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Abstract 

Supervising professor: Frank L. Lewis.  

Motivated by recent advancement in neurocognitive in brain modeling research, multiple model-

based Q-learning structures are proposed for optimal tracking problem of time-varying discrete-time 

systems. This is achieved by utilizing a multiple-model scheme combined with adaptive resonance theory 

(ART), and dopamine-like model. In the ART algorithm , dopamine-like model and generates sub-models 

based on the match-based clustering method utilizing. A responsibility signal governs the likelihood of 

contribution of each sub-model to the Q-function. The Q-function is learned using the batch least-square 

algorithm. Simulation results are added to show the performance and the effectiveness of the overall 

proposed control method. 

A novel enhanced human-robot interaction system based on model reference adaptive control is 

presented. The presented method delivers guaranteed stability and task performance and has two control 

loops.  A robot-specific inner loop, which is a neuroadaptive controller, learns the robot dynamics online 

and makes the robot respond like a prescribed impedance model. This loop uses no task information, 

including no prescribed trajectory. A task-specific outer loop takes into account the human operator 

dynamics and adapts the prescribed robot impedance model so that the combined human-robot system 

has desirable characteristics for task performance. This design is based on model reference adaptive 

control, but of a nonstandard form. The net result is a controller with both adaptive impedance 

characteristics and assistive inputs that augment the human operator to provide improved task 

performance of the human-robot team. Simulations verify the performance of the proposed controller in 

a repetitive point-to-point motion task.  Actual experimental implementations on a PR2 robot further 

corroborate the effectiveness of the approach. 
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Chapter 1 Introduction Equation Chapter (Next) Section 1 

1.1 Background And Motivation 
 

Optimal control encompasses the design of a control policy that satisfies a tracking or regulation 

control objective while simultaneously minimizes a performance function. A sufficient condition to find a 

feedback solution to an optimal regulation problem is to solve the Hamilton-Jacobi-Bellman (HJB) 

equation. For linear systems with quadratic performance function, the HJB equation reduces to the 

algebraic Riccati equation (ARE). For the case of optimal tracking problem, however, traditional solutions 

are composed of two components; a feedback term obtained by solving an HJB equation and a 

feedforward term obtained a priori by either solving a differential equation. The feedback term tries to 

stabilize the tracking error dynamics and the feedforward term tries to guarantee faultless tracking. 

Algorithms for computing the feedback and feedforward terms are traditionally based on offline solution 

methods which require complete knowledge of the system dynamics. 

Another approach is to combine complexity reduction using  multiple model architecture that 

contains identification models operating in parallel; may either be fixed or may be tuned from an initially 

chosen value.  Coupled with an optimal model to solve the Hamilton-Jacobi-Bellman (HJB) equation. For 

linear systems with quadratic performance function, the HJB equation reduces to the algebraic Riccati 

equation (ARE). The purpose of these models identifies the operation point of the environment, and   for 

computing the feedback and feedforward terms for optimality.  

 

An advantage of these combined system model-free RL algorithms for systems require 

measurement of the system states. However, it is not possible to measure the full states of the systems 

in many practical situations. Realizing how humans underlying neural activity in the brain gives rise to 
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emergent conformity to general laws of decision making is a central focus of many research institutes. 

Furthermore, there is a thrust to apply the understanding of these neuro-cognitive research in an area 

like cognitive control, financial markets, and economic studies.  Biological brains can select actions which 

are most of the time are based on either past experiences, or results that the results might hold. The 

functionality of the brain is about making choices which yield better results. 

 

This work is aimed at providing links between neuroscience, psychology and control systems. 

Detailed study of mechanism of computations and decisions in human brain has been presented. It is 

further strengthened with findings from a psychological perspective. Architectures for learning and 

control which are inspired through, and use all these findings are presented so that an integrated 

compilation has been prepared on basis of which faster, more efficient decisions and control structures 

can be designed for various autonomous systems. 

1.2  Contribution and Outline 
 

In chapter two,  a brief literature review of the recent cognitive studies is discussed. This include the 

discussion of the Human Factor approach where the human body is modeled, then Neuro-Cognitive 

Approach is explored including Neuroscience and psychological models, Cognitive brain-like models and 

multiple model approach.  

In chapter three multiple model-based Q-learning structures are proposed for optimal tracking 

problem of time-varying discrete-time systems. This is achieved by utilizing a multiple-model scheme 

combined with adaptive resonance theory (ART), where generates sub-models based on the match-based 

clustering method utilizing. 
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In chapter four, the same multiple model-based Q-learning structures are proposed for optimal tracking 

problem of time-varying discrete-time systems, utilizing dopamine-like model to evaluate the contribution 

of each model.  

In chapter 5, An enhanced human-robot interaction system based on model reference adaptive 

control is presented. The presented method delivers guaranteed stability and task performance and has 

two control loops.  A robot-specific inner loop, which is a neuroadaptive controller, learns the robot 

dynamics online and makes the robot respond like a prescribed impedance model. 

1.3 Publications resulted from this work 
 

• Modares, H., Ranatunga, I., Alqaudi, B., Lewis, F. L., & Popa, D. O.  Intelligent human–robot 

interaction systems using reinforcement learning and neural networks. In Y. Wang & F. Zhang 

(Eds.), Trends in control and decision-making for human–robot collaboration systems (pp. 

153–176). Berlin: Springer. 

• B. Alqaudi, H. Modares, I. Ranatunga, S. M. Tousif, F. L. Lewis, D. O. Popa, "Model reference 

adaptive impedance control for physical human-robot interaction", Control Theory and 

Technology, vol. 14, pp. 68-82, 2016. 

• B. Alqaudi, B Kiumarsi, D.S. Levine, F. L. Lewis, Optimal Control Using Multiple Adaptive 

Resonance Theory and Q-Learning, submitted to neurocomputing  

• B. Alqaudi, D.S. Levine, F.L. Lewis, "Neural network model of decisions on the Asian disease 

problem", Proceedings of International Joint Conference on Neural Networks 2015, pp. 1333-

1340. 

• D. S. Levine, K. Y. Chen and B. Alqaudi, "Neural network modeling of business decision 

making," 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, 

2017, pp. 206-213.  
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Chapter 2 Literature review  Equation Chapter (Next) Section 2 

Every day the control engineering is evolving, its limits have persistently extended. It is enormous 

leaps from classical regulation with simple proportional-integral-derivative (PID) loops, to model-based 

control and multivariable structures, to modern control theory, to hybrid, hierarchical, reinforcement 

architectures, and most recently understand systems as networks and control them using other existing 

methods like graph theory, and game theory.  The advancement is equally spread in theoretical 

foundations and application scope have seen extraordinary progress. 

A natural extension of these leaps in the control theory literature is the cognitive control.  It arises 

from the fact that current automatous systems function performs excellently in environments they are 

designed for namely around their nominal operating environments. Moreover, most of the previous, and 

current system function adequately in environments with foreseeable uncertainties as in the advanced 

adaptive and robust control structures without the presence of operators.  Yet, control systems of 

currently necessitate substantial human intervention when confronted by a novel and unanticipated 

environment conditions. Figure 1-1 shows a generic architecture of cognitive control system. Such 

conditions can arise from extreme changes in the environment, extreme disturbances, structural changes 

in the system0. Furthermore, to illustrate and to give an example consider an autonomous robot in search 

and rescue operations, encounter novel situations that require perception, reasoning, decision making 

and most importantly adaptive learning. Such cognitive control aspects play a crucial role in autonomous 

systems and will advance control system to new leaps. 
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Figure 2-1: Cognitive Control System Architecture 

Moreover, cognitive control arises to include the human factor; in today’s control systems for 

applications such as aircraft, industrial factories, and so on. This human-agent interaction aspect proposes 

another essential focus for cognitive control.  Multi-agent coordination, cooperation, and control help in 

the execution of complex tasks, effective operation in mixed competitive-cooperative situations that 

require participating agents to have cognitive-like capabilities[2].  

There are a lot of definitions of cognitive control; however, one of the best is the one defined by 

the researcher of the euCognition project funded by the European Commission. In their report, the 

described a cognitive system by a system that exhibits goal-oriented behavior in sensing, reasoning, and 

action. A cognitive system requires flexibility to changes its goals and function depending on situational 

context and experience, and ability to act in unstructured environments without human intervention and 

robustly responds to surprise; or able to interact with humans and other cognitive systems to jointly solve 

a complex task [3]. Cognitive control draws its main influences from; first, Systemic Neuroscience, 

Cognitive Science, and Neuro-cognitive Psychology where the developed computational models of 

control, perception, and control policies are applied based on experimental studies. Second, Information 

processing technology where algorithms realize cognitive capabilities essentially in inference and 

reasoning. Lastly, engineering technologies in mechatronics, controllability, stability, model/knowledge 
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representation, is utilized to implement robust cognitive abilities in guaranteed performance constraints. 

Figure 1-2 illustrates the interrelation of these three influences.   

 

Figure 2-2: Cognitive Control Influences 

Furthermore, there is a great deal of intermixing between cognitive control and artificial 

indigence; and here ones want to highlight the differences between the two. While the two terms have 

been used numerously to describe each other, and there are a lot of similarities between the two areas 

of research. Nevertheless, artificial intelligence research does not involve mimicking of human thought 

processes; Instead, AI systems are concerned with the optimality, best possible algorithms for solving a 

given problem as the primary outcome.  In order to illustrate the problem, consider the example of the 

autonomous car, AI system starts with the goal of avoiding collisions and staying on course, not mimic the 

process of the human brain in driving. On the other hand, cognitive control does not make decisions for 

humans but instead supplements our human decision-making process. Furthermore, create a human-like 

control to simplify complex tasks[4]. The cognitive control provides human-like system to achieve optimal 

decisions, or control human embedded system to achieve optimality and stability by augmenting the 
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system to human liking; while AI is rooted in the idea that system can perform better control decisions on 

the human behalf. 

There are significant efforts to develop systems in which humans and autonomy are responsible 

for cooperative sensory data acquisition, perception, cognition, and decision-making. Such cooperative 

operation is an inevitability, especially for assistive robotics, for example, the autonomy exists to support 

functionality that the human users cannot perform. Embedding a human as a user, source or decision aid 

in the operation of autonomous systems enlarges the difficulty. Although humans offer higher cognitive 

capabilities that complement system functionalities, the impact is depending on the system's ability to 

infer the intent, preferences, and limitations of the human.  With all these efforts in place, there is a 

significant gap in theory and tools for the design of human-embedded systems and human-like systems. 

In the literature today, there are two answers for these efforts. First, the research that aims at modeling 

the human in the loop as standard control transfer function, this can be summarized as human factor 

studies. Second, the research which is derived from neuroscience, psychological and psychological studies 

that start with the existing models in those fields.  In section 1-1, examples of human factor approach 

studies are given, and in section 2-2 a discussion of neuro-cognitive approach is discussed.  

2.1 Human Factor approach  
 

The first group of research aimed to achieve a transfer function of a human operator in various 

situation and embed that model in a more extensive control system. This research is mainly performed to 

determine a human transfer function that allows evaluation and prediction of the performance of 

manually controlled systems. Significant of the studies in this area was to control manual and robotics 

systems. one of the early examples of that is the lunar-landing simulator to determine the effect of the 

drive system characteristics on the performance of the pilot-vehicle combination. In [5] they surveyed the 

method of two hundred studied that concern this topic. However, most of the current studies involve 
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finding the human transfer function for a specific task. In controlling joystick or moving in x-y table-like 

movement. In [6][7] find the human transfer function simple linear first-order system with high 

bandwidth. This type of control structure is usually accompanied with estimator to increase the accuracy 

of the human realization in the control loop. [8].  

 

Figure 2-3 : Adaptive Assistive control structure 

An excellent example of this is the work of [7], where adaptive assistive control consists of three 

subsystems: a servo controller, an online identifier of the operator’s control characteristics, and a variable 

dynamics control using adaptive control. The adaptive control utilizes a Lyapunov candidate function using 

a haptic interface device composed by an XY-stage as shown in figure 1-3.  

2.2 Neuro-Cognitive Approach  
  

Realizing how humans and animals make decisions considering the underlying neural activity in 

the brain gives rise to emergent conformity to general laws of decision making is a central focus of many 

research institutes. Furthermore, there is a thrust to apply the understanding of these neuro-cognitive 

research in an area like artificial intelligence and cognitive control, financial markets, and economic 

studies.  Biological brains can select actions which are most of the time are based on either past 

experiences, or results that the results might hold. The functionality of the brain is about making choices 

which yield better results. Although functionality is not fully understood, there are proposed and proven 
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theories that address intelligence, various learning and decision- making processes performed by various 

parts of the brain. 

Within the neurocognitive approach, there are three primary schools of thoughts to answer the 

question of creating human-like cognitive control system. These three approaches are serious attempts 

to understand and replicate the human in a generalized, flexible, and adaptive kind of capability that we 

see in the human brain. The first approach is strictly in-line with the cognitive finding, biologically plausible 

and limit the capability to the research on neuroscience, and psychology; it is discussed in subsection 1-

2-1. The second approach inspires from the existing research and modify it to achieve a generalized 

structure of control, and it is discussed in subsection 1-2-2. The third approach is the multiple models' 

approach which started as a computational model and then enhanced by the development of the 

neurocomputational studies, namely multiple models approach, and it is discussed in subsection1-2-3. 

2.2.1 Neuroscience and psychological models 

2.2.1.1 Piaget’s and Hebbian learning  

Jean Piaget argued that human learning development progresses chronologically through stages.  

Piaget defined learning as the ability to adapt to the environment. Adaptation takes place through 

assimilation and accommodation, with the two processes interacting throughout life in different ways, 

according to the stage of learning development.  In assimilation, the individual absorbs new information, 

fitting features of the environment into internal cognitive structures. In accommodation, the individual 

modifies those internal cognitive structures to adapt to the new information and meet the demands of 

the environment[9]. Hebbian learning algorithms consider a wide range of behaviors and changes 

throughout development. These include critical periods, learning of statistical regularities in the 

environment, development of object knowledge, and development of flexible behaviors.  The A basic 

Hebbian learning rule, and the update of the weight in learning takes the following form:  

 = − +( ) ( 1)ij ij ijw t w t w   (2.1) 
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Where the weight from unit i  to unit j  at any given time t is the weight value from the previous 

time step plus the change in weight resulting from the activity of units i  and j , and  = aij i jw a  where  

.   is the learning rate ia  and ja  are  denote the activation levels of  units i  and  j  respectively  

While the Piaget’s and Hebbian learning theories have it is own application, the overwhelming 

evidence suggests that the brain nervous system in the must be more complicated to implement 

behavioral plans yet is flexible and responsive to unexpected changes. The evidence-based experiments 

purposed the demands for mechanism representing features or attributes of short-term learning and 

another mechanism representing categories of long-term learning.  As an answer to this demand, more 

frameworks have emerged such as Gated Dipole Network, Adaptive Resonance Theory (ART), and Fuzzy 

Trace Theory (FTT). 

2.2.1.2 Gated Dipole Theory  

Like the Hebbian learning, the gated dipole theory was spurred by an effort to compare current 

values of reinforcement variables with recent past values of the same variables. Further, the gated dipole 

also explained response associated with the absence of a punishing reinforcement. The network is 

designed so that shutting of an input to one channel leads to transient activation of the other channel. 

Say, if the two channels represent positive and negative effects or ‘on’ and ‘off’ states, the offset of an 

effectively negative stimulus can produce positive affect and vice versa. In the figure1-4, J  is an input 

which is the phasic reinforcement signal, I  nonspecific arousal is tonic which is represented all the time, 

1w  and 2w  are synapses and ‘ ix ’s are activity nodes. After J  is shut off, 1 2w w , so 3 4x x . By 

competition, 5x  is activated, enhancing a motor output suppressed by J . 



11 
 

 

Figure 2-4: Gated Dipole Circuit 

Figure 1-4 shows a schematic gated dipole, which obeys Equations 1-2. The synapses w1 and w2, 

marked with squares are transmitter that tends to be depleted with activity, Other terms in those 

equations denote new transmitter production[11].  
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where , , , , , , ,a b c e f g h k  and m  are all positive constants. Equation 1-2 reflect a symmetry 

between the positive and negative channels, they have the decay rates (a, f, and h), the same depletion 

rate (e), the same transmitter recovery rate (b), the same bounded depletable rate (c), and the same 

coefficients for signal transmission between levels (g and k).  
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2.2.1.3 Adaptive resonance theory (ART)  

ART was developed by Stephen Grossberg and Gail Carpenter on based in the research of the 

mechanism in which the brain processes information. It has many variations describes several neural 

network models which use supervised and unsupervised learning methods, and address problems such as 

classification, clustering, and prediction. Contrary to most of the neural network map models like Kohonen 

self-organizing map which is pure feed-forward layers projecting unidirectionally to higher processing 

layers, Grossberg argued that pure feedforward coding or categorization could be unstable, and lack 

plasticity. This led to the idea of adaptive resonant feedback between two layers of nodes, corresponding 

to the extensive feedback connections in the visual system in the cortex to lateral geniculate. 

The ART network is considering two layers; first, F1 layer is assumed to consist of nodes that 

respond to input features, analogous to a sensory area of the cerebral cortex.  Second, The F2 layer is 

assumed to consist of nodes that respond to categories of F1 node activity patterns.  Synaptic connections 

between the two fields are modifiable bidirectionally according to two different learning laws. It utilizes 

competition as a standard tool in neural networks; thus, only the F2 node receiving the most significant 

signal from F1 becomes active. The simplest form of competition is winner take all is made: only the F2 

node receiving the largest signal from F1 becomes active. Then, mapping from F2 field to the F1 field 

utilizing gain control node is performed. This lead to First, it prevents F2 activity from always exciting F1, 

and second, it shuts off most neural activity at F1 if there is a mismatch between the input pattern and 

the active category. If a match occurs, then F1 activity is large because many nodes are simultaneously 

excited by input and prototype.  If a mismatch occurs F1 activity is not sufficient to inhibit a chosen node 

which thereby becomes active.  The selected node activity leads to F2 reset which shuts off the active 

category node as long as the current input is present.  A mismatch reset occurs, and a new category node 

is chosen if the vigilance criterion is not met. If sufficient match based on the vigilance criterion, the choice 
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is made more permanent; this is the resonance, and it is called adaptive because the prototype resonating 

with the input reflects the learning of previous inputs by the node at F2 [12] . 

 

Figure 2-5 : ART 1 architecture 

Adaptive resonance theory networks are a massive family including a wide range of precise 

architectures.  The most essential classifications within ART are unsupervised versus supervised and 

analog versus binary. Figure 1-5 illustrates the basic ART model where Short-term memory at the feature 

level F1 and category level F2 and bottom up and top down interlevel long term memory traces, are 

modulated by other nodes.  The orienting system generates a reset wave to F2 when bottom up and top 

down patterns mismatch at F1, that is, when the ratio of F1 activity to input activity is less than a vigilance 

level.  

2.2.1.4 Fuzzy trace theory (FTT) 

Fuzzy-trace theory embraces inconsistencies in human reasoning by assuming opposing dual 

processes. Contrary to the Piaget’s theory and bases on counterintuitive data on how memory 
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development influences the development of reasoning, Fuzzy trace theory propose that there are two 

different types of learning in human brain. FTT suggests that we encode traces of experiences we learn in 

two different ways: ‘verbatim’ (literal meaning) and ‘gist’ (essential meaning) encoding. The ability to 

grasp the gist of a problem and ignore relatively minor details facilitates our ability to recognize the 

problem, in the other hand others encountered before and thereby drawn on our memory of those 

problems along with increased efficiency. Gist encoding tends to reduce the relative attractiveness of sure 

losses and enhance the relative attractiveness of sure gains in comparisons with risky alternatives. It can 

arise from emotions, learning, information or any combinations of these things. These two encodings are 

heavily influenced by how we frame the decision, and mathematically represented as probabilistic   

choices. The dual-process assumption of FTT has also been used to explain common biases of probability 

judgment, including the conjunction and disjunction fallacies. The conjunction fallacy occurs when people 

mistakenly judge a specific set of circumstances to be more probable than a more general set that includes 

the specific set. Yet FTT is incomplete as it does not answer what kinds of gist are extracted under what 

circumstances. So, it is combined with ART and a very close neural network model for brain has been 

developed for Gambling modeling, Asian decease problem[13], and more recently to retail problem[14]. 

2.2.2 Cognitive brain-like models  

2.2.2.1 Werbos’ three generations of Brain-like models 

Werbos’ work explains the basic mathematical principles and their relation to the most important 

features of a mammal brain‒how intelligence works so that a control system can be designed that can 

learn to perform the complex range of tasks. Based on the fact there is no artificial system capable of 

learning to perform the complex range of tasks that the mammal brain can learn to perform. The provided 

roadmap for how to reach that point, utilizing a neuroscience help by providing a series of qualitative but 

quantifiable theories of how intelligence works in the mammal brain.  
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From an engineering and mathematical prospective of the mammalian brain, it is not enough to 

use the old optimization rule of Hamilton and Jacobi. Rather there is a need to consider the stochastic 

case because mammals cannot predict our environment in a deterministic way. The foundation for 

optimization over time in the stochastic case is the Bellman equation, a great breakthrough developed by 

Bellman. Based on the observation that human brains are not optimal all the time, a possible answer is 

that mammal brains are designed to learn approximate optimal policy with bounded computational 

resources. Approximate Dynamic Programming (ADP) models of brain intelligence have been 

developed[15]. An efficient method to compute an optimal strategy or policy of action for a general 

nonlinear decision problem over time subject to noise is to use Bellman equation as follows: 

 ( )= + + +
( )

( ( )) max ( ( ), ( )) ( ( 1)) / 1
t

J t U t t J t r
u

x x u x   (2.3) 

where ( )tx is the state of the environment at time t, ( )tu is the choice of actions, U is the cardinal 

utility function, r  is the interest or discount rate, the angle brackets denote expectation value and J  is 

the function that must be solved in order to derive an optimal strategy of action. A system can learn to 

approximate this policy by using a neural network to approximate the J function and other key parts of 

the Bellman equation as shown in figure 1-6.  

 

Figure 2-6: First Generation Humanlike ADP model 
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The second generation of brain-like mechanism [16]is extended utilizing the use of critic networks 

and model networks which are far more powerful than feedforward neural networks. It requires using the 

recurrent networks along with networks which “settle down” over many cycles of an inner loop calculation 

before emitting a calculation. In turn that needs a relatively low sampling rate; about 4-8 frames per 

second which is the rate observed for the cerebral cortex, in response to new inputs from thalamus-the 

“movie screen” watched by the upper brain it is shown in figure 1-7.  

 

Figure 2-7 Second Generation Humanlike ADP Model 

 

A third generation of human-like intelligence[17] was proposed utilizing temporal complexity. 

Combining the key capabilities of a Simultaneous Recurrent Network and a “conformal'' network was 

proposed, to allow  This immediate prediction and control and navigation through complex two-

dimensional problems. While it provides far more complex than a Multilayer perceptron network, it was 

not as popular, in part because the learning was slow and it is not easy for people to take advantage of 

the great brain-like power of such networks. Figure 1-8 shows an architecture of such network.  
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Figure 2-8 : Third Generation Humanlike Model 

2.2.2.2 Suri-Schultz Model  

Unlike the famous Sutton and Barto model versions of temporal difference TD did not include 

specific roles for brain regions such as the dopamine, basal ganglia, and prefrontal cortex.  There were 

more explicit simulations of brain regions were gradually included in later extensions of the TD model, 

starting with Suri and Schultz[18]. The simulations using TD in the Suri-Schultz articles encompassed 

sequence learning, delayed response, and anticipatory dopamine neuron activity.  Their work noted that 

previous versions of the TD model had predicted that dopamine cell activity would be depressed not only 

if reward is delivered later than expected, which is supported by data, but also if reward is delivered earlier 

than expected, which is not supported by data. 
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Figure 2-9 : Suri and Schultz model 

Figure 1-9 shows a version of the Suri and Schultz TD model. Actor and Critic receive input stimuli 

1 and 2 which are coded as functions of time. The Critic computes the effective reinforcement signal $r(t)$ 

which modifies the weights nlv  of the Critic and the weights lmw  of the Actor which yield that both actor 

and critic learn through time. The Critic associates input stimuli 1 and 2 with Signal ( )r t . Every stimulus is 

represented as a series of components lmx  of different durations, each of which influence the reward 

prediction signal according to its own adaptive weight lmw . The prediction 1( )P t  is computed as the 

weighted sum of these components. Winner-take-all competition between predictions 1( )P t of different 

stimuli sets all but one representational component to zero. The change in the prediction of a stimulus is 

computed by taking the temporal difference between successive time steps. The temporal difference is 

summed over all stimuli and added to the primary reinforcement signal input coding the reward, leading 
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to the effective reinforcement signal which codes reward prediction error. The Actor learns to associate 

stimuli with behavioral actions. 

2.2.3 Multiple model approach  
It is amazing the multiple model approach originated in both computational\ intelligent control, 

and cognitive studies at the same time. Advances in study of brain suggests that are multiple control 

structures working simultaneously in the brain. That has led to the use multiple controllers and/or 

predictors used in the new controllers. Here, some of them are discussed which use multiple 

reinforcement learning structures, multiple neural networks and multiple adaptive controllers. 

Adaptive Control systems were traditionally designed around a single fixed or slowly adapting the 

model of the system. This design scheme inherently implies that the operating environment is either time 

invariant, or varies gradually, within bounded limits, with time. In practice, complex systems operate in 

multiple operating environments which may change abruptly from one operating point to another. The 

speed and accuracy with which a controller responds to sudden and substantial changes may be 

considered as a measure of its adaptiveness and intelligence.  While robust adaptive control is restricted 

to sufficiently small ranges of variations, traditional adaptive control reacts too slowly to abrupt changes, 

resulting in large transient errors before convergence. This need to robustness, consequently need to be 

addressed. 

Narendra and Balakrishnan [20] proposed multiple model architecture that contains identification 

models operating in parallel; may either be fixed or may be tuned from an initially chosen value. The 

purpose of these models identifies the operation point of the environment.  Corresponding to each of this 

identification model is a parameterized with a controller, whose parameter vector is chosen such that the 

corresponding controller achieves the control objective for each identification model. At each iteration 

and time step, one of the identification-controller models is selected based on switching control rule. The 

control problem is to determine suitable switching control rule and tuning these parameters to yield the 
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best performance for the given objective while assuring stability. The architecture applies to both linear 

and nonlinear systems. It is illustrated in figure 1-10.  

 

Figure 2-10: multiple -model architecture 

Narendra proposed that the switching rule is to be determined by evaluating performance cost 

indexes for each controller and switch to the one with the minimum index at every time step. The 

performance of any candidate controller can be evaluated after each utilization of the model. On the other 

hand, the performance of all the identification-controller models are evaluated in parallel at every time 

step. Therefore, the indexes must be based on the performance of the identification-controller models 

rather than the controllers. The proposed performance index proposed as follows:  

        − −= +  
2 ( ) 2

0

( ) ( ) ( ) , 0, , 0
t

t
i j jJ t e t e e d   (2.4) 
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where   and   can be chosen to yield a desired combination of instantaneous and long-term 

accuracy measures. The forgetting factor   determines the memory of the index in rapidly switching 

environments and ensures boundedness of (t)iJ  for bounded error je .  

Kenji Doya et al[21] and based on the work of Suri and Schultz propose a modular reinforcement 

learning architecture for nonlinear, non-stationary control tasks, which is called Multiple Model-based 

Reinforcement Learning (MMRL). The basic idea is to decompose a complex task into multiple domains in 

a spatial and timely manner based on the environmental dynamics operating points.  The utilize the use 

of a predictor of the environment. The Value of each sub-model is calculated using standard value 

estimator.    The system is composed of multiple modules, each of which consists of a state prediction 

model and a reinforcement learning controller. The switching between the model is based on 

responsibility signal λi of each model, which is given by the softmax function of the prediction errors. Then 

the responsibility signal is assigned to each predictive model depending on the likelihood of the current 

observed state and the reliability of the past predictions. Finally, it is used to weight the outputs of 

predictive modules, to gate the learning of the prediction models, to weight the action outputs and to 

gate update of the reinforcement learning controllers. The overall system is illustrated in figure 1-11.  
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Figure 2-11: Multiple Model-based Reinforcement Learning model 
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Chapter 3 Optimal Control Using Multiple Adaptive Resonance Theory 

and Q-Learning  Equation Chapter (Next) Section 3 

3.1 Introduction  
 

The tracking control problem has gained significant attention in the control system community, 

due to its numerous applications. The objective is to design a control law to ensure stability of the control 

systems, as well as tracking a desired reference trajectory in an optimal fashion, by minimizing a 

performance function. Traditional solutions to the optimal tracking problem aims at finding two 

components [22], namely, a feedback term obtained by solving a Hamilton-Jacobi-Bellman (HJB) equation 

and a feedforward term obtained by solving a noncausal difference equation [23][24]. The feedback and 

feedforward terms are mainly found separately, and the solution is commonly obtained in an offline 

fashion, which requires complete knowledge of the system dynamics. Reinforcement learning 

(RL)[25][28], as a class of machine learning methods, has been widely used to find the online solution to 

the optimal tracking problem of time-invariant discrete-time systems. These methods mainly use neural 

networks (NNs) to approximate the value function and consequently find the optimal control solution. 

This application of NNs essentially extends traditional adaptive control capabilities to more advanced 

optimal adaptive learning feedback controllers. There is a large gap between such neural adaptive learning 

feedback controllers and the manner in which the human brain functions. In neuro-cognitive psychology, 

it is observed that the human makes quick decisions based on association of existing external variables or 

cues with responses learned and stored based on previous experiences [29][30]. If there is a match 

between current observed circumstances and previously stored responses, the human executes the 

previously stored response that most closely corresponds to current observations. Otherwise, the human 

generates a new response to the new conditions. 
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Likewise, in many controls applications, the system operates in different environments, with each 

environment requiring a dynamic description of the dynamics. Such is the case in multiple-model adaptive 

control [31][32], fault tolerant control, and elsewhere. In these applications, neural networks must 

provide high-level functions such as classification, clustering, and so on. There are similarities between 

such applications in different environments and the operation of the brain in using previously stored 

responses.  

Learning networks can be used to encapsulate previous experiences into categories of stored 

responses that correspond to system response in different environments. Motivated by the sensory 

information handling in parts of the cerebral cortex in the human brain, numerous methods of data 

clustering have been developed to match current experiences to previously stored experiences [29][29]. 

In self-organized clustering, the categories are determined automatically based on various criteria for 

determining similarity, and new categories may be created if current data does not match with previous 

experience[30]. In k-mean clustering[34][35], the goal is to partition the inputs into a predetermined 

number k of clusters. In the self-organizing map [36][38], previously experienced data is stored as 

representative categories in the interconnection weights of a neural network, which is trained to produce 

a low-dimensional discretized mapping of the input space to achieve clustering with dimensionality 

reduction. Such methods of self-organized clustering are subject to unstable categorization when the 

distances between categories are too large, and to temporal instability in stored memory when categories 

are updated and do not retain their distinct characteristics. Methods for adding or resetting categories 

based on new information in the incoming data and for pruning or removing categories that are not used 

are generally ad hoc and do not have performance guarantees. An adaptive self-organizing map [23]-[38] 

was applied to feedback control applications in by sorting observed data into previously defined 

categories, within each of which a feedback controller based on prior experiences is stored. Nevertheless, 

this method can exhibit temporal instability in stored memory since representatives of several categories 
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can be tuned simultaneously. Therefore, improved methods of self-organized clustering [38] are needed 

that have more stable categories and temporal behaviors for applications in automatic feedback control 

for different environments.  

Adaptive Resonance Theory (ART) is a match-based clustering approach that provides an 

explanation of human cognitive information processing [37]. It represents several NN models which use 

supervised and unsupervised learning methods to address problems such as pattern recognition and 

prediction in the human brain. The basic concept is to categorize the input data into categories, based on 

a vigilance criterion. Once some categories are established, the new input data is matched with existing 

categories, which is called the internal memory of an active code. ART matching leads either to a resonant 

state or a rest state. This matching state is established if the vigilance criterion is met. If the resonance is 

not achieved, the learning process takes place and an alternative category search is to be established. If 

the search ends, i.e. no resonance with all the categories, a new category, active code, is created. This 

match-based learning process is the foundation of ART code stability.  

In this chapter, motivated by recent neurocognitive models of mechanisms in the brain, a model-

free Q-learning based algorithm is presented to find the optimal solution to the tracking problem of time-

varying discrete-time systems. The proposed algorithm combines RL with the ART algorithm to monitor 

changes in the dynamics of the environment. The system starts with several sub-models based on a prior 

knowledge. A new sub-model is then added due to the vigilance once a mismatch, no resonance, is 

established in ART. The ART responsibility signal indicates the likelihood of the current input belonging to 

the existing sub-models in the time space. Based on the presented Q-function, an optimal control for each 

subsystem is found online using only measured data along the system trajectories.  
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This chapter is organized as follows a new formulation for the optimal tracking problem of time-

varying discrete-time systems using Q-learning is presented in Section 2-2. Adaptive resonance theory is 

presented in Section 2-3. Simulation results of the mentioned algorithms are presented in Section 2-4. 

3.2 Optimal Tracking Control Problem  
Consider the linear system dynamics as 

 
+ = +1k j k j kx A x B u  (3.1)  

where  n
kx is state vector of the system, and  m

ku is control input. It is assumed that the 

system operates in multiple environments which may change abruptly from one sub-model to another. 

That is,  = 1 1 2 2( , ) {( , ),( , ),...,( , )}j j N NA B M A B A B A B  with N  is the number of sub-models which is 

generally unknown. 

The goal is to design the control input ku  to assure that the states of the system track the reference 

trajectory kr  in an optimal manner by minimizing a predefined performance function as 

 


−

=

 = − − + ( , ) ( ) ( )i k T T
k k i i i i i i

i k

J x r x r S x r u Ru  (3.2) 

with 0S  and =  0TR R  .  0 1  is a discount factor.  

The desired reference trajectory is defined as 

 
+ =1k kr F r  (3.3) 

with  n
kr . 

The rest of this section assumes there is only one sub-model. This assumption is relaxed in the 

next section. Based on the system dynamics (3.1) and the reference trajectory dynamics(3.3), construct 

the augmented system as 
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+
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= = +  +       
       

1

1 1

1

k j k j

k k j k j k

k k

x A x B
X u T X B u

r F r

0

0 0
 (3.4) 

where the augmented state is  =  
TT T

k k kX x r . 

The performance function (3.2) in terms of the state of the augmented system for the sub-model 

j  can be written as 

 


−

=

 = + V ( ) i k T T
j k i j i i j i

i k

X X S X u R u   (3.5) 

where  

− 
=  

− 

j j

j
j j

S S
S

S S
 

It is shown in [18] that the value function is quadratic in terms of the states of the system (3.5) as 

 =( ) T
j k k j kV X X P X  (3.6) 

Substituting (3.5) into (3.6) yields the Bellman equation corresponding to −j th  sub-model as  

  + += + + 1 1
T T T T
k j k k j k k j k k j kX P X X S X u R u X P X  (3.7) 

Then, the optimal control input corresponding to sub-model j  is given as 

   −= − +* 1
1 1 1( )T T

k j j j j j j j ku R B PB B PT X  (3.8) 

where jP  is obtained by solving the following algebraic Riccati equation (ARE)  

    −− + − + =2 1
1 1 1 1( ) 0T T T T

j j j j j j j j j j j j j j jS P T P T T PB R B P B B PT  (3.9) 

Eq. (2.9) is the optimal control input when one has just one model to show the behavior of the 

system. However, the time-varying systems have different dynamics for each kind of fault or change in 
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the environment, each type of these dynamics is a sub-model and we should take into account all these 

sub-models in the value function and control input. In the next section, adaptive resonance theory (ART) 

for self-organized clustering is proposed to determine the contribution of each sub-model in the general 

value function using a signal extracted by ART. The overall system is highlighted in Figure.2.1. 

Reinforcement Q-learning  
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Figure 3-1: Overall System 

 

3.3 Adaptive Resonance Theory and Value Function for Multiple-model Systems 
In this section, adaptive resonance theory (ART) is used to approximate value function for 

multiple-model systems which are used to model uncertain time-varying systems. The fundamentals of 

ART are first presented, and it then is combined with multiple model and Q-learning to approximate the 

optimal value function and consequently the optimal solution for uncertain time-varying systems.  

3.3.1 Adaptive Resonance Theory 
Adaptive resonance theory (ART) remedies many of these defects noted above by employing two 

maps between two spaces [30][33][40]. An input data space F1 is called the short-term memory, and a 

category feature space F2 is called the long-term memory. One map is from the input data space F1 to the 

category feature space F2. This is termed the bottom-up map. A second dual map is from the category 
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feature space F2 back to the input space F1, known as the top-down map. The process of matching the 

observed data to a stored category occurs as a result of the interaction of these two maps. The model 

postulates that 'top-down' expectations mapped back to the input space take the form of a category 

prototype which is then compared, using certain metrics, with the actual input data as detected. When 

the difference between the actual input and the category prototype does not exceed a threshold called 

the vigilance parameter, the input is considered a member of the expected class. ART thus offers a solution 

to the plasticity versus stability paradox [40][41]. Furthermore, in the ART network, pruning and resetting 

of categories is furthermore formally defined using certain parameters. Furthermore, the number of 

categories is not predefined. There are many different forms of the ART theory which utilize different 

methods or metrics for determining the match between the input signal and the category prototype.  

These notions are captured mathematically as follows. The complete ART algorithm is detailed in 

Table 2.1. The situation of our concern is when the observed input data for the ART are the inputs and 

outputs of a dynamical system (3.1). The input data for the ART are defined as the vector of past controls 

and states 

  − − − − −= 1 1 2[ ... ... | ... ]
x u

T T T T T T T
k k k k k k kd x x x u u u  (3.10) 

with  ,x u  determined by the user based on experience. These input data are viewed as residing 

in the F1 layer, and a mapping to the category feature space, or F2 layer, is provided by  

  = =  
1 ... ...

T
Tj Nk

k k k kT
k

W d
v v v v

W d
 (3.11) 

where matrix W  is interpreted as the weight matrix of a neural network. Define 

 = 1 2 JW W W W  where the columns =, 1,...,jW j N  are the category representatives currently 

stored in the ART network. As such, (3.12) is an inner product that compares the input data kd  to each 
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category column of W , with elements j
kv  larger for categories jW  that are closer to kd  in Euclidean 

norm.  

The next step in ART is to use competitive learning to choose a winning category to which kv  most 

closely belongs. To accomplish this, sort the entries j
kv  in F2 in descending order of magnitude to define 

the ordered list 1 2, ,..., Nj j j . Define =*
1j j , the largest index as the chosen category F2 winner, Define the 

F2 vector *
kv  as a vector of zeros with an entry of 1 in position =*

1j j . Define the dual map from F2 to F1 

as 

 =* *
k kd Wv  (3.12) 

Then, = *

*
k j

d W  is the expected or hypothesized category prototype in F1 space. That is, *
kd  is the 

ideal data signal that would produce category representative *j
W  using the map (3.11). 

The key step in ART now occurs, namely matching the input data to a stored category. To 

accomplish this, compare the input data to the category prototype = *

*
k j

d W  in F1 space. Many norms 

have been proposed for this matching test, including techniques from fuzzy logic. We use simply the 

Euclidean norm condition  

 − *
k kd d  (3.13) 

where   is known as the vigilance parameter, specified by the user. If this condition is satisfied, 

then column =*
1jj

W W  is declared the winning category and resonance is said to occur. Then, the weights 

in column *j
W  are updated to more closely fit the observed input data. This is accomplished by using the 

adaptive learning algorithm 
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  + = + −
* *

1 (1 )j j
k k kW d W  (3.14) 

To avoid unstable categorization and temporal instability in the stored categories, only one step 

of this update is performed. Note that non-winning category representatives are not updated. This 

preserves stability of categorization in ART. If condition (3.13) does not hold, then no winning category is 

declared, and the next closest category to kv  is selected. That is, one sets the trial value =*
2j j . Then the 

map from F2 to F1 (3.12) and the matching test (3.13) are repeated. If match occurs, then column 

=*
2jj

W W  is declared the winning category and resonance is said to occur. Then, the weights in column 

*j
W  are updated by one step of adaptive learning algorithm (3.14). Again, if condition (3.13) does not 

hold, then no winning category is declared, and the next closest category to kv  is selected, namely =*
3j j

. The steps (3.12), and (3.13) are repeated until a winning category is found. If no winning category is 

found, then a new category is declared, and the input data itself is added as the last column of NN weight 

matrix W, so that the number of categories increases to +1J . Thus, adding new categories is automatic 

in ART, whereas in other clustering methods, it is usually ad hoc. 
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In summary, the ART network consists of four stages. First, the preprocessing stage wherein the 

input data kd  is mapped to a vector kv  in category space F2. Second, is the choice stage of selecting a 

winning category in F2, namely *j , which is the category to which the data most closely belongs. Third, 

the match stage, where the winning category is mapped back to F1 to obtain the hypothesized category 

Table.2.1. Extended ART Algorithm 

 Select  ,  ,  0 J , 

 Initialize  = 0k , 0x ,  =0 0 , =0f  

(1) = +1k k  
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prototype *
kd , which is compared to the current observed data kd . If there is a match between and kd  

and *
kd , resonance is said to occur. Then, in a fourth adaptation stage, the winning category 

representative is update to more closely match the current observed data.  

The complete ART algorithm is detailed in Table 1. Several details remain about the functioning 

of ART. The first is the specification of how many categories to try before the condition of ‘no winning 

category’ is declared. This number is called   in Table 2.1. Next, if a category is selected as the winning 

category =*
lj j  in F2, and if this choice fails the match test (3.13) in F1, then a refractory time period   

is initiated for the category lj  and it cannot be used again until the refractory period is over. This is kept 

track using a refractory index  ( )
lj

k  in Table 2.1. Finally, ART includes a formal method for deleting 

categories that are never used. This is accomplished using a fading index J-vector kf  in Table 1, where the 

j-th entry of kf  is the fading index for category j. If category j is not used during the fading period  , then 

category column jW  of the NN weight matrix is removed, and the number of categories J  is set to −1J   

3.3.2 New Value Function Structure Using ART 
In this subsection, a general value function approximation for multiple-model linear systems using 

ART is presented. In the proposed value function approximation scheme, each sub-model contributes to 

the value function using a responsibility signal. In fact, the general value function is given by 

 
= =

= = 
1 1

( ) ( )
N N

j j T
k k j k k k j k

j j

V X v V X v X P X  (3.15) 

where =1,...,j
kv j N  are the responsibility signals which determine the contribution of each 

sub-model to the general value function.  

Considering (3.4) and  (3.15) in (3.2), yields the Bellman equation for time-varying systems 
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  + +

= =

= + +  1 1
1 1

N N
j T T T j T
k k j k k k k k k k j k

j j

v X P X X S X u Ru v X P X  (3.16) 

and the Hamiltonian is defined as 

  + +

= =

= + + − 1 1
1 1

( , )
N N

T T j T j T
k k k k k k k k j k k k j k

j j

H X u X S X u Ru v X P X v X P X  (3.17) 

Applying the stationarity condition   =( , ) 0k k kH X u u  yields the optimal control input as 

  

−



= =

   
= +   

   
 

1

1 1 1
1 1

( )
J J

j T j T
k k j j j k j

j
kj j

j

u v R B P B v B PT X  (3.18) 

where =1,...jP j N  are obtained by solving a set of AREs (3.9).  

Remark 1. Note that complete knowledge about the augmented system dynamics is required to 

find the optimal control input (3.18). In the next section, reinforcement learning is used to find the 

solution to the optimal tracking problem without requiring any knowledge about the system dynamics.  

3.3.3 Q-learning to Solve Optimal Tracking Problem of Multiple-model Systems 
The solution to the optimal multiple-model tracking control problem needs complete knowledge 

about the system dynamics and reference trajectory dynamics. In this section a Q-learning algorithm is 

developed that solves this problem online without requiring any knowledge of the augmented system 

dynamics.  

Based on the Bellman equation (3.7), the discrete-time Q-function for j-th sub-system is defined 

as 

  + += + + 1 1( ) T T T
k k k k k kj j j jQ k X S R PX u u X X  (3.19) 

Substituting the augmented system (3.4) in (3.19) yields,  
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For the multiple-model systems, the general Q function is defined as  
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By substituting the quadratic form (3.20) in (3.21), one has 
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Eq. (3.22) shows that the general Q-function for multiple-model systems is quadratic in terms of 

the states of the augmented system and control input.  

Applying the stationarity condition =( ) / 0kdQ k du  yields,  
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Now, we can present a Q-learning algorithm to solve the optimal tracking control problem of 

multiple-model systems online without knowing the augmented system dynamics 1( , )j jT B .  

The Bellman equation (3.16) in terms of Q-function is given as  

  + += + + 1 1( , ) ( , )T T
k k k k k kk kQ X u X S R Q X uX u u  (3.24) 

Substituting (3.22) into (3.24), the Q-function Bellman equation (3.24) becomes 

  + += + +1 1 1H HT T T T
k k k k k k k kZ Z X S X u Ru Z Z  (3.25) 

Policy iteration is especially easy to implement in terms of the Q-function, as follows. 

Algorithm 1. Policy Iteration using Q-function 

1. Policy evaluation 

 + +

+ += + +1 1
1 1H ( ) ( ) HT i T i T i T i

k k k k k k k kZ Z X SX u R u Z Z  (3.26) 

2. Policy improvement 
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Q-Learning attempts to learn the cost of the current category state and taking a specific action 

toward minimizing the performance index. The advantage of Q-learning is that convergence guarantees 

can be given even when function approximation is used to estimate the action values. 

3.4 Simulation 
To show the effectiveness of the proposed method, simulations have been carried out on a mass-

spring-damper system. The system dynamics is 

 
+

+

= +

= − + − +

1, 1 1, 2,

2, 1 1, 2,

1
(1 )

k k k

k k k k

k b
x

x x x

x x u
m m m

 (3.28) 
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Three different system behaviors are considered for this simulation. The parameters set of each 

time variant period are provided in Table 2.2. These parameters change the behavior system dynamics 

(3.28).  For each time interval a system is activated for the corresponding parameters.   

Table 2.2: The parameters of three system dynamics for three-time intervals 

Time Interval System Parameters 

 0 300t  = = =1 1 110 10 90k b m . 

 300 600t  = = =2 2 230 15 90k b m  

 600 1000t  = = =3 3 350 50 90k b m . 

 

The extended ART parameters are chosen as  =100 ,  = 0.78 ,  =20 , and  = = 4x u . 

Figure.2-2 shows the norm of the difference between the optimal control gain and the computed gain. It 

is obvious from the figure that the gain converges to the optimal value. Spikes is seen in the first iterations 

with system 1, a smaller spike is seen when the dynamic changing at 300 points, and tiny spike at 600. 

This because the extended ART sub-models are carried through the three systems, and the changing in 

the system dynamic is not very huge.  The optimal gains and the computed gain are shown in table 2.3.  

 

Figure 3-2 The norm of the difference between the optimal control gain and the computed gain 
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Table 2.3: The optimal gains vs the Computed gains 

 Optimal Gains Computed Gains 

System 1  −=*
1 4.292 23.686SysK   = −1 4.2 292 3.686SysK  

System 2  −=*
2 0.127 3.019SysK   −=2 0.127 3.019SysK  

System 3  −=*
3 0.489 1.297SysK   −=3 0.489 1.297SysK  

3.5 Conclusion 
In this chapter, ART clustering algorithm is combined with RL to find the optimal solution to the 

tracking problem of time-varying discrete-time systems. The changes in the system behavior is taken into 

account using multiple-model approach. ART algorithm generates sub-models based on the clustering 

match-based method. A Q-learning based algorithm is then used to find the optimal solution online and 

without requiring any knowledge of the system dynamics. Each sub-model contributes into Q-function 

through a responsibility signal generated by ART.  
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Chapter 4 An Incremental Optimal Q-Learning Model for Biologically 

inspired dopamine-like reinforcement signal for a spatial delayed 

response task Equation Chapter (Next) Section 4 

4.1 Introduction  
 

Optimal control is set to find a control law for a given dynamical system such that a certain 

optimality criterion is achieved. A control problem includes a performance function that is a function of 

state and control variables. Optimal control is a set of differential equations describing the paths of the 

control variables that minimize the performance function. The Optimal tracking problem of nonlinear 

systems has always been the key focus in the control field in the last several decades. The objective is to 

design a control law to ensure the stability of the control systems, as well as optimally tracking a desired 

reference trajectory, by minimizing a performance function. Traditional solutions to the optimal tracking 

problem aims at finding two components [22] , namely, a feedback term obtained by solving a Hamilton-

Jacobi-Bellman (HJB) equation and a feedforward term obtained by solving a noncausal difference 

equation [23][24]. The feedback and feedforward terms are mainly found separately, and the solution is 

commonly obtained in an offline fashion, which requires complete knowledge of the system dynamics. 

Reinforcement learning (RL) [25][28], as a class of machine learning methods, has been widely used to 

find the online solution to the optimal tracking problem of time-invariant discrete-time systems.  

These methods mainly use a function approximation scheme to approximate the value function 

and consequently find the optimal control solution. Function approximation methods employ the 

different problems such as regression, classification, fitness approximation which work to a certain degree 

and received unified treatment as supervised learning problems.  However, there is a trend for the 

application of NNs essentially extends traditional adaptive control capabilities to more advanced optimal 
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adaptive learning feedback controllers.  This trend focuses on two different aspects stability and plasticity. 

The area of studying these types of networks has a relative shortage.  The shortage is generated because 

of the divergence between cognitive brain discovery and the computational model. The huge 

advancement in computational power field yield very decent function approximator which focuses on 

optimality, and stability but not plasticity. This spark some criticism from the cognitive, and neuroscientist 

on such learning method. The human makes quick decisions based on association of existing external 

variables or cues with responses learned and stored based on previous experiences [29][30].  This induced 

a big issue in the existing application of reinforcement learning (RL) to real-world control problems is how 

to deal with nonlinearity and nonstationarity. For a nonlinear, high-dimensional system, the conventional 

discretizing approach necessitates a huge number of states, which makes learning very slow. Standard RL 

algorithms can perform badly when the environment is nonstationary or has hidden states. These 

problems have motivated the introduction of modular or hierarchical RL architectures.    The main theme 

to solve the curse of the dimensionality model is to use one of two methods   One approach to this “curse 

of dimensionality” is to “divide and conquer” as in the renowned work of bellman [18] or the cognitive -

neuroscientific  work of Ghahramani [19 ] and Doya [20] subdividing a complicated problem into simpler 

subproblems.  To simplify this consider a  subject in a visuomotor task might realize that rewards depend 

solely on eye movements, whereas other tasks reward multiple effectors independently, like driving while 

talking on the phone. Work in computational RL [21-22]. However, these models also considered stability 

and optimality. Other neuroscience model considered only modeling the brain functions in such a 

situation, namely consider the dopamine receptor, and synapses.    

It is needless to say that all these models use variations of temporal difference model.  TD models 

are more efficient than most conventional reinforcement models in learning a wide variety of behavioral 

tasks, from balancing a pole on a cartwheel [23] to playing world class backgammon [24] Robots using TD 

algorithms learn to move about two-dimensional space and avoid obstacles or reach and grasp[25]. In 
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biological applications, TD models replicate the foraging behavior of honeybees,[26] simulate human 

decision making [27] and learn eye movements [28-29]. In fact, the dopaminic association is, in essence, 

some form of TD learning.  

Furthermore, most models lack the consideration of the temporal difference of the reward. In 

neuroscience short-latency response of reward, dopamine neurons, to primary rewards and conditioned.  

It lacks the consideration of reward-predicting signal might constitute a biological implementation of a TD 

reinforcement signal.  In addition, most models do not take into the account the negative reward. In 

biology, this occurs when the prediction of the reward is high, and the reward is omitted. Similar to the 

Effective Reinforcement Signal, activations of reward, dopamine neurons occur only following rewards 

that are unpredictable and not following fully predicted rewards. Depressions occur when a predicted 

reward is omitted. This short-latency response is largely restricted to appetitive prediction error and rarely 

occurs with surprise or predicated aversive reward. In addition, most models consider the learning in the 

critic, but rarely in the actor. Suri and Schultz showed that the learning in reinforcement situation occurs 

in both the critic as the actorError! Reference source not found.  . Cognitive RL theories hypothesize that 

learning is driven by a “prediction error” (PE), typically assumed to be a single signal broadcast by 

dopaminergic projections [30-32]. This single signal has a striking similarity with the computational work 

of Kalman in prediction covariance matrix in Kalman filtering technique.    

Suri and Schultz proposed the celebrated model of the dopamine reward circuitry in the brain 

which has some explanation for all the above problem. The model bridges the gap between the 

computational models and the neuroscientific models.   The model consists of an Actor component and a 

Critic component. Actor and Critic receive input stimulus from all the models which are coded as functions 

of time, respectively. The critic computes the Effective Reinforcement Signal which serves to modify the 

critic learning weights and the actor weights mimicking adaptive synapses. The function of the Critic is to 

associate the input stimulus with the Effective Reinforcement Signal. Every stimulus is represented as a 
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series of time-spatial components of different durations. Each of these components influences the reward 

prediction signal according to its adaptive weight. This form of temporal stimulus representation allows 

the Critic to learn the correct duration of the stimulus-reward interval. For every stimulus, a specific 

prediction is computed as the weighted sum of the representational components. A winner-take-all 

competition between predictions of different stimuli sets all representational components to zero except 

the strongest one. The change in the prediction of a stimulus is computed by taking the temporal 

difference between successive time steps of the previous prediction the current prediction with a 

discounting factor. The temporal difference between successive predictions is summed over all stimuli 

and added to the primary reinforcement signal input coding the reward. The result of this summation is 

the Effective Reinforcement Signal which codes the error in the prediction of reward. The Actor learns to 

associate stimuli with behavioral actions. A winner-take-all rule prevents the Actor from performing two 

actions at the same time. Notice that the learning in the critic is linear combination of all evaluated reward, 

and the learning in the critic is a winner-take-all scheme.  

In this paper, motivated by neurocognitive models of mechanisms described in Suri Schultz model 

in the brain, a model-free Q-learning based algorithm is presented to find the optimal solution to the 

tracking problem of time-varying discrete-time systems. The proposed algorithm combines RL with the 

Suri Schultz to monitor changes in the dynamics of the environment. The system starts with a fixed 

number of sub-models based on prior knowledge. The Suri Schultz effective reward signal contribution of 

each critic to the overall learning, and the contribution of each actor in the reduction in the time-space. 

Based on the presented Q-function, an optimal control for each subsystem is found online using only 

measured data along the system trajectories.  

This paper is organized as follows. Q-learning method is highlighted in Section 2. New the Suri 

Schultz model is explained in Section 3. The formulation for the LQR using Q-learning is presented in 

Section 4. Simulation results of the mentioned algorithms are presented in Section 5. 
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4.2 Optimal Tracking Control Problem 
Consider the linear system dynamics as 

 
+ = +1k j k j kx A x B u  (4.1)  

where  n
kx is state vector of the system, and  m

ku is control input. It is assumed that the 

system operates in multiple environments which may change abruptly from one sub-model to another. 

That is,  = 1 1 2 2( , ) {( , ),( , ),...,( , )}j j N NA B M A B A B A B  with N  is the number of sub-models which is 

generally unknown. 

The goal is to design the control input ku  to assure that the states of the system track the reference 

trajectory kr  in an optimal manner by minimizing a predefined performance function as 

 


−

=

 = − − + ( , ) ( ) ( )i k T T
k k i i i i i i

i k

J x r x r S x r u Ru  (4.2) 

with 0S  and =  0TR R  .  0 1  is a discount factor.  

The desired reference trajectory is defined as 

 
+ =1k kr F r  (4.3) 

with  n
kr . 

The rest of this section assumes there is only one sub-model. This assumption is relaxed in the 

next section. Based on the system dynamics (3.1) and the reference trajectory dynamics(3.3), construct 

the augmented system as 

 
+

+

+

       
= = +  +       
       

1

1 1

1

k j k j

k k j k j k

k k

x A x B
X u T X B u

r F r

0

0 0
 (4.4) 



44 
 

where the augmented state is  =  
TT T

k k kX x r . 

The performance function (3.2) in terms of the state of the augmented system for the sub-model 

j  can be written as 

 


−

=

 = + V ( ) i k T T
j k i j i i j i

i k

X X S X u R u   (4.5) 

where  

− 
=  

− 

j j

j
j j

S S
S

S S
 

It is shown in [18] that the value function is quadratic in terms of the states of the system (3.5) as 

 =( ) T
j k k j kV X X P X  (4.6) 

Substituting (3.5) into (3.6) yields the Bellman equation corresponding to −j th  sub-model as  

  + += + + 1 1
T T T T
k j k k j k k j k k j kX P X X S X u R u X P X  (4.7) 

Then, the optimal control input corresponding to sub-model j  is given as 

   −= − +* 1
1 1 1( )T T

k j j j j j j j ku R B PB B PT X  (4.8) 

where jP  is obtained by solving the following algebraic Riccati equation (ARE)  

    −− + − + =2 1
1 1 1 1( ) 0T T T T

j j j j j j j j j j j j j j jS P T P T T PB R B P B B PT  (4.9) 

 

Eq. (3.8) is the optimal control input when one has just one model to show the behavior of the 

system. However, the time-varying systems have different dynamics for each kind of fault or change in 
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the environment, each type of these dynamics is a sub-model and we should take into account all these 

sub-models in the value function and control input. In the Suri-Schultz learning model is proposed to 

determine the contribution of each sub-model , critic, and actor in the general value function. The overall 

system is highlighted in Figure 3.1 

Reinforcement Q-
learning  Suri- Schultz Learning 

ModelReinforcement 
Q-learning 
algorithm 

Reference Dynamic

System Dynamic

Sub-model 1

Sub-model j

k

k

k

x
X

r

 
=  
 

kx

kr

ku
  

 

Figure 4-1 Overall system 

4.3 Dopamine-like reinforcement Model Value Function for Multiple-model 
Systems.  

 

In this section, Dopamine-like reinforcement Model is used to approximate value function for 

multiple-model systems which are used to model uncertain time-varying systems. The fundamentals of 

Dopamine-like reinforcement Model  are first presented, and it then is combined with multiple model and 

Q-learning to approximate the optimal value function and consequently the optimal solution for uncertain 

time-varying systems.  

4.3.1 Dopamine-like reinforcement Model 
Suri-Schultz model [100] was originated to investigated how the simulated response of dopamine 

neurons to reward-related stimuli could be used as a reinforcement signal for learning a spatial delayed 

response task in the primate brains.  This work gave the cognitive model to the computational learning 
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theory and probably approximately correct learning, (PAC) frameworks for mathematical analysis of 

machine learning. It was proposed in 1984 by Leslie Valiant [102][1][102]. Spatial delayed response tasks 

assess the functions of the frontal cortex and basal ganglia in short-term memory, movement preparation 

and expectation of environmental events. In these tasks, a stimulus appears for a short period at a 

particular location, and after a delay the subject moves to the location indicated.  In general learning 

situation, this analogous to the trajectory of learning. In these frameworks, the learner receives samples 

and must select a generalization function, generally called the hypothesis, from a certain class of possible 

functions. The goal is that, with high probability, the selected function will have low generalization error. 

These models are more immune against learning noise as a reward. In fact, the PAC model was later 

extended to remedy noise (misclassified samples).  

 

Figure 4-2: Suri-Schultz model 

In Suri-Schultz model dopamine neurons, reward signals,  are activated by unpredicted rewards 

and reward-predicting stimuli, are not influenced by fully predicted rewards, and are depressed by 
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omitted rewards. Thus, they appear to report an error in the prediction of reward, which is the crucial 

reinforcement term in formal learning theories. This scheme gives an explanation of the stability and the 

plasticity in the brain, however, in a computational optimal setting, the fully predicated reward should be 

considered.  Computationally, the calculation of the reward and the prediction of the rewards yield the 

learning trajectory.  Theoretical studies on reinforcement learning have shown that signals similar to 

dopamine responses can be used as effective teaching signals for learning. The reinforcement signal was 

modeled according to the basic characteristics of dopamine responses to novel stimuli, primary rewards 

and reward-predicting stimuli. A Critic component analogous to dopamine neurons computed a temporal 

error in the prediction of reinforcement and emitted this signal to an Actor component which mediated 

the behavioral output. The spatial delayed response task was learned via two subtasks introducing spatial 

choices and temporal delays, in the same manner as monkeys in the laboratory. In all three tasks, the 

reinforcement signal of the Critic developed in a similar manner to the responses of natural dopamine 

neurons in comparable-learning situations, and the learning curves of the Actor replicated the progress 

of learning observed in the animals. Omission of reward induced a phasic reduction of the reinforcement 

signal at the time of the reward and led to the extinction of learned actions. A reinforcement signal 

without prediction error resulted in impaired learning because of perseverative errors. Loss of learned 

behavior was seen with sustained reductions of the reinforcement signal, a situation in general 

comparable to the loss of dopamine innervation in Parkinsonian patients.   

These notions are captured mathematically as follows. The situation of our concern is when the 

observed input data for the Suri-Shultz  are the inputs and outputs of a dynamical system (3.1) and the 

reference trajectory of (3.3). The function j
ke , describing the physical salience of one of these stimuli, took 

value one during presentation of the stimulus and zero otherwise, this constitute the input data for the 

Suri-Shultz  are defined:  
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 +

 −
 = −
 −
 

1 1j k k
k

k k

x r
e

x r
 (4.10) 

The stimulus is the phasic system error between the system states kx , and the reference 

trajectory kr .  

The stimulus trace of a stimulus j
ke  is decaying with the parameter δ is defined as decay of trace 

and action trace as in (3.10).  This is reignited if the error is reduced. The augmented phasic system error 

is normalized, and it is always 0<e<1, where 1 as no error.  

 + −1 1e =h(e +δe ).
j j j
k k k  (4.11)  

Where  

The function h() limited the argument to values smaller or equal to one and was defined as 

 




y<1
h(y)=

1 else

y
 (4.12) 

Here we limit the system response time  a period of time to ensure the repose is not overlearned 

or under learned.  For most system include the primates three trials is time between learning and action, 

also this sometime is defined as the refectory signal.  

 +

+


=


1

3

1 a
a

0 a

j
j k
k j

k

 (4.13) 

If there was no ongoing action a' j
k , aj

k is computed from the weights v j
k  and the stimulus trace,  

the augmented phasic system error e
j

k . 

  
 a' = v e g(e ).j

k j

j j j
k k k  (4.14)  
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This means that the action a' j
k of this sub- is a candidate optimal actions,  for the Where the 

function g() is designed allowed actions only if a reward was presented 

 −

− = 


− 
1

1

1 e e
(e e )

0

0
,

j j
j j k k
k k

else
g  (4.15)  

The action a' j
k  and selected using competition between actions in the form of a winner-take-all 

rule as follows:  

 


= 


1 a' a'
a

0

j m j
j k k
k

else
 (4.16) 

The representation of selected action was extended over time with the traces 

 a =h(a +δa ).j j j
k k k  (4.17)  

Where the limiting function h() is defined in, and δ  is describing the decay of the trace.  

computation of the temporal representation xm
k from a stimulus em

k . For a single stimulus em
k , the 

temporal representation xm
k depended only on the onset of this stimulus em

k and not on its offset. xm
k was 

defined with the recursive function,  

 
−1X =f(e ,x )m m m

k k k  (4.18)  

Three cases were distinguished for the definition of function f(): 

Temporal Representation  1: Onset of stimulus em
k elicited the first representation component 

 1 1x (t)=ek k  (4.19) 

Temporal Representation 2: The slower components followed one iteration: 

 
− 1x =ρ em m

k k  (4.20)  
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Whereρ  is Onset activations decrease of the stimulus representation components  

Temporal Representation  3: More than one iteration after the onset of stimulus em
k , the 

components:  

 
−1x =c x /γm m m

k k k  (4.21)  

Where temporal representation increased gradually with discount factor γ. This increase was 

chosen in order to make the time-course of the representation components proportional to the time-

course of the desired prediction signal. The decays of the representation components were implemented 

with the function cm
k  : 

 

−







10 n=max(x )

c n 1...m

1

m
k

m
k

else

 (4.22)  

which set the largest component of 
−1xm

k to zero. 

Changes in the temporal representation were defined:  

 −− +
  1Δx = x γxm m m

k k k  (4.23)  

+
   indicates that negative values of the argument were set to zero and positive values of the 

argument remained unchanged. 

The adaptive critic weights wk are used to associate the temporal stimulus representation xm
k of 

stimulus with the reward prediction: 

 P = w x .m m
k k k  (4.24)  
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For several temporal representation, the prediction Pk is the sum over the reward predictions 

associated with all temporal representation 

 P = Pm
k k

m

 (4.25)  

The response of dopamine neurons is modeled as the Effective Reinforcement Signal:  

 − −1r =d+λ +γP Pk k k k  (4.26)  

where  λ k is primary reward, d is positive constant, and γ is discount factor.  

The learning in the Critic weights is updated as follows:  

 − −− − +
  1 1w =w +η (r d) x γxm m m m

k k c k k k  (4.27)   

ηc  as the learning rate. The brackets ⌊ ⌋+ indicate that a negative number is set to zero and a 

positive number remains unchanged.  

The learning in the actor weight is updated as follows:  

 −−1v =v +η (r d)a e .m m m m
k k a k k k  (4.28)  

ηa  as the learning rate.  

4.3.2 New Value Function Structure Using Dopamine-like reinforcement Model 
In this subsection, a general value function approximation for multiple-model linear systems using 

modified  is presented. In the proposed value function approximation scheme, each sub-model 

contributes to the value function using a responsibility signal. In fact, the general value function is given 

by 

 
= =

= = 
1 1

( ) ( )
N N

j j T
k k j k k k j k

j j

V X a V X a X P X  (4.29) 
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where =1,...,j
ka j N  are the responsibility signals which determine the contribution of each 

sub-model to the general value function.  

Considering (3.4) and  (3.15) in (3.2), yields the Bellman equation for time-varying systems 

  + +

= =

= + +  1 1
1 1

N N
j T T T j T
k k j k k k k k k k j k

j j

a X P X X S X u Ru a X P X  (4.30) 

and the Hamiltonian is defined as 

  + +

= =

= + + − 1 1
1 1

( , )
N N

T T j T j T
k k k k k k k k j k k k j k

j j

H X u X S X u Ru a X P X a X P X  (4.31) 

Applying the stationarity condition   =( , ) 0k k kH X u u  yields the optimal control input as 
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= =

   
= +   

   
 

1

1 1 1
1 1

( )
J J

j T j T
k k j j j k j

j
kj j

j

u a R B P B a B PT X  (4.32) 

where =1,...jP j N  are obtained by solving a set of AREs (3.9).  

Remark 1. Note that complete knowledge about the augmented system dynamics is required to 

find the optimal control input (3.18). In the next section, reinforcement learning is used to find the 

solution to the optimal tracking problem without requiring any knowledge about the system dynamics.  

4.3.3 Q-learning to Solve Optimal Tracking Problem of Multiple-model Systems 
The solution to the optimal multiple-model tracking control problem needs complete knowledge 

about the system dynamics and reference trajectory dynamics. In this section a Q-learning algorithm is 

developed that solves this problem online without requiring any knowledge of the augmented system 

dynamics.  

Based on the Bellman equation (3.7), the discrete-time Q-function for j-th sub-system is defined 

as 
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  + += + + 1 1( ) T T T
k k k k k kj j j jQ k X S R PX u u X X  (4.33) 

Substituting the augmented system (3.4) in (3.19) yields,  
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For the multiple-model systems, the general Q function is defined as  
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By substituting the quadratic form (3.20) in (3.21), one has 
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Eq. (3.22) shows that the general Q-function for multiple-model systems is quadratic in terms of 

the states of the augmented system and control input.  

Applying the stationarity condition =( ) / 0kdQ k du  yields,  
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Now, we can present a Q-learning algorithm to solve the optimal tracking control problem of 

multiple-model systems online without knowing the augmented system dynamics 1( , )j jT B .  

The Bellman equation (3.16) in terms of Q-function is given as  

  + += + + 1 1( , ) ( , )T T
k k k k k kk kQ X u X S R Q X uX u u  (4.38) 

Substituting (3.22) into (3.24), the Q-function Bellman equation (3.24) becomes 

  + += + +1 1 1H HT T T T
k k k k k k k kZ Z X S X u Ru Z Z  (4.39) 

Policy iteration is especially easy to implement in terms of the Q-function, as follows. 

Algorithm 1. Policy Iteration using Q-function 

Policy evaluation 

 + +

+ += + +1 1
1 1H ( ) ( ) HT i T i T i T i

k k k k k k k kZ Z X SX u R u Z Z  (4.40) 

Policy improvement 
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Q-Learning attempts to learn the cost of the current category state and taking a specific action 

toward minimizing the performance index. The advantage of Q-learning is that convergence guarantees 

can be given even when function approximation is used to estimate the action values. 

4.4 Simulation 
To show the effectiveness of the proposed method, simulations have been carried out on a mass-

spring-damper system. The system dynamics is 
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Three different system behaviors are considered for this simulation. The parameters set of each 

time variant period are provided in Table 2.2. These parameters change the behavior system dynamics 

(3.28).  For each time interval a system is activated for the corresponding parameters.   

Table 2.2: The parameters of three system dynamics for three-time intervals 

Time Interval System Parameters 

 0 300t  = = =1 1 110 10 90k b m . 

 300 600t  = = =2 2 230 15 90k b m  

 600 1000t  = = =3 3 350 50 90k b m . 

 

The Dopamine-like reinforcement Model parameters are chosen as  

Initial weights wlm= 0.2 , Critic Learning rate ηc=0.08 , Baseline of Effective Reinforcement Signal 

d=0.5 , Discount factor γ=0.98 , Onset activations decrease of the stimulus representation components 

ρ=0.94, Actor Initial weights νnl = 0.4 , Actor Learning rate ηa = 0.1 , Maximum of random distribution 

σ=0.5, Decay of stimulus trace and action trace δ=0.96  
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Figure 4-3: The norm of the difference between the optimal control and computed gain  

 Figure.3-2 shows the norm of the difference between the optimal control gain and the computed 

gain. It is obvious from the figure that the gain converges to the optimal value. Spikes is seen in the first 

iterations with system 1, a smaller spike is seen when the dynamic changing at 300 points, and tiny spike 

at 600. This because the extended ART sub-models are carried through the three systems, and the 

changing in the system dynamic is not very huge.  The optimal gains and the computed gain are shown in 

table 3.3.  

Table 3.3: The optimal gains vs the Computed gains 

 Optimal Gains Computed Gains 

System 

1 
 −=*

1 4.292 23.686SysK   = −1 4.2 292 3.686SysK  

System 

2 
 −=*

2 0.127 3.019SysK   −=2 0.127 3.019SysK  

System 

3 
 −=*

3 0.489 1.297SysK   −=3 0.489 1.297SysK  
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4.5 Conclusion 
 

In this chapter Dopamine-like reinforcement Model is combined with RL to find the optimal 

solution to the tracking problem of time-varying discrete-time systems. The changes in the system 

behavior is considered using multiple-model approach. Dopamine-like reinforcement Model generates 

sub-models based on the clustering match-based method. A Q-learning based algorithm is then used to 

find the optimal solution online and without requiring any knowledge of the system dynamics. Each sub-

model contributes into Q-function through a responsibility signal generated by Dopamine-like 

reinforcement Model.  
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Chapter 5 Model Reference Adaptive Impedance Control for Physical 

Human-Robot Interaction Equation Chapter (Next) Section 5 

Physical human-robot interaction (HRI) and cooperation has become significantly more important 

in recent years and is now of a major focus in robotics and control society. The empirical evidence suggests 

that physically embodied interactions are preferred by human operators over virtual or remote 

teleconference interactions [42]. Unlike ordinary industrial robotics where the environment is structured 

and known, in HRI systems, the robots interact with humans who have very different skills and capabilities. 

Therefore, it is of paramount importance for robots to adjust themselves to the level of the skills and 

capability of the human and compensate for possible human mistakes due to fatigue, stress, etc. 

Control of industrial robots has often focused on following a desired trajectory in a well-known 

and structured environment. For robot manipulators with unknown nonlinear dynamics, modeling 

inaccuracies, and disturbances, nonlinear adaptive robot controllers have often been designed based on 

computed torque control [43] and/or feedback linearization [44][45] to yield guaranteed trajectory 

following.  Adaptive control using neural networks (NNs) has been successfully employed for control of 

uncertain robot systems in the literature. These mentioned adaptive control methods, however, do not 

consider the interaction between the robot and the environment or the human. When the robot is in 

contact with an object or a human, it must be able to control not only positions, but also forces. 

Impedance control has been widely studied in robotics as a control technique to perform robotic 

contact tasks.  The purpose of impedance control is to provide stable tracking during robot contact with 

the external environment [45]-[50] by regulating  the mechanical impedance response of a robot to a 

desired reaction according to a given task. In trajectory following, the important feature is the tracking 

error dynamics.  Therefore, impedance control in these applications has focused on making the tracking 
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error dynamics behave like a prescribed impedance model [50]-[56]. Adaptive impedance control can be 

used to guarantee stable contact with unknown environments and specify the desirable response of the 

robot to an external force profile. This can potentially be used to regulate the interactions between a 

robot and a human operator while dynamically performing a task.  Various considerations have been 

taken into account to tune the impedance parameters. In [52], an adaptive impedance feedforward term 

was used based on task requirements. In [54] adaptive controllers based on neural networks were 

designed in which the error dynamics parameters were tuned to become closer to a prescribed error 

dynamics model.  

 Most existing adaptive NN-based controllers and adaptive impedance controllers focus on 

tracking error dynamics, and/or make the tracking error dynamics have a prescribed impedance 

characteristic. Moreover, the control torques derived in most work has been done in the literature 

depends on the prescribed impedance model parameters. The objective of trajectory following with an 

error dynamic having prescribed impedance properties often restricts the applications of these 

approaches in human-robot interactive systems. Modern human-robotic interactive systems must be 

capable of performing a wide range of tasks. Applications in industry, military, aerospace and the gaming 

industry focus on semi-autonomous features of robotic systems in interacting with humans. This requires 

that task-specific controls include the effects of both the robot dynamics and the human dynamics, and 

their interactions. In this setting, trajectory following design for robot torque controllers is not suitable 

and limits system performance to a narrow range of tasks.  In HRI systems, any trajectory tracking 

objectives cannot be implemented solely by the inner robot control loop because the human dynamics 

must be included in task trajectory following objectives. 

This chapter is motivated by the human factor studies, and as opposed to most existing results 

does not design a robot torque controller for trajectory following.  The purpose of this chapter is (1) to 

avoid the need for the human to learn robot-specific models, so he can focus on the task and (2) to adapt 
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the robot performance to assist the human-robot system in performing the task. The contributions of this 

chapter are as follows. An inner-loop torque controller is first designed to make the robot behave like a 

prescribed impedance mode l from the human force input to the robot motion coordinates.  This means 

the human does not need to learn an inverse dynamics model to compensate for robot nonlinearities and 

is a completely different philosophy than making a trajectory error dynamic follow a prescribed 

impedance model [52]. Then, a task-specific outer-loop controller is designed, taking into account the 

human transfer characteristics, to tune the robot impedance model to assist the human in effectively 

performing the task.   The outer-loop task-specific controller is designed to make the combined transfer 

function of the human and the robot resemble a desirable performance model based on task 

requirements.  Techniques from model reference adaptive control are modified to accommodate the fact 

that the tunable impedance model appears after the plant, not before as in standard model-reference 

adaptive control (MRAC). This task control loop incorporates a human dynamics system identifier.  

Adaptive tuning algorithms are given for the robot impedance model parameters and proofs of 

performance are formally presented.  Novel extensions to MRAC are made in the design of both the robot-

specific inner loop and the task-specific outer loop controller design. 

This chapter is organized as follows. Section 3.1 provides an overview of the design philosophy in 

this chapter.  Section 3.2 designs a neural network adaptive torque controller that makes a robot dynamic 

appear like a prescribed robot impedance model.  This design is not based on trajectory following. In 

Section 3.3 an outer-loop controller is designed using a novel MRAC structure that takes into account both 

the human dynamics model and the prescribed robot impedance model to ensure the effective 

performance of a task.  Adaptive methods are given for tuning the robot impedance model to assist the 

human in the performance of the task. Section 3.4 gives simulation results and implementation results on 

a PR2 robot are given in Section 3.5. 
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5.1 Structure of Adaptive Human-Robot Interaction. 
 

In this section we preview the overall control architecture developed in this chapter.  Two control 

loops are designed.  These control loops are motivated by human factors studies [58]-[61] that show a 

human operator learns two components in performing tasks with a robotic system.  He learns a robot-

specific inverse dynamics model to compensate for the nonlinearities of the robot. This appears to occur 

in the cerebellum, where supervised learning is used to learn the environment [61]. Simultaneously, he 

learns a task-specific feedback control component that is particular to the successful performance of the 

task. Some recent work in adaptive impedance control follows this approach of robot-specific impedance 

control inner loop design followed by a task-specific outer loop design that includes the human dynamics 

[57]. 

In this chapter, a robot-specific inner loop is first designed to make the robot dynamics from the 

human operator input to the robot motion appear as a prescribed robot impedance model. The robot-

specific inner-loop controller appears in Figure 2-1 and is developed in Section 3.3.  The objective in this 

loop is to design the controller torque   to make the error between the robot position, i.e. q , and the 

prescribed impedance model position,  i.e. mq , go to zero. That is to design design   to make 

= −m me q q  go to zero. The input to both robot and impedance model is the human torque h . This is 

not the same as the bulk of the work in robot impedance control [47] and neural network adaptive control 

[50]-[63] which is directed towards making a robot follow a prescribed trajectory, and causing the 

trajectory error dynamics to follow a prescribed impedance model [52]. In our approach, no trajectory 

information and no information of the prescribed impedance model is needed for the inner loop design. 

This leaves the freedom to incorporate all task information in an outer loop design. It will be seen that the 

robot torque input does not depend on the impedance model parameters. This contrasts with other 

adaptive impedance control approaches which have a trajectory following objective [52]. 
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Figure 5-1 : Inner-loop robot-specific Model Reference Neuroadaptive Control 
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Figure 5-2: Outer-loop task-specific MRAC for Adaptive Human-Robot Interaction 

An outer task-specific loop is next designed that considers the human operator dynamics. All task 

performance details are relegated to this outer-loop design. The task-specific outer loop design is shown 

in Figure.3.2 and designed in Section 3.4.  The objective is to tune the robot impedance model, which is 

performed by designing the control input u , as described later, to make the position of impedance model 

tracks the position of a reference model, i.e. rq .  It is a novel form of MRAC of a different sort than 

Figure.3.1. The application of MRAC must be modified since the tunable parameter robot impedance 

model appears after the unknown human plant model, not before it as in standard MRAC design. Human-

robot interactive systems can perform a variety of quite general tasks.  In this chapter, we consider the 

task to be following a desired trajectory, as in point-to-point motion control by a human operator [57],[62] 

Then, the task reference input ( )cu t  in Figure. 3.2 is interpreted as the desired task trajectory to be 

followed by the combined man-robot system. The outer-loop design has two components.  An assistive 

input is generated that helps the human in task performance and the prescribed robot impedance model 

in Figure.3.1 is adapted to enhance the human in task performance. This design must take into account 
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the unknown human dynamics as well as the desired overall dynamics of the human-robot system, which 

depends on the task.  

5.2 Inner-Loop Control Design 

In this section, the inner-loop torque controller for the robot manipulator shown in Figure.3.1 is 

derived to make the robot dynamics from human operator input to robot motion appear like a prescribed 

robot impedance model. A neural network approximator is used to compensate for the unknown 

nonlinear robot dynamics. We call this approach neuroadaptive control. The detailed result of this design 

is shown in Figure .3.3.  No task trajectory information is needed in this design, so that this work is different 

from most existing work in robot control and neural network control [64]. 

 

Figure 5-3 Model Reference Neuroadaptive Controller 

5.2.1 Robot Impedance Model and Model-Following Error Dynamics 
In this section we formulate a novel control objective for an inner-loop robot controller that does 

not involve trajectory tracking.   

The robot dynamics equation is adapted from [43] 

   + + + + = +( ) ( , ) ( ) ( ) d hM q q V q q q F q G q   (5.1) 

where  nq  are the robot positions, ( )M q  is the inertia matrix, ( , )V q q  is the 

Coriolis/centripetal forces, ( )G q  is the gravity vector, and F( )q  is the friction term. The disturbance is 
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  n
d   and the human operator input is h . Control torque   is to be designed to fulfil the control 

objective outlined above and detailed below. 

Equation (5.1) can be considered as being either in joint space or Cartesian operational space. If 

it is in the joint space, the inputsd , h  are torques. If it is in Cartesian space, the inputs d , h  are forces. 

Forces f  and torques   are related by  = TJ f  where J  is the robot Jacobian matrix. The Cartesian 

inertia, Coriolis/centripetal forces, friction and gravity terms are likewise determined from their joint 

space counterparts by using the Jacobian matrix, according to standard techniques [43]. 

Select the prescribed robot impedance model whose dynamics are to be followed by the robot as 

 + + =m m m m m m hM D q K qq  (5.2) 

where ( )mq t  is the model trajectory, mM  is the desired mass matrix, mD   is the desired damping 

matrix, and mK  is the desired spring constant matrix.  The impedance parameters mM , mD , and mK  will 

be designed in Section 3.4 in an outer task-specific loop that takes into account both the human operator 

dynamics and the task objectives. 

Robot-Loop Control Design Objective. Design a robot torque controller that makes the robot dynamics 

(5.1) from the human input h  to the manipulator motion ( )q t  behave like the prescribed impedance 

model (5.2). 

To this end, define the model-following error 

 = −m me q q  (5.3) 

and the sliding mode error 

 Λ= +m mr e e  (5.4) 
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where   is a symmetric, positive definite design parameter matrix. Since (5.4) is a stable system, 

considering ( )r t  as input and ( )me t  as output, the control torque   in (5.1) is now designed to guarantee 

that ( )r t  is bounded. This guarantees bounded model-following error ( )me t .  

Using (5.1), (5.3), and  (5.4) the dynamics of the sliding mode error are given by 

 ( ) ( )Λ Λ   − − + − − + + + = +( ) ( ) ( , ) ( ) ) ( )(m m m m d hM q r e V q q q r F G qq e q  (5.5)  

which yields the sliding error dynamics 

   = − + + − −( ) ( , ) ( ) hdM q r V q q r f x  (5.6)  

where  

 Λ Λ+ += + + +( ) ) ( ,( ) )( ) ( ) (( )m m m mM q e V q q q e F qf Gx qq  (5.7) 

is a nonlinear function of robot parameters which is assumed unknown.  It is important to note 

that ( )f x  does not depend on the impedance model parameters mM , mD , and mK  in (5.2). This is in 

contrast to impedance control robot controllers that have a trajectory following objective [52] where a 

tracking error is used instead of the model-following error (5.3).   

5.2.2 Neuroadaptive Model-Following Controller 
In this section, a control structure is given which uses a neural network (NN) to approximate the 

unknown function ( )f x  in (3.7) and guarantees the stability of the model-following error(5.3). Therefore, 

the robot dynamics (5.1) with human input h  appears as the prescribed impedance model (5.2). We call 

this a neuroadaptive model-following controller.  The use of NN in robot control is a standard approach 

used by many prior works [64]. In contrast to almost all these standard approaches, there is no trajectory-

following objective here, so that a desired reference trajectory is not needed by the neuroadaptive 

controller.  
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To provide an approximation for the unknown function ( )f x  in (5.7), a neural network (NN) is 

introduced. According to the NN approximation property [67]-[71] the nonlinear function in (3.7) can be 

approximated by  

  = +( ) ( )T Tf x W V x  (5.8) 

where W  and V  are unknown ideal NN weights and  (.)  is a vector of activation functions. The 

NN input vector is = [             ]T T T T T T
m m m m mx e e q q q . It is known that the NN approximation error   is 

bounded on a compact set. Assume the ideal weights are bounded by a constant positive scalar BZ  

according to 

 
 

=  
 

0

0 BF

F

W
Z Z

V
 (5.9) 

with .
F

 the Frobenius norm.  Define matrix Ẑ  commensurately with the definition of Z . 

To make the model-following error defined in (3.3) stable and consequently make the robot 

dynamics (5.1) behave like the prescribed impedance model, the control torque is designed as 

   = + − −( )ˆ ˆT T
hvW V x K r v  (5.10) 

where vK r  is a proportional-plus-derivative loop with = T
v vK K  a gain matrix, and 

 =ˆ ˆ ˆ( ) ( )T Tf x W V x  (5.11) 

is the NN approximation for the unknown function ( )f x , and  

 ( )= − +ˆ( ) z BF
v t K Z Z r  (5.12) 
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with  0ZK  a scalar gain is a robustifying signal that compensates for unmodeled and 

unstructured disturbances.  

It is shown in Theorem 1 (Section 3.4) how to tune the NN weights V̂  and Ŵ  such that the 

control torque in (5.10) makes the model-following error (5.3) bounded and consequently the robot 

dynamics (5.1) from human input h  to the output ( )q t  behaves like the prescribed robot impedance 

model (5.2). 

Remark 1. The structure of the robot controller designed here is given in Figure.3-3. It is important 

to note that this controller guarantees model-following behavior of the robot dynamics (3.1) given the 

prescribed robot impedance model (5.2), based on the model-following error (5.3).  There is no objective 

for tracking a desired trajectory.  This is in contrast to almost all existing work in robot control [64] . 

Second, the impedance model parameters 
m

M , 
m

D , and 
m

K  do not appear in the control law (5.10) or in 

the function ( )f x  in (5.7), so that the NN does not need to identify the already-known impedance model 

parameters. This is reflected in Figure.3.3, where the prescribed impedance model (5.2) does not appear. 

This is contrast to the work on adaptive impedance control based on a trajectory tracking error dynamic 

[52]. As a result, the approach given here cleanly decouples the robot-specific control design given here 

from the task-specific control design which is given in the next section. This is in keeping with human 

factor studies [58] which indicate that the human learns two control components in task performance, 

one to compensate for nonlinear robot dynamics and one to assure task performance. 

5.3 Outer-Loop Model Reference Adaptive HRI Controller 
In this chapter, the task-specific outer loop controller is designed using extensions of model-

reference adaptive control.  The pioneering research work for model reference adaptive control (MRAC) 

was carried on during the 1960s by H. P. Whitaker, P. V. Osburn and A. Keze. Initial work in MRAC 

depended on gradient descent algorithms, including the MIT rule [72]. More rigorous Lyapunov designs 
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for MRAC were proposed by P. C. Parks [73]. In [74]-[79] general approaches to MRAC design and its 

applications were developed. Seminal work was done by [78], and others. 

The objective in this section is to design the Human-robot Interaction task-specific controller in 

Figure.3.2 that takes into account the human dynamics, which are unknown, and the task objectives.  The 

detailed result is in Figure.3.4.  It will be seen that this task-loop controller performs two functions.  It 

adapts the parameters of the robot impedance model (5.2) so that the task performance of the human-

robot system is improved, and also provides assistive inputs that enhance the human’s task performance. 

No robot-specific information is needed in the task loop design presented in this section.  This decoupling 

of control objectives goes along with human factors studies in [58].  
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Figure 5-4: Overall system of Model Reference Adaptive Control 

5.3.1 Model Reference Adaptive Control (MRAC) Formulation of Adaptive HRI 
The problem of adapting the robot impedance model in Figure. 3.2 to assist the human in 

performing a task is now formulated as a nonstandard MRAC problem. The challenge to be overcome is 

that the tunable parameter compensator is the prescribed robot impedance model in Figures 3.2 and 3.4, 

which occurs after the unknown plant (the human dynamics), not before, as in standard MRAC.  This 

problem is overcome by adding a system identifier for the human dynamics.   
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The prescribed robot impedance model (5.2) has ( ) n
mq t , with n the number of degrees of 

freedom of the robot.  It is assumed here that the robot dynamics (3.1) are in Cartesian task space, so that 

for n=6 degrees of freedom, the vector ( )q t  has three position components and three angular rotation 

components [43]. Regarding the human transfer characteristic, it is known from human factors 

neurocognitive studies [58] that, in human-robot interactive task performance, the human adapts itself 

to compensate for robot dynamics nonlinearities and also learns task-specific controls. However, after 

learning, it has been observed that the expert operator exhibits the transfer characteristics of a simple 

linear model with a time delay. For many tasks, this human operator model is a first-order linear system 

of the form [62].  

  −= + 1( )h cB sI A u  (5.13) 

In this section, it is assumed that the human transfer matrices A and B are unknown.  It is observed 

in human task studies there is a reaction time delay   that is independent of the particular operator once 

the task has been learned, and is almost constant at 0.4s [57],[62]. Therefore, it can be compensated for, 

so that, without loss of generality, the delay   can be taken as zero in (5.13) by shifting the measured 

time signals. 

Regarding the task reference model in Figure.3.2, it is further observed in human-robot interactive 

task learning studies that the human operator adapts to make the overall transfer characteristic of the 

human-robot system appear as a simple linear first-order system with high bandwidth.  This is known as 

the crossover model. Specifically [62], the skilled operator in a man-machine system adapts his own 

dynamics to make the total system transfer characteristic of the human-plus-robot remain unchanged 

over wide variations in the robot dynamics.  The total man-robot transfer characteristic is therefore 

prescribed here as the task reference model 

 −= + 1(s )m cr mq B I A u  (5.14) 
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with prescribed matrices 
m

A  and 
m

B . These parameters are selected based on the specific task.  

The class of tasks depicted in Figure.3.2 includes trajectory-following tasks where the human 

operates the robot to follow a prescribed trajectory.  This includes point-to-point motion tasks in force 

fields as studied in [57],[62]. This class of tasks can be considered as having a model-following objective 

based on the overall task reference model (5.14), and given the unknown human dynamics (5.13) and the 

robot response detailed by the robot impedance model (5.2). 

Remark 2. It is noted that if the task is trajectory following by the man-machine system, the 

parameters of the task reference model (5.14)  should be selected so that =
mm

A B .  This has low-frequency 

gain of 1, so that the trajectory is followed with zero steady-state error. Matrix mA  should be selected 

based on desired transient response characteristics of the man-machine system.  This choice of task 

reference model does not restrict the objective to following constant trajectories.  If the trajectory is time 

varying, suitable choice of the time-constant matrix −1
mA  will still result in good trajectory following. 

In Section 3.3 it was assumed that the prescribed robot impedance model (5.2) is of second order.  

However, the model does not appear in the control design given in Theorem 1.  Only the model motion 

trajectory , ,m mq q  and mq  is needed in the design of the robot-specific controller there. Therefore, in this 

section we take a nominal prescribed robot impedance model as  

 −= + 1(s )m n nq B I A u  (5.15) 

where nA  and nA  are initial nominal matrices.  It is shown in the following how the overall 

prescribed impedance model will be changed and tuned by MRAC design to assist the human to perform 

a task. 

Based on the above and referring to Figures  3.2 and 3.4, consider the dynamics for the human, 

nominal robot impedance model, and task reference model, given respectively by  
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  = − +h h cA Bu  (5.16),  

 = − +m n m nq A q B u  (5.17),  

 = − +r m r m cA q B uq  (5.18),  

Here, the prescribed task trajectory is ( )cu t  and an MRAC control law is to be designed for the 

control input ( )u t  in (5.17). 

5.3.2 Adaptive Impedance Control and Human-Assistive Inputs Using Lyapunov Design 
Given this setup, the basic concept of Model Reference Adaptive Control MRAC [74]-[78] can be 

used in this section to confront the design of the task loop of Figure.3.2.  The dynamics for the human, 

robot impedance model, and task reference model, given respectively by (5.16), (5.17),(5.18). 

Unfortunately, applying MRAC to this problem is complicated by the fact that in standard MRAC, 

the tunable controller appears before the unknown plant dynamics and provides its control input so that 

the plant has the transfer characteristics of the reference model.  By contrast, in adaptive impedance 

control for human-robot interaction (Figure.3.2), the tunable impedance model occurs after the unknown 

human dynamics.  This causes some complications and requires the introduction of a system identifier for 

the human dynamics.  The overall setup for adaptive HRI using MRAC approach is given in Figure.3.4.  The 

approach given here provides a formal model-following stability proof using Lyapunov techniques, and 

formalizes the human dynamics identifier approach used in [62]. 

Task-Loop Control Design Objective. Design an MRAC for control input ( )u t  so that the combined 

human-robot transfer function is equal to the prescribed task reference model (5.18). See Figure.3.2. 

It will be seen that the MRAC for ( )u t  has two components.  One component tunes the 

parameters of the robot impedance model (5.17). Then, the robot impedance model (5.17) provides the 

model reference trajectory , ,m mq q  and mq  used in the inner-loop torque controller of Figure 3-1 and 
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Theorem 1, through the sliding mode error (5.4) and the NN input vector = [             ]T T T T T T
m m mx e e q q q . The 

second component of the MRAC p gives assistive inputs that augment the operator’s output  ( )h t  to 

enhance his task performance.  See comments at the end of Theorem 2. 

The human transfer function (5.16) is unknown.  Therefore, a system identifier is introduced as 

  = − +ˆ ˆˆ ˆ
h h cA Bu  (5.19) 

for the human response.  Define the human response estimation error   = − ˆ
h h h . Then, the 

estimation error dynamics becomes 

 


 

  = − = − + + −

= − + −

ˆ ˆˆ

ˆ

ˆ
h h h h c h c

h h c

A Bu A Bu

A A Bu
 (5.20) 

where the identifier parameter errors are = −ˆ ,A A A and = −ˆB B B . Now, consider the control law 

      = − − − −1 2 3 4
ˆ ˆ

ch r hu q u  (5.21) 

where   1 2 3, ,  and 4  are tunable matrices of appropriate dimension.  Then, the overall system 

is illustrated in Figure.3.4. To derive tuning laws for the parameters   1 2 3, ,  4
ˆ ,A and B̂  such that the 

control objective is achieved, define the model-following output error as  

 = −m re q q  (5.22) 

Then 

 
= −

= − + + −

m r

mn n m m crA q B u A q

e

B

q

u

q
 (5.23) 

Substituting the control law (5.21) into this equation and manipulating yields the model-following 

error dynamics as 
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     = − − + − − + + + −2 1 4 1 3
ˆ ˆ[ ] [ ] [ ]ˆ

m n n m m nm n hn cA e B A A q B B B B B Ae u  (5.24)  

The next result provides tuning laws for the control parameters in (5.21), the human dynamics 

identifier (5.19) and the neural network weights for the inner-loop controller in (5.10) that make the 

overall human-robot system behave like prescribed reference model (5.14).  

Theorem 2.  Consider the prescribed impedance model (5.2), and the robot dynamics (3.1) with 

control input (5.10) for the inner-loop controller. Consider the unknown human dynamics (3.16), the 

robot impedance model (5.17), and the outer-loop control input (5.21). Tune the NN weights in the inner-

loop controller (5.10) as 

   = − −'ˆ ˆ ˆˆ ˆT T TW F r F V xr F r W  (5.25) 

  = −ˆ ˆ( ' ) ˆˆ T TV Gx Wr G r V  (5.26) 

where F  and G  are symmetric positive definite matrices and  0  is a small design parameter.  

Tune the outer-loop control parameters in (5.21) according to  

 
    

 

 









−

−

−

−

=

=

= + −

= +

1
1

1
2 2

1
3 1 4

1

3 1

1
4 1

ˆ

ˆ(

ˆ

)

ˆ

T
m

T T T
h h

T
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n m

T T
m n n m c h h

T
n m c

B P eu

B P eq

P B e AB P eu P

B B P eu

 (5.27) 

with  0mP  and  0hP , and the parameters in the human system identifier (5.19) according to 

    = − =4 5
ˆ ˆ,ˆT T

h h h h ch
TP PA B u  (5.28) 

Then, the inner-loop model-following error ( )me t , the outer-loop model following error ( )e t  and the 

human response estimation error are bounded, so that the product of the human dynamics and robot 

dynamics follows the task reference model (5.18).  
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Proof: Define a Lyapunov function as:  
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 (5.29) 

where the weight estimation errors are = − ˆW W W , = − ˆV V V . Differentiating this Lyapunov 

function and using (5.24) yields 

 

    

     
 







− −= + + + + − +

− + − − + + + −

+ + − + + + +

+

1 1

2 1 4 1

2

3

2 2 1 4 1 4

1

3

1 1
( ) ( ) ( ) ( ) { ( )

2 2
ˆ ˆ[ ] [ ] [ ] }

1 1 ˆ ˆ([ ] ) ([ ] ( )

1
(

ˆ

[

T T T T T
m m m m

m n n m m m n n c m n

T T
n n m n m n n

m h

n n

TL r M q r r M q r tr W F W tr V F V e A P P A e

P B A A q P B B B B u P B A

tr B A A B tr B B B B BB B

tr    
 

 − + − + + +1 3 1 1 3

4 5

1 1ˆ ˆ ˆ] [ ]) ( ) ( )T T T
h

T
h hA A A P tr A A tr B B

 (5.30) 

Since − mA  is Hurwitz, there exists a  0mQ  such that  + =T
m m m m mA P P A Q  

The robot manipulator dynamics (5.1)  is assumed to be unknown and therefore the function f  

in (3.7) is unknown and approximated online by (3.11). Then, the closed-loop filtered error dynamics (3.6) 

becomes 

    = − + + − − +ˆ ˆ( ) ( , ) ( )T T
d hM q r V q q r W V z f  (5.31) 

where = − ˆ( ) ( ) ( )f x f x f x  is the estimation error. Substituting   form (3.10) in (3.31) gives:  
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 = − − + + +( ) ( , ) ( ) ( )v dM q r V q q r K r f x v t  (5.32) 

On the other hand, since  

    + − − + + + −2 1 4 1 3
ˆ ˆ{ [ ] [ ] [ ˆ] }m n n m m m m

T
n n c n hme P B B B q P B B B B u P B A  is scalar, one has 
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+ − − + + + −

2 1 4 1 3

2 1 4 1 3
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 (5.33) 

Using (3.25), (3.26), 3.32 and (3.33) into (3.30) gives:  
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 (5.34) 

Noting that since −A  is stable there exists a  0hQ  such that + =T
h h hA P P A Q , using

    = +−[ ] (ˆ )T T T T T
h h h h c h h h h c hP trA P Bu A P B P u  and using the tuning rules for the inner- and outer- loop 

controllers gives 
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Since 

− =   −−
2 2

{ ( )} ,T

FF F F
tr Z Z Z Z Z Z Z Z Z One has 
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k Z
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Z C C

C CK r k Z Z Z

 (5.36) 

where 
minvK  is minimum singular value of vK and the last inequality L  is negative as long as the 

term in braces is positive. Defining = +3 1 /BC Z C k  and completing the square yields  

− − − = + −− − −
min min

2 2
0 1 3 0 3(Z ) ( C / 2) / 4v B vF F F F

CK r k Z C k C kCZ Z Z K r  

which is guaranteed positive as long as either  

+


min

2
0 3 / 4

v

C
r

K

kC
or + +

2
3 0 3C

2 4

C C
Z

k
  This completes the proof.   

This result provides a method for tuning the robot impedance model (3.17) to provide a desired 

model reference output ( )rq t  such that the human (3.16) plus robot impedance model follows  

The prescribed task reference model (3.18).  This output is sent as ( )mq t  to the inner robot control 

loop in Figure.3.3 to compute the inner-loop model following error (3.3). The human input in Figure.3.3 

and in (3.10) is  ( )h t .  These relationships are shown in Figure. 3.2 and Figure.3.4.   

It is interesting to examine the operation of the control input (3.21). After convergence of the 

human system identifier, one has  =ˆ ( ) ( )h ht t . Then, the closed-loop robot impedance model is 



77 
 

 

     





  




=
+

= − − − −
+

−
= + +

+ +

−


+ +

1 2 3 4

1 3 4

2

2

ˆ ˆ( )

[( ) ]
( )

( )

n

n

n
c

n

n

r

h r h

c

n n

n

n n

h

h

B
q u

s A

B
q u

s A

B
s u

s A B

B

s A B

 (5.37) 

where ( )Y t  can be considered as a modified human force defined, according to (3.13) , by 

 



 +

= +
+

1 3
4

( )
[ ]h c

B s
u

s A
 (5.38) 

Therefore, control parameter 2  modifies the robot impedance model time constant, whereas 

control parameters  1 3, ,  and 4  provide a proportional-plus-derivative controller that augments the 

human force signal h . This can be viewed as an assistive term that aids the human so that task 

performance is improved.  In fact, it is observed in [62] that the expert human operator, after learning to 

accomplish a task, incorporates a PD controller that seems to come from a task model learned in the 

cerebellum [58]. 

5.4 Simulation 
In this section, the results from simulating the proposed controllers on a 2-link robotic arm in 

MATLAB are presented. The 2-link robot arm is a revolute-revolute planar arm described in [43] Example 

3.2-2. First are shown the simulation results for the outer-loop controller in Figure.3.2 and Figure.3.4 that 

adapts the parameters of the prescribed robot impedance model.  Next are shown the simulation results 

for the inner-loop model reference neuroadaptive controller in Figures 3.1 and 3.3.  

5.4.1 Outer-loop Simulation  
This simulation is for the outer task loop shown in Figures 3.2 and 3.4.  In this simulation the 

prescribed robot impedance model (3.2) is chosen to have  2( )mq t , with n=2 the number of degrees of 
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freedom of the robot.  It is assumed here that the robot dynamics (3.1) are in Cartesian task space.  The 

nominal robot impedance model (3.17) is chosen for each degree of freedom as = − +3 3m mqq u . These 

nominal time constants and gain parameters are modified through the action of the adaptive control 

(3.12).  See the discussion after Theorem 2. The task reference model (3.18) is taken as − += 1 22 1r r cq uq

, where uc is the desired trajectory to be reached in a point-to-point motion task.  The unknown human 

dynamics model (3.16) is chosen as  = − +1 0.5h h cu . The human dynamics model is unknown, and the 

human system identifier model (3.19) is designed to adaptively identify the human in the loop. 

The performance of the outer task loop MRAC in Figure3.4 is shown in Figures 3.5,3.6,3.7. A 

square wave is selected for the task reference input ( )cu t . This is interpreted as a point-to-point motion 

task where the human-robot system is required to cycle from one point to another point repetitively. 

Figure.3.5 shows the output of the robot impedance model ( )mq t  and the output ( )rq t  of the task 

reference model. It is seen that ( )mq t  closely follows ( )rq t , with performance improving after several 

cycles.  This shows the adaptive improvement of the controller as the robot impedance model is tuned 

and the assistive inputs to the human are learned.  See discussion after Theorem 2. The effectiveness of 

the human system identifier is revealed in Figure.3.6, which shows the output of the human transfer 

function  ( )h t  and the output of the human identifier ̂ ( )h t , which follows  ( )h t  more closely with each 

motion cycle.  The convergence of the human identifier parameters to the actual human model 

parameters is shown in Figure.3.7. 
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Figure 5-5 Robot Impedance  Model qm(t)Output and Prescribed Task Reference Output qm(t 

 

Figure 5-6 Human Output  ( )h t  and Human Identifier Output̂ ( )h t  

 

Figure 5-7 Parameter Convergence of Adaptive Human Identifier Model 
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5.4.2 Inner-loop Simulation  
This simulation is for the inner robot control loop of Figures 3.1 and 3.3.  The outer-loop design 

just described generates the human operator signal  ( )h t  and the robot impedance model trajectory 

( )mq t . Two parallel outer loops were used, one for each joint of the 2-link robot arm simulated here. 

 

Figure 5-8 Inner-loop simulation 

The robot dynamics (3.1) used for this simulation was the 2-link revolute-revolute planar robot 

arm described in [43] Example 3.2-2. The arm parameters are selected as =1 0.8m kg , =1 2.3m kg ,
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𝐹 = 100𝐼2, 𝐺 = 20𝐼2, 𝜅 = 0.07, 𝐾𝑧 = 5, and 𝑍𝐵 = 100, where 𝐼2 is the 2 × 2 identity matrix. A two-layer 

Neural Network was used with 10 inputs, including a constant bias input, 20 hidden layer neurons and 2 

outputs. The sigmoid function ( )
−

=
+

1

1 x
x

e
 was used for the activation functions. The weights Ŵ   and 

V̂  of the network were randomly initialized. 

The simulation results for both links are shown in Figure.3.8, where 1 2( ), ( )d dq t q t  denote the 2 

components of the task trajectory ( )cu t .  It is observed that, after a short transient learning period of a 

few cycles of the square wave task trajectory, the motion ( )mq t  generated by the robot impedance model 

and the robot motion ( )q t  are identical. This verifies the performance of the model reference 

neuroadaptive controller in making the robot arm behave like the robot impedance model. 

 

Figure 5-9 Experiment Layout  

5.4.3 Overall Performance of the Proposed Controller 
It can be seen from the simulation results that the two controllers, inner robot loop and outer 

task loop, achieve the objectives of the design. The outer loop assists the human in achieving the task by 

providing two assistive components and tuning the robot impedance model. The robot specific inner-loop 
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controller compensates for the robot nonlinearities and makes the robot behave like this robot impedance 

model. 

5.5 Experimental Case Study 
In this section a case study of a practical experiment to evaluate the controllers of the Human-

Robot interaction system is presented. The experiments were conducted at the University of Texas at 

Arlington Research Institute on a PR2 robot. Figure.3.9 shows the experimental layout and Figure.3.10 

shows the PR2 robot. The controller was implemented in real-time using the real-time controller manager 

framework of the PR2 in ROS Groovy. The real-time loop on the PR2 runs at 1000Hz and communicates 

with the sensors and actuators on an EtherCAT network. Human force is measured using an ATI Mini40 

FT Sensor attached between the gripper and forearm of the PR2. 

 

Figure 5-10 PR2 Robot at UTARI 

The experiment involves the seven degree-of-freedom arm of the PR2 robot in a point-to-point 

motion (PTP) task.  PTP manipulation is an increasingly popular task, both in the game industry and in 

industrial applications. 
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In this experiment a human applies a force on the right arm of the PR2 to follow the PTP motion 

trajectory, as shown in Figure.3.9.  The experiment is setup with a human operator and the PR2 arm across 

from each other as seen in Figure.3.10. The human operator was then asked to hold the gripper of the 

PR2 to perform PTP motion between point A and B along the y axis. The human is assumed to be working 

in open-loop without considering the visual feedback of the current location and the target location of 

the gripper. The desired target location to be reached is switched every 5 seconds.  

 

Figure 5-11 SIMULATION RESPONS INTERACTION OF HUMAN-ROBOT INTERACTIVE SYSTEM 

The controller parameters used were  𝐾𝑣 = 5𝐼6, Λ = 20𝐼6, 𝐹 = 100𝐼6, 𝐺 = 200𝐼6, 𝜅 = 0.3, 𝐾𝑧 = 

0.001, and 𝑍𝐵 = 100,  

where 𝐼6  is the 6 × 6  identity matrix. A two-layer Neural Network was used with 35 inputs, 
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was used for the activation functions. The weights Ŵ  and V̂  of the network were randomly initialized. 

The result of the whole human-robot interaction system is shown in Figure.3.11. The task 

trajectory (in green) gives the target point locations, which cycle every five seconds. The task reference 

model output is shown (in blue) followed by the robot impedance model output (in red) and the real robot 
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output (in black). It is seen that the inner-loop Neuroadaptive controller makes the robot (in green) follow 

the robot admittance model output (in red), and the outer-loop MRAC makes the human-robot interactive 

team follow the prescribed task model. This is accomplished after a short transient learning time where 

the adaptation mechanism tunes the whole system in the first 6 seconds.  There is a small-time delay of 

0.4 sec due to the human reaction time. 

5.6 Conclusion  
 

This chapter presented a novel method of enhancing human-robot interaction based on model 

reference adaptive control. The method presented delivers guaranteed stability and task performance 

and has two control loops.  A robot-specific inner loop is a Model Reference Neuroadaptive Controller 

that learns the robot dynamics online and makes the robot responds like a prescribed impedance model. 

This loop uses no task information, including no prescribed trajectory. A task-specific outer loop takes into 

account the human operator dynamics and adapts the prescribed robot impedance model so that the 

combined human-robot system has desirable characteristics for task performance. This design is also 

based on model reference adaptive control, but of a nonstandard form. The net result is a controller with 

both adaptive impedance characteristics and assistive inputs that augment the human operator to provide 

improved task performance of the human-robot team. Simulations verify the performance of the 

proposed controller in a repetitive point-to-point motion task.  Actual experimental implementations on 

a PR2 robot further corroborate the effectiveness of the approach. 
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Chapter 6 Conclusions and Future Work  

AS a future work, chapter three will be presented as a journal paper, with some modification. In 

addition, the rest of the model parameters are going to be further explored. The learning for acquisition, 

the learning for extinction parameter, and Reset duration modification for dynamical models is needed to 

be explored.  

Also, the application of the adaptive resonance theory, and the dopamine like model for 

application such as multiagent system, and game theory application is another area to be explored.  

The work in multiagent system specifically can be extended using the presented dopamine like 

model by switching each sub-model into an agent, the control structure is to have a consensus on task 

trajectory reference.  
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