
IMPROVING TIME AND SPACE EFFICIENCY

OF TRIE DATA STRUCTURE

by

NIRMIK KALE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

ii

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2018

iii

Copyright © by Nirmik Kale 2018

All Rights Reserved

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Song Jiang for providing me with an opportunity to work

on this project and guiding me throughout the duration. Without his support and

guidance this research would not have been possible. I would also like to specially thank

him for encouraging me about my other goals and always being supportive. I would

also like to thank Dr. David Levine for investing his time and efforts in me. He has been a

constant support providing encouragement and guidance throughout my degree. I

would also like to thank Dr. Dajiang Zhu for taking time to serve on this committee.

I would like to thank my family, especially my mother, father, aunt, uncle and my

cousin who have been a constant support throughout my life. A special gratitude and

thank you to all my friends including, but not limited Tanvi Tiwarekar, Kshitij

Khakurdikar, Guruprasad Bhavsar, Rishikesh Jadhav, Satwik Kolhe, Abhishek Dhotre,

Kedar Nadkarny, Mayur Munot, Ritesh Deshmukh, Tushar Garud and Arpit Agarwal for

always being supportive and guiding me through every situation. I would also like to

extend my gratitude to Dr. Xingbo Wu and all my other lab mates for their help and

being ever so kind and welcoming. Dr. Xingbo has inspired and guided me through

many ideas in this thesis. Some ideas in this thesis draw from his work on wormhole [1].

This thesis would not have been possible without either of their support.

August 26, 2018

v

ABSTRACT

IMPROVING TIME AND SPACE EFFICIENCY

OF TRIE DATA STRUCTURES

Nirmik Kale, MS

The University of Texas at Arlington, 2018

Supervising Professor: Song Jiang

Trie or prefix tree [2] is a data structure that has been used widely in some

applications such as prefix-matching, auto-complete suggestions, and IP routing tables

for a long time. What makes tries even more interesting is that its time complexity is

dependent on the length of the keys inserted or searched in the trie, instead of on the

total number of keys in the data structure. Tries are also strong contenders to consider

against hash tables in various applications due to two reasons - their almost

deterministic time complexity based on average key length, especially when using large

number of short length keys, and support for range queries. IP routing table is one such

example that chooses tries over hash tables. But even with all these benefits, tries have

vi

largely remained unused in a lot of potential candidate applications , for example in

database indexing, due to their space consumption. The amount of pointers used in a

trie causes its space consumption to be a lot more than many other data structures such

as B+ Trees. Another issue we realized with tries is that even though the time complexity

can be of a magnitude far less than some other data structures for short length keys, it

can be considerably higher if the keys are of longer lengths. Insertion in a trie can prove

to be a repetitive operation for many nodes if the keys are repetitive or have many

common prefixes adding to the execution overhead. With this in mind, we propose two

optimizations of the trie data structure to address the time and space complexity issues.

In the first optimization we present a system that reduces the time for inserts in the trie

data structure by up-to 50% for some workloads by tweaking the algorithm. In the

second optimization we developed a new version of the trie data structure by taking

inspiration from B+ trees, allowing us to not only reduce the space consumption for

tries but also to allow features such as efficient range search.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

Chapters Pages

1. INTRODUCTION . 1

1.1 Focus and contribution of this thesis 2

1.2 Thesis Organization . 3

2. POTENTIAL DATA STRUCTURE CANDIDATES 4

2.1 Hash Tales . 4

2.2 Tries . 7

2.3 B+ Trees . 10

3. DEEPER LOOK INTO TRIE DATA STRUCTURE 13

3.1 Internal Structure . 14

3.2 Complexity . 15

 3.2.1 Time complexity . 15

 3.2.2 Space complexity . 15

3.3 Operations on trie . 16

 3.3.1 Insert . 16

 3.3.2 Search . 16

 3.3.3 Delete . 17

 3.3.4 Ancillary function : delInternal 17

3.4 The problem . 18

 3.4.1 Space problem . 18

 3.4.2 Time problem . 18

viii

4. OPTIMIZING TIME COMPLEXITY FOR INSERTS 22

4.1 Lazy deletion with garbage collector 22

4.2 Slab allocation . 26

4.3 Concurrency and consistency on optimized trie. 27

4.4 Operations on optimized trie . 27

4.4.1 Insert . 28

 4.4.2 Search. 29

 4.4.3 Delete . 29

 4.4.4 Ancillary function : delInternal 30

4.4.5 Ancillary function : doDeletes – garbage collector thread 30

5. L-TRIE : A SPACE EFFICIENT TRIE . 31

5.1 Anchors . 33

5.2 Leaves . 34

5.3 Operations on L – Trie . 35

5.3.1 Insert . 35

 5.3.2 Search . 37

6. EXPERIMENTS AND RESULTS . 42

6.1 Data sets 42

6.2 Setup used for evaluation . 44

6.3 Framework . 44

6.4 Results for insert optimization 46

6.5 Results for L – Trie . 48

7. CONCLUSION AND FUTURE WORK 52

8. REFERENCES . 54

9. BIOGRAPHICAL STATEMENT . 55

ix

LIST OF ILLUSTRATIONS

1. Figure 1 Hash Table . 5

2. Figure 2 Trie / Prefix tree . 9

3. Figure 3 B+ Tree . 11

4. Figure 4 Internal trie node . 14

5. Figure 5 Deletion in trie . 20

6. Figure 6 Lazy deletion in trie 23

7. Figure 7 Modified trie node . 25

8. Figure 8 Example of L – Trie. 32

9. Figure 9 Searching in L – Trie 39

10. Figure 10 Performance for time optimization 47

11. Figure 11 Comparing space consumption 49

12. Figure 12 Comparing time efficiency 51

x

LIST OF TABLES

Table 1 Data set characterestics . 43

Table 2 Node counts . 49

1

INTRODUCTION

With increase in amount of data generated, large sets of small key-value data

sets are a common type of data to be stored these days. Even for conventional data

stored using either databases or any other data storing methods, key-value stores prove

as the meta data structure for faster lookup times. Such key-value data sets are usually

implemented as some kind of in memory system to accelerate fast searches. With recent

efforts, performance has been approaching the hardware limits for existing data

structures being used in such systems. With this is mind, one of the issues faced by such

in-memory key-value data sets is the space consumption due to the data structures

used for storing the key-value store. As the data increases from thousands to billions,

the amount of metadata generated is also increased. In such cases, trying to improve

the space efficiency of the data structures used can prove to be a huge benefit for such

systems. Although, one needs to keep in mind that such improvements should come

with little to no feature reductions in existing systems.

Indexing data structures such as B+ trees and skip lists [3] are used in many

major database applications such as MySQL and LMDB for the former and LevelDB [4]

for the later. Such ordered indexing data structures are required for supporting features

2

in databases such as range queries, even when they are hugely slower than indexing

structures such as hash tables for point queries.

Another type of system is one where there are huge number of insertions

followed by immediate lookups. In such scenarios, if the insertion times are long, the

results obtained after immediate lookups can be stale and require a major amount of

time for the updated data to be presented. Financial applications are one of the best

examples of such requirements.

1.1 Focus and contribution of this thesis

This thesis focuses on improving the efficiency of the data structures used in the

applications mentioned above. Improving efficiency is a two-factor process for any data

structure – time and space. These two factors usually do not go hand in hand and trying

to improve one implicates a sacrifice on the other. But there is, in most situations, a mid-

point that can achieve an acceptable improvement as well as sacrifice on both. We try to

achieve this mid-point and suggest two approaches to solve two separate problems in

key-value data stores. Since a new data structure might not always be the one general

solution to all problems and thus replace the existing data structure completely, we

work on both, the current data structure and also develop a new data structure.

3

As an outcome of this thesis, we can achieve a better time efficiency for insertions

in the trie and secondly, with the help of the new data structure, we can store the keys in

a more space efficient way while still providing existing features, sometimes, with even

better efficiency.

The main contributions can be stated as –

1. A new algorithm for faster insertion times for transaction heavy workloads

2. A new data structure to enable more space-efficient ordered indexing

1.2 Thesis organization

 The rest of the thesis is organized as follows –

Chapter 2 : Data structures and potential candidates

Chapter 3 : Deeper look into the trie data structure

Chapter 4 : Optimizing time complexity of Trie

Chapter 5 : Optimizing space efficiency of Trie

4

POTENTIAL DATA STRUCTURE CANDIDATES

Trying to solve the problems mentioned in Chapter 1 can take many forms of

solutions. This study presents two approaches on a specific data structure – the Trie or

Prefix Tree. But before we considered working on a trie, we explored our options. Hash

table emerges as one of the top candidates to use either by itself or in combination with

another data structure. The O(1) lookup time of a well-defined hash table is what makes

it one of the most lucrative options to use.

2.1 Hash Tables

Hash tables are one of the most widely used data structures in many different

applications in computer science. Hash tables are also the ideal and inspiration for

working on better data structures due to its most important benefit, constant lookup

time. This is off-course considering that the hash function used in the hash table is a

good hash function that does not create a lot of collisions. Section below discusses the

hash table data structure with simple example and also its limitations.

5

Fig. 1 Hash Table

Fig. 1 represents a simple hash table that stores strings using a hash function. In the

case shown in figure, there are no collisions and every new entry in the hash table is

mapped to a new hash location. Such a hash function would be known as a perfect hash

function.

 One of the simplest example of a hash function is the mod operator (%). The

mod operator will hash any value submitted to it as an input to a bucket representing

the remainder of the mod operation.

For example, if the hash function is defined as –

6

 Hash = Input value % 2

Then the values will be mapped to either bucket 0 or bucket 1

Similarly, if the hash function is defined as –

 Hash = Input value % 7

the values will be hashed to one of the buckets from 0, 1, 2, 3, 4, 5, 6

Hashing and hash tables are a very common mechanism used in many computer science

applications including indexing. There can be more complex versions of hash tables

such as multi-level hash tables that make use of 2 or more hash functions for each level

allowing for a larger data holding capacity without as many collisions as a single hash

table would occur.

One of the most important drawbacks of a hash table, even a perfect hash function is

that a hash table cannot support range queries.

Range queries are queries such as –

- Find all entries starting from H

- Find all entries between H and P

- Find 20 entries starting from H

- Find 20 entries before P

7

- Etc

The reason for hash tables not supporting range queries is pretty obvious. Since the

inputs are not stored in the order of arrival, or the absence of any meta-data recording

this information, it is impossible to know if the entry placed in the bucket next to the

bucket for H is also the entry that was entered in order after H, or should, according to

some sorting mechanism, be the next valid entry.

Another major drawback of hash tables is the size of a hash table when the input data

increases. If the size of the hash table, when created is not large enough to

accommodate large amounts of data, the hash table can run out of space and result in

increasing collisions. The worst-case time complexity for a hash table with too many

collisions would be O (n). Multi – level hash tables, as stated before can be one

solution, but neither are they an elegant solution, nor are they proof to filling up

eventually.

2.2 Tries

 Trie, also known as Prefix tree is a leading candidate for replacing hash tables.

Although hash tables are almost impossible or very difficult to match in performance,

there are data structures available that have complexities closer to hash tables than to

8

other famous data structures on the time complexity scale. And trie is one of the leading

ones.

The time complexity for tries is dependent on the length of the keys or data being

inserted or searched instead of the total number of keys or data in the data structure.

Thus, even though not constant, tries have an almost deterministic time complexity if

the average length of the keys is known.

For any given trie –

 Time complexity is = O (k)

Where k is the length of the key.

This makes tries a perfect candidate for keys of short lengths.

For example, if a trie is to store 1 billion keys, of an average length 15,

the time complexity for a search, insert or delete, on an average will be O (15) for the

worst case (where the key does not exist for search and delete). Compare this to data

structures such as B+ trees and the complexity would be somewhere around O (30), no

matter the length of the keys. Once again, obviously a trie cannot beat the absolute

deterministic time complexity of a hash table. Another consideration, in this comparison

is that the number of keys is larger than the average length of the keys.

9

Fig. 2 Trie / Prefix Tree

Fig. 2 shows an example trie data structure.

Each key in the trie is tokenized and each letter in the key (for above example)

becomes a token. Thus, the position of any key (and its subsequent value) is solely

determined by the key individually itself unlike a B+ tree where the position of key

depends on the value of the key and other keys already present in the tree.

10

2.3 B+ Trees

As mentioned before, B+ trees [5][6] are currently used in quite a few leading

database Systems. MySQL with its default engine InnoDB, LMDB all use B+ trees as their

data structure of choice for indexing. B+ trees are balanced trees whose height and

span depends on the order of the B+ tree and number of elements in the tree. For

example, a B+ tree with order m can hold between m/2 and m keys in each leaf node,

thus limiting the height and span of the tree and keeping it balanced.

For any B+ tree, the internal tree is just a means of reaching the leaf nodes. The leaf

nodes are the ones holding the actual keys (and their subsequent values).

For a B+ Tree with order - m

m/2 ≤ elements in leaf node < m

The time complexities of a B+ tree not only depend on the number of elements, but also

on the order of the tree.

 For a B+ tree with order b and n elements

 Time complexity = O (log b n)

 Space complexity = O (n)

11

Fig. 3 B+ Tree

One of the most important features, as discussed in short before , that b+ trees enable

databases to have is range search. The reason b+ trees can perform range searches is

because of a couple of reasons. Firstly, that all the keys are stored at the same level in

the tree – the leaves. Secondly, all the keys in the leaves are always in a sorted order,

inter as well as intra leaves. Meaning that if leaf one contains values 1, 2, 3 then leaf two

(its immediate right sibling) will contains values greater than 3, for example may be 4, 5,

6. Thirdly, and most importantly, the part that connects the above two points and makes

them useful, is that if all the leaf nodes are connected to each other with forward and

backward pointers, it allows us to traverse through the leaves without re-traversing the

tree again. Fig. 3 shows an example of a B+ tree of order 3

12

As potential candidates, not only were data structures considered individually, but also

in combination with each other to improve performance collectively. As will be seen

later in the second approach presented, we use a combination of two data structures to

enable some features and save space.

As the primary data structure to work on, we selected Trie as the candidate. Some of the

potential improvements included using hash tables as an internal data structure in the

nodes for finding next paths quickly, etc.

13

DEEPER LOOK INTO TRIE DATA STRUCTURE

In the previous chapter, we discussed in brief what the trie data structure looks

like. In this section we will iterate over some of those things while taking a detailed look

at it and also look at some potential issues.

As depicted in fig. 2 the trie data structure breaks down a key into tokens and

stores each token hierarchically one below the other. The trie data structure is most

useful in applications that need prefix matching. The Longest Prefix Match (LPM)

operation is very common on tries. There can be many versions of a trie, such as a

simple integer trie, alphabet trie or a full ascii based trie. We have performed testing on

all the 3 above mentioned versions. An integer based trie can basically store only

decimal numbers from 0 – 9, meaning that each node in this trie can have 0 – 9

children and similarly the alphabet based trie stores only letters from A – Z or a – z with

every node having between 0 – 26 children. The ascii based trie is a more

comprehensive version that can store numbers, small and capital letters as well as all

ascii based symbols.

14

Fig. 4 Internal Trie Node

3.1 Internal structure

Fig 4. Shows the internal structure of a node from an ascii trie.

The first parameter is used to detect if a word / key is formed at any point in the trie and

helps avoid false matches. This can also be seen in Fig 2 with the last nodes of a key

being marked in a different color. Sometimes there might be sub strings of already

inserted keys also present as another key, therefore it is not always necessary that a key

can be formed only at the leaf node. The second parameter - children, is a list / an array

of pointers to child nodes. As mentioned before, for an ascii trie, this number is 256

children (0 – 255). The data or character being represented by any node does not have

to be stored in the node since the position of any node determines the value of that

15

node. For example, a node that is pointed to by a pointer from 97 in the children array

in above node, automatically converts to the character a in ascii, thus defining the value

of the node as a. For optimizing the time and space requirements of trie, we have added

some more parameters to the node which we will see in later chapters.

3.2 Complexity

3.2.1 Time Complexity

The time complexity calculation for a trie dependent on the key being searched or

inserted. In the worst case where the key is not found, the time required asymptotically

is to the order of the length of the key.

 For a key with length L,

 Trie time complexity = O (L)

This is true for insert, search as well as delete operations.

3.2.2 Space Complexity

The worst-case space complexity for a trie would be the total number of nodes stored in

the trie. It is pretty rare to have a trie in its worst case for space as it would need no

more than 256 unique keys in a trie that start with a unique ascii character.

 If the number of nodes is considered to be M,

 Trie space complexity = O (M)

16

3.3 Operations on trie

This section discusses the basic operations on trie, viz, Insert, search and delete.

3.3.1 Insert

3.3.2 Search

function SET(root, len, key)

 curr ← root

 i ← 0

 insertStatus ← false

 while (i < len) do

 if key[i] in curr.children then

 curr ← curr.children[key [i]]

 else

 new ← node()

 curr.children[key [i]] ← new

 curr ← new

 if i = len – 1 then

 new.isWord ← true

 insertStatus ← true

 i ← i + 1

 return insertStatus

function GET(root, len, key)

 curr ← root

 i ← 0

 found ← false

 while (i < len) do

 if key[i] in curr.children then

 curr ← curr.children[key [i]]

 if (i = len – 1) and (curr.isWord = true) then

 found ← true

 i ← i + 1

 return found

17

3.3.3 Delete

3.3.4 Ancillary function : delInternal

The delete operation on a trie is usually more complicated, since they key to be deleted

might share a common prefix with another key in the trie. Due to this, the trie needs to

be traversed once to find out the last node of the LPM and later traversed again from

the remembered node again to delete all nodes.

function DEL(root, len, key)

 curr ← root

delParent ← root

 delChild ← 0

 i ← 0

 deleted ← false

 while (i < len) do

 if key[i] in curr.children then

 if (delInternal (curr, key [i]) = true) then

 delParent ← curr

 delChild ← key[i]

 curr ← curr.children[key [i]]

 if (i = len – 1) and (curr.isWord = true) and

 (delInternal (curr, key [i]) = false) then

 deleted ← true

 i ← i + 1

 if (deleted = true) then

 free (delParent.children[delChild])

 delParent.children[delChild] ← NULL

 return found

function delInternal(node, index)

 i ← 0

 while (i < 256) do

 if (i ≠ index) and (node.children[i] ≠ NULL) then

 return true

 return false

18

3.4 The problem

3.4.1 Space Problem

Asymptotically the space consumption of a trie does not seem too bad. With most tries

with large amounts of data and sharing a huge amount of nodes (in a real-world

scenario) the number M is not very large as compared to N (number of keys). The

space complexity can also be less than some other data structures that can take O (N).

 Even though asymptotic notation resembles that the space complexity is not too

bad, the reality is different. And the main culprit for this is the pointers. For an ascii

based trie or a byte trie, there are 256 child pointers in each node. And even though

most pointers might not actually point to anything, NULL pointers also account for space.

A trie with 1 billion records with each node having 256 pointers could fail quickly as an

in-memory data structure.

 There have been attempts at overcoming this by using hashing algorithms to

store the pointers, but the hash functions need to be good enough and add to total

execution time. Having an array of 256 possible positions is the simplest form of hash

table that can be implemented. This hash table has no collisions as each ascii character

belongs to a unique bucket in the hash table.

3.4.2 Time problem

Since the time complexity of tries, as seen before, depends on the length of the

key, for scenarios such as when the length of the keys is short while the number of keys

19

is fairly large (L <<< N) a trie can perform better than many other data structures such

as B+ trees which will depend on the total number of keys.

 As seen in examples before, like in fig. 2 , tries can have common prefix paths.

The word OFF and OFTEN in the example in fig. 2 have the Longest Common Prefix

(LPM) ‘OF’. If this trie is a part of a system that characterizes in heavy insertions and

deletions, such as financial transactions, a unique problem can be observed. Deleting

nodes from the trie immediately, and then re-inserting either the same key or a key that

had a common prefix that was a part of the deleted nodes, will incur a cost of allocating

new nodes and inserting them in the trie. Although this is a normal functioning of the tire,

for certain workloads, this can be improved with a few tweaks to the algorithm of SET

and DEL operations.

 Fig. 5 below shows an example of a deletion in a trie. If the key OFTEN is

deleted from the trie, the nodes T, E and N are deleted.

20

Fig. 5 Deletion in Trie

Below is an example of series of operations to reveal the issue

DEL OFTEN

GET RAT

GET RUTH

SET OFTEN

For the above series of operations, following will be what happens in the trie –

21

DEL OFTEN

- Find nodes that can be deleted for the key OFTEN

- Delete nodes T, E, N

GET RAT

- Search for key RAT

- Return True

GET RUTH

- Search for key RUTH

- Return False

SET OFTEN

- Look for existence of node O > found > move to next

- Look for existence of node F under O > found > move to next

- Look for existence of node T under F > not found

- Create a new node > assign it as T child of F

- Create a new node > assign it as E child of T

- Create a new node > assign it as N child of E

22

Chapter 4 discusses the issue uncovered by this series of operations and the approach

used to solve the same.

OPTIMIZING TIME COMPLEXITY FOR INSERTS

The efficiency of insert (SET) operation is important to a very specific workload.

A scenario in which the trie has to handle heavy amount of insertions and deletions,

some operations become repetitive. This issue has been discussed with example in

chapter 3 subsection 3.2. Financial databases or real time systems are potential

candidates of such a system.

In order to improve the performance of the insert operations, we implement two

strategies.

1. Lazy Deletion with garbage collector

2. Slab Allocation

Benchmark results for these two strategies are shown in later chapters.

4.1 Lazy Deletion with garbage collector

Lazy deletion is a well-known strategy used by many applications in computer

science. Something as simple as a cloud system relies on this strategy to delete

23

Fig. 6 Lazy Deletion in Trie

instances a few days after the customer actually deletes it , to enable recovery in

accidental situations or something as fundamental as hash tables with open addressing

may delete elements with lazy deletion to allow relocation during next search [7].

We implement lazy deletion in the trie for our nodes with two configurable

parameters and multithreading

24

Fig 6 shows what lazy deletion looks like for the same set of operations as defined in

section 3.3.2

The difference in the above trie is that the nodes T, E and N are not actually

deleted from the trie immediately. Instead, they only get marked as deleted. A garbage

collector thread later deletes these nodes if some conditions are not met. Following

sections describe the conditions for garbage collection.

The conditions mentioned above are two threshold values that decide -

1. If a node should be actually deleted during the garbage collection or not, and

2. When the garbage collector thread should be started.

Later sections detail these parameters in the algorithm . In order to enable efficient lazy

deletion and garbage collection, the basic trie node has been modified.

 We introduce two new parameters in the node called isAlive and hot_count

- isAlive : Boolean value that defines if a node should be counted as a part of

the trie or not. Lazy delete operation will set this to false

- hot_count : The count of hotness of any node. Each time a node is inserted or

requested to be inserted (case when node might already be present) the hot

25

Fig. 7 Modified Trie Node

count of the node is incremented by 1. Garbage collector will later use this

value to decide which nodes to actually delete

Fig 7 above represents the modified node structure. Possible values for –

- isAlive : true / false

- hot_count : any integer > 1

The garbage collector is a thread that starts after every ‘X’ amount of deletions where X

is a configurable parameter. This methodology of garbage collector is known as

reference counting strategy [8].

26

4.2 Slab allocation

Slab allocation is a strategy used in some in memory databases such as

Memcached [9]. Slab allocation allows the system to use pre-allocated memory or nodes

to avoid initialization time when it is actually needed. In our solution though, we take a

slightly different approach than Memcached. Memcached pre-allocates nodes and

stores them in a stack with help of a parallel thread. Instead, we do not have any such

thread doing slab allocation. We use the nodes from lazy deletion to further delay the

process of actual memory freeing.

A stack is maintained that can hold nodes in their initialized states. When the

garbage collector traverses through the entire trie and determines that it needs to take

a node out of the trie, instead of immediately deleting it, the node will be re-initialized

to a blank state and placed on top of the slab-allocation stack. This allows for avoiding

re-allocation of nodes during the subsequent inserts. SET operation can check for

existence of a node in the slab-allocation stack and pick the node at the top thus saving

on execution time. The garbage collector starts freeing the memory when the stack for

initialized nodes is full. All the parameters discussed until now are configurable and

depending upon the workload, can be tweaked for the best performance.

27

4.3 Concurrency and consistency on optimized trie

In order to allow for concurrent requests and still maintain consistency, we use

locking mechanisms. Although locking mechanisms are not always known as the best

solutions for concurrency, they are the best ways to maintain consistency. In our

solution, when the garbage collector thread starts, a locking mechanism prevents inserts

or updates from happening. With large sizes of tries, locking the trie for the complete

duration of the garbage collector operations can become a huge drawback. Therefore,

we only set the lock when the garbage collector is performing the actual delete

operation on a node or a series of nodes and release the lock as soon as the delete

operation is completed. The garbage collector can continue traversing through the trie

without the lock set and repeat the process when it wants to delete nodes. With a

correct configuration of the parameters mentioned in the sections before, this results in

a minimum insertion delay. In fact, as seen in our benchmarks, the performance gain in

inserts is large enough to render the delay due to locking irrelevant but still maintaining

consistency.

4.4 Operations on optimized trie

This section details the algorithms for SET, GET, DEL operations along with their ancillary

functions doDeletes and delInternal.

28

4.4.1 Insert

function SET(root, len, key)

 curr ← root

 i ← 0

 insertStatus ← false

 if (delLock ≠ true) then

 while (i < len) do

 if key[i] not in curr.children then

 if (slabSize > 0) then

 new ← g_queue_pop()

 if (new) and (new.isAlive) and

 (new.hotClount = 1) then

 slabSize ← slabSize - 1

 else

 new ← node()

 else

 new ← node()

 curr.children[key [i]] ← new

 curr ← new

 if i = len – 1 then

 new.isWord ← true

 insertStatus ← true

 else

 if (curr.children[key [i]].isAlive = false) then

 curr.children[key [i].isAlive ← true

 else if (i = len – 1) then

 insertStatus ← true

 curr.children[key [i]].hotCount ←

curr.children[key [i]].hotCount + 1

 curr ← curr.children[key [i]]

 i ← i + 1

 return insertStatus

29

function DEL(root, len, key)

 curr ← root

delParent ← root

 delChild ← 0

 i ← 0

 deleted ← false

 del_cnt_add ← 0

 while (i < len) do

 if (key[i] in curr.children) and

 (curr.children[key [i]].isAlive = true)then

 if (delInternal (curr, key [i]) = true) then

 delParent ← curr

 delChild ← key[i]

 del_cnt_add ← 0

 curr ← curr.children[key [i]]

 del_cnt_add ← del_cnt_add + 1

 if (i = len – 1) and (curr.isWord = true) and

 (delInternal (curr, key [i]) = false) then

 deleted ← true

 i ← i + 1

 if (deleted = true) then

 delParent.children[delChild].isAlive ← false

 delCount ← delCount + del_cnt_add

 return found

4.4.2 Search

4.4.3 Delete

function GET(root, len, key)

 curr ← root

 i ← 0

 found ← false

 while (i < len) do

 if (key[i] in curr.children) and

 (curr.children[key [i]].isAlive = true) then

 curr ← curr.children[key [i]]

 if (i = len – 1) and (curr.isWord = true) then

 found ← true

 i ← i + 1

 return found

30

function doDeletes(root)

 curr ← root

 i ← 0

 while (i < 256) do

 if (curr.children[i] ≠ NULL) then

 if (curr.children[i].isAlive = false) and

 (curr.children[i].hotCount < hot_count_lim) then

 if (slabSize < slabSizeLim) then

 delLock ← true

 initializeNode(curr.children[i])

 g_queue_push_head(labStack,curr.children[i])

 curr.children[i] ← NULL

 slabSize ← slabSize + 1

 delLock = false

 else

 delLock ← true

 free (curr.children[i])

 curr.children[i] ← NULL

 delLock ← false

 else

 doDeletes (curr.children[i])

4.4.4 Ancillary function delInternal

4.4.5 Ancillary function doDeletes – garbage collector thread

function delInternal(node, index)

 i ← 0

 while (i < 256) do

 if (i ≠ index) and (node.children[i] ≠ NULL) and

 (node.children[i].isAlive = true) then

 return true

 return false

31

Chapter 5

L-TRIE – A SPACE EFFICIENT TRIE

As discussed in chapter 3 subsection 3.2, the space consumption of a trie is usually bad.

Having 256 pointers in each node consumes a lot of space in the main memory. To

address this issue, we present a new variant of the trie data structure named L-Trie (Leaf

Trie). Section 2.3 also discussed B+ trees. The L-Trie takes clues from both a trie and a

B+ tree. Some rules that are followed in the L-Trie are as follows –

1. Keys are stored only in leaf nodes

2. Leaf nodes are fat nodes with an order m

3. Number of keys in a leaf follow the rule –

m/2 ≤ number of keys ≤ m

4. To reach the leaves, we traverse through a trie who’s nodes act as anchors to

leaves.

5. Searching follows some specific rules that we will see in later sections.

Following section details the structure of an L-Trie.

32

Fig. 8 Example of L-Trie

Fig. 8 shows an example of a L-Trie. The internal tree in a B+ tree is replaced with a trie

allowing traversing to the leaves in O (L), where L is the length of the key (in the worst

case – where the complete key is an anchor) or the length of the anchor. The trie paths

leading to the leaves are called anchors. The leaves are all sorted lexicographically, and

all leaf nodes are linked to each other with pointers as next and previous siblings. This

allows traversal between leaves without re-traversing through root for range queries.

33

5.1 Anchors

 The anchors in the L-Trie are generated dynamically as insertions happen and

serve as paths to trace till leaves. The traversing to leaves via these anchors follows

certain rules as listed below –

1. For any leaf node other than left-most leaf node,

left-key < anchor ≤ right key

where left-key is any key in the leaf node immediately left to current leaf

node (previous sibling) and right-key is any key in the current leaf node.

2. For the leftmost leaf node,

anchor ≤ right-key

The initial state of the L-Trie is an empty root node. The first element inserted is inserted

in a leaf node directly. A split-on-demand during inserts and merge-on-demand during

deletions strategy is used in the L-Trie. This will be discussed in detail when discussing

the operations on the L – Trie.

34

5.2 Leaves

The leaves of a L-Trie are the nodes that hold the actual keys (and links to values to

each key). Therefore, the leaves are basically fat nodes and can be of maximum order m

and minimum order m/2. All keys in the leaves are always sorted. This enables fast

binary search within the leaves with the complexity for this internal search being O (log

m) in worst case, where m is the maximum keys that a leaf can hold. Unlike B+ trees ,

all the leaves may not be at the same level and the L-Trie can be unbalanced in worst

case scenarios. Although, all the leaves are connected to each other with next and

previous pointers and allow traversing through the leaves easier.

Due to the rules used to split a leaf during insertion, a value traced to a leaf A

might be in the previous node to node A. This scenario only has to backtrack to one

previous node in the worst case and does not cost any time overhead asymptotically. In

real execution time, this is only two binary search operations, one in each leaf node.

35

5.3 Operations on L- Trie

5.3.1 Insert

We start with an empty trie root before any keys have been inserted. As

mentioned before we use the split-on-demand strategy during inserts on leaf nodes.

These leaf nodes are fat-nodes which can hold between m/2 and m keys. Whenever

the key count goes beyond m, we split the leaf node and generate necessary anchors

using the rules stated in section 5.1. When the very first key arrives, we create a new leaf

attached to the trie root and insert the key in the leaf. It is important to remember that a

trie root is always an empty node. Similarly in L-Trie, the root never acts as an anchor. It

is simply the starting point for the L-Trie. As stated in section 5.2 all keys in the leaf are

sorted and this sorting is done after each insert. It is necessary to sort every time after

an insert as the order of keys is important if a split operation is demanded as well as for

any concurrent search, which uses binary search to search inside the leaf.

During insertions, some keys shave exact prefixes present in the trie as anchors.

Insertions for these keys is straight forward. Trace each token in a key to the already

existing path of anchors and reach the leaf node where the key can be inserted. But for

some keys, there might be a mismatch after matching zero to few tokens within anchors.

How the position is found for such keys will be discussed in the search algorithm.

36

function SET(root, len, key)

 curr ← root

 i ← 0

 insertStatus ← false

 splitPoint ← ceil(tree_order/2)

direction ← bottom

 while (i < len) do

 pathFound ← false

 if (key[i].leafChild ≠ NULL) then

 if (direction = bottom) then

 insertInLeaf(curr.leafChild, len, key)

 else if (direction = previous) then

 if (curr.leafChild.previous = NULL) then

 createPrevious(curr.leafChild)

 insertInLeaf(curr.leafChild.previous, len, key)

 if (curr.leafChild.no_of_keys > tree_order) then

 newLeaf ← new_leaf()

 if (curr.leafChild.next ≠ NULL) then

 newLeaf.next = curr.leafChild.next

 newLeaf.next.previous = newLeaf

 curr.leafChild.next = newLeaf

 newLeaf.previous = curr.leafChild

 copy_to_leaf(curr.leafChild, newLeaf,splitPoint)

 old_key ← curr.leafChild.keys[0]

 new_key ← newLeaf.keys[0]

 generate_anchors(node, curr, newLeaf, key)

 else

 if (curr.children[key [i]] ≠ NULL) then

 curr ← curr.children[key [i]]

 pathFound ← true

 if (pathFound = false) then

 k ← key [i]

 pathFound ← search_left(curr, k)

 if (pathFound = false) then

 k ← key[i]

 pathFound ← search_right(curr, k)

 direction ← previous

 if (pathFound = false) then

 newLeaf ← leaf_new()

 insertInLeaf(newLeaf, len, key)

 insertStatus ← true

 i ← i + 1

return insertStatus

37

5.3.2 Search

Searching for a key in L-Trie can be divided into four broad conditions. The

search starts like a trie by tokenizing the key and trying to find a path to the leaves

using anchors. The four broad conditions as can be seen in the algorithm are -

1. Leaf node is found

2. Anchor node is found and token exactly matches the anchor node

3. Anchor node is found and token does not exactly match any anchor but

the trie has an anchor with smaller value

4. Anchor node is found and token does not exactly match any anchor but

trie has an anchor with larger value

The search algorithm follows rules based on these four conditions and we shall see

them in detail now.

1. Leaf node found

When a leaf node is found, the traversing on the trie stops. This case represents

that either the key will be found in this leaf or the previous leaf depending upon

which of the three remaining conditions was taken in the earlier traversing of the

38

trie. The details about these will be mentioned in the following rules. The search

in the leaf node is a binary search.

2. Anchor node found and token matches exactly

When a token matches the exact found anchor, continue traversing down the trie

by updating current pointer to the anchor just found

3. Exact anchor not found but smaller anchor exists

If condition 2 fails, check for the existence of the closest smaller anchor. If such an

anchor is found, traverse to the rightmost leaf of this anchor. This sets the

direction variable to bottom, meaning , in the next iteration when condition 1 is

met, the binary search in the leaf will happen in the exact leaf that was reached in

this step.

4. Exact anchor not found but larger anchor exists

If condition 3 fails, check for the existence of the closest larger anchor. If such an

anchor is found, traverse to the leftmost leaf of this anchor. This sets the direction

variable to previous, meaning, in the next iterations when condition 1 is met, the

binary search in leaf will happen in the leaf previous to the leaf reached in this

step.

39

Fig. 9 Searching in a L-Trie

Fig. 9 shows a case where conditions 3 and 4 are in picture.

If we want to search for the key “Read” , we first match the token R with root

nodes’ children and find an exact match with the anchor. Following this condition 2, we

traverse ahead with R being our current node. After this there are 2 possible paths that

can be taken. First path follows condition 3 where, as soon as a mis match occurs (token

– e, anchors available – a, o) we search for nearest smaller anchor (a in this case) and

traverse to the right most leaf of anchor a. the direction for searching here is bottom, so

we will perform search for the key in the selected node (node A for reference purposes)

40

itself. The second path is the path that follows condition 4. In this condition, we search

for the closest larger anchor (o in this case) and traverse to the left most leaf of anchor

o. The direction for searching here is previous, so we will perform a search for the key in

the previous node (node A) to the selected node (node B for reference).

Another example of similar kind would be to search for the key “ Tutor ”. The difference

in this case is that right from the beginning token (T) we never find an exact anchor

match and thus go for condition 3 straight away. The rest of the process is the same for

condition 3. Also worth noting here, is that for this example, there can never be

condition 4 unless an insert operation later adds a node greater than R to the root

nodes children.

41

function GET(root, len, key)

 curr ← root

 i ← 0

 searchStatus ← false

 direction ← bottom

 while (i < len) do

 if (key[i].leafChild ≠ NULL) then

 if (direction = bottom) then

 if (searchInLeaf(curr.leafChild, len, key) = NULL) then

 if (searchInLeaf(curr.leafChild.previous, len, key)

 = NULL) then

 searchStatus ← false

 else

 searchStatus ← true

 else

 searchStatus ← true

 else if (direction = previous) then

 if (searchInLeaf (curr.leafChild.previous, len, key)

= NULL) then

if (searchInLeaf (curr.leafChild.previous.previous,

 len, key) = NULL) then

 searchStatus ← false

 else

 searchStatus ← true

 else

 searchStatus ← true

 else

 if (curr.children[key [i]] ≠ NULL) then

 curr ← curr.children[key [i]]

 pathFound ← true

 if (pathFound = false) then

 k ← key [i]

 search_left(curr, k)

 pathFound ← true

 if (pathFound = false) then

 k ← key[i]

 search_right(curr, k)

 pathFound ← true

 direction ← previous

 i ← i + 1

return searchStatus

42

Chapter 6

EXPERIMENTS AND RESULTS

 The results of the optimizations and L-Trie are presented in this chapter. In order

to present the results, comparisons with the original trie data structure and B+ trees are

shown so as to allow for fair comparison.

6.1 Data Sets

The data sets used in the performance evaluation are mentioned bellow –

• Small Length Keys –

- Keys between length 5 – 8 characters

- Example : Android, Apple, Zebra

• Variable Length Keys –

- Keys between length 1 – 32 characters

- Example : &, F-spot, checoslovaquia

• Long Length Keys –

- Keys with length 36 characters

- Example : uuids (57be90ea-8611-406f-b3d2-7668752a63bd)

These keys are used in evaluating both the optimizations – Insertion time and L-Trie.

43

Tab. 1 Data set characteristics

Data-sets used for evaluation as mentioned before, display unique characteristics

in order to enable testing the data structure for all types of situations. Some of these

include –

- Small value of L

- Large number of common prefixes

- Large value of L with limited amounts of common prefixes

- Etc.

The specific characteristics of the data sets we use are represented in the following table

Data Set Characteristic

Small Length Keys Large number of common prefixes

Variable Length Keys Moderate number of common prefixes

Long Length Keys Very low number of common prefixes

44

Testing against such workloads enables uncovering the performance of the data

structure in best to worst case and also to understand the scope of the data for which

any data structure is suitable.

6.2 Setup used for evaluation

The performance evaluation for all the optimizations and data sets was done on the

following configuration –

- Intel(R) Xeon(R) CPU L5410 @ 2.33GHz (8 cores)

- 64 GiB memory

- Arch Linux

- Kernel Version Linux p10 4.15.12-1

6.3 Framework

The performance evaluation of the optimized data structures and the original

data structures was done using a common framework designed in house [10]. The

framework takes as input a set of keys to insert from a file and a set of operations to be

performed.

45

AAMSI

Aandahl

A-and-R

57be90ea-8611-406f-b3d2-7668752a63bd

c97ff316-94d6-4ce9-b37a-b22f97b29f37

b7ffb1e6-cd18-4bca-85df-49d9dd84dc9c

seqset 0 1580179

seqdel 0 1580179

rndget 0 1580179

rnddel 0 1580179

seqget 0 1580179

Below is an example of the input file for keys –

each new line represents a new key to be inserted or searched or deleted from the data

structure.

The specific operations to be done are taken as input from another workload file and

look as follows –

each line is divided into 3 parts –

- Operation (seq : sequential, rnd : random, set / get / del)

- Start point for keys from keys file

- End point for keys from keys file

46

seqset 0 1580179

rnddel 0 1580179

rndget 0 1580179

seqset 0 1580179

seqget 0 1580179

seqdel 0 1580179

6.4 Results for insert optimization

In order to observe the performance gain in this optimization, the workload has

to be designed in a specific way. Since the optimization allows for reducing insert times

after having had a defined number of deletes on the data structure, the workload has to

insert, delete, insert. There may be other operations like get in between.

Above we can see the sequence of operations as mentioned before following the insert

– delete – insert rule. Operation on line number 4 is when we can see the insertion time

reduce. The garbage collector thread should have performed its operations during the

execution of line 3 simultaneously.

The results for this test reveal a huge increase in operations per sec as compared

to a conventional trie. Graph 1 shows the comparison between a conventional trie and

the optimized trie for all the workloads mentioned before.

47

0

100000

200000

300000

400000

500000

600000

700000

800000

Small Keys Variable Keys Large Keys

Normal Optimized

O
p

s
/

S
e
c

Fig. 10 Performance for time optimization

As seen in Fig. 10, the time optimized version performs almost two times as much as a

normal trie with the same set of operations and keys. The performance gain seen in the

three types of keys is different due to the nature of keys as seen in section 6.1 and their

resulting implications. The performance gain is maximum in small length keys because

they share a large number of prefixes. Thus, when there are deletions in the trie, many

nodes that were not deleted are reused in either same or different keys inserted later.

48

In contrast to this, for the large length keys which are uuids, the number of

common prefixes is low. Thus the hot_count for each node is not very high resulting in

the garbage collector deleting many of these nodes. Also, during subsequent insertions,

common prefixes are low and the token needed to be inserted is not already present in

the trie (either as alive or as marked deleted). A combination of these factors results in

the performance gain being low.

 The take away from these evaluations suggests that apart from the system being

operations heavy, data – sets with moderate to high number of common prefixes are

the best target candidates for this optimization. On the other hand, a system that has

low mounts of inserts and deletes or has a lower number of common prefixes (for e.g.

in workload 3 – long length keys), this system may not present improved results.

6.5. Results for L-Trie

The main aim of L-Trie is to improve the space efficiency of an L-Trie by building

on top of the conventional trie and B+ tree. Apart from performing well in space

consumption, we also see a unique result in time utilization when the length of the keys

increases and the number of shared prefixes are less. We shall see these results in this

section.

49

Fig. 11 Comparing space consumption

Tab. 2 Node counts

Fig. 11 shows the space consumption comparison for a conventional trie, L-Trie and B+

Tree. The space consumption for a L-Trie is comparable to that of a B+ tree. The most

gain can be seen when compared to a conventional trie. The table below also shows the

number of nodes created for a trie vs an L-Trie

Data Set Trie nodes L-Trie internal nodes L-Trie leaf nodes

Small Length Keys 135881 201 161

Variable Length Keys 1420649 1222 913

Long Length Keys 14902561 850 577

0

50

100

150

200

250

300

Small Keys

Trie LTrie B+ Trees

0

500

1000

1500

2000

2500

3000

Variable Keys

Trie LTrie B + Trees

0

5000

10000

15000

20000

25000

30000

35000

Long Keys

Trie LTrie B+ Trees

30

249

37.8

2700

28670

71.1

27.2

40
92

M
e
g

a
 B

y
te

s

50

The data represented in the table shows the difference in the number of nodes

created in a conventional trie and L-Trie and that the difference is huge. These results

are generated with the max size of leaf nodes (order of L-Trie) m = 7000. Changing

this value can produce better or worst results. For e.g. increasing the value of m too

much results in increasing the time required for binary search inside the fat leaf node. It

also results in increased time for insertions as sorting is necessary at every insert. On the

other hand, if the size of m is set too low, the result is increased internal nodes

(anchors) and will bring the L-Trie closer to a conventional trie as the value is reduced

more. It is important to understand the input data to be stored in an L-Trie and

configure the necessary parameters accordingly. This is also true for a B+ tree.

Not only does L-Trie perform better in space consumption, but also in execution

time when the length of the keys increases. Although, for smaller length keys, a

conventional trie may perform better. As seen in fig. 12 we can see the performance

tradeoff due to the bsearch inside a fat node of size 7000 for small and variable length

keys. Long length keys which are the biggest problem for a trie expectedly perform bad

in a conventional trie while L-Trie performs a lot better. Another factor that can be seen

in L-Trie is that the variation (delta) between the three data sets is low allowing for a

more consistent performance.

51

Fig. 12 Comparing time efficiency

0

100000

200000

300000

400000

500000

600000

Small Keys Variable Keys Large Keys
Normal L-Trie

Asymptotically, the time complexity of L – Trie can be calculated as –

 𝑶(𝑳 + 𝒍𝒐𝒈𝒎)

Where L is the length of the anchor (length of key in worst case) and m is the

number of keys in a leaf node (order of L – Trie). Log m is the complexity of bsearch

inside the leaf node.

O
p

s
/

S
e
c

52

Chapter 7

CONCLUSION AND FUTURE WORK

This thesis presents two optimizations to the trie data structure after having

studied various data structures and evaluating the potential candidates. It presents a

optimization that enables reduced insertion times. This enables transaction heavy

workloads to increase its performance. Secondly this thesis presents a new data

structure L – Trie that builds on principles from B+ tree and trie. L – Trie allows for much

better space consumption making it possible to have the trie data structure as a

potential candidate for many applications such as indexing. The time consumption of an

L-Trie is also more consistent than many other data structures and allows for better

performance even with large keys.

 The work in this thesis can be extended to allow for better space and time

consumption. The insert optimized version of trie can be made more robust by allowing

for concurrent operations without the use of locks. The garbage collector for this version

can also be optimized for better performance. Future work for L- Trie can be achieved

by balancing the leaf nodes during insertions like B+ trees. B+ trees shift elements

between leaves if their siblings have capacity. This can be extended to the L-Tries to

reduce the number of leaves and save even more space.

53

REFERENCES

[1] Xingbo Wu, Fan Ni, Song Jiang, “Wormhole: A Fast Ordered Index for In-memory

 Data Management”, Ph.D. Dissertation, UT Arlington, 2018

[2] Edward Fredkin, “Trie Memory”, CACM, 3(9):490-499, September 1960

[3] William Pugh, “Skip lists: a probabilistic alternative to balanced trees”,

 Communications of the ACM, 1990

[4] Leveldb: A fast and lightweight key/value database library by google.

 https://code.google.com/p/leveldb/.

[5] Rudolf Bayer and Edward M. McCreight , “Organization and Maintenance of Large

 Ordered Indices.” Acta Informatica 1: 173–189,1972

[6] Douglas Comer, “The Ubiquitous B-Tree”, ACM Computing Surveys 11(2): 121–137,

 1979

[7] Celis Pedro, Franco John, “The Analysis of Hashing with Lazy Deletions”, Computer

 Science Department, Indiana University, Technical Report CS-86-14, 1995

[8] Wilson, Paul R. "Uniprocessor Garbage Collection Techniques". Proceedings of the

 International Workshop on Memory Management. London, UK: Springer-Verlag. pp.

 1–42. ISBN 3-540-55940-X. Retrieved 5 December 2009. Section 2.1.

[9] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M.

 Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani, “Scaling

 memcache at facebook.”, In Presented as part of the 10th USENIX Symposium on

 Networked Systems Design and Implementation (NSDI 13), pages 385–398,

 Lombard, IL, 2013. USENIX

[10] Xingbo Wu, “TrieToy : A Trie framework”, available - https://goo.gl/H5fgoS

54

BIOGRAPHICAL STATEMENT

Nirmik Kale was born in Ahmednagar, Maharashtra, India. He received his bachelor’s

degree in computer engineering from K.K.Wagh Institute of engineering education and

research under University of Pune, MH in May 2014. Thereafter, he worked as a Cloud

and Research Engineer at ESDS Software Solutions from June 2014 – July 2016. In fall of

2016, he started pursuing his master’s degree in computer science from University of

Texas at Arlington. During summer 2017 he worked as a cloud and research intern at

BodHOST Ltd., New Jersey. He received his master’s degree in August 2018 from

University of Texas at Arlington – Computer Science department. His research interests

include, but are not limited to - operating systems, Linux, algorithms, cloud and

virtualization.

