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ABSTRACT

REACHABLE SET COMPUTATION AND ANALYSIS FOR PERTURBED

LINEAR SYSTEMS

PRABHJEET SINGH ARORA, M.S.

The University of Texas at Arlington, 2018

Supervising Professor: Dr. Kamesh Subbarao

Determination of the set of all possible states, which a system can attain, plays

an important role in safety for critical application. Prior knowledge of this set for

the complete run-time provides critical information about how a system may evolve,

providing accurate information of all the states, which could violate constraints. The

knowledge of these states, helps in estimating control input, which can control the

system, such that, these states are eliminated from the reachable set.

Computation of reachable set of a dynamic system for a set of initial conditions

can be easily performed, provided the analytical solution of the system for all initial

conditions can be obtained. However, obtaining analytical solutions for nonlinear

systems is a non-trivial task. Therefore, numerical methods are constructed, to obtain

approximate solutions for these systems.

Owing to the recent advancements in computational technology, it is now pos-

sible to tackle nonlinear systems using numerical methods. The reduction in compu-

tational errors and the increase in the rate of computation have enhanced the quality

of results obtained from discrete approximations of continuous systems. The iterative
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property of these discrete approximations can be implemented in the form of algo-

rithms. These algorithms, in turn, compute precise numerical solutions of systems

for which analytical solutions are otherwise difficult to obtain.

The primary objective of this thesis is to formulate and construct algorithms to

compute reachable sets for linear systems and extending these algorithms to compute

reachable sets for linear systems with perturbations. The secondary objective is to

apply and verify the algorithms on a real-world application, previously studied in the

open literature, and to discuss the results obtained.

The computation of a reachable set is carried out in MATLAB R© and the com-

puted reachable sets for representative mathematical models of dynamic systems are

presented and different ideas of reachable states are discussed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

Mathematical modelling has been a significant and an important tool for progress

in various fields. “Seven Bridges of Königsberg”, is one of the most notable examples

of this. The problem, after being solved by Leonhard Euler, gave rise to Graph Theory

and laid foundation for Topology. The problem also gives a very abstract idea about

reachability, “Given, 7 bridges connecting 4 lands around the city of Königsberg in

Prussia (“System”). Is there a way to start from any of the lands (“Initial Condition”)

and go through each of the bridges once and only once?(“Reachability?”)”. With the

recent progress in mathematical modelling and computational technology, analysis of

various properties of system has become easier. These properties are related to the

states of the system, more specifically ‘dynamic systems’. These states are primarily

defined as points in a normed vector space. Knowledge of all the possible values of

these states for various initial conditions and applied inputs can be used in effective

utilization of the systems.

The Reachable Set is the set of all possible values a state can take, for a given

dynamic system, subject to the constraints over control input and the states. On the

other hand, Positive Invariant Set is the set of all possible states, which can be prop-

agated without violating state constraints. Various physical systems are represented

by mathematical models to acquire information of the states these physical systems

can attain. A survey paper written by F. Blanchini [1], describes the extensive re-
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search, which has been carried out to compute various invariant sets. While, other

survey paper written by Oded Maler [2], compiles the research which has been carried

out in the field of reachable sets.

The theory of reachable sets is extensively used in the context of unmanned

vehicle systems. One of the primary intentions of the study is Collision Avoidance

([3],[4],[5]) and Obstacle Avoidance [6] - where computing the Reachable Set is used for

confirming safety. Motion Planning [7] - utilises computation of optimal reachable set

for effective planning. Interaction between multiple unmanned vehicles ([8],[9],[10]) -

building upon a network of reachable sets and performing tasks related to cooperative

control. Error Tracking for robust control ([11],[12]) - computation of forward reach-

able set of errors are carried out to estimate the actual state with respect to desired

state. However, the extension of this theory is being carried into other research fields,

as well. “Computing the Projected Reachable Set of Stochastic Biochemical Reaction

Networks Modeled by Switched Affine Systems”, by F. Parise, M. E. Valcher and J.

Lygeros [13], and “Predicting Voltage Instability of Power System via Hybrid System

Reachability Analysis”, by Y. Susuki and T. Hikihara [14] are two of the examples of

such extensions of the theory of reachable set into different application areas.

Recently, the study of computing reachable sets has received a significant im-

petus. New procedures and methods are being developed by extending the notion

of a reachable state to fit different schema. These methods are based on level set

methods [15], stochastic approach to reachable sets [10], flow-pipe based reachable

sets [16], polyhedral set based reachable sets ([17],[18],[19]) and ellipsoidal set meth-

ods ([20],[21]). In this thesis polyhedral and ellipsoidal based approaches will be

2



looked into.

The progress is not only being carried out by building various methods, but also

by refining the computation methods and reducing approximation errors. These re-

searches primarily centralize around linear systems while focusing upon other aspects

of reachable set computation. These aspects include truncation errors from approx-

imating continuous system equations to discrete system equations, and to increase

efficiency in the computation of a reachable set for the system ([22],[23],[24]). A brief

discussion over the truncation errors will be carried out in this thesis.

1.2 Outline

This thesis will encapsulate multiple methods of computation of reachable sets

and invariant sets. These methods of computation will be built for two types of sets,

namely, Polyhedral Sets and Ellipsoidal Sets. The mathematical formulation of these

sets will be done for the linear systems and the algorithms will be built based upon the

mathematical formulation. The algorithms will then be extended over to perturbed

systems. Consequently, the reachable set will be computed for various systems and

comparison of algorithms will be made. A concise preview of each chapter is given

below -

• Chapter-2 Mathematical Preliminaries - This chapter will primarily focus

upon various definitions and theorems. Discussion will highlight the stability of

discrete approximation of continuous systems.

• Chapter-3 Problem Statements - This chapter will comprise of a brief dis-

cussion of the problem statements. It will provide an outlook over the structure

of this thesis.
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• Chapter-4 Solution Methodology - Mathematical formulation of reachable

set and invariant set will be done for linear systems. Algorithms will be provided

to compute these sets. Conditions of controllability will be derived for perturbed

systems. The algorithms will be extended to compute reachable and invariant

sets for perturbed systems. Utilising these theories, computation of forward

reachable sets for a multi-rotor problem will be carried out.

• Chapter-5 Application, Results and Discussion - Results for all the prob-

lems stated in Chapter-3 will be stated and observed. A brief discussion will be

carried out tying up the observations.

• Chapter-6 Summary and Conclusion - A concise review of the results and

methods will be carried out. Concluding remarks will be made.

• Chapter-7 Future Work - Prospective notions for extending the methods

and procedure will be debated upon.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

The definitions and theorems which shall be used for the entirety of the thesis,

are discussed in this chapter. This way the discussion of a specific topic will not

divert into explaining the preliminaries.

The chapter is divided into four sections for clarity. The sections are shown below:

1. Functional Analysis Preliminaries - Definition of norms and other matrix prop-

erties will be discussed.

2. Set Terminology - Basic literature of sets will be discussed

3. Mathematical model of Dynamic Systems - Various dynamic model and method

of discretization will be discussed.

4. Controllable, Reachable and Invariant Sets - All the definitions needed for com-

putation of Reachable Sets will be discussed.

2.1 Functional Analysis Preliminaries

These definitions are common preliminaries in functional analysis and can be

found in [25],[26]. Thus, the discussion will mostly be done on the topic which needs

specific attention.

Definition 2.1. (Normed metric spaces or Banach spaces) Let X denote a linear

space over R or C. A norm in X is a real valued function: X → R, denoted as ‖x‖,

for every x ∈X, with the following properties,
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1. Positivity,

‖x‖ > 0 if, x 6= 0 ; ‖x‖ = 0 if, x = 0 (2.1)

2. Homogenity, for all α ∈ R,

‖αx‖ = |α|‖x‖ (2.2)

3. Subadditivity,

‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈X (2.3)

Example 2.1. (Norms) For any vector, x ∈X, following are some example of norms,

‖x‖1 =
n∑
i=1

|xi| (1-norm)

‖x‖2 =

√√√√ n∑
i=1

|xi|2 (Euclidean norm)

‖x‖p = p

√√√√ n∑
i=1

|xi|p (p-norm for p > 1)

‖x‖∞ = max
{i=1,2,··· ,n}

|xi| (infinity norm)

Remark 2.1. In all the upcoming sections of this thesis, ‖ · ‖2 will be denoted as,

‖ · ‖.

Definition 2.2. (Induced Matrix Norms) Let, A : X → Y be a bounded linear map

of one Banach space X into another Banach space Y , defined as A(x) = Ax. The

induced matrix norm, ‖A‖p, is defined as,

‖A‖p = sup
‖x‖6=0

‖Ax‖p
‖x‖p

(2.4)

For all x ∈X.
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Alternately,

‖A‖p = sup
‖x‖=1

‖Ax‖p (2.5)

Definition 2.3. (Condition Number) For any invertible matrix, A ∈ Rn×n, the con-

dition number, κ(A), is defined as,

κ(A) = ‖A‖‖A−1‖

Definition 2.4. (Resolvent set and Spectrum)

1. The Resolvent set of A : X → Y consists of, λ ∈ C for which, [λI − A] is

invertible. The resolvent set is denoted by, ρ(A).

2. The Spectrum of A : X → Y consists of, λ ∈ C for which, [λI − A] is not

invertible. The spectrum is denoted by, σ(A).

Theorem 2.1. (Gelfand’s Theorem) Let, A : X → Y be a bounded linear map of

one Banach space X into another Banach space Y . Then,

1. The spectrum σ(A) is a closed, bounded, non-empty set in C.

2. The Spectral Radius of A, denoted as |σ(A)|, is defined as,

|σ(A)| = max
λ∈σ(A)

|λ| (2.6)

Thus,

|σ(A)| = lim
n→∞

‖An‖1/n (2.7)

Proof of this theorem can be found in [25].

Theorem 2.2. (Gronwall’s Inequality) Let {xn}∞n=0, {an}∞n=0 and {bn}∞n=0 be se-

quence of real numbers with bn ≥ 0, which satisfy,

xn ≤ an +
n−1∑
j=n0

bjxj, n = n0, n0 + 1, · · · (2.8)

7



For any integerN > n0, let S(n0, N) = {k where xk(
∏k−1

j=n0
(1+bj))

−1 is maximized in {n0, · · · , N}.

Then, for any θ ∈ S(n0, N),

xn ≤ aθ

k−1∏
j=n0

(1 + bj) (2.9)

In particular,

xn ≤ min{aθ : θ ∈ S(n0, N)}
k−1∏
j=n0

(1 + bj) (2.10)

Proof of this theorem can be found in [27].

2.1.1 Boundedness of Norm of Matrix Powers

The discrete systems are iterative mappings of vector x0 (x0 ∈ X). The map-

ping function Φ, also known as State Transition Matrix (discussed later), is used to

map x0 to another vector x1. The vector x1 is again mapped to x2 using the same

matrix Φ. Iterating this k times implies, that vector x0 was mapped to xk using the

matrix, Φk. Thus, to assure that vector xk remains bounded, ‖Φk‖ is required to be

bounded.

(See [28] for more details.)

The topics which shall be discussed are - behaviour of norm of non-normal matrix

powers, and the upper bound of norm of matrix powers.

Behaviour of Norm of Non-Normal Matrix Powers - To study this topic, two matrices

will be considered and the behaviour of their norms will be compared. The matrices

that are considered are shown below,

A1 =


0.97 0 0

0 0.85 0

0 0 0.6

 and A2 =


1 −0.1 0

0 1 −0.1

−0.4 0.2 0.4

 (2.11)

8



The behaviour of norm for ‖Ak
1‖ and ‖Ak

2‖ show a huge difference. The difference

being, ‖Ak
2‖ shows an oscillating nature, while, ‖Ak

1‖ has a strict decreasing nature.
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(a) Norm of matrix A1 - ‖Ak
1‖
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2k ||

Behaviour of Norm of Non-normal Matrix Powers
Value of Norm vs Power k

(b) Norm of matrix A2 - ‖Ak
2‖

Figure 2.1: Behaviour of Norm of Matrix Powers

This implies that the usage of ‖Ak‖ ≤ ‖A‖k, becomes useless for non-normal

matrices and another method to upper bound these matrices is necessary.

Remark 2.2. The matrix A2 is chosen in such a manner, because most of the matrices

that will be dealt with are of this kind. For example, Euler 1-step discretization

obtained from a continuous dynamical system,

A2 = I3 + A∆∆t

where,

A∆∆t =


0 −1 0

0 0 −1

−4 2 −6

 0.1

A∆ are the type of matrices a normal system produces.
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Upper Bound of Norm of Matrix Powers - Using Gelfand’s Theorem, it can be as-

serted that, norm of matrix powers tend to 0 if spectral radius is less than 1. How-

ever, a substantial amount of research has been performed to study ε-pseudospectra

([29],[30]) of the matrices. The conclusion being, these matrices can be upper bounded

in the following manner,

‖Ak‖ ≤M |σ(A)ε|k (2.12)

where, M ≥ 1 and |σ(A)ε| = |σ(A)| + ε where ε > 0, and σ(A)ε belongs to ε-

pseudospectra of A.

The upper bounds of the same matrices mentioned in eqn.(2.11) are shown below,
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Figure 2.2: Upper Bound of Norm of Matrix Powers

2.2 Set Terminology

All the definitions provided in this section are derived from ([31],[32]).
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Definition 2.5. (Convex Set) A set S ⊆ Rn is said to be convex if for all x1,x2 ∈ S,

αx1 + (1− α)x2 ∈ S, 0 ≤ α ≤ 1 (2.13)

Definition 2.6. (Convex Hull) For a given set, S, the convex hull is defined as the

smallest convex set containing S.

2.2.1 Set Operations for Convex Sets

Definition 2.7. (Set Scaling) Let, A ∈ Rn and α ∈ R. Then, the scaled set of A

denoted by set, αA, is defined as,

αA = {x = αa; ∀a ∈ A} (2.14)

Definition 2.8. (Set Addition/Minkowski Sum) Let,A, B ∈ Rn. Then, the Minkowski

sum be denoted by set, C = A⊕ B, is defined as,

C = {x = a + b : ∀a ∈ A, b ∈ B} (2.15)

Definition 2.9. (Set Subtraction/Erosion) Let, A, B ∈ Rn. Then, the erosion of A

w.r.t. B be denoted by set, D = A	 B, is defined as,

D = {x : x + b ∈ A, ∀ b ∈ B} (2.16)

2.2.2 Set Types

The type of sets which will be used in further discussion are - H-polytope,

V-polytope, Zonotope, and Ellipsoidal Sets.

Definition 2.10. (Halfspace) Let, H ∈ R1×n, and h ∈ R, then a halfspace in Rn is a

set X , defined as,

X = {x ∈ Rn : Hx ≤ h} (2.17)
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Definition 2.11. (Polyhedral Set) A polyhedral set is the intersection of finitely

many halfspaces. Let, H ∈ Rm×n and h ∈ Rm, then a polyhedral set in Rn is a set

X , defined as,

X = {x ∈ Rn : Hx ≤ h} (2.18)

Definition 2.12. (Polytope)A bounded polyhedral set is called polytope.

Remark 2.3. Polytopes are divided into two types: H-polytope, which are poly-

tope defined using halfspaces and V-polytope, which are defined using vertices of a

polytope.

Remark 2.4. The initial set of states x and inputs u will be chosen as polytopes,

unless specified otherwise. For x the polytope set will be represented as X and for u

the polytope set will be represented as U .

Definition 2.13. (Zonotope) A zonotope is a set such that,

Z = {x ∈ Rn : x = c +

p∑
i=1

αigi, − 1 ≤ αi ≤ 1} (2.19)

with c,g1, · · · ,gp ∈ Rn. The order of the zonotope is defined as p
n

and the short

notation is, Z = {c,g1, · · · ,gp}.[18, 19]

Definition 2.14. (Ellipsoidal Set) Let, P ∈ Rn×n be a positive definite matrix and

c ∈ Rn be the center, then the Ellipsoidal Set, denoted by ξ, is defined as,

ξ = {x ∈ Rn : (x− c)ᵀP(x− c) ≤ 1} (2.20)
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2.3 Mathematical Model of Dynamic System

2.3.1 Linear Dynamic System

The mathematical model of a SIMO linear time invariant (LTI) system, defined

in continuous time domain is,

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(2.21)

where: x(t) ∈ X ⊆ Rn, u(t) ∈ U , A ∈ Rn×n, B ∈ Rn×1; y(t) ∈ Rp, C ∈ Rn×n,

D ∈ Rp×1. Assuming that the entire state is accessible, we note, C = In (i.e,

In = In×n) and D = 0p×1.

The mathematical model of corresponding linear time invariant system, defined

in discrete time domain is,

xk+1 = Φxk + Γuk (2.22)

where, xk ∈ X , uk ∈ U , Φk ∈ Rn×n, Γk ∈ Rn

2.3.2 State Transition Matrix

For the LTI system described in eqn.(2.21), with input u(t) = 0, and initial

condition x0 = x(t0) ∈ X , the map, Φ : X×R+×R+ → X , maps x0 to x(t) ∈ X . The

matrix Φ(t, t0) is defined as state transition matrix for dynamic system in continuous

time domain.

x(t) = Φ(t, t0)x0 (2.23)

Remark 2.5. The state transition matrix satisfies the following differential equation,

Φ̇(t, t0) = AΦ(t, t0) ; Φ(t0, t0) = I
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For the linear system described in eqn.(2.22), with input uk = 0, ∀k ∈ N, the

map, Φ : X → X , maps xk ∈ X to xk+1 ∈ X ,

xk+1 = Φxk (2.24)

Definition 2.15. (Kalman Controllability Criterion) - An event (t,x) is controllable

iff it can be transferred to 0 in finite time by an appropriate choice of the input

function u(t).[33]

Further discussion, over these topics, is carried out in depth in ([34],[33]).

2.3.3 Perturbed Dynamic System

Mathematical model of a Non-Linear Dynamic System - Let, f : X ×U×R+×R+ →

X , then the mathematical model of a dynamic system in continuous time is shown

below,

ẋ(t) = f(x, u, t, t0) (2.25)

Mathematical model of Non-Linear Dynamic System Affine in Input - Let, f : X ×

R+ × R+ → X , and g ◦ u : U → X , then the mathematical model of the non-linear

dynamic system affine in input in continuous time domain is shown below,

ẋ(t) = f(x, t, t0) + g(x, t, t0)u(t) (2.26)

Perturbed Linear Dynamic Systems - Let, A : X → X , B : U → X , and f : X ×

R+ ×R+ → X , then the mathematical model of perturbed linear dynamic system in

continuous time domain is shown below,

ẋ(t) = Ax(t) + Bu(t) + f(x, t, t0) (2.27)

The function f(x, t, t0), which shall be taken into consideration will be Lipschitz Con-

tinuous.
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Definition 2.16. (Lipschitz Continuity) The function, f : Rn × R→ Rn, is globally

Lipschitz, if and only if there exists a piecewise continuous function ` : R → R+, if

for all x1,x2 ∈ Rn , t ∈ R,

||f(x1, t)− f(x2, t)|| ≤ `(t)||x1 − x2|| (2.28)

The types of functions that will be dealt with, are time independent. Thus, the

definition shall be used appropriately with those functions. The function, f : Rn →

Rn, is locally Lipschitz, iff there exists ` ∈ R+, for all x1,x2 ∈ Rn,

||f(x1)− f(x2)|| ≤ `||x1 − x2|| (2.29)

The dynamic system equation for perturbed system which shall be used is shown

below,

ẋ(t) = Ax(t) + Bu(t) + f(x) (2.30)

2.3.4 Euler 1-step Discretization

The systems that shall be discussed in this thesis are continuous systems, which

shall be discretized using Euler 1-step discretization. For example, the system given

in eqn.(2.30), will be discretized using time step ∆t as,

xk+1 − xk
∆t

= Axk + Buk + f(xk) =⇒ xk+1 = (I + A∆t)xk + B∆tuk + f(xk)∆t

Additional discussion over this type of discretisation can be found in [35].

This discretization contains truncation errors, but, aside from truncation errors, the

stability of the system is also affected. The choice of ∆t affects the spectral radius of

the discrete state transition matrix. This implies that, while discretizing, an appro-

priate time step needs to be chosen. For example, a stable system will be taken and

discretized using ∆t1 = 0.1s and ∆t2 = 0.01s and simulated for total time T = 5s
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and their norms will be compared over time. The norms give proof of existence of a

unit vector which may go unbounded if mapped using the unstable discrete transition

matrix. The continuous system matrix A, shall be taken as,

A =

 0 1

−25 −25


This is used to obtain, Φ1 = I2 + A∆t1 and Φ2 = I2 + A∆t2.
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Figure 2.3: Comparing Stability of Euler 1-step Discretized systems for different time
step.

Thus, the choice over time step must be made so that, the stability of the system

is not compromised Additional information on discretization affecting stability can

be found in ([36],[37]).

2.4 Controllable, Reachable and Invariant Sets

The definitions mentioned in this section are adopted from [38],[32],[39].

Two types of systems, will be used for the following definitions:
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1. Autonomous System -

xk+1 = ga(xk) (2.31)

2. Systems subject to external inputs -

xk+1 = g(xk, uk) (2.32)

Both the systems are subject to state and input constraints -

xk ∈ X , uk ∈ U , ∀k ≥ 0 (2.33)

x0 = x(0) and u0 = u(0). The sets X and U are polyhedral sets. Let, S ⊆ X , be a

set of initial states.

Definition 2.17. (Precursor set for autonomous system) For the autonomous system

(2.31), the precursor set to the set S is denoted as,

Pre(S) = {x ∈ Rn : ga(x) ∈ S}

Definition 2.18. (Precursor Set) For the system (2.32), the precursor set to the set

S is denoted as,

Pre(S) = {x ∈ Rn : ∃u ∈ U s.t. g(x, u) ∈ S}

Definition 2.19. (Successor set for autonomous system) For the autonomous system

(2.31), the successor set from the set S is denoted as,

Suc(S) = {x ∈ Rn : ∃x(0) ∈ S s.t. x = ga(x(0))}

Definition 2.20. (Successor Set) For the system (2.32), the successor set from the

set S is denoted as,

Suc(S) = {x ∈ Rn : ∃x(0) ∈ S, ∃u(0) ∈ U s.t. x = g(x(0), u(0))}
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Remark 2.6. Pre(S) and Suc(S) are also called “One-step backward reachable set”

and “One-step forward reachable set”, respectively.

Definition 2.21. (N-Step Controllable Set KN(S)) For a given target set S ⊆ X , the

N-step controllable set KN(S) of the system (2.31), (2.32) subject to the constraints

2.33 is defined recursively as:

Kj(S) = Pre(Kj−1(S)) ∩ X , K0(S) = S, j ∈ {1, · · · , N}

Definition 2.22. (N-Step Reachable Set RN(X0)) For a given initial set X0 ⊆ X , the

N-step reachable set RN(X0) of the system (2.31), (2.32) subject to the constraints

2.33 is defined as:

Ri+1(X0) = Suc(Ri(X0)) ∩ X , R0(X0) = X0, i = 0, 1, · · · , N − 1

Definition 2.23. (Positive Invariant Set) A setO ⊆ X is said to be positive invariant

set for the autonomous system (2.31) subject to constraints in (2.33), if

xk ∈ O ⇒ ga(xk) ∈ O, ∀k ∈ N+.

Definition 2.24. (Maximal Positive Invariant Set O∞) The set O∞ ⊆ X is the

maximal positive invariant set of the autonomous system (2.31) subject to constraints

in (2.33), if O∞ is invariant and O∞ contains all the invariant sets contained in X .

Definition 2.25. (Control Invariant Set) A set C ⊆ X is said to be control invariant

set for the system (2.32) subject to constraints in (2.33), if

xk ∈ C ⇒ ∃uk ∈ U ⇒ g(xk, uk) ∈ C, ∀k ∈ N+.

Definition 2.26. (Maximal Control Invariant Set C∞) The set C∞ ⊆ X is the max-

imal control invariant set of the system (2.32) subject to constraints in (2.33), if C∞

is control invariant and C∞ contains all the control invariant sets contained in X .
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Two types of systems, will be used for the following definitions:

1. Autonomous System -

xk+1 = ga(xk,wk) (2.34)

2. Systems subject to external inputs -

xk+1 = g(xk, uk,wk) (2.35)

Both the systems are subject to disturbance wk with state and input constraints -

xk ∈ X , uk ∈ U , wk ∈ W , ∀k ≥ 0 (2.36)

x0 = x(0) and u0 = u(0). The sets X , U and W are polyhedral sets.

Definition 2.27. (Robust Positive Invariant Set) A set O ⊆ X is said to be robust

positive invariant set for the autonomous system (2.34) subject to constraints in

(2.36), if

x0 ∈ O ⇒ xk ∈ O, ∀wk ∈ W , ∀k ∈ N+.

Definition 2.28. (Maximal Robust Positive Invariant Set O∞) The set O∞ ⊆ X is

the maximal robust positive invariant set of the autonomous system (2.34) subject

to constraints in (2.36), if O∞ is robust invariant and O∞ contains all the robust

invariant sets contained in X .

Definition 2.29. (Robust Control Invariant Set) A set C ⊆ X is said to be robust

control invariant set for the system (2.35) subject to constraints in (2.36), if

xk ∈ C ⇒ ∃uk ∈ U ⇒ g(xk, uk,wk) ∈ C, ∀wk ∈ W , ∀k ∈ N+.

Definition 2.30. (Maximal Robust Control Invariant Set C∞) The set C∞ ⊆ X is

the maximal robust control invariant set of the system (2.35) subject to constraints

in (2.36), if C∞ is robust control invariant and C∞ contains all the robust control

invariant sets contained in X .
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CHAPTER 3

PROBLEM STATEMENTS

Analysis of reachable set and control invariant set will be performed and a

procedure to estimate these sets will be developed for various types of systems. The

following topics will be discussed in the order provided below.

1. Maximal control invariant set for discrete system.

2. Reachable Set for LTI System.

3. Perturbed Linear System.

4. Perturbed Linear System with Compensation.

Each system will be used to build upon theory of reachable sets. Thus, the order will

be maintained for all the subsequent chapters.

3.1 Maximal Control Invariant Set for Discrete system

For an unstable system, which is controllable, the maximal control invariant set

will be determined. It will help in showing that, for an unstable system, given the

state constraint and control input constraint, what the initial set should be such that,

the states remain within the state constraints. This is done due to the constrained

control input. Unconstrained control input has no problem over any controllable

system. However once constrained, the states which can be controlled, require to be

estimated.

For this section the problem has been derived from [38]. The reason for taking this

problem is to begin the discussion over computation of invariant set and to extend
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this topic for perturbed system.

The system considered is in discrete state space form, and is shown below,

xk+1 =

1.5 0

1 −1.5

xk +

1

0

uk (3.1)

This system is subject to state constraints (X ) and input constraints (U), shown

below,

X = {x ∈ R : H0x ≤ h0}

U = {u ∈ R : Huu ≤ hu}
(3.2)

where, for the state constraints,

H0 =



1 0

0 1

−1 0

0 −1


and h0 =



10

10

10

10


and, for the control input constraints,

Hu =

 1

−1

 and hu =

5

5



3.2 Reachable Set for LTI System

The reachable set provides us the information of whether a given system under

state and control input constraints, will ever be able to attain a desired state or a

set of states. If the desired state or set of states is contained within the reachable

set, those states are called reachable. Before proceeding with perturbed systems,

the linear dynamic system shall be discussed. The procedure of building a reachable

set will then be extended to perturbed systems. Furthermore, the maximal control

invariant set will also be formulated so as to compare it with the maximal control
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invariant set of perturbed system.

The system discussed in this section is a Spring-Mass-Damper (SMD) system, with

the system being stable. The state equation of this system is,

ẋ1(t) = x2(t)

ẋ2(t) = −10x1(t)− 5x2(t) + u(t)

(3.3)

Defining, x(t) =

[
x1(t) x2(t)

]ᵀ
, the eqn.(3.3) can be written in state space form as,

ẋ(t) = Ax(t) + Bu(t) (3.4)

where,

A =

 0 1

−10 −5

 and B =

0

1


Now, for the given state and control input constraints, X ⊂ R2 and U ⊂ R, the

reachable set and control invariant set for system eqn.(3.4) is to be estimated.

The state constraint set X0 and control input constraint set U is as shown below,

X0 = {x ∈ R : H0x ≤ h0}

U = {u ∈ R : Huu ≤ hu}
(3.5)

where, for the state constraints,

H0 =



1 0

0 1

−1 0

0 −1


and h0 =



10

10

10

10


and, for the control input constraints,

Hu =

 1

−1

 and hu =

umax
umax


Various umax will be chosen to obtain the result and will be mentioned in result section

about the choice.
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3.3 Perturbed Linear Dynamic System

The procedure to compute reachable set and control invariant set for perturbed

system will be built upon. This will be done by extending the idea of reachable set

and control invariant set from linear systems to perturbed systems.

The system under consideration, is the same Spring-Mass-Damper (SMD) system

with additional perturbation `sin(x2). The state equation of this system is shown

below,

ẋ1(t) = x2(t)

ẋ2(t) = −10x1(t)− 5x2(t) + u(t) + `sin(x2)

(3.6)

Defining, x(t) =

[
x1(t) x2(t)

]ᵀ
, f(x) =

[
0 `sin(x2)

]ᵀ
, the eqn.(3.6) is written in

state space form,

ẋ(t) = Ax(t) + Bu(t) + f(x) (3.7)

where,

A =

 0 1

−10 −5

 and B =

0

1



The system (3.7) is discretized using Euler 1-step discretization, with time step ∆t

holding control input u(k∆t) = uk from time k∆t→ (k+ 1)∆t. This will be the only

discretization scheme focused upon.

xk+1 − xk
∆t

= Axk + Buk + f(xk)

Thus, an approximate mathematical model of the perturbed system in discrete time

is obtained.

xk+1 = Φxk + Γuk + f(xk)∆t (3.8)

23



where, Φ = (I + A∆t), and Γ = B∆t.

The function f(xk) is s.t. it is globally Lipschitz. Implying that,

‖f(x1)− f(x2)‖ ≤ `‖x1 − x2‖ (3.9)

The coefficient of the perturbation sin(x2), was chosen to be stated as ` for the same

reason. The Lipschitz constant of sin(x) is 1, thus, `sin(x) will have Lipschitz constant

`.

3.4 Perturbed Linear Dynamic System with Compensation

The same theory shall now be extended to a practical problem - Multi-rotor

System under First-order Aerodynamic Effects [12]. The aim is to estimate the outer

approximated Forward Reachable Set (FRS) for the system. The purpose for esti-

mating the outer approximated FRS rather than the exact reachable set, is to bypass

handling the rotation matrix that appears in the perturbation. Furthermore, different

sets will be used to compute and analyse the reachable sets.

For all the cases, prior to this, polytopes will be used, while in this case, ellipsoidal

sets will be focused upon. Moreover, no constraints shall be considered for the states.

The system formulation has already been done in few papers ([12],[40],[41],[42]). Thus,

the formulation will not be discussed in depth, instead the system will be described

directly. The system’s dynamic equation is shown below -

p̈ = −ge3 + γzb − ĉdRΠRᵀṗ− c̃dRΠRᵀṗ (3.10)

Here, p ∈ R3, is the position of the multi-rotor, γ ∈ R, is the input, e3 =

[
0 0 1

]ᵀ
,

zb is the multi-rotor body z-axis unit vector expressed in inertial frame, ĉd ∈ R, is

estimated coefficient of first-order aerodynamic effect, c̃d ∈ R, is the residual error

while estimating ĉd, and other errors, R ∈ R3×3, is the rotation matrix of the multi-
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rotor and, Π = I3 − e3e
ᵀ
3.

Remark 3.1. The rotation dynamics is not mentioned, because the only property of

rotation matrix, which will be utilised is - ‖R‖ = 1. Furthermore, ‖Π‖ = 1, proof of

this is trivial. Thus, ‖RΠRᵀ‖ ≤ 1.

Defining, ep and ev as the errors in position and velocity w.r.t. reference position,

and velocity respectively. The reference trajectory position and velocity is denoted

by, pr and ṗr, respectively. Therefore, ep = p− pr and ev = ṗ− ṗr.

The control input is designed by taking into account,

1. Feedback - Ffb = −Kpep −Kvev.

2. Upward thrust - ge3.

3. Reference acceleration - p̈r.

4. Compensation - ĉdṗ.

All these inputs are used to produce desired acceleration. The desired acceleration

is used to compute the control input, γ, as normalised thrust and zb
d, as the desired

thrust direction.

p̈d = Ffb + ge3 + p̈r + ĉdṗ

zb
d =

p̈d

‖p̈d‖

γ = (p̈d − ĉdṗ)ᵀzb

(3.11)

Using aforementioned equations (3.10, 3.11), the equation for position dynamics is

converted into set of equations of error dynamics. The position of multi-rotor is now

defined with the help of error around the reference trajectory. A set of initial errors

is considered and the forward reachable set of those initial set of errors will be de-

termined. These sets determine where the multi-rotor will be, around the reference
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position. The dynamics in error form is shown below,

ėp = I3ev

ėv = −Kpep −Kvev + ‖p̈d‖sφu− c̃dRΠRᵀṗ

(3.12)

The value of |sφ| ≤ 0.052 (≈ sin(3◦)), this upper limit will be denoted by s̄φ = 0.052.

Rewriting the system (3.12), using e =

[
ep ev

]ᵀ
.

ė = Ae + B‖p̈d‖sφu−

 03,3

c̃dRΠRᵀṗ

 (3.13)

Here,

A =

 03,3 I3

−Kp −Kv

 , (Kp = 10I3, Kv = 6I3) and B =

03,3

I3


Using Euler 1-step discretization, with time step ∆t = 0.05s, eqn. (3.13) is discretized.

ek+1 = Φek + Γ‖p̈dk‖sφuk −

 03,3

c̃dRkΠRᵀ
kṗk

∆t (3.14)

Φ = (I6 + A∆t) and, Γ = B∆t.

The discrete equation (3.14), will be further divided into linear system equation,

with ē being the linear counterpart, and δe being the correction, ie. e = ē + δe. The

set of errors form an ellipsoidal set, ξ0 = {e0 | eᵀ
0P0e0 ≤ 1}, where, e0 is the initial

value of e, and initial condition for δe is, δe0 = 0. Thus, the initial condition for the

linear set can be defined as, ξ̄0 = {ē0 | ēᵀ
0P0ē0 ≤ 1}.
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The reference trajectory for the system is taken as,

pr =

[
5sin(0.4πt) + 1 5cos(0.4πt) 1

]ᵀ
m

ṗr =

[
2πcos(0.4πt) −2πsin(0.4πt) 0

]ᵀ
m s−1

(3.15)

Where, t is time, with total run-time of T = 5s.

Two different sizes of initial sets for error are considered, so as to observe difference

in the results, if it exists. The two set of initial errors are taken as,

ξ̄0s = ξ0s = {ē0 | ēᵀ
0P0sē0 ≤ 1}, P0s =

100I3 03,3

03,3 25I3

 (3.16)

ξ̄0b = ξ0b = {ē0 | ēᵀ
0P0bē0 ≤ 1}, P0b =

1.56I3 03,3

03,3 0.39I3

 (3.17)

The FRS of these initial sets need to be estimated for two cases:

1. Uncompensated Case - In this condition, ĉd = 0 and c̃d = 0.35.

2. Compensated Case - In this condition, ĉd = 0.30 and c̃d = 0.05.
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CHAPTER 4

SOLUTION METHODOLOGY

The problems will be addressed in the same order as they were presented in

Chapter 3. Each procedure obtained will either be used in further cases, or will be

extended further to comply with the problem.

4.1 Maximal Control Invariant Set for Discrete system

The system can be represented as,

xk+1 = Φxk + Γuk (4.1)

where,

Φ =

1.5 0

1 −1.5

 and Γ =

1

0

 (4.2)

The above mentioned system is unstable, yet controllable. If no condition is applied

on uk, every state can be kept within the state constraints. However, given the

control input constraints, a limitation develops over the states that can be kept within

the state constraints. Control invariant set is used in determining which states will

never violate the state constraints, when constraint over control is applied. This

is done to determine Safe Sets. To construct the maximal control invariant set,

the algorithm was constructed and written in line with theory mentioned in these

references ([38],[39]). The algorithm is given below,
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Algorithm 4.1.1: Computation of Maximal Control Invariant Set

Data: X0, U , Φ, Γ

Result: Maximal Control Invariant Set C∞

k ← 0;

X−k ← X0;

repeat

X−(k+1) ← (X−k ⊕ ((−Γ) ◦ U)) ◦Φ;

C ← X−(k+1) ∩ X−k;

X−(k+1) ← C;

k ← k + 1;

until X−k = X−k+1;

C∞ = C

4.2 Reachable Set for LTI System

The system is of the form:

ẋ = Ax + Bu (4.3)

The discretization of the system (4.3) can be carried out using multiple methods.

The method which will be focused upon is “Euler 1-step discretization”. The forward

reachable set will be estimated, using different time steps. This is to show the differ-

ence that occurs in computation of forward reachable set due to large time step and

small time step.
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Using the discretization that was mentioned, the discrete system will have the form -

xk+1 = Φxk + Γuk (4.4)

where, Φ = (I2 + A∆t) and Γ = B∆t. The procedure to find reachable set of the set

X0 will be discussed in parts, building up the whole procedure step-wise.

4.2.1 Reachable Set for Autonomous Linear System

The theory to build a reachable set for autonomous linear system is very com-

mon and can be referred to in [39]. However, the discussion over this method will

still be made.

The reachable set of a Linear System with no control input (autonomous) shall be

looked upon first. This system will be represented as,

xk+1 = Φxk (4.5)

Now taking the initial set and state constraints, as X0 = {x ∈ Rn : H0x ≤ h0},

where,

H0 =



1 0

0 1

−1 0

0 −1


and h0 =



10

10

10

10


(4.6)

Considering that Φ is invertible, the successor set of X0, can be obtained as follows,

x0 = Φ−1x1

H0x0 = H0Φ
−1x1 ≤ h0
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Applying this condition,

Suc(X0) = {x ∈ Rn : H0Φ
−1x ≤ h0} (4.7)

The intersection of Suc(X0) and X0 will give us the 1-step forward reachable set Ra,1.

The intersection implies that x must follow the constraints of X0 and Suc(X0). These

constraints can be concatenated to be written as a single set of constraint,

H1 =

 H0

H0Φ
−1

 and h1 =

h0

h0

 (4.8)

The 1-step forward reachable set can be represented using the new constraints given

in eqn. (4.8), as follows,

R1 = {x ∈ Rn : H1x ≤ h1} (4.9)

Defining, X1 = R1, and iterating the same procedure for X1 as used for X0. The

successor set Suc(X1) will be given as follows,

Suc(X1) = {x ∈ Rn : H1Φ
−1x ≤ h1}

=

{
x ∈ Rn :

H0Φ
−1

H0Φ
−2

x ≤

h0

h0

} (4.10)

Taking the intersection, Suc(X1) ∩ X0, the constraints are updated,

H2 =


H0

H0Φ
−1

H0Φ
−2

 and h2 =


h0

h0

h0

 (4.11)

The 2-step reachable set can be similarly represented as shown in eqn.(4.9),

R2 = {x ∈ Rn : H2x ≤ h2} (4.12)
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Thus, iterating this over k-steps, produces the k-step reachable set Rk. The set thus

formed is represented as,

Rk = {x ∈ Rn : Hkx ≤ hk} (4.13)

Where,

Hk =



H0

H0Φ
−1

...

H0Φ
−k


and hk =



h0

h0

...

h0


(4.14)

This is the basic procedure around which the n-step reachable set is formulated which

leads to a discussion of feasibility of the method. The discussion is broken down as

follows,

1. The size of Hk and hk - Let’s say, the full run-time of a system is T = 10s,

and the time step is taken as ∆t = 0.01s. Thus, the total number to steps will

be, kf = 104. If the size of our initial constraint matrix H0 is 4 × 2, the final

constraint matrix Hk will be of size 40, 000 × 2. Any higher run-time or lower

discretization time step, will only increase this size.

2. What if Φ is not invertible? - The formulation of the reachable set, was based on

the idea that Φ is invertible, but for non invertible matrix, the above formulation

becomes useless.

To address these problems, the idea will be shifted from constraints to vertices of the

polytope. The mapping done by the matrix Φ is linear, which implies that mapping

of a line using Φ, remains a line. Thus, taking two points from that given line and

mapping them using Φ, the new points will be on the same mapped line. This implies,

the polytope mapped using Φ, can be obtained using its vertices.
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Remark 4.1. For all the discussion on vertices following notation will be used - Vk

is vertices of Xk.

To work with vertices, convex hull of all points will be needed. This will provide

an appropriate number of vertices to form the polytope. The only problem being,

there is no mathematical formulation of this method. Thus, an algorithm to compute

the reachable set is developed, which will give the desired result. This algorithm was

written in line with the theory mentioned in references [38],[39]. The algorithm is

shown below,

Algorithm 4.2.1: Computation of Reachable Set of Linear Autonomous

System

Data: X0, Φ, kf .

Result: kf -step Reachable Set Rkf .

k ← 0;

Xk ← X0;

V0 ← con2vert(X0);

Vk ← V0;

while k ≤ kf do

Vk+1 ← Φ ◦ Vk;

Xk+1 ← vert2con(Vk+1);

R ← Xk+1 ∩ X0;

Vk+1 ← con2vert(R);

k ← k + 1;

end

Rkf = R
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Remark 4.2. The functions described as “con2vert” and “vert2con”, are func-

tions con2vert.m[43] and vert2con.m[44] written in MATLAB R©, by ‘Michael Kleder’.

Below are the use of each function:

1. con2vert - Function to obtain vertices of polytope from constraints of polytope.

2. vert2con - Function to obtain constraints of polytope from vertices of polytope.

These functions will be used to describe their roles in the algorithm.

Remark 4.3. For detailed information of Minkowski sum of polytopes, one can refer

to [45].

Remark 4.4. For detailed information on polytopes and zonotopes and their ap-

proximate conversions, so as to implement changes in the algorithm s.t. computation

time can be reduced further (see [46]).

4.2.2 Reachable Set for Linear System

The theory of building the procedure and algorithm of reachable sets for Linear

Systems, was referred from [18],[19]. The procedure to construct reachable set of linear

autonomous system shall be extended, for linear systems with control input. Firstly,

the system (4.4) whose initial state is x0 = 0, needs to be considered. Secondly, the

set of all the possible states reachable using the control, uk, needs to be computed.

Accordingly, from the eqn.(4.4),

xk+1 = Γuk + ΦΓuk−1 + · · ·+ ΦkΓu0 (4.15)

We know that, |uk| ≤ umax. Using this, eqn.(4.15) is rewritten as,

xkf = umax[Γαkf−1 + ΦΓαkf−2 + · · ·+ Φkf−1Γα0], ∀0 ≤ i ≤ kf − 1, αi ∈ [−1, 1]

(4.16)

34



The set of xkf which is formed is called a zonotope. Hence, the reachable set will be

Rkf = {xkf ∈ Rn, uk ∈ U , αk ∈ [−1, 1], ∀0 ≤ k ≤ kf ∈ N0 :

xkf = umax

kf−1∑
i=0

Φ(kf−1)−iΓαi}
(4.17)

If the initial state is non-zero (x0 6= 0), the zonotope will be centred around Φkf x0.

Thus, the reachable set will be,

Rkf = {xkf ∈ Rn, uk ∈ U , αk ∈ [−1, 1], ∀0 ≤ k ≤ kf ∈ N0 :

xkf = Φkf x0 + umax

kf−1∑
i=0

Φ(kf−1)−iΓαi}
(4.18)

Thereafter, if the initial state itself belongs to a set, and the reachable set for all

those states is needed to be determined, then Minkowski sum of all the states Φkfx0

and the zonotope needs to be performed. The algorithm was written in line with the

theory mentioned in these references [38],[39]. The algorithm to estimate the forward

reachable set of linear systems, is written below,

Remark 4.5. For boundedness of all states in reachable set, see [47].
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Algorithm 4.2.2: Computation of Reachable Set of Linear System

Data: X0, U , Φ, Γ, kf

Result: kf -step Reachable Set Rkf .

k ← 0;

Xk ← X0;

V0 ← con2vert(X0);

Vk ← V0;

while k ≤ kf do

Vk+1 ← (Φ ◦ Vk)⊕ (Γ ◦ U);

Xk+1 ← vert2con(Vk+1);

R ← Xk+1 ∩ X0;

Vk+1 ← con2vert(R);

k ← k + 1;

end

Rkf = R

4.3 Perturbed Linear Dynamic System

For the perturbed system (3.6), finding the appropriate condition over `sin(x2)

is first priority. Although, (A,B) are controllable, the value of ` determines if the

state remains bounded. Thus, a general perturbation f(x) shall be taken and the

condition over ` will be determined.

The choice over the time step for Euler 1-step discretization, will be carried out in

linear dynamic system section. Thus, the discretized system (3.8) will be taken as it

is.
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4.3.1 Condition for Lipschitz Constant

The principle of superposition cannot be applied because of the nonlinear per-

turbation f(xk). Hence, the discrete equation is separated such that, xk = x̄k + δxk.

The separation is carried in such a way that, x̄k follows the linear dynamic system,

and δxk is the correction.

All the states in linear system will be denoted by x̄k and the states in non-linear

system will be denoted by xk.

The discretization of both system is done using Euler 1-step discretization. Therefore,

the system in discrete time becomes,

Linear system -

x̄k+1 = (I + A∆t)x̄k + B∆tuk

Perturbed linear system -

xk+1 = (I + A∆t)xk + B∆tuk + f(xk)∆t

Comparing both systems,

xk+1 − x̄k+1 = Φ(xk − x̄k) + f(xk)∆t

= Φ(xk − x̄k) + (f(xk)− f(x̄k))∆t+ f(x̄k)∆t
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We know from Lipschitz condition that, ‖(f(x1)− f(x2))‖ ≤ `‖(x1 − x2)‖. This can

be re-written as, ‖(f(x1)− f(x2))‖ = α`‖(x1 − x2)‖, where 0 ≤ α ≤ 1.

xk+1 − x̄k+1 = (Φ(xk − x̄k) + αk`‖(xk − x̄k)‖f̂k∆t+ f(x̄k)∆t

= (Φ(xk − x̄k) + αk`f̂kê
ᵀ
k‖(xk − x̄k)‖êk∆t+ f(x̄k)∆t

= (Φ + αk`f̂kê
ᵀ
k∆t)(xk − x̄k) + f(x̄k)∆t

= (Φ + αk`Ck∆t)(xk − x̄k) + f(x̄k)∆t

where, Ck = f̂kê
ᵀ
k.

Now, as stated earlier xk = x̄k + δxk, thus, substituting, xk − x̄k = δxk.

δxk+1 = (Φ + αk`Ck∆t)δxk + f(x̄k)∆t

The matrix, (Φ + αk`Ck∆t) changes at each step, thus, use of the Jordan canonical

form is restricted. Therefore, αk`Ck∆t is separated completely and only Φδxk is

eliminated.

δxk+1 = Φδxk + f(x̄k)∆t+ αk`Ck∆tδxk

= Φδxk + f(x̄k)∆t+ αk`Ck∆tδxk

= Φk+1δx0 +
k∑
i=0

(Φ(k−i)f(x̄i) + Φ(k−i)αi`Ciδxi)∆t

The initial condition for both systems is the same, x0 = x̄0, which leads to δx0 = 0.

δxk+1 =
k∑
i=0

(Φ(k−i)f(x̄i) + Φ(k−i)αi`Ciδxi)∆t

‖δxk+1‖ = ‖
k∑
i=0

(Φ(k−i)f(x̄i) + Φ(k−i)αi`Ciδxi)∆t‖

‖δxk+1‖ ≤ ‖
k∑
i=0

Φ(k−i)f(x̄i)∆t‖+
k∑
i=0

‖Φ(k−i)‖‖αi`Ci‖‖δxi‖∆t
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It should be noted that, 0 ≤ αi ≤ 1 , ‖Ci‖ = 1 ,∀i ≥ 0.

‖δxk+1‖ ≤ ‖
k∑
i=0

Φ(k−i)f(x̄i)∆t‖+ `(
k∑
i=0

‖Φ(k−i)‖‖δxi‖)∆t (4.19)

Denoting, Sk = ‖
∑k

i=0 Φ(k−i)f(x̄i)∆t‖, the equation is hereby, simplified to,

‖δxk+1‖ ≤ Sk + `(
k∑
i=0

‖Φ(k−i)‖‖δxi‖)∆t (4.20)

Defining D ⊆ R as a set of ‖δxk‖, ∀k ∈ N0 (i.e., D = {‖δx0‖, ‖δx1‖, · · · , ‖δxkf‖}).

For ‖δxk‖ to be bounded, sup(D) must exist. Let, the supremum be denoted by

δm ∈ R+, i.e., ‖δxk‖ ≤ δm, ∀‖δxk‖ ∈ D.

We also know that, ‖Φk‖ will be bounded if the spectral radius is less than 1

(|σ(Φ)| < 1). It is established that, ‖Φk‖ ≤ M |σ(Φ)ε|k, where σ(Φ)ε belongs to

the ε-pseudospectra of Φ.

‖δxk+1‖ ≤ Sk + `(
k∑
i=0

M |σ(Φ)ε|(k−i)δm)∆t

≤ Sk +

(
1− |σ(Φ)|(k+1)

1− |σ(Φ)ε|

)
`Mδm∆t

≤ Sk +
`Mδm∆t

1− |σ(Φ)ε|

The above condition is for all 0 ≤ k ≤ kf −1. Subtracting δm from both sides we get,

‖δxk+1‖ − δm ≤ Sk +
`Mδm∆t

1− |σ(Φ)ε|
− δm

For some k, ‖δxk+1‖ − δm = 0, leading to,

0 ≤ Sk +
`Mδm∆t

1− |σ(Φ)ε|
− δm

=⇒
(

1− `M∆t

1− |σ(Φ)ε|

)
δm ≤ Sk
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δm was defined as the supremum or the least upper bound of D. Thus, having another

number larger than δm can guarantee the existence of it. This leads to the condition

shown below,

` <
1− |σ(Φ)ε|
M∆t

(4.21)

It is not a necessary, but just a sufficient condition. The reason for this condition to be

just sufficient, is that it guarantees existence but does not guarantee unboundedness

when the condition is violated. If, say the range-space of f is the same as Buk∆t and

is bounded, it will be seen how this condition is not needed.

Remark 4.6. For verifying the condition over Lipschitz constant `, the derivation of

the same condition will be done using ‘Gronwall’s Inequality’. Using eqn.(4.20) and

‖Φk‖ ≤M |σ(Φ)ε|k, we get,

‖δxk+1‖ ≤ Sk +M`(
k∑
i=0

|σ(Φ)ε|k−i‖δxi‖)∆t

Dividing the equation by |σ(Φ)ε|k+1,

|σ(Φ)ε|−(k+1)‖δxk+1‖ ≤ |σ(Φ)ε|−(k+1)Sk + (
k∑
i=0

M`∆t

|σ(Φ)ε|
(|σ(Φ)ε|−i‖δxi‖))

Applying the ’Gronwall’s Inequality’,

|σ(Φ)ε|−(k+1)‖δxk+1‖ ≤ |σ(Φ)ε|−(k+1)Sm

k∏
i=0

(1 +
M`∆t

|σ(Φ)ε|
)

Multiplying |σ(Φ)ε|k+1 to the equation,

‖δxk+1‖ ≤ |σ(Φ)ε|−1Sm(|σ(Φ)ε|+M`∆t)k

For ‖δxk+1‖, to be upper bounded, (|σ(Φ)ε| + M`∆t) needs to be less than 1, i.e.,

(|σ(Φ)ε|+M`∆t) ≤ 1. Thus,

` <
1− |σ(Φ)ε|
M∆t

(4.22)

Thus, verifying the condition over Lipschitz constant `.

40



4.3.2 Case 1 - f is in the Range-space of Control Input (i.e. Γu) and is Bounded

This is a very special case. The reason being, if f is bounded and in the range-

space of control input, it is controllable no matter the value of Lipschitz constant.

However, for the sake of completeness, the condition shall be derived. Considered

below, are two systems for this case, linear system and perturbed system. The aim

will be to determine, the additional control input needed for the reachable set of linear

system to completely bound the reachable set of perturbed system. The discrete

state transition matrix (Φ) and control matrix (Γ) for both the systems shall be

taken same. The condition over control input, for linear system shall be taken as,

UL = {uk,L ∈ R : |uk,L| ≤ umax,L}, and for perturbed system shall be taken as,

UN = {uk,N ∈ R : |uk,N | ≤ umax,N}.

1. Linear system.

xk+1,L = Φxk,L + Γuk,L (4.23)

2. Perturbed System.

xk+1,N = Φxk,N + Γuk,N + Γf(xk,N) (4.24)

Remark 4.7. f(xk,N) is in range-space of Γu, thus, it is represented as Γf(xk,N).

Let, xk,N −xk,L = δxk, also let, uk,N −uk,L = ∆uk. Now, subtracting eqn.(4.23) from

eqn.(4.24),

δxk+1 = Φδxk + Γ∆uk + Γf(xk,N) (4.25)

Taking, x0,N = x0,L =⇒ δx0 = 0. Taking k = 1, it can be observed that,

δx1 = Γ∆u1 + Γf(x1,N)

= Γ(∆u1 + f(x1,N))
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Choosing ∆u1, s.t.,

∆u1 + f(x1,N) = 0 =⇒ δx1 = 0 (4.26)

It can be guaranteed that x1,L = x1,N , i.e., the state reachable by perturbed system

after the 1st step, is also reachable by the Linear System with higher control.

Now, this procedure can be iterated for all kf steps, giving us the condition over

control law as such,

∆uk + f(xk,N) = 0 (4.27)

If the choice over ∆uk, is actually feasible, it will be possible to guarantee that, xk,L =

k,N, i.e., the state reachable by perturbed system after k-steps, is also reachable by

the Linear System with higher control.

Re-writing eqn. (4.27), by substituting ∆uk with uk,N − uk,L,

uk,L = uk,N + f(xk,N)

As stated before, ∀k, f(xk,N) is bounded. Let, the bound on f(xk,N) be F , i.e.

f(xk,N) ≤ F ∀0 ≤ k ≤ kf . Now, the control input constraint of Linear system,

umax,L is chosen s.t.,

|uk,L| ≤ umax,L = umax,N + F (4.28)

The choice over umax,L mentioned in (4.28) is made such that, ∆uk ≥ f(xk,N). This,

implies that the choice of ∆uk, as mentioned in eqn. (4.27), is feasible.

Now, that the constraint over control input for linear system has been determined, it

can be stated that -

’All the States Reachable by Perturbed System (4.24), are also Reachable by the Lin-

ear System (4.23), given the constraint over control input umax,L, is chosen as shown
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in eqn.(4.28). Thus, for bounded perturbations in range-space of Γu, the Perturbed

System is controllable.’

In other words, if Rkf ,N is reachable set of Perturbed System (4.24), and Rkf ,L be

the reachable set of Linear System (4.23), Rkf ,N ⊆ Rkf ,L, if umax,L = umax,N + F .

Therefore, as the reachable set of the perturbed system is always upper bounded

by the reachable set of the linear system, no condition over the Lipschitz constant

`, is hence, required for this case. The problem in focus of this section is exactly of

this kind. Where, `sin(x2) is a bounded function, thus, −∞ < ` < ∞ works for the

system.

Remark 4.8. Equation (4.28) will be used to evaluate umax for computation of upper

bounding reachable set.

4.3.3 Case 2 - f is in the Range-space of Control Input (i.e. Γu) and is Lipschitz

Continuous

As in the previous case, it was demonstrated that perturbed system is bounded

using, Rkf ,N ⊆ Rkf ,L and Rkf ,L is bounded. The same procedure will be followed,

and the condition over ` will be estimated for this case. Both identical systems shall

be taken, but, the control law, for the linear system shall be taken little differently,

i.e., uk,L = vk,L + Kkxk,L, where, |vk,L| ≤ vmax,L. The perturbed system control is

taken same, |uk,N | ≤ umax,N . The systems shall be stated once again.

1. Linear system.

xk+1,L = Φxk,L + Γ(vk,L + Kkxk,L) (4.29)

2. Perturbed System.

xk+1,N = Φxk,N + Γuk,N + Γf(xk,N) (4.30)
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Remark 4.9. f(xk,N) is in range-space of Γu, thus, it is represented as Γf(xk,N).

Let, xk,N −xk,L = δxk, also let, uk,N − vk,L = ∆uk. Now, subtracting eqn.(4.29) from

eqn.(4.30),

δxk+1 = Φδxk + Γ(∆uk −Kkxk,L) + Γf(xk,N) (4.31)

Taking, x0,N = x0,L =⇒ δx0 = 0. Observing the system for k = 1,

δx1 = Γ(∆u1 −K1x1,L) + Γf(x1,N)

= Γ(∆u1 −K1x1,L + f(x1,N))

Choosing ∆u1, s.t.,

∆u1 −K1x1,L + f(x1,N) = 0 =⇒ δx1 = 0 (4.32)

It can be guaranteed that x1,L = x1,N , i.e., the state reachable by the perturbed

system after the 1st step, is also reachable by the linear system with higher control.

This procedure is iterated for all kf steps, giving us the condition over control law

such as,

∆uk −Kkxk,L + f(xk,N) = 0 (4.33)

If the choice over ∆uk, Kk, is actually feasible, it will be possible to guarantee

that, xk,L = xk,N , i.e., the state reachable by perturbed system after k-steps, is also

reachable by the linear system with higher control.

Rewriting eqn. (4.33), by substituting ∆uk with uk,N − vk,L, and getting,

vk,L + Kkxk,L = uk,N + f(xk,N)

It is not known, if f(0) will be 0.

vk,L + Kkxk,L = uk,N + (f(xk,N)− f(0)) + f(0) (4.34)
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Let, f(0) = F0, s.t., |F0| <∞.

The first part of control law uk,L, |vk,L| ≤ vmax,L, is then chosen as shown below,

|vk,L| ≤ vmax,L = umax,N + F0 (4.35)

This implies, ∆uk can be chosen s.t. ∆uk = f(0). Focusing on the other half of

the control law Kkxk,L, it can be noted that Kk is chosen s.t., xk,L = xk,N = xk.

Rewriting eqn. (4.34) and considering eqn. (4.35),

Kkxk = (f(xk)− f(0))

It is known that,

‖(f(xk)− f(0))‖ ≤ `‖xk‖ (4.36)

Also, re-writing xk = ‖xk‖x̂k, where x̂k is the unit vector along xk,

(Kkx̂k)‖xk‖ = (f(xk)− f(0)) (4.37)

Using the definition of induced norms, it can be implied that ‖Kk‖ ≥ (Kkx̂k). Hereby,

the choice over Kk is feasible. This choice over vk and Kk, implies that the reachable

set of the perturbed system will be a subset of reachable set of linear system.

However, this leads to a different problem with the linear system, where Φ + ΓKk

is a time-dependent system. Thus, determining the condition over `, which can keep

Φ+ΓKk stable must be formulated. This way, it can be safely said that the perturbed

system will be stable.

For stability a similar pattern is followed as given in “Stability of time-varying linear

system”, [48].

Taking the autonomous system, as only stability is in question.

xk+1 = Φxk + ΓKkxk (4.38)
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Substituting for xk, only in Φxk, and iterating this till x0,

xk+1 = Φk+1x0 +
k∑
i=0

Φk−iΓKixi

Taking norm on both sides,

‖xk+1‖ ≤M |σ(Φ)ε|k+1‖x0‖+
k∑
i=0

M |σ(Φ)ε|k−i‖ΓKi‖‖xi‖

Using xk = ‖xk+1‖,

xk+1 ≤M |σ(Φ)ε|k+1x0 +
k∑
i=0

M |σ(Φ)ε|k−i‖ΓKi‖xi

Dividing the whole equation by |σ(Φ)ε|k+1, and also substituting ‖ΓKi‖ ≤ `‖Γ‖.

|σ(Φ)ε|−(k+1)xk+1 ≤Mx0 +
k∑
i=0

M`‖Γ‖
|σ(Φ)ε|

(|σ(Φ)ε|−ixi)

Using the Gronwall’s inequality,

|σ(Φ)ε|−(k+1)xk+1 ≤Mx0

k∏
i=0

(1 +
M`‖Γ‖
|σ(Φ)ε|

) (4.39)

=⇒ xk+1 ≤M |σ(Φ)ε|x0(|σ(Φ)ε|+M`‖Γ‖)k (4.40)

Thereupon, we get the required condition which is desired.

|σ(Φ)ε|+M`‖Γ‖ ≤ 1 (4.41)

Taking Γ as B∆t (‖B‖ being 1), it again leads us to the same equation which had

been derived, eqn.(4.21).

|σ(Φ)ε|+M`∆t ≤ 1 (4.42)

Thus, confirming the result.

Now, that the condition over ` has been determined, it can be safely claimed that

Rkf ,N ⊆ Rkf ,L, and that Rkf ,L will remain bounded, if the condition is followed.

Remark 4.10. For additional details, see [49],[50].
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4.3.4 Computation of Reachable Set for Perturbed System

The computation of reachable set for perturbed system is done by directly

extending algorithm (4.2.2), by incorporating f(x)∆t in the successor set of Xk. The

procedure that is followed is the direct result of definition (2.22) and theory mentioned

in these references ([38],[39]). It should be noted that this method uses intersection

to compute the reachable set. This process in turn can be represented as a process

of elimination. Thus, the algorithm will only provide us with reachable states at

specific time T . The discussion of results (5.3.1) obtained using this method, leads

to question of all the reachable states within time T .

Algorithm 4.3.1: Computation of Reachable Set of Perturbed System

Data: X0, U , Φ, Γ, f∆t, kf

Result: kf -step Reachable Set Rkf .

k ← 0;

Xk ← X0;

V0 ← con2vert(X0);

Vk ← V0;

while k ≤ kf do

Vk+1 ← Φ ◦ (Vk)⊕ Γ ◦ (U)⊕ f∆t ◦ (Vk);

Xk+1 ← vert2con(Vk+1);

R ← Xk+1 ∩ X0;

Vk+1 ← con2vert(R);

k ← k + 1;

end

Rkf = R
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4.3.5 Method-2 for - Computation of Total Reachable Set for Perturbed System

The Total Reachable Set shall be defined as a union of all the reachable sets

of the perturbed system obtained after settling time. To compute a reachable set

containing all the states, we shall begin with a reachable set obtained using algorithm

(4.3.1) and define it as ∆X0. The set ∆X0 shall be called Initiating Set. Any set

obtained by transitioning this set, over time will become part of the Reachable Set.

This way all the states reachable at different times will be included within the total

reachable set. The algorithm to compute reachable set was constructed, by adopting

the theory of reachable set mentioned in [2],[17],[51],[52]. The algorithm to obtain

the said set is given below.
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Algorithm 4.3.2: Computation of Total Reachable Set of Perturbed

System

Data: X0, ∆X0, U , Φ, Γ, f∆t, kf

Result: kf -step Reachable Set Rkf .

k ← 0;

∆Xk ← ∆X0;

∆V0 ← con2vert(∆X0);

∆Vk ← ∆V0;

while k ≤ kf do

∆Vk+1 ← Φ ◦ (∆Vk)⊕ Γ ◦ (U)⊕ f∆t ◦ (∆Vk);

∆Xk+1 ← vert2con(∆Vk+1);

∆Xk+1 ← ∆Xk+1 ∪∆Xk;

R ← ∆Xk+1;

∆Vk+1 ← con2vert(R);

k ← k + 1;

end

Rkf = R

4.3.6 Computation of Maximal Robust Control Invariant Set for Perturbed System

Extending the algorithm of Maximal Control Invariant (MCI) set to build MCI

set for perturbed systems is extremely complex. The function f(x) may not be a

bijective function, thus, incorporating it into the H matrix for MCI set becomes

highly complex. Thus, for the case of bounded function, the perturbation is treated

as disturbance and this set of disturbance can be defined asW . Accordingly, the idea
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of Maximal Robust Control Invariant Set (definition 2.30) is extended for perturbed

systems. The algorithm is constructed, by adopting the theory of control invariant

sets mentioned in [38],[39].

Algorithm 4.3.3: Computation of Maximal Robust Control Invari-

ant Set
Data: X0, U , W , Φ, Γ

Result: Maximal Control Invariant Set C∞

k ← 0;

X−k ← X0;

repeat

X−(k+1) ← ((X−k 	W)⊕ ((−Γ) ◦ U)) ◦Φ;

C ← X−(k+1) ∩ X−k;

X−(k+1) ← C;

k ← k + 1;

until X−k = X−k+1;

C∞ = C

4.4 Perturbed Linear Dynamic System with Compensation

The computation of Forward Reachable Set for this section will be executed in

two segments. The first segment will be evaluating Forward Reachable Set (FRS) of

errors in linear system dynamics and second segment will be evaluating the norm of

correction to be added. The final FRS for the complete system will then be evaluated

by doing minkowski sum of both the sets.
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4.4.1 Linear Counterpart Forward Reachable Set

The discrete system mentioned in eqn. (3.14), has the non-linear term, c̃dRkΠRᵀ
kṗ∆t.

The focus of this section, is solely on the linear part. As stated earlier, the states will

be divided as such - ek = ēk + δek, where, ēk is the linear counterpart and δek being

the correction. The linear system is represented as follows,

ēk+1 = Φēk (4.43)

The control is not included in linear system, as the control is the compensation for

the non-linearity and will be looked upon with the error correction.

We now construct the FRS in the similar manner that we used to construct FRS

in linear autonomous section (4.2.1). We know that the Φ we have is invertible,

therefore, it will be used to construct the ellipsoidal set for all the steps. This theory

was referred from ([20],[21])

Taking a general ellipsoidal set for initial set,

ξ̄0 = {ē0 ∈ R6 : ēᵀ
0P0ē0 ≤ 1} (4.44)

Using the eqn.(4.43), we can say that,

ē0 = Φ−kēk (4.45)

Constructing the ellipsoid condition using the eqn.(4.45),

ē0P0ē0 = ēᵀ
k(Φ

−k)ᵀP0Φ
−kēk (4.46)

Defining Pk = (Φ−k)ᵀP0Φ
−k, we get the k-step FRS.

ξ̄k = {ēk ∈ R6 : ēᵀ
kPkēk ≤ 1} (4.47)
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4.4.2 Correction System Analysis

The error in perturbed system, as mentioned before, will be evaluated by adding

the correction, δe, to the linear errors, ē (note - e = ē+ δe). Using eqn. (3.14),(4.43),

the system of correction is formulated.

δek+1 = Φδek + Γ‖p̈dk‖sφuk −

 03,3

c̃dRkΠRᵀ
kṗk

∆t (4.48)

The non-linear function mentioned in eqn. (4.48), is Lipschitz continuous, ie. ‖c̃dRΠRᵀṗ‖ ≤

|c̃d|‖ṗ‖. The Lipschitz constant, ` = |c̃d|.

The equation can be re-written as,

δek+1 = Φδek + Γ(‖p̈dk‖sφuk − c̃dRkΠRᵀ
kṗk) (4.49)

The term, Φδek is completely eliminated by substituting previous steps (till, Φk+1δe0),

and δe0 = 0.

δek+1 ≤
k∑
i=0

Φ(k−i)Γ‖(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi) (4.50)

This will further be divided into equations for δek,p, δek,v, by indexing the matrices

(Φ(k−i)Γ) into (Φ(k−i)Γ)1,3;1,3, (Φ(k−i)Γ)4,6;1,3,

δek+1,p =
k∑
i=0

(Φ(k−i)Γ)1,3;1,3(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi)

δek+1,v =
k∑
i=0

(Φ(k−i)Γ)4,6;1,3(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi)

(4.51)

The norm of the eqn. (4.51), will be used to evaluate the FRS.

‖δek+1,p‖ ≤
k∑
i=0

‖(Φ(k−i)Γ)1,3;1,3‖‖(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi)‖

‖δek+1,v‖ ≤
k∑
i=0

‖(Φ(k−i)Γ)4,6;1,3‖‖(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi)‖

(4.52)

52



It shall be noted, ‖RΠRᵀ‖ = 1. Furthermore, eqn. (4.51), depends upon ṗ = ev+ ṗr.

Let ˙̄p, be the linear component of ṗ, s.t. ṗ− ˙̄p = δev. Therefore, ˙̄p = ṗr + ēv.

The term ‖(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi)‖ can be reduced to,

‖(‖p̈di ‖sφui − c̃dRiΠRᵀ
i ṗi)‖ ≤ (∆i + s̄φ‖Ffb‖+ (s̄φ‖ĉd‖+ ‖c̃d‖)(‖ēi‖+ (‖δei,p‖2 + ‖δei,v‖2)

1
2 )

Where, ∆k = |c̃d|‖ṗrk‖+ s̄φ‖ge3 + ĉdṗ
r
k + p̈rk‖.

Thus, the final set of equations which is obtained,

‖δek+1,p‖ ≤
k∑
i=0

‖(Φ(k−i)Γ)1,3;1,3‖(∆i+s̄φ‖Ffb‖+ (s̄φ‖ĉd‖+ ‖c̃d‖)

(‖ēi‖+ (‖δei,p‖2 + ‖δei,v‖2)
1
2 )

‖δek+1,v‖ ≤
k∑
i=0

‖(Φ(k−i)Γ)4,6;1,3‖(∆i+s̄φ‖Ffb‖+ (s̄φ‖ĉd‖+ ‖c̃d‖)

(‖ēi‖+ (‖δei,p‖2 + ‖δei,v‖2)
1
2 )

(4.53)

The term ∆, is the only term which depends upon the input, as well as the

non-linearity. The values of {kp, kv,pr, ṗr, ξ0}, are controller gain and system prereq-

uisites. Using these values, and the values of estimated system parameters, ∆, can be

pre-estimated. An error profile can be generated using various pre-determined values

of ∆ and the behaviour of the system can be observed.

These norms, themselves can be treated as n-circular sets. Let the set of δek,p be

denoted as, δξk,p. Accordingly, we can define this set as,

δξk,p = {δek,p ∈ R6 : (δeᵀ
k,pδek,p)

1
2 ≤

k∑
i=0

‖(Φ(k−i)Γ)1,3;1,3‖(∆i + s̄φ‖Ffb‖+

(s̄φ‖ĉd‖+ ‖c̃d‖)(‖ēi‖+ (‖δei,p‖2 + ‖δei,v‖2)
1
2 )}

(4.54)

The set δξk,v can also be formulated in the same procedure.

The reachable set of linear system can now be indexed into reachable set of position

errors ξ̄k,p and reachable set of velocity errors ξ̄k,v. Thus, the forward reachable set
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for the perturbed system can be denoted as ξk,p, ξk,v. The set of position errors can

thus, be represented as,

ξk,p = ξ̄k,p ⊕ δξk,p (4.55)

Thus, after evaluating both linear system FRS and correction FRS, we can obtain

perturbed system FRS.

4.4.3 Computation of Reachable Set for Perturbed System with Compensation

The ellipsoidal sets will be represented with the positive definite matrix and

centre, used to define the set, for the algorithm. For example,

ξ(P0, c) = {e ∈ Rn : (e− c)ᵀP0(e− c) ≤ 1}

To be noted, ‖ξ(P0, c)‖ implies, that all the states within the set ξ(P0, c) are mapped

to their respective norms.

Furthermore, max{‖ξ(P0, c)‖} implies, maximum of all the norms of states within

the set ξ(P0, c).

The requirement is to estimate the Forward Reachable Set of Position errors, thus,

the states in the set will be split accordingly, using the ‘index()’ command. This

command will split all the states within ξ(P, cp)p, into position states ξ(P, cv)v and

velocity states.

Remark 4.11. For computing ellipsoidal sets, see [53].

Remark 4.12. For Minkowski sum of different ellipsoids, see [54].

The algorithm to compute the Forward Reachable set is thus, given below,
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Algorithm 4.4.1: Computation of Forward Reachable Set

Data: ξ(P0, 0), Φ, Γ, ∆, s̄φ, kf , pr, ṗr

Result: Maximal Control Invariant Set C∞

k ← 0;

‖δek,p‖ ← 0;

‖δek,v‖ ← 0;

ξ(Pk, 0)← ξ(P0, 0);

ξ̄(Pk, 0)← ξ(P0, 0);

‖ēk‖ ← max{‖ξ̄(Pk, 0)‖);

while k ≤ kf do

ξ̄(Pk+1, 0)← ξ̄((Φ−1)ᵀPkΦ
−1, 0);

rp ←
∑k

i=0 ‖(Φ(k−i)Γ)1,3;1,3‖(∆i + s̄φ‖Ffb‖+ (s̄φ‖ĉd‖+

‖c̃d‖)(‖ēi‖+ (‖δei,p‖2 + ‖δei,v‖2)
1
2 );

rv ←
∑k

i=0 ‖(Φ(k−i)Γ)4,6;1,3‖(∆i + s̄φ‖Ffb‖+ (s̄φ‖ĉd‖+

‖c̃d‖)(‖ēi‖+ (‖δei,p‖2 + ‖δei,v‖2)
1
2 );

δξ(δPk+1, 0)p ← δξ( I3
r2p
, 0);

δξ(δPk+1, 0)v ← δξ( I3
r2v
, 0);

(ξ̄(Pk+1, 0)p, ξ̄(Pk+1, 0)v)← index(ξ̄(Pk+1, 0));

ξ(Pk+1, 0)p ← (ξ̄(Pk+1, 0)p ⊕ δξ(δPk+1, 0)p);

Rk+1,p ← ξ(Pk+1,pr,k+1)p ∪Rk,p;

‖δek+1,p‖ ← max{‖δξ(δPk+1, 0)p‖};

‖δek+1,v‖ ← max{‖δξ(δPk+1, 0)v‖};

‖ēk+1‖ ← max{‖ξ̄(Pk+1, 0)‖};

k ← k + 1;

end

Rkf ← Rk;
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CHAPTER 5

APPLICATION, RESULTS AND DISCUSSION

5.1 Maximal Control Invariant Set for Discrete system

The Maximal Control Invariant (MCI) Set for unstable discrete system (fig-

ure 5.1), was computed using Algorithm(4.1.1).

The input that was taken, is given below,

Φ =

1.5 0

1 −1.5

 , Γ =

1

0

 , kf = 75 (5.1)

The maximal control invariant set is computed within 75 steps. The polytope equation

of the Maximal Control Invariant set was computed to be -

C∞ = {x ∈ R2 : Hfx ≤ hf} (5.2)

where,

Hf =



2 −3

−2 3

0 2

0 −2


and hf =



8

8

8

8


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Figure 5.1: Maximal Controllable Set

Remark 5.1. As the number of constraints were less, it was feasible to write the

obtained MCI set. However, for the other problems, these sets obtained have a large

number of constraints, thus, no final set constraints are exhibited for other results.
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5.2 Reachable Set for LTI System

5.2.1 Effect of ∆t on Reachable Set

The choice of ∆t affects the precision with which the reachable set is computed.

The Euler 1-step discretization, produces truncation error in each step, thus, having a

low ∆t will generate more precise results, and it can be seen in the exhibited results.
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Figure 5.2: Reachable Set, when |umax| ≤ 25, ∆t = 0.1sec

As it can be seen in fig.(5.2) and fig.(5.3), the size of the reachable set also gets

affected and reduces for a lower ∆t. However, this is the direct cause of truncation
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error, and is not a system property. The truncation error can be reduced by reducing

∆t. Thus, ∆t = 0.01s shall be used in the considered perturbed system case.
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Figure 5.3: Reachable Set, when |umax| ≤ 25, ∆t = 0.01sec

It should be noted that the coarseness of the reachable set, isn’t because of

truncation errors, but because zonotope is a discrete realization of the actual reachable

set. Thus, lower time step allows for a finer realization of the actual reachable set.
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5.2.2 Effect of umax on Reachable Set

This is the direct result of what has been stated in section(4.2.2). The reachable

set develops into a zonotope of control input and has less effect of initial states for

higher run-time. In this case, |uk| ≤ umax = 5 is the constraint over control which

has been taken.
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Figure 5.4: Reachable Set, when |uk| ≤ umax = 5, ∆t = 0.01sec
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Increasing the magnitude of umax from 5 to 25, the size of the reachable set

is seen to increase. This increase in size is direct scaling due to control constraint

umax.
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Figure 5.5: Reachable Set, when |uk| ≤ umax = 25, ∆t = 0.01sec

61



5.2.3 Maximal Positive Invariant and Maximal Control Invariant Set

As the system was stable, its maximal positive invariant set can be constructed.

This is just a sub-case of MCI set for when umax → 0. Henceforth, the maximal

positive invariant set will be referred to as, MCI set with 0 control input.
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Figure 5.6: Maximal Positive Invariant Set
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Increasing the constraint of control input, can help us contain more states within

MCI Set. Furthermore, increasing it enough can make the total constraint set as MCI

set.
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Figure 5.7: Maximal Control Invariant Set when |uk| ≤ umax = 25
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5.3 Perturbed Linear Dynamic System

The figure. (5.8), will be used to describe the scheme of the different reachable

sets, that shall be used to define the results in this section. The reason for this is,

four different sets will be focused upon in this section (not including state constraint

set). This color scheme will be used as reference to their respective set, and will be

used in the same manner throughout the section (5.3). The color/line-style scheme

is established for this section only.
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Figure 5.8: Reachable Set when ` = 15, |uk| ≤ 15 at time T = 5s
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5.3.1 Estimation of Forward Reachable Set of Perturbed System at Different times

The procedure to obtain Forward Reachable Set at time T mentioned in algo-

rithm (4.3.1), computes an accurate reachable set, but has a drawback. For discussing

the drawback, the results of Forward Reachable Sets shall be observed at different

times. The figure (5.9), shows the FRS of perturbed system (in red) estimated at

different times.
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(a) Time T = 3s
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(b) Time T = 4s
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(c) Time T = 5s
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(d) Time T = 6s

Figure 5.9: Comparison of Forward Reachable Set of Perturbed System at different
times for |uk| ≤ 15 and ` = 15
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Listing the observations -

1. The reachable set of linear systems does not change over time but, the reachable

set of perturbed system, keeps changing over time.

2. The outer reachable set always behaves as an upper bound to the reachable set

of perturbed system.

Analysing these observation -

1. Reachable set of perturbed system obtained using this method, never realises

the “Total Reachable Set”. In other words, even if the reachable set at time

T1 is computed, the reachable set at time T2 > T1 cannot be confirmed to be

contained within the the reachable set of T1.

2. The reachable set of perturbed system will never go outside those bounds, thus,

utilising the upper bound set can be helpful. However, the upper bound set

also contains the states which are not reachable by the perturbed system. Thus,

usage of the upper bound set, can mislead into thinking of a certain unreachable

state as a reachable state.

This led to the problem of, How to estimate the ‘Total Reachable Set’ of the perturbed

system? This set is discussed in the next subsection, where, a different approach over

building the reachable set is used.
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5.3.2 Method 2 - Estimation of Forward Reachable Set of Perturbed System

The Method-2 approach follows the idea of union of sets rather than intersec-

tion. Therefore, this method requires a small initiating subset of the reachable set,

rather than a larger initial set, as the union method will never estimate a set bound-

ary within the initial set itself. This reachable set of perturbed system obtained, will

be called ‘Total Reachable Set’ (in green/dashed).
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Figure 5.10: Reachable Set using Method-2 for |uk| ≤ 15 and ` = 15
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The reason for calling it ‘Total Reachable Set’ is, that the set boundary esti-

mated using this method, takes into account all the states reachable at any given

time t ≤ T . This enables us to take into account, all the possible reachable sets of

perturbed system within time T and build a union of all these sets.

The total reachable set provides the states which are reachable within time T . This

eliminates all the unwanted unreachable states in the upper bound set.

Although, this method can determine all the reachable states, it has a drawback. The

set of all reachable states does not imply all these states are reachable at time T . The

comparison will be done and shown in the next subsection.
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5.3.3 Comparison of both Reachable Sets

Having computed both these sets, the results can be combined and be sub-

jected to comparison. This comparison is carried out to demonstrate that the FRS

of perturbed system, beyond settling time, remains within the total reachable set.
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(a) Time T = 3s
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(b) Time T = 4s
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(c) Time T = 5s
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(d) Time T = 6s

Figure 5.11: Comparison of Forward Reachable Set of Perturbed System and Total
Reachable Set of Perturbed System at different times for |uk| ≤ 15 and ` = 15
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Looking at these sets it can be confirmed that the algorithm produces an accu-

rate Total Reachable set.

Comparing the result -

1. The primary reason, the upper bound set was discarded as an approximate

set, was because, apart from containing the reachable states, it also contained

non-reachable states. The total reachable set eliminates all the unreachable

states.

2. The total reachable set, cannot guarantee that all the states contained in it can

be reached at a given time T , the only way to know which state is reachable at

time T , is to build the exact reachable set for that time.

3. The total reachable set, can guarantee that all states contained in it are reach-

able within time T , thus, even if that state is not reachable at time T1 ≤ T , it

might be reachable at time T2 ≤ T , if it’s contained in the total reachable set

at time T .

Thus, total reachable set and the forward reachable set both have their usage depend-

ing upon the need.
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5.3.4 Size of Reachable Set with increasing ` for same Control Constraint

As discussed in the linear system, the size of the FRS of linear system depends

upon the size of constraint on control input. Larger the control, larger is our forward

reachable set. For the perturbed system, the size of the FRS also depends upon the

value of perturbation bound (which in our case is `). This was formulated in section

(4.3.2).

-10 -8 -6 -4 -2 0 2 4 6 8 10
10  x1 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

10
 x

2
10

Reachable Set for Perturbed (SMD) System
State Constraints
Reachable Set (Perturbed)
Reachable Set (Linear System)
Reachable Set (Linear,Upper)

-

-

(a) ` = 5
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(b) ` = 10
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(c) ` = 15
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(d) ` = 20

Figure 5.12: Comparison of Size of Total Reachable Set of Perturbed System for
different ` where |uk| ≤ 15
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5.3.5 Maximal Control Invariant (MCI) Set of the Perturbed System

The MCI set of the Perturbed System is built on the same lines as Maximal

Robust Control Invariant Set. The reason for doing so was, that building a precursor

set of a system with sin(x) is highly complex. sin(x) is a many-to-one function,

thus, for any desired value of `sin(x2), infinite possibility of x state exists, whose x2,

will satisfy the desired value.
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(a) ` = 10 and |uk| = 0
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(b) ` = 20 and |uk| = 0

-10 -8 -6 -4 -2 0 2 4 6 8 10
10  x1 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

10
 x

2
10

MCI Set for Perturbed (SMD) System
State Constraints
Maximal Control Invariant Set

(c) ` = 10 and |uk| ≤ 25
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Figure 5.13: MCI Set of Perturbed System for different ` and |uk|
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Although, these are Robust MCI sets, they are still subsets of the actual MCI

sets. This implies that the states in these sets, will never violate the state constraint.

Thus, it satisfies the conditions needed for the MCI set to follow.

A few things to observe -

1. The size of the MCI set obtained grows larger when control input constraints

are increased. This implies that with high enough control input the whole state

constraint set can become an MCI set. This follows in line with the linear MCI

set.

2. The value of ` also affects the size of MCI set as the robustness was taken into

account. Thus, the size decreases as the value of ` is increased.
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5.4 Perturbed Linear Dynamic System (Compensation)

Following the procedure, FRS of the linear error counterpart will be estimated

first. Then the norm of correction error at each step will be estimated. The norm

itself can be interpreted as an equation of a circle, implying that the correction error

set will be a circular set. The Minkowski sum of both these sets will yield us the total

FRS of perturbed error system. These errors are centred around the reference position

of that time step. Thus, each of these errors will be plotted around the respective

reference position. The size of the set guarantees how close to the reference trajectory

the multi-rotor will be.
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5.4.1 FRS of the Linear Counterpart

All the states in FRS of a linear system tend to zero. The system which we

have, has states which are errors of position and velocity. The error states will tend

to 0 with increasing time. This implies that the reachable set of multi-rotor will tend

to reference trajectory and converge on it.
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Figure 5.14: Reachable Set of ξ0s for the Linear system
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Figure 5.15: Reachable Set of ξ0b for the Linear System
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5.4.2 FRS of the Perturbed System (with and without compensation) for the Initial

Set ξ0s

The values of ∆ taken are mentioned in the legend. The initial set ξ0s, is used

to plot the total error profile of the system for different values of ∆.

For the initial set of errors ξ0s, the error is seen to grow, but is bounded despite the

growth.
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Figure 5.16: Error profile of position error and velocity error over time, for |c̃d| = 0.35
and initial error sets : ξ0s and different values of ∆[m s−2]
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The FRS of the initial set ξ0s is estimated. Comparing the results of each initial set

for two different cases - Uncompensated case and Compensated case.

The FRS of errors, for the initial set ξ0s (uncompensated) - The size of the reachable

set grows and stabilizes after a certain time. This, implies that the errors will grow

but remain bounded.

-2 0 2 4 6 8 10 12
position in x [m]

-6

-4

-2

0

2

4

6

po
si

tio
n 

in
 y

 [m
]

Perturbed System's Reachable set
Initial Reachable Set for error
Final Reachable Set for error
Reference Position

Reference
Trajectory

Progression of
Reachable Set

Initial SetFinal Set

Figure 5.17: Reachable Set of ξ0s uncompensated case
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The FRS of errors, for the initial set ξ0s (compensated) - The compensated case pro-

duces a much more smaller FRS. This implies that, the errors will be much less

compared to the uncompensated case.
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Figure 5.18: Reachable Set of ξ0s compensated case
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5.4.3 FRS of the Perturbed System (with and without compensation) for the Initial

Set ξ0b

The values of ∆ taken are mentioned in the legend. The initial set ξ0b, is used

to plot the total error profile of the system for different values of ∆.

The error profile for the initial set ξ0b - the error is seen to reduce over time, and

converge, but doesn’t converge to 0.
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Figure 5.19: Error profile of position error and velocity error over time, for |c̃d| = 0.35
and initial error sets : ξ0b and different values of ∆[m s−2]

80



The FRS of errors, for the initial set ξ0b (uncompensated) - The set gradually decreases

in size, but never converges with reference trajectory. This implies that, the size of

set of final error does not depend upon initial set.
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Figure 5.20: Reachable Set of ξ0b uncompensated case
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The FRS of errors, for the initial set ξ0b (compensated) - For the compensated case,

the size of the FRS reduces much more before stabilizing, compared to uncompensated

case. This implies that, the compensation does affect the size of the set of final errors.
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Figure 5.21: Reachable Set of ξ0b compensated case
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Final Remarks -

The error profile shows error converging in both the cases, for all the values of ∆.

The values at which the respective errors of both initial sets {ξ0s, ξ0b} converge, seem

to be independent of the initial set and show dependence over ∆.

All the combination of cases, proceed to show a similarity with the plot of error pro-

file.

In both the cases (Compensated and Uncompensated), the compensated case, pro-

duces a smaller sized FRS. This shows that in the compensated case, errors of the

multi-rotor will be lesser, thus, it will be closer to the reference trajectory, compared

to the uncompensated case.

As defined earlier, ĉd is estimation of the coefficient of first order aerodynamics effect,

thus, better estimation and compensation of this effect implies lesser error. Therefore,

depending upon desired error bound, the compensation should be chosen appropri-

ately.
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CHAPTER 6

SUMMARY AND CONCLUSION

The aim of the thesis, was solely to build methods to compute reachable and

invariant sets for dynamic systems. These methods were constructed in the form of

algorithms and two different aspects of computation of reachable sets was focused

upon.

Initially, this thesis concentrated upon computation of reachable set of linear

systems, and algorithms to compute these sets were constructed. The effect of time

step ∆t and control input |uk| ≤ umax, was observed in the process of computing

reachable sets. Choice over ∆t was made by taking the results into consideration s.t.,

errors due to truncation would be reduced and improved computation of reachable

sets could be performed. Furthermore, effects of control input was also observed to

confirm the result with the literature.

The construction of algorithms for perturbed systems, were a result of extension

of the reachable set theory of linear systems to perturbed systems. The extended

method, produced the set which was exact computation of reachable set at time T

but wasn’t constant, i.e. it eliminated all the states which can be stated as reachable

with other definitions of reachable state. The reason being the vagueness in definition

of the term “Reachable State”: “Reachable at time T”, “Reachable within time T”.

The literature of reachable set tackles this problem by assuming both the ideas of

reachable state whichever necessary. Therefore, Method-2 was constructed keeping

in mind the second definition of reachable state.
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The reachable sets were computed using both these methods and their results

were compared. The comparison was made to show the difference in reachable set

depending upon which definition of reachable state is assumed. The reachable sets

at time T , could be stated as a subset of reachable set within time T . The usage of

both these methods depend upon which definition of reachable state is accurate for

a given circumstance.

The multi-rotor under first-order aerodynamic effect problem was adopted from

[12] to utilise the theory of reachable set which was constructed. The challenge was

to compute these forward reachable sets using ellipsoidal sets, rather than polytopes

and zonotopes. The mathematical formulation was done so as to have a prior idea

regarding the computation of these sets. The formulation was then implemented

into the algorithm, which constructed forward reachable sets of error bounds of the

multi-rotor. The obtained results showed decrease in error when compensation was

implemented. Error profile was also generated to discuss implementation of compen-

sation based on the desired error threshold.

Thus, the algorithms constructed in this thesis can be implemented to compute

reachable set of the system, which can later be utilised to produce desired results.
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CHAPTER 7

FUTURE WORK

All the work presented in this thesis can be extended to fulfill a number of

specific reachability criteria. Some of the models, for which, these algorithms can be

extended to are -

1. Trajectory Planning - Method-2 can compute all possible reachable states needed

prior to trajectory planning. Thus, implementing other conditions over control

can refine the method to provide accurate and robust trajectories.

2. Obstacle Avoidance - The primary algorithm was built upon the requirement of

estimating reachable states at time T . Having the information over these exact

states can improve implementation of obstacle avoidance maneuver.

3. Cooperative Control - Precomputing reachable set for all the unmanned vehicle

can provide information of safety and feasibility. Implementing the idea of

reachability would be extremely useful in this field, however, the complexity of

building the algorithm increases drastically.

The condition which was derived for controllability of perturbed systems, given

the perturbation is Lipschitz kind, can be extended to perturbation of Holder’s kind.

Thus, controllability of higher order perturbation can be tackled.
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The input data and algorithm used to obtain results from section(5.2) to sec-

tion(5.3) are mentioned in this appendix.

All the input data that will be needed to produce these results are mentioned below,

• Time steps (∆t) - Three different sizes of time steps are used,

∆t1 = 0.01s, ∆t2 = 0.05s and ∆t3 = 0.1s

• Total runtime (T ) - All the runtime will be mentioned. The number of step

(kf ) will then be mentioned as ratio of T and ∆t, i.e., kf = T
∆t1

.

T1 = 3s, T2 = 4s, T3 = 5s and T4 = 6s

• State transition matrices (Φ) - Three different state transition matrices are

used,

Φ1 =

 1 0.01

−0.1 0.95

 , Φ2 =

 1 0.1

−1 0.5

 and Φ3 =

 I3 0.05I3

−0.5I3 0.7I3


• Input matrix (Γ) - Three different input matrices are used,

Γ1 =

 0

0.01

 , Γ2 =

 0

0.1

 and Γ3 =

 0

0.05I3


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• Initial constraints (X0) - All the initial constraints are mentioned below,

X0 =

{
x ∈ Rn :



1 0

0 1

−1 0

0 −1


x ≤



10

10

10

10


}

∆X0 =

{
x ∈ Rn :



1 0

0 1

−1 0

0 −1


x ≤



0.1

0.1

0.1

0.1


}

ξ(P0s, 0) =

{
e0 | eᵀ

0

100I3 03,3

03,3 25I3

 e0 ≤ 1

}

ξ(P0b, 0) =

{
e0 | eᵀ

0

1.56I3 03,3

03,3 0.39I3

 e0 ≤ 1

}

• Control input constraints (U) - All the control input constraints are mentioned

below,

U1 = {uk ∈ R : |uk| ≤ umax,1 = 0}

U2 = {uk ∈ R : |uk| ≤ umax,2 = 5}

U3 = {uk ∈ R : |uk| ≤ umax,3 = 15}

U4 = {uk ∈ R : |uk| ≤ umax,3 = 25}

• Lipschitz constant (`) - All the value of Lipschitz constant are mentioned below,

`1 = 5, `2 = 10, `3 = 15 and `4 = 20
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• Constraints for nonlinearity as disturbance (W) - These constraints are men-

tioned below,

W1 =

{
w ∈ R :

 0

−10

 ≤
0

w

 ≤
 0

10

}

W2 =

{
w ∈ R :

 0

−20

 ≤
0

w

 ≤
 0

20

}

Remark A.1. Ua,+` will be used to denote control input constraints, whose umax =

umax,a + `.

List of results:

1. Figure (5.2) is obtained from algorithm (4.2.2).

Data : X0, U4, Φ2, Γ2, kf = T1
∆t3

.

2. Figure (5.3) is obtained from algorithm (4.2.2).

Data : X0, U4, Φ1, Γ1, kf = T1
∆t1

.

3. Figure (5.4) is obtained from algorithm (4.2.2).

Data : X0, U2, Φ1, Γ1, kf = T1
∆t1

.

4. Figure (5.5) is obtained from algorithm (4.2.2).

Data : X0, U4, Φ1, Γ1, kf = T1
∆t1

.

5. Figure (5.6) is obtained from algorithm (4.1.1).

Data : X0, U1, Φ1, Γ1.

6. Figure (5.7) is obtained from algorithm (4.1.1).

Data : X0, U4, Φ1, Γ1.

7. • Figure (5.9)(a) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.
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Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T!
∆t1

.

• Figure (5.9)(b) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T2
∆t1

.

Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T2
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T2
∆t1

.

• Figure (5.9)(c) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T3
∆t1

.

Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T3
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T3
∆t1

.

• Figure (5.9)(d) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T4
∆t1

.

Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T4
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T4
∆t1

.

8. Figure (5.10) is obtained from algorithm (Linear - 4.2.2, Total - 4.3.2, Upper -

4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `3sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T1
∆t1

.

9. • Figure (5.11)(a) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Total - 4.3.2, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.
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Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T!
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `3sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T!
∆t1

.

• Figure (5.11)(b) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Total - 4.3.2, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T2
∆t1

.

Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T2
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `3sin∆t1, kf = T2
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T2
∆t1

.

• Figure (5.11)(c) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Total - 4.3.2, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T3
∆t1

.

Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T3
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `3sin∆t1, kf = T3
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T3
∆t1

.

• Figure (5.11)(d) is obtained from algorithm (Linear - 4.2.2, Perturbed -

4.3.1, Total - 4.3.2, Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T4
∆t1

.

Perturbed Data : X0, U3, Φ1, Γ1, `3sin∆t1, kf = T4
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `3sin∆t1, kf = T4
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T4
∆t1

.

10. • Figure (5.12)(a) is obtained from algorithm (Linear - 4.2.2, Total - 4.3.2,

Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.
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Total Data : X0, ∆X0, U3, Φ1, Γ1, `1sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`1 , Φ1, Γ1, kf = T1
∆t1

.

• Figure (5.12)(b) is obtained from algorithm (Linear - 4.2.2, Total - 4.3.2,

Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `2sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`2 , Φ1, Γ1, kf = T1
∆t1

.

• Figure (5.12)(c) is obtained from algorithm (Linear - 4.2.2, Total - 4.3.2,

Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `3sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`3 , Φ1, Γ1, kf = T1
∆t1

.

• Figure (5.12)(d) is obtained from algorithm (Linear - 4.2.2, Total - 4.3.2,

Upper - 4.2.2).

Linear Data : X0, U3, Φ1, Γ1, kf = T1
∆t1

.

Total Data : X0, ∆X0, U3, Φ1, Γ1, `4sin∆t1, kf = T1
∆t1

.

Upper Data : X0, U3,+`4 , Φ1, Γ1, kf = T1
∆t1

.

11. • Figure (5.13)(a) is obtained from algorithm (4.3.3).

Data : X0, U1, W1, Φ1, Γ1.

• Figure (5.13)(b) is obtained from algorithm (4.3.3).

Data : X0, U1, W2, Φ1, Γ1.

• Figure (5.13)(c) is obtained from algorithm (4.3.3).

Data : X0, U4, W1, Φ1, Γ1.

• Figure (5.13)(d) is obtained from algorithm (4.3.3).

Data : X0, U4, W2, Φ1, Γ1.
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12. Figure (5.14) is obtained from algorithm (4.4.1).

Data : ξ(P0s, 0), Φ3, Γ3, ∆ = 0, s̄φ = 0, kf = T3
∆t2

, pr, ṗr.

13. Figure (5.15) is obtained from algorithm (4.4.1).

Data : ξ(P0b, 0), Φ3, Γ3, ∆ = 0, s̄φ = 0, kf = T3
∆t2

, pr, ṗr.

14. Figure (5.17) is obtained from algorithm (4.4.1).

Data : ξ(P0s, 0), Φ3, Γ3, ∆ = 2.85, s̄φ = 0.052, kf = T3
∆t2

, pr, ṗr.

15. Figure (5.18) is obtained from algorithm (4.4.1).

Data : ξ(P0s, 0), Φ3, Γ3, ∆ = 1.1, s̄φ = 0.052, kf = T3
∆t2

, pr, ṗr.

16. Figure (5.20) is obtained from algorithm (4.4.1).

Data : ξ(P0b, 0), Φ3, Γ3, ∆ = 2.85, s̄φ = 0.052, kf = T3
∆t2

, pr, ṗr.

17. Figure (5.21) is obtained from algorithm (4.4.1).

Data : ξ(P0b, 0), Φ3, Γ3, ∆ = 1.1, s̄φ = 0.052, kf = T3
∆t2

, pr, ṗr.

94



REFERENCES

[1] F. Blanchini. Set invariance in control. Automatica, 35(11):1747 – 1767, 1999.

[2] Oded Maler. Computing reachable sets : An introduction. 2008.

[3] Yuchen Zhou and John S. Baras. Reachable set approach to collision avoidance

for uavs. CoRR, abs/1512.01195, 2015.

[4] C. Dabadie, S. Kaynama, and C. J. Tomlin. A practical reachability-based

collision avoidance algorithm for sampled-data systems: Application to ground

robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 4161–4168, Sept 2014.

[5] Y. Lin and S. Saripalli. Collision avoidance for uavs using reachable sets. In

2015 International Conference on Unmanned Aircraft Systems (ICUAS), pages

226–235, June 2015.

[6] N. Malone, H. Chiang, K. Lesser, M. Oishi, and L. Tapia. Hybrid dynamic

moving obstacle avoidance using a stochastic reachable set-based potential field.

IEEE Transactions on Robotics, 33(5):1124–1138, Oct 2017.

[7] T. McMahon, S. Thomas, and N. M. Amato. Sampling-based motion planning

with reachable volumes: Theoretical foundations. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 6514–6521, May 2014.

[8] Jerry Ding, Jonathan Sprinkle, Claire J. Tomlin, Shankar Sastry, and Jim Pau-

nicka. Reachability calculations for vehicle safety during manned/unmanned

vehicle interaction. Journal of Guidance Control and Dynamics, 35:138–152, 01

2012.

95



[9] M. Chen, Q. Hu, C. Mackin, J. F. Fisac, and C. J. Tomlin. Safe platooning

of unmanned aerial vehicles via reachability. In 2015 54th IEEE Conference on

Decision and Control (CDC), pages 4695–4701, Dec 2015.

[10] M. Althoff, O. Stursberg, and M. Buss. Stochastic reachable sets of interacting

traffic participants. In 2008 IEEE Intelligent Vehicles Symposium, pages 1086–

1092, June 2008.

[11] Anirudha Majumdar and Russ Tedrake. Robust online motion planning with

reachable sets. 2012.

[12] Suseong Kim, Davide Falanga, and Davide Scaramuzza. Computing the for-

ward reachable set for a multirotor under first-order aerodynamic effects. IEEE

Robotics and Automation Letters, 3:2934–2941, 2018.

[13] F. Parise, M. E. Valcher, and J. Lygeros. Computing the projected reachable set

of stochastic biochemical reaction networks modeled by switched affine systems.

IEEE Transactions on Automatic Control, 63(11):3719–3734, Nov 2018.

[14] Y. Susuki and T. Hikihara. Predicting voltage instability of power system via

hybrid system reachability analysis. In 2007 American Control Conference, pages

4166–4171, July 2007.

[15] E. A. Cross and I. M. Mitchell. Level set methods for computing reachable

sets of systems with differential algebraic equation dynamics. In 2008 American

Control Conference, pages 2260–2265, June 2008.

[16] Alongkrit Chutinan and Bruce H. Krogh. Computing polyhedral approximations

to flow pipes for dynamic systems. In In Proceedings of the 37rd IEEE Conference

on Decision and Control. IEEE Press, 1998.

[17] Matthias Althoff and Bruce H. Krogh. Reachability analysis of nonlinear

differential-algebraic systems. IEEE Transactions on Automatic Control, 59:371–

383, 2014.

96



[18] Matthias Althoff, Olaf Stursberg, and Martin Buss. Computing reachable sets

of hybrid systems using a combination of zonotopes and polytopes, 2009.

[19] Antoine Girard. Reachability of uncertain linear systems using zonotopes. In

Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and

Control, pages 291–305, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[20] Alexander B. Kurzhanski and Pravin Varaiya. Ellipsoidal techniques for reach-

ability analysis. In Nancy Lynch and Bruce H. Krogh, editors, Hybrid Systems:

Computation and Control, pages 202–214, Berlin, Heidelberg, 2000. Springer

Berlin Heidelberg.

[21] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal techniques for reachability anal-

ysis of discrete-time linear systems. IEEE Transactions on Automatic Control,

52(1):26–38, Jan 2007.

[22] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation of

reachable sets of linear time-invariant systems with inputs. In João P. Hespanha

and Ashish Tiwari, editors, Hybrid Systems: Computation and Control, pages

257–271, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[23] Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez. Approximate

reachability analysis of piecewise-linear dynamical systems. In Proceedings of

the Third International Workshop on Hybrid Systems: Computation and Control,

HSCC ’00, pages 20–31, London, UK, UK, 2000. Springer-Verlag.

[24] Hakan Yazarel and G J Pappas. Geometric programming relaxations for lin-

ear system reachability. Proceedings of the 2004 American Control Conference,

1:553–559 vol.1, 2004.

[25] Peter D. Lax. Functional Analysis. Pure and applied mathematics. Wiley-

Interscience, 2002.

97



[26] H.H. Sohrab. Basic Real Analysis. Basic Real Analysis. Birkhäuser Boston,

2003.

[27] D. S. Clark. Short proof of a discrete gronwall inequality. Discrete Appl. Math.,

16(3):279–281, March 1987.

[28] Daniel Ammon Dowler. Bounding the norm of matrix powers. Master’s thesis,

Brigham Young University, 2013.

[29] Arne Jensen. Lecture notes on spectra and pseudospectra of matrices and oper-

ators, 2009.

[30] L.N. Trefethen, M. Embree, and M. Embree. Spectra and Pseudospectra: The

Behavior of Nonnormal Matrices and Operators. Princeton University Press,

2005.

[31] Jean Gallier. Notes on convex sets , polytopes , polyhedra , combinatorial topol-

ogy , voronoi diagrams and delaunay triangulations. 2008.

[32] Stefano Miani Franco Blanchini. Set-theoretic methods in control. Systems and

control. Birkhuser, 1 edition, 2008.

[33] R.E. Kalman. Lectures on Controllability and Observability. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011.

[34] T. Kailath. Linear Systems. Information and System Sciences Series. Prentice-

Hall, 1980.

[35] K. Atkinson, W. Han, and D.E. Stewart. Numerical Solution of Ordinary Dif-

ferential Equations. Pure and Applied Mathematics: A Wiley Series of Texts,

Monographs and Tracts. Wiley, 2011.

[36] G. Halikias, L. Dritsas, A. Pantelous, and V. Tsoulkas. Strong stability of

discrete-time systems. Linear Algebra and its Applications, 436(7):1890 – 1908,

2012.

98



[37] S. Gottlieb, C. Shu, and E. Tadmor. Strong stability-preserving high-order time

discretization methods. SIAM Review, 43(1):89–112, 2001.

[38] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control

for Linear and Hybrid Systems. Cambridge University Press, 2017.

[39] Eric C. Kerrigan. Robust Constraint Satisfaction : Invariant Sets and Predictive

Control. Ph.d. thesis, University of Cambridge, 2000.

[40] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling,

estimation, and control of quadrotor. IEEE Robotics Automation Magazine,

19(3):20–32, Sept 2012.

[41] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential flatness

of quadrotor dynamics subject to rotor drag for accurate , high - speed trajectory

tracking. IEEE Robot . Autom . Lett ., 3(2):620 – –626, April 2018.

[42] Taeyoung Lee, Melvin Leok, and N. Harris McClamroch. Geometric tracking

control of a quadrotor uav on se(3). 49th IEEE Conference on Decision and

Control (CDC), pages 5420–5425, 2010.

[43] Michael Kleder. Con2vert - constraints to vertices. MATLAB R© Central File

Exchange, 2005.

[44] Michael Kleder. Vert2con - vertices to constraints. MATLAB R© Central File

Exchange, 2005.

[45] Vincent Delos and Denis Teissandier. Minkowski sum of polytopes defined by

their vertices. CoRR, abs/1412.2564, 2014.

[46] Simon Froitzheim. Efficient conversion of geometric state set representations for

hybrid systems. Bachelor’s thesis, RWTH Aachen University, 2016.

[47] S. N. Dashkovskiy, D. V. Efimov, and E. D. Sontag. Input to state stability

and allied system properties. Automation and Remote Control, 72(8):1579, Aug

2011.

99



[48] A. Szyda. Stability of time-varying linear system. Pomiary Automatyka Kon-

trola, R. 56, nr 11:1364–1367, 2010.

[49] Taro Yoshizawa and Junji Kato. Linear system and its perturbed system. Funk-

cial. Ekvac., 9:9–15, 1966.

[50] Ichiro Tsukamoto. Perturbation method for linear periodic systems. II. Funkcial.

Ekvac., 27(2):173–200, 1984.

[51] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability analysis of

nonlinear systems with uncertain parameters using conservative linearization.

2008 47th IEEE Conference on Decision and Control, pages 4042–4048, 2008.

[52] Matthias Althoff, Colas Le Guernic, and Bruce H. Krogh. Reachable set com-

putation for uncertain time-varying linear systems. In HSCC, 2011.

[53] F. Gustafsson and N. Bergman. MATLAB R© for Engineers Explained. Springer

London, 2003.

[54] Yan Yan and Gregory S. Chirikjian. Closed-form characterization of the

minkowski sum and difference of two ellipsoids. Geometriae Dedicata,

177(1):103–128, Aug 2015.

100



BIOGRAPHICAL STATEMENT

Prabhjeet Singh Arora was born in Indore, India, in 1993. He received his

B.Tech. degree from Indian Institute of Technology (Indian School of Mines), Dhan-

bad, in 2015. He worked on regenerative braking systems for his undergraduate

project at the alma mater. He worked on stacker and reclaimer power system for his

internship at Eaton corporation, in India. In 2016, he moved to USA to pursue M.S.

in Mechanical Engineering at University of Texas at Arlington. His research interest

include optimal control and nonlinear control. His hobbies include playing chess and

tennis.

101


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	List of Algorithms
	INTRODUCTION
	Motivation and Background
	Outline

	MATHEMATICAL PRELIMINARIES
	Functional Analysis Preliminaries
	Boundedness of Norm of Matrix Powers

	Set Terminology
	Set Operations for Convex Sets
	Set Types

	Mathematical Model of Dynamic System
	Linear Dynamic System
	State Transition Matrix
	Perturbed Dynamic System
	Euler 1-step Discretization

	Controllable, Reachable and Invariant Sets

	PROBLEM STATEMENTS
	Maximal Control Invariant Set for Discrete system
	Reachable Set for LTI System
	Perturbed Linear Dynamic System
	Perturbed Linear Dynamic System with Compensation

	SOLUTION METHODOLOGY
	Maximal Control Invariant Set for Discrete system
	Reachable Set for LTI System
	Reachable Set for Autonomous Linear System
	Reachable Set for Linear System

	Perturbed Linear Dynamic System
	Condition for Lipschitz Constant
	Case 1 - f is in the Range-space of Control Input (i.e.  u) and is Bounded
	Case 2 - f is in the Range-space of Control Input (i.e.  u) and is Lipschitz Continuous
	Computation of Reachable Set for Perturbed System
	Method-2 for - Computation of Total Reachable Set for Perturbed System
	Computation of Maximal Robust Control Invariant Set for Perturbed System

	Perturbed Linear Dynamic System with Compensation
	Linear Counterpart Forward Reachable Set
	Correction System Analysis
	Computation of Reachable Set for Perturbed System with Compensation


	APPLICATION, RESULTS AND DISCUSSION
	Maximal Control Invariant Set for Discrete system
	Reachable Set for LTI System
	Effect of t on Reachable Set
	Effect of umax on Reachable Set
	Maximal Positive Invariant and Maximal Control Invariant Set

	Perturbed Linear Dynamic System
	Estimation of Forward Reachable Set of Perturbed System at Different times
	Method 2 - Estimation of Forward Reachable Set of Perturbed System
	Comparison of both Reachable Sets
	Size of Reachable Set with increasing  for same Control Constraint
	Maximal Control Invariant (MCI) Set of the Perturbed System

	Perturbed Linear Dynamic System (Compensation)
	FRS of the Linear Counterpart
	FRS of the Perturbed System (with and without compensation) for the Initial Set 0s
	FRS of the Perturbed System (with and without compensation) for the Initial Set 0b


	SUMMARY AND CONCLUSION
	FUTURE WORK
	LIST OF RESULTS
	REFERENCES
	BIOGRAPHICAL STATEMENT

