PIC model, where only reconstruction losses are used to train the embedding subspace.

Thus, our learning approach is an efficient strategy for training autoencoder models due

to its superior results and fast end-to-end training.

Semi-Supervised Classification Performance

Representation learning in an unsupervised manner or using a small number of

labeled data has recently attracted great attention. Due to the potential of our model in

learning a discriminative embedding subspace, we evaluate DEPICT in a semi-

supervised classification task. Following the semi-supervised experiment settings

(Rasmus, Berglund et al. 2015, Zhao, Mathieu et al. 2015), we train our model using a

41

small random subset of MNIST-training dataset as labeled data and the remaining as

unlabeled data. The classification error of DEPICT is then computed using the MNIST-

test dataset, which is not seen during training. Compared to our unsupervised learning

approach, we only utilize the clusters corresponding to each labeled data in training

process. In particular, only for labeled data, the cluster labels (assignments) are set using

the best map technique from the original classification labels once, and then they will be

fixed during the training step.

Model 100 1000 3000

T-SVM (Vapnik 1999) 16.81 5.38 3.45

CAE (Rifai, Vincent et

al. 2011)

13.47 4.77 3.22

MTC (Rifai, Dauphin et

al. 2011)

12.03 3.64 2.57

PL-DAE (Lee 2013) 10.49 3.46 2.69

AtlasRBF

(Pitelis, Russell et al.

2014)

8.10 3.68 -

M1+M2

(Kingma, Mohamed et

al. 2014)

3.33±0.14 2.40±0.05 2.18±0.04

SWWAE (Zhao,

Mathieu et al. 2015)

8.71±0.34 2.83±0.10 2.10±0.22

Ladder

(Rasmus, Berglund et

al. 2015)

1.06±0.37 0.84±0.08 -

DEPICT 2.65±0.35 2.10±0.11 1.91±0.06

Table 7 Comparison of DEPICT and several semi-supervised classification models in

MNIST dataset with different numbers of labeled data.

42

 Table 7 shows the error results for several semi-supervised classification models

using different numbers of labeled data. Surprisingly, DEPICT achieves comparable

results with the state-of-the-art, despite the fact that the semi-supervised classification

models use 10,000 validation data to tune their hyper-parameters, DEPICT only employs

the labeled training data (e.g. 100) and does not tune any hyper-parameters. Although

DEPICT is not mainly designed for classification tasks, it outperforms several models

including SWWAE (Zhao, Mathieu et al. 2015), M1+M2 (Kingma, Mohamed et al. 2014),

and AtlasRBF (Pitelis, Russell et al. 2014), and has comparable results with the

complicated Ladder network (Rasmus, Berglund et al. 2015). These results further

confirm the discriminative quality of the embedding features of DEPICT.

43

Chapter 4

Conclusion

We have utilized various ensembling methods with the use of well-known models

for Natural Language Processing tasks to build a robust and efficient classifier for text

data. We have used CNNs, LSTMs, GRUs, as well as the inherent ensembling nature of

dropouts while making use of both best and last models to build this model.

We proposed a new deep clustering model, DEPICT, consisting of a soft-max

layer stacked on top of a multi-layer convolutional autoencoder. We employed a

regularized relative entropy loss function for clustering, which leads to balanced cluster

assignments. Adopting our autoencoder reconstruction loss function enhanced the

embedding learning. Furthermore, a joint learning framework was introduced to train all

network layers simultaneously and avoid layer-wise pretraining. Experimental results

showed that DEPICT is a good candidate for real-world clustering tasks, since it achieved

superior or competitive results compared to alternative methods while having faster

running speed and not needing hyper-parameter tuning. Efficiency of our joint learning

approach was also confirmed in clustering and semi-supervised classification tasks.

44

Chapter 5

Future Work

Although word embeddings like GloVe provide models with a lot of analysis

power, these methods are by no means ideal. Even though the data used to train these

embeddings was enormous and contained more than 1.9 million words, it still does not

contain all of the words in every dataset, this is especially evident when working with

specialized datasets like medical text data. This introduces the problem of Out Of

Vocabulary (OOV) words. For now we have decided to overlook this flaw as the

embeddings seem to work well even considering these out of vocabulary words.

However, there can be many ways to tackle this problem and it is one of the problems

being researched right now. In their current form there is 3 things that could happen when

an out of vocabulary word is fed through the word embedding layer, it might provide a

completely random set of vectors, a fixed vector set reserved for OOV words, or just the

average of all the vectors in the embeddings.

One method worth experimenting with would be to train a small network on the

vocabulary set so that given each word it would output the corresponding embedding. If

the model achieves a sufficiently high accuracy to reproduce word vectors it might be

usable instead of the word embedding layer at the base of the network. The advantage

here would be that the word embedding process could be more deeply integrated into

networks and more importantly, because this is an actual network trained on words to

produce their word vectors even given Out Of Vocabulary words it should output vectors

at least more usable than random or average over all vectors. Another advantage here

would be space usage, currently the GloVe word embeddings are 5 GBs, by using a

network that reproduces the same vectors through learning and referencing, this space

requirement can be significantly reduced. Our early tests show that using a simple LSTM

45

model can reduce the space requirement at least by 10 times.

46

References

Agrawal, R., et al. (1998). Automatic subspace clustering of high dimensional

data for data mining applications, ACM.

Bahmani, B., et al. (2012). "Scalable k-means++." Proceedings of the VLDB

Endowment 5(7): 622-633.

Barber, D. and F. V. Agakov (2006). Kernelized infomax clustering. Advances in

neural information processing systems.

Bengio, Y., et al. (2003). "A neural probabilistic language model." Journal of

Machine Learning Research 3(Feb): 1137-1155.

Bezdek, J. C., et al. (1984). "FCM: The fuzzy c-means clustering algorithm."

Computers & Geosciences 10(2-3): 191-203.

Biernacki, C., et al. (2000). "Assessing a mixture model for clustering with the

integrated completed likelihood." IEEE transactions on pattern analysis and

machine intelligence 22(7): 719-725.

Buhrmester, M., et al. (2011). "Amazon's Mechanical Turk: A new source of

inexpensive, yet high-quality, data?" Perspectives on psychological science 6(1):

3-5.

Chen, X. and D. Cai (2011). Large scale spectral clustering with landmark-based

representation. AAAI.

Cho, K., et al. (2014). "On the properties of neural machine translation: Encoder-

decoder approaches." arXiv preprint arXiv:1409.1259.

Chung, J., et al. (2014). "Empirical evaluation of gated recurrent neural networks

on sequence modeling." arXiv preprint arXiv:1412.3555.

Collobert, R. and J. Weston (2008). A unified architecture for natural language

processing: Deep neural networks with multitask learning. Proceedings of the

25th international conference on Machine learning, ACM.

Collobert, R., et al. (2011). "Natural language processing (almost) from scratch."

Journal of Machine Learning Research 12(Aug): 2493-2537.

47

Conneau, A., et al. (2016). "Very deep convolutional networks for natural

language processing." arXiv preprint arXiv:1606.01781.

Del Corso, G. M., et al. (2005). Ranking a stream of news. Proceedings of the

14th international conference on World Wide Web, ACM.

Deng, J., et al. (2009). Imagenet: A large-scale hierarchical image database.

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference

on, IEEE.

Fan, R.-E., et al. (2008). "LIBLINEAR: A library for large linear classification."

Journal of Machine Learning Research 9(Aug): 1871-1874.

Gao, H., et al. (2015). Multi-view subspace clustering. Proceedings of the IEEE

International Conference on Computer Vision.

Gehring, J., et al. (2016). "A convolutional encoder model for neural machine

translation." arXiv preprint arXiv:1611.02344.

Gehring, J., et al. (2017). "Convolutional sequence to sequence learning." arXiv

preprint arXiv:1705.03122.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep

feedforward neural networks. Proceedings of the thirteenth international

conference on artificial intelligence and statistics.

Hansen, L. K. and P. Salamon (1990). "Neural network ensembles." IEEE

transactions on pattern analysis and machine intelligence 12(10): 993-1001.

Heller, K. A. and Z. Ghahramani (2005). Bayesian hierarchical clustering.

Proceedings of the 22nd international conference on Machine learning, ACM.

Hochreiter, S. and J. Schmidhuber (1997). "Long short-term memory." Neural

computation 9(8): 1735-1780.

Huang, G., et al. (2017). Densely connected convolutional networks. Proceedings

of the IEEE conference on computer vision and pattern recognition.

Joachims, T. (1998). Text categorization with support vector machines: Learning

with many relevant features. European conference on machine learning, Springer.

48

Joulin, A., et al. (2016). "Bag of tricks for efficient text classification." arXiv

preprint arXiv:1607.01759.

Kailing, K., et al. (2004). Density-connected subspace clustering for high-

dimensional data. Proceedings of the 2004 SIAM International Conference on

Data Mining, SIAM.

Kalchbrenner, N., et al. (2014). "A convolutional neural network for modelling

sentences." arXiv preprint arXiv:1404.2188.

Keogh, E., et al. (2001). An online algorithm for segmenting time series. Data

Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on, IEEE.

Kim, Y. (2014). "Convolutional neural networks for sentence classification."

arXiv preprint arXiv:1408.5882.

Kingma, D. P. and J. Ba (2014). "Adam: A method for stochastic optimization."

arXiv preprint arXiv:1412.6980.

Kingma, D. P., et al. (2014). Semi-supervised learning with deep generative

models. Advances in Neural Information Processing Systems.

Klambauer, G., et al. (2017). Self-normalizing neural networks. Advances in

Neural Information Processing Systems.

Klein, G., et al. (2017). "Opennmt: Open-source toolkit for neural machine

translation." arXiv preprint arXiv:1701.02810.

Krause, A., et al. (2010). Discriminative clustering by regularized information

maximization. Advances in neural information processing systems.

Kuhn, H. W. (1955). "The Hungarian method for the assignment problem." Naval

Research Logistics (NRL) 2(1‐2): 83-97.

Le, H. T., et al. (2017). "Do Convolutional Networks need to be Deep for Text

Classification?" arXiv preprint arXiv:1707.04108.

LeCun, Y., et al. (1998). "Gradient-based learning applied to document

recognition." Proceedings of the IEEE 86(11): 2278-2324.

49

LeCun, Y., et al. (1999). Object recognition with gradient-based learning. Shape,

contour and grouping in computer vision, Springer: 319-345.

Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised

learning method for deep neural networks. Workshop on Challenges in

Representation Learning, ICML.

Li, H., et al. (2004). Minimum entropy clustering and applications to gene

expression analysis. Computational Systems Bioinformatics Conference, 2004.

CSB 2004. Proceedings. 2004 IEEE, IEEE.

Lloyd, S. (1982). "Least squares quantization in PCM." IEEE transactions on

information theory 28(2): 129-137.

Maas, A. L., et al. (2013). Rectifier nonlinearities improve neural network

acoustic models. Proc. icml.

McCallum, A. and K. Nigam (1998). A comparison of event models for naive

bayes text classification. AAAI-98 workshop on learning for text categorization,

Citeseer.

Mikolov, T., et al. (2013). "Efficient estimation of word representations in vector

space." arXiv preprint arXiv:1301.3781.

Mikolov, T., et al. (2013). Distributed representations of words and phrases and

their compositionality. Advances in neural information processing systems.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic

course, Springer Science & Business Media.

Ng, A. Y. and M. I. Jordan (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. Advances in neural

information processing systems.

Ng, A. Y., et al. (2002). On spectral clustering: Analysis and an algorithm.

Advances in neural information processing systems.

Nie, F. and H. Huang (2016). Subspace Clustering via New Low-Rank Model

with Discrete Group Structure Constraint. IJCAI.

50

Nie, F., et al. (2016). New l1-Norm Relaxations and Optimizations for Graph

Clustering. AAAI.

Nie, F., et al. (2014). Clustering and projected clustering with adaptive neighbors.

Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM.

Nie, F., et al. (2016). The Constrained Laplacian Rank Algorithm for Graph-

Based Clustering. AAAI.

Nie, F., et al. (2011). "Spectral embedded clustering: A framework for in-sample

and out-of-sample spectral clustering." IEEE Transactions on Neural Networks

22(11): 1796-1808.

Pennington, J., et al. (2014). Glove: Global vectors for word representation.

Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP).

Pitelis, N., et al. (2014). Semi-supervised learning using an unsupervised atlas.

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, Springer.

Radford, A., et al. (2015). "Unsupervised representation learning with deep

convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434.

Raina, R., et al. (2004). Classification with hybrid generative/discriminative

models. Advances in neural information processing systems.

Rasmus, A., et al. (2015). Semi-supervised learning with ladder networks.

Advances in Neural Information Processing Systems.

Rifai, S., et al. (2011). The manifold tangent classifier. Advances in Neural

Information Processing Systems.

Rifai, S., et al. (2011). Contractive auto-encoders: Explicit invariance during

feature extraction. Proceedings of the 28th International Conference on

International Conference on Machine Learning, Omnipress.

Roth, V. and T. Lange (2004). Feature selection in clustering problems. Advances

in neural information processing systems.

51

Sadoughi, N. and C. Busso (2015). Retrieving target gestures toward speech

driven animation with meaningful behaviors. Proceedings of the 2015 ACM on

International Conference on Multimodal Interaction, ACM.

Sadoughi, N., et al. (2015). MSP-AVATAR corpus: Motion capture recordings to

study the role of discourse functions in the design of intelligent virtual agents.

Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International

Conference and Workshops on, IEEE.

Sargin, M. E., et al. (2008). "Analysis of head gesture and prosody patterns for

prosody-driven head-gesture animation." IEEE transactions on pattern analysis

and machine intelligence 30(8): 1330-1345.

Severyn, A. and A. Moschitti (2015). Twitter sentiment analysis with deep

convolutional neural networks. Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval, ACM.

Shi, J. and J. Malik (2000). "Normalized cuts and image segmentation." IEEE

transactions on pattern analysis and machine intelligence 22(8): 888-905.

Shinnou, H. and M. Sasaki (2008). Spectral Clustering for a Large Data Set by

Reducing the Similarity Matrix Size. LREC.

Sim, T., et al. (2002). The CMU pose, illumination, and expression (PIE)

database. Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth

IEEE International Conference on, IEEE.

Srivastava, N., et al. (2014). "Dropout: A simple way to prevent neural networks

from overfitting." The Journal of Machine Learning Research 15(1): 1929-1958.

Tian, F., et al. (2014). Learning deep representations for graph clustering. AAAI.

Trigeorgis, G., et al. (2014). A deep semi-nmf model for learning hidden

representations. International Conference on Machine Learning.

Vapnik, V. N. (1999). "An overview of statistical learning theory." IEEE

Transactions on Neural Networks 10(5): 988-999.

Vincent, P., et al. (2010). "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion." Journal of

Machine Learning Research 11(Dec): 3371-3408.

52

Wang, X., et al. (2016). Structured doubly stochastic matrix for graph based

clustering: Structured doubly stochastic matrix. Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

ACM.

Wang, Z., et al. (2016). Learning a task-specific deep architecture for clustering.

Proceedings of the 2016 SIAM International Conference on Data Mining, SIAM.

Wang, Z., et al. (2015). A Joint Optimization Framework of Sparse Coding and

Discriminative Clustering. IJCAI.

Williams, C. K. (2000). A MCMC approach to hierarchical mixture modelling.

Advances in Neural Information Processing Systems.

Wolf, L., et al. (2011). Face recognition in unconstrained videos with matched

background similarity. Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, IEEE.

Xiao, Y. and K. Cho (2016). "Efficient character-level document classification by

combining convolution and recurrent layers." arXiv preprint arXiv:1602.00367.

Xie, J., et al. (2016). Unsupervised deep embedding for clustering analysis.

International conference on machine learning.

Xie, P. and E. P. Xing (2015). Integrating Image Clustering and Codebook

Learning. AAAI.

Xu, L., et al. (2005). Maximum margin clustering. Advances in neural

information processing systems.

Xu, W., et al. (2003). Document clustering based on non-negative matrix

factorization. Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in informaion retrieval, ACM.

Yang, J., et al. (2016). Joint unsupervised learning of deep representations and

image clusters. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition.

Yang, Y., et al. (2010). "Image clustering using local discriminant models and

global integration." IEEE Transactions on Image Processing 19(10): 2761-2773.

53

Ye, J., et al. (2008). Discriminative k-means for clustering. Advances in neural

information processing systems.

Yeh, R., et al. (2016). "Semantic image inpainting with perceptual and contextual

losses." arXiv preprint arXiv:1607.07539.

Yogatama, D., et al. (2017). "Generative and discriminative text classification

with recurrent neural networks." arXiv preprint arXiv:1703.01898.

Yosinski, J., et al. (2014). How transferable are features in deep neural networks?

Advances in neural information processing systems.

Zelnik-Manor, L. and P. Perona (2005). Self-tuning spectral clustering. Advances

in neural information processing systems.

Zhang, W., et al. (2012). Graph degree linkage: Agglomerative clustering on a

directed graph. European Conference on Computer Vision, Springer.

Zhang, W., et al. (2013). "Agglomerative clustering via maximum incremental

path integral." Pattern Recognition 46(11): 3056-3065.

Zhang, X., et al. (2015). Character-level convolutional networks for text

classification. Advances in neural information processing systems.

Zhang, Y. and B. Wallace (2015). "A sensitivity analysis of (and practitioners'

guide to) convolutional neural networks for sentence classification." arXiv

preprint arXiv:1510.03820.

Zhao, B., et al. (2008). Efficient multiclass maximum margin clustering.

Proceedings of the 25th international conference on Machine learning, ACM.

Zhao, J. J., et al. (2015). "Stacked What-Where Auto-encoders." CoRR

abs/1506.02351.

Zhou, F., et al. (2013). "Hierarchical aligned cluster analysis for temporal

clustering of human motion." IEEE transactions on pattern analysis and machine

intelligence 35(3): 582-596.

54

Biographical Information

I have been doing research in the field of machine learning, both

supervised as well as unsupervised learning. My research includes tasks from

computer vision to natural language processing. I am striving to become a

successful and influential data scientist.

