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ABSTRACT 

 

IMPROVING TIME AND SPACE EFFICIENCY 

OF TRIE DATA STRUCTURES 

Nirmik Kale, MS 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Song Jiang 

 

Trie or prefix tree [2] is a data structure that has been used widely in some 

applications such as prefix-matching, auto-complete suggestions, and IP routing tables 

for a long time. What makes tries even more interesting is that its time complexity is 

dependent on the length of the keys inserted or searched in the trie, instead of on the 

total number of keys in the data structure. Tries are also strong contenders to consider 

against hash tables in various applications due to two reasons - their almost 

deterministic time complexity based on average key length, especially when using large 

number of short length keys, and support for range queries. IP routing table is one such 

example that chooses tries over hash tables. But even with all these benefits, tries have 
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largely remained unused in a lot of potential candidate applications , for example in 

database indexing, due to their space consumption. The amount of pointers used in a 

trie causes its space consumption to be a lot more than many other data structures such 

as B+ Trees. Another issue we realized with tries is that even though the time complexity 

can be of a magnitude far less than some other data structures for short length keys, it 

can be considerably higher if the keys are of longer lengths. Insertion in a trie can prove 

to be a repetitive operation for many nodes if the keys are repetitive or have many 

common prefixes adding to the execution overhead. With this in mind, we propose two 

optimizations of the trie data structure to address the time and space complexity issues. 

In the first optimization we present a system that reduces the time for inserts in the trie 

data structure by up-to 50% for some workloads by tweaking the algorithm. In the 

second optimization we developed a new version of the trie data structure by taking 

inspiration from B+ trees, allowing us to not only reduce the space consumption for 

tries but also to allow features such as efficient range search. 
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INTRODUCTION 

With increase in amount of data generated, large sets of small key-value data 

sets are a common type of data to be stored these days. Even for conventional data 

stored using either databases or any other data storing methods, key-value stores prove 

as the meta data structure for faster lookup times. Such key-value data sets are usually 

implemented as some kind of in memory system to accelerate fast searches. With recent 

efforts, performance has been approaching the hardware limits for existing data 

structures being used in such systems. With this is mind, one of the issues faced by such 

in-memory key-value data sets is the space consumption due to the data structures 

used for storing the key-value store. As the data increases from thousands to billions, 

the amount of metadata generated is also increased. In such cases, trying to improve 

the space efficiency of the data structures used can prove to be a huge benefit for such 

systems. Although, one needs to keep in mind that such improvements should come 

with little to no feature reductions in existing systems. 

Indexing data structures such as B+ trees and skip lists [3] are used in many 

major database applications such as MySQL and LMDB for the former and LevelDB [4] 

for the later. Such ordered indexing data structures are required for supporting features 
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in databases such as range queries, even when they are hugely slower than indexing 

structures such as hash tables for point queries. 

Another type of system is one where there are huge number of insertions 

followed by immediate lookups. In such scenarios, if the insertion times are long, the 

results obtained after immediate lookups can be stale and require a major amount of 

time for the updated data to be presented. Financial applications are one of the best 

examples of such requirements.  

1.1 Focus and contribution of this thesis 

This thesis focuses on improving the efficiency of the data structures used in the 

applications mentioned above. Improving efficiency is a two-factor process for any data 

structure – time and space. These two factors usually do not go hand in hand and trying 

to improve one implicates a sacrifice on the other. But there is, in most situations, a mid-

point that can achieve an acceptable improvement as well as sacrifice on both. We try to 

achieve this mid-point and suggest two approaches to solve two separate problems in 

key-value data stores. Since a new data structure might not always be the one general 

solution to all problems and thus replace the existing data structure completely, we 

work on both, the current data structure and also develop a new data structure. 
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As an outcome of this thesis, we can achieve a better time efficiency for insertions 

in the trie and secondly, with the help of the new data structure, we can store the keys in 

a more space efficient way while still providing existing features, sometimes, with even 

better efficiency. 

The main contributions can be stated as –  

1. A new algorithm for faster insertion times for transaction heavy workloads 

2. A new data structure to enable more space-efficient ordered indexing 

 

1.2 Thesis organization 

  The rest of the thesis is organized as follows – 

Chapter 2 : Data structures and potential candidates 

Chapter 3 : Deeper look into the trie data structure 

Chapter 4 : Optimizing time complexity of Trie  

Chapter 5 : Optimizing space efficiency of Trie 
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POTENTIAL DATA STRUCTURE CANDIDATES 

Trying to solve the problems mentioned in Chapter 1 can take many forms of 

solutions. This study presents two approaches on a specific data structure – the Trie or 

Prefix Tree. But before we considered working on a trie, we explored our options. Hash 

table emerges as one of the top candidates to use either by itself or in combination with 

another data structure. The O(1) lookup time of a well-defined hash table is what makes 

it one of the most  lucrative options to use.  

2.1 Hash Tables 

Hash tables are one of the most widely used data structures in many different 

applications in computer science. Hash tables are also the ideal and inspiration for 

working on better data structures due to its most important benefit, constant lookup 

time. This is off-course considering that the hash function used in the hash table is a 

good hash function that does not create a lot of collisions. Section below discusses the 

hash table data structure with simple example and also its limitations. 
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Fig. 1 Hash Table 

 

 

 

 

 

 

 

 

Fig. 1 represents a simple hash table that stores strings using a hash function. In the 

case shown in figure, there are no collisions and every new entry in the hash table is 

mapped to a new hash location. Such a hash function would be known as a perfect hash 

function.  

 One of the simplest example of a hash function is the mod operator ( % ). The 

mod operator will hash any value submitted to it as an input to a bucket representing 

the remainder of the mod operation. 

For example, if the hash function is defined as – 
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  Hash = Input value % 2 

Then the values will be mapped to either bucket 0 or bucket 1 

Similarly, if the hash function is defined as – 

  Hash = Input value % 7 

the values will be hashed to one of the buckets from  0, 1, 2, 3, 4, 5, 6 

Hashing and hash tables are a very common mechanism used in many computer science 

applications including indexing. There can be more complex versions of hash tables 

such as multi-level hash tables that make use of 2 or more hash functions for each level 

allowing for a larger data holding capacity without as many collisions as a single hash 

table would occur.  

One of the most important drawbacks of a hash table, even a perfect hash function is 

that a hash table cannot support range queries.  

Range queries are queries such as –  

- Find all entries starting from H 

- Find all entries between H and P 

- Find 20 entries starting from H 

- Find 20 entries before P 
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- Etc 

The reason for hash tables not supporting range queries is pretty obvious. Since the 

inputs are not stored in the order of arrival, or the absence of any meta-data recording 

this information, it is impossible to know if the entry placed in the bucket next to the 

bucket for H is also the entry that was entered in order after H, or should, according to 

some sorting mechanism, be the next valid entry. 

Another major drawback of hash tables is the size of a hash table when the input data 

increases. If the size of the hash table, when created is not large enough to 

accommodate large amounts of data, the hash table can run out of space and result in 

increasing collisions. The worst-case time complexity for a hash table with too many 

collisions would be O ( n ). Multi – level hash tables, as stated before can be one 

solution, but neither are they an elegant solution, nor are they proof to filling up 

eventually. 

2.2 Tries 

 Trie, also known as Prefix tree is a leading candidate for replacing hash tables. 

Although hash tables are almost impossible or very difficult to match in performance, 

there are data structures available that have complexities closer to hash tables than to 



 

8 

other famous data structures on the time complexity scale. And trie is one of the leading 

ones. 

The time complexity for tries is dependent on the length of the keys or data being 

inserted or searched instead of the total number of keys or data in the data structure. 

Thus, even though not constant, tries have an almost deterministic time complexity if 

the average length of the keys is known. 

For any given trie – 

 Time complexity is = O ( k )  

Where k is the length of the key. 

This makes tries a perfect candidate for keys of short lengths. 

For example, if a trie is to store 1 billion keys, of an average length 15, 

the time complexity for a search, insert or delete, on an average will be    O ( 15 )  for the 

worst case ( where the key does not exist for search and delete ). Compare this to data 

structures such as B+ trees and the complexity would be somewhere around O ( 30 ), no 

matter the length of the keys. Once again, obviously a trie cannot beat the absolute 

deterministic time complexity of a hash table. Another consideration, in this comparison 

is that the number of keys is larger than the average length of the keys.  
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Fig. 2 Trie / Prefix Tree 

 

 

 

 

 

 

 

 

 

 

Fig. 2 shows an example trie data structure. 

Each key in the trie is tokenized and each letter in the key ( for above example ) 

becomes a token. Thus, the position of any key ( and its subsequent value ) is solely 

determined by the key individually itself unlike a B+ tree where the position of key 

depends on the value of the key and other keys already present in the tree.  
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2.3 B+ Trees 

As mentioned before, B+ trees [5][6] are currently used in quite a few leading 

database Systems. MySQL with its default engine InnoDB, LMDB all use B+ trees as their 

data structure of choice for indexing. B+ trees are balanced trees whose height and 

span depends on the order of the B+ tree and number of elements in the tree. For 

example, a B+ tree with order m can hold between m/2 and m keys in each leaf node, 

thus limiting the height and span of the tree and keeping it balanced.  

For any B+ tree, the internal tree is just a means of reaching the leaf nodes. The leaf 

nodes are the ones holding the actual keys ( and their subsequent values ). 

For a B+ Tree with order -  m 

m/2 ≤ elements in leaf node < m 

The time complexities of a B+ tree not only depend on the number of elements, but also 

on the order of the tree. 

 For a B+ tree with order b  and n elements 

  Time complexity = O ( log b n) 

  Space complexity = O ( n ) 
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Fig. 3 B+ Tree 

One of the most important features, as discussed in short before , that b+ trees enable 

databases to have is range search. The reason b+ trees can perform range searches is 

because of a couple of reasons. Firstly, that all the keys are stored at the same level in 

the tree – the leaves. Secondly, all the keys in the leaves are always in a sorted order, 

inter as well as intra leaves. Meaning that if leaf one contains values 1, 2, 3  then leaf two 

( its immediate right sibling ) will contains values greater than 3, for example may be 4, 5, 

6. Thirdly, and most importantly, the part that connects the above two points and makes 

them useful, is that if all the leaf nodes are connected to each other with forward and 

backward pointers, it allows us to traverse through the leaves without re-traversing the 

tree again. Fig. 3 shows an example of a B+ tree of order 3 
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As potential candidates, not only were data structures considered individually, but also 

in combination with each other to improve performance collectively. As will be seen 

later in the second approach presented, we use a combination of two data structures to 

enable some features and save space. 

As the primary data structure to work on, we selected Trie as the candidate. Some of the 

potential improvements included using hash tables as an internal data structure in the 

nodes for finding next paths quickly, etc. 
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DEEPER LOOK INTO TRIE DATA STRUCTURE 

In the previous chapter, we discussed in brief what the trie data structure looks 

like. In this section we will iterate over some of those things while taking a detailed look 

at it and also look at some potential issues. 

As depicted in fig. 2 the trie data structure breaks down a key into tokens and 

stores each token hierarchically one below the other. The trie data structure is most 

useful in applications that need prefix matching. The Longest Prefix Match ( LPM ) 

operation is very common on tries. There can be many versions of a trie, such as a 

simple integer trie, alphabet trie or a full ascii based trie. We have performed testing on 

all the 3 above mentioned versions. An integer based trie can basically store only 

decimal numbers from    0 – 9, meaning that each node in this trie can have 0 – 9 

children and similarly the alphabet based trie stores only letters from   A – Z or a – z with 

every node having between 0 – 26 children. The ascii based trie is a more 

comprehensive version that can store numbers, small and capital letters as well as all 

ascii based symbols.  
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Fig. 4 Internal Trie Node 

3.1 Internal structure 

 

 

 

 

 

 

 

Fig 4. Shows the internal structure of a node from an ascii trie. 

The first parameter is used to detect if a word / key is formed at any point in the trie and 

helps avoid false matches. This can also be seen in Fig 2 with the last nodes of a key 

being marked in a different color. Sometimes there might be sub strings of already 

inserted keys also present as another key, therefore it is not always necessary that a key 

can be formed only at the leaf node. The second parameter - children, is a list / an array 

of pointers to child nodes. As mentioned before, for an ascii trie, this number is 256 

children ( 0 – 255 ). The data or character being represented by any node does not have 

to be stored in the node since the position of any node determines the value of that 
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node. For example, a node that is pointed to by a pointer from 97 in the children array 

in above node, automatically converts to the character a in ascii, thus defining the value 

of the node as a. For optimizing the time and space requirements of trie, we have added 

some more parameters to the node which we will see in later chapters.   

3.2 Complexity 

3.2.1 Time Complexity 

The time complexity calculation for a trie dependent on the key being searched or 

inserted. In the worst case where the key is not found, the time required asymptotically 

is to the order of the length of the key. 

 For a key with length L, 

  Trie time complexity = O ( L ) 

This is true for insert, search as well as delete operations. 

3.2.2 Space Complexity 

The worst-case space complexity for a trie would be the total number of nodes stored in 

the trie. It is pretty rare to have a trie in its worst case for space as it would need no 

more than 256 unique keys in a trie that start with a unique ascii character. 

 If the number of nodes is considered to be M, 

  Trie space complexity = O ( M ) 
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3.3 Operations on trie 

This section discusses the basic operations on trie, viz, Insert, search and delete. 

 

3.3.1 Insert 

 

 

3.3.2 Search  

 

function SET(root, len, key) 

 curr ← root 

 i ←  0 

 insertStatus ← false 

 while ( i < len ) do  

  if key[ i ] in curr.children then 

   curr ← curr.children[ key [ i ] ] 

  else 

   new ← node() 

   curr.children[ key [ i ] ] ← new 

   curr ← new 

   if i = len – 1 then 

    new.isWord ← true 

    insertStatus ← true 

  i ← i + 1 

 return insertStatus 

function GET(root, len, key) 

 curr ← root 

 i ←  0 

 found ←  false 

 while ( i < len ) do  

  if key[ i ] in curr.children then 

   curr ← curr.children[ key [ i ] ] 

   if ( i  = len – 1) and (curr.isWord = true) then 

    found ← true 

  i ← i + 1 

 return found 
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3.3.3 Delete

 

3.3.4 Ancillary function : delInternal

 

The delete operation on a trie is usually more complicated, since they key to be deleted 

might share a common prefix with another key in the trie. Due to this, the trie needs to 

be traversed once to find out the last node of the LPM and later traversed again from 

the remembered node again to delete all nodes. 

function DEL(root, len, key) 

 curr ← root 

delParent ← root 

 delChild ← 0 

 i ←  0 

 deleted ←  false 

 while ( i < len ) do  

  if key[ i ] in curr.children then 

   if ( delInternal ( curr, key [ i ] ) = true ) then 

    delParent ← curr 

    delChild ← key[ i ] 

   curr ← curr.children[ key [ i ] ] 

   if ( i = len – 1) and (curr.isWord = true) and  

   (delInternal ( curr, key [ i ] ) = false) then 

    deleted ← true 

  i ← i + 1 

 if ( deleted = true ) then 

  free ( delParent.children[ delChild ] ) 

  delParent.children[ delChild ] ← NULL 

 return found 

function delInternal(node, index) 

 i ←  0 

 while ( i < 256 ) do  

  if ( i ≠ index ) and ( node.children[ i ] ≠ NULL ) then 

   return true 

  return false 
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3.4 The problem 

3.4.1 Space Problem 

Asymptotically the space consumption of a trie does not seem too bad. With most tries 

with large amounts of data and sharing a huge amount of nodes ( in a real-world 

scenario ) the number M is not very large as compared to N ( number of keys ). The 

space complexity can also be less than some other data structures that can take O ( N ). 

 Even though asymptotic notation resembles that the space complexity is not too 

bad, the reality is different. And the main culprit for this is the pointers. For an ascii 

based trie or a byte trie, there are 256 child pointers in each node. And even though 

most pointers might not actually point to anything, NULL pointers also account for space. 

A trie with 1 billion records with each node having 256 pointers could fail quickly as an 

in-memory data structure.  

 There have been attempts at overcoming this by using hashing algorithms to 

store the pointers, but the hash functions need to be good enough and add to total 

execution time. Having an array of 256 possible positions is the simplest form of hash 

table that can be implemented. This hash table has no collisions as each ascii character 

belongs to a unique bucket in the hash table. 

3.4.2 Time problem 

Since the time complexity of tries, as seen before, depends on the length of the 

key, for scenarios such as when the length of the keys is short while the number of keys 
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is fairly large ( L <<< N ) a trie can perform better than many other data structures such 

as B+ trees which will depend on the total number of keys. 

 As seen in examples before, like in fig. 2 , tries can have common prefix paths. 

The word OFF and OFTEN in the example in fig. 2 have the Longest Common Prefix 

( LPM ) ‘OF’. If this trie is a part of a system that characterizes in heavy insertions and 

deletions, such as financial transactions, a unique problem can be observed. Deleting 

nodes from the trie immediately, and then re-inserting either the same key or a key that 

had a common prefix that was a part of the deleted nodes, will incur a cost of allocating 

new nodes and inserting them in the trie. Although this is a normal functioning of the tire, 

for certain workloads, this can be improved with a few tweaks to the algorithm of SET 

and DEL operations. 

 Fig. 5 below shows an example of a deletion in a trie. If the key OFTEN is 

deleted from the trie, the nodes T, E and N are deleted.  
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Fig. 5 Deletion in Trie 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Below is an example of series of operations to reveal the issue 

 

DEL OFTEN 

GET RAT 

GET RUTH 

SET OFTEN 

 

For the above series of operations, following will be what happens in the trie –  
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DEL OFTEN 

- Find nodes that can be deleted for the key OFTEN 

- Delete nodes T, E, N 

GET RAT 

- Search for key RAT 

- Return True 

GET RUTH 

- Search for key RUTH 

- Return False 

SET OFTEN 

- Look for existence of node O > found > move to next 

- Look for existence of node F under O > found > move to next 

- Look for existence of node T under F > not found  

- Create a new node > assign it as T child of F 

- Create a new node > assign it as E child of T 

- Create a new node > assign it as N child of E  



 

22 

Chapter 4 discusses the issue uncovered by this series of operations and the approach 

used to solve the same. 

  

OPTIMIZING TIME COMPLEXITY FOR INSERTS 

The efficiency of insert ( SET ) operation is important to a very specific workload. 

A scenario in which the trie has to handle heavy amount of insertions and deletions, 

some operations become repetitive. This issue has been discussed with example in 

chapter 3 subsection 3.2. Financial databases or real time systems are potential 

candidates of such a system. 

In order to improve the performance of the insert operations, we implement two 

strategies. 

1. Lazy Deletion with garbage collector 

2. Slab Allocation 

Benchmark results for these two strategies are shown in later chapters. 

4.1 Lazy Deletion with garbage collector 

Lazy deletion is a well-known strategy used by many applications in computer 

science. Something as simple as a cloud system relies on this strategy to delete 



 

23 

Fig. 6 Lazy Deletion in Trie 

instances a few days after the customer actually deletes it , to enable recovery in 

accidental situations or something as fundamental as hash tables with open addressing 

may delete elements with lazy deletion to allow relocation during next search [7]. 

We implement lazy deletion in the trie for our nodes with two configurable 

parameters and multithreading 
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Fig 6 shows what lazy deletion looks like for the same set of operations as defined in 

section 3.3.2 

The difference in the above trie is that the nodes T, E and N are not actually 

deleted from the trie immediately. Instead, they only get marked as deleted. A garbage 

collector thread later deletes these nodes if some conditions are not met. Following 

sections describe the conditions for garbage collection. 

The conditions mentioned above are two threshold values that decide -  

1. If a node should be actually deleted during the garbage collection or not, and  

2. When the garbage collector thread should be started. 

Later sections detail these parameters in the algorithm . In order to enable efficient lazy 

deletion and garbage collection, the basic trie node has been modified.  

 We introduce two new parameters in the node called isAlive and hot_count 

- isAlive : Boolean value that defines if a node should be counted as a part of 

the trie or not. Lazy delete operation will set this to false 

- hot_count : The count of hotness of any node. Each time a node is inserted or 

requested to be inserted ( case when node might already be present ) the hot 
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Fig. 7 Modified Trie Node 

count of the node is incremented by 1. Garbage collector will later use this 

value to decide which nodes to actually delete 

 

 

 

 

 

 

 

 

Fig 7 above represents the modified node structure. Possible values for – 

- isAlive : true / false 

- hot_count : any integer  > 1 

The garbage collector is a thread that starts after every ‘X’ amount of deletions where X 

is a configurable parameter.  This methodology of garbage collector is known as 

reference counting strategy [8]. 
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4.2 Slab allocation 

Slab allocation is a strategy used in some in memory databases such as 

Memcached [9]. Slab allocation allows the system to use pre-allocated memory or nodes 

to avoid initialization time when it is actually needed. In our solution though, we take a 

slightly different approach than Memcached. Memcached pre-allocates nodes and 

stores them in a stack with help of a parallel thread. Instead, we do not have any such 

thread doing slab allocation. We use the nodes from lazy deletion to further delay the 

process of actual memory freeing.  

A stack is maintained that can hold nodes in their initialized states. When the 

garbage collector traverses through the entire trie and determines that it needs to take 

a node out of the trie, instead of immediately deleting it, the node will be re-initialized 

to a blank state and placed on top of the slab-allocation stack. This allows for avoiding 

re-allocation of nodes during the subsequent inserts. SET operation can check for 

existence of a node in the slab-allocation stack and pick the node at the top thus saving 

on execution time. The garbage collector starts freeing the memory when the stack for 

initialized nodes is full. All the parameters discussed until now are configurable and 

depending upon the workload, can be tweaked for the best performance. 

 



 

27 

4.3 Concurrency and consistency on optimized trie 

In order to allow for concurrent requests and still maintain consistency, we use 

locking mechanisms. Although locking mechanisms are not always known as the best 

solutions for concurrency, they are the best ways to maintain consistency. In our 

solution, when the garbage collector thread starts, a locking mechanism prevents inserts 

or updates from happening. With large sizes of tries, locking the trie for the complete 

duration of the garbage collector operations can become a huge drawback. Therefore, 

we only set the lock when the garbage collector is performing the actual delete 

operation on a node or a series of nodes and release the lock as soon as the delete 

operation is completed. The garbage collector can continue traversing through the trie 

without the lock set and repeat the process when it wants to delete nodes. With a 

correct configuration of the parameters mentioned in the sections before, this results in 

a minimum insertion delay. In fact, as seen in our benchmarks, the performance gain in 

inserts is large enough to render the delay due to locking irrelevant but still maintaining 

consistency. 

4.4 Operations on optimized trie 

This section details the algorithms for SET, GET, DEL operations along with their ancillary 

functions doDeletes and delInternal. 
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4.4.1 Insert 

 

 

 

function SET(root, len, key) 

 curr ← root 

 i ←  0 

 insertStatus ← false 

 if ( delLock ≠ true ) then 

  while ( i < len ) do  

   if key[ i ] not in curr.children then 

    if (slabSize > 0 ) then 

     new ←  g_queue_pop() 

     if ( new ) and ( new.isAlive ) and 

    (new.hotClount = 1) then 

    

      slabSize ← slabSize - 1 

     else 

      new ← node() 

    else 

     new ← node() 

    curr.children[ key [ i ] ] ← new 

    curr ← new 

    if i = len – 1 then 

     new.isWord ← true 

     insertStatus ← true 

   else 

    if ( curr.children[ key [ i ] ].isAlive = false ) then 

      

 

 curr.children[ key [ i ].isAlive ← true  

    else if ( i = len – 1 ) then  

     insertStatus ← true 

    curr.children[ key [ i ] ].hotCount ← 

curr.children[ key [ i ] ].hotCount + 1 

    curr ← curr.children[ key [ i ] ] 

   i ← i + 1 

 return insertStatus 
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function DEL(root, len, key) 

 curr ← root 

delParent ← root 

 delChild ← 0 

 i ←  0 

 deleted ←  false 

 del_cnt_add ←  0 

 while ( i < len ) do  

  if ( key[ i ] in curr.children ) and  

        ( curr.children[ key [ i ] ].isAlive = true )then 

   if ( delInternal ( curr, key [ i ] ) = true ) then 

    delParent ← curr 

    delChild ← key[ i ] 

    del_cnt_add ←  0 

   curr ← curr.children[ key [ i ] ] 

   del_cnt_add ←  del_cnt_add + 1 

   if ( i = len – 1) and (curr.isWord = true) and  

   (delInternal ( curr, key [ i ] ) = false) then 

    deleted ← true 

  i ← i + 1 

 if ( deleted = true ) then 

  delParent.children[ delChild ].isAlive ← false 

  delCount ← delCount + del_cnt_add 

 return found 

4.4.2 Search 

 

4.4.3 Delete 

function GET(root, len, key) 

 curr ← root 

 i ←  0 

 found ←  false 

 while ( i < len ) do  

  if ( key[ i ] in curr.children ) and  

    ( curr.children[ key [ i ] ].isAlive = true ) then 

   curr ← curr.children[ key [ i ] ] 

   if ( i  = len – 1) and (curr.isWord = true) then 

    found ← true 

  i ← i + 1 

 return found 
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function doDeletes(root) 

 curr ← root 

 i ← 0 

 while ( i < 256 ) do  

  if ( curr.children[ i ] ≠  NULL ) then 

   if ( curr.children[ i ].isAlive = false ) and  

       ( curr.children[ i ].hotCount < hot_count_lim ) then 

   if (  slabSize < slabSizeLim ) then 

    delLock ← true 

    initializeNode( curr.children[ i ] ) 

    g_queue_push_head(labStack,curr.children[ i ] ) 

    curr.children[ i ] ← NULL 

    slabSize ← slabSize + 1 

    delLock = false 

   else 

    delLock ← true 

    free ( curr.children[ i ] ) 

    curr.children[ i ] ← NULL 

    delLock ← false 

  else 

   doDeletes ( curr.children[ i ] ) 

4.4.4 Ancillary function delInternal 

 

4.4.5 Ancillary function doDeletes – garbage collector thread 

 

function delInternal(node, index) 

 i ←  0 

 while ( i < 256 ) do  

  if ( i ≠ index ) and ( node.children[ i ] ≠ NULL ) and 

    ( node.children[ i ].isAlive = true ) then 

   return true 

  return false 
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Chapter 5 

L-TRIE – A SPACE EFFICIENT TRIE 

As discussed in chapter 3 subsection 3.2, the space consumption of a trie is usually bad. 

Having 256 pointers in each node consumes a lot of space in the main memory. To 

address this issue, we present a new variant of the trie data structure named L-Trie ( Leaf 

Trie ). Section 2.3 also discussed B+ trees. The L-Trie takes clues from both a trie and a 

B+ tree. Some rules that are followed in the L-Trie are as follows –  

1. Keys are stored only in leaf nodes 

2. Leaf nodes are fat nodes with an order m 

3. Number of keys in a leaf follow the rule –  

m/2 ≤ number of keys ≤ m 

4. To reach the leaves, we traverse through a trie who’s nodes act as anchors to 

leaves. 

5. Searching follows some specific rules that we will see in later sections. 

 

Following section details the structure of an L-Trie.  
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Fig. 8 Example of L-Trie 

 

 

 

 

 

 

 

 

Fig. 8 shows an example of a L-Trie. The internal tree in a B+ tree is replaced with a trie 

allowing traversing to the leaves in O ( L ), where L is the length of the key ( in the worst 

case – where the complete key is an anchor )  or the length of the anchor. The trie paths 

leading to the leaves  are called anchors. The leaves are all sorted lexicographically, and 

all leaf nodes are linked to each other with pointers as next and previous siblings. This 

allows traversal between leaves without re-traversing through root for range queries. 
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5.1 Anchors 

 The anchors in the L-Trie are generated dynamically as insertions happen and 

serve as paths to trace till leaves. The traversing to leaves via these anchors follows 

certain rules as listed below – 

1. For any leaf node other than left-most leaf node,  

left-key < anchor ≤ right key 

where left-key is any key in the leaf node immediately left to current leaf 

node ( previous sibling ) and right-key is any key in the current leaf node. 

2. For the leftmost leaf node,  

anchor ≤ right-key 

The initial state of the L-Trie is an empty root node. The first element inserted is inserted 

in a leaf node directly. A split-on-demand during inserts and merge-on-demand during 

deletions strategy is used in the L-Trie. This will be discussed in detail when discussing 

the operations on the L – Trie.  
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5.2 Leaves 

The leaves of a L-Trie are the nodes that hold the actual keys ( and links to values to 

each key ). Therefore, the leaves are basically fat nodes and can be of maximum order m 

and minimum order m/2. All keys in the leaves are always sorted. This enables fast 

binary search within the leaves with the complexity for this internal search being O ( log 

m ) in worst case, where m is the maximum keys that a leaf can hold. Unlike B+ trees , 

all the leaves may not be at the same level and the L-Trie can be unbalanced in worst 

case scenarios. Although, all the leaves are connected to each other with next and 

previous pointers and allow traversing through the leaves easier.  

Due to the rules used to split a leaf during insertion, a value traced to a leaf A 

might be in the previous node to node A. This scenario only has to backtrack to one 

previous node in the worst case and does not cost any time overhead asymptotically. In 

real execution time, this is only two binary search operations, one in each leaf node. 
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5.3 Operations on L- Trie 

5.3.1 Insert 

We start with an empty trie root before any keys have been inserted. As 

mentioned before we use the split-on-demand strategy during inserts on leaf nodes. 

These leaf nodes are fat-nodes which can hold between m/2 and m keys. Whenever 

the key count goes beyond m, we split the leaf node and generate necessary anchors 

using the rules stated in section 5.1. When the very first key arrives, we create a new leaf 

attached to the trie root and insert the key in the leaf. It is important to remember that a 

trie root is always an empty node. Similarly in L-Trie, the root never acts as an anchor. It 

is simply the starting point for the L-Trie. As stated in section 5.2 all keys in the leaf are 

sorted and this sorting is done after each insert. It is necessary to sort every time after 

an insert as the order of keys is important if a split operation is demanded as well as for 

any concurrent search, which uses binary search to search inside the leaf. 

During insertions, some keys shave exact prefixes present in the trie as anchors. 

Insertions for these keys is straight forward. Trace each token in a key to the already 

existing path of anchors and reach the leaf node where the key can be inserted. But for 

some keys, there might be a mismatch after matching zero to few tokens within anchors. 

How the position is found for such keys will be discussed in the search algorithm. 
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function SET(root, len, key) 

 curr ← root 

 i ←  0 

 insertStatus ← false 

 splitPoint ← ceil(tree_order/2) 

direction ← bottom 

 while ( i < len ) do 

  pathFound ←  false  

  if ( key[ i ].leafChild ≠ NULL ) then 

   if ( direction = bottom ) then 

    insertInLeaf( curr.leafChild, len, key ) 

   else if ( direction = previous ) then 

    if ( curr.leafChild.previous = NULL ) then 

     createPrevious(curr.leafChild) 

    insertInLeaf( curr.leafChild.previous, len, key ) 

   if ( curr.leafChild.no_of_keys > tree_order ) then 

    newLeaf ← new_leaf() 

    if ( curr.leafChild.next ≠ NULL ) then 

     newLeaf.next = curr.leafChild.next 

     newLeaf.next.previous = newLeaf 

    curr.leafChild.next = newLeaf 

    newLeaf.previous = curr.leafChild 

    copy_to_leaf(curr.leafChild, newLeaf,splitPoint) 

   old_key ← curr.leafChild.keys[0] 

   new_key ← newLeaf.keys[0] 

   generate_anchors( node, curr, newLeaf, key ) 

  else 

   if ( curr.children[ key [ i ] ] ≠ NULL ) then 

    curr ← curr.children[ key [ i ] ] 

    pathFound ← true 

   if ( pathFound = false ) then 

    k ← key [ i ]    

    pathFound ←  search_left( curr, k ) 

   if ( pathFound = false ) then 

    k ← key[ i ] 

    pathFound ←  search_right( curr, k ) 

    direction ←  previous 

   if ( pathFound = false ) then 

    newLeaf ← leaf_new() 

    insertInLeaf(newLeaf, len, key) 

    insertStatus ← true 

  i ← i + 1 

return insertStatus 
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5.3.2 Search 

Searching for a key in L-Trie can be divided into four broad conditions. The 

search starts like a trie by tokenizing the key and trying to find a path to the leaves 

using anchors. The four broad conditions as can be seen in the algorithm are -  

1. Leaf node is found 

2. Anchor node is found and token exactly matches the anchor node 

3. Anchor node is found and token does not exactly match any anchor but 

the trie has an anchor with smaller value 

4. Anchor node is found and token does not exactly match any anchor but 

trie has an anchor with larger value 

The search algorithm follows rules based on these four conditions and we shall see 

them in detail now. 

1. Leaf node found 

When a leaf node is found, the traversing on the trie stops. This case represents 

that either the key will be found in this leaf or the previous leaf depending upon 

which of the three remaining conditions was taken in the earlier traversing of the 
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trie. The details about these will be mentioned in the following rules. The search 

in the leaf node is a binary search. 

2. Anchor node found and token matches exactly 

When a token matches the exact found anchor, continue traversing down the trie 

by updating current pointer to the anchor just found 

3. Exact anchor not found but smaller anchor exists 

If condition 2 fails, check for the existence of the closest smaller anchor. If such an 

anchor is found, traverse to the rightmost leaf of this anchor. This sets the 

direction variable to bottom, meaning , in the next iteration when condition 1 is 

met, the binary search in the leaf will happen in the exact leaf that was reached in 

this step. 

4. Exact anchor not found but larger anchor exists 

If condition 3 fails, check for the existence of the closest larger anchor. If such an 

anchor is found, traverse to the leftmost leaf of this anchor. This sets the direction 

variable to previous, meaning, in the next iterations when condition 1 is met, the 

binary search in leaf will happen in the leaf previous to the leaf  reached in this 

step. 
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Fig. 9 Searching in a L-Trie 

 

 

 

 

 

 

 

 

 

Fig. 9 shows a case where conditions 3 and 4 are in picture. 

If we want to search for the key “Read” , we first match the token R with root 

nodes’ children and find an exact match with the anchor. Following this condition 2, we 

traverse ahead with R being our current node. After this there are 2 possible paths that 

can be taken. First path follows condition 3 where, as soon as a mis match occurs ( token 

– e, anchors available – a, o ) we search for nearest smaller anchor ( a in this case ) and 

traverse to the right most leaf of anchor a. the direction for searching here is bottom, so 

we will perform search for the key in the selected node ( node A for reference purposes ) 



 

40 

itself. The second path is the path that follows condition 4. In this condition, we search 

for the closest larger anchor ( o in this case ) and traverse to the left most leaf of anchor 

o. The direction for searching here is previous, so we will perform a search for the key in 

the previous node ( node A )  to the selected node ( node B for reference ). 

Another example of similar kind would be to search for the key “ Tutor ”. The difference 

in this case is that right from the beginning token ( T )  we never find an exact anchor 

match and thus go for condition 3 straight away. The rest of the process is the same for 

condition 3. Also worth noting here, is that for this example, there can never be 

condition 4 unless an insert operation later adds a node greater than R to the root 

nodes children. 
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function GET(root, len, key) 

 curr ← root 

 i ←  0 

 searchStatus ← false 

 direction ← bottom 

 while ( i < len ) do  

  if ( key[ i ].leafChild ≠ NULL ) then 

   if ( direction = bottom ) then 

    if ( searchInLeaf( curr.leafChild, len, key ) = NULL ) then 

     if ( searchInLeaf(curr.leafChild.previous, len, key) 

           = NULL ) then 

      searchStatus ←  false 

     else 

      searchStatus ←  true 

    else 

     searchStatus ← true 

   else if ( direction = previous ) then 

    if ( searchInLeaf ( curr.leafChild.previous, len, key ) 

= NULL ) then 

if ( searchInLeaf (curr.leafChild.previous.previous,  

     len, key ) = NULL ) then 

      searchStatus ← false 

     else 

      searchStatus ← true 

    else 

     searchStatus ← true 

  else 

   if ( curr.children[ key [ i ] ] ≠ NULL ) then 

    curr ← curr.children[ key [ i ] ] 

    pathFound ← true 

   if ( pathFound = false ) then 

    k ← key [ i ]    

    search_left( curr, k ) 

    pathFound ← true 

   if ( pathFound = false ) then 

    k ← key[ i ] 

    search_right( curr, k ) 

    pathFound ←  true 

    direction ←  previous 

  i ← i + 1 

return searchStatus 
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Chapter 6 

EXPERIMENTS AND RESULTS 

 The results of the optimizations and L-Trie are presented in this chapter. In order 

to present the results, comparisons with the original trie data structure and B+ trees are 

shown so as to allow for fair comparison.  

6.1 Data Sets 

The data sets used in the performance evaluation are mentioned bellow – 

• Small Length Keys –  

- Keys between length 5 – 8 characters 

- Example : Android, Apple, Zebra 

• Variable Length Keys – 

- Keys between length 1 – 32 characters 

- Example : &, F-spot, checoslovaquia 

• Long Length Keys –  

- Keys with length 36 characters 

- Example : uuids ( 57be90ea-8611-406f-b3d2-7668752a63bd ) 

These keys are used in evaluating both the optimizations – Insertion time and L-Trie. 
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Tab. 1 Data set characteristics 

 

 

Data-sets used for evaluation as mentioned before, display unique characteristics 

in order to enable testing the data structure for all types of situations. Some of these 

include – 

- Small value of L  

- Large number of common prefixes 

- Large value of L with limited amounts of common prefixes 

- Etc. 

The specific characteristics of the data sets we use are represented in the following table 

Data Set Characteristic 

Small Length Keys Large number of common prefixes 

Variable Length Keys Moderate number of common prefixes 

Long Length Keys Very low number of common prefixes 
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Testing against such workloads enables uncovering the performance of the data 

structure in best to worst case and also to understand the scope of the data for which 

any data structure is suitable. 

6.2 Setup used for evaluation 

The performance evaluation for all the optimizations and data sets was done on the 

following configuration –  

- Intel(R) Xeon(R) CPU  L5410  @ 2.33GHz  ( 8 cores ) 

- 64 GiB memory 

- Arch Linux  

- Kernel Version Linux p10 4.15.12-1 

 

6.3 Framework 

The performance evaluation of the optimized data structures and the original 

data structures was done using a common framework designed in house [10]. The 

framework takes as input a set of keys to insert from a file and a set of operations to be 

performed. 
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AAMSI 

Aandahl 

A-and-R 

57be90ea-8611-406f-b3d2-7668752a63bd 

c97ff316-94d6-4ce9-b37a-b22f97b29f37 

b7ffb1e6-cd18-4bca-85df-49d9dd84dc9c 

 

seqset 0 1580179 

seqdel 0 1580179 

rndget 0 1580179 

rnddel 0 1580179 

seqget 0 1580179 

Below is an example of the input file for keys – 

  

each new line represents a new key to be inserted or searched or deleted from the data 

structure. 

The specific operations to be done are taken as input from another workload file and 

look as follows –  

each line is divided into 3 parts –  

- Operation  ( seq : sequential, rnd : random, set / get / del ) 

- Start point for keys from keys file 

- End point for keys from keys file 
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seqset 0 1580179 

rnddel 0 1580179 

rndget 0 1580179 

seqset 0 1580179 

seqget 0 1580179 

seqdel 0 1580179 

6.4 Results for insert optimization 

In order to observe the performance gain in this optimization, the workload has 

to be designed in a specific way. Since the optimization allows for reducing insert times 

after having had a defined number of deletes on the data structure, the workload has to 

insert, delete, insert. There may be other operations like get in between. 

 

Above we can see the sequence of operations as mentioned before following the insert 

– delete – insert rule. Operation on line number 4 is when we can see the insertion time 

reduce. The garbage collector thread should have performed its operations during the 

execution of line 3 simultaneously. 

The results for this test reveal a huge increase in operations per sec as compared 

to a conventional trie. Graph 1 shows the comparison between a conventional trie and 

the optimized trie for all the workloads mentioned before. 
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Fig. 10 Performance for time optimization 

 

 

 

 

 

 

 

 

 

 

As seen in Fig. 10, the time optimized version performs almost two times as much as a 

normal trie with the same set of operations and keys. The performance gain seen in the 

three types of keys is different due to the nature of keys as seen in section 6.1 and their 

resulting implications. The performance gain is maximum in small length keys because 

they share a large number of prefixes. Thus, when there are deletions in the trie, many 

nodes that were not deleted are reused in either same or different keys inserted later. 
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In contrast to this, for the large length keys which are uuids, the number of 

common prefixes is low. Thus the hot_count for each node is not very high resulting in 

the garbage collector deleting many of these nodes. Also, during subsequent insertions, 

common prefixes are low and the token needed to be inserted is not already present in 

the trie ( either as alive or as marked deleted ). A combination of these factors results in 

the performance gain being low. 

 The take away from these evaluations suggests that apart from the system being 

operations heavy, data – sets with moderate to high number of common prefixes are 

the best target candidates for this optimization. On the other hand, a system that has 

low mounts of inserts and deletes or has a lower number of common prefixes  ( for e.g. 

in workload 3 – long length keys ), this system may not present improved results. 

6.5. Results for L-Trie 

The main aim of L-Trie is to improve the space efficiency of an L-Trie by building 

on top of the conventional trie and B+ tree. Apart from performing well in space 

consumption, we also see a unique result in time utilization when the length of the keys 

increases and the number of shared prefixes are less. We shall see these results in this 

section. 
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Fig. 11 Comparing space consumption 

Tab. 2 Node counts 

 

 

 

 

 

 

 

 

 

Fig. 11 shows the space consumption comparison for a conventional trie, L-Trie and B+ 

Tree. The space consumption for a L-Trie is comparable to that of a B+ tree. The most 

gain can be seen when compared to a conventional trie. The table below also shows the 

number of nodes created for a trie vs an L-Trie 

Data Set Trie nodes L-Trie internal nodes L-Trie leaf nodes 

Small Length Keys 135881 201 161 

Variable Length Keys 1420649 1222 913 

Long Length Keys 14902561 850 577 
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The data represented in the table shows the difference in the number of nodes 

created in a conventional trie and L-Trie and that the difference is huge. These results 

are generated with the max size of leaf nodes ( order of L-Trie ) m = 7000. Changing 

this value can produce better or worst results. For e.g. increasing the value of m too 

much results in increasing the time required for binary search inside the fat leaf node. It 

also results in increased time for insertions as sorting is necessary at every insert. On the 

other hand, if the size of m is set too low, the result is increased internal nodes 

( anchors ) and will bring the L-Trie closer to a conventional trie as the value is reduced 

more. It is important to understand the input data to be stored in an L-Trie and 

configure the necessary parameters accordingly. This is also true for a B+ tree. 

Not only does L-Trie perform better in space consumption, but also in execution 

time when the length of the keys increases. Although, for smaller length keys, a 

conventional trie may perform better. As seen in fig. 12 we can see the performance 

tradeoff due to the bsearch inside a fat node of size 7000 for small and variable length 

keys. Long length keys which are the biggest problem for a trie expectedly perform bad 

in a conventional trie while L-Trie performs a lot better. Another factor that can be seen 

in L-Trie is that the variation ( delta )  between the three data sets is low allowing for a 

more consistent performance. 
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Fig. 12 Comparing time efficiency 
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Asymptotically, the time complexity of L – Trie can be calculated as – 

    𝑶(𝑳 + 𝒍𝒐𝒈𝒎) 

Where L is the length of the anchor ( length of key in worst case ) and m is the 

number of keys in a leaf node ( order of L – Trie ). Log m is the complexity of bsearch 

inside the leaf node. 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

This thesis presents two optimizations to the trie data structure after having 

studied various data structures and evaluating the potential candidates. It presents a 

optimization that enables reduced insertion times. This enables transaction heavy 

workloads to increase its performance. Secondly this thesis presents a new data 

structure L – Trie that builds on principles from B+ tree and trie. L – Trie allows for much 

better space consumption making it possible to have the trie data structure as a 

potential candidate for many applications such as indexing. The time consumption of an 

L-Trie is also more consistent than many other data structures and allows for better 

performance even with large keys.  

 The work in this thesis can be extended to allow for better space and time 

consumption. The insert optimized version of trie can be made more robust by allowing 

for concurrent operations without the use of locks. The garbage collector for this version 

can also be optimized for better performance. Future work for L- Trie can be achieved 

by balancing the leaf nodes during insertions like B+ trees. B+ trees shift elements 

between leaves if their siblings have capacity. This can be extended to the L-Tries to 

reduce the number of leaves and save even more space. 
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