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ABSTRACT 

Computational study on the Cu-rich side of Al-Cu Phase Diagram 

Khaled Hirmas 

The University of Texas at Arlington, 2018 

Supervising professor: Choong-Un Kim 

Cu-rich side of Al-Cu phase diagram has not been studied extensively as the Al-rich side. It is well 

established that a one-phase (α phase) exists at 300oC between the 82% Cu and pure Cu, and at the 

eutectic temperature (1032oC) between 86% Cu and pure Cu, α phase, when quenched from above 

600oC and subjected to annealing below about 300oC, or deformation, show ordering effects in 

resistivity, heat capacity, diffuse X-ray, microstructure, and in mechanical properties. This has 

been studied to determine whether these effects are due to short-range or long-range ordered 

domain [1]. The present computational study is to assess the Cu-rich side of Al-Cu phase diagram 

for Cu concentration larger than 75%, and between 300K and 1000K. Molecular dynamics, Hybrid 

Molecular Dynamics/Monte Carlo, and DFT simulations are used to investigate the possibility of 

phase separation in this range of phase diagram. It is shown that a two-phase region exists below 

about 900K, and that phase separation takes place by nucleation and growth, and not by spinodal 

decomposition. Also, it is shown that these two phases are random FCC α   solid solution, and 

intermetallic α2. 
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INTRODUCTION 

It is well established that the solubility limit of Al in Cu is about 19.7% at eutectoid temperature 

(567 oC) and it does not change down to peritectoid temperature (363 oC). Below 363 oC, the 

solubility decreases and reaches to less than 17% Al. The α2 phase which is in equilibrium with 𝛾1 

and α  at 363 oC was discovered by West and Thomas [1]. TTT [2] and structural studies [1, 3-6] 

were carried out on the structure and the composition of α2 phase and it was found that it has an 

ordered FCC structure based on L12 and D022 with long-period superlattice. α phase exists below 

the eutectic temperature (1032oC) between 86% Cu and pure Cu, and between 82% Cu and pure 

Cu at 300oC. When α phase is quenched from above 600oC and subjected to annealing below about 

300oC, or deformation, show ordering effects in resistivity, heat capacity, diffuse X-ray, 

microstructure, and in mechanical properties. This has been studied to determine whether these 

effects are due to short-range or long-range ordered domain. To attain order in this range of 

composition and temperatures the annealing process should be carried out for enough time. This 

time varies from one researcher to another, and this could explain the controversy of whether the 

obtained structures have long or short order domains. Shorter annealing times could lead to the 

entrapment in a metastable configuration, hence short-order structures, and vice versa. This 

controversy is addressed here using three simulation methods, namely Molecular Dynamics (MD), 

Hybrid (Monte Carlo)MC/MD, and Density Functional Theory (DFT). Molecular Dynamics is 

basically used to select the proper interatomic potential that will be used in Hybrid MC/MD 

simulations. Hybrid MC/MD simulations in either the canonical (C) or semi-grand canonical 

(SGC) ensembles are used to study phase separation in this system. In hybrid MD/MC simulation, 

transmutation Monte Carlo simulations is alternated with molecular dynamics steps. This leads to 

faster equilibration, hence resolves the above-mentioned controversy. It also leads to better 
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chemical mixing and precipitation as well as thermal vibrations. DFT simulation is used to confirm 

the results obtained from MD and Hybrid MC/MD.  The theoretical aspects of these three 

simulation methods are discussed in the first chapter. The results obtained MD Hybrid MC/MD 

simulations are presented and discussed in the second chapter, while the third chapter is devoted 

to the results and discussion of the DFT simulations. 
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Chapter 1:  Simulation Methods Principles  

1.1 Molecular Dynamics: 

      Molecular dynamics (MD) is a simulation technique that is used to study the dynamics of a 

given set of atoms or molecules as classical particles within the framework of classical mechanics. 

Their equations of motion are described by the second Newton’s law of motion. The force exerted 

by neighbor particles on particle 𝒊 whose position is defined by the position vector 𝒓𝒊 is given by 

𝑭𝒊(𝒓𝒊) = 𝑚𝑖 

𝑑2𝒓𝒊
𝑑𝑡2

           𝒊 = 𝟏, 𝟐, … ,𝑵                            (𝟏) 

       Different types of interatomic potentials, 𝑈(𝒓𝒊) , that represent the potential energy of a given 

arrangement of particles, are used to define the interactions between the particles. The gradient of 

this potential determines the   

𝑭𝒊 = −𝛁𝑈(𝒓𝒊)                     (2) 

The interatomic potential is given in its simplest form by a sum of pairwise interactions 

𝑈 =
1

2
∑∑𝑢(𝑟𝑖𝑗)    

𝑁

𝑗≠𝑖

𝑁

𝑖=1

 

 where  𝑟𝑖𝑗 = |𝒓𝒊 − 𝒓𝒋|. Therefore, the force on atom 𝒊 is given by the sum of the forces exerted by 

all other 𝒋 atoms 

𝑭𝒊 =∑𝒇𝑖𝑗

𝑁

𝑗≠𝑖

 ,          𝑤ℎ𝑒𝑟𝑒  𝒇𝑖𝑗 = (−
𝑑𝑢(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗
)(
𝒓𝑖𝑗

𝑟𝑖𝑗
)                     (4) 

       From the initial conditions, 𝒓𝒊(𝑡0) and 𝒗𝒊(𝑡0), at time 𝑡 = 𝑡0 and the interatomic potential, the 

equations of motion are solved numerically using different algorithms. For example, using  
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the Velocity Verlet [7] algorithm, the positions and velocities after a short timestep ∆𝑡 , usually 

less than few femtoseconds, are computed as follows: 

  𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)∆𝑡2                     (5) 

𝒗(𝑡 + ∆𝑡) = 𝒗(𝑡) +
1

2
{𝒂(𝑡) + 𝒂(𝑡 + ∆𝑡)}∆𝑡                     (6) 

      During this timestep ∆𝑡 ,the forces are assumed to be constant and the state of the system after 

it, is defined by atomic positions   𝒓(𝑡 + ∆𝑡). At the end of simulation time, which is typically few 

nanoseconds [8], the trajectories of atoms in the system are obtained.  

     Beside it is being in principle deterministic in terms of positions and velocities, molecular 

dynamics also generates many configurations (microscopic states) whose distribution in different 

ensembles is governed by statistical mechanics using different statistical distribution functions. A 

system in certain macrostate, defined for example by thermodynamic quantities such as the number 

of atoms (N), pressure (P), temperature(T) has different microstates (configurations) and is called 

ensemble; in this case it is the Isobaric Isothermal Ensemble. The probability with which a given 

microstate at a given moment of time is described by the microscopic probability distribution 

function in this ensemble. 

     Obtaining the trajectories is not always the case. Thermodynamic properties can be obtained 

from molecular dynamics information by averaging with respect to time (over the microstates) and 

all atoms according to statistical mechanics. 

     Molecular dynamics is not only used to study small structures like small clusters of atoms or 

nanomaterials, but also can be used to study bulk materials by imposing proper boundary 

conditions on the simulation box [9]. A common choice is the three-dimensional periodic boundary 
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conditions which introduce identical images of the system (supercell), hence filling the space 

around the simulation box. This keeps the number of particles in the simulation box conserved, for 

when a particle leaves/enters the simulation box an image particle enters/leaves the simulation 

box. Using periodic boundary conditions implies that particles are enclosed, hence avoids the 

occurrence of surfaces.  The use of the periodic boundary conditions makes each particle in the 

simulation box appears to interact with all the particles including the image particles. This is 

overcome by using interatomic potential with finite range (cut off distance, 𝒓𝑐𝑢𝑡), beyond which it 

becomes negligible, and making the simulation box larger than 2𝒓𝑐𝑢𝑡 along each direction. 

MD simulations are mainly determined by the time step 𝛥𝑡, the thermostat damping parameter,𝜏 , 

the barostat damping parameter, 𝜏𝑝,  and the relaxation time, 𝜏𝑟𝑒𝑙𝑎𝑥 , which must not exceed 

system-dependent maximum values. 𝛥𝑡 is to be chosen so that fast movements cause only small 

numerical errors, for which, depending on the type of numerical integrator, at and order of 

magnitude smaller than the fastest time scale in the system. For example, a timestep of  1𝑓𝑠 is 

suitable for solids. 𝜏 and  𝜏𝑝 should be chosen large enough to make only minor changes between 

times, otherwise the dynamics of the system will be disturbed. Typical values are 𝜏 = 100 𝛥𝑡 and 

 𝜏𝑝= 1000 𝛥𝑡. Finally, the relaxation time𝜏𝑟𝑒𝑙𝑎𝑥 must be larger than the oscillations of the 

temperature and the pressure produced by the thermostat and Barostat. 𝜏𝑟𝑒𝑙𝑎𝑥  is usually defined 

as the largest time scale for molecular or atomic motion. Diffusion times are usually used to 

estimate the relaxation time in solids. For equilibration to take place, equilibration time should 

exceed 𝜏𝑟𝑒𝑙𝑎𝑥 by several times. 
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1.1.1 Interatomic potentials: 

     The interatomic potential is the most important feature in molecular dynamics simulation. It 

describes the potential energy of the system as a function of its coordinates; therefore, it should 

have two important features; the repulsion interaction at small interatomic distances, and the 

attraction interaction that is responsible for the keeping the atoms from being torn apart [8]. The 

need to describe the interatomic interactions in different materials lead to the development of 

several formalisms of interatomic potentials [8]. Lennard-Jones potential, the most prominent 

example of pair potential [10], has been used in the simulations of many different problems, for it 

is computationally simple. But applying this pair potential does not describe the environmental 

dependence because it treats the atoms in the bulk in the same way as the atoms on the surface or 

near a defect [11]. Moreover, Transition metals which have partially filled d subshells that 

contribute to bonding with partial covalent bond cannot be described by the pair potential because 

of the directional nature of the covalent bond. To describe interaction in metals and alloys, 

alternative potentials developed in different formalisms such as embedded atom method (EAM) 

[6], modified embedded atom method [7], and the Finnis-Sinclair (FS)scheme [8].  

1.1.1.1 Embedded atom method (EAM): 

     The need to overcome the draw backs of pair potentials and for better simulation studies lead 

to the development of an alternative to it by Daw and Baskes [10,15]. This potential is based on 

density-functional ideas which they call the embedded-atom method (EAM) [10,12,15]. EAM has 

been used successfully to study many problems. Examples of these studies include segregation 

and phase separation in alloys [16-20], point defects, dislocations, plastic deformation, and fracture 

properties [10,15,21-25].  Daw and Baskes made use of density-functional theory which states that 

the total electronic energy for an arbitrary arrangement of N atoms can be written as a unique 
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functional of the total electron density [11] and the electron density in a metal can be approximated 

by the linear superposition of atomic electron densities. They approximated the total energy of N 

atoms as the sum of the energies required to embed each atom individually within the 

homogeneous electron density due to the other atoms plus the electrostatic energy, pair-potential, 

due to core-core overlap. The total energy, 𝑈𝑡𝑜𝑡 ,is expressed as  

𝑈𝑡𝑜𝑡 =∑𝐹𝑖(𝜌𝑖)

𝑖

+
1

2
∑∑𝜑𝑖𝑗(𝑟𝑖𝑗)                     (7)

𝑗≠𝑖𝑖

 

Here, 𝜌𝑖  is the superposition of atomic electron densities, 𝑓𝑗 , at atom i due to all other atoms, j, of 

the system, 

𝜌𝑖 =∑𝑓𝑗(𝑟𝑖𝑗)

𝑗≠𝑖

                     (8) 

𝐹𝑖(𝜌𝑖) represents the energy required to embed atom i in the electron density 𝜌𝑖, 𝜑𝑖𝑗(𝑟𝑖𝑗) is the 

pair-potential between atoms 𝑖 and  𝑗,  and  𝑟𝑖𝑗 is the distance between atom pairs, 𝑖 and  𝑗.  𝐹𝑖(𝜌𝑖), 

and 𝜑𝑖𝑗(𝑟𝑖𝑗) depends on the underlying physical system and  their approximate expressions are 

obtained within the framework of density-functional theory. The accurate description of these 

functions is determined by fitting the EAM potential to known bulk properties, such as sublimation 

energy, lattice constant, elastic constants, vacancy formation energy. The choice of physical 

properties used to calibrate the potential may have a significant effect on the applicability of the 

potential for simulation, and care should be given in selecting a potential for simulation and 

interpreting results [26]. For example, Banerjea and Smith proved that a simple exponential 

function that represents the atomic electron density in the bulk, near-vacancies, and free surfaces 

is given by [27]. 
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𝑓(𝑟) = 𝑓𝑒 . 𝑒𝑥𝑝 [−𝜒(𝑟 − 𝑟𝑒)]                     (9) 

f e is a scaling constant that is eliminated upon substitution of Equation (9) in Equation (10) and 

re is the equilibrium interatomic spacing. Also, they developed embedding energy function that 

has the following form  

𝐹(𝜌) = −𝐹𝑜 [1 − ln (
𝜌

𝜌𝑒
)
𝑛

 ] (
𝜌

𝜌𝑒
)
𝑛

+ 𝐹1 (
𝜌

𝜌𝑒
)                     (10) 

where 𝐹𝑜 = 𝐸𝑐 − 𝐸𝑣,  𝐸𝑐 is the cohesive energy, and 𝐸𝑣 is the vacancy formation energy 𝑛 = 0.5  

and  𝜌𝑒 is the equilibrium electron density. An example of the pair potential that can be cited here 

is the one developed by Rose et al. [22].   

𝜑(𝑟) = −𝛼[1 + 𝛽(𝑟 𝑟𝑎⁄ − 1)]exp [−𝛽(𝑟 𝑟𝑎⁄ − 1)]                     (11) 

 𝜒, 𝐹1 , 𝛼, 𝛽, 𝑟𝑎 and 𝜒  are  adjustable parameters that must be determined in fitting process.  

     The embedding function does not depend on the source of background electron density, hence 

can still be used in developing EAM potential for the alloys. Johnson in his model [22] used an 

electronic density weighted combination of the atomic pair potentials to describe the cross pair-

potential of an alloy composed of atomic species 𝑎 and 𝑏 

𝜑𝑎𝑏(𝑟) =
1

2
[
𝑓𝑏

𝑓𝑎
𝜑𝑎𝑎(𝑟) +

𝑓𝑎

𝑓𝑏
𝜑𝑏𝑏(𝑟)]                     (12) 

     For the alloy system, the scaling factor 𝑓𝑒 in Equation (9) for an alloy system is no longer 

arbitrary and it is given such that it contains adjustable parameter that is used to fit the EAM alloy 

potential to the dilute-limit heat of solution of the alloy. An example for that is  

𝑓𝑒 = (Ω/𝐸𝑐)
𝛿                      (13) 
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where Ω is the atomic volume, 𝐸𝑐 is the cohesive energy of the element, and 𝛿 is the adjustable 

parameter. 

1.2 Calculation of thermodynamic variables: 

For the calculation of thermodynamic state variables in MD simulations such as temperature and 

pressure of a particle system, the computed average is used. This can be calculated as follows 

(see [29]):  

Given the values of a physical observable as 𝐴1,𝐴2… . , 𝐴𝑖, the computed average of 𝐴  for a period 

equal to the production period is given by  

〈𝐴〉 =
1

𝑁
∑𝐴𝑖

𝑁

𝑖=0

                             (1) 

The time average of 𝐴 for infinite time is given by 

〈𝐴〉𝑡 = lim
𝜏→∞

1

𝜏
∫𝐴(𝑡)

𝜏

0

𝑑𝑡                  (2) 

In MD simulations and according to ergodic hypothesis, these two averages are equivalent for a 

suitable choice of time step size ∆𝑡 and a sufficient number of measuring points [400]. In ergodic 

systems, therefore, the approximate calculation of the ensemble averages of an observable (that is, 

the computation of a thermodynamic state variable of a Systems) by means of a computed average 

is possible and permissible [30]. If the system is in thermodynamic equilibrium, the computed 

thermodynamic state variables such temperature or pressure, show no more drift but they fluctuate 

around the average value. Conversely, if these quantities are drifting, this means that the system 

did not reach equilibrium [30, 31]. 
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1.2.1Temperature and instantaneous temperature: 

In MD simulations, it makes sense to look at the instantaneous temperature. Because of this the 

temperature 𝑇 of the system can be calculated. The instantaneous temperature 𝑇𝑖𝑛𝑠𝑡(𝑡) to the 

time 𝑡 is defined as follows: 

𝑇𝑖𝑛𝑠𝑡(𝑡) =
2𝐸𝑘𝑖𝑛(𝑡)

ℱ𝑘𝐵
=

1

ℱ𝑘𝐵
∑𝑚𝑖|𝒗𝒊(𝑡)|

2

𝑀

𝑖=1

                          (3) 

where 𝐸𝑘𝑖𝑛 is the kinetic energy, ℱ is the number of degrees of freedom, and 𝑚𝑖is the mass of 

the particle 

If the total momentum of the system is zero, then from the equipartition theorem of 

thermodynamics [32], 

𝑇 =
2〈𝐸𝑘𝑖𝑛〉

ℱ𝑘𝐵
= 〈𝑇𝑖𝑛𝑠𝑡〉                     (4) 

The temperature 𝑇 is thus given by the average value of the instantaneous temperature. If the 

momentum of the total system is not zero, the particles velocities are determined by subtracting 

the center-of-mass velocity before applying equation (4). As can be seen from equation (4), the 

number of degrees of freedom ℱ of the particle system must be known to calculate the 

temperature. In atomic systems, the number of degrees of freedom is 3𝑁 (one degree of freedom 

in each direction). When using periodic boundary conditions, this number is reduced to 3𝑁 − 3, 

since the translation of the entire system is ignored [31]. 

As an example, in 𝑁-particles system closed system, where the number of particles 𝑁 and the 

total energy 𝐸 of the system are constant, and there is no energy or material exchange (𝑁𝑉𝐸 

ensemble in statistical physics), the system temperature adjusts itself over time. 
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In molecular dynamics, velocity rescaling is a very simple process in which a desired target 

temperature can be set in a particle system. This can be achieved by rescaling the particles 

velocities, which is carried out at regular time intervals (approximately every 10 to 50 integration 

steps) by 

𝑣𝑛𝑒𝑤 = 𝜆𝑣𝑜𝑙𝑑                        (5) 

where, 𝑣𝑛𝑒𝑤, 𝑣𝑜𝑙𝑑 are the new and old velocities, and 𝜆 is the scaling factor which is given by 

𝜆 = √
𝑇

𝑇𝑖𝑛𝑠𝑡
                         (6) 

It should be noted that due to the regular scaling natural fluctuations of the particles velocities 

are suppressed. Because of this, this procedure cannot be used to create realistic thermodynamic 

ensemble [31], therefore, different thermostats are devised to control the temperature. 

1.2.2 Temperature control: 

As already mentioned, the particle system can be brought to a desired temperature 𝑇 by means of 

velocity rescaling, although no realistic thermodynamic ensemble can be produced in this 

procedure. Another way to control the temperature is to couple the system to a heat reservoir. 

This coupling can be achieved by introducing a friction term, 𝜁(𝑡)𝑚𝑖𝒗𝒊(𝑡), in Newton's 

equations of motion [33]. The equation of motion then becomes 

𝑚𝑖𝒂𝒊(𝑡) = 𝑭𝒊(𝑡) − 𝜁(𝑡)𝑚𝑖𝒗𝒊(𝑡), 𝑖 = 1,… ,𝑁                        (7) 

where 𝜁(𝑡) is a function to be specified 

The system becomes energy deprived when 𝜁(𝑡) is positive and energy is supplied when 𝜁(𝑡)is 

negative. How fast the energy exchange takes place depends on the choice for 𝜁(𝑡). Various 
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proposals can be found in [31, 33]. For the so-called Nosé-Hoover thermostat (NVT-ensemble) 

[34, 35] the following differential equation is used for 

𝑄

2

𝜕𝜁(𝑡)

𝜕𝑡
=
1

2
∑𝑚𝑖|𝒗𝒊(𝑡)|

2

𝑁

𝑖=1

−
1

2
(ℱ + 1)𝑘𝐵𝑇                              (8) 

The first term is the actual kinetic energy, and the second term is the desired kinetic energy. The 

parameter 𝑄 is called the thermostat mass and determines the strength the coupling to the heat 

reservoir. The greater 𝑄 is, the weaker is the coupling. From equation (8) the control mechanism 

can also be seen. The slope 
𝜕𝜁(𝑡)

𝜕𝑡
 is positive if and only if the actual kinetic energy is greater than 

the desired kinetic energy (the system is too hot). As a result, 𝜁(𝑡) increases with time, which is 

due to equation (7) ultimately leads to depriving the system of energy (the system gets cooled). 

In [35] it is shown that configurations in the canonical (𝑁𝑉𝑇) ensemble with temperature 𝑇 are 

generated by means of the Nosé-Hoover thermostat. Applying the equations of motion equation 

(7), equation (8) makes the total energy  

𝐻 =
1

2
∑𝑚𝑖|𝒗𝒊(𝑡)|

2 + 𝑈(𝒓𝑁)

𝑁

𝑖=1

+
𝜁2𝑄

2
+ (ℱ + 1)𝑘𝐵𝑇 ln 𝑠          (9) 

where 𝑠 is the position of the heat reservoir, and 𝜁 = �̇�/𝑠 

1.2.3 Pressure and instantaneous pressure: 

In addition to the temperature in MD simulations, the internal pressure, 𝑃,  of the particle system 

is calculated.  Without using periodic boundary conditions, the pressure, 𝑃, is given by virial 

theorem  

𝑃 =
𝑁𝑘𝐵𝑇

𝑉
+ 〈

1

3𝑉
∑𝒓𝒊

𝑁

𝑖=1

. 𝑭𝒊〉                   (10) 



13 
 

For a cubic simulation box with edge L, and with using periodic boundary conditions, the 

pressure, 𝑃, is given [36], 

𝑃 =
𝑁𝑘𝐵𝑇

𝑉
+ 〈

1

3𝑉
∑𝒓𝒊

𝑁

𝑖=1

. 𝑭𝒊 −
1

3𝐿2
𝜕𝑈

𝜕𝐿
〉                     (11) 

where 𝑉 = 𝐿3, 𝑈 is the potential energy.  

Like the definition of the instantaneous Temperature 𝑇𝑖𝑛𝑠𝑡,  instantaneous pressure 𝑃𝑖𝑛𝑠𝑡 at time 𝑡 

can be defined as  

𝑃𝑖𝑛𝑠𝑡(𝑡) =
𝑁𝑘𝐵𝑇𝑖𝑛𝑠𝑡

𝑉
+ 〈

1

3𝑉
∑𝒓𝒊(𝑡)

𝑁

𝑖=1

. 𝑭𝒊(𝑡) −
1

3𝐿2
𝜕𝑈(𝒓𝑁(𝑡))

𝜕𝐿
〉                       (12) 

1.2.4 Pressure control: 

Andersen developed a method for MD simulations at constant pressure (NPE-ensemble) [37]. 

This works in a similar way to the temperature control method presented by Nosé and Hoover. 

The equations of motion in this case are 

𝑚𝑖𝒂𝒊(𝑡) = 𝑭𝒊(𝑡) −
1

3
𝑚𝑖𝒓𝒊(𝑡) (

�̈�

𝑉
−
2

3
(
�̇�

𝑉
)

2

) , 𝑖 = 1, … , 𝑁                        (13) 

Υ�̈� =
1

3𝑉
∑𝑚𝑖 |𝒗𝒊(𝑡) −

1

3

�̇�

𝑉
𝒓𝒊(𝑡)|

2

+
1

3𝑉
∑𝑭𝒊 (𝑡).

𝑁

𝑖=1

𝒓𝒊(𝑡) − 𝑃                 (14)

𝑁

𝑖=1

 

As can be seen from equation (14), the Newton equations of motion come again with a friction 

term, which is now coupled to the volume 𝑉 of the simulation box. The parameter Υ > 0 

determines the lag of the pressure control. Here, the total energy is given by 
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𝐻 =
1

2
∑𝑚𝑖 |𝒗𝒊(𝑡) −

1

3

�̇�

𝑉
𝒓𝒊(𝑡)|

2

+ 𝑈(𝒓𝑁)

𝑁

𝑖=1

+
�̇�2Υ

2
+ 𝑃𝑉               (15)          

In the Andersen method, the size of the simulation box varies with time and the particle number 

N is constant, which makes the density of the particle system fluctuate. It is possible to combine 

the Andersen with the Nosé-Hoover method [34, 39]. This allows simulations to be performed at 

constant pressure and constant temperature (NPT ensemble). The method of Parrinello and 

Rahman is an extension of the Andersen method [40, 41], as it also allows deformation of the 

simulation box. Therefore, structural phase transitions can also be simulated with this method. 

To determine lattice constants in crystalline solids, Andersen method remains the best. 

 

1.3 Hybrid MD/MC simulation:  

     MC simulations in either the canonical (C) or semi-grand canonical (SGC) ensembles are 

commonly used to study phase separation in metallic alloys. Variance-constrained semi-grand 

canonical (VC-SGC) which is an extension of SGC ensembles and combines the advantages of C 

and SGC ensembles is used to study phase separation too. VC-SGC is a hybrid MD/MC 

simulation, where transmutation Monte Carlo simulations is alternated with molecular dynamics 

steps, hence obtaining a powerful tool that considers speedy equilibration, chemical mixing and 

precipitation as well as thermal vibrations. 

1.3.1 Canonical ensemble (constant N, V, T):  

     Here, the system of constant volume consists of constant number of atoms of each type and is 

in contact with a very large heat reservoir that allows exchange of energy. The total energy of the 
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system fluctuates, but the temperature does not. The partition function of this ensemble is given 

by 

ℤ𝐶(𝑁, 𝑉, 𝑇) =
1

ℎ3𝑁 𝑁!
∫𝑒−𝛽𝐻(𝒑

𝑵,𝒓𝑁)𝑑 𝒑𝑁𝑑𝒓𝑁                        (14) 

where H is the Hamiltonian(H=U+K),  𝛽 =
1

𝑘𝑇
 , N is the number of atoms, h is Plank’s 

constant, 𝒑𝑁 , 𝒓𝑁 are the momentum and position vectors of N atoms. In Monte Carlo simulation, 

the configurational part of partition function is used  

ℚ𝐶(𝑁, 𝑉, 𝑇) = ∫𝑒
−𝛽𝑈(𝒓𝑁,𝝈𝑁) 𝑑𝒓𝑁                    (15) 

where 𝝈𝑁 is a spin vector, (1,0) for binary system, that describes the transmutations, hence the 

dependence of potential energy, U, on it [23]. Microstate distribution or probability distribution is 

proportional to Boltzmann factor. 

℘𝐶(𝑁, 𝑉, 𝑇, 𝒓
𝑁, 𝝈𝑁) ∝ 𝑒−𝛽𝑈(𝒓

𝑁,𝝈𝑁)             (16) 

     Sampling here involves two trial moves. The first one is the atom displacement which is done 

by randomly selecting an atom then perturbing its x, y, z coordinates separately, 𝒓𝑁 ⟶ 𝒓𝑛𝑒𝑤
𝑁  . The 

second one is the transmutation which is done by choosing two different types (spins) of atoms 

randomly and exchanging their types without changing the composition, 𝝈𝑁 ⟶ 𝝈𝑛𝑒𝑤
𝑁 . This two 

trial moves change the potential energy  

Δ𝑈 = 𝑈(𝒓𝑛𝑒𝑤
𝑁 , 𝝈𝑛𝑒𝑤

𝑁 ) − 𝑈(𝒓𝑁, 𝝈𝑁)                    (17) 

Therefore, according to Metropolis criterion, the acceptance probability is 

 𝑃𝐶
𝑎𝑐𝑐 = min[1, 𝑒−𝛽𝛥𝑈(𝒓

𝑁,𝝈𝑁)]                              (18) 
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     If Δ𝑈  is negative move is accepted with 𝑃𝑎𝑐𝑐 = 1  , otherwise, 𝑃𝐶
𝑎𝑐𝑐 =  𝑒−𝛽Δ𝑈(𝒓

𝑁,𝝈𝑁) is 

computed and compared to a randomly drawn number from the interval 𝑞 = [0,1).  If 𝑃𝐶
𝑎𝑐𝑐 > 𝑞, 

the move is accepted with that 𝑃𝑎𝑐𝑐. For the accepted moves the new configuration is kept and the 

averages associated with it are updated, while for the rejected moves, the original configuration is 

kept and the averages associated with it are updated. 

1.3.2 Semi-grand canonical ensemble (constant N, V, T, Δμ):  

     SGC ensemble describes a system of constant volume consists of constant number of atoms of 

each type and is in contact with an infinite reservoir at constant temperature and chemical potential 

of each atom. Sampling in this ensemble allows to equilibrate the system into different microstates 

with different compositions, but their average is constrained by the reservoir through the constant 

Δμ.  The partition function of this ensemble is given by  

ℚ𝑆𝐺𝐶(𝑁, 𝑉, 𝑇) = ∫ ℚ𝐶(𝑁, 𝑉, 𝑇)𝑒
(−𝛽∆𝜇𝑁𝑐)

1

0

 𝑑𝑐          (19) 

The probability distribution of SGC ensemble is given by 

℘𝑆𝐺𝐶(𝑁, 𝑉, 𝑇, ∆𝜇, 𝒓
𝑁 , 𝝈𝑁) ∝ 𝑒−𝛽[𝑈(𝒓

𝑁,𝝈𝑁)+∆𝜇𝑁𝑐̂(𝝈𝑁)]               (20) 

where �̂� =
1

𝑁
∑ 𝜎𝑖
𝑁
1  is the concentration of spin (type) 1 atom.  

Sampling in SGC using MC transmutations can be described as follows:  

a. an atom is chosen at random. 

b. its type is changed 𝝈𝑁 ⟶𝝈𝑛𝑒𝑤
𝑁  

c. the energy change, Δ𝑈, is calculated  

d. the change in concentration, Δ𝑐 = �̂�(𝝈𝑛𝑒𝑤
𝑁 ) − �̂�(𝝈𝑁), is calculated  
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e. This exchange is accepted or rejected according to the acceptance probability 

𝑃𝑆𝐺𝐶
𝑎𝑐𝑐 = min[1, 𝑒−𝛽(𝛥𝑈+𝛥𝜇𝑁𝛥𝑐)]                   (21) 

     It can be concluded from the acceptance probability, that SGC ensemble cannot be used to 

establish equilibrium in multiphase fields for the concentration inside these fields cannot be 

stabilized and this is attributed to the fact that ∆𝜇 is a function in one average concentration only. 

This is displayed as a jump or discontinuity in concentration in the ∆𝜇 − 〈�̂�〉 plot. 

1.3.3 Variance-constrained semi-grand canonical ensemble: 

     As discussed above SGC ensemble can be used to establish equilibrium in single phase systems 

where the concentration can be stabilized by ∆𝜇. On the other hand, SGC ensemble cannot be used 

with two-phase fields where the relation between the average concentration and the potential 

difference has infinite slope [42]. To render SGC applicable in two-phase fields, more constraints 

need to be used to stabilize the global composition at the value of interest [42]. This can be 

achieved by adding two independent parameters, ∅  and 𝜅, that control the reservoir of VC-SGC 

[43]. AS compared to SGC ensemble, where ∆𝜇 is the Lagrange multiplier that constrains global 

concentration, two additional Lagrange multipliers, ∅  and 𝜅 are added to constrain the global 

concentration in VC-SGC ensemble. The partition function of this ensemble is given by  

ℚ𝑉𝐶−𝑆𝐺𝐶(𝑁, 𝑉, 𝑇) = ∫ ℚ𝐶(𝑁, 𝑉, 𝑇)𝑒
[−𝛽𝑁𝑐(𝜙+𝜅𝑁𝑐)]

1

0

 𝑑𝑐                     (22) 

The probability distribution of VC-SGC ensemble is given by 

℘𝑉𝐶−𝑆𝐺𝐶(𝑁, 𝑉, 𝑇, 𝜙, 𝜅, 𝒓
𝑁 , 𝝈𝑁) ∝ 𝑒−𝛽[𝑈

(𝒓𝑁,𝝈𝑁)−𝛽𝜅(𝜙 2𝜅⁄ +𝑁𝑐̂(𝝈𝑁))
2
                (23) 
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 The acceptance probability of the variance-constrained semi-grand canonical (VC-SGC) 

ensemble is  

𝑃𝑉𝐶−𝑆𝐺𝐶
𝑎𝑐𝑐 = min[1, 𝑒−𝛽(𝛥𝑈+𝑁𝛥𝑐(𝜙+2𝜅𝑁𝑐̃))]                          (24) 

where �̃�  is the average concentration between two successive trial moves. The algorithm was 

implemented in the massively parallel MD code LAMMPS [23]. 

1.4 Density Functional Theory: 

      A system of a solid containing very large number of atoms (~1023) and multiple numbers of 

electrons can theoretically be described exactly with the following Hamiltonian in atomic units. 

The Spin dependence is not shown here for clarity. 

�̂� = −
1

2
∑∇𝐼

2 −

𝑁

𝐼

1

2
∑∇𝑖

2 +
1

2
∑

𝑍𝐼𝑍𝐽

|𝑹𝐼 − 𝑹𝐽|

𝑁

𝐽≠𝐼

𝑛

𝑖

+
1

2
∑

1

|𝒓𝒊 − 𝒓𝒋|

𝑁

𝑗≠𝑖

−∑∑
𝑍𝐼 

|𝑹𝑰 − 𝒓𝒊|
           (𝟐𝟓)

𝑛

𝑖=1

𝑁

 𝐼=1

 

𝑁 here represents the number of nuclei with the mass 𝑀 and 𝑛 the number of interacting electrons 

with mass 𝑚. 𝑹𝑰 and 𝒓𝒊 designate their positions and 𝑍𝐼 is the associated atomic number, which 

indicates the multiplicity of the elementary charge 𝑒. The first two terms describe the kinetic 

energy of the nuclei and the electrons. The third and fourth terms describe the Coulombic 

interaction between the nuclei and the electrons respectively. The last term describes the 

Coulombic interaction between the nuclei and the electrons. In principle, if all these terms are 

known, then the corresponding Many-Body Schrödinger equation, Equation (26), can be solved. 

�̂�Ψ({𝒓𝒊}, {𝑹𝑱}) = 𝐸Ψ({𝒓𝒊}, {𝑹𝑱})                    (𝟐𝟔)  

     In practice, this is not possible, for the equation is partial differential equation in 3(𝑁 + 𝑛) 

variables. A first simplification of the Hamiltonians is provided by the Born-Oppenheimer 
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approximation [44]. Because the inertia of the nucleus is much larger than that of the electron, the 

nucleus can be considered stationary, hence the electronic and nuclear dynamics can be decoupled.        

The Hamiltonian in Equation (26), becomes the n-electron Hamiltonian of the stationary lattice. 

�̂� =  −
1

2
∑∇𝑖

2 

𝑛

𝑖⏟      
�̂�

+
1

2
∑

1

|𝒓𝒊 − 𝒓𝒋|

𝑁

𝑗≠𝑖⏟        
 𝑉𝑒𝑒

−  ∑∑
𝑍𝐼  

|𝑹𝑰 − 𝒓𝒊|
  

𝑛

𝑖=1

𝑁

 𝐼=1⏟          
                   (𝟐𝟕)

 �̂�𝑒𝑥𝑡

 

The corresponding Schrödinger equation is 

�̂�Ψ( 𝒓𝒊) = 𝐸Ψ(𝒓𝒊)                    (𝟐𝟖)  

     The solution of this equation gives the energy eigenvalues of the ground and all the excited 

states. Carrying this out for many different nuclei positions, one can get the energy hypersurface 

for every electronic state.  From the global minimum of the hypersurface of the ground state which 

corresponds to the most stable structure, lattice parameter, cohesive energy and other properties 

can be calculated. Further calculation such as band structure, density of states can be made starting 

from this ground state configuration. But the solution of this equation is still problematic since the 

second term couples the electronic coordinates and makes Equation (27) yet complicated partial 

differential equation in 3(𝑛) variables.  

     Hartree approximation [45], mean field approach, simplified the n-electron Schrödinger 

equation by treating the electron as independent non-interacting electrons. In this approximation, 

each electron recognizes the other electrons as a mean field Coulombic potential due to the other 

(𝑛 − 1) electrons. The (𝑛 − 1) electrons are treated as smooth negative charge density, at a 

position defined by �́� , that creates a potential, Hartree potential, of the following form 

𝑉𝐻(𝒓) = ∫𝜌(�́�)
1

|𝒓 − �́�|
  𝑑�́� ,   𝐸𝐻 = 

1

2
∫∫

𝜌(𝒓)𝜌(�́�)

|𝒓 − �́�|
 𝑑𝒓 𝑑�́�

⏟              
    ,      𝜌(�́�) =∑|ψ𝑖(�́�)|

2

𝑖

              (𝟐𝟗) 
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hence decoupling the electronic coordinates and rendering the 𝑛-electron Schrödinger equation 

into 𝑛 one-electron Schrödinger equation 

Ψ(𝒓1, 𝒓1, … , 𝒓𝑛) = ψ1(𝒓1) ψ2(𝒓2)…ψ𝑛(𝒓𝑛)                   (𝟑𝟎) 

1.4.1 The Hohenberg-Kohn theorems: 

     In 1964, Pierre Hohenberg and Walter Kohn [46] showed that the electronic ground state can 

be defined by the electronic Density 𝜌(𝒓), thus laying the foundation for density functional theory 

(DFT). The Hohenberg-Kohn theorems are related to any system consisting of electrons moving 

under the influence of an external potential  𝑉𝑒𝑥𝑡.  

The first theorem states that: 

The external potential 𝑉𝑒𝑥𝑡 (and hence the total energy), is a unique functional of the electronic 

density  𝜌(𝒓) [46].  

     The relation between the electron density 𝜌(𝒓) and the external potential  𝑉𝑒𝑥𝑡 can be 

qualitatively deduced from the following facts: 

• The electronic density depends on the position coordinates.  

• Integration of all the electron densities over the whole space gives the total number of the 

electrons which interact with the nucleus 

∫𝜌(𝒓)𝑑𝒓 = 𝑛                   (𝟑𝟏) 

• The mean electron density at the position of the nucleus, 𝐴 ,  contains information about 

the charge of the nucleus, Z, as shown in Figure 1.1. 



21 
 

𝜕�̅�(𝒓)

𝜕𝑟
|
𝑟=𝑟𝐴

= −2𝑍𝐴�̅�(𝒓𝑨)                   (𝟑𝟐) 

• The electronic density decays exponentially at large distances from the nucleus. 

𝜌(𝒓)~𝑒−(2√2𝐼|𝒓|) 

where 𝐼 is the exact ionization energy of the system. 

 

Figure 1.1 Electron density for water molecule 

The total energy is then can be described as a functional of electron density 

𝐸[𝜌(𝒓)] = 𝐸𝑘𝑖𝑛[𝜌(𝒓)] + 𝐸𝑒𝑥𝑡[𝜌(𝒓)] + 𝐸𝐻[𝜌(𝒓)] + 𝐸𝑋𝐶[𝜌(𝒓)]             (33) 

𝐸 [𝜌(𝒓)] = −
1

2
∑ ∫φ𝑖

∗∇2 φ𝑖𝑖 𝑑𝒓⏟          
𝐸𝑘𝑖𝑛

−∫𝜌(𝒓) 𝑉𝑒𝑥𝑡(𝒓)𝑑𝒓⏟          
𝐸𝑒𝑥𝑡

+
1

2
∫∫

𝜌(𝒓)𝜌(�́�)

|𝒓−�́�|
 𝑑𝒓 𝑑�́�

⏟            
𝐸𝐻

+ 𝐸𝑋𝐶[𝜌(𝒓)]                  (𝟑𝟒)                              

and 𝜌(𝒓) = ∑ |φ𝑖(𝒓 )|
2

𝑖 , where φ𝑖(𝒓 ) are the non-interacting Kohn-Sham orbitals that replace 

the eigenfunctions of the interacting electrons. 𝐹[𝜌(𝒓)] = 𝐸𝑘𝑖𝑛[φ(𝒓)] + 𝐸𝐻[𝜌(𝒓)] + 𝐸𝑋𝐶[𝜌(𝒓)] 

where the terms are the kinetic energy of the electrons, Hartree Energy, and exchange-correlation 

energy respectively. As opposed to the external potential,  𝑉𝑒𝑥𝑡, which varies from one system to 

another, 𝐹[𝜌(𝒓)] does not.  
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       𝐸𝑋𝐶[𝜌(𝒓)] , as expected, is not so easy to define because it contains corrections to self-

interaction and contains other (quantum mechanical) effects that are missing due to using the 

electron density and the decoupling of electron coordinates. Strictly speaking, the exact form of 

the exchange-correlation functional, even if its existence is required and proved by the Hohenberg-

Kohn theorems, is   unknown as the other terms. 

𝐸𝑋𝐶[𝜌(𝒓)] = 𝐸𝑋[𝜌(𝒓)] + 𝐸𝐶[𝜌(𝒓)]                      (35) 

     𝐸𝑋[𝜌(𝒓)] is the exchange energy which is attributed to Pauli exclusion principle that makes the 

like-spin electrons avoid each other, hence staying at a distance from each other. This reduces the 

electron density around the electron (hence creating what so called exchange hole) and the net 

repulsive energy, hence the 𝐸𝑋[𝜌(𝒓)]  has negative value. 𝐸𝐶[𝜌(𝒓)] is the correlation energy and 

comprises all the interacting terms that are not accounted for because of the decoupling of the 

coordinates of the electrons. Electrons of different spins repel each other on the same orbital that 

they occupy, because they have the sane charge, hence creating correlation holes around the 

electrons and reduce the net repulsive energy. 𝐸𝐶[𝜌(𝒓)] has a negative value and it is much less 

than the exchange energy. 

     There is only one special case from which the functional can be derived exactly. This is when 

the electron density is constant, 𝜌(𝒓) = 𝑐𝑜𝑛𝑠𝑡.  i. e. it has the same value at every point in the 

space. One speaks also of a homogeneous electron gas. This situation may be limited in practical 

applications, as electrons are rarely uniformly distributed. This approach can be applied to simple 

metals (Alkali metals like Li, Na, K). The first approach to approximate the exchange correlation 

energy is the Local Density Approximation (𝐿𝐷𝐴), which initially assumes that there is a 
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homogeneous electron gas. In this case, 𝐸𝑋𝐶[𝜌(𝒓)]  is a pure functional of density and can be split 

into an exchange term 𝐸𝑋[𝜌(𝒓)]  and a correlation term 𝐸𝐶[𝜌(𝒓)]. The exchange term is given by 

𝐸𝑋
𝐿𝐷𝐴[𝜌(𝒓)] = ∫𝑑𝒓 𝜌(𝒓)𝜖𝑋

𝐿𝐷𝐴[𝜌(𝒓)] 

𝜖𝑋
𝐿𝐷𝐴[𝜌(𝒓)] = −

3

4
(
3

𝜋
)
1/3

𝜌(𝒓)1/3 

The correlation term is given by 

𝐸𝐶
𝐿𝐷𝐴[𝜌(𝒓)] = ∫𝑑𝒓 𝜌(𝒓)𝜖𝐶

𝐿𝐷𝐴[𝜌(𝒓)] 

𝜖𝐶
𝐿𝐷𝐴[𝜌(𝒓)] = 𝐴 {𝑙𝑛 (

𝑥2

𝑋
) +

2𝑏

𝑄
𝑡𝑎𝑛−1 (

𝑄

2𝑥 + 𝑏
)

−
𝑏𝑥𝑜
𝑋(𝑥𝑜)

[𝑙𝑛 (
(𝑥 − 𝑥𝑜)

2

𝑋
) +

2(𝑏2𝑥𝑜)

𝑄
𝑡𝑎𝑛−1 (

𝑄

2𝑥 + 𝑏
)]} 

 

𝑋 = 𝑥2 + 𝑏𝑥 + 𝑐, 𝑥 = √𝑟𝑠 ,     𝑟𝑠 = √
3

4𝜋𝜌(𝑟)

3
, 𝑄 = √4𝑐 − 𝑏2  , 𝑥𝑜 =-0.104098, 

A = 0.0310907, b = 3.72744, c = 12.9352  

As already mentioned, this approximation works well for substances with approximately 

homogeneous electron density, for example, metals. However, it turns out that this approximation 

leads to good results with other materials as well. Only for chemical problems is the local density 

approximation too imprecise, as it tends to give too high binding energies and too low ground state 

energies. 

For this reason, various improvements have been made. One of these improvements is the 

Generalized Gradient Approximation (GGA), in which the functionals depend not only on the 

density 𝜌(𝒓) but also on the gradient ∇𝜌(𝒓) 
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𝐸𝑋
𝐺𝐺𝐴[𝜌(𝒓), ∇𝜌(𝒓)] = ∫𝑑𝒓 𝜌(𝒓)𝜖𝑋

𝐺𝐺𝐴[𝜌(𝒓), ∇𝜌(𝒓)] 

𝐸𝐶
𝐺𝐺𝐴[𝜌(𝒓), ∇𝜌(𝒓)] = ∫𝑑𝒓 𝜌(𝒓)𝜖𝐶

𝐺𝐺𝐴[𝜌(𝒓), ∇𝜌(𝒓)] 

The exact expressions are not given here because they are even more complicated and longer 

than the 𝐿𝐷𝐴. Only known names for these functionals can be given: Perdew-Wang-Funktional 

(PW91) [47], Perdew-Burke-Ernzerhof-Funktional (PBE) [48]. 

The second theorem states that: 

The electron density that minimizes the energy functional is the one that gives the lowest energy 

if and only if the input density is the true ground state density [46]. 

This is realized in practice by using the variational principle method. 

𝛿𝐸 [𝜌(𝒓)]

𝛿𝜌(𝒓)
= 0           (36) 

 This is done by varying the electron density until the approximate form of the functional, that 

describes the ground state energy becomes minimal. The resulting electron density is then the 

relevant ground state density. 

1.4.2 Kohn-Sham equations: 

      The Kohn-Sham equations have the following form: 

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝒓)]φ𝑖(𝒓) = 𝜖𝑖φ𝑖(𝒓)                  (𝟑𝟕) 

𝑉𝑒𝑓𝑓(𝒓) is the effective potential and is given by 

𝑉𝑒𝑓𝑓(𝒓)= 𝑉𝑒𝑥𝑡(𝒓) +  𝑉𝐻(𝒓) +  𝑉𝑋𝐶(𝒓)                  (𝟑𝟖) 
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     The first term is the external potential and is proportional to 
𝑍

𝑟
 , the second term is Hartree 

potential, and the third one is the exchange-correlation potential functional. Now Equation (38) 

becomes 

[−
1

2
∇2 +  𝑉𝑒𝑥𝑡(𝒓) +  𝑉𝐻(𝒓) +  𝑉𝑋𝐶(𝒓)]φ𝑖(𝒓) = 𝜖𝑖φ𝑖(𝒓)                  (𝟑𝟗) 

and the corresponding total energy functional is 

𝐸 [𝜌(𝒓)] = −
1

2
∑ ∫φ𝑖

∗∇2 φ𝑖
𝑖

𝑑𝒓
⏟            

𝐸𝑘𝑖𝑛

−∑∫
𝑍𝐼𝜌(𝒓) 

|𝒓 − 𝑹𝑰|
𝑑𝒓

𝑁

𝐼=1

 
⏟          

𝐸𝑒𝑥𝑡

+
1

2
∫∫

𝜌(𝒓)𝜌(�́�)

|𝒓 − �́�|
 𝑑𝒓 𝑑�́�

⏟              
𝐸𝐻

+ 𝐸𝑋𝐶[𝜌(𝒓)]         (𝟒𝟎)  

     The Kohn-Sham equations are solved using the self-consistent procedure as follows: 

1- A trial electron density, 𝜌(𝒓), is calculated. 

2- 𝑉𝑋𝐶(𝒓) is calculated along with the other terms of the Kohn-Sham Hamiltonian. 

3- The set of equation are solved, and the solutions are Kohn-Sham orbitals φ𝑖(𝒓). 

4- The Kohn-Sham orbitals φ𝑖(𝒓) are used to calculate a new 𝜌(𝒓). The previous and the new 

electron densities are mixed, and all the previous steps are repeated with the mixed electron 

density. 

5- When the energy change or electron density change is small enough (usually about 10-8 Ry), 

the obtained energy is the ground state energy and the electron density is the ground state 

electron density. 
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1.4.3 The pseudopotential:  

     A reduction in the computational effort in quantum calculations in solids can be achieved by 

explicitly considering only the valence electrons in the solution of the Schrödinger equation 

(Frozen-core approximation). For example, in Platinum, there are 10 valance electrons out of total 

78 electrons, and this reduces the computational cost by ~ 87%. This approximation is possible 

because the core electrons hardly contribute, as opposed to valence, to chemical bonds; therefore, 

core electrons are frozen and treated with the nuclei as one rigid ion core. 

     The pseudopotential is an effective potential, in which only the valence electrons are involved, 

to replace the full-potential (All-Electron potential), and valence electrons are described by 

pseudo-wavefunctions accordingly. The corresponding Schrödinger equation is modified with this 

effective potential term instead of the usual Coulombic potential term that normally considers core 

electrons, see Figure 1.2.   

 

     To construct the pseudopotential, an atomic is used as reference state, to make it applicable to 

different systems. Then making the pseudo-valence ψ𝑖
𝑃𝑃 and All-Electron ψ𝑖

𝐴𝐸 wavefunctions 

have the same energies and amplitude (and thus electronic density) at a properly chosen core cut-

Figure 1.2 The construction of pseudopotential 

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Coulomb%27s_law
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off radius rc . The initial trial electron density used in the self-consistent procedure is calculated 

from superposition of pseudo-valence wavefunctions. 

 𝜌(𝒓) =∑|ψ𝑖
𝑃𝑃(𝒓 )|

2

𝑖

                  (𝟒𝟏) 

     Examples of the types of pseudopotentials are Soft and Ultrasoft pseudopotentials, Norm-

conserving pseudopotentials, and Projector-Augmented Wave (PAW). 

1.4.4 Electrons in solids: 

     Free electrons have wavefunctions of a form of a traveling planewave PW. 

Ψ(𝒓) =  𝑒𝑖𝒌.𝒓                  (𝟒𝟐) 

where 𝒌 is the wavevector. However, in the solids that display a periodic crystal structure, the 

electron is not completely free, and it travels inside the solid as a traveling planewave that is 

modulated with a function that has the periodicity of the crystal structure 𝑢𝑘(𝒓).  

Ψ(𝒓) = 𝑢𝑘(𝒓)𝑒
𝑖𝒌.𝒓,       𝑢𝑘(𝒓) = 𝑢𝑘(𝒓 + 𝑹)                  (𝟒𝟑) 

where 𝑹  is the translation vector in the real space. The periodic function 𝑢𝑘(𝒓), however, can be 

expanded in the reciprocal space (Fourier space). 

𝑢𝑘(𝒓) =  ∑𝑐𝑘(𝑮)𝑒
𝑖𝑮.𝒓

𝑮

                      (𝟒𝟒) 

where 𝑮 is the reciprocal space vector. Substituting Equation(𝟒𝟒) in Equation  (𝟒𝟑) yields what 

so called Bloch wave. 
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Ψ𝑘(𝒓) =  ∑  𝑐𝑘(𝑮)𝑒
𝑖(𝒌+𝑮).𝒓

𝑮

                      (𝟒𝟓) 

     Bloch wave is a superposition of planewaves with wavevector 𝒌 (in the first Brillouin zone), 

that differ by a reciprocal vector 𝑮. The number of electronic states, 𝒌𝑠 ,can be reduced by using 

supercells and the concept of periodic boundary conditions; and by reducing the first Brillouin 

zone using symmetry operations (inversion and rotation) to the irreducible Brillouin zone (IBZ) 

as shown in Figure 1.3. 

 

Figure 1.3 The irreducible Brillouin zone (IBZ). 

𝑉𝑒𝑓𝑓(𝒓) is also periodic in the real space and can be expanded in the reciprocal space (Fourier 

space) as 

𝑉𝑒𝑓𝑓(𝒓) =∑𝑉𝑒𝑓𝑓(𝑮)𝑒
𝑖𝑮.𝒓

𝑮

                           (𝟒𝟔)  

𝑉𝑒𝑓𝑓(𝑮) = ∫𝑉𝑒𝑓𝑓(𝒓)𝑒
𝑖𝑮.𝒓 𝑑𝒓                          (𝟒𝟕) 

     Plugging Equation(𝟒𝟓)  and Equation(𝟒𝟔)  in Equation(𝟑𝟕)  with some manipulation yields 

the KS equations in the reciprocal space 
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∑[
1

2
|𝒌 + 𝑮|2 + 𝑉𝑒𝑓𝑓(𝑮 − 𝑮

′)]  𝑐𝑛
𝑮′

(𝒌 + 𝑮′) = 𝜖𝑛𝑘    𝑐𝑛(𝒌 + 𝑮)                          (𝟒𝟖) 

Or in matrix form      𝑯𝒄 = 𝝐𝒄 

where 𝑛 is the energy band index.  This matrix can be solved for a fixed band index and for the   

basis set of planewaves by diagonalization and the obtained 𝑐𝑛(𝒌 + 𝑮) are used to calculate new 

KS orbitals  𝜑𝑛𝑘    which are used to calculate the new electron density and the KS Hamiltonian as 

described in the self-consistent procedure. 

     To expand the wavefunction and describe it precisely, an infinite number of PWs are required 

and this would make solving Equation(𝟒𝟖) impossible. Since the target energy is the ground state 

energy, then the important solutions are the ones with the lowest energies. This can be done by 

excluding the electrons with the highest kinetic energy by introducing a cutoff-energy,  𝐸𝑐𝑢𝑡. 

𝐸𝑐𝑢𝑡 ≥
1

2
|𝒌 + 𝑮|2                              (49) 

The 𝐸𝑐𝑢𝑡 is system-dependent and a convergence test must be carried out until the energy or other 

properties do not change. 
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Chapter 2:  Molecular Dynamics and Hybrid MD/MC Computations:  

2.1 Computational procedure:  

     The massively parallel MD code LAMMPS was used to perform Hybrid MC/MD simulations 

[42]. To choose the proper potential that represents the rich side of Al-Cu system, four interatomic 

potentials were compared in terms of the formation energies of four different intermetallic 

compounds and the results are shown in Table 1.1. The best results (green column) obtained by 

the embedded-atom (EAM)interatomic potential that was developed by W. Sheng [49].  

 

Table 2.1 Comparison of four different interatomic potentials in terms of formation energy  

 

     The simulations were run using three different starting states at 300K, namely Cu (a=3.615 Å), 

Al (a=4.05 Å), and Al4Cu9( 𝛾phase, a=8.701 Å). The simulation box of the FCC lattices was cubic 

supercell, 5x5x5 unit cells, which employed 500 atoms, while that for ( 𝛾phase) was orthorhombic 

supercell, 5x2x1, which employed 520 atoms.  The simulation was also run at 700K and 1000K 

starting from Cu supercell. In all the simulations, periodic boundary conditions were used in all 

directions to treat the samples as infinite bulks. 

     The potential energy of all the starting states samples were minimized using conjugated 

gradient minimization method. To ensure that each system is relaxed, a constant NPT MD 

simulation was carried out under P=0 bar for 2 ns using timestep of 1 fs, which is equivalent to 

2E6 simulation steps, by annealing each system from a higher temperature to the intended 
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production temperature, 300, 700, and 1000K; it was 1000K for the 300 and 700K cases, and 

1300K for 1000K case. This is done to ensure that each system can visit as many microstates as 

possible that cannot be visited otherwise, and to identify the microstate with a global minimum. 

Each system was further equilibrated at the production temperature for 3 ns, which is equivalent 

to 3E6 simulation steps. After that, the alloying stage was simulated using the MC/MD hybrid 

method in SGC ensemble [42]. Here each system was first relaxed using conjugated gradient 

minimization method, then simulation was run for 5E6 simulation steps with timestep of 0.2 fs, 

and MC transmutations and trial moves was carried out every 500 MD steps, and the fraction of 

swapped atoms was 0.2. After equilibrium the, the averages were calculated for the last 4000 MC 

steps (last 2E6 MD steps). During the simulation each simulation ∆𝜇 = 𝜇𝐶𝑢 − 𝜇𝐴𝑙  was kept 

constant to allow the switching of atomic identities and hence allow the system to reach its 

corresponding equilibrium concentration. Figure 2.1 shows schematic representation of the 

simulation procedure. 

     Also, simulations were carried out using larger simulation supercells for Cu and  𝛾phase starting 

states at the same temperatures used in the above simulations. The simulation box of the FCC 

lattices was cubic supercell,7x7x7 unit cells, which employed 1372 atoms, while that for ( 𝛾phase) 

was cubic supercell 3x3x3, which employed 1404 atoms. The simulations consist of the same 

stages as for the smaller supercells. The differences were in the length of the most simulation 

stages and the fraction of the swapped atoms. The first stage was run for 2E6 steps, then the second 

stage for 8E6 steps. The last stage, alloying stage, was run for 1E7 steps. The fraction of swapped 

atoms was 0.3. After equilibrium the, the averages were calculated for the last 4000 MC steps (last 

2E6 MD steps). 
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Figure 2.1 Schematic representation of the simulation procedure for the smaller supercells. 

     The enthalpy of solution was computed for the smaller Cu supercell (500 atoms) using MC/MD 

canonical ensemble at constant NPT under P=0 bar and T= 300K. The simulation was run from 

Cu starting state for 5 ns (5E6 steps) and alloying with Al was done at intervals of about 5 at. % 

up to 20 at%. Al. The rest was done at intervals of about 20 at %. 

2.2 Results and discussions: 

     The plot of equilibrium concentration 𝐶𝐶𝑢 (atomic fraction) versus ∆𝜇  at each specified 

temperature was plotted.  Figure 2.2 shows the simulation result of the smaller supercell Cu 

starting state for T=300K. For small values of ∆𝜇, the alloy equilibrates into Cu-Al solid solution. 

With the increase of ∆𝜇, the solubility of Al increases and reaches its maximum, 1.6 %(98.4 % 

Cu), at ∆𝜇 = −0.6125 eV/atom. At  ∆𝜇 = −0.61, Al concentration increases (jumps) to 22.1 
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%(77.9 % Cu). The presence of this concentration jump indicates that in this range of composition 

there are two phases in equilibrium; one certainly is known which the solid solution of Al in Cu 

is, while the other requires further experimental investigations to reveal its identity. 

     Figure 2.3 shows the simulation result of the smaller supercell Al starting state for T=300K. 

The change of concentration with ∆𝜇 shows the same behavior as for Cu starting state, but with 

slight difference in the extremities of the concentration jump. The jump is between to 1 % (99 % 

Cu) and 22.3 %(77.7 % Cu) at  ∆𝜇 = −0.62 and respectively.  The same behavior is shown by the 

smaller supercell Al4Cu9 starting state at T=300K as shown in Figure 2.4. The concentration 

jump occurs between to 0.7 % (99.3 % Cu) and 19.3 %(80.7 % Cu) at  ∆𝜇 = −0.66 and ∆𝜇 =

−0.65.  

 

 

Figure 2.2. Chemical potential difference as a function of concentration for smaller supercell Cu starting state at 300K. 
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Figure 2.3 Chemical potential difference as a function of concentration for smaller supercell Al starting state at 300K 

 

Figure 2.4  Chemical potential difference as a function of concentration for smaller supercell Al4Cu9 starting state at T=300K. 

     The plot of the concentration 𝐶𝐶𝑢 (atomic fraction) versus ∆𝜇 for the simulation using the 

smaller supercell Cu starting state at higher temperatures, namely at 700, and 1000 K are shown 

in Figure 2.5 and Figure 2.6 respectively. It can be seen from Figure 2.5 that the alloy equilibrates 

into Cu-Al solid solution with maximum Al solubility of 14.8 %(85.2 % Cu), where the 

concentration jump starts, at ∆𝜇 = −0.655 eV/atom. At  ∆𝜇 = −0.65, Al concentration increases 

(jumps) to 23.1 %(76.9 % Cu). This makes the two-phase region narrower than at 300 K.  
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Figure 2.5 Chemical potential difference as a function of concentration for smaller supercell Cu starting state at T=700K 

     At 1000 K, as shown in Figure 2.6, the concentration jump disappears, which suggest that the 

solvus line should merge at certain temperature, with the boundary of (𝛽 + 𝐶𝑢 − 𝐴𝑙) two-phase 

region given that this must satisfy the phase rule. A simulation was carried out at 800 K to locate 

where this could occur, and as can be concluded from Figure 2.7, the merge should take place 

between 800 and 1000 K.  
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Figure 2.6 Chemical potential difference as a function of concentration for smaller supercell Al4Cu9 starting state 1000K. 
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Figure 2.7 Chemical potential difference as a function of concentration for smaller supercell Cu starting state 800K. 

     For the larger supercells of Cu starting state, the plot of equilibrium concentration 𝐶𝐶𝑢 (atomic 

fraction) versus ∆𝜇  at 300, 700, 1000 K were plotted, and the results are shown in Figures 2.8, 

2.9, 2.10. The results confirm that of those for the smaller supercells, but with slight differences in 

the extremities of the concentration jumps which is attributed to the size of the supercell.  

 

Figure 2.8 Chemical potential difference as a function of concentration for larger supercell Cu starting state at T=300K. 
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Figure 2.9 Chemical potential difference as a function of concentration for larger supercell Cu starting state at T=700K. 
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Figure 2.10 Chemical potential difference as a function of concentration for larger supercell Cu starting state at T=1000K. 

     The calculated values of enthalpy of mixing obtained from the simulation that employed 

smaller supercell Cu starting state at T=300K are plotted and the result is shown in Figure 2.11. 

From that, it can be concluded that the phases in two-phase region are formed by nucleation and 

growth and not by spinodal decomposition. 
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Figure 2.11 Enthalpy of mixing at 300K for smaller supercell Cu starting state 

 

 

2.2.1 Convergence test: 

     For the convergence test, an additional Cu supercell of 25000 atoms (25x25x10) was used. The 

potential energy of the sample was minimized using conjugated gradient minimization method 

then to ensure that the system is relaxed, a constant NPT MD simulation was carried out under 

P=0 bar for 0.2 ns from 1000 K to 300 K then using timestep of 1 fs, then at 300K for 0.8 ns. Then 

the simulation was run using MC/MD semi-grand canonical ensemble at constant NPT under P=0 

bar and T= 300K for 1E7 steps with timestep of 0.2 fs, and MC transmutations and trial moves 

was carried out every 500 MD steps, and the fraction of swapped atoms was 0.2. The averages 

were taken for the last 4000MC steps. Here, concentration jump took place between (97.974 % 

Cu, -0.62 eV/atom) and (76.746 % Cu, -0.61 eV/atom). The extremities of concentration jump at 

300K for the smaller supercells (500, 1372 atoms) are plotted and the result is shown in Figure 
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2.12. It shows that the concentration jump converges with the size of the supercell which justify 

the choice of the supercell with 500 atoms for most of the calculations at 300K. 
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Figure 2.12   Convergence test at 300 K 

2.2.2 Visualization results: 

     The Open Source scientific visualization and analysis software, OVITO, was used to visualize 

the crystal structure within the 2-phase region. For this purpose, a Cu supercell of 25000 atoms 

(25x25x10) was used. The potential energy of the sample was minimized using conjugated 

gradient minimization method then to ensure that the system is relaxed, a constant NPT MD 

simulation was carried out under P=0 bar for 0.2 ns from 1000 K to 300 K then using timestep of 

1 fs, then at 300K for 0.8 ns. The sample then was alloyed randomly by replacing ~0.6 % of Cu 

atoms with Al atoms. Then the simulation was run using MC/MD canonical ensemble at constant 

NPT under P=0 bar and T= 300K for 5E5   with timestep of 0.2 fs, and MC transmutations and 

trial moves was carried out every 500 MD steps, and the fraction of swapped atoms was 0.33. To 

ensure that equilibrium was reached, the simulation was restarted after the end of the first one 

under the same condition for 1E5, but MC transmutations and trial moves was carried out every 

100 MD steps. Figure 2.13a shows the sample just after alloying the sample (α phase). Figure 
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2.13b shows the sample after the initial 5E5 steps (1000MC steps). Figure 2.13c shows the sample 

after the additional 1E5 steps (1000MC steps). 

 

 

 

 

 

 

It is clear from these figures that α phase separated into two phases. According to lever rule the 

relative amount of α phase (98.36% 𝑪𝒖) is  

% 𝛂 phase =
94 − 77.86

98.36 − 77.86
× 100 = 78.73% 

while the relative amount of the other phase (77.86% 𝑪𝒖) is 21.27% and this is clear in Figure 

2.13 too. To determine the crystal structure of this phase, four monoatomic slices were cut along 

[001] direction and the result is shown in Figure 2.14. As shown in Figure 2.14, two crystal 

a b 

c 

Figure 2.13 Atomic configurations (a) just after alloying the sample (α phase), (b) after the initial 5E5 steps (1000MC steps), (c) 

after the additional 1E5 steps (1000MC steps). 
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structures can be identified, one is of L12 which is outlined with a square in each layer, while the 

other is D022 and is outlined with a rectangle. Figure 2.15 shows these two crystal structures.  

 

 

 

 

 

 

Figure  2.14 The four monoatomic slices cut along [001] direction which shows clearly the L12,  and D022  structures outlined by a 

square and rectangle respectively.  

Figure 2.15   L12 and D022 crystal structures 
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        To have a better look on the crystal structure four monoatomic slices were cut along [010] 

direction and the result is shown in Figure 2.16. It is clear from these monoatomic slices that these 

two crystal structures are not separate but are one superstructure of D022 and L12. This suggests 

that this the α2 phase which has a long period superstructure of D022 and L12 [55]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 

3 4 

Figure 2.16 The four monoatomic slices cut along [010] direction which show clearly the L12, and D022 structures 
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2.2.3 Modification of the Cu-rich side of Al-Cu phase diagram: 

     The extremities of concentration jump at 300, 700, 800K for the smaller supercells (500 atoms) 

were plotted, and the result is plotted in Figure 2.17. These points are transferred to Al-Cu phase 

diagram (connected with red lines), as shown in Figure 2.18, and possible modifications were 

drawn such that they obey the phase rule. 
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Figure 2.17 The two-phase region is constructed from the extremities of concentration jump at 300, 700, 800K 
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Figure 2.18 Modification of the Cu-rich side of Al-Cu phase diagram 
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Chapter 3: DFT Computations: 

3.1 Computational procedure: 

     Here, the enthalpy of mixing of two solid solution on the copper-rich side of Al-Cu phase 

diagram are calculated, namely 6.25% Al and 12.5% Al. The results will be compared to those 

obtained from molecular dynamics simulations to confirm whether the two phases in the two-

phase region formed by nucleation and growth or not.  

All calculations were performed in the framework of DFT with the open-source Quantum 

ESPRESSO package for quantum simulation of materials [56,57]. The projector augmented wave 

(PAW) method was used throughout the simulations [58,59]. To describe the exchange-correlation 

energy-functional, the generalized gradient approximation (GGA) [60] formulated by Perdew, 

Burke and Ernzerhof, [61] was used. Methfessel-Paxton [62] smearing of 0.001 Ry was used 

throughout the simulations.  

3.2 Results and discussion 

 3.2.1 Aluminum Bulk properties: 

     For bulk Aluminum, the supercell was one Aluminum FCC unit cell and its corresponding cubic 

shifted and unshifted k-points grid were used in the simulations. Convergence tests for the 

supercell with respect to the size of the k-points grid, shifted and unshifted ones, and to cutoff 

energy, Ecut, were carried out and the results were plotted as shown in Figure 3.1, and Figure 3.2 

respectively. 

     As can be seen from Figure 3.1 the total energy converges better for the shifted k-points grid. 

The convergence takes place for k-points grid of 10x10x10, but for better precision of the 
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calculations a shifted 16x16x16 k-points grid of was used. On the other hand, the convergence 

with respect to energy cutoff takes place at 116 Ry, but an energy cutoff of 250 Ry was used to 

achieve better results. 
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Figure 3.2 Convergence test for bulk Aluminum with respect to unshifted and shifted k-points grids 
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Figure 3.3  Convergence test for bulk Aluminum with respect to energy cutoff 
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     For the calculation of the cohesive energy of Aluminum, a calculation for a spin-polarized 

isolated atom was carried out.  To simulate the condition of the isolated atom, the size of the 

simulation box should be large enough. A size of 12x12x12 Å was proved to be enough for the 

calculations. Convergence test with respect to the energy cutoff for the isolated atom was carried 

out and the result was plotted as shown in Figure 3. 3. For consistent calculations an energy cutoff 

of 250 Ry was used. 
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Figure 3.4 Convergence test for isolated Aluminum atom with respect to energy cutoff 

 

     To determine the equilibrium lattice parameter and the equilibrium cohesive energy, the 

cohesive energy for a series of lattice parameters (atomic volumes) calculations were performed.  

The cohesive energy is calculated as follows: 

𝐸𝑐 =
𝐸𝑡𝑜𝑡(𝑏𝑢𝑙𝑘)

4
− 𝐸𝑡𝑜𝑡(𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑) 
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where 𝐸𝑡𝑜𝑡(𝑏𝑢𝑙𝑘) is the total energy of bulk aluminum, and  𝐸𝑡𝑜𝑡(𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑) is the total energy of 

isolated aluminum atom.  

     The minimum of the fitted curve corresponds to the equilibrium values of the lattice parameter 

and the cohesive energy.  From Figure 3.4, the equilibrium cohesive energy and the lattice 

parameters were found to be -3.54 eV/atom and 4.02 Å respectively.  These values are in a good 

agreement with the experimental values, -3.39/-3.39 eV/atom, and 4.05/4.04 Å [63]/ [64]. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Copper Bulk properties: 

     The same computational procedure for aluminum is used for copper except the size of the 

simulation box for the isolated copper atom was 10x 10x10 Å. 

      Convergence tests with respect to the size of the k-points grid, shifted and unshifted ones, and 

to cutoff energy, Ecut, and were carried out and the results were plotted as shown in Figure 3.5, 

and Figure 3.6 respectively. As can be seen from both Figure 3.s, convergence with respect of k-

points grid and energy cutoff takes place at values lower than 16x16x16 and 250 Ry respectively; 
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Figure3. 5 The plot of cohesive energy versus series of lattice parameters or unit cell volumes for Aluminum 
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therefore, these values which are the same ones used for Aluminum are used in the calculations 

throughout the simulation of Al-Cu alloys and compounds. 
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Figure 3.7  Convergence test for bulk Copper with respect to energy cutoff 

     Convergence test with respect to the energy cutoff for the isolated atom was carried out and the 

result was plotted as shown in Figure 3.7. For consistent calculations an energy cutoff of 250 Ry 

was used 

Figure 3.6 Convergence tests for bulk Copper with respect to shifted and unshifted k-points grids 
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Figure 3.8  Convergence test for isolated Copper atom with respect to energy cutoff 
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Figure 3.8 The plot of cohesive energy versus series of unit cell volumes for Copper 
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     Equilibrium cohesive energy and lattice parameter for copper were determined from the fitted 

curve of cohesive energy versus a series of lattice parameters (volumes) as shown in Figure 3.8. 

The equilibrium cohesive energy and the lattice parameters were found to be -3.50 eV and 3.643 

Å respectively. These values are in a good agreement with the experimental values, -3.49 eV/atom, 

and 3.61 Å [14]. 

3.2.3 Energetics of intermetallics and Al-Cu alloys: 

     To validate the accuracy of enthalpy of mixing calculations of Al-Cu alloys, the formation and 

cohesive energies of two intermetallic compounds, namely L12 (AlCu3) and D022 (AlCu3), were 

first calculated. The energy cutoff used in the simulation for both structures were 250 Ry, while 

the k-points grids of shifted 16x16x16 and shifted 16x16x8 were used for L12 (AlCu3) and D022 

(AlCu3) structures respectively.  

3.2.3.1 The energetics of L12 (AlCu3): 

The formation energy of, ∆𝐻𝑓(𝐴𝑙𝑚𝐶𝑢𝑛), any compound is calculated as follows: 

∆𝐻𝑓(𝐴𝑙𝑚𝐶𝑢𝑛) = [𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙𝑚𝐶𝑢𝑛) −

𝑚𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙)

4
−
𝑛𝐸𝑡𝑜𝑡

𝑚𝑖𝑛(𝐶𝑢)

4
] (𝑚 + 𝑛)⁄                   (1) 

𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙𝑚𝐶𝑢𝑛) is the minimum total energy of the intermetallic compound at equilibrium lattice 

parameter,  𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙) = −158.01066𝑅𝑦/4𝑎𝑡𝑜𝑚𝑠 , 𝐸𝑡𝑜𝑡

𝑚𝑖𝑛(𝐶𝑢) = −852.3789 𝑅𝑦/4𝑎𝑡𝑜𝑚𝑠 are 

the minimum total energies of the bulk Aluminum and copper at equilibrium lattice parameters.  

𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙1𝐶𝑢3)(𝐿12) is determined from the fitted curve of the total energy versus a series of lattice 

parameters as shown in Figure 3.9. 𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙1𝐶𝑢3)(𝐿12) = −678.84055003 Ry/4atoms. 

The formation energy was calculated and found to be  

∆𝐻𝑓(𝐴𝑙1𝐶𝑢3)(𝐿12) − 0.013477 𝑅𝑦/𝑎𝑡𝑜𝑚 =  −0.183 𝑒𝑉/𝑎𝑡𝑜𝑚 
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This value is in a good agreement with ab initio values, -0.182 eV/atom [54], -0.177 eV/atom [65]. 

The cohesive energy is calculated as follows: 

𝐸𝑐(𝐴𝑙𝑚𝐶𝑢𝑛) = [𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙𝑚𝐶𝑢𝑛) − 𝑚𝐸𝑡𝑜𝑡

𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑(𝐴𝑙) − 𝑛𝐸𝑡𝑜𝑡
𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑(𝐶𝑢)] (𝑚 + 𝑛)⁄            (2) 

𝐸𝑡𝑜𝑡
𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑(𝐴𝑙) − 39.24217434 Ry/atoms  and 𝐸𝑡𝑜𝑡

𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑(𝐶𝑢) = −212.83731038 𝑅𝑦/𝑎𝑡𝑜𝑚𝑠  

are  the total energies of the isolated Al and Copper atoms 

The cohesive energy was calculated and found to be  

𝐸𝑐(𝐴𝑙1𝐶𝑢3)(𝐿12) = −0.2716 𝑅𝑦/𝑎𝑡𝑜𝑚 =  −3.694 𝑒𝑉/𝑎𝑡𝑜𝑚 
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Figure 3. 9 The plot of total energy versus series of unit cell volumes for Copper 

 

3.2.3.2 The energetics of D022 (AlCu3): 

     To calculate the formation and cohesive energies of D022 (AlCu3) structure, the total energy of 

D022 structure of AlCu3 was plotted versus series of lattice parameters a and the ratio (c/a) as a 

heat map, see Figure 3.10,  and splines were used to interpolate between the points, and by 
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zooming in into it, a and (c/a)  were found at the minimum energy, then these values were used to 

find the minimum total energy of the structure which is used to calculate the cohesive and 

formation energies and the results are as follows: 

a = b = 3.674 Å, c = 7.4748 Å 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸𝑡𝑜𝑡
𝑚𝑖𝑛(𝐴𝑙2𝐶𝑢6)(𝐷022)  was calculated and found to be = −1357.6853 Ry/8atoms   

Figure 3.10 The heat map of c/a versus a for D022 AlCu3 structure 
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     The formation energy and cohesive energies were calculated using equations (1) and (2) and 

the results were 

∆𝐻𝑓(𝐴𝑙2𝐶𝑢6)(𝐷022) = −0.0139525 𝑅𝑦/𝑎𝑡𝑜𝑚 =  −0.189754 𝑒𝑉/𝑎𝑡𝑜𝑚  which is in a good 

agreement with the ab initio value, -0.185 eV/atom [53]. 

𝐸𝑐(𝐴𝑙2𝐶𝑢6)(𝐷022) = −0.272 𝑅𝑦/𝑎𝑡𝑜𝑚 =  −3.70 𝑒𝑉/𝑎𝑡𝑜𝑚  

3.2.3.3 Energetics of Al-Cu solid solutions: 

      The mixing enthalpy at T=0 of FCC solid solution was calculated for two different 

concentrations (6.25, and 12.5 % Al) using two different supercells. Both supercells were 

tetragonal the and the smaller one consisted of two FCC unit cells with one Al atom, while the 

other one consisted of 4 unit cells with one Al atom.  For the smaller supercell a 16x16x8 k-points 

grid was used while an 8x16x8 was used for the larger supercell.  In both supercells Al atom was 

placed in (0,0,0) position as shown in Figure 3.11. 

The total energy of each structure of the solid solutions was optimized with respect to the volume, 

the lattice parameter a and the ratio (c/a) such that the forces on the atoms are very small (less than 

2 meV/atom). 

     The total energy of the small supercell after relaxation was -1531.22077650 Ry, and the 

corresponding mixing enthalpy which is given by equation (2) is -0.0068795625 Ry/atom or 

 -0.09356205 eV/atom.  

     The total energy of the larger supercell after relaxation was -3235.97949062 Ry, and the 

corresponding mixing enthalpy is -0.00349691375 Ry/atom or -0.047558027 eV/atom. 
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     These two results with the results obtained from molecular dynamics simulation, see Figure 

2.11, confirm that the phases in two-phase region are formed by nucleation and growth and not by 

spinodal decomposition. 

 
 

Figure 3.11 The two supercells used in the calculations of mixing enthalpy of 6.25% Al and 12.5% Al solid solutions. 

 

 

 

 

 

 

 

 

 

 



56 
 

SUMMARY 

     To address the controversy of whether short-range or long-range ordered domains are obtained 

up on quenching α phase from above 600oC and subjected to annealing below about 300oC, three 

computational methods were used, Molecular Dynamics (MD), Hybrid (Monte Carlo) MC/MD, 

and Density Functional Theory (DFT). Four interatomic potentials were compared with respect to 

the formation energy to represent Cu-rich side of Al-Cu system. This was achieved by MD, and 

the EAM potential developed by W. Sheng [49] was chosen to be used throughout hybrid MC/MD 

simulation.  

     The MC/MD hybrid method in SGC ensemble was used to study phase separation in the Cu-

rich side of Al-Cu system using three starting states, Cu, Al, and Al4Cu9( 𝛾phase), and at three 

different temperatures, 300, 700, and 1000K. Small and large supercells of these staring states 

were used. The smaller ones were 500, 500, 520 atoms respectively, and the larger ones were 1372, 

1372 and 1404 atoms respectively. These supercells were alloyed in the range of α phase. The plot 

of equilibrium concentration 𝐶𝐶𝑢 (atomic fraction) versus ∆𝜇  at each specified temperature for 

every starting state at the above specified temperatures was plotted and concentration jump was 

found in all the supercells at 300 and 700K, and this indicates that there is a two-phase region. At 

1000 K there was no concentration jump which means that the upper boundary of two-phase region 

is between 700 and 1000K. Simulation using Cu starting state at 800K was carried out and a 

concentration jump was obtained in 𝐶𝐶𝑢 - versus ∆𝜇  plot, and this shifts the upper boundary of 

two-phase region between 800 and 1000K which is almost the same as for that of the short-range 

order. 

     The calculated values of enthalpy of mixing obtained from the MC/MD hybrid simulation that 

employed smaller supercell Cu starting state at 300K in canonical ensemble were all negative, 
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hence it can be concluded that the phases in two-phase region are formed by nucleation and growth 

and not by spinodal decomposition. 

     The crystal structure within the 2-phase region was visualized using Cu supercell of 25000 

atoms (25x25x10) was used. It was found the two-phase region is composed of random α phase 

and α2 phase which has a long period superstructure of D022 and L12 [55]. 

     The same 25000 atoms (25x25x10) was used for convergence test and the choice of the Cu 

supercell with 500 atoms for most of the calculations at 300K was found to be well justified. 

In DFT simulations (PAW used throughout the simulations [58,49]. To describe the exchange-

correlation energy-functional, (GGA) [60] formulated by Perdew, Burke and Ernzerhof (PBE) [61] 

was used. Methfessel-Paxton [62] smearing of 0.001 Ry was used throughout the simulations. The 

convergence tests were carried out for Bulk Al and Cu as well as for isolated Al and Cu atoms, 

and for consistent calculations an energy cutoff of 250 Ry, and a shifted 16x16x16 k-points grid 

or proper proportions of it were used in all the simulations. The cohesive energies of Al and Cu 

were calculated and found to be in a good agreement with the experimental values.  

     To validate the accuracy of enthalpy of mixing calculations of Al-Cu alloys, the formation and 

cohesive energies of two intermetallic compounds, namely L12 (AlCu3) and D022 (AlCu3) were 

calculated and found to be a good agreement with the ab initio values from literature.  

The mixing enthalpy at T=0 of FCC solid solution was calculated for two different concentrations 

(6.25, and 12.5 % Al) using two different supercells. Both supercells were tetragonal the and the 

smaller one consisted of two FCC unit cells with one Al atom, while the other one consisted of 4 

unit cells with one Al atom.  For the smaller supercell a 16x16x8 k-points grid was used while an 

8x16x8 was used for the larger supercell.  In both supercells Al atom was placed in (0,0,0) position. 
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     The enthalpy of mixing for both concentrations were negative which confirms the results 

enthalpy of mixing obtained from hybrid MC/MD simulations.  This with the other results from 

hybrid MC/MD simulations confirm that the phases in two-phase region are formed by nucleation 

and growth and not by spinodal decomposition. 
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APPENDIX A: 

LAMMPS CODES (MOLRCULAR DYNAMICS) used in this work 

*************************************************************************************

1- Code to calculate cohesive energy for different structures in Al-Cu system using different 

interatomic potentials. The structure is defined in another file named “structure.mod” (see for 

example AlCu3-D022.mod below) 

*************************************************************************************

include  AlCu3-D022.mod 

# ---------- Define Settings ---------------------  

compute eng all pe/atom  

compute eatoms all reduce sum c_eng  

# ---------- Run Minimization ---------------------  

 reset_timestep     0 

fix 1 all box/relax iso 0.0 vmax 0.001 

thermo 10  

thermo_style custom step temp pe lx ly lz press pxx pyy pzz c_eatoms  

min_style cg 

minimize 1e-25 1e-25 5000 10000  

#----------------Calculation of The Concentration of Copper from the Density----------------------------- 

variable         N equal "count(all)" 

variable              teng equal "c_eatoms" 

variable  length equal "lx" 

variable  ecoh equal "v_teng/v_N"  

variable   Volume equal vol 

variable   Density equal density 

variable  MASS equal "v_Density*v_Volume" 

variable  numerator equal "v_MASS*1.0e-24 - 26.982*1.66053904e-24*v_N" 

variable  denumerator equal "(63.546 - 26.982)*1.66053904e-24*v_N" 

variable  Cuconc equal "v_numerator/v_denumerator" 
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variable        NCu equal "round(v_Cuconc*v_N)" 

variable  Accuracy equal "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

print  "Number of Copper atoms= ${NCu};" 

print  "Concentration of Copper = ${Cuconc};" 

print  "Accuracy= ${Accuracy};" 

print   "Number of all atoms = ${N};" 

print   "Lattice constant (Angstoms) = ${length};" 

print    "Cohesive energy(eV) = ${ecoh};" 

#-----SIMULATION DONE-------------------------------- 

print "All done!" 

************************************************************************************* 

2- File AlCu3-D022.mod  used in the previous code 

************************************************************************************* 

# ---------- Initialize Simulation ---------------------  

clear  

units metal  

dimension 3 

boundary p p p  

atom_style   atomic  

atom_modify    map array 

#**************AlCu3-D0322 structure****************** 

variable   latparam equal 5.837 

#**************AlCu3-D022***type 1=Al, type2=Cu***************************************** 

 lattice   custom ${latparam}  a1 1.0 0.0 0.0 a2 0.0 1.0 0.0 a3 0.0 0.0 1.0& 

  basis 0.25 0.25 0.25 basis 0.75 0.75 0.25 basis 0.75 0.25 0.75 basis 0.25 0.75 0.75& 

  basis 0.0 0.0 0.0 & 

  basis 0.5 0.0 0.0 basis 0.0 0.5 0.0 basis 0.0 0.0 0.5& 

  basis 0.5 0.5 0.0 basis 0.5 0.0 0.5 basis 0.0 0.5 0.5& 

  basis 0.5 0.5 0.5& 
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  basis 0.25 0.25 0.75 basis 0.75 0.75 0.75 basis 0.75 0.25 0.25 basis 0.25 0.75 0.25 

region   alcu3box block 0 1.0 0 1.0 0 1.0 

create_box  2 alcu3box 

create_atoms  1 box &  

   basis 1 2  basis 2 2 basis 3 2 basis 4 2 

mass  1  63.546 

mass  2  26.982 

replicate 1 1 1 

# ---------- Define Interatomic Potential ---------------------  

#-----------------EAM potential----------- 

pair_style       eam/alloy 

pair_coeff       * * CuAl.eam.alloy Cu Al 

#-----------------neighbor lists---------------------------- 

neighbor 2.0 bin  

neigh_modify delay 10 check yes  

*************************************************************************************

3-  Example code to use  SEMI-GRAND CANONICAL ENSEMBLE to calculate the potential difference 

versus the concentration of copper 

************************************************************************************* 

clear 

units   metal  

dimension  3  

package omp  2 

boundary  p p p  

atom_style  atomic  

atom_modify  map array 

#--------------------------------------------------------------------------------------- 

lattice  custom 3.615 a1 1.0 0.0 0.0 a2 0.0 1.0 0.0 a3 0.0 0.0 1.0& 

  basis 0.0 0.0 0.0 basis 0.5 0.5 0.0 basis 0.0 0.5 0.5 basis 0.5 0.0 0.5 

region  AlCubox block 0  5.0     0   5.0     0   5.0 
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create_box 2 AlCubox  

#-------------type 1=Cu, type 2=Al------------------------------------------------------ 

mass            1 63.546 

mass   2 26.982 

# ---------------------------------------------------- 

create_atoms 1 box &  

  #basis 1 1  basis 2 1   

# ----------------Interatomic potential------------------------------------ 

pair_style       eam/alloy 

pair_coeff       * * CuAl.eam.alloy Cu Al 

neighbor   0.50 bin 

neigh_modify   every 5 delay 5 check yes 

# --------------------Conjugated gradient minimization-------------------------------- 

min_style  cg  

minimize   1e-25 1e-25 10000 10000 

#-------------------------TIMESTEP FOR RELAXATION------------------- 

timestep  0.001 

#-------------------------------------------------------------------- 

velocity        all create 1300.0 451783253 dist gaussian 

#-------------------------------------------------------------------- 

variable        Temperature equal temp 

variable        Pressure equal press 

variable      N equal "count(all)" 

variable        TEnergy equal etotal/v_N    

variable        KEnergy equal ke/v_N 

variable Enthalpy equal enthalpy/v_N 

variable        PEnergy equal pe/v_N 

#---------------CalCulation of The Concentration of Copper from the Density-------------------------------- 
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variable   Volume  equal  vol 

variable  Density  equal  density 

variable  MASS   equal  "v_Density*v_Volume" 

variable  numerator  equal  "v_MASS*1.0e-24 - 26.982*1.66053904e-24*v_N" 

variable  denumerator  equal  "(63.546 - 26.982)*1.66053904e-24*v_N" 

variable  Cuconc   equal  "v_numerator/v_denumerator" 

variable         NCu   equal  "round(v_Cuconc*v_N)" 

variable  Accuracy  equal  "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

#------------------DATA OUTPUT TO A FILE--------------------------------------------------------------------------------------

fix  thermo_out all ave/time 10 1 100 v_Temperature v_Pressure v_TEnergy v_Enthalpy 

v_KEnergy v_PEnergy v_NCu v_N v_Cuconc v_Density  file  

C:/Relaxation//RELAXATION_Cu/DATA_RELAXATION_Cu.out 

#-----------------------------------------log file-------------------------------------------------------------------------- 

log   C:/lammpwork/RELAXATION_Cu/log.RELAXATION_Cu 

#---------------------------RELAXATION (first annealing) ----------------------- 

fix   9 all npt temp 1300 1000 0.01 iso 0 0 1 pchain 3 mtk yes drag 1 

thermo_style    custom step temp pe etotal vol  enthalpy press density  

thermo          1000 

run  1000000 

unfix  9 

#---------------------------RELAXATION (second annealing) ------------------------ 

fix   10 all npt temp 1000 1000 0.01 iso 0 0 1 pchain 3 mtk yes drag 1 

run  4000000 

unfix  10 

#-----------------------write restart file for relaxation----------------------------------------------- 

write_restart C:/lammpwork/RELAXATION_Cu/RELAXATION_Cu.rest 

#--------------alloying with al according to chemical potential difference (SGC ensemble) --------------- 

variable  i equal 0 
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variable  iteration equal 5 

variable  muAl  equal  0.0 

variable  muCu  equal  -0.6 

variable  a loop ${iteration} 

label   loopa 

variable  i equal ${i}+1 

print   " -----------------------------------------------------------------------------------" 

print   " ---------------------------------loop number  ${i}---------------------------" 

print   " ----------------------------------------------------------------------------------" 

if   "$i==1" then "shell rm data" 

variable  delta  equal  0.1 

#-------timestep in SGC ensemble----- 

timestep 0.0002 

#------------------------------------ 

 

variable        Temperature  equal  temp 

variable        Pressure  equal  press 

variable      N   equal  "count(all)" 

variable        TEnergy  equal  etotal/v_N    

variable        KEnergy  equal  ke/v_N 

variable  Enthalpy  equal  enthalpy/v_N 

variable        PEnergy  equal  pe/v_N 

#****************CalCulation of The Concentration of Copper from the Density***************** 

variable   Volume  equal  vol 

variable  Density  equal  density 

variable  MASS   equal  "v_Density*v_Volume" 

variable  numerator  equal  "v_MASS*1.0e-24 - 26.982*1.66053904e-24*v_N" 

variable  denumerator  equal  "(63.546 - 26.982)*1.66053904e-24*v_N" 

variable  Cuconc   equal  "v_numerator/v_denumerator" 

variable         NCu   equal  "round(v_Cuconc*v_N)" 
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variable  Accuracy  equal  "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

variable Accuracy equal "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

#******************************************************************************** 

variable  MUAL  equal  ${muAl}+${delta}*(${i}-1) 

variable  deltamu equal  ${muCu}-${MUAL} 

log   C:/lammpwork/FCC/Relaxation/NEW/ALCU/ALCU-spinodal-

loop/LOG/log.deltaMu_${deltamu} 

#------------------------------------------------------------------------ 

fix  thermo_out all ave/time 10 1 100 v_Temperature v_Pressure v_TEnergy v_Enthalpy 

v_KEnergy v_PEnergy v_NCu v_N v_Cuconc v_Density  file 

C:/lammpwork/SGC/DATA_deltaMu_${deltamu}.out 

#------------------------------------------------------------------------ 

neighbor  0.50 bin 

neigh_modify  every 5 delay 5 check yes  

fix  1 all npt temp 1000 1000 0.01 iso 0 0 1 pchain 3 mtk yes drag 1 

fix            2 all atom/swap 500 100 9873165 1000  semi-grand yes types 1  2 mu  ${muCu}  ${MUAL}  

#---------------------------------SCREEN OUTPUT--------------------------------------------------------- 

thermo_style    custom step temp pe etotal vol  enthalpy press density  

thermo          1000 

#-------------------------- visualization------------------------------------------------------------------------ 

dump            1 all xyz 1000 C:lammpwork/SGC/DUMP/deltaMu_${deltamu}.xyz 

dump_modify     1 element Cu Al 

#----------------------------------------------------------------------------------------------------------------- 

run   4000000 

#----------------------------------- 

unfix   1 

unfix  2 

undump 1 

#****************CalCulation of The Concentration of Copper from the Density***************** 



66 
 

variable   Volume  equal  vol 

variable  Density  equal  density 

variable  MASS   equal  "v_Density*v_Volume" 

variable  numerator  equal  "v_MASS*1.0e-24 - 26.982*1.66053904e-24*v_N" 

variable  denumerator  equal  "(63.546 - 26.982)*1.66053904e-24*v_N" 

variable  Cuconc   equal  "v_numerator/v_denumerator" 

variable         NCu   equal  "round(v_Cuconc*v_N)" 

variable  Accuracy  equal  "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

print  "Accuracy= ${Accuracy};" 

print   "Number of all atoms = ${N};" 

print  "Total Energy = ${TEnergy}" 

#-----------------------write restart file ---------------------------------------------------- 

write_restart C:lammpwork/SGC/RESTART/deltaMu_${deltamu}.rest 

#------------------------------------------------------------------------------------------------- 

fix   3 all print 1 " ${MUAL} ${muCu}  ${deltamu} ${Cuconc} " append data 

run  1 

unfix  3 

unfix  thermo_out 

#---------------to restart from relaxation file for different chemical potential difference---------------------- 

include  REST.mod 

next   a 

jump   AlCu-EAM-spinodal-loop loopa 

#************************************************************************************

4- REST.mod file in the previous code 

#************************************************************************************ 

clear 

units   metal  

dimension  3  

package omp  2 
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boundary  p p p  

atom_style  atomic  

atom_modify  map array 

#---------------------------------------------------------------------------- 

read_restart    C:/lammpwork /RELAXATION_Cu/RELAXATION_Cu.rest 

#---------------------------------------------------------------------------- 

pair_style       eam/alloy 

pair_coeff       * * CuAl.eam.alloy Cu Al 

neighbor   0.50 bin 

neigh_modify   every 5 delay 5 check yes 

min_style  cg  

minimize   1e-25 1e-25 5000 10000 

 

************************************************************************************* 

5-  Example code to use CANONICAL ENSEMBLE to calculate enthalpy and visualize the structure in 

two-phase region. 

************************************************************************************* 

include  REST_enthalpy.mod 

#----------------------------------------------------- 

variable  kassr2 equal 0.06 

#----------------------------------------------------- 

set     atom * type/fraction 2 ${kassr2} 719364 

#-------------------------------------------- 

timestep  0.0002 

#-------------------------------------------- 

variable        Temperature equal temp 

variable        Pressure equal press 

variable      N equal "count(all)" 

variable        TEnergy equal etotal/v_N    

variable        KEnergy equal ke/v_N 
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variable Enthalpy equal enthalpy/v_N 

variable        PEnergy equal pe/v_N 

#-------Calculation of The Concentration of Silver from the Density--------- 

variable Volume equal vol 

variable Density equal density 

variable MASS equal "v_Density*v_Volume" 

variable numerator equal "v_MASS*1.0e-24 - 26.982*1.66053904e-24*v_N" 

variable denumerator equal "(63.546 - 26.982)*1.66053904e-24*v_N" 

variable Cuconc equal "v_numerator/v_denumerator" 

variable        NCu equal "round(v_Cuconc*v_N)" 

variable Accuracy equal "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

#------------------------------------------------------------------------------------------------- 

log /home1/04907/khirmas/Visualization_2_phase/log.40000_700K_CONC_${kassr2}_2 

#------------------------------------------------------------------------------------------------------------------------ 

fix thermo_out all ave/time 100 1 1000 v_Temperature v_Pressure v_TEnergy 

v_Enthalpy v_KEnergy v_PEnergy v_NCu v_N v_Cuconc v_Density  file  

/home1/04907/khirmas/Visualization_2_phase/DATA_40000_700K_CONC_${kassr2}_2.out 

#------------------------------------------------------------------------------------------------------------------------- 

fix  1 all npt temp 700 700 0.01 iso 0 0 1 pchain 3 mtk yes drag 1 

fix             2 all atom/swap 100 13333 9873165 700  semi-grand no types 1  2  

#--------------------------------------------------------------------------------------------------- 

thermo_style    custom step temp pe etotal vol  enthalpy press density  

thermo          1000 

dump            1 all xyz 500  

/home1/04907/khirmas/Visualization_2_phase/DUMP_40000_700K_CONC_${kassr2}_2.xyz 

dump_modify     1 element Cu  Al 

#----------------------------------------------------------------------------------------------------------------------------

run   200000 

#------------------------------------------- 
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unfix   1 

unfix   2 

undump  1 

#--------Calculation of The Concentration of Copper from the Density------------------ 

print  "Density = ${Density};" 

print  "Volume = ${Volume};" 

variable MASS equal "v_Density*v_Volume" 

variable numerator equal "v_MASS*1.0e-24 - 26.982*1.66053904e-24*v_N" 

variable denumerator equal "(63.546 - 26.982)*1.66053904e-24*v_N" 

variable Cuconc equal "v_numerator/v_denumerator" 

print  "Concentration of Copper = ${Cuconc};" 

variable         NCu equal "round(v_Cuconc*v_N)" 

print  "Number of Copper atoms= ${NCu};" 

variable Accuracy equal "round(v_Cuconc*v_N)-(v_Cuconc*v_N)" 

print  "Accuracy= ${Accuracy};" 

print   "Number of all atoms = ${N};" 

print  "Total Energy = ${TEnergy}" 

#-----------------------write restart file-------------------------------write_restart  

/home1/04907/khirmas/Visualization_2_phase/REST_40000_700K_CONC_${kassr2}_2.rest 

#----------------------------------------------------------------------- 

print   "SIMULATION DONE" 

 

*************************************************************************************

6- REST_enthalpy.mod file in the previous code 

************************************************************************************* 

clear 

units   metal  

dimension  3  

#package omp  2 

boundary  p p p  
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atom_style  atomic  

atom_modify  map array 

#-----------------------------------------------------------------#----------------------------------------------------------------- 

read_restart    /home1/04907/khirmas/RELAXATION_Cu/RELAXATION_25000_300K_Cu.rest 

#read_restart /home1/04907/khirmas/RESTART/ENTHALPY_25000_CONC_0.06_3.rest 

#read_restart    /home1/04907/khirmas/Visualization_2_phase/REST_40000_700K__CONC_0.19_1.rest 

#--------------------------------------------------------------------------------------------------------------------------------- 

pair_style       eam/alloy 

pair_coeff       * * CuAl.eam.alloy Cu Al 

neighbor    0.50 bin 

neigh_modify   every 5 delay 5 check yes 

#min_style  cg  

#minimize   1e-25 1e-25 5000 10000 
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APPENDIX B:  

QUNANTUM ESPRESSO CODES (DFT) used in this work: 

*************************************************************************************

1- Self-Consistent Field calculation for bulk copper. Same procedure can be followed Aluminum 

************************************************************************************* 

&control 

    calculation = "scf" 

    restart_mode= "from_scratch" 

    pseudo_dir = 

"/home1/04907/khirmas/QuantumEspresso/pseudo/Cu/PAW/GGA" 

    tprnfor       = .TRUE. 

    tstress       = .TRUE.     

 / 

 &system 

    ibrav = 1 

    a =3.643 

    nat= 4 

    ntyp= 1 

    ecutwfc = 250.0 

    !ecutrho = 133.0 

    occupations ="smearing" 

    smearing ="marzari-vanderbilt" 

    degauss=0.001 

 / 

 &electrons 

    diagonalization="cg" 

    conv_thr = 1.0e-8 

    mixing_beta = 0.7 

 / 
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ATOMIC_SPECIES 

 Cu 63.55 Cu.pbe-dn-kjpaw_psl.0.2.UPF 

ATOMIC_POSITIONS {crystal} 

 Cu 0.0 0.0 0.0 

 Cu 0.5 0.5 0.0 

 Cu 0.5 0.0 0.5 

 Cu 0.0 0.5 0.5 

K_POINTS (automatic) 

 16 16 16 1 1 1 

*************************************************************************************

2- Self-Consistent Field calculation for isolated copper atom. Same procedure can be followed 

Aluminum 

************************************************************************************* 

&control 

    calculation = "scf" 

    restart_mode= "from_scratch" 

    pseudo_dir = "/home1/04907/khirmas/QuantumEspresso/pseudo" 

 / 

 &system 

    ibrav = 1 

    a = 10 

    nat= 1 

    ntyp= 1 

    ecutwfc = 250.0 

    !ecutrho = 133.0 

    nspin = 2 

    starting_magnetization(1) =  2.00000e-01 

    occupations ="smearing" 

    smearing ="marzari-vanderbilt" 

    degauss=0.001 
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 / 

 &electrons 

    diagonalization="cg" 

    conv_thr = 1.0e-8 

    mixing_beta = 0.7 

 / 

ATOMIC_SPECIES 

Cu 63.55 Cu.pbe-dn-kjpaw_psl.0.2.UPF 

ATOMIC_POSITIONS {crystal} 

 Cu 0.0 0.0 0.0 

K_POINTS {gamma} 

 

*************************************************************************************

3- Self-Consistent Field calculation for AlCu3 (D022) structure. Same procedure can be followed for L12 

structure 

************************************************************************************* 

&control 

    calculation = "scf" 

    restart_mode= "from_scratch" 

    pseudo_dir = "/home1/04907/khirmas/QuantumEspresso/pseudo" 

     

 / 

 &system 

    a = 3.646 

    c = 7.533 

    ibrav = 6 

    nat  = 8 

    ntyp = 2 

    ecutwfc = 250 
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    !ecutrho = 133.0 

    occupations ="smearing" 

    smearing ="marzari-vanderbilt" 

    degauss=0.001 

 / 

 &electrons 

    diagonalization="cg" 

    conv_thr = 1.0e-8 

    mixing_beta = 0.7 

 / 

ATOMIC_SPECIES 

 Cu 63.55 Cu.pbe-dn-kjpaw_psl.0.2.UPF 

 Al 26.98 Al.pbe-nl-kjpaw_psl.1.0.0.UPF 

ATOMIC_POSITIONS {crystal} 

Al      0.000000   0.000000   0.000000 

Cu      0.000000   0.500000   0.250000 

Cu      0.500000   0.000000   0.250000 

Cu      0.500000   0.500000   0.000000 

Cu      0.000000   0.000000   0.500000 

Cu      0.000000   0.500000   0.750000 

Cu      0.500000   0.000000   0.750000 

Al      0.500000   0.500000   0.500000 

K_POINTS (automatic) 

 16 16 8 1 1 1 

*************************************************************************************

4-  Varied cell relaxation to relax the 6.25% Al alloy. Same procedure can be followed for 12.5% Al 

alloy 

************************************************************************************* 

&control 
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    calculation   = "vc-relax" 

    forc_conv_thr =  1.00000e-03 

    max_seconds   =  8.64000e+04 

    pseudo_dir    = "/home1/04907/khirmas/QuantumEspresso/pseudo" 

    outdir        ="/work/04907/khirmas/stampede2/dump" 

    tprnfor       = .TRUE. 

    tstress       = .TRUE. 

/ 

&system 

    a     =  7.4 

    b     =  3.7 

    c     =  7.4 

    ibrav = 8 

    nat   = 16 

    ntyp  = 2 

    ecutwfc = 250 

    !ecutrho = 133.0 

    occupations ="smearing" 

    smearing ="marzari-vanderbilt" 

    degauss=0.001 

/ 

&electrons 

        diagonalization="cg" 

    conv_thr = 1.0e-8 

    mixing_beta = 0.7  

/ 

&ions 

    ion_dynamics = "bfgs" 

/ 
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&cell 

    cell_dynamics  = "bfgs" 

    press          =  0.00000e+00 

    press_conv_thr =  5.00000e-01 

/ 

K_POINTS {automatic} 

 8 16 8 1 1 1 

ATOMIC_SPECIES 

 Cu 63.55 Cu.pbe-dn-kjpaw_psl.0.2.UPF 

 Al 26.98 Al.pbe-nl-kjpaw_psl.1.0.0.UPF 

ATOMIC_POSITIONS {crystal} 

Al      0.000000   0.000000   0.000000 

Cu      0.000000   0.500000   0.250000 

Cu      0.250000   0.000000   0.250000 

Cu      0.250000   0.500000   0.000000 

Cu      0.000000   0.000000   0.500000 

Cu      0.000000   0.500000   0.750000 

Cu      0.250000   0.000000   0.750000 

Cu      0.250000   0.500000   0.500000 

Cu      0.500000   0.000000   0.000000 

Cu      0.500000   0.500000   0.250000 

Cu      0.750000   0.000000   0.250000 

Cu      0.750000   0.500000   0.000000 

Cu      0.500000   0.000000   0.500000 

Cu      0.500000   0.500000   0.750000 

Cu      0.750000   0.000000   0.750000 

Cu      0.750000   0.500000   0.500000 
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