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ABSTRACT

ALGORITHMS FOR EXPLORATORY QUERIES OVER WEB DATABASE

Md Farhadur Rahman, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Gautam Das

In recent years we have seen an increase in the popularity of many web applications.

The functionality of these applications range from allowing users to interact using online

social network, to assist users in their everyday activity such as selecting a hotel in an area,

locating a nearby restaurant etc. Google Maps, WeChat, FourSquare, AirBnB, TripAdvisor,

and Hotels.com are a few such examples. The backed database of these applications can be

a rich source of information for the corresponding application domain. For example, using

Google Maps a user can find the ratings, reviews, and price of a restaurant, using Zillow

users compare the price distributions of houses in different areas of a city.

The public query interfaces of these applications may be abstractly modeled as a

kNN interface over the backend database that returns k results that are nearest to the user

query, where k is typically a small number such as 10 or 50. Moreover, Access to the un-
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derlying database is further restricted by enforcing query rate limitation, i.e., they limit the

number of requests from an IP address or API account for a certain time period. Because of

these restrictions, it is quite impossible for a third-party to crawl the data from the backend

database.

In this dissertation, we present efficient techniques for exploratory analysis over web

database. Specifically, we propose several algorithms that enable third-party applications

to perform the analytics and mining of the backend database by using nothing but the

restrictive, public-access, interface of the application. In addition, we also studied the

problem of answering the exploratory queries with full access to the underlying dataset.

First, we consider a special category of web application know as Location based

services (LBS). In general, an LBS provides a public search interface over its backend

database, taking as input a 2D query point and returning k tuples in the database that are

closest to the query point. In this work, we propose several algorithms that enable ap-

proximate estimate of SUM and COUNT aggregates by using the public search interface

provided by the LBS.

Second, we enable density-based clustering over the backend database of an LBS

using nothing but limited access to the kNN interface provided by the LBS. Our goal here

is to mine from the LBS a cluster assignment function f(·), such that for any tuple t in

the database (which may or may not have been accessed), f(·) can produce the cluster

assignment of t with high accuracy.

Third, we investigate a novel problem on the privacy implications of database rank-

ing, which has not been studied before. We show how privacy leakage (through the top-k

interface) can be caused by a seemingly innocent design of the ranking function in ranked

retrieval models. We introduce a comprehensive taxonomy of the problem space. Then,

for each subspace of the problem, we develop a novel technique which either guarantees

vi



the successful inference of private attributes, or accomplishes the attack for a significant

portion of real-world tuples.

Finally, we study the problem of subspace skyline discovery over web database where

the attributes are mostly categorical. Skyline queries are an effective tool in assisting users

in data exploration. In accordance with common practice in traditional database query pro-

cessing, we design solutions for two important practical instances of this problem, namely:

(i) assuming that no indices exist on the underlying dataset, and (ii) assuming that indices

exist on each individual attribute of the dataset.
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CHAPTER 1
Introduction

In recent years we have seen an increase in the popularity of many web applications.

The functionality of these applications range from allowing users to interact using online

social network, to assist users in their everyday activity such as selecting a hotel in an area,

locating a nearby restaurant etc. Google Maps, WeChat, FourSquare, AirBnB, TripAdvisor,

and Hotels.com are a few such examples. We can conceptualize these applications as client-

server model where a client specifies and sends queries via a web interface to a backend

database. The public query interfaces of these applications may be abstractly modeled as

a kNN interface over the backend database that returns k results that are nearest to the

user query. The backend databases of these applications contain information that can be

beneficial for the third-party users to build additional services over the data. However,

many of these applications impose certain interface restrictions: One is the aforementioned

top-k restriction (i.e., only the k nearest tuples are returned). Another common one is a

query rate limit - i.e., many applications limit the maximum number of kNN queries one

can issue per unit of time.

In this dissertation, we present efficient techniques for exploratory analysis over web

database. First, we consider a special category of application know as Location based

services (LBS) and propose algorithms to perform aggregate estimation and clustering
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over the backend database. We then study a novel problem of privacy leakage in real-world

web databases which is caused by the ranking function design. Finally, we consider the

problem of subspace skyline discovery over web database containing categorical attributes.

1.1 Aggregate Estimations over Location Based Services

Location based services (LBS) have become very popular in recent years. They range

from map services (e.g., Google Maps) that store geographic locations of points of interests

(POIs), to online social networks (e.g., WeChat, Sina Weibo, FourSquare) that leverage

user geographic locations to enable various recommendation functions. The underlying

data model of these services may be viewed as a database of tuples that are either POIs (in

case of map services) or users (in case of social networks), along with their geographical

coordinates (e.g., latitude and longitude) on a plane.

For many interesting third-party applications, it is important to collect aggregate

statistics over the tuples contained in such hidden databases − such as sum, count, or

distributions of the tuples satisfying certain selection conditions. However, third-party

applications and/or end users do not have complete and direct access to this entire database.

The database is essentially “hidden”, and access is typically limited to a restricted public

web query interface or API by which one can specify an arbitrary location as a query, which

returns at most k nearest tuples to the query point (where k is typically a small number such

as 10 or 50). Of course, such aggregate information can be obtained by entering into data

sharing agreements with the location-based service providers, but this approach can often

be extremely expensive, and sometimes impossible if the data owners are unwilling to share

their data.

In this work, we consider the problem of obtaining approximate estimates of such

aggregates by only querying the database via its restrictive public interface. First, we cat-
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egorize the LBS applications based on the type of information that is returned along with

the k tuples. Some services (e.g., Google maps) return the locations (i.e., the x and y co-

ordinates) of the k returned tuples. We refer to such services as Location-Returned LBS

(LR-LBS). Other services (e.g., WeChat, Sina Weibo) return a ranked list of k nearest tu-

ples, but suppress the location of each tuple, returning only the tuple ID and perhaps some

other attributes (such as tuple name). We refer to such services as Location-Not-Returned

LBS (LNR-LBS). For each category, we developed efficient sampling algorithms such that

one can adhere to the rate limits or budgetary constraints imposed by the interface, and yet

make the aggregate estimations as accurate as possible.

1.2 Efficient Analytics over Location Based Services

We demonstrate ANALOC, a web based system that enables fast analytics over an

LBS by issuing a small number of queries through its restricted kNN interface. ANALOC

stands in sharp contrast with existing systems for analyzing geospatial data, as those sys-

tems mostly assume complete access to the underlying data. Specifically, ANALOC sup-

ports the approximate processing of a wide variety of SUM, COUNT and AVG aggregates

over user-specified selection conditions. In the demonstration, we shall not only illustrate

the design and accuracy of our underlying aggregate estimation techniques, but also show-

case how these estimated aggregates can be used to enable exciting applications such as

hotspot detection, infographics, etc. Our demonstration system is designed to query real-

world LBS (systems or modules) such as Google Maps, WeChat and Sina Weibo at real

time, in order to provide the audience with a practical understanding of the performance of

ANALOC.
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1.3 Density based Clustering over Location Based Services

The backend database of an LBS is often a gold mine of information for understand-

ing the corresponding application domain. For example, data stored in real estate LBS

such as redfin.com offer critical insights into the geographic spread of wealth, education

quality, etc., while POI data such as those in Google Maps can support mining the spatial

patterns of lifestyle choices such as bar themes, restaurant cuisines, etc. Unfortunately,

due to the aforementioned limitations, access to such invaluable data is restricted to the

LBS provider itself, making it extremely difficult for unaffiliated third parties, e.g., social-

science researchers, business analysts, etc., to take advantage of the data. We aim to enable

the analytics and mining of such data by using nothing but the restrictive, public-access,

interface of the LBS, making it possible for third parties to enjoy the value of LBS data

without the lengthy and expensive negotiation process with the LBS provider.

The objective of this work is to study a novel problem of enabling spatial clustering

over an online LBS database by issuing only a small number of kNN queries supported

by the LBS interface. While many spatial clustering algorithms have been studied in the

literature, the objective of this work is not to select the best-performing algorithm for LBS

data, but to instead demonstrate the feasibility of enabling spatial clustering using nothing

but a few kNN query answers. For this purpose, we consider as a baseline a fundamental

yet popular density-based clustering algorithm, DBSCAN [1], and develop a DBSCAN-

like algorithm for LBS data with only a kNN interface for data access.

We first develop algorithms for the special case of one dimensional data, and then

extend them to two (and higher) dimensions. In the 1D case, each cluster is essentially

a dense segment, and our goal is to discover the boundaries of each dense segment. Our

algorithm starts from a dense point within a cluster and discovers the two boundary points

by going to the left and right using a binary search-like process. For the 2D case, we use
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an innovative approach of mapping the points in 2D space to 1D using a space filling curve

(SFC [2–4]), and then discover the clusters using the 1D clustering algorithm.

1.4 Privacy Implications of Database Ranking

While traditional structured databases generally support the Boolean Retrieval model

(i.e., return all tuples that exactly match the search query selection condition), in recent

years there has been much research into exploring the applicability of an alternate Ranked

Retrieval model (e.g., a kNN interface that returns top-k tuples according to a suitable

ranking function). The ranked retrieval model has become an important component of

many databases, especially in a client-server environment (e.g., web databases, where a

client specifies and sends queries via a web interface to a backend database). In this work,

we investigate a novel problem on the privacy implications of database ranking, which has

not been studied before. We show how privacy leakage (through the top-k interface) can

be caused by a seemingly innocent design of the ranking function in such ranked retrieval

models.

To understand how the privacy leakage occurs, note that many databases in a client-

server environment feature both public and private attributes. For example, social network-

ing websites often allow users to specify privacy settings that hide certain attributes from

the public’s view, e.g., profile demographics such as race, gender, income; location; past

posts, etc. These websites honor the privacy settings by omitting the private attributes from

being displayed in the returned query answers. Thus, the results include a ranked list of k

tuples, but with only the public attributes displayed, and the private attributes hidden. The

problem here, however, is that many websites indeed include these private attributes as in-

put to the ranking function. From the privacy perspective, this design might look harmless

as well - after all, while a ranking function might take as input a large number of attributes,
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its output is merely the (relative) rank of a tuple among returned results - not even the actual

ranking score! Naturally, the traditional belief here is that it is impossible to infer private

attribute values from just the ranking of a returned tuple.

In our investigation of real-world client-server databases (including popular web

databases), we found this traditional belief to be wrong. Specifically, in this work, we de-

velop a novel technique which, by asking a carefully constructed sequence of top-k queries

and observing the corresponding change of tuple ranks in the query answers, may success-

fully infer the value of private attributes.

1.5 Subspace Skyline over Categorical Domains

Skyline queries are widely used in applications involving multi-criteria decision

making [5], and are further related to well-known problems such as top-k queries [6], pref-

erence collection [7], and nearest neighbor search [8]. Given a set of tuples, skylines are

computed by considering the dominance relationships among them. A tuple p dominates

another tuple q, if q is not better than p in any dimension and p is better than q in at least

one dimension. The Skyline is the set of tuples that are not dominated by any other tuple in

the dataset [9].

In recent years, several applications have gained popularity in assisting users in tasks

ranging from selecting a hotel in an area to locating a nearby restaurant. AirBnB, TripAd-

visor, hotels.com, Craigslist, and Zillow are a few such examples. The underlying datasets

have numerous attributes that are mostly Boolean or categorical. They also include a few

numeric attributes, but in most cases the numeric attributes are discretized and transformed

into categorical attributes [10]. In this work, we consider the problem of subspace skyline

discovery over such datasets, in which given an ad-hoc subset of attributes as a query, the

goal is to identify the tuples in the skyline involving only those attributes1. Such subspace

1Naturally this definition includes skyline discovery over all attributes of a relation.
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skyline queries are an effective tool in assisting users in data exploration (e.g., an AirBnB

customer can explore the returned skyline to narrow down to a preferred host).

In accordance with common practice in traditional database query processing, we

design solutions for two important practical instances of this problem, namely: (a) assum-

ing that no indices exist on the underlying dataset, and (b) assuming that indices exist on

each individual attribute of the dataset. For the case when no indices are available, we

design a tree structure to arrange the tuples in a “candidate skyline” set. The tree structure

supports efficient dominance tests over the candidate set, thus reducing the overall cost of

skyline computation. We then propose two novel algorithms called ST-S (Skyline using

Tree Sorting-based) and ST-P (Skyline using Tree Partition-based) that incorporate the tree

structure into existing sorting- and partition-based algorithms. Then, we utilize precom-

puted sorted lists [11] and design efficient algorithms for the index-based version of our

problem. As one of the main results of our work, we propose the Threshold Algorithm for

Skyline (TA-SKY) capable of answering subspace skyline queries.
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CHAPTER 2
Aggregate Estimations over Location

Based Services

Location based services (LBS) have become very popular in recent years. They

range from map services (e.g., Google Maps) that store geographic locations of points of

interests, to online social networks (e.g., WeChat, Sina Weibo, FourSquare) that leverage

user geographic locations to enable various recommendation functions. The public query

interfaces of these services may be abstractly modeled as a kNN interface over a database

of two dimensional points on a plane: given an arbitrary query point, the system returns

the k points in the database that are nearest to the query point. In this paper [12] we con-

sider the problem of obtaining approximate estimates of SUM and COUNT aggregates by

only querying such databases via their restrictive public interfaces. We distinguish between

interfaces that return location information of the returned tuples (e.g., Google Maps), and

interfaces that do not return location information (e.g., Sina Weibo). For both types of

interfaces, we develop aggregate estimation algorithms that are based on novel techniques

for precisely computing or approximately estimating the Voronoi cell of tuples. We dis-
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cuss a comprehensive set of real-world experiments for testing our algorithms, including

experiments on Google Maps, WeChat, and Sina Weibo.

2.1 Introduction

2.1.1 LBS with a kNN Interface

Location based services (LBS) have become very popular in recent years. They range

from map services (e.g., Google Maps) that store geographic locations of points of interests

(POIs), to online social networks (e.g., WeChat, Sina Weibo, FourSquare) that leverage

user geographic locations to enable various recommendation functions. The underlying

data model of these services may be viewed as a database of tuples that are either POIs (in

case of map services) or users (in case of social networks), along with their geographical

coordinates (e.g., latitude and longitude) on a plane.

However, third-party applications and/or end users do not have complete and direct

access to this entire database. The database is essentially “hidden”, and access is typically

limited to a restricted public web query interface or API by which one can specify an

arbitrary location as a query, which returns at most k nearest tuples to the query point

(where k is typically a small number such as 10 or 50). For example, in Google maps it

is possible to specify an arbitrary location and get the ten nearest Starbucks. Thus, the

query interfaces of these services may be abstractly modeled as a “nearest neighbor” kNN

interface over a database of two dimensional points on a plane: given an arbitrary query

point, the system returns the k points in the database that are nearest to the query point.

In addition, there are important differences among the services based on the type of

information that is returned along with the k tuples. Some services (e.g., Google maps)

return the locations (i.e., the x and y coordinates) of the k returned tuples. We refer to such

services as Location-Returned LBS (LR-LBS). Other services (e.g., WeChat, Sina Weibo)
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return a ranked list of k nearest tuples, but suppress the location of each tuple, returning

only the tuple ID and perhaps some other attributes (such as tuple name). We refer to such

services as Location-Not-Returned LBS (LNR-LBS).

Both types of services impose additional querying limitations, the most important

being a per user/IP limit on the number of queries one can issue over a given time frame

(e.g., by default, Google map API imposes a query rate limit of 10,000 per user per day).

2.1.2 Aggregate Estimations

For many interesting third-party applications, it is important to collect aggregate

statistics over the tuples contained in such hidden databases − such as sum, count, or

distributions of the tuples satisfying certain selection conditions. For example, a hotel

recommendation application would like to know the average review scores for Marriott

vs Hilton hotels in Google Maps; a cafe chain startup would like to know the number of

Starbucks restaurants in a certain geographical region; a demographics researcher may wish

to know the gender ratio of users of social networks in China etc.

Of course, such aggregate information can be obtained by entering into data sharing

agreements with the location-based service providers, but this approach can often be ex-

tremely expensive, and sometimes impossible if the data owners are unwilling to share their

data. Therefore, in this paper we consider the problem of obtaining approximate estimates

of such aggregates by only querying the database via its restrictive public interface. Our

goal is to minimize query cost (i.e., ask as few queries as possible) in an effort to adhere to

the rate limits imposed by the interface, and yet make the aggregate estimations as accurate

as possible.

The closest prior work is [13]. This approach is based on generating random point

queries, estimating the area of the Voronoi cell [14] of the returned top-1 tuple for each

query, and estimating the aggregate from these top-1 tuples by making corrections for sam-
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pling bias using the area of the Voronoi cell. However, there are several limitations of this

work. First, this approach works only for LR-LBS, but does not work for LNR-LBS, and is

thus inapplicable over a large variety of location based services such as WeChat and Sina

Weibo that do not return precise location or distance information. Second, the approximate

nature of the technique used for estimating the area of a Voronoi cell makes the overall ag-

gregate estimation inherently biased. Third, the method only uses the top-1 returned tuple

for each query in its calculations (the remaining k − 1 tuples are ignored) thus leading to

inefficiency in the estimation procedure. We discuss this and other related work in §2.7.

2.1.3 Outline of Technical Results

Results over LR-LBS Interfaces: We first describe our results over LR-LBS interfaces.

Like [13], our approach is also based on generating random point queries and computing

the area of Voronoi cells of the returned tuples, but a key differentiator is that our approach

provides an efficient yet precise computation of the area of Voronoi cells. This procedure

is fundamentally different from the approximate procedure used in [13] for estimating the

area of Voronoi cells, and is one of the significant contributions of our paper. This leads to

unbiased estimations of SUM and COUNT aggregates over LR-LBS interfaces; in contrast,

the estimations in [13] have inherent (and unknown) sampling bias.

Moreover, we also leverage the top-k returned tuples of a query (and not just the

top-1) by generalizing to the concept of a top-k Voronoi cell, leading to significantly more

efficient aggregate estimation algorithms. We also developed four different techniques for

reducing the estimation error (and thereby estimation error) over LR-LBS interfaces: faster

initialization, leveraging history, variance reduction through dynamic selection of query re-

sults, and a Monte Carlo method which leverages current knowledge of upper/lower bounds

on the Voronoi cell without sacrificing the unbiasedness of estimations.
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We combine the above ideas to produce Algorithm LR-LBS-AGG, a completely un-

biased estimator for COUNT and SUM queries with or without selection conditions. We

note that AVG queries can be computed as SUM/COUNT.

Results over LNR-LBS Interfaces: We also consider the problem of aggregate estima-

tions over LNR-LBS interfaces. To the best of our knowledge, this is a novel problem with

no prior work. Recall that such type of kNN interfaces only return a ranked list of the top-k

tuples in response to a point query, and location information for these tuples is suppressed.

None of the prior work for LR-LBS interfaces can be extended to LNR-LBS interfaces.

For such interfaces, we develop aggregate estimation algorithms that are not completely

bias-free, but can guarantee an arbitrarily small sampling bias. The key idea here is the

inference of a tuple’s Voronoi cell to an arbitrary precision level with a small number of

queries from merely the ranks of the returned tuples.

On a related note, we also show how one can infer the position of a tuple in LNR-

LBS, again at a level of arbitrary precision - a problem, while of independent interest, is

also critical for enabling the estimations of aggregates that feature selection conditions on

tuples’ locations (e.g., the COUNT of social network users within 10 meters of major high-

ways). We also study a subtle extension to cases where k > 1; in particular we study the

challenge brought by this case by the (possibly) concave nature of top-k Voronoi cells, and

develop an efficient algorithm to detect potential concaveness and guarantee the accuracy

of the inferred Voronoi cell.

We combine the above ideas to produce Algorithm LNR-LBS-AGG, an estimator

for COUNT and SUM queries with or without selection conditions. Unlike Algorithm LR-

LBS-AGG, this estimator may be biased, but the bias can be controlled to any arbitrary

desired precision. As before, we note that AVG queries can be computed as SUM/COUNT.
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2.1.4 Summary of Contributions

• Location based services have become very popular in recent years, and aggregate

estimation over such “hidden” databases with their restricted kNN query interfaces

is an important problem with numerous applications. In our work, we consider both

LR-LBS (locations returned) as well as the more novel LNR-LBS (locations not

returned) interfaces.

• For LR-LBS interfaces, we develop Algorithm LR-LBS-AGG for estimating

COUNT and SUM aggregates with or without selection conditions. It represents

a significant improvement over prior work along multiple dimensions: a novel way

of precisely calculating Voronoi cells lead to completely unbiased estimations; top-k

returned tuples are leveraged rather than only top-1; several innovative techniques

developed for reducing error and increasing efficiency.

• For LNR-LBS interfaces, we develop Algorithm LNR-LBS-AGG for estimating

COUNT and SUM aggregates with or without selection conditions.This is a novel

problem with no prior work. The estimated aggregates are not bias-free, but the sam-

pling bias can be controlled to any desired precision. Among several key ideas, we

show how a Voronoi cell can be inferred to an arbitrary degree of precision from

merely the ranks of returned tuples to point queries.

• Our contributions also include a comprehensive set of real-world experiments.

Specifically, we conducted online tests over a number of real-world LBS, e.g.,

Google Maps (LR-LBS) for estimating the number of Starbucks in US (and com-

pared the results with the ground truth published by Starbucks); WeChat and Sina

Weibo for estimating the percentage of male/female users in China.
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2.2 Background

2.2.1 Model of LBS

A location based service (LBS) supports kNN queries over a database D of tuples

with location information. These tuples can be points of interest (e.g. Google Maps) or

users (e.g. WeChat, Sina Weibo). A kNN query q takes as input a location (e.g., lon-

gitude/latitude combination), and returns the top-k nearest tuples selected and ranked ac-

cording to a pre-determined ranking function. Since the only input to a query is a location,

we use q to also denote the query’s location without introducing ambiguity. Most of the

popular LBS follow kNN query model. For most parts of the paper, we consider the rank-

ing function to be Euclidean distance between the query location and each tuple’s location.

Extensions to other ranking functions are discussed in §2.5.3.

Note that tuples in an LBS system contain not only location information but other

many other attributes - e.g., a POI in Google Maps includes attributes such as POI name,

average review ratings etc. Depending on which attributes of a tuple are returned by the

kNN interface - more specifically, whether the location of a tuple is returned - we can

classify LBS into two main categories:

LR-LBS: A Location-Returned-LBS (LR-LBS) returns the precise location for each of

the top-k returned tuples, along with possibly other attributes. Google Maps, Bing Maps,

Yahoo! Maps, etc., are prominent examples of LR-LBS, as all of them display the precise

location of each returned POI. Note that some LBS may return a variant of the precise

locations - e.g., Skout and Momo returns not the precise location of a tuple, but the precise

distance between the query location and the tuple location. We consider such LBS to be in

the LR-LBS category because, through previously studied techniques such as trilateration

(e.g., [15]), one can infer the precise location of a tuple with just 3 queries.
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LNR-LBS: A Location-Not-Returned-LBS (LNR-LBS), on the other hand, does not return

tuple locations - i.e., only other attributes such as name, review rating, etc., are returned.

This category is more prevalent among location based social networks (presumably because

of potential privacy concerns on precise user locations). Examples here include WeChat,

which returns attributes such as name, gender, etc., for each of the top-k users, but not the

precise location/distance. Other examples include Sina Weibo, WeChat, etc., which feature

a similar query return semantics.

Common Interface Features and Limitations: Generally speaking, there are two ways

through which an LBS (either LR- or LNR-LBS) supports a kNN query. One is an in-

teractive web or API interface which allows a location to be explicitly specified as a lati-

tude/longitude pair. Google Maps is an example to this end. Another common way is for

the LBS (e.g., as a mobile app) to directly retrieve the query location from a positioning

service (such as GPS, WiFi or Cell towers) and automatically issue a kNN query accord-

ingly. In the second case, there is no explicit mechanism to enter the location information.

Nonetheless, it is important to note that, even in this case, we have the ability to issue a

query from any arbitrary location without having to physically travel to that location. All

mobile OS have debugging features that allow arbitrary location to be used as the output of

the positioning (e.g., GPS) service.

Many LBS also impose certain interface restrictions: One is the aforementioned top-

k restriction (i.e., only the k nearest tuples are returned). Another common one is a query

rate limit - i.e., many LBS limit the maximum number of kNN queries one can issue per

unit of time. For example, by default Google Maps allows 10,000 location queries per

day while Sina Weibo allows only 150 queries per hour. This is an important constraint

for our purpose because it makes the query-issuing process the bottleneck for aggregate

estimation. To understand why, note that even with the generous limit provided by Google
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Maps, one can issue only 7 queries per minute - this 8.6 second per query overhead1 is

orders of magnitude higher than any offline processing overhead that may be required by

the aggregate estimation algorithm. Thus, this interface limitation essentially makes query

cost the No. 1 performance metric to optimize for aggregate estimation. An LBS might

impose other, more subtle constraints - e.g., a maximum coverage limit which forbids tuples

far away (say more than 5 miles away) from a query location to be returned. We shall

discuss about these constraints in §2.5.3.

2.2.2 Voronoi Cells

Voronoi cell [14] is a key geometry concept used extensively by our algorithms de-

veloped in the paper. Thus, we introduce this concept here as part of the preliminaries.

Consider each tuple t ∈ D as a point on a Euclidean plane bounded by a box B (which

covers all tuples in D). We have the following definition.

Definition 1 (Voronoi Cell). Given a tuple t ∈ D, the Voronoi cell of t, denoted by V (t), is

the set of points on the B-bounded plane that are closer to t than any other tuple in D.

Note that the B-bound ensures that each Voronoi cell is a finite region. The Voronoi

cells of different tuples are mutually exclusive - i.e., the Voronoi diagram is the subdivision

of the plane into regions, each corresponding to all query locations that would return a

certain tuple as the nearest neighbor2.

For the purposes of our paper, we define an extension of the Voronoi cell concept to

accommodate the top-k (when k > 1) query return semantics. Specifically, given a tuple

t ∈ D, we define the top-k Voronoi cell of t, denoted by Vk(t), as the set of query locations

1Of course, one can shorten it with multiple IP addresses and API accounts - but similarly, one can use parallel processing to speed

up offline processing as well.
2We assume general positioning [14] - i.e., no two tuples have the exact same location and no four points on the same circle.
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on the plane that return t as one of the top-k results. There are four important observations

about this concept:

First, the top-k Voronoi cells for different tuples are no longer mutually exclusive.

Each location l belongs to exactly k top-k Voronoi cells corresponding to the top-k tuples

returned by query over l. Second, our concept of top-k Voronoi cells is fundamentally

different from the k-th ordered Voronoi cells in geometry [14] - each of which is formed

by points with the exact same k closest tuples. The difference is illustrated in Figure 2.1

- while each colored region is a k-th ordered Voronoi cell, a top-k Voronoi cell may cover

multiple regions with different colors. For example, the top-2 Voronoi cell for tuple A is

marked by a red border and consists of two different k-th ordered Voronoi cells (AB and

AE).

A

E

D

C
B

AB BC

CD

DE

AE
BE

DB

Figure 2.1: Concavity of top-k Voronoi Diagrams

Third, while both top-1 Voronoi cells and k-th order Voronoi cells are guaranteed to

be convex [14], the same does not hold for top-k Voronoi cells when k > 1. For example,

from Figure 2.1 we can see that the aforementioned top-2 Voronoi cell for tuple A is con-

cave. Fourth, a top-k Voronoi cell tend to contain many more edges than a top-1 Voronoi
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cell. As we shall discuss later in the paper, the larger number of edges and the potential

concaveness makes computing the top-k Voronoi cell of a tuple t more difficult.

Figure 2.2: Illustration of The-
orem 1

t1

t5 t4

t3

t2
Step 1
Step 3
Step 4

q3

q1 q2

q4

Figure 2.3: Illustration of
LR-LBS-AGG

t1 t2

t3

t4

t5

f4

f3

f2

f1

Figure 2.4: Faster Initial-
ization - Success

2.2.3 Problem Definition

In this paper, we address the problem of aggregate estimations over LBS. Specif-

ically, we consider aggregate queries of the form SELECT AGGR(t) FROM D WHERE

Cond where AGGR is an aggregate function such as SUM, COUNT and AVG that can be

evaluated over one or more attributes of t, and Cond is the selection condition. Examples

include the COUNT of users in WeChat or AVG rating of restaurants in Texas at Google

Maps.

There are two important notes regarding the selection condition Cond. First, we

support any selection condition that can be independently evaluated over a single tuple -

i.e., it is possible to determine whether a tuple t satisfies Cond based on nothing but t.

Second, for both LR- and LNR-LBS, we support the specification of a tuple’s location as

part of Cond - even when such a location is not returned, like in LNR-LBS. This is possible

thanks to what we shall discuss in §2.4.3 - i.e., even with LNR-LBS, one can derive the

location of a tuple to arbitrary precision after issuing a small number of queries. As such,

we support aggregates such as the percentage of female WeChat users in Washington, DC).
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In most part of the technical sections, we focus on aggregates without selection con-

ditions - the straightforward extensions to various types of selection conditions will be

discussed in §2.5.

Performance Measures: The performance of an aggregate estimation algorithm is mea-

sured in terms of efficiency and accuracy. Given the query-rate limit enforced by all LBS,

the efficiency is measured by query cost - i.e. the number of queries and/or API calls

that the algorithm issues to LBS. Often, we are given a fixed budget (based on the rate

limits) and hence designing an efficient algorithm that generates accurate estimates within

the budgetary constraints is crucial. The accuracy of an estimation θ̃ of an aggregate θ

could be measured by the standard measure of relative error |θ̃ − θ|/θ. Note that, for any

sampling-based approach (like ours), the relative error is determined by two factors: bias,

i.e. |E(θ̃ − θ)| , and variance of θ̃. The mean squared error, MSE of the estimation is

computed as MSE = bias2 + variance.

An interesting question often arises in practice is how we can determine the relative

error achieved by our estimation. If the population variance is known, then one can apply

standard statistics techniques to compute the confidence interval of aggregate estimations

[16]. Absence of such knowledge, a common practice is to approximate the population

variance with sample variance, which can be computed from the samples we use to generate

the final estimation and use Bessel’s correction [16] to correct the result.

2.3 LR-LBS-AGG

In this section, we develop LR-LBS-AGG, our algorithm for generating unbiased

SUM and COUNT estimations over an LR-LBS query interface. Specifically, we start

with introducing our key idea of precisely computing the (top-k) Voronoi cell of a given

tuple, which enables the unbiased aggregate estimations. While this idea guarantees unbi-
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asedness, it may require a large number of queries per (randomized) estimation, leading to a

large estimation variance (and therefore, error) when the query budget is limited. Hence we

develop four techniques for reducing the estimation error while maintaining the complete

unbiasedness of aggregate estimations. Finally, we combine all ideas to produce Algorithm

LR-LBS-AGG at the end of this section.

2.3.1 Key Idea: Precisely Compute Voronoi Cells

Reduction to Computing Voronoi Cells: We start by describing a baseline design which

illustrates why the problem of aggregate estimations over an LBS’s kNN interface ulti-

mately boils down to computing the volume of the Voronoi cell corresponding to a tuple

t. As an example, consider the estimation of COUNT(*) (over a given region) through an

LR-LBS with a top-1 interface.

We start by choosing a location q uniformly at random from the region, and then

issue a query at q. Let t be the tuple returned by q. Suppose that we can compute the

Voronoi cell of t (as defined in §2.2), say V (t). A key observation here is that the sampling

probability of t, i.e., the probability for the above-described randomized process to return

t, is exactly p(t) = |V (t)|
|V0| where |V (t)| and |V0| are the volume of V (t) and the entire

region, respectively. Note that knowledge of p(t) directly leads to a completely unbiased

estimation of COUNT(*): r = 1/p(t), because

Exp(r) =
∑
t∈D

p(t) · 1

p(t)
= |D|, (2.1)

where Exp(·) is the expected value of the estimation (taken over the randomness of the

estimation process), and |D| is the total number of tuples in the database. From (2.1), one

can see that every SUM and COUNT aggregate we support can be estimated without bias

- the only change required is on the numerator of estimation. Instead of having 1 as in

the COUNT(*) case, it should be the evaluation of the aggregate over t - e.g., if we need
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to estimation SUM(A1) where A1 is an attribute, then the numerator should be t[A1], i.e.,

the value of A1 for t. If the aggregate is COUNT with a selection condition, then the

numerator should be either 1 if t satisfies the condition, or 0 if it does not. One can see

from the above discussions that, essentially, the problem of enabling unbiased SUM and

COUNT estimations is reduced to that of precisely computing the volume of V (t), i.e., the

Voronoi cell of a given tuple t.

Computing Voronoi Cells: For computing the Voronoi cell of a given tuple, a nice fea-

ture of the LR-LBS interface is that it returns the precise location of every returned tuple.

Clearly, if we can somehow “collect” all tuples with Voronoi cells adjacent to that of t,

then we can precisely compute the Voronoi cell of t based on the locations of these tuples

(and t). As such, the key challenges here become: (1) how do we collect these tuples and

(2) how do we know if/when we have collected all tuples with adjacent Voronoi cells to

t? Both challenges are addressed by the following theorem which forms the foundation of

design of Algorithm LR-LBS-AGG.

Theorem 1. Given a tuple t ∈ D and a subset of tuples D′ ⊆ D such that t ∈ D′, the

Voronoi cell of t defined according to D′, represented by P ′, is the same as that according

to the entire dataset D, denoted by P , if and only if for all vertices v of P ′, all tuples

returned by the nearest neighbor query issued at v over D belong to D′.

Proof. First, note that there must be P ⊆ P ′, because for a given location q, if there is

already a tuple t′ in D′ that is closer to q than t, then there must at least one tuple in D that

is closer to q than t. Second, if P 6= P ′ (i.e., P ⊂ P ′), then there must at least one vertex

of P ′, say v, that falls outside P . i.e. there must exist a tuple t0 ∈ (D\D′) that is closer to

v than all tuples in D′.

Example 1: Figure 2.2 provides an illustration for Theorem 1. In order to compute

the Voronoi cell of the tuple corresponding to the red dot, it suffices to know the location
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of the adjacent tuples. Since each Voronoi edge is a perpendicular bisector between the

adjacent tuples, the entire Voronoi cell can be computed as the convex shape induced by

the intersections of the edges.

Theorem 1 answers both challenges outlined above: it tells us when we have col-

lected all “adjacent” tuples - when all vertices of t’s Voronoi cell computed from the col-

lected tuples return only collected tuples. It also tells us how to collect more “adjacent”

tuples when not all of them have been collected - any vertex which fails the test naturally

returns some tuples that have not been collected yet, adding to our collection and starting

the next round of tests.

According to the theorem, a simple algorithm for constructing the exact Voronoi cell

for t is as follows: We start with D′ = {t}. Now the Voronoi cell is the entire region (say

an extremely large rectangle). We issue queries corresponding to its four vertices. If any

query returns a point we have not seen yet - i.e., not in D′ - we append it to D′, recompute

the Voronoi cell, and repeat the process. Otherwise, if all queries corresponding to vertices

of the Voronoi cell return points in D′, we have obtained the real Voronoi cell for t ∈ D.

One can see that the query complexity of this algorithm is O(n), where n is the number

of points in the database D, because each query issued either confirms a vertex of the final

Voronoi cell (which has at most n − 1 vertices), or returns us a new point we have never

seen before (there are at most n− 1 of these too). It is easy to see that the bound is tight -

as one can always construct a Voronoi cell that has n−1 edges and therefore requires Ω(n)

top-1 queries to discover (after all, each such query returns only 1 tuple). An example here

is when t is in the center of a circle, on which the other n−1 points are located. Algorithm 1

shows the pseudocode of the baseline approach which we improve in Section 2.3.2.

Example 2: Figure 2.3 provides a simple run-through of the algorithm for a dataset

with 5 tuples {t1, . . . , t5}. Suppose we wish to compute V (t4). Initially, we set D′ = {t4}

and V (t4) = V0, the entire bounding box. We issue query q1 that returns tuple t5 and
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Algorithm 1 LNR-LBS-AGG-Baseline
1: while query budget is not exhausted

2: q = location chosen uniformly at random; t = query(q)

3: V (t) = V0; D′ = {t}

4: repeat till D′ does not change between iterations

5: for each vertex v of V (t): D′ = D′∪ query(v)

6: Update V (t) from D′

7: Produce aggregate estimation using samples

hence D′ = {t4, t5}. We now obtain a new Voronoi edge that is the perpendicular bisector

between t4 and t5. The Voronoi cell after step 1 is highlighted in light grey. In step 2,

we issue query q2 that returns t4 resulting in no update. In step 3, we issue query q3 that

returns t3. D′ = {t3, t4, t5} and we obtain a new Voronoi edge as the perpendicular bisector

between t3 and t4 depicted in dark medium gray. In step 4, we issue query q4 that returns t2

resulting in the final Voronoi edge depicted in dark grey. Further queries over the vertices

for V (t4) does not result in new tuples concluding the invocation of the algorithm.

Extension to k > 1: Interestingly, no change is required to the above algorithm when

we consider the top-k Voronoi cell rather than the traditional, i.e., top-1 Voronoi cell. To

understand why, note that Theorem 1 directly extends to top-k Voronoi cells - as a top-k

Voronoi computed from D′ still must completely cover that for D; and any vertex of the

top-k Voronoi from D′ which is outside that from D must return at least one tuple outside

D′. We further describe how to leverage k > 1 in Sections 2.3.2.3 and 2.4.2.

2.3.2 Error Reduction

Before describing the various error reduction techniques we develop for aggregate

estimations over LR-LBS, we would like to first note that, while we use the term “error
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reduction” as the title of this subsection, some of the techniques described below indeed

focus on making the computation of a Voronoi cell more efficient. The reason why we call

all of them “error reduction” is because of the inherent relationship between efficiency and

estimation error - if the Voronoi-cell computation becomes more efficient, then we can do

so for more samples, leading to a larger sample size and ultimately, a lower estimation error

(which is inversely proportional to the square root of sample size [16]).

2.3.2.1 Faster Initialization

A key observation from the design in §2.3.1 is its bottleneck: the initialization pro-

cess. At the beginning, we know nothing about the database other than (1) the location of

tuple t, and (2) a large bounding box corresponding to the area of interest for the aggregate

query. Naturally, D′ = {t}, leading to the initial Voronoi cell being the bounding box,

and our first four queries being the corners of these bounding boxes. Of course, the tenta-

tive Voronoi cell will quickly close in to the real one with speed close to a binary search -

i.e., the average-case query cost is at log scale of the bounding box size. Nonetheless, the

initialization process can still be very costly, especially when the bounding box is large.

To address this problem, we develop a faster initialization technique which features

a simple idea: Instead of starting with D′ = {t}, we insert four fake tuples into D′, say

D′ = {t, tF1 , . . . , tF4}, where tF1 , . . ., tF4 form a bounding box around t. The size of the
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bounding box should be conservatively large - even though a wrongly set size will not

jeopardize the accuracy of our computation - as we shall show next.

By computing the initial Voronoi cell from D′ and then issue queries corresponding

to its vertices, there are two possible outcomes: One is that these queries return enough

real tuples (besides t, of course) that, after excluding the fake ones from D′, we still get

a bounded Voronoi cell for t. One can see that, in this case, we can simply continue the

computation while having saved a significant number of initialization queries. The other

possible outcome, however, is when the bounding box is set too small, and we do not have

enough real tuples to “bound” t with a real Voronoi cell. Specifically, in the extreme-case

scenario, all four vertices of the initial Voronoi cell could return t itself. In this case, we

simply revert back to the original design, wasting nothing but four queries.

One can see that the faster initialization process still guarantees the exact computa-

tion of a tuple’s Voronoi cell. It has the potential to save a large amount of initialization

queries in the average-case scenario, while in the worst case, it wastes at most four queries.

Algorithm 2 provides the pseudocode for faster initialization strategy.

Algorithm 2 Fast-Init
1: Input: t; Output: V (t)

2: D′ = {t, tF1 , tF2 , tF3 , tF4 }; Update V (t) based on D′

3: If all queries over vertices of V (t) return t, then return V0

4: repeat till D′ does not change between iterations

5: for each vertex v of V (t): D′ = D′∪ query(v)

6: Update V (t) from D′

7: return V (t)
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Example 3: Figures 2.4 and 2.5 show two different scenarios where the strategy is

successful and not successful respectively based on whether the bounding box due to fake

tuples is conservatively large. Given a small dataset with tuples {t1, . . . , t5}, we initialize

them with a bounding box corresponding to fake tuples {f1, . . . , f4}. In Figure 2.4, the

initial bounding box is tight enough and results in the computation of the precise V (t4)

with much lower query cost (i.e. only tuples {t3, t5} are visited as against tuples {t2, t4, t5}

for the example of Algorithm 1. On the other hand, if the bounding box is not tight (as in

Figure 2.5), then queries over all the vertices of the bounding box return t4. We then revert

back to the original bounding box V0 that covers the entire region.

2.3.2.2 Leverage history on Voronoi-cell computation

Another natural optimization is to leverage the information that is gleaned from com-

puting the Voronoi cells of past tuples to compute a tighter initial Voronoi cell. Recall that

our algorithm to compute Voronoi cell of a tuple t (i.e V (t)), using Theorem 1 starts with

an initial Voronoi cell that is an extremely large bounding box that covers the entire plane

that then converges to V (t). In the process of computing this Voronoi cell, our algorithm

retrieved additional new tuples (by issuing queries for each vertex of the bounding box).

Notice that for a LBS with static tuples (such as POIs in Google Maps), the results of lo-

cation query ordered by distance remains static. Hence it is not necessary to restart every

iteration of the algorithm with the same large bounding box. Specifically, when computing

the Voronoi cell for the next tuple, we could leverage history by starting with a “tighter”

initial bounding box whose vertices are the set of tuples that we have seen so far. In other

words, we reuse the tuples that we have seen so far and make them as input to further

rounds. Notice that this approach remains the same for both k = 1 and k > 1. Since

the location of each tuple in top-k are returned in LR-LBS, each of these tuples could be

leveraged. As we see more tuples, the initial Voronoi cell becomes more granular resulting
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in substantial savings in query cost. Algorithm 3 provides the pseudocode for the strategy.

While the pseudocode uses the simple perpendicular bisector half plane approach [14], it

could also use more sophisticated approaches such as Fortune’s algorithm [14] to compute

the bounding box around tuple t using the tuples from historic queries.

Algorithm 3 Leverage-History
1: Input: t and H (set of tuples obtained from historic queries)

2: Output: Bounding box V ′(t)

3: V ′(t) = V0

4: for each tuple h ∈ H

5: Update V ′(t) with perpendicular bisector between h and t

6: return V ′(t) with the tightest bounding box around t

Example 4: As part of computing V (t4) (see Example 1), we have the locations of

t2, . . . , t5. Using this information, we can compute the initial bounding box for t2 (shown

in red around t2 in Figure 2.6) offline - i.e. without issuing any queries.

2.3.2.3 Variance reduction with larger k

When the system has k > 1, we can of course still choose to use the top-1 Voronoi

cell as if only the top result is returned. Or we can choose from any of the top-h Voronoi

cells as long as h ≤ k. While intuitively it might appear that using all k returned tuples

is definitely better than using just the top-1, the theoretical analysis suggests otherwise -

indeed, whether top-1 or top-h Voronoi cell is better depends on the exact aggregate being

estimated - specifically, whether the distribution of the attribute being aggregated is better

“aligned” with the size distribution of top-1 or top-h Voronoi cells. To see why, simply

consider an extreme-case scenario where the aggregate being estimated is AVG(Salary),
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and the salary of each user (tuple) is exactly proportional to the size of its top-1 Voronoi

cell. In this case, nothing beats using the top-1 Voronoi cells as doing so produces zero

variance and thus zero estimation error.

Having said that, however, many aggregates can indeed be better estimated using top-

h Voronoi cells, because the sizes of these top-h cells are more uniform than those of the

top-1 cells, which can vary extremely widely (see Figure 2.11 in the experiments section

for an example), while many real-world aggregates are also more uniformly distributed

than the top-1 cell volume (again, see experiments for justification). But simply increasing

h also introduces an undesired consequence: recall from §2.2 that the larger h is, the more

“complex” the top-h Voronoi cell becomes - in other words, the more queries we have to

spend in order to pin down the exact volume of the Voronoi cell.

Thus, the key is to make a proper tradeoff between the benefit received (i.e., smaller

variance per sample) and the cost incurred (i.e., larger query cost per sample). Our main

idea is a combination of two methods: leveraging history in §2.3.2.2 and upper/lower bound

approximation in §2.3.2.4. Specifically, for each of the k returned tuples, we perform the

following process:

Consider ti returned as the No. i result. We need to decide which version of the

Voronoi cell definition to use for ti. The answer can be anywhere from 1 to k. To make

the determination, for all h ∈ [2, k], we compute λh(ti), the upper bound on the volume of

the top-k Voronoi cell of ti, as computed from all historically retrieved tuples. Then, we

choose the largest h which satisfies λh(ti) ≤ λ0, where λ0 is a pre-determined threshold

(the intuitive meaning of which shall be elaborated next). Let the chosen value be h(ti). If

none of h ∈ [2, k] satisfies the threshold, we take h(ti) = 1. Then, if h(ti) ≤ i, we compute

the top-h Voronoi cell for ti. The final estimation from the k returned results becomes:∑
ti:h(ti)≤i≤k

Q(ti)

|Vh(ti)|
(2.2)
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for any SUM or COUNT query Q, where |Vh(ti)| is the volume for the top-h Voronoi cell

of ti.

We now explain the intuition behind the above approach, specifically the threshold

λ0. First, note that if the top-h (say top-1) Voronoi cell of ti is already large, then there

is no need to further increase h. The reason can be observed from the above-described

justification of variance reduction - note that a large top-1 Voronoi cell translates to a large

selection probability p - i.e., a small 1/p which adds little to the overall variance. Further

increasing h not only contributes little to variance reduction, but might actually increase

the variance if 1/p is already below the average value.

Second, admittedly, λh(ti) is only an upper-bound estimate - i.e., even though we

showed above that an already large top-h Voronoi cell does not need to have h further

increased, there remains the possibility that λh(ti) is large because of an overly loose bound

(from history), rather than the real volume of the Voronoi cell. Nonetheless, note that this

is still a negative signal for using such a large h - as it means that we have not thoroughly

explored the neighborhood of ti. In other words, we may need to issue many queries in

order to reduce our estimation (or computation) of |Vh(ti)| from λh(ti) to the correct value.

As such, we may still want to avoid using such a large h in order to reduce the query cost.

While the above explanation is heuristic in nature it is important to note that, regard-

less of how we set h(ti), the estimation we produce for SUM and COUNT aggregates in

(2.2) is always unbiased.

2.3.2.4 Upper/lower bounds on Voronoi-cell

Note that in the entire process of Voronoi-cell computation (barring the very first step

of the faster initialization idea discussed in §2.3.2.1), we maintain a tentative polygon that

covers the entire real Voronoi cell - i.e., an upper bound on its volume. What often arises in
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Algorithm 4 Variance-Reduction
1: Input: H; Output: Aggregate estimate from all top-k tuples

2: q = location chosen uniformly at random

3: for each tuple ti returned from query(q)

4: h(ti) = max{h|h ∈ [2, k], λh(ti) ≤ λ0}

5: h(ti) = 1 if no h satisfied the condition λh(ti) ≤ λ0

6: Generate estimate for ti using Equation 2.2

practice, especially when computing top-k Voronoi cells (which tend to have many edges),

is that even though the bounding polygon is very close to the real Voronoi cell in volume,

it has far fewer edges - meaning we still need to issue many more queries to pin down the

exact Voronoi cell.

The key idea we develop here is to avoid such query costs without sacrificing the ac-

curacy of our aggregate estimations. Specifically, consider a simple Monte Carlo approach

which chooses uniformly at random a point from the current bounding polygon, and then

issues a query from that point. If the query returns t - i.e., it is in the Voronoi cell of t, we

stop. Otherwise, we repeat this process. Interestingly, the number of trials it takes to reach

a point that returns t, say r, is an unbiased estimation of |V ′(t)|/|V (t)|, where |V ′(t)| and

|V (t)| are the volumes of the bounding polygon and the real Voronoi cell of t, respectively.

Exp(r) =
∞∑
i=1

[
i ·
(

1− |V (t)|
|V ′(t)|

)i−1
· |V (t)|
|V ′(t)|

]
=
|V ′(t)|
|V (t)|

.

In other words, we can maintain the unbiasedness of our estimation without issuing

the many more queries required to pin down the exact Voronoi cell. Instead, when V ′(t)

is close enough to V (t), we can simply use call upon above-described method which, in

most likelihood, requires just one more query to produce an unbiased SUM or COUNT

estimation. For example, we can simply multiply the number of trials r by |V0|/|V ′(t)|,

where |V0| is the volume of the entire region under consideration, to produce an unbiased
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estimation for COUNT(*). Other SUM and COUNT aggregates can be estimated without

bias in analogy.

Before concluding this idea, there is one more optimization we can use here: a lower

bound on the top-k Voronoi cell of t. In the following, we first discuss how to use such a

lower bound to further reduce query cost, and then describe the idea for computing such a

lower bound. Note that once we have knowledge of a region R that is covered entirely by

the real (top-k) Voronoi cell, if in the above process, we randomly choose a point q (from

V ′(t)) which happens to belong in R, then we no longer need to actually query q - instead,

we immediately know that q must belong to V (t) and can produce an unbiased estimation

accordingly. This is the cost saving produced by knowledge of a lower bound R.

To understand how we construct this lower bound region, a key understanding is that,

at anytime during the execution of our algorithm, we have tested certain vertices of V ′(t)

which are already confirmed to be part of V (t). Consider such a vertex v. Let C(v, t) be a

circle with v being the center and the distance between t and v being the radius. Note that

we are guaranteed to have observed all tuples within C(v, t). This essentially leads to a

lower-bound estimation of V (t). Specifically, a point q is in this lower-bound region if and

only if C(q, t), i.e., a circle centered on q with radius being the distance between q and t, is

entirely covered by the union of C(v, t) for all vertices v of V ′(t) that have been confirmed

to be within V (t). As such, for any q in this region, we can save the query on it in the above

process.

Example 5: The upper bound V ′(t4) of V (t4) after Step 3 in the Example 2 (i.e. run-

through of Algorithm LR-LBS-AGG-Baseline) is shown in Figure 2.7 as a quadrilateral

with red edges. The three lower vertices of V ′(t4) are guaranteed to be in V (t4) using the

criteria described above and hence the polygon induced by them provides a lower bound

estimate for V (t4).
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2.3.3 Algorithm LR-LBS-AGG

By combining the baseline idea for precisely computing the Voronoi cells with the

4 techniques for error reduction, we can design an efficient algorithm LR-LBS-AGG for

aggregate estimation over LR-LBS. Algorithm 5 shows the pseudocode for LR-LBS-AGG.

Algorithm 5 LR-LBS-AGG
1: while query budget is not exhausted

2: q = location chosen uniformly at random

3: for each tuple ti in query(q)

4: Compute optimal h for ti

5: Construct initial Vh(ti) using Algorithms 2 and 3

6: D′= vertices of Vh(ti)

7: repeat till D′ is not updated or Voronoi bound is tight

8: for each vertex v of Vh(ti): D′ = D′∪ query(v)

9: Update Vh(ti) and V ′h(ti) from D′

10: Produce aggregate estimation using samples

2.4 LNR-LBS-AGG

2.4.1 Voronoi Cell Computation: Key Idea

We now consider the case where only a ranked order of points are returned - but not

their locations. We shall start with the case of k = 1, and then extend to the general case of

k > 1.

We start by defining a primitive operation of “binary search” as follows. Consider

the objective of finding the Voronoi cell of a tuple t in the database. Given any location

c1 and c2 (not necessarily occupied by any tuple), where c1 returns t, consider the half-
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line from c1 passing through c2. Since a Voronoi cell is convex and c1 resides within the

Voronoi cell, this half-line has one and only one intersection with the Voronoi cell - which

is associated with one or two edges of the Voronoi cell. We define the primitive operation

of binary search for given c1, c2 to be the binary search process of finding one Voronoi edge

associated with the intersection. Please refer to § 2.9 for the detailed design of this process.

Naturally, such a binary search process is associated with an error bound on the

precision of the derived edge. For example, we can set an upper bound ε on the maximum

distance between any point on the real Voronoi edge (i.e., a line segment) and its closest

point on the derived edge, which we refer to as the maximum edge error, and use ε as the

objective of the binary search operation. One can see that the number of queries required

for this binary search is proportional to log(1/ε). See § 2.9 for exact query cost.

Given this definition, we now show that one can discover the Voronoi cell of t (up

to whatever precision level afforded to us by the binary search operation) with a query

complexity of O(m log(1/ε)), where m is the number of edges for the Voronoi cell. Here

is the corresponding process:

We start with one query at point q which returns t. Then, we construct 4 points

that bound q (say q1 : 〈x(q) − 1, y(q)〉, q2 : 〈x(q) + 1, y(q)〉, q3 : 〈x(q), y(q) − 1〉, q4 :

〈x(q), y(q)+1〉, where x(·) and y(·) are the two dimensions, e.g., longitude and latitude, of

a location, respectively) and call upon the binary search operation to find the corresponding

Voronoi edges intercepting the half lines from q to q1, . . . , q4, respectively. One can see that,

no matter what the discovered edges might be, they must form a closed polygon3 which we

can use to initiate the testing process described in §2.3.1. If all vertices pass the test, then

we have already obtained the Voronoi cell of t. Otherwise, for each vertex (say v) that fails

the test, we perform the binary search operation on the location of v to discover another

Voronoi edge. We repeatedly do so until all vertices pass the test - at which time we have

3In the extreme-case, some edges of this polygon might be part of the bounding box.
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obtained the real Voronoi cell - subject to whatever error bound specified for the binary

search process (as described above).

To compute the query cost of this process, a key observation is that each call of the

binary search process after the initial step (i.e., a call caused by a vertex failing the test)

increases the number of discovered (real) edges for the Voronoi cell by 1. Thus, the number

of times we have to call the binary search process isO(m), leading to the overall query-cost

complexity of O(m log(1/ε)). For the estimation error, we have the following theorem.

Theorem 2. The estimation bias for COUNT(*) is at most

|E(θ̃ − θ)| ≤
∑
t∈D

ε2 − 2 · d(t) · ε
(d(t)− ε)2

, (2.3)

where d(t) is the nearest distance between t and another tuple in D, and ε is the aforemen-

tioned maximum edge error.

Estimation bias for other aggregates can be derived accordingly (given the distribu-

tion of the attribute being aggregated). One can make two observations from the theorem:

First, the smaller maximum edge error ε is or the large inter-tuple distance d(t) is, the

smaller the bias will be. Second, we can make the bias arbitrarily small by shrinking ε -

which leads to a log-scale increase of the query cost.

Algorithm 6 shows the pseudocode for LNR-LBS-AGG that also utilizes some of the

error reduction ideas from §2.3.2.

Example 6: We consider the same dataset as Example 1, except that in LNR-LBS

the locations of tuples are not returned. Figure 2.8 shows a run-through of the algorithm

by which one of the Voronoi edges of V (t4) is identified. Initially, the bounding box con-

tains the entire region, i.e. V0. `1 and `2 are two lines starting from t4 constructed as per

Algorithm 7. p1 and p2 are mid points of small line segments on `1 and `2 such that points

on either side of them return different tuples when queried. The new estimated Voronoi
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Algorithm 6 LNR-LBS-AGG
1: while query budget is not exhausted

2: q = location chosen uniformly at random; t=query(q)

3: Construct four points q1, . . . , q4 bounding t

4: ei = Binary-Search(qi) ∀i ∈ [1, 4]

5: V (t) = closed polygon from Voronoi edges e1, . . . , e4

6: D′= vertices of V (t)

7: repeat till D′ is not updated

8: for each vertex v of V (t): D′ = D′∪ query(v)

9: Find Voronoi edges ∀d ∈ D′ and update V (t)

10: Produce aggregate estimation using samples

edge is computed as the line segment connecting p1 and p2. Please refer to §-2.9 for further

details.

t1

t5 t4

t3

t2
Step 1
Step 2

q1

p2

p1

Figure 2.8: Illustration of Algorithm LNR-LBS-AGG
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Figure 2.9: Handling Concavity of top-k Voronoi Diagrams

2.4.2 Extension to k > 1

A complication brought by the rank-only return semantics is the extension to cases

with k > 1. Specifically, recall from §2.2 that the (extended) top-k Voronoi cell might be

concave when k > 1. In the case LR-LBS case, this does not cause any problem because,

at any moment, our derived top-k Voronoi cell is computed from the exact tuple locations

of all observed tuples and (therefore) completely covers the real top-k Voronoi cell. For

LNR-LBS case, however, this is no longer the case: Since we unveil the top-k Voronoi

cell edge after edge, if we happen to come across one of the “concave edges” early, then

we may settle on a sub-region of the real top-k Voronoi cell. Figure 2.9 demonstrates an

example for such a scenario.

Fortunately, there is an efficient fix to this situation. To understand the fix, a key

observation is that any “inward” (i.e., concave) vertex of a top-k Voronoi cell, say that of

t, must be at a position with equal distance to three tuples, one of them being t (Note: this

might not hold for “outward” vertices). This property is proved in the following lemma.

Lemma 1. Any inward vertex of the top-k Voronoi cell of t must be of equal distance to t

and two other tuples in the database.
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Proof. Consider a partition of the entire region into base cells, each of which returns a

different combination of top-k tuples. One can see that the top-k Voronoi cell of t must

be the union of one or more adjacent base cells. In addition, for general positioning (i.e.,

barring special positions such as bounding edges, etc.), any vertex of the top-k Voronoi cell

is formed by three edges (of some base cells in the partition). Now consider the three edges

which form an inward vertex v, denoted by e1, e2, e3. Note that, given v is inward, one of

the three edges must be inside the top-k Voronoi cell of t. Let this edge be e1. One can

see that both e2 and e3 separate the top-k Voronoi cell from the outside - i.e., ∀i ∈ {1, 2},

we have locations on one side of ei returning t in top-k while locations on the other side

do not. That is, each of e2 and e3 must be the perpendicular bisector of the line segment

connecting t and another tuple in the database. Let these two tuples be t2 and t3 for e2 and

e3, respectively. In other words, v must have equal distance to t, t2 and t3.

Given this property, the extension to k > 1 becomes straightforward: Let D′ be the

set of all tuples we have observed which appear along with t in the top-k result of a query

answer. Let t ∈ D′. First, note that if the polygon we output is not the top-k Voronoi cell

of t, then it must be a sub-region of it missing at least one inward vertex. According to the

above lemma, each inward vertex is formed by two perpendicular bisectors, each between t

and another tuple. A key observation here is that at least one of the missed inward vertices

must be entirely formed by tuples in D′. The reason is simple: if no missed inward vertex

satisfies this property, then we must have found the correct top-k Voronoi cell of t over D′

- i.e., what we get so far must be a super-region of the correct top-k Voronoi of t over the

entire database, contradicting our previous conclusion that it is a sub-region.

Now our task is reduced to finding such a missing inward vertex. Note that this is

equivalent with finding the perpendicular bisector of t and every other tuple in D′ - as once

these perpendicular bisectors are identified, the rest is simply getting their intersections
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which can be done offline. For each tuple in D′, we either have already identified the

perpendicular bisector through one of the previous calls to the binary search process - or

we can initiate a new one as follows.

Specifically, to find the perpendicular bisector of t and t′ ∈ D′, note that t′ being in

D′ means that (1) at least one of the vertices of the polygon we currently have must return

t′, and (2) at least one of the vertices of the polygon we currently have must not return

t′. In other words, there must exist an edge of our current polygon which has two vertices

once returning t′ and the other does not - i.e., this edge intercepts with the perpendicular

bisector of t and t′. As such, we simply need to return the binary search process over this

edge to find the perpendicular bisector, and then use it to update our polygon. We repeat

this process iteratively until we have enumerated all perpendicular bisectors of t and other

nodes inD′ - at which time we can conclude that there is no missing inward vertex. In other

words, we have found the top-k Voronoi cell of t. One can see that the query complexity

of this process remains at O(m log(1/ε)), as every new binary search process called will

return us a new edge for the top-k Voronoi cell.

2.4.3 Tuple Position Computation

Another important problem in the LNR-LBS case is the computation of a tuple’s

position, since such information is not returned in query answers as in the LR-LBS case.

As discussed in the introduction, this problem can be of independent interest - it can also

be called upon as a subroutine for aggregate query processing when the selection condition

involves a tuple’s location. For example, one might be interested in the number of WeChat

users within 20 meters of major highways (i.e., those who are likely driving). To estimate

this aggregate, we need to compute the location of a tuple (i.e., a WeChat user) in order to

determine whether it satisfies the selection condition for the aggregate query.
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Figure 2.10: Demonstration of Tuple Position Computation

Once we compute the Voronoi cell for a tuple t, the computation of t’s exact location

takes only two additional calls to the binary search process. The key idea of this computa-

tion is demonstrated in Figure 2.10. The figure depicts one vertex of the top-1 Voronoi cell

of t1. Let the vertex (at the center of the figure) be the origin point o. The figure includes

two edges of the Voronoi cell, d1 and d3, corresponding to the perpendicular bisector of

(t1, t2) and (t1, t3), respectively. Note that since o is of equal distance to t1, t2, and t3, it

must be attached to a third edge which is part of the Voronoi cell for t2 and t3 - this is

depicted as d2 in the figure.

In the following, we describe the computation of t1’s location in three steps: First,

we show that, with knowledge of d1, d2 and d3, one can readily compute the line from o to

t1 - i.e., the angle a in the figure. Note that this indicates as long as one can do the same

for another vertex of the Voronoi cell (say o′), then the location of t1 can be derived as the

intersection of two lines: (o, t1) and (o′, t1). Of course, in practice we only know d1 and d3

from the Voronoi cell computation, not d2. Thus, we demonstrate in the second step that

deriving d2 from d1 and d3 takes only a single call to the binary search process.

First, to understand how angle a can be derived from d1, d2, d3, a key observation

from Figure 2.10 is that the lines from o to any two tuples must form equal angle to the

Voronoi edge between them - e.g., (o, t1) and (o, t3) must form equal angles to d3. In
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other words, the angle between (o, t3) and d3 is also a. Equipped with this observation, it

becomes obvious that:

(a+ b) + (b+ c) + (c+ a) = 2π (2.4)

⇒ a+ b+ c = π (2.5)

Since b+ c is exactly the angle between d1 and d2, we can easily compute a as π− (b+ c).

As such, we computed the line from o to t1 based on knowledge of only d1, d2 and d3.

Now we explain how one can compute d2 - the only one of the three edges not part

of the Voronoi cell of t1 - with a single call to the binary search process. Note from the

fact that we have computed both d1 and d3 that we must have issues at least one query

which returns t2 as the top result, say q2, and a query which returns t3 on the top, say q3.

Obviously, d2 intercepts the line segment between q2 and q3 exactly once. Thus, we simply

need to call the binary search process over (q2, q3) to derive d2 and enable the computation

of t1’s exact location. One can see that, overall, the query complexity for computing both

the Voronoi cell and the location of a tuple remains O(m log(1/ε)), where m is the number

of edges for its Voronoi cell.

2.5 Discussions

2.5.1 Aggregates with Selection Conditions

In most of the previous discussions, we considered aggregates without selection con-

ditions (i.e., every tuple in the bounding region is aggregated). There is indeed a straightfor-

ward extension to aggregates with selection conditions - specifically, there are two possible

scenarios:

The first is when the selection condition can be “passed through” to LBS. For ex-

ample, if our goal is to COUNT “STARBUCKS” within the bounding region, the selection

condition NAME = ‘STARBUCKS’ can be passed through to LBS - i.e., we simply ap-
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pend to each query we issue the exact same selection condition as the aggregate, NAME =

‘STARBUCKS’. One can see that no other change is required to the aggregate estimation

process.

The other scenario is when the LBS does not support the selection condition. For

example, if we want to COUNT all businesses with at least an average review score of four

stars within the bounding region, then we cannot simply pass this selection condition to an

LBS that does not support filtering by average review scores. In this case, we simply need

to “post-process” the selection condition - e.g., for the above example, this means that after

randomly choosing a query and obtain the returned tuple (as in §2.3.1), we first determine

if the tuple satisfies the filtering condition. If so, we continue with the original process and

return the same estimation. Otherwise, we return 0 (i.e., the aggregate query applied over

the returned tuple, again divided by the sampling probability) as the estimation. One can

see that the result remains an unbiased estimation for the aggregate, now with selection

conditions.

In the experiments, we shall demonstrate online tests over real-world LBS on ag-

gregates with selection conditions in both categories - e.g., COUNT of STARBUCKS over

Google Maps, which can be passed through, and COUNT(restaurants) that are open on

Sundays, which cannot.

2.5.2 Leveraging External Knowledge

In previous discussions, we focused on how to process the results returned by a ran-

domly chosen query (e.g., how to compute the top-k Voronoi cell of a returned tuple). The

way the initial query is chosen, however, remains a simple design of choosing a location

uniformly at random from the bounding region. Admittedly, without any knowledge of the

distribution of tuple locations, uniform distribution appears the natural choice. Nonethe-
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less, in real-world applications, we often have certain a priori knowledge of the tuple dis-

tributions, which we can leverage to optimize the sampling distribution of queries.

For example, if our goal is to estimate an aggregate, say COUNT, of Point-Of-

Interests (POIs, e.g., restaurants) in the US, a reasonable assumption is that the density

of POIs in a region tends to be positively correlated with the region’s population density.

Thus, we have two choices: either to sample a location uniformly at random - which leads

to POIs in rural areas to be returned with a much higher probability (because their Voronoi

cells tend to be larger); or to sample a location with probability proportional to its popula-

tion density - which hopefully leads to a more-or-less uniform selection probabilities over

all POIs. Clearly, the second strategy is likely better for COUNT estimation, as a more uni-

form selection probability distribution directly leads to a smaller estimation variance (and

therefore error). For example, in the extreme-case scenario where all POIs are selected

with equal probability, our COUNT estimation will be precise with zero error. Thus, an

optimization technique we adopt in this case is to design the initial sampling distribution

of queries according to the population density information retrieved from external sources,

e.g., US Census data [17].

There are two important notes regarding this optimization: First, no matter if the ex-

ternal knowledge is accurate or not, the COUNT and SUM estimations we produce always

remain unbiased. This is obvious from (2.1) in §2.3.1, which guarantees unbiasedness no

matter what the sampling distribution p(t) is. Second, the optimal sampling distribution

depends on both the tuple distribution and the aggregate query itself. For example, if we

want to estimate the SUM of review counts for all POIs, then the optimal sampling dis-

tribution is to sample each tuple with probability proportional to its review count (as this

design produces zero estimation variance and error). Given the difficulty of predicting the

aggregate (e.g., review COUNT in this case) ahead of time, leveraging external knowledge

is better considered as heuristics (a very effective one nonetheless, as we shall demonstrate
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in experimental results) rather than a practice that guarantees the reduction of estimation

errors.

2.5.3 Special LBS Constraints

We now consider two special constraints that are enforced by the query interfaces

of some real-world LBS. The first one is a maximum radius on the returned results - i.e.,

the distance between the query location q and the returned tuples is bounded by a pre-

determined threshold dmax. If no tuple in the database falls within the circle centered at q

with radius dmax, then the query returns empty. Google Maps and Weibo both enforce this

constraint, with the threshold being 50 KM [18] and 11 KM4, respectively.

Interestingly, no change is required for our algorithms (both LR-LBS-AGG and

LNR-LBS-AGG) to handle this situation. One can see that, as long as a query result is

non-empty, the nearest neighbor is always returned, enabling the usage of our algorithms.

When a query returns empty, we simply return 0 as the COUNT or SUM estimation (for

this sample query). The unbiasedness is unaffected - note from (2.1) in §2.3.1 that unbi-

asedness is guaranteed no matter if the sampling probability p(t) of all tuples sum up to

1 or not - as long as each tuple still has a positive probability to be returned. With this

constraint, there is
∑

t p(t) < 1 with the remaining probability returning 0 - still leading to

an unbiased SUM or COUNT estimation.

The second constraint we have observed from real-world LBS is a more complex

ranking function that involves not only the distance between query location and a tuple but

also other factors such as the static rank of certain attributes for the tuple. Google Places

API is an example here, as it allows ranking by “prominence” which takes into account

both distance and tuple popularity5.

4http://open.weibo.com/wiki/2/place/nearby/users
5Note that Google Places API also supports traditional distance-based ranking, enabling the direct usage of our algorithms.
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For this constraint, the applicability of our results is no longer straightforward. The

key challenge here is that the area returning a tuple may become segregated across many

disjoint regions, making it extremely difficult to compute the sampling probability (p(t)

in (2.1) in §2.3.1) for a tuple. To understand why, consider an example where tuples are

ranked according to the SUM of two scores, one is distance, awarding a higher score to a

tuple closer by, but 0 to tuples more than 50 miles away. The other is a static score such as

popularity. What might happen here is that the most popular tuple (in the bounding region,

say US) is returned by queries on all places without a tuple within 50 miles (say the middle

of a desert in Nevada). Clearly, it becomes extremely difficult to enumerate all the disjoint

regions that return this tuple.

Fortunately, for LR-LBS in practice, it is still highly likely for our LR-LBS-AGG

algorithm to successfully handle the constraint - because the algorithm works properly as

long as the nearest neighbor is always included in the top-k results. Since an LR-LBS

returns tuple locations, we can always post-process the query answer to obtain the nearest

neighbor according to distance, and then apply our algorithm. Given that k � 1 in real-

world LBS, we anticipate a near-certain probability for the nearest neighbor to be included

in the top-k results, thus enabling LR-LBS-AGG.

2.5.4 Extension to Higher Dimensions

While LBS in practice is mostly confined to 2D, we would like to point out here

(if only for theoretical interests) that our algorithm readily applies to kNN queries over

higher-dimensional data where Euclidean distance is used as the ranking function. Specif-

ically, note that for LR-LBS, Theorem 1 holds no matter what dimensionality the tuple

locations have - as a higher-dimensional Voronoi cell computed from a subset of tuples still

completely encompasses the real one. Similarly, all the optimizations discussed in §2.3.2

readily apply as well. For LNR-LBS-AGG, the only change required is on the binary search
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process: instead of finding the perpendicular bisecting line between two tuples as in the 2D

case, we now need to find the perpendicular bisecting (d − 1)-dimensional plane in the

d-dimensional case. Correspondingly, each vertex of the d-D Voronoi cell is now the inter-

ception of
(
d
2

)
such (d − 1)-dimensional planes. In other words, we still only need two

vertices of the Voronoi cell to derive a tuple’s location in LNR-LBS - enabling the usage of

LNR-LBS-AGG.

2.6 Experimental Results

2.6.1 Experimental Setup

Hardware and Platform: All our experiments were performed on a quad-core 2.5 GHz

Intel i7 machine running Ubuntu 14.10 with 16 GB of RAM. The algorithms were imple-

mented in Python.

Offline Real-World Dataset: To verify the correctness of our results, we started by testing

our algorithms locally over OpenStreetMap [19], a real-world spatial database consisting

of POIs (including restaurants, schools, colleges, banks, etc.) from public-domain data

sources and user-created data.

We focused on the USA portion of OpenStreetMap. To enrich the

SUM/COUNT/AVG aggregates for testing, we grew the attributes of POIs (specifically,

restaurants and schools) by “JOINing” OpenStreetMap with two external data sources,

Google Maps [18] and US Census [17]. Specifically, we added for each (applicable) restau-

rant POI its review ratings from Google Maps; and each school POI its enrollment number

from US Census. The US Census data is also used as the (optional) external knowledge

source - i.e., to provide the population density data for the optimization technique discussed

in §2.5.
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Note that we have complete access to the enriched dataset and full control over its

query interface. Thus, we implemented a kNN interface with ranking function being the

Euclidean distance; returned attributes either containing all attributes including location

(for testing LR-LBS) or without location (for LNR-LBS); and varying k to observe the

change of performance for our algorithms.

Online LBS Demonstrations: In order to showcase the efficacy of our algorithms in real-

world applications, we also conducted experiments online over 3 very popular real-world

LBS: Google Maps [18], WeChat [20], and Sina Weibo [21]. Each of these services has

at least hundreds of millions of users. Unlike the offline experiments, we do not have di-

rect access to the ground-truth aggregates due to the lack of partnership with these LBS.

Nonetheless, we did attempt to verify the accuracy of our aggregate estimations with infor-

mation provided by external sources (e.g., news reports) - more details later in the section.

In online experiments for LR-LBS, we used Google Maps, specifically its Google

Places API [18], which takes as input a query location (latitude/longitude pair) and (option-

ally) filtering conditions such as keywords (e.g., “Starbucks”) or POI type (e.g., “restau-

rant”), and returns at most k = 60 POIs nearby, ordered by distance from low to high, with

location and other relevant information (e.g., review ratings) returned for each POI.

For LNR-LBS, we tested WeChat and Sina Weibo using their respective Android

apps. Both directly fetch locations from the OS positioning service and search for nearby

users, with WeChat returning at most k = 50 and Sina Weibo returning k = 100 nearest

users. Unlike Google Maps, these two services do not return the exact locations of these

nearby users - but only provide attributes such as name, gender, etc.

An implementation-related issue regarding WeChat is that, unlike its mobile apps,

its API does not support nearest-neighbor search. Thus, we conducted our experiments by

running its Android app (with support for nearest-neighbor search) on the official Android
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emulator, and used the debugging feature of location spoofing to issue queries from differ-

ent locations. We then used the MonkeyRunner tool6 for Android emulator to interact with

the app - i.e., sending queries and receiving results. Specifically, to extract query answers

from the Android emulator, we first took a screenshot of the query-answer screen, and then

parsed the results through an OCR engine, tesseract-ocr7.

Algorithms Evaluated: We mainly evaluated three algorithms in our experiments: LR-

LBS-AGG and LNR-LBS-AGG from §2.3 and §2.4, respectively, along with the only exist-

ing solution for LR-LBS (note there is no existing solution for LNR-LBS), which we refer

to as LR-LBS-NNO [13]. LR-LBS-NNO has a number of tuneable parameters - we picked

the parameter settings and optimizations from [13] that provided the best performance. We

also tested variants of our algorithms that lack certain variance-reduction techniques dis-

cussed in §2.3 and the weighted sampling in order to demonstrate the effectiveness of these

techniques.

Performance Measures: As discussed in §2.2, we measure efficiency through query cost,

i.e., the number of queries issued to the LBS. Our estimation accuracy is measured experi-

mentally by relative error. Each data point is obtained as the average of 25 runs.

2.6.2 Experiments over Real-World Datasets

Unbiasedness of Estimators: Our first experiment seeks to show the unbiasedness of

our estimators for LR-LBS-AGG and LNR-LBS-AGG even after incorporating the vari-

ous error reduction strategies. LR-LBS-NNO is known to be unbiased from [13] after an

expensive bias correction step. Figure 2.12 shows a trace of the three algorithms when es-

timating COUNT of all restaurants in US by plotting the current estimate periodically after

fixed number of queries have been issued to LBS. We can see that LR-LBS-NNO has a high

6http://developer.android.com/tools/help/monkeyrunner_concepts.html
7https://code.google.com/p/tesseract-ocr/
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Figure 2.11: Voronoi Decomposition of Starbucks in US

variance and takes significantly longer to converge while our estimators quickly converge

to the ground truth much before LR-LBS-NNO. This indicates that the error reduction

techniques successfully reduce the variance of our estimators.

Query Cost versus Relative Error: We start by testing the key tradeoff - i.e., query cost

vs. relative error - for all three algorithm over various aggregates. Specifically, Figures 2.14,

2.15, 2.16 and 2.17 show the results for four queries, COUNT of schools in US, COUNT

of restaurants in US, SUM of school enrollments in US, and AVG of restaurant ratings in

Austin, Texas, respectively. One can see that not only our LR-LBS-AGG algorithm signif-

icantly outperform the previous LR-LBS-NNO [13] in all cases, even our algorithm for the

LNR-LBS case achieves much better performance than the previous algorithm (despite the

lack of tuple locations in query results).

Query Cost versus LBS Size: Figure 2.18 shows the impact of LBS database size (in

terms of number of POIs or users) on query cost to estimate the COUNT of schools in US

for a fixed relative error of 0.1 . We varied the database size by picking a subset of the

database (such as 25%, 50%, etc) uniformly at random and estimating the aggregate over

it. As expected for a sampling-based approach, the increase in database size do not have

any major impact and only results in a slight increase in overall query cost (due to the more

complex topology of Voronoi cells).
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Query Cost versus k: Figure 2.19 shows how the value of k (the number of tuples returned

by k-NN interface) affects the query cost. Again, we measure the query cost required to

achieve a relative error of 0.1 on the aggregate COUNT of schools in US. We compared an

variant that leverages our variance reduction strategy that adaptively decides which subset

of tuples (i.e. h of top-k) to use with fixed variants that uses all the top-k tuples. As

expected, our adaptive strategy has a lower query cost and consistently achieves a saving

of 10% of query cost.

Efficacy of Error Reduction Strategies: We started by verifying the effectiveness of

weighted sampling using external knowledge - Figure 2.13 compares the performance of

the two sampling strategies - uniform and weighted - while estimating the COUNT of

schools in US. One can see that the weighted sampling variants result in significant savings

in query cost.

In our final set of experiments, we evaluated the efficacy of the various error reduc-

tion strategies we described in the paper. We compared 5 different variants of our algorithm

for LR-LBS ranging from no error reduction strategies (LR-LBS-AGG-0) to sequentially

adding them one by one in the order discussed in the paper culminating in LR-LBS-AGG

that incorporates all of them. Figure 2.20 shows the results of this experiment. As expected

the first two strategies of faster initialization and leveraging history caused a significant

reduction in query cost. We observed that the results for LNR-LBS were very similar.

2.6.3 Online Demonstrations

Google Places: Our first online demonstration of LR-LBS-AGG was on Google Places

API and estimating two aggregates with different selection conditions. The first involves

selection conditions that can be passed over to LBS (COUNT of Starbucks in US) while the
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Figure 2.15:
COUNT(restaurants)
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Figure 2.16:
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second involves aggregates with selection condition that cannot be passed over (see §2.5

for discussion) such as COUNT of restaurants in Austin, Texas that are open on Sundays.

Table 2.1 shows the results of the experiments. We also verified the accuracy of our

estimates for first aggregate (COUNT of Starbucks) through the public release of Starbucks

Corp [22]. One can see from the table that, with just 5000 queries, LR-LBS-AGG achieves

very accurate estimations (< 5% relative error) for the count.

To provide an intuitive illustration of the execution of our algorithm, we also con-

tinued the estimation of COUNT(“Starbucks”) until enumerating all Starbucks in the US.

Figure 2.11 demonstrates the Voronoi diagram constructed by our algorithm at the end.

One can see the vastly different sizes of Voronoi cells - spanning hundreds of thousands

km2 in rural areas and smaller than 1km2 in urban cities, justifying the effectiveness of

weighted sampling.
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Table 2.1: Summary of Online Experiments

LBS Aggregate Estimate Query Budget
Google
Places

COUNT(Starbucks
in US)

12023 5000

Google
Places

COUNT(restaurants
in Austin TX and
open on Sundays)

2856 5000

WeChat COUNT(WeChat
users in China)

338.4 M 10000

WeChat Gender Ratio of
WeChat users in
China

67.1:32.9 10000

Weibo COUNT(Weibo
users in China)

44.6 M 10000

Weibo Gender Ratio of
Weibo users in
China

50.4:49.6 10000

WeChat and Sina Weibo: We estimated two aggregates, (1) total number of users and (2)

gender ratio, over two LNR-LBS, WeChat and Sina Weibo, respectively. Table 2.1 shows

the results of the experiments. One can observe from the table that our estimations quickly

converge to a narrow range (+/- 5%) after issuing a small number of queries (10000). While

we do not have access to the ground truth this time, we do note an interesting observation

from our results: the percentage of male users is much higher on WeChat than on Sina

Weibo - an observation verified by various surveys in China [23]. We would like to note

that the COUNT aggregate measures the number of users who have enabled the location

feature of WeChat and Weibo respectively and is different from the number of registered or

active accounts.

Localization Accuracy: As a final set of experiments, we also evaluated the effectiveness

of our Tuple position computation approaches in tracking real world users. Specifically, we

sought to identify the precise location of static objects located across the region. We con-

ducted this experiment over Google Places in US and WeChat in China. We treated Google
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Places as LNR-LBS by ignoring the location provided its API. We sought to identify the

location of 200 randomly chosen POIs after issuing at most 100 queries for each POI. For

WeChat, we positioned our user at 200 diverse locations within China (typically in Urban

places) and sought to identify the location. Since the precise location of the POI/user is

known, we can compute the distance between actual and estimated positions. Figure 2.21

shows the result of the experiments. The results show that more than 80% of the POIs

were located within 20m of the exact location and every POI was located within a dis-

tance of 75m. Due to the various location obfuscation strategies employed by WeChat, we

achieved an accuracy of 50m or lower only 45% of the time. We still were able to locate

user within 100m almost all the time. While our theoretical methods could precisely iden-

tify the location, the discrepancy in real-world occurs due to various external factors such

as obfuscation, coverage/localization limits etc.
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2.7 Related Work

Analytics and Inference over LBS: Location based Services (LBS) such as map services

(Google Maps) and location based social networks (such as FourSquare, WeChat, Sina

Weibo) are becoming popular in recent years. The prior work on analytics over LBS fo-

cussed exclusively on the LR-LBS scenario. The closest prior work is [13] that seeks to
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estimate COUNT and SUM aggregates over LR-LBS using a nearest neighbor oracle. It

then corrects the bias by using the area of the Voronoi cell using an approach that is very

expensive. Aggregate estimation over LBS such as FourSquare that does not provide near-

est neighbor oracle interface could be done using [24, 25]. [25] proposed a random region

sampling method with an unknown estimation bias that could be eliminated using tech-

niques from [24]. However, none of them work for LNR-LBS. There has been work on

inferring the location and other private information of users of LBS. [15] proposed trilater-

ation based methods to infer the location of users even when the LBS only provided relative

distances. There has been other extensive work [26–29] on inferring location information

and re-identification of users although none of them are applicable for the LBS models

studied in this paper.

Aggregate Estimations over Hidden Web Repositories: There has been a number of

prior work in performing aggregate estimation over static hidden databases. [30] provided

an unbiased estimator for COUNT and SUM aggregates for static databases with form

based interfaces. [31–34] describe efficient techniques to obtain random samples from hid-

den web databases that can then be utilized to perform aggregate estimation. Recent works

such as [35, 36] propose more sophisticated sampling techniques so as to reduce the vari-

ance of the aggregate estimation. For hidden databases with keyword interfaces, prior work

have studied estimating the size of search engines [37–39] or a corpus [40, 41].

2.8 Final Remarks

In this paper, we explore the problem of aggregate estimation over location based

services that are increasingly popular. We introduced a taxonomy of LBS with k-NN query

interface based on whether location of the tuple is returned (LR-LBS) or not (LNR-LBS).

For the former, we proposed an efficient algorithm and various error reduction strategies
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that outperforms prior work. We initiate study into the latter by proposing effective al-

gorithms for aggregation and inferring the position of tuple to arbitrary precision which

might be of independent interest. We verified the effectiveness of our algorithms by using

a comprehensive set of experiments on a large real-world geographic dataset and online

demonstrations on high-profile real-world websites.

2.9 Binary Search Process

Design of Binary Search: Given the half-line ` from c1 passing through c2, we conduct

the binary search as follows. First, we find cb, the intersection of this half-line with the

bounding box. Then, we perform a binary search between c1 and cb to find a segment

of the half-line with length at most δ, say with two ends being c3, c4 (with the distance

between c3 and c4 at most δ), such that while c3 returns t, c4 returns another tuple, say t′.

This step takes at most log(b/δ) queries, where b is the perimeter of the bounding box.

Then, we consider two half-lines `1 and `2, both of which start from c1 and form

an angle of − arcsin(δ′/r) and + arcsin(δ′/r) with `, respectively, where δ′ is a pre-

determined (small) threshold and r is the distance between c1 and c4. For each `i, we

perform the above binary search process to find a (at most) δ-long segment that returns t

on one end and t′ on the other. Note that such a process might fail - e.g., there might no

point on `i which returns t′. We set two rules to address this situation: First, we terminate

the search for `i if we have reached a segment shorter than δ, with one end returning t and

the other returning a tuple other than t′. Second, we move on to the next step as long as

(at least) one of `1 and `2 gives us a satisfactory δ-long segment. If neither can produce

the segment, we terminate the entire process and output the following (estimated) Voronoi

edge: the perpendicular bisector of (c3, c4).
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Now suppose that `1 produces a satisfactory segment of at most δ long. Let this

segment be (c5, c6). We simply return our (estimated) Voronoi edge as the line that passes

through: (1) the midpoint of (c3, c4), and (2) the midpoint of (c5, c6). One can see that the

overall query cost of the binary search process is at most 3 log(b/δ).

Algorithm 7 provides the pseudocode for Binary Search process.

Algorithm 7 Binary-Search
1: Input: Tuple t, Locations c1, c2 where query(c1) returns t

2: Output: An edge of V (t)

3: cb = Intersection of half-line c1, c2 with bounding box

4: Find c3, c4 s.t. dist(c3, c4) < δ and query(c3) 6= query(c4)

5: r = dist(c1, c4)

6: Construct lines `1, `2 from c1 with angles ± arcsin(δ′/r)

7: (c5, c6) = line segment on `1 or `2 with dist(c5, c6) < δ and query(c5) 6= query(c6)

8: if none exists, return perpendicular bisector of (c3, c4)

9: else return line segment passing through midpoints of (c3, c4) and (c5, c6)

Error Bound on Edge Estimation: We have the following theorem on the error bound of

this binary search process:

Theorem 3. For a given tuple t and query location c1 which returns t, for any other location

c2, the Voronoi cell of t must have an edge `V that intercepts half-line (c1, c2) such that the

maximum edge error for estimating `V satisfies

ε ≤ max(2δ′, b · sin(arctan(δ/δ′))). (2.6)
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In other words, for every point p ∈ `V, there exists a point p′ on our estimated Voronoi edge

`′V generated from (c1, c2) (i.e., p′ ∈ `′V), such that

d(p, p′) ≤ max(2δ′, b · sin(arctan(δ/δ′))), (2.7)

where d(·, ·) is the Euclidean distance between two points. In addition, for every vertex v

of `V, if line segment (t, v) intercepts `′V, then the interception point v′ must satisfy

d(t, v)− d(t, v′) ≤ max(2δ′, b · sin(arctan(δ/δ′))). (2.8)

A simple observation from the theorem is that the binary search process can reach

an arbitrary precision level - i.e., for any given upper bound on d(p, p′), say dU, we can set

δ′ = dU/2 and

δ ≤ tan

(
arcsin

(
dU
b

))
· dU

2
(2.9)

to satisfy the bound. Since both tan and arcsin can be bounded from both sides by a

polynomial of its input (through Taylor expansion), one can see that the corresponding

query complexity is O(log(b/dU)), leading to the following corollary on the maximum

error edge defined in §2.3.

Corollary 1. The query cost required for achieving a maximum edge error of ε is

O(log(b/ε)) - i.e., O(log(1/ε)) when we consider the bounding box size b to be constant.

Error Bound on Voronoi Cell Volume Estimation: A direct corollary from Theorem 3 is

an error bound on the estimated volume of a Voronoi cell. Note from our design of LNR-

LBS-AGG that our estimated Voronoi cell is always a subregion of the real one. This, in

combination with (2.8) in Theorem 3, leads to the following corollary.

Corollary 2. For a given tuple t, the ratio between the volume of the estimated Voronoi

cell V ′(t) and the real one V (t) satisfies(
d− ε
d

)2

≤ |V
′(t)|
|V (t)|

≤ 1 (2.10)
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where d is the nearest distance between t and another tuple in the database, and ε is the

maximum edge error.
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CHAPTER 3
ANALOC: Efficient ANAlytics over

LOCation Based Services

Location Based Services (LBS), including standalone ones such as Google Maps and

embedded ones such as “users near me” in the WeChat instant-messaging platform, provide

great utility to millions of users. Not only that, they also form an important data source for

geospatial and commercial information such as Point-Of-Interest (POI) locations, review

ratings, user geo-distributions, etc. Unfortunately, it is not easy to tap into these LBS for

tasks such as data analytics and mining, because the only access interface they offer is a

limited k-Nearest-Neighbor (kNN) search interface - i.e., for a given input location, return

the k nearest tuples in the database, where k is a small constant such as 50 or 100. This

limited interface essentially precludes the crawling of an LBS’ underlying database, as the

small k mandates an extremely large number of queries that no real-world LBS would allow

from an IP address or API account.

We demonstrate ANALOC [42], a web based system that enables fast analytics

over an LBS by issuing a small number of queries through its restricted kNN interface.

ANALOC stands in sharp contrast with existing systems for analyzing geospatial data,
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as those systems mostly assume complete access to the underlying data. Specifically,

ANALOC supports the approximate processing of a wide variety of SUM, COUNT and

AVG aggregates over user-specified selection conditions. In the demonstration, we shall

not only illustrate the design and accuracy of our underlying aggregate estimation tech-

niques, but also showcase how these estimated aggregates can be used to enable exciting

applications such as hotspot detection, infographics, etc. Our demonstration system is de-

signed to query real-world LBS (systems or modules) such as Google Maps, WeChat and

Sina Weibo at real time, in order to provide the audience with a practical understanding of

the performance of ANALOC.

3.1 Introduction

We propose to demonstrate ANALOC, a prototypical system for enabling the ana-

lytics of data underlying real-world location based services (LBS) by using nothing but

the k-Nearest-Neighbor (kNN) search interface (often web-based) publicly provided by

the LBS. Specifically, a core feature of ANALOC is its ability to quickly and accurately

estimate aggregates such as COUNT, SUM and AVG (with user-specified selection con-

ditions) by issuing only a small number of queries through the kNN interface. ANALOC

now works with a suite of popular LBS systems and features such as Google Maps, the

“Users Near Me” feature of WeChat mobile app (an instant-messaging platform with 600

million monthly active users ), and the microblog search feature of Sina Weibo.

Location Based Services (LBS): LBS has become extremely popular in recent years. Mil-

lions of users make daily use of mapping services such as Google Maps, Bing Maps, Nokia

HERE, etc. Besides these systems, features related to LBS are also integrated into numer-

ous other systems. For example, many online social networks, e.g., Twitter, WeChat, Sina
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Weibo and FourSquare, allow a user to search for other users, posts, POIs, etc., according

to his/her own location.

Each LBS has a backend database with tuples representing points of interests (POIs)

or users, and attributes capturing their geographical coordinates (e.g., latitude and longi-

tude) along with other information such as POI name, review ratings, user posts, etc. What

the LBS reveals to the public is a kNN interface which, upon given an arbitrary query point

and a user-specified selection condition, returns k tuples in the database that, among those

matching the selection condition, are closest (geographically) to the query location. The

value of k is often small - e.g., 50 or 100.

The backend databases of LBS contain a gold mine of information for understand-

ing POI quality, user behavior, etc. For example, the database community has produced a

number of demo systems in recent years (e.g., [43, 44]) that leverage LBS data for diverse

purposes such as analytics, visualization, etc. Unfortunately, almost all these systems as-

sume complete access to the LBS data or, if the LBS data come from an online system,

require such data to be downloaded first before being fed as input to the system. This re-

quirement makes the existing work incompatible with most real-world LBS systems that

enforce the so-called query rate limitation, i.e., they limit the number of requests from an

IP address or API account for a certain time period1. Since the kNN interface reveals only

a small number of tuples (at most k) per query, the query rate limits make it extremely

difficult, if not impossible, to download the LBS data required by the existing systems.

Technical Novelty of ANALOC: Standing in sharp contrast with the existing work,

ANALOC requires access to nothing but the public kNN interface of an LBS system.

Given the interface, ANALOC uses a small number of kNN queries to accurately esti-

mate COUNT, SUM and AVG aggregates with user-specified selection conditions, thereby

enabling analytics over the “hidden” LBS data. Note that ANALOC works when such an

1Or, in the case of Google Maps API, the LBS starts charging per query once the free usage quota is exhausted.
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interface is implemented on a webpage, through API, or even embedded within a mobile

app.

A unique technical challenge faced by ANALOC is the heterogeneity of information

included in kNN query answers returned by different LBS systems. Specifically, some

services (e.g., Google maps and Sina Weibo) return the exact locations (i.e., latitude and

longitude) of the k tuples. We refer to these services as Location-Returned LBS (LR-LBS).

Others, especially online social networks such as WeChat, return a ranked list of k nearest

tuples but suppress the location of each tuple, perhaps due to privacy concerns. We refer

to such services as Location-Not-Returned LBS (LNR-LBS). Unsurprisingly, LNR-LBS

imposes additional challenges on analytics because of the missing location information.

Thanks to techniques developed in our recent work [45], ANALOC is able to handle both

types and indeed make the end users oblivious of their differences.

Demo Plan: To demonstrate the range of applications that can be enabled by ANALOC,

we organize our demonstration in two parts. The first part focuses on the core feature of

ANALOC, i.e., its ability to support the fundamental yet versatile task of aggregate esti-

mation and tracking. Real-world examples we shall demonstrate include the AVG review

scores for Marriott vs Hilton hotels in Google Maps, the COUNT of Starbucks vs Peet’s

Coffee in the US, the gender distribution of WeChat users in various cities of China, etc. We

plan to showcase both the outcome of estimations and also an animated, real-time, illustra-

tion of the queries issued and how they lead to the fast-converging, accurate, estimations.

The second step of the demo focuses on using ANALOC to enable an end-to-end hotspot

detection application which uses the aggregate estimations to detect unusual “hotspots” of

social network users (e.g., Sina Weibo and WeChat users).
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Figure 3.1: Architecture of ANALOC

3.2 System Architecture

We now discuss the architecture of ANALOC as depicted in Figure 3.1. One can

see from the figure that the system contains five main components: web server, sampling

server, sample database, user credential database, and web database interface server. We

would like note that all these components are modular and extensible and could be used as

part of a larger system. We describe a sample end-to-end application for hotspot detection

in Section 3.3.3.

3.2.1 Web Server

This component provides users with a web interface that allows the specification of

aggregate queries over LBS (as input) and visualizes the estimated aggregates (i.e., out-

put) through charts and tables. In addition, the component also supports a RESTful API

interface for the same input/output.

Input Interface: The graphical user interface (GUI) of ANALOC allows users to spec-

ify an aggregate query through an intuitive, step-by-step, process on a web interface. A

user can specify (1) the aggregate of interest (SUM, COUNT and AVG are currently sup-

ported), (2) attributes over which the (SUM and AVG) aggregates will be computed over,

(3) bounding box that provides the area of interest, (4) filters to specify one or more se-

lection conditions on other structured or unstructured attributes featured in the LBS, and

(5) time limit that limits the maximum overhead of the aggregate estimation process. Note

62



that this directly translates to a limit on the number of queries to be issued over the LBS.

Figure 3.2 depicts an example aggregate query over Google Maps that seeks to compute

average ratings of restaurants in Dallas-Forth Worth metroplex within a budget of 1000

queries.

Output Interface: The output interface displays the estimated aggregates in a 2D line

chart, and visualizes the change of estimations using an animation. While this is the de-

fault output interface, it is possible to produce more sophisticated visualizations such as

heatmaps (please see Section 3.3.3 for an example). Figure 3.3 provide a sample output for

the aggregate query specified in the input interface. The X-axis corresponds to the query

budget and Y-axis shows the current estimate. Note the fast convergence of the estimated

aggregate.

3.2.2 Sampling Server

Due to the aforementioned query rate limit of LBS, it is often impossible to precisely

compute the aggregate of interest. Hence, we adopt a sampling-based mechanism to obtain

approximate aggregate estimates. The key task of the sampling server is to translate a user-

specified aggregate query into a small number of kNN search queries supported by the

LBS, and then submit these kNN queries through the web-DB interface server discussed

next.

The sampling server uses a number of novel and efficient techniques for precisely

computing or approximately estimating the Voronoi cell of the tuples. We refer the inter-

ested reader to [45] for details of our algorithms for aggregate estimation over both LR-

and LNR-LBS (referred to as LR-LBS-AGG and LNR-LBS-AGG respectively). Here we

only include a brief sketch of these techniques.

Algorithms LR-LBS-AGG and LNR-LBS-AGG: At a high level, the objective of the

sampling server is to generate sample tuples in the LBS according to a given sampling
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Figure 3.2: Input Interface

Figure 3.3: Output Interface

distribution. Consider the uniform distribution as an example. A simple idea might be to

generate locations uniformly at random, send them as inputs to kNN queries, and retrieve

the top ranked tuple as a sample. Unfortunately, this scheme samples some tuples at a

higher rate than others. For example, a POI in a rural area is usually returned as the top

result for a larger number of query points than a POI in a densely populated area. Hence, to

produce sample tuples according to our desired distribution, we have to properly understand

the probability for a tuple to be returned in the top ranked (e.g., top-k) results. Once we

know the probability, we can apply techniques such as acceptance-rejection sampling or

the Hansen-Hurwitz estimator to produce our desired sample and/or aggregate estimation.
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In order to estimate the probability for a tuple to be returned, we leverage the con-

cept of Voronoi cells from computational geometry. Given a database D of tuples, each

occupying a point on the 2-dimensional space, and a bounding box B, the Voronoi cell of

a tuple t is the set of points in B that are closer to t than any other tuple in D. Note a

key observation here is that the ratio of area of the Voronoi cell of a tuple t to the area of

the bounding box B is exactly the probability for t to be returned as the top-1 result (and

sampled). In [45], we also extend the concept of Voronoi cells to capture the probability

for t to be returned as one of the top-k results (when k > 1).

Given the observation, the key idea behind our algorithms in [45] is to compute the

Voronoi cell of each sample t. If the location of the tuple is returned, then it is possible to

precisely compute the Voronoi cell based on the observation that we only need the tuples

of Voronoi cells adjacent to that of t. Please refer to [45] for further details. However,

this approach does not work for LNR-LBS as the location is no longer returned. In this

case, we only approximately compute the Voronoi cell of t by using a “binary-search” like

algorithm (again, see [45] for details) that when invoked identifies one edge of the Voronoi

cell of t to required precision.

3.2.3 Web-DB Interface Server

The task of the web-DB interface server is two-fold: (1) to translate each kNN query

issued by the sampling server to a query over the LBS, and (2) to parse the returned results,

transform them to structured tuples, and pass them to the sample database component.

Each LBS may require a different wrapper design for the kNN input/output translations.

For example, a kNN query may be translated to simple HTTP GET or POST requests,

RESTful API calls, or simulated interactions in the Android emulator (in the case of a

mobile LBS app lacking a web front-end, e.g., WeChat). The raw returned result from LBS

are mostly in a structured format such as XML or JSON, which enables simple translations
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to our sample database. Some LBS, however, return raw HTML code that has to go through

DOM parsing and/or regular expressions before the structured tuples can be extracted.

ANALOC uses a modular architecture where the translation process (from search

query to web request to structured tuples) is specified in a separate script file that is utilized

by the Web-DB interface server. We demonstrate three typical yet diverse translation scripts

in the demo, i.e., RESTful API calls for Google Maps API, HTTP requests for Weibo, and

Android-emulator-based simulated interactions for WeChat. Most popular LBS can be

supported using one of these approaches.

3.2.4 User Credentials Database

This component allows us to handle the query rate limit enforced by almost all LBS.

For example, Sina Weibo allows only 150 queries per hour. Most LBS require logging in

with user credentials for API and web access. In order to support multiple concurrent users,

ANALOC uses user credential database to store the credentials of end users (such as API

keys or username/password) and then issue queries on their behalf. Note that the design

of sampling server allows us to “pool” the query quota of all users, allocate queries based

on the confidence interval of the estimate so as to avoid overspending trying to improve

already accurate estimates.

3.3 Demo Plan

3.3.1 Overview

Hardware Setup and Backup Plan: ANALOC is web based and supports ac-

cess from multiple platforms. We shall use an iPad connected with a portable projector

to demonstrate our system. Meanwhile, we shall also provide 3 laptops with access to

ANALOC for visitors who are interested in more interactions. All demo tablets and laptops

connect to our web server of ANALOC by default. While the default setting is to access the
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Figure 3.4: Voronoi Tessellation of Samples

target LBS (such as Sina Weibo, WeChat and Google Maps) at real time, we also include in

the local deployment of ANALOC a lightweight web server simulating these LBS (using

the real historic data we collected).

System Setup and Audience Interactions: While the design of ANALOC is generic

to any LBS featuring a kNN search interface, the web-DB interface server component does

require a pre-configured specification file for LBS. The demo system shall contain a large

number of pre-configured specification files, including popular LBS ranging from online

social networks (such as Sina Weibo, WeChat) to map services (such as Google Maps).

Visitors to the demo can freely select the LBS of interest, specify the aggregate query of

interest, and then observe the aggregate estimation over the selected LBS at real time. To

demonstrate during the short demo session the effectiveness and utility of our ANALOC

system, we also plan to use the historical data that we collected from various LBS that will

then be queried by our Web-DB simulator.

3.3.2 Demo Scenario 1: Aggregate Estimation

Aggregate Estimation over Google Maps (LR-LBS): Google Places API has a

kNN interface and returns at most k = 60 POIs nearby ordered by location. It also returns

other relevant information about POIs such as review ratings, hours of operation etc. We
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will demonstrate the estimation of number of aggregates of interest over Google Places.

Sample queries will include AVG review scores for Marriott vs Hilton hotels, the COUNT

of Starbucks vs Peets Coffee in the US etc. Visitors will be able to visualize how the

estimate converges quickly along with the Voronoi cells of the samples visualized over the

map. Please refer to Figures 3.3 and 3.4 for an example.

Aggregate Estimation over WeChat (LNR-LBS): WeChat is a popular Chinese

social network that provide LBS functionality if the user has enabled it. It is a LNR-LBS

as the location is not returned from their public kNN query interface (k = 50). We plan

to demonstrate the aggregate estimation capability by estimating the gender distribution of

WeChat users in various cities of China. In addition, we also will highlight the ability of

ANALOC to infer the location of a user even though WeChat does not return it.

3.3.3 Demo Scenario 2: Hotspots and Explanations

We now describe a sample application that performs sophisticated analytics over

LBS data and was built by leveraging functionality of ANALOC. In this application, we

are interested in leveraging the location and timing of tweets from Sina Weibo to identify

hotspots over major cities in China. Intuitively, hotspots are locations with unusual activity.

Sina Weibo has a kNN query interface with k = 100.

By issuing kNN queries over randomly generated latitude/longitude pairs and by

using techniques for aggregate estimation from [45] we estimate the count of users. This

information is then visualized as a heatmap with darker colors corresponding to regions of

high activity. We associate with each hotspot, a weight corresponding to how active it is.

The weights of hotspots could also have additional applications such as identifying top-l

hotspots with most activity and tracking the activity over a period of time. By performing

repeated aggregate estimations over a given hotspot, we could identify trends over them

and identify hotspots that are most frequently changing. We also seek to infer the reason
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Figure 3.5: Weibo Hotspots

behind the hotsot by correlating the location data with other structured and unstructured

information returned by Weibo. These could include demographics information such as

gender and home state of users along with the posts made near the hotspots.

Figure 3.5 shows the result of the application over Weibo. It highlights the hotspot

activity over Shanghai province of China between the given time interval. The left pane

shows the list of identified hotspots that are also visualized over the map in the form of

heatmap. The user could also filter the data by focussing on gender, province etc. In

addition, it also displays the gender distribution over the period of interest.

3.4 Summary

We proposed to demonstrate ANALOC, a system for estimating aggregates over LBS

with kNN interfaces. In contrast to prior demos, it does not assume complete access to

location data and is one of the first systems to leverage kNN interface. ANALOC provides

analysts with a valuable tool for performing aggregate estimates. Its extensible architecture

could easily be leveraged by third parties for enabling multitude of applications such as

mashups, visualizations, infographics and other sophisticated analytics over LBS data.
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CHAPTER 4
Density based Clustering over Location

Based Services

Location Based Services (LBS) have become extremely popular over the past decade,

being used on a daily basis by millions of users. Instances of real-world LBS range from

mapping services (e.g., Google Maps) to lifestyle recommendations (e.g., Yelp) to real-

estate search (e.g., Redfin). In general, an LBS provides a public (often web-based) search

interface over its backend database (of tuples with 2D geolocations), taking as input a 2D

query point and returning k tuples in the database that are closest to the query point, where

k is usually a small constant such as 20 or 50. Such a public interface is often called a

k-Nearest-Neighbor, i.e., kNN, interface.

In this paper [46], we consider a novel problem of enabling density based clustering

over the backend database of an LBS using nothing but limited access to the kNN interface

provided by the LBS. Specifically, a key limit enforced by most real-world LBS is a max-

imum number of kNN queries allowed from a user over a given time period. Since such a

limit is often orders of magnitude smaller than the number of tuples in the LBS database,

our goal here is to mine from the LBS a cluster assignment function f(·), such that for any
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tuple t in the database (which may or may not have been accessed), f(·) can produce the

cluster assignment of twith high accuracy. We conduct a comprehensive set of experiments

over benchmark datasets and popular real-world LBS such as Yahoo! Flickr, Zillow, Redfin

and Google Maps and demonstrate the effectiveness of our proposed techniques.

4.1 Introduction

Location Based Services (LBS): Real-world LBS provide search and recommendation

for numerous types of geospatial and commercial information such as Points-of-Interest

(POIs), restaurants, real-estate properties, etc. Popular examples range from mapping ser-

vices (e.g., Google Maps) to restaurants reviews (e.g., Yelp) to real-estate search (e.g.,

Redfin). Besides these dedicated LBS systems, LBS-related features have been widely inte-

grated into other web based systems, e.g., social media platforms such as Twitter, WeChat,

Sina Weibo, etc.

Generally speaking, each LBS has a backend database where each tuple represents

a geotagged entity (e.g., a POI in mapping services or a user in social media). Attributes

of a tuple often capture both geographical coordinates (e.g., latitude and longitude) as well

as other structured information such as POI name, review ratings, etc. Public access to an

LBS database is usually limited to a web (or API) based search interface. Such an inter-

face often allows only k-Nearest-Neighbor (kNN) queries - i.e., upon given a geolocation

p and, optionally, a selection condition s, the interface returns a small number (up to a

pre-determined constant k such as 20 or 50) of tuples in the database that, among those

matching the selection condition s, are closest (geographically) to p.

In addition to the limit to kNN queries, the interface might enforce other constraints

as well, a popular one being the query rate limitation - i.e., the LBS might cap the maximum

number of queries one (e.g., a website user, an API token, or an IP address) can issue within
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a given time period. Due to the limit of returned tuples to k and the query rate limitation, it

is usually impossible to crawl a reasonably-sized backend database of an LBS through its

public-access interface.

Problem Definition and Motivation: The backend database of an LBS is often a gold

mine of information for understanding the corresponding application domain. For example,

data stored in real estate LBS such as redfin.com offer critical insights into the geographic

spread of wealth, education quality, etc., while POI data such as those in Google Maps

can support mining the spatial patterns of lifestyle choices such as bar themes, restaurant

cuisines, etc.

Unfortunately, due to the aforementioned limitations, access to such invaluable data

is restricted to the LBS provider itself, making it extremely difficult for unaffiliated third

parties, e.g., social-science researchers, business analysts, etc., to take advantage of the

data. We aim to enable the analytics and mining of such data by using nothing but the

restrictive, public-access, interface of the LBS, making it possible for third parties to enjoy

the value of LBS data without the lengthy and expensive negotiation process with the LBS

provider.

More specifically, the objective of this paper is to study a novel problem of enabling

spatial clustering over an online LBS database by issuing only a small number of kNN

queries supported by the LBS interface. Clustering is one of the key problems in spatial

data mining, with a wide range of applications. For example, by performing clustering

over the geocoded tweets at Twitter, a third party may identify hotspots or popular events.

Similarly, clustering over real-estate data such as Redfin can unveil the areas where citizens

of different socioeconomic status live. While many spatial clustering algorithms have been

studied in the literature, the objective of this paper is not to select the best-performing algo-

rithm for LBS data, but to instead demonstrate the feasibility of enabling spatial clustering
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using nothing but a few kNN query answers. For this purpose, we consider as a baseline

a fundamental yet popular density-based clustering algorithm, DBSCAN [1], and develop

a DBSCAN-like algorithm for LBS data with only a kNN interface for data access. While

we focus on developing a DBSCAN-like algorithm in this paper, our overall objective is to

enable the algorithmic design for a given cluster definition over a LBS with limited kNN

interface and query cost limitations.

Technical Challenges: There are many challenges in enabling spatial clustering over LBS

data with only a kNN query interface. The two most critical ones are on the input and

output of the clustering algorithm, respectively. The foremost challenge is on the input side

- i.e., there is no direct way for a LBS client to run a clustering algorithm like DBSCAN,

since the user can only formulate kNN search queries, not the density-calculating queries

required by DBSCAN. Any approach that works has to be based on executing a set of

kNN queries via the restrictive query interface, and then “inferring” the underlying clusters

structure from the results of the queries.

The second challenge is on the output side. To understand why, note that a faithful

implementation of any spatial clustering algorithm (including DBSCAN) requires us to

retrieve each tuple at least once, because the output is supposed to be a labeling of each

tuple into the cluster it belongs to. This requires numerous (at least n/k where n is the

total number of tuples) queries through the kNN interface, as each query returns at most k

results. This query cost is often prohibitively expensive in practice, violating the rate limits

or budgetary constraints imposed by the LBS interface (e.g., Google map API imposes a

query rate limit of 10,000 per user per day).

To address these two challenges, we have to adjust both the input and the output of a

clustering algorithm. Specifically, the output here can no longer be the identification of the

cluster affiliation for each tuple in the database. Instead, we aim to construct a clustering
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function f(·) by issuing a small number of kNN queries, such that for any given tuple t

in the database which may or may not have accessed, f(·) outputs the cluster assignment

of t with high accuracy. While this might seem a deviation from the traditional clustering

definition, the two problems are essentially the same. Specifically, note that by having a

“perfect” construction of f(·), we would have accurately identified the number of clusters

and a few tuples in each cluster. The accuracy of this f(·) function can also be evaluated in

the same way as traditional clustering - i.e., by applying f(·) over all tuples in the database,

we can compare the distance between its outputs and the ground truth (or the output of a

traditional clustering algorithm) to assess the accuracy of f(·).

A seemingly simple baseline would be to first sample the database (such as [47] that

provides random samples from a LBS database using only kNN interface), and then run

DBSCAN over the retrieved samples. To construct f(t) for a new (i.e., not-sampled) point

t, we can simply output the nearest cluster to t (e.g., based on the distance between t and

the cluster centroid) as its cluster assignment. This approach, while conceptually simple,

also suffers from a number of issues. For example, it might mishandle arbitrarily shaped

clusters - a key strength of density based clustering - for tuples not included in the sample.

Additionally, it does not have an effective way to identify outliers, given the sparsity of

the samples. Finally, it requires a substantially large sample size to enable a reasonably

accurate identification of the clusters.

Orthogonality with Traditional Clustering Research: Our problem is significantly

different from density based clustering over traditional databases. Often, they have access

to the entire database. Therefore, their key objective is to reduce the computational cost.

In contrast, our algorithms only has limited access to the database (i.e., kNN queries only).

As such, our objective is to perform a best-effort clustering (due to the limited data access)

while minimizing the number of queries issued over the kNN interface. The computations

that are performed locally at the client (i.e., query-issuer) side is not a major limiting factor.
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In other words, our objective is not to challenge or improve prior cluster definitions - but

to enable the algorithmic design according to a given cluster definition over an LBS with a

limited kNN interface.

Outline of Technical Results: DBSCAN is based on two key parameters ε and minPts, and

defines a cluster as a set of points (with cardinality at least minPts) that are within a radius

of ε from at least one other point in the cluster. It considers a density measure equal to the

number of points within a pre-determined radius ε. Thus, a requirement for implementing

DBSCAN over LBS is the ability to compute the density at any given spatial point.

A baseline approach to simulate DBSCAN is as follows. If we partition the data

space into grid cells of length ε on each dimension, then DBSCAN can then be almost

faithfully executed as long as we can accurately estimate the number of points in each cell.

Given that the key information required is whether the density of a grid cell exceeds the

pre-determined density threshold minPts, our problem is reduced to estimating a Boolean

indicator for each grid cell - whether the number of points falling within exceeds the given

threshold minPts. This can be easily computed by issuing a kNN query q at the center of

the cell. If all k returned points fall within the cell, then we return TRUE for the cell. Oth-

erwise, we can return FALSE for not only the cell of q, but also all other cells completely

covered within the range of the k returned points.

However, this approach can be extremely inefficient because it requires examining

each cell in the grid - equivalent to visiting all points in a cluster. Hence, we need an

efficient mechanism to find the boundaries of the cluster by “skipping over” intermediate

points that are close to each other. Representations of these boundaries serve as our clus-

tering function f(·), since any new point can be mapped into the appropriate cluster by

checking whether it lies inside or outside the cluster boundary. The problem of discover-

ing cluster boundaries is studied in literature [48, 49]. However, like traditional clustering

algorithms they are only applicable when we have full access to the database. Instead,
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our algorithms start by first discovering a point with high density, and then quickly tra-

verse to the boundary of the cluster that contains that point, without having to examine all

intermediate points.

We first develop algorithms for the special case of one dimensional data, and then

extend them to two (and higher) dimensions. In the 1D case, each cluster is essentially

a dense segment, and our goal is to discover the boundaries of each dense segment. Our

algorithm starts from a dense point within a cluster and discovers the two boundary points

by going to the left and right using a binary search-like process.

In contrast to 1D case where cluster boundaries of a dense segment can be discovered

by going to the left and right side from a point inside the segment, the direction that we need

to follow in 2D scenario is not very clear, especially when clusters can have any arbitrary

shape. In this case, we use an innovative approach of mapping the points in 2D space to

1D using a space filling curve (SFC [2–4]), and then discover the clusters using the 1D

clustering algorithm. A well designed SFC guarantees that two points close to each other

in the mapped 1D space are also close together in the original 2D space. This property

fits our purpose since we can skip points (by binary search) that are close to each other

in mapped 1D space as they will also be potentially inside the same cluster in original 2D

space. However, we must caution that points that are close to each other in 2D space might

not be close in the mapped 1D space. Hence, a cluster in 2D space might split into many

small clusters in 1D space. This complication can be addressed by a post-processing step

of merging 1D clusters that are “close” to each other, eventually into 2D clusters.

Summary of Contributions: Our paper makes the following major contributions:

• We consider the novel problem of density-based clustering over location based ser-

vices using only a kNN query interface.
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• For 1D data, we develop HDBSCAN-1D, a binary-search based algorithm for

quickly discovering the cluster boundaries without having to crawl all the data within

each cluster.

• For 2D data, we develop HDBSCAN, a clustering algorithm that uses an adaptive

space-filling curve algorithm as a subroutine to map 2D data to 1D, clusters the 1D

data using the 1D clustering algorithm developed earlier, and then merges the result-

ing 1D clusters into eventual 2D clusters. This approach can be generalized to high

dimensional data.

• We conduct a comprehensive set of experiments to demonstrate the effectiveness of

our algorithms. Specifically, we conduct online tests over a number of real-world

LBS, such as Yahoo! Flickr, real estate sites such as RedFin and Zillow and Google

Places. In addition, we also experiment with well-known synthetic datasets used in

prior density-based clustering research, such as Chameleon t7.10k, t4.8k and t8.8k.

The rest of the paper is organized as follows. Section 4.2 introduces the LBS data

model and formalizes the problem of enabling DBSCAN over LBS. Section 4.3 develops

algorithm HDBSCAN-1D for 1D data that highlights the basic ideas of our sampling based

design. Section 4.4 considers the general case of clustering higher-dimensional data and

develops algorithm HDBSCAN. Section 4.6 describes the experiments over popular bench-

mark datasets and real-world LBS. We describe the related work in Section 4.7 followed

by final remarks in Section 4.8.

4.2 Background

4.2.1 Model of LBS

Consider a Location Based Service (LBS) over a database D of n tuples, each of

which is labeled with a 2D location and possibly other relational attributes. Note that the
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results of this paper can be directly extended to 3D (or higher dimensional) locations, as

we shall discuss in Section 4.4. Examples of such an LBS include Google Maps, Redfin,

etc., where each tuple is a point of interest such as restaurant or real estate property; as well

as online social networks such as WeChat where each tuple is a user. In these examples,

a tuple features not only its 2D location, but also other attributes such as restaurant rating,

user gender, etc.

LBS usually supports kNN queries over the database. Such a query takes as input

a 2D location q (e.g., 〈longitude, latitude〉), and returns the top-k nearest tuples in D to q

as determined by a pre-defined distance function. We consider Euclidean distance as the

distance function. For each returned tuple, the query answer includes both its location and

other attributes. Note that while the value of k varies on different real-world LBS systems,

it is generally at the range of 50 to 100 - e.g., Google Maps has k = 60, while k = 50

and 100 for WeChat and Sina Weibo respectively. Most LBS also impose additional

restrictions such as query rate limit - i.e. the maximum number of kNN queries that can

be issued per unit of time. For example, by default Google Maps allows 10,000 location

queries per day while Sina Weibo allows only 150 queries per hour. Given these query

limits, a key goal of our algorithms is to minimize the query cost.

4.2.2 Problem Definition

Objective of Clustering: As discussed in the introduction, we consider in this paper how to

enable clustering over an LBS that exposes nothing but the above-described, limited, kNN

interface. An important observation here is that, with the limitation imposed by real-world

LBS systems, the definition of clustering will inevitably change in our problem setting. To

understand why, note that the traditional definition of clustering is to assign a cluster ID for

every tuple in the database (with the possibility of NULL ID for tuples deemed noise). If
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we adopt the same goal, this means accessing each of the n tuple at least once through the

interface, which requires no fewer than n/k queries (because each query returns at most

k tuples). Given the large n, small k, and stringent query rate limit in real-world LBS

systems, this query cost is often prohibitively expensive.

To address the challenge, the objective of clustering in our setting is to output a

cluster-assignment function f(·) which, upon given a tuple t ∈ D (which may have never

been accessed by our algorithm), outputs the cluster ID of t. Note that this is indeed a

generalization of the original clustering definition, and the traditional practice of producing

a cluster ID for each tuple can also be considered as producing a function that maps each

tuple to an ID.

Orthogonality with Traditional Clustering Research: Before discussing the perfor-

mance measures for our clustering-over-LBS problem, it is important to make a proper

distinction between the main objective of this paper and that of traditional clustering re-

search. In both cases, the ultimate goal is to produce f(·) that perfectly resembles the

ground-truth cluster assignment of all tuples, e.g., as determined by human experts. The

key challenge, however, is completely different.

One can roughly partition the design of a clustering solution into two parts: the

definition of clusters and the algorithmic design of efficiently clustering a given database

according to the cluster definition. Many existing work on clustering contribute to both

fronts - e.g., k-means clustering defines clusters according to the distance between a point

and the k cluster centers, while density based clustering defines clusters according to how

points are closely packed together. Our objective in this paper is not to challenge or improve

the cluster definitions of prior work, but rather to enable the second part - i.e., algorithmic

design according to a given cluster definition - over an LBS with a limited kNN interface.

From this perspective, our goal here is largely orthogonal to traditional clustering research.
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Performance measure: There are two important performance measures for clustering over

LBS: (1) the efficiency of clustering, and (2) the quality of clustering output f(·). For

efficiency, the key bottleneck in our problem setting is the query-rate limit imposed by

real-world LBS. Thus, we focus on one efficiency measure in this paper: query cost, i.e.,

the number of queries the clustering algorithm has to issue in order to produce f(·). Note

that traditional efficiency measures, e.g., the computational and storage overhead of the

clustering algorithm, are all secondary concerns in our problem because of the limited

input size - note that the number of “input” tuples, i.e., tuples that can be retrieved from

the underlying database, is inherently bounded by k times the query cost, which is likely a

small number in practice due to the query-rate limit.

In terms of clustering quality, we need to compare f(D), i.e., the outputs of f(·)

for all tuples in D, with a reference set of clustering IDs that can be either the ground

truth or the output of a traditional clustering algorithm over the entire D. In either case,

the difference between f(D) and the reference set can be measured in a variety of metrics

commonly used in clustering research [50]. In this paper, we consider three metrics in

experimental analysis: Rand index, Jaccard index and Folkes and Mallows index [50],

respectively.

Let P1, P2, . . . Ph be the clusters produced by f(D). Assume D = P1 ∪ · · · ∪ Ph,

as points deemed noise (i.e., with f(t) being NULL) can be considered as all belonging

to a “noise” cluster. Let C1, C2, . . . Ch′ be the ground-truth clustering result, again with

D = C1 ∪ · · · ∪ Ch′ . The design of Rand, Jaccard, and Folkes and Mallows indices all

consider the following four critical numbers:

• a, the COUNT of pairs of tuples in D, say t, t′, that belong to same cluster according

to both P and C, i.e., ∃i ∈ [1, h] and j ∈ [1, h′], such that {t, t′} ⊆ Pi and {t, t′} ⊆

Cj .
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• b, the COUNT of pairs of tuples in D that belong to different clusters according to

both P and C.

• c, the COUNT of pairs of tuples in D that belong to the same cluster according to P

but different ones according to C.

• d, the COUNT of pairs of points that belong to different clusters according to C but

the same one in P .

The Rand Index measure (R), Jaccard Index (J) and Fowlkes and Mallows index (FM )

are defined as below:

R =
a+ b

a+ b+ c+ d
, J =

a

a+ c+ d
, FM =

a√
(a+ c) · (a+ d)

4.2.3 Density Based Clustering

Since most real-world LBS focus on 2D points, we consider density-based clustering,

a popular class of techniques for low-dimensional data [51]. Before discussing how to

enable density-based clustering over LBS in the technical sections, here we briefly review

its basic design in the traditional setting of a database with full access.

Density based clustering algorithms use the density property (e.g., reachability) of

points to partition them into separate clusters. Specifically, the output depicts dense clusters

(of points) separated by low-density regions. DBSCAN [1] is the an example. It takes

two parameters as input: ε, the radius of a region under consideration, and minPts, the

minimum number of points inside a region for it to be dense. Specifically, a point t ∈ D

is considered core if there are at least minPts points within distance ε of t. Two points

t0, tr ∈ D are reachable from each other if there is a sequence of core points t1, . . . , tr−1,

such that ∀i ∈ [0, r − 1], ti and ti+1 are within distance of ε from each other.
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Given ε and minPts, the definition of a cluster becomes straightforward. Specif-

ically, a core point t is clustered together with all points in D that are reachable from t.

If a point is not reachable from any other point, it becomes an outlier, i.e., noise. Other

density-based clustering techniques follow similar principles, but measure density in dif-

ferent ways, leading to different definitions of clusters. For example, DENCLUE [52]

defines the density of a point as a sum of the influence function of the other points in D.

OPTICS [51] generalizes the density definition of DBSCAN by enabling different local

densities with ε′ ≤ ε [51].

As discussed earlier in this section, to enable clustering over LBS, we inevitably

have to choose a cluster definition to follow. For the purpose of this paper, we consider the

simple (ε,minPts)-based definition of DBSCAN, and aim to produce a cluster assignment

function f(·) with f(D) being as close to the clusters defined by DBSCAN as possible

(as measured by the aforementioned metrics R, J and FM ). One special note here is

that, since minPts is often set to be a small value such as 20 in practice [1], we assume

minPts ≤ k (as in the kNN interface offered by the LBS). This way, whether t is a core

point can be determined by just one query (i.e., on t, by judging whether the minPts-th

returned point is within ε from t). In case minPts > k, one can always call the kNN based

crawling algorithm [53] to first crawl the 2ε × 2ε square surrounding t and then make the

determination.

4.3 1D Case

We now consider how to enable clustering over the kNN interface of an LBS. As

discussed in the introduction, we start by developing HDBSCAN-1D for 1D data. The

simplicity of the 1D setting allows us to highlight the basic idea of our sampling-based
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design. Additionally, the general technique we develop in the next section leverages the 1D

algorithm as a subroutine for solving the high-dimensional problem.

4.3.1 1D Baseline and Problem

Since we follow the cluster definition in DBSCAN, we start by considering a parti-

tioning of the 1D space into cells of equal width, ε. We call such a cell “dense” if there

are at least minPts points in it, and “sparse” otherwise. Note that, so long as one can

somehow determine (by issuing kNN queries) which cells are dense and which are not, the

result of DBSCAN can be almost faithfully replicated by joining adjacent dense cells to

form a cluster.

It is easy to determine the density of a single cell. One simply needs to issue a kNN

query q at the center of the cell, and see whether the nearest minPts points returned (recall

from Section 4.2 that minPts ≤ k) all fall within the cell. If so, the cell must be dense.

Otherwise it must be sparse.

Extending the solution to determine the density of all cells, however, is not easy.

A baseline solution here is to select cells uniformly at random, and issue queries at their

centers to determine their density. The problem, however, is its high query cost. Note

that any kNN query answer can “cover” at most k/minPts dense cells. Thus, generally

speaking, if there are Dc core points in D, the number of queries required is at least Dc ·

minPts/k. Given the small k offered by real-world LBS systems, this query cost tends to

be prohibitively expensive in practice.

4.3.2 Algorithm HDBSCAN-1D

Key Idea: To address the problem with the baseline solution, our main idea is to leverage

the locality of cell densities - i.e., cells adjacent to each other are highly likely to have

similar density values. This locality property, of course, is not new. It has been used in
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the design of many density-based clustering algorithms - e.g., DENCLUE [52] reduces

the problem of density based clustering to kernel density estimations, essentially assuming

neighboring cells to have similar densities according to a Gaussian mixture model.

Specifically, our HDBSCAN-1D differs from the baseline on how to deal with a

query q that returns minPts points within a cell. In addition to marking the cell as dense,

we also aim to (approximately) identify the boundary of the entire cluster surrounding the

cell - i.e., the maximal sequence of cells, containing the one queried, that are all dense.

The rationale here, of course, is that according to the locality property, the number of such

sequences is much smaller than the number of dense cells in the space.

Consider a query q which returns at least minPts points within cell q - note that here

we use the same notation to represent the query and the cell without ambiguity, because a

query we issue is always right at the center of the 1D cell. Our idea is to first find a sparse

cell to the left (resp. right) of q in the 1D space, and then identify the dense cell immediate

to the right (resp. left) of the sparse region as a candidate for the left (resp. right) boundary

of q’s cluster. We discuss this process in detail as follows.

First, we set an initial range (a, b) based on the nearest sparse cells to q that we

already know. That is, both a and b are already discovered sparse cells with a ≤ q ≤ b.

If no sparse cell has been discovered, we can set a and b as the boundaries of the value

domain. We start by finding the first dense cell to the right of a. To do so, we issue a query

at a+1. If a+1 returns at least one point to its right, say at cell a′, then we test the density of

a′ by issuing a′ as a query. If a′ is dense, we have accomplished our task. Otherwise, since

we now know that a′ is sparse, we can shrink the range to (a′, b) and repeat this process.

Once we have identified the first dense cell to the right side of a, say d, our task now

is to determine if [d, q] consists solely of dense cells - i.e., if d is the left boundary for the

cluster containing q. We sample c cells uniformly at random from [d, q] to test if all of

them are dense. If all c cells turn out to be dense, we consider the range to be all-dense, i.e.
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continuous range of dense cells. Alternatively, we find a sparse cell d′ ∈ [d, q] - as soon as

we discover d′, we repeat the entire process with an updated initial range of (d′, b).

One can see that this process eventually leads to a range [d, e] where q ≤ e ≤ b

containing q that pass the c-sample test of being consecutive dense cells. What we do next

is to sample uniformly at random a cell for which we cannot yet determine density, and

query the cell to repeat the above-described process. Once again, this can be repeated until

the density nature of all cells have been determined, or until all query budget has been

exhausted.

Algorithm 8 HDBSCAN-1D
1: while query budget is not exhausted

2: Issue kNN query over randomly chosen unvisited cell q

3: if q is dense

4: (a, b) = range containing q where both a and b are already discovered sparse cells.

5: l, r = left and right boundary discovered using binary search inside range [a+1,

q] and [q, b-1] respectively.

6: Add the cell range [l, r] to dense segment list

7: Output the dense segments (clusters) identified so far.

Query Cost Analysis: We start by considering an ideal case where all tuples in the database

belong to one of the h clusters - i.e., there are no outlier points. During the initial search

of the first dense cell to the right of a, there are only two possible outcomes for each query

we issue: either it shows the cell to be dense and triggers a c-cell density test, or it returns

no tuple to its right side at all.
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For the first case (i.e. the c-cell density test), note that each failed test identifies a

new cluster - i.e., we conduct the test at most h times, consuming O(h · c) queries in the

worst-case scenario. When the query returns no point to its right, however, the situation

can be more complex. Note that if a query a′ returns no point to its right, then all the k

nearest neighbors to a + 1 are on its left side. What this triggers is a process that we refer

to as exponential search. Specifically, let ` be the maximum distance between a′ + 1 and

the k returned points. Since we are now certain that no tuple resides within [a′, a′ + `− 1],

the search space is shrunk to [a′ + `, b] - i.e., the next query we issue will be at a′ + `.

This query either returns a point to the right side of a, or proves that no point resides in

(a, a + 3`). If it returns a point to the right side of a, the c-sample test is triggered, with

query cost falling within the O(h · c) queries in the above analysis. Otherwise, if a + `

still does not reveal any point to the right of a, i.e., our next queries to issue would be

a + 3`, a + 7`, a + 15`, . . . - representing exponential growth of the query value. Note

that each exponential search consumes O(logN/ε) queries, where N is the total number of

cells. The exponential search process can occur at most h + 1 times, corresponding to the

h + 1 empty segments in between the h clusters. As such, the overall query cost becomes

O(h · c+ h ·O(logN/ε)).

Handling Noisy Points: While the technique described above shows a significantly re-

duced query cost according to the above analysis, it actually has an important problem

masked by an assumption made in the analysis - i.e., there is no outlier in D and every

point belong to a cluster. Note that if a′ returns a point to its right which nonetheless does

not turn out to be a dense cell, then the next query issued would be a′ + 1 (instead of

much further to the right as in the case of exponential search). In other words, in the worst

case scenario where every cell is filled with fewer than minPts but at least one point, the
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Figure 4.1: Mapping
2D space to 1D us-
ing Adaptive SFC

Figure 4.2: After
clustering in 1D
space

Figure 4.3: Merg-
ing nearby clusters
in 2D space

Figure 4.4: Assign-
ing new points to
closest cluster

technique might have to enumerate all cells between a and the left boundary of the cluster

containing q.

To address the problem, we introduce a binary search process for this scenario.

Specifically, we start by querying (a′ + q)/2. If it is dense, we move to the left (i.e.,

(3a′ + q)/4, (7a′ + q)/8, etc., in order). If it is sparse, we move to the right. One can see

that this process always terminates when we discover a dense cell that has its immediate

neighbor to the left being sparse. In other words, we have discovered the left boundary of

a cluster - whether the cluster is the one surrounding q will be verified by the c-sample test.

One can see that each execution of this binary search process returns one of the two

boundaries for a cluster. Thus, it is executed for O(h) times in the worst case. In other

words, the overall query cost remains O(h · c+ h ·O(logN/ε)).

4.4 HDBSCAN

In this section, we consider the general case of clustering higher-dimensional data

through a restrictive kNN interface. While it will be clear from the discussions that our

results can be directly extended to data of any dimension, the focus of this paper is on 2D

data because of its prevalence among real-world LBS.
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4.4.1 Overview

One can see from the design of HDBSCAN-1D that the “boundary” pursuit idea

used there cannot be easily extended to higher dimensions, because instead of having just

2 bounds (left and right) as in 1D, there may be a large number of cells bounding a 2D

(or higher-D) cluster of an arbitrary shape, making the exact discovery of them extremely

expensive in query cost.

To address this challenge, our idea is to first map 2D data into a 1D space, and then

call upon HDBSCAN-1D to perform clustering as described in §4.3. To enable the map-

ping, we use a specially designed Space Filling Curve (SFC) detailed later in the section.

The general concept of SFC [2–4] is illustrated in Figure 4.5. More specifically, for each

2D point t, we records as its mapped 1D coordinate S(t) the point on the SFC that is

closest in distance to t (in the 2D space). With this design, each query HDBSCAN-1D

decides to issue is mapped to its corresponding 2D coordinates and issued to the under-

lying 2D LBS, while every returned 2D tuple t is mapped back to its 1D coordinate S(t)

for HDBSCAN-1D to process. One can see that this two-way mapping enables the seam-

less execution of HDBSCAN-1D over the 2D space. In addition, it ensures that two tuples

t1, t2 ∈ D (indeed, their mappings S(t1) and S(t2)) belonging to the same cluster produced

by HDBSCAN-1D should also be clustered together in the 2D space. Figure 4.6 shows a

mapping from 2D to 1D space using Hilbert curve.

Nonetheless, this SFC-based mapping also introduces a major challenge to the clus-

tering design: Since no SFC can guarantee that two points close together in 2D are always

close in 1D [2], we are left with the possibility that one 2D cluster may be partitioned into

multiple 1D clusters after the mapping. To address the problem, we introduce an additional

step of merging the “mini-clusters” produced by HDBSCAN-1D. Specifically, recall from

§4.3 that HDBSCAN-1D outputs h mini-clusters as ranges Ci : [ai, bi] (i ∈ [1, h]). We con-
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Figure 4.5: Illustration of popular SFC: (a) Hilbert curve (b) Z-curve (c) Peano curve
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sider for each pair1 of mini-clusters whether they should be merged (with details discussed

later in the section), according to the 2D points we have observed in each mini-cluster.

This merging process essentially produces a many-to-one mapping Ci → C ′j (i ∈ [1, h],

j ∈ [1, h′]), so each 1D range Ci is labeled with a final cluster ID from 1 to h′ (h′ ≤ h).

In the following subsections, we shall discuss, respectively, the three critical steps

for HDBSCAN: (1) the design of SFC for calling HDBSCAN-1D, (2) the merging of mini-

clusters, and (3) the generation of clustering function f(·). Figures 4.1 - 4.4 shows the

output of each steps described above for Chameleon t-7.10k dataset. Points that are de-

tected as noise are colored in pink.

1While this pairwise-testing appears to be an expensive (quadratic) process, note that the cost incurred here is local computational

overhead instead of query cost, the bottleneck in our problem setting.
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4.4.2 Mapping 2D to 1D

Baseline Solution and Problem: To design the mapping from 2D to 1D, a baseline solu-

tion is to first partition the 2D space into ε×ε grid cells, and then apply standard SFCs such

as Hilbert curve, Peano Curve, Z-curve, etc. This way, the mapped 1D space is naturally

partitioned to cells of width ε, exactly matching the need of HDBSCAN-1D. Meanwhile,

the mini-clusters produced by the algorithm, when mapped back to 2D, will consist of adja-

cent ε×ε cells, closely approximating the ε-radius neighborhood considered by the original

DBSCAN.

A problem with this baseline solution, however, is the large number of grid cells

defined by the mapping. Recall from the query-cost analysis in Section 4.3 that the number

of queries required by HDBSCAN-1D is proportional to h, the number of clusters - in this

case mini-clusters - identified by the algorithm. From the illustration in Figure 4.7, one can

clearly see that, for a fixed Hilbert SFC, the more fine-grained the 2D grid cells are, the

more mini-clusters it will partition a true 2D cluster into. When the granularity is down to

ε × ε as in the baseline, the number of mini-clusters produced may far exceed the number

of real clusters (i.e., h� h′), leading to a very large query cost.

On the other hand, it is also important to note that we cannot arbitrarily enlarge

the grid cell size to reduce the count. To understand why, note that the mapping from

2D to 1D might project two points at the two opposite ends of a 2D cell to the same 1D

coordinate. For example, consider the bottom left cell in Figure 4.6. Both the top left

corner and the bottom right corner of the cell will be mapped to the 1D point at the center

bottom of the 2D cell. This is usually not a problem for clustering when each cell is small

(e.g., ε × ε). However, if we make the cell size too large, then this mapping-induced error

might cluster together two points far from each other, adversely impacting the quality of

clustering results.
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Adaptive Space Filling Curve (SFC): To address the problem, our key idea here is to

introduce the concept of an adaptive SFC, which combine larger grid cell sizes on sparser

regions, in order to reduce the overall query cost, with smaller grid sizes on denser regions,

in order to gain enough resolution to separate clusters from each other and outlier points.

Figure 4.8 depicts an example of such a space filling curve.

Note that the shape of the adaptive SFC depends on the underlying data distribution.

Since we do not have prior knowledge of the data distribution, we can no longer pre-

define this SFC and its corresponding 2D to 1D mapping. Instead, we have to construct

the adaptive SFC on-the-fly and adjust the mapping as the SFC changes. Specifically, this

online process can be described as follows.

• We start with the largest possible grid cells, i.e., by partitioning the entire space into

four cells, as shown on the root node in Figure 4.8. Based on this initial SFC, we

start the execution of HDBSCAN-1D. Note that the design of the adaptive SFC is

transparent to HDBSCAN-1D - it simply takes a 1D space as input and is oblivious

to how large the cell sizes are in the 2D space.

• For every query q issued by HDBSCAN-1D, we identify the 2D cell q falls into, say a

cell of size c×c, and issue a query q′ at the center of the cell. If theminPts-th ranked

point q′ returns is farther than
√

2c/2 from the cell center, it means that there can be

no more than minPts points within the c× c cell, and we do not need to partition it.

Otherwise, we partition the cell into four cells, as demonstrated in Figure 4.8.

• Note that once we decide to further partition a cell, the adaptive SFC changes, and so

is the 2D to 1D mapping (as it “inserts” a number of 1D cells to the domain). Thus,

starting from the next step in the execution of HDBSCAN-1D, we follow the new

mapping for translating the 1D query and the 2D query answers.
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4.4.3 Merging Mini-Clusters

We now consider how to merge the mini-clusters generated by HDBSCAN-1D to

real 2D clusters. A simple approach here is to merge mini-clusters containing grids that

neighbor each other in 2D (i.e. grids that share an edge). A problem with this solution,

as we found through experiments, is that it is likely to merge two clusters into one if the

clusters happen to be close to each other. Setting the ε value very small might solve this,

but this will also increase the query cost. To overcome this problem, we select a subset

of points from each clusters as representative to compute the inter cluster distance. This is

similar in nature to the concept of using fixed set of representative points to measure cluster

distance in CURE [51], a hierarchical clustering algorithm. Specifically, we compute the

l-distance between two mini-clusters - i.e., we identify all points in the two mini-clusters

that have been observed in previous query answers. Then, we select the top-l pairs of points

with the minimum distance from each other, and compute their average distance. We merge
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the two mini-clusters if their l-distance falls below a pre-determined threshold. Setting a

small value of l would split larger clusters as they do not capture the shape of the clusters.

Empirically, we found that setting l to minPts/2 provided best results.

Algorithm 9 HDBSCAN-2D
1: Input: Tree t

2: while query budget is not exhausted

3: Issue kNN query over unvisited node n chosen randomly

4: if n is dense

5: Find dense segment containing n using Algorithm 8 such that none of t’s leaf

nodes get partitioned in that process.

6: Add the dense segment to mini-cluster list.

7: Merge min-clusters using top-l distance

8: Output the dense clusters identified so far

4.4.4 Clustering of New Points

Recall that our objective is to develop a clustering function f(·) that emulates the

output of density-based clustering algorithms such as DBSCAN. Given a new point f(·)

can then be used to identify its cluster affiliation. For each new point, we first map it to 1D

space using the adaptive SFC and check whether it belongs to any of the “mini-clusters”

previously discovered. The point is then assigned to the final cluster generated by the

merging procedure from §4.4.3.
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4.5 Discussion

4.5.1 Leveraging External Knowledge

Section 4.4 describes the clustering algorithm with adaptive SFC when we don’t have

any apriori knowledge about the data distribution. However, if some external knowledge

about the data distribution is available (such as POI in a LBS such as Google Maps), then

we can leverage that to reduce the query cost of building the tree. For example, while

clustering the dense regions in an area, its reasonable to assume that the clusters will be

positively correlated with the population distribution of that region. So instead of building

the SFC mapping tree from the scratch, we can build the initial tree according to this infor-

mation. We start with the tree built using the external knowledge and use this to map 2D

space into 1D. As the clustering process progresses, we query the grids represented by the

leaf nodes of the tree and partition them further if required. This way the final structure of

the tree gradually changes from the initial structure to reflect the actual data distribution.

Note that, the use of external knowledge doesn’t change the accuracy of the output

clusters even when the external knowledge is inaccurate and does not align with the actual

data distribution. This is because the density of a grid is still validated by querying it. This

approach of optimization using external knowledge doesn’t always guarantee query saving

and but often serves as a handy heuristic. In the best case, no additional kNN query need

to be issued for building the tree while in worst-case leveraging the external knowledge

slightly increases the total query cost. For example, in such scenario, the initial tree built

using external knowledge might partition the sparse regions into many smaller grids and

leave the dense region with large grids. However, in practice, this approach is very effective.

4.5.2 Special LBS Constraints

Many real-world LBS apply additional constraints on their query interface. One

such constrain is maximum radius on the returned results - the distance between the query
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location q and the returned result is bounded by a predetermined threshold dmax. If there are

are no point within the dmax distance from query location q, an empty result set is returned.

Google Maps only returns POIs that are at most 50KM away from the query point.

If dmax is larger then ε, we can still retrieve all the points inside the query grid.

However, when ε is larger than dmax, one kNN query might not be sufficient to check the

density of a grid. There are several approaches to tackle this problem. One straight forward

solution is to crawl the query grid. We divide the query grid into smaller grids of size ε′×ε′,

where ε′ = ε/dmax. The final density of a grid is then computed by aggregating the result of

kNN queries issued at each of the smaller grids. This approach increases the query cost due

to the high cost of crawling and also diminishes the advantage of adaptive SFC by issuing

many queries in sparse region. A more efficient approach is to use sampling to estimate the

count in a grid cell. For example, prior work such as [47] can be used to estimate the count

of points in a region.

Another constraint found in real-world LBS application is a more complex ranking

function that doesn’t solely depend on distance between query point, q and POI, t. For

example, Google Places API allows users to rank results by “prominence”. Handling this

is not straight forward as in extreme case it is possible that every query inside the grid cell

returns prominent points outside of it making crawling impossible. However, for most of

the real-world applications the value of k large (Google Places API returns upto 60 nearby

POI for a given query point). As long as the nearest POI is returned anywhere in the top-k

result, we can always post process the query result in order to obtain it. Then using the

nearest result, count estimation techniques such as from [47] can be used.
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Figure 4.10:
Chameleon t4.8k
Dataset

Figure 4.11: Output
of HDBSCAN

Figure 4.12:
Chameleon t8.8k
Dataset

Figure 4.13: Output
of HDBSCAN

Figure 4.14: Banana
Dataset

Figure 4.15: Output
of HDBSCAN

Figure 4.16: Birch
R2 Dataset

Figure 4.17: Output
of HDBSCAN
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Figure 4.19: Cluster Quality for different
SFCs

4.6 Experimental Results

4.6.1 Experimental Setup

Hardware and Platform: All our experiments were performed on a quad-core 2.5 GHz

Intel i7 machine running Ubuntu 14.10 with 16 GB of RAM. The algorithms were imple-

mented in Java.
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Figure 4.20: Cluster Quality Vs Query
Cost
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Benchmark Datasets: We evaluated the clustering quality generated by HDBSCAN using

the widely used Chameleon benchmark datasets [54]. They contain 2D points along with

clusters of different shapes, densities, sizes and noises. We tested HDBSCAN on three

Chameleon datasets: Chameleon-t7.10k, t4.8k and t8.8k. Note that for offline experiments

we had full access to the dataset. To simulate the LBS access model, we implemented a

kNN interface with Euclidean distance as the ranking function.

Real World Datasets: In order to highlight the practicality of HDBSCAN, we evaluated

it against a number of popular real-world LBS such as Yahoo! Flickr, Zillow, Redfin and

Capital BikeShare. Note that, unlike the experiments on benchmark datasets, we do not

97



know the ground truth cluster assignments. However, the cluster assignments produced by

HDBSCAN had realistic clusters with valid real-world interpretations.

The Yahoo! Flickr dataset contained almost 100 million images of which about 49

million are geotagged. In addition to image metadata such as title, description and other

user tags, it also contains location information. We considered the subset of almost 118K

images from Washington DC with location granularity of street level. We implemented a

kNN interface over the dataset that returns the images geotagged with locations near the

query location. We can consider locations with large number of geo-tagged images as

clusters (e.g. popular tourist hotspots).

Zillow is a popular online real state website that helps users to find houses and apart-

ments for sale/rent. It has a kNN interface that allows users to search for houses in a given

location and filter search results based on attributes like price, area, home type etc. We

crawled approximately 12K houses listed for sale in Dallas Fort Worth (DFW) area along

with metadata such as house location, price, number of beds and baths, area in square feet

etc.

Redfin is an online real estate website similar to Zillow. The mobile application of

Redfin provides a kNN interface where users can specify a location and get nearby houses

sorted according to their distance from the query point. We executed HDBSCAN over the

Redfin house listings for the DFW area.

Capital Bikeshare is a popular bicycle sharing system in Washington D.C. It has

approximately 350 bike stations around D.C. They publish their rental data periodically

every quarter. The dataset contains information about every rental such as start and end

stations, rental date, duration etc. By combining this dataset with kNN interface provided

by Google Places, we seek to cluster the stations based on the rental usage.
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Performance Measures: We measured the efficiency of HDBSCAN through query cost,

i.e. the number of queries issued to LBS. The clustering quality is measured based on Rand

index, Jaccard index and FolkesAndMallows index as defined in §4.2.

Parameter values: Table 4.1 shows the parameter values of HDBSCAN for each dataset.

The value of l was set to minPts / 2. The parameters are set to the values that provided the

best accuracy for the offline execution of DBSCAN that had access to the entire dataset.

Table 4.1: Parameter values used in the experiments

Dataset ε minPts # points k

Chameleon t7.10k 20 14 10,000 14
Chameleon t4.8k 20 19 8,000 19
Chameleon t8.8k 15 6 8,000 6
Zillow 0.02 10 12,250 10
Yahoo Flickr DC 0.0025 600 117,875 600
Redfin 0.02 10 NA 200
Capital Bikeshare 0.005 3 NA 20

4.6.2 Experiments over Benchmark Datasets

Feasibility of HDBSCAN: In our first set of experiments, we show that it is indeed possi-

ble to identify underlying cluster structures (even for complex shapes with varying sizes)

using a restricted kNN query interface and limited sample size. Figure 4.10 visualizes the

benchmark dataset Chameleon 4.8k while Figure 4.11 visualizes the output of HDBSCAN

over the dataset (using only the sample points) with a query budget of 400. To reduce clut-

ter, we removed the noise points. Figures 4.12 and 4.13 show the results for Chameleon

8.8k. As the figures show, HDBSCAN followed by post-process merging of nearby clus-

ters could identify the clusters using only the local view of the dataset. For the rest of the

benchmark datasets experiments, we focus on the Chameleon 7.10k dataset (visualized in

Figure 4.4). The results for other datasets were similar.
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Comparison with Baseline Algorithm: Recall that a baseline approach for clustering over

LBS data is to obtain a uniform sample using prior work such as [47] and run DBSCAN

over the sample. Given a query point, we assign it to the nearest cluster. If there are no

cluster within a distance threshold, it is categorized as a noise. We compared the cluster-

ing quality of baseline algorithm and HDBSCAN with same query budget while varying

the budget from 200 to 600. Figure 4.18 shows the results for Chameleon t-7.10k dataset.

Hilbert Curve is used for 2D to 1D mapping. As expected, HDBSCAN always outperforms

baseline as the baseline often partitions the original clusters into many small clusters. Even

the addition of a post processing step where we merge nearby small clusters does not im-

prove the quality. Hence it is not a viable approach for tight query budgets.

Figure 4.19 shows how the cluster quality varies when the three most popular space

filling curves - Hilbert (HC), Peano (PC) and Z-curves (ZC) were used with a query budget

of 600. Hilbert and Peano curves provide best cluster qualities. Hence, for the rest of the

experiments we only consider HC and PC. Since our work is a best-effort implementation

of DBSCAN over LBS, we treat the output of DBSCAN as ground truth. A cluster quality

of 1.0 is obtained when the cluster assignments of HDBSCAN and DBSCAN are identical.

Cluster Quality versus Query Cost: In this experiment, we evaluate how the quality

of clusters discovered by HDBSCAN is impacted when the query budget is varied. We

vary query budget from 200 to 600 and Figure 4.20 shows the result. As expected, the

cluster quality improves with higher query budget. Nevertheless, even for a query budget

as small as 200, the Rand index of HDBSCAN is 0.9. Recall that Rand index measures the

percentage of cluster assignments that are correct which highlights a 90% accuracy of our

algorithm.

Varying k: The value of k has a substantial impact on query cost. When the value of k

is higher than minPts, the additional results retrieved could be used to infer the density of

neighboring grid cells. Figure 4.21 shows the result of experiments when the value of k is
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varied. As expected, the query cost is reduced when the value of k is increased. The impact

of k on cluster quality is minimal.

Varying Minimum Grid Size: Next we demonstrate the effect of minimum grid size on

query cost (Figure 4.22) and cluster quality (Figure 4.23). Intuitively, a large grid size

reduces the total number of grids which in turn reduces the query cost. However, the

grid size has a substantial impact on cluster quality. The relation between minimum grid

size and cluster quality is not monotonic. If we set the minimum grid size too small the

algorithm might partition the actual clusters into many smaller clusters. On the other hand,

setting the grid size too large might merge the neighbor clusters in actual partitioning. In

practice, our approach of adaptive grid sizes provides good results.

Query Cost versus Node Partition Count: At each level, standard Hilbert Curve parti-

tions the existing cells into four equal size regions. However, in the adaptive space-filling

curve approach we only partition a grid if required. We can divide the total query cost

into two categories: i) Node splitting cost - queries that are issued on large grids that are

partitioned later. ii) Leaf node query cost - queries executed at the leaf nodes of the tree.

To reduce the node splitting cost, we can increase the number of children a node can be

partitioned into. However, increasing this value may also increase the leaf node query cost.

Figure 4.24 illustrates how varying the number of partitions of a node impacts the query

cost. When the number of partitions per node is small, the total query cost is high due to the

higher node splitting cost. When number of partitions is increased, the leaf node query cost

becomes higher. The optimal node partition count depends on the data distribution. When

the distance between the clusters are large, small node partition count is better, whereas the

opposite is true when clusters are close to each other.

Query Cost versus Noise points (%): In the final experiment, we investigate the impact

of noise points on query cost. We varied the noise point count by randomly selecting a

portion of noise points from the dataset. As expected, query cost increases with increase in
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the percentage of noise points. One of the major reasons for the increase in query cost is

the impact the noise points have on the adaptive space filling curves. Without a well chosen

threshold, the adaptive SFC algorithm could treat a sparse region (that would not have been

explored if there is no noise) as a non-sparse region resulting in higher query cost.

Figure 4.26: Clustering of Places in DC us-
ing Yahoo Flickr geotagged photo

Figure 4.27: Clustering of houses in DFW
area using Redfin

Figure 4.28: Clustering of houses in DFW
area on Zillow dataset
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Figure 4.29: Price distribution of house for
sales in DFW area

4.6.3 Experiments over Real-World LBS

Yahoo Flickr: For the Yahoo Flickr dataset, we run HDBSCAN on almost 118K images

geotagged with Washington, DC area. The output clusters are plotted over the heat map of

photos in Washington, DC. Figure 4.26 shows the comparison of discovered clusters with

actual photo distribution. We can see that the clusters are located at the popular tourist
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Figure 4.30: Clustering of Capital Bike-
share stations in DC

Hour of day

Frequency

Figure 4.31: Average Rent per hour distri-
bution for Cluster 1

spots of Washington, DC. This was also corroborated by the analysis of most frequent user

tags from image metadata within each cluster. We used the population count information

of US census data as external knowledge for this experiment.

Zillow: The results of running HDBSCAN over houses listed in DFW of Zillow website

can be found in Figure 4.28. In order to compare the discovered clusters with actual dis-

tribution of “Houses for Sale” in DFW area, we plot the houses inside each cluster over

the heat map of houses in Zillow dataset. Only clusters containing at-least 100 houses are

shown. We can see that HDBSCAN discovers clusters of different shapes that matches the

actual distribution of house in DFW. Since we have access to full dataset, we also performed

basic statistical analysis of the house prices in discovered clusters. As expected, clusters

near Dallas and Forth-Worth downtown have higher average price compared to others. The

price distribution of houses in DFW area is shown as histogram in Figure 4.29. For each

price bin, the corresponding count in each cluster is shown with different color. Count of

houses in clusters of size smaller than 100 are combined altogether and shown with blue

bar. We can see that clusters near urban areas are at the right side of the histogram and

clusters in rural area are placed the left side. We used the “Housing Units” information of

US Census data as external knowledge for optimization [17].

Redfin: We also performed clustering of houses in DFW area listed in Redfin website.

This was an online experiment conducted live over Redfin. The output clusters are shown
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in Figure 4.27. The list of identified clusters are similar to those identified from Zillow

dataset. The minor differences are due to the fact that some houses were not listed in both

services.

Capital Bikeshare: We used Google Places API to perform clustering on Capital Bike-

share (CB) stations in Washington D.C area. Since Google Maps does not have complete

information about all the CB bike stations in D.C., we augmented the clustering results by

adding the missing bike stations to its nearest cluster discovered using Google Place API.

Figure 4.30 shows the clusters identified by HDBSCAN. There is one big cluster at the

center of DC (shown in red marker) and three smaller clusters at the outer side area(shown

in blue and green markers). We validated the identified clusters from the historical rental

data for each bike stations2. Figure 4.31 displays the distribution of average rent count

(normalized to 1) of each bike stations for Cluster 1 (red markers). We can see that stations

in cluster 1 has a different hourly rental distribution from other stations. Specifically, we

can see that there is a difference in the usage pattern among stations in CB. Bike stations

close to the center of the city are more frequently rented at the evening time compared to

other times of the day. Whereas stations located outside have two peaks in the morning and

evening. Analysis of other clusters showed similar distinct usage pattern.

4.7 Related Work

There has been extensive work on spatial data mining of which clustering is a major

technique. Our problem is substantially different from traditional clustering problems as

they have access to entire database. To the best our knowledge, our work is the first to pro-

pose enabling DBSCAN (or any clustering algorithm) over a LBS. We do not challenge or

improve the cluster definitions over traditional databases, but rather enable the algorithmic

2https://www.capitalbikeshare.com/trip-history-data
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design according to a given cluster definition over an LBS with a limited kNN interface.

Please refer to [51] for a detailed survey of clustering algorithms. Prior work on finding

cluster boundaries [48, 49] do not apply here as they also require access to entire database.

Due to the increasing popularity of LBS, key problems such as sampling [13, 24, 25,

47], aggregate estimation [13, 47] and crawling [53] over a restricted query interface such

as kNN have been recently studied.

SFC has been studied in the context of multi-dimensional indexing where the multi-

dimensional data is mapped to one dimension, enabling simple and well understood one-

dimensional indexing algorithms to be utilized [3,4]. Theoretical analysis of the clustering

properties of SFC has been studied in [2–4, 55].

4.8 Final Remarks

In this paper, we explore the problem of enabling DBSCAN over an LBS with only

a limited, kNN query interface. We developed HDBSCAN that uses an adaptive space-

filling curve algorithm as a subroutine to map 2D data to 1D, clusters the 1D data and then

merges the resulting 1D clusters into eventual 2D clusters. We verified the effectiveness

of our algorithms by conducting comprehensive experiments on benchmark datasets and

multiple real-world LBS.
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CHAPTER 5
Privacy Implications of Database Ranking

In recent years, there has been much research in the adoption of Ranked Retrieval

model (in addition to the Boolean retrieval model) in structured databases, especially those

in a client-server environment (e.g., web databases). With this model, a search query returns

top-k tuples according to not just exact matches of selection conditions, but a suitable

ranking function. While much research has gone into the design of ranking functions and

the efficient processing of top-k queries, this paper studies a novel problem on the privacy

implications of database ranking.

The motivation is a novel yet serious privacy leakage we found on real-world web

databases which is caused by the ranking function design. Many such databases feature

private attributes - e.g., a social network allows users to specify certain attributes as only

visible to him/herself, but not to others. While these websites generally respect the privacy

settings by not directly displaying private attribute values in search query answers, many of

them nevertheless take into account such private attributes in the ranking function design.

The conventional belief might be that tuple ranks alone are not enough to reveal the private

attribute values. Our investigation, however, shows that this is not the case in reality.

To address the problem, we introduce a taxonomy of the problem space with two

dimensions, (1) the type of query interface and (2) the capability of adversaries. For each
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subspace, we develop a novel technique which either guarantees the successful inference of

private attributes, or does so for a significant portion of real-world tuples. We demonstrate

the effectiveness and efficiency of our techniques through theoretical analysis, extensive

experiments over real-world datasets, as well as successful online attacks over websites

with tens to hundreds of millions of users - e.g., Amazon Goodreads and Renren.com.

5.1 Introduction

5.1.1 Motivation

While traditional structured databases generally support the Boolean Retrieval model

(i.e., return all tuples that exactly match the search query selection condition), in recent

years there has been much research into exploring the applicability of an alternate Ranked

Retrieval model (e.g., a kNN interface that returns top-k tuples according to a suitable rank-

ing function). The ranked retrieval model has become an important component of many

databases, especially in a client-server environment (e.g., web databases, where a client

specifies and sends queries via a web interface to a backend database). Prior research has

primarily focused on the effective design of ranking functions and the efficient processing

of top-k queries for a given ranking function (e.g., [6, 56, 57]).

However, in this paper [58] we investigate a novel problem on the privacy impli-

cations of database ranking, which has not been studied before. We show how privacy

leakage (through the top-k interface) can be caused by a seemingly innocent design of the

ranking function in such ranked retrieval models.

To understand how the privacy leakage occurs, note that many databases in a client-

server environment feature both public and private attributes. For example, social network-

ing websites often allow users to specify privacy settings that hide certain attributes from

the public’s view, e.g., profile demographics such as race, gender, income; location; past
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posts, etc. These websites honor the privacy settings by omitting the private attributes from

being displayed in the returned query answers. Thus, the results include a ranked list of k

tuples, but with only the public attributes displayed, and the private attributes hidden.

The problem here, however, is that many websites indeed include these private at-

tributes as input to the ranking function. The purpose of doing so is, understandably, to

make ranking more effective - e.g., the friend-search feature in a social network would

preferably return users that have similar demographics or behavior patterns (e.g., posting

with similar frequencies) as the user who executes the search, as common-sense indicates

that they are more likely to be interested in each other. From the privacy perspective, this

design might look harmless as well - after all, while a ranking function might take as input a

large number of attributes, its output is merely the (relative) rank of a tuple among returned

results - not even the actual ranking score! Naturally, the traditional belief here is that it is

impossible to infer private attribute values from just the ranking of a returned tuple.

In our investigation of real-world client-server databases (including popular web

databases), we found this traditional belief to be wrong. Specifically, in this paper, we de-

velop a novel technique which, by asking a carefully constructed sequence of top-k queries

and observing the corresponding change of tuple ranks in the query answers, may success-

fully infer the value of private attributes.

Before introducing our technical results, we would like to first illustrate the real-

world impact of this privacy leakage by briefly demonstrating a very simple attack one can

deploy using this technique on Renren.com, the equivalent of Facebook in China which

has hundreds of millions of users. We chose this website as an example not only because

of its large user base, but because it supports extensive privacy settings - allowing a user

to specify as private any subset of profile attributes such as hometown, work affiliation,

university attended, etc. It also respects these privacy settings in the display of search

results - e.g., if a user specifies hometown as private and “only visible to friends”, then
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the user’s hometown information will be hidden from all search and/or recommendation

results unless the query is issued by a friend of the user.

Nevertheless, we also found that when ranking users in search or recommendation

results, the ranking function used by Renren.com takes into account all attributes of a user’s

profile, regardless of whether a user has specified it to be private and/or who is issuing

the query. For example, Figure 5.1a shows the screenshot1 of the ranked list of tuples

(i.e., users) returned for a friend-search query issued by a user LIONEL with hometown =

Beijing, China and no other profile attribute specified. The query is formed using the only

public attribute of our victim user TARGET (with a red target icon in the screenshot), name

= Jia Ming. Since TARGET sets his hometown to be a private attribute “only visible to

friends” and LIONEL is not a friend of TARGET, the hometown of TARGET is hidden from

display in the query answer. Figure 5.1b shows the answer to the exact same query after

LIONEL changes his hometown to Shanghai, China. The rank of TARGET now moves up

from No. 3 to No. 1 in the new answer - and indeed ranks even higher than a few other

users with the same name from Shanghai and studying in Fudan university (in Shanghai).

The change of rank indicates a strong likelihood of TARGET having hometown = Shanghai

(even though it does not form a proof). In this paper, we shall show how one can indeed

prove that TARGET must come from Shanghai using just a few other query answers.

Figure 5.1: Demonstration of an attack over Renren

1Note that, since Renren.com does not have an English version, this screenshot is taken in Chrome with the automated webpage

translation feature of Google Translations enabled.

109



5.1.2 Novel Problem: Rank-Based Inference

The above motivating example led us to identify an important and novel problem of

ranked-based inference of private attributes. From a conceptual standpoint, this problem

is interesting as, to the best of our knowledge, privacy compromise from tuple ranks has

not been studied before. From a practical standpoint, this problem is important as many

client-server databases, especially web databases that attract large amounts of user contri-

butions, commonly offer top-k query interfaces yet contain sensitive data (e.g., profiles,

demographics) that users would like to keep private.

We formalize the problem as follows. Consider a database D with n tuples and

m + m′ attributes, m of which A1, . . . , Am are public while the other m′, B1, . . . , Bm, are

private. The database allows top-k queries where k is a small number (k � n). To specify

a query q, one assigns a predicate on each of the m + m′ attributes. The predicate can be

point2 (i.e., Ai = v) or range (e.g., Bi ∈ {v1, v2} or ∗, i.e., the entire domain).

Given a top-k query q, the database computes a predetermined ranking function

s(t|q) for each tuple t in the database, and returns the k tuples with the smallest s(t|q).

Of course, only the m public attributes are displayed on the return interface - not the pri-

vate attributes or the ranking score. In most websites, the ranking function is a closely

guarded secret - so we assume the adversary has no knowledge of the ranking function

other than two very basic properties, monotonicity and additivity, which we shall define in

§5.2 and demonstrate that they hold for almost all reasonable ranking functions used in the

real-world.

The objective of an adversary is to compromise the privacy of a pre-determined vic-

tim tuple v. Of course, the adversary can readily acquire the public attributes of v. Nonethe-

less, it does not know the ranking function being used (and of course no knowledge what-

2For the purpose of this paper, we consider all attributes to be discrete, which can be categorical or ordinal, and assume the proper

discretization of numeric attributes.
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soever of the tuples’ ranking scores). Thus, the technical challenge for the adversary is to

unveil the private attribute values, e.g., v[B1], by issuing a small number of queries through

the web interface and observing only the public attribute values of the returned tuples and

the order in which they are returned. Note that an important goal for the adversary is to

keep the number of queries as small as possible, because almost all websites enforce a limit

on the number of queries one can issue through the web interface for a given time period

(e.g., from one IP address or one user account each day), in order to prevent overburdening

its backend database or to thwart third-party crawling of its contents.

To the best of our knowledge, the above problem of inferencing sensitive data from

the ranking of a tuple is very novel. While top-k querying has been extensively studied

by the database community [6, 11, 57], much of the efforts were focused on (1) devel-

oping techniques to answer such queries efficiently [6, 59–61], and (2) designing proper

distance/ranking functions for various applications [62–64]. There have been prior work

on data privacy in the general area of query inferencing [65–67], but most focus was on

learning individual values from aggregates such as SUM, MIN, MAX, etc. We discuss

related work in more detail in §6.5.

5.1.3 Overview of Technical Results

As one of our important contributions, we introduce a comprehensive taxonomy of

the problem space according to two dimensions: (1) the type of query interfaces widely

used in practice and (2) the capability of adversaries. Then, for each subspace of the

problem, we develop a novel technique which either guarantees the successful inference

of private attributes, or (when such an inference is provably infeasible in the worst-case

scenario) accomplishes the attack for a significant portion of real-world tuples.

Consider the first dimension. We distinguish between interfaces which only support

“point queries” (i.e., a single value must be specified for each attribute in the query), and
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those that also support “IN queries” (i.e., where a subset/range of values can be specified for

an attribute). For the second dimension, we distinguish between two types of adversaries:

(1) those who are “query-only” (Q-only adversaries) - i.e., they are passive adversaries

who only issue queries and observe query answers, but never tamper with (e.g., insert fake

tuples into) the database; and (2) adversaries who “query-and-insert” (Q&I-adversaries),

i.e., they only issue queries but also insert fake tuples into the database (e.g., by registering

for fictitious user accounts on a social media website). As we shall further elaborate in

§5.3, while many web databases have no restriction on the registration of new accounts,

others makes it difficult for users to create fictitious accounts - e.g., Catch22Dating [68],

a vulnerable website we shall study in the experiments, manually authenticates the real-

world identity of each new account; while the aforementioned Renren.com also manually

checks and verifies all user name changes. In these cases, most adversaries would be Q-

only, while those who have adequate resources to acquire multiple real-world identities can

become Q&I.

We have carefully investigated the four problem subspaces arising out of this tax-

onomy, and developed four novel attacks: Q&I-Point, Q-Point, Q&I-IN, and Q-IN. The

fundamental ideas behind these attacks include two critical reductions: One reduces the

problem of compromising a private attribute to finding so-called differential queries (de-

fined in §5.4.1) which exclude all but one values in the domain. The second further reduces

the problem to just finding a query which returns the victim tuple - nevertheless, this re-

duction holds only for Q&I-adversaries.

Table 5.1: Feasibility, Worst- and Practical Query Cost

Q&I-Point Q-Point Q&I-IN Q-IN
Feasibility Yes Maybe Yes Maybe
Worst-case

∏m′

i=1 |V B
i | N/A

∏m′

i=1 |V B
i | N/A

In Practice High Highest Lowest Low
Note: |V B

i | is the domain size for private attribute Bi.
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The differences on the applicability of these reductions lead to fundamentally dif-

ferent feasibilities of the attack, as illustrated in Table 1. Specifically, we find that while

Q&I adversaries are always able to accomplish the attack, there are cases where Q-only

ones will fail. In terms of query cost, while the worst-case cost for even Q&I adversaries

can be exponential, the query cost in practice is very reasonable - and can be significantly

reduced when IN queries are available, even though IN has no impact on the (theoretical)

worst-case query cost.

In summary, we make the following contributions in this paper:

• We have identified a novel and important problem of rank-based inferencing over

web databases.

• We introduce a comprehensive taxonomy of the problem space, and identify four

important subspaces based on varying database interface limitations and adversarial

capabilities.

• For each problem subspace, we developed nontrivial adversaries, and carried out a

rigorous theoretical analysis of their performance. Our results show that in almost all

cases, the adversaries can launch efficient and successful attacks.

• We performed extensive experiments over real-world datasets, with results corrobo-

rating well with our theoretical findings. We also conducted successful online exper-

iments over real-world websites including the aforementioned social network Ren-

ren.com as well as other types of web databases such as Amazon Goodreads and

Catch22Dating.
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5.2 Preliminaries

5.2.1 Model of Web Databases

As discussed in the introduction, many web databases store both public and private

attributes of a user. Consider an n-tuple (i.e., n-user) database D with a total of m +

m′ attributes, including m public ones A1, . . . , Am and m′ private ones B1, . . . , Bm′ . Let

V A
i and V B

j be the attribute domain (i.e., set of all attribute values) for Ai and and Bj ,

respectively. For the purpose of this paper, we consider V A
i and V B

j to be discrete and

publicly known, and leave studies of numeric/infinite/unknown domains to future research.

We use t[Ai] (resp. t[Bj]) to denote the value of a tuple t ∈ D on attributes Ai

(resp. Bj). For the purpose of this paper, we assume there is no duplicate tuple in the

database (before an adversary makes any modification to the database) - i.e., every bona

fide tuple has a unique value combination for the m+m′ attributes. While we assume that

D does not change during the course of an attack, we include discussions in §5.4.2.1 to

address the scenario where this assumption is violated.

Recall from the introduction that the database allows top-k queries where k is a

small number such as 10 or 50. Given a supported query q defined below, the database

computes the ranking function s(t|q) for each tuple t ∈ D, and selects/returns k tuples in

the ascending order of s(t|q) (i.e., only the k tuples with minimum s(t|q) will be returned).

Of course, only the public attribute values, i.e., t[A1], . . . , t[Am], will be returned for each of

the k tuples. Of course, since we allow duplicates on public attribute values - i.e., multiple

tuples might share the same vaule combination on A1, . . . , Am - there must be a way to

distinguish different returned tuples with the same public-attribute value-combination. For

this purpose, we assume each tuple to be returned alongside a unique identifier (e.g., user

ID) - and the adversary knows the unique identifier of the victim tuple as prior knowledge.
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It is important to note that the ranking score s(t|q) is not returned - in addition, the design

of s(·|·) itself is a secret kept by the database owner.

Supported Queries: For the purpose of this paper, we consider ranking functions/queries

that take into account both public and private attribute information. In other words, the web

database supports queries which specify values/conditions on some or all of the m + m′

(public and private) attributes. Consider friend recommendation on a social media website

as an example - when the website uses private information of a user (say education)

while generating the recommendations, it is indeed answering a query that contains a pred-

icate on private attribute education - with the ranking function likely taking into account

whether a tuple’s value on education is equal to that specified in the query.

In this paper, we consider two types of predicates that can be specified on an attribute:

point and IN. Let the predicate specified in a query q for attribute Ai (resp. Bi) be q[Ai]

(resp. q[Bi]). A point predicate assigns a single value in the domain, i.e., q[Ai] ∈ V A
i ,

while an IN predicate assigns a subset of values, i.e., q[Ai] ⊆ V A
i . Consider a dating

website as an example. While gender is often specified as a point predicate (i.e., male or

female), interests and age can be considered IN ones (i.e., find users who most closely

match the interest set {reading, travel, cycling, cooking} or age range [25, 30]). A special

example of IN predicate is q[Ai] = V A
i - i.e., q[Ai] = ∗ - indicating “do-not-care” on an

attribute.

Practical Constraints: Most, if not all, web databases enforce practical constraints on

how one might interact with the web interface. The two most important constraints here

are query-rate limitation and tuple insertion constraint.

Most web databases enforce certain query-rate limits, i.e., limits on the number of

queries one can issue (e.g., from an IP address or a user account) per time period (e.g.,

each day), in order to prevent overburdening of the backend database and/or third-party
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crawling of its contents. Hence an adversary must aim to minimize the query cost of a

rank-based inference attack, as otherwise it would have to acquire more resources (e.g.,

more IP addresses, registering more accounts) in order to issue all queries required by the

attack.

Tuple insertion constraint, on the other hand, refers to ones ability to insert tuples

into the database. Some web databases, including many online social networks, do not

enforce this constraint - i.e., one can freely insert new tuples (i.e., user accounts) to the

database by registering for new accounts (e.g., using a new email address). Nonetheless,

there are also others that require users’ real identities and use offline authentication to check

them. For example, catch22dating, a popular online dating website used in our real-world

experiments, requires each user to have an authenticated identity as student of selected

universities. For these databases, inserting new/fake tuples becomes extremely difficult, if

not impossible. We say that the web database enforces a tuple insertion constraint which

prevents an adversary from inserting arbitrary tuples.

5.2.2 Properties of Ranking Function

There has been significant research in database ranking (e.g., [6,60,69]) which stud-

ies the design of ranking function s(t|q), including in cases where the query has IN pred-

icates (e.g., [6, 70]). While this paper aims to study generic rank-based inferences that

work for a broad class of ranking functions, it is important to note that no attack will work

without assuming certain properties of the ranking function. To understand why, consider

a simple example where s(t|q) is generated uniformly at random from [1, n]. Since the

rank of a tuple has nothing to do with the tuple’s (private) attribute values, no adversary

can compromise any private information from the returned ranks. Thus, it is the objective

of this subsection to define a minimum set of conditions that are satisfied by most if not all
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ranking functions used in practice. Specifically, we consider monotonicity and additivity,

respectively as follows.

Monotonicity Condition: Intuitively, the monotonicity condition simply states that, for a

given query, the relative rank between two tuples which differ only on one attribute should

be determined by that attribute alone. Formally, for a point-query interface, if two tuples t

and t′ differ only on Ai and t[Ai] = q[Ai], then t should have a smaller distance to q than t′.

More generally, we have the following definition. Note that in this definition, we consider

q[Ai] (resp. q[Bj]) to be a set (in the case of point-query, containing just a single value)

without introducing ambiguity.
Monotonicity: ∀q, t ∈ D, and i ∈ [1,m] (resp. j ∈ [1,m′]), if t and t′ share the same value

on all attributes except Ai (resp. Bj) and t[Ai] ∈ q[Ai] while t′[Ai] 6∈ q[Ai] (resp. t[Bj] ∈

q[Bj], t′[Bj] 6∈ q[Bj]), there must be s(t|q) < s(t′|q).

Additivity Condition: Intuitively, the additivity condition states that, for two tuples t and

t′, if t is already ranked higher than t′ in query q, then further changing the predicate of

q on Ai (resp. Bj) to exactly match t - i.e., making q[Ai] = t[Ai] (resp. q[Bj] = t[Bj]) -

should not change the relative rank between the two tuples. More formally, we have the

following definition:
Additivity: ∀q and t, t′ ∈ D, if s(t|q) < s(t′|q), then there must be s(t|q′) < s(t′|q′),

where q′ is the same as q on all but one attribute Ai (resp. Bj), on which q[Ai] = t[Ai]

(resp. q[Bj] = t[Bj]).

One can see that both monotonicity and additivity are common-sense conditions

that should be reasonably expected of a ranking function. Our studies of real-world web

databases (in §5.7) verified this observation, as all websites considered satisfy both condi-

tions.
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5.3 Problem Space

In this section, we define the rank-based inference problem studied in the paper.

Specifically, we start with defining the objectives of an adversary. Then, we partition the

entire problem space into four quadrants along two dimensions: the type of queries sup-

ported, and the type of operations an adversary can perform.

5.3.1 Adversary Model

The objective of an adversary is two-fold: compromising privacy and minimizing

query cost. Privacy-wise, an adversary aims to compromise private attributes of a victim

tuple v. Without loss of generality, we assume that the adversary aims to compromise the

value of v[B1] based on prior knowledge of all public attributes of v, i.e., v[A1], . . . , v[Am].

In §5.4, we shall address cases where an adversary aims to compromise all private attributes

of v.

To ensure the versatility of our algorithms, we make a conservative assumption that

an adversary has no prior knowledge of the ranking function other than the fact that it

satisfies the monotonicity and additivity conditions defined above. Clearly, all algorithms

in the paper still work if an adversary does know the ranking function. While it is possible

that prior knowledge of certain ranking functions can enable more efficient attacks than

those in the paper, we leave such ranking-function-specific studies to future work.

Given the query-rate limitation discussed in §5.2, an important goal of the adversary

is to minimize the query cost for the attack, as otherwise the website-enforced limit on

the number of queries from each user (e.g., IP-address) may stop the attack from being

completed. To this end, it is important to note that our key efficiency measure here is the

number of requests issued to the web database (hereafter referring to as the query cost,

including both search queries and requests to insert tuples, if the database does not enforce
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the aforementioned tuple insertion constraint) - while other measures such as local (CPU

or I/O) processing overhead are secondary.

5.3.2 Two Dimensions

The first dimension we use for partitioning the problem space is the type of queries

supported. There are two different cases: (1) Point-Query Interface which requires a point

predicate defined in §5.2 to be specified for every attribute. An example here is the friend

recommendation offered by many social media websites - each user has to complete his/her

own profile to enable the feature, essentially requiring the user to specify a point predicate

on every public and private attribute. (2) IN-Query Interface which supports IN queries over

all attributes. Clearly, here a user can choose “do not care” for an attribute by assigning

its entire value domain to the IN condition. Since point queries are special cases of IN, all

queries supported by the point-query interface are also supported here.

The second dimension for partitioning the problem space is the adversary power.

Specifically, we consider the following two cases:

• Query-and-Insert (Q&I) Adversary can not only issue queries but also insert tuples

to the database. It can also update or delete any tuple it inserted. These adversaries

exist for websites which do not enforce the tuple insertion constraint.

• Query-only (Q-only) Adversary can query the web database but cannot change it.

This is the case when the website enforces the tuple insertion constraint (see §5.2).

One can see from the definitions that Q&I adversaries are stronger - i.e., any attack launched

by a Q-only adversary can also be launched by a Q&I-one, while the opposite is not true.

We shall show later in the paper that the ability to insert leads to significant differences

on the outcome of a rank-based inference attack. Specifically, while a Q&I adversary can

always accomplish the attack even in the worst-case scenario, the same is not true for Q-

only adversaries.
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5.3.3 Problem Definition

Given the two dimensions, we partition the problem space into four quadrants: (1)

point query interface with Q&I adversaries, (2) point query with Q-only, (3) IN with Q&I,

and (4) IN with Q-only.

Problem Definition (Rank-Based Inference): Given a databaseD and a victim tuple v ∈ D,

find the shortest sequence of queries q1, . . . , qc supported by the interface and a correspond-

ing sequence of tuple sets T1, . . . , Tc, such that

δ(q1(D ∪ T1), q2(D ∪ T2), . . . , qc(D ∪ Tc)) = v[B1]. (5.1)

where qi(D ∪ Ti) is the answer to qi over the D ∪ Ti and δ(·) is a (deterministic) function

for rank-based inferencing. For a Q-only adversary, there must be T1 = · · · = Tc = ∅.

Naturally, the problem could be extended to infer multiple, if not all, private attributes

of victim tuple v. In fact, as we shall describe in §5.4, our algorithm iteratively learns

private attribute values one at a time till v[B1] is inferred. Extending it to infer all attributes

is trivial. To better illustrate our ideas and to significantly simplify the notations, in the

theoretical discussions in this paper, we focus on the case where k = 1 (note that k = 1

is actually a conservative worst-case assumption for the attack design), and discuss the

straightforward extension to larger k in the experiments section.

Running example of ranking function: All algorithms developed in this paper work for

any ranking function satisfying monotonicity and additivity - so does all complexity and

lower bound analysis. Nonetheless, when studying the practical performance of attacks

and illustrating how different ranking-function designs affect attack effectiveness, it is nec-

essary to consider certain concrete ranking function designs - for this purpose only, we

consider the following linear ranking function as a running example:
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s(t|q) =
m∑
i=1

wA
i · ρ(q[Ai], t[Ai]) +

m′∑
i=1

wB
i · ρ(q[Bi], t[Bi]), (5.2)

where wA
i , w

B
i ∈ (0, 1] are the ranking weight for attribute Ai and Bi, respectively. The

distance measure for each attribute, i.e., ρ(q[Ai], t[Ai]), is a variation of the discrete metric:

(1) ρ(q[Ai], t[Ai]) = 0 if t[Ai] ∈ q[Ai] (note that for point queries, this means t[Ai] being

equal to the single value in q[Ai]), and (2) ρ(q[Ai], t[Ai]) = 1 if t[Ai] 6∈ q[Ai].

Once again, we would like to note that the adversary has no knowledge of the ranking

function design whatsoever (other than its monotonicity and additivity). This linear ranking

function based running example merely provides a concrete basis for the analysis of attack

performance in practice.

5.4 Point Query Interface

We start by considering a point query interface. Specifically, we shall start with

reducing rank-based inference to the problem of finding pairs of differential queries based

on the victim tuple v. Then, we discuss the design of Q&I-Point and Q-Point, our rank-

based inference algorithms for Q&I and Q-only adversaries over a point query interface,

respectively.

5.4.1 Goal: Finding Differential Queries

We start by showing that, for the worst-case scenario of k = 1, the problem of

compromising the private attribute B1 of victim tuple v can be reduced to finding for each

possible value of B1 except v[B1], i.e., ∀θ ∈ (V B
1 \v[B1]), a pair of differential queries qθ

and q′θ which satisfy three properties: (1) they share the same predicate on all attributes but
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B1, (2) q′θ[B1] = θ while qθ[B1] 6= θ, and (3) qθ returns the victim tuple v while q′θ does not

- i.e.,

∀t ∈ D where t 6= v, s(t|qθ) > s(v|qθ),

∃t ∈ D with t 6= v such that s(t|q′θ) < s(v|q′θ). (5.3)

The proof of this reduction is straightforward: Due to the additivity condition, we

can infer from (5.3) that the value of victim tuple v on B1 must not be the same as q′θ[B1],

i.e., v[B1] 6= θ. Since we found differential queries qθ, q′θ for all θ ∈ V B
1 \v[B1], the only

remaining possibility is the correct value of v[B1].

While this reduction is the basis of our following discussions, it is important to note

that reduction in the opposite direction does not hold - i.e., an adversary does not have to

find all |V B
1 | − 1 pairs of differential queries in order to compromise v[B1]. To understand

why, consider an example where a Q&I-adversary inserts into the database a dummy tuple t

with value 0 on all public and private attributes. Then, upon issuing a query with q[Ai] = 0

and q[Bi] = 0 on all attributes, the adversary receives v rather than t as the No. 1 result.

One can see that the adversary can safely infer v[B1] = 0 without issuing any additional

query or identifying the differential queries for any value of B1.

5.4.2 Q&I adversary

We develop Algorithm Q&I-Point in this subsection. Specifically, we start with a

somewhat surprising finding - for a Q&I adversary, as long as it has the ability to find a

query that returns the victim tuple v for a given database, then it can always successfully

compromise v[B1] (by finding differential queries for all other values in V B
1 ). Then, we

present Algorithm Q&I-Point and analyze its worst- and average-case query costs.
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5.4.2.1 Reduction to finding a query that returns v

Algorithm Q&I-Point: To construct the reduction to finding one query which returns the

victim tuple, we start by assuming an oracle FIND-Q which, upon given input of a database

D and the victim tuple v, returns a query q which returns v. We first develop Algorithm

Q&I-Point which calls upon this oracle FIND-Q to compromise v[B1], and then introduce

the design of FIND-Q afterwards. The pseudocode of Q&I-Point is shown in Algorithm 10.

For the ease of understanding, we introduce some simple notations: We represent the

domain of every attribute as 0, 1, . . . , |V | − 1, where |V | is the domain size of the attribute.

Let there be v[A1] = · · · = v[Am] = 0. Without loss of generality, we assume the output of

FIND-Q to always have q[A1] = · · · = q[Am] = 0. The reason here is simple - if q differs

from v on any public attribute, we can always change the attribute to 0 - the new query will

still return v due to the additivity condition of the ranking function.

We start by inserting into the database a tuple t that has all attributes equal to 0.

Then, we call FIND-Q over the new database to discover q which returns v. Note that if

FIND-Q fails to do so - i.e., no query over the database returns v - then we already succeed

because, due to the no-duplicate assumption, the only scenario for this to happen is when

v = t. Given the result q of FIND-Q, we note that q must differ from t on at least one

private attribute - again, if q = t and yet returns v, there must be v = t. Without loss of

generality, suppose that q differs from t by having value 1 on private attributes B′1, . . . , B
′
h

- i.e., ∀i ∈ [1, h], q[B′i] = 1.

We now construct h + 1 queries q0, . . . , qh as follows: all these h + 1 queries share

the exact same value (i.e., 0) as t on all attributes but B′1, . . . , B
′
h. For those h attributes,

we assign to query qi (i ∈ [0, h]) qi[B′j] = q[B′j] = 1 if j ≤ h − i and qi[B′j] = t[B′j] = 0

otherwise (i.e., if j > h − i). The following table shows an example. Note at the two

extremes q0 = q and qh = t.
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A1, . . . , Am B′1 B′2 B′3 Bothers

q 0 1 1 1 0
q0 0 1 1 1 0
q1 0 1 1 0 0
q2 0 1 0 0 0
q3 0 0 0 0 0
t 0 0 0 0 0

There are two important observations from the above query sequence: First, unless

v = t, queries at the two ends must return different results - specifically, q0 returns v while

qh returns t. The only exception here is when qh also returns v - but this must mean v = t

because qh exactly matches t - leading to an immediate compromise of v[B1]. Second,

every pair of adjacent queries in the sequence differ by exactly one attribute - i.e., query

qi and qi+1 differ on B′h−i. Combining two observations, we know two things: (1) there

must exist a pair of adjacent queries qi and qi+1 such that qi returns v while qi+1 does not

- because otherwise all h + 1 queries would return v, contradicting Observation 1. (2) this

pair of adjacent queries differ on exactly one attribute B′h−i. In other words, they serve as a

pair of differential queries for value 0 in the domain of B′h−i, and prove v[B′h−i] 6= 0. Note

that the process of finding this pair of differential queries takes at most h ≤ m′ queries.

Of course, this may not yet achieve the adversarial goal of compromising v[B1].

Nonetheless, note that once we know v[B′h−i] 6= 0, we can insert into the database a new t

which replaces its value on B′h−i with another value (other than 0) in its domain. We can

then repeat the exact same process and get one of only two possible outcomes: either (1)

we find another pair of differential queries and exclude from consideration a(other) value

for one of the private attributes; or (2) an anomaly occurs - either FIND-Q cannot find q or

qh returns v instead of t - meaning t = v and we have compromised v[B1] already.

One can see that, the worst-case scenario here is for us to repeat the process for∑m′

i=1(|V B
i | − 1) times - more repetitions is impossible because we would have already
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excluded all wrong values for B1, . . . , Bm′ . Throughout all repetitions, the number of

queries issued by Algorithm Q&I-Point (excluding those required by FIND-Q) is O(m′ ·∑m′

i=1 |V B
i |).

Practical Implications: We now discuss the practical implications of Algorithm Q&I-

Point. First, while we shall address the design and theoretical bounds of FIND-Q in detail

next, we would like to first point out here that, in practice, FIND-Q is usually a straightfor-

ward and efficient process, especially when there are many public attributes. The reason

is simple: those public attributes alone are often sufficient to uniquely identify the victim

tuple. Since FIND-Q knows v[A1], . . . , v[Am], it largely just needs to avoid hitting the few

“fake” tuples Algorithm Q&I-Point inserts (by avoiding their private attribute values) in

order to find a query that returns v.

The cost of FIND-Q aside, there are three interesting observations we can make

regarding Algorithm Q&I-Point. First, its query cost depends on the SUM (not product)

of domain size of private attributes. This works to the attacker’s advantage in practice

as real-world websites often feature only a few private attributes with small domains3.

Nonetheless, this also means that large-domain attributes such as ZIP code can be very

costly to attack. Intuitively, this is caused by nature of the point query interface - as each

query here “covers” only one of the many domain values.

The second observation we would like to make is the anytime nature of the algorithm.

While our problem definition focuses on compromising v[B1], one can see from the design

of Q&I-Point that it indeed learns all private attributes of v. Specifically, every iteration

(costing at most m′ queries) excludes one value from consideration for one of the private

attributes. Thus, even if we interrupt the algorithm at anytime (say running out of query

allowance by the database), we would still have learned substantial information about many

3e.g., in the case of dating website discussed in Section 5.7.3, all private attributes are Boolean - e.g., “whether a user is willing to

consider matches of a different race.”
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private attributes. This anytime feature makes the algorithm particularly difficult to thwart

in practice.

Third, note from the design of Q&I-Point that all queries it issues (including those by

FIND-Q) must have public attribute values equal to those of v. This makes the algorithm

fairly resilient against changes to the database during the course of an attack - because the

only changes that would affect the execution of Q&I-Point are those that feature tuples

with the exact same public-attribute value-combination as v - an extremely unlikely event

in practical databases.

Last, while a comprehensive discussion of defense strategies is out of the scope of

this paper, one can see from the design of Q&I-Point a basic idea of thwarting rank-based

inference: Note that during the attack, an adversary makes t closer and closer to the victim

tuple v, in order to “isolate” the rank difference to a private attribute and infer its value.

Thus, intuitively, the defense should try to detect and/or prevent the insertion of tuples that

are too “close” to an existing tuple, as such insertions likely signal the Q&I-Point attack

rather than a bona fide new tuple (which is highly unlikely to be almost identical to an

existing tuple).

5.4.2.2 Query Cost Analysis

Algorithm FIND-Q: We now describe the algorithm for finding a query q that returns v

for a given database D. Algorithm 11 shows the pseudocode for FIND-Q. The design is

mostly straightforward - we randomly generate and issue a query q with q[Ai] = v[Ai]

for all i ∈ [1,m] and each q[Bj] (j ∈ [1,m′]) drawn i.i.d. uniformly at random from V B
j

- and repeat this process until finding q that returns v. The only note of caution here is

that the random generation is done without replacement, and with memory across different

executions of FIND-Q. To understand why, note from the design of Algorithm Q&I-Point
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Algorithm 10 Q&I-Point
1: Input: q, v Output: v[B1]

2: Hv = ∅; t[Ai] = v[Ai]∀i ∈ [1,m]; t[Bj] = 0∀j ∈ [1,m′]

3: while v[B1] is not yet inferred do

4: Insert t into D

5: if q does not return v then q ← FIND-Q(v,Hv)

6: if no such q, then return t[B1] // case: t = v

7: Let B′1 . . . B
′
h be the attributes differing between t and q

8: i = 0; qi = q

9: for i = 1 to h do

10: qi = qi−1; qi[B
′
h−i+1] = t[B′h−i+1]

11: if qi and qi−1 return different tuples then

12: q = qi−1; Set t[B′i] to an unexplored value

13: break for loop

that we only insert tuples into the database, and do not tamper with or delete the existing

tuple values. Thus, any query which does not return v before cannot return v in the future

- justifying the design.

One can see from the design of FIND-Q that it always succeeds. As such, our focus

here is to consider its query cost. First, all calls of FIND-Q, altogether, consume a worst-

case query cost of O(
∏m′

i=1 |V B
i |). While this seems like an outrageously high cost, we

make two interesting notes here: First, the worst-case scenario indeed requires these many

queries - as proved by the following lower bound result which shows that the cost cannot

be improved beyond a constant factor. Second, the real-world query cost for FIND-Q is

likely much smaller, as demonstrated by an average-case example study at the end of this

subsection.
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Algorithm 11 FIND-Q
1: Input: Victim v, Query history Hv Output: q that returns v

2: Let Q be set of all possible point queries q with q[Ai] = v[Ai] ∀i ∈ [1,m]

3: Find a query q ∈ Q \Hv that returns v; Update Hv

4: return q if it exists else return failure

Lower Bound on Worst-Case Query Cost: The following theorem shows that, in the

worst-case scenario, no algorithm can accomplish the attack without issuing Ω(
∏m′

i=1 |V B
i |)

queries.

Theorem 4. Given any ranking function and victim tuple v, there exists a database D such

that no Q&I-adversary can compromise v[B1] without issuing Ω(
∏m′

i=1 |V B
i |) queries.

Proof. First, we prove that, in order for an adversary to compromise v[B1], it must be

able to find at least one query which returns v. Let the queries the adversary issues before

inferring the value of v[B1] be ε1, . . . , εx. Note that in order for the inference to hold, the

following condition must be true: if we change the value of v[B1] to θ ∈ V B
1 \v[B1], then

at least one of the queries ε1, . . . , εx must have a different answer. To understand why,

note that if all query answers the adversary received remain the same after the change, then

there is no way for the adversary to always infer v[B1] correctly from the query answers,

because any deterministic algorithm that takes the answers to ε1, . . . , εx as input will output

the exact same value when v[B1] = θ. Also, note that since the only change to the database

is the value of v, the difference on query answer must be whether the query returns v or

not. Thus, the adversary can always find at least one query which returns v.
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We now construct a database which requires an expected number of Ω(
∏m′

i=1 |V B
i |)

queries for finding one query which returns v. Let there be
∑m′

i=1(|V B
i | − 1) tuples in the

database:

v11, . . . , v
|V B

1 |−1
1 (5.4)

v12, . . . , v
|V B

2 |−1
2 (5.5)

. . .

v1m′ , . . . , v
|V B

m′ |−1
m′ (5.6)

Specifically, for any j ∈ [1,m′], every vij (i ∈ [1, |V B
j | − 1]) shares the same value as v on

all attributes butBj . In addition, each vij takes a unique domain value in V B
j that is different

from v[Bj]. Due to the existence of these tuples, any query q which differs from v on at

least one attribute will not return v - because, according to the monotonicity condition, there

must exist at least one tuple in vij with a smaller distance from q. Since the adversary was

given prior knowledge of v[A1], . . . , v[Am] but no information about the private attribute

values, the optimal adversarial strategy is to issue queries q with q[Ai] = v[Ai] for all

i ∈ [1,m] and q[Bi] chosen uniformly at random from V B
i . One can see that, in this

worst-case scenario, the expected query cost required for finding a query that returns v is

Ω(
∏m′

i=1 |V B
i |).

Running Example Query Cost: We now consider how Q&I-Point performs over the run-

ning example of a linear-combination ranking function in Equation 5.2 and a database

where each tuple is generated i.i.d. randomly according to the uniform distribution, while

the victim v is chosen uniformly from the database.
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Theorem 5. In the running example, the expected number of queries Q&I-Point issues to

compromise v[B1] is at most 1/p+
∑m′

i=1(|V B
i | − 1), where

p =
∏

t∈D,t6=v

1

2
+

1

2
· erf

 dA(v, t)√∑m′

i=1 2w
′2
i ·
|V B

i |−1
|V B

i |2


 (5.7)

where erf(·) is the standard error function [71], and dA(v, t) is the distance between v and

t on public attributes - i.e., dA(v, t) = w1 · ρ(v[A1], t[A1]) + · · · + wm · ρ(v[Am], t[Am]),

where ρ is the distance function defined in the running example.

Proof. Note that q generated in the above-described random process has d(q, v) following

Multinomial distribution with mean µ and variance σ2 as follows.

µ =
m′∑
i=1

w′i ·
1

|V B
i |

; σ2 =
m′∑
i=1

w′2i ·
|V B
i − 1|
|V B
i |2

(5.8)

In addition, ∀t ∈ D, given dA(q, t), the overall distance d(q, t) follows the Multinomial

distribution with mean µ0 = dA(q, t) + µ, and the same variance σ2 as above. Note that

since q shares the same attribute values as v on all public attributes, we have dA(q, t) =

dA(v, t). As such, the probability for a query q with q[Ai] = v[Ai] for all i ∈ [1,m] and

q[Bi] chosen uniformly at random from V B
i to return v is

p =
∏

t∈D,t6=v

1

2
+

1

2
· erf

 dA(v, t)√∑m′

i=1 2w′2i ·
|V B

i |−1
|V B

i |2


 (5.9)

In other words, the expected number of queries the adversary needs to issue before finding

a query that returns v is

1

p
=

1

∏
t∈D,t6=v

1
2

+ 1
2
· erf

 dA(v,t)√∑m′
i=1 2w

′2
i ·
|V B

i
|−1

|V B
i
|2




(5.10)
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Of course, after finding a query that returns v, the adversary in the worst case has to

issue an additional
∑m′

i=1(|V B
i |−1) queries (see proof of Theorem 4) for inferring the value

of v[B1].

Note from (5.7) why the average-case query cost of FIND-Q (and thereby Q&I-

Point) is likely much smaller than its worst-case bound: p is the probability for a query q

randomly tested in FIND-Q to return v. One can see that, when there is a large number of

public attributes or a small number of private ones - i.e., a larger dA(v, t) or a smaller w′i,

the probability for a tuple t (t 6= v) to “overcome” its difference with q on public attributes

(with which v has zero difference) by private attribute values is fairly small - leading to a

larger p and, ultimately, a smaller query cost.

The query cost required for Q&I-Point to compromise v[B1] actually decreases with

a smaller weight on the private attributes. This observation seems counter-intuitive because

when w′1 = 0, no privacy disclosure occurs as the rank becomes independent of v[B1] - but

the worst disclosure occurs when w′1 takes the smallest positive value! To understand why,

note that the smaller private ranking weights w′i are, the easier it is for an adversary to

pinpoint a query that returns v, as the adversary already has prior knowledge of all public

attribute values of v. Given that, for a Q&I-adversary, finding a query returning v is (almost)

equivalent with compromising v[B1], we have this seemingly counter-intuitive observation.

5.4.3 Q-only adversary

Design of Q-Point: For adversaries subject to the tuple-insertion constraint, the feasibility

of compromising v[B1] is not of certainty as in the Q&I adversary case, as shown in the

following theorem.

Theorem 6. Given any victim tuple v, there exists a ranking function s(·|·) and a database

D such that no Q-only adversary can perform a rank-based inference of v[B1] over D.
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Proof. Consider the linear-combination ranking function defined in (5.2). We now show

that there exists certain value combinations of wi and w′i that make it impossible for a Q-

only adversary to compromise v[B1] as long as there does not exist another tuple v′ in D

which shares the same value with v on all attributes but B1. Specifically, if ∀S1, S2 ⊆

{w1, . . ., wm, w′2, . . ., w
′
m′} where S1 6= S2, there is |

∑
S1 −

∑
S2| > w′1, then one can

see that no query answer will be changed for all values of v[B1], because, for any query

q, the change of d(v, q) caused by changing the value of v[B1] is smaller than even the

smallest possible rank difference between any two tuples. In other words, it is infeasible

for a Q-only adversary to compromise v[B1].

As a simple example, consider the linear ranking function in the running example

and a database with only two attributes, one public A1 and one private B1. If the weighting

on A1 is larger than B1, and each tuple in the database takes a different value on A1, then

there is no way for a Q-only adversary to infer v[B1] because the results of every possible

query is already determined without knowing the value of B1 for any tuple. Specifically, a

query will always return the tuple that shares its value on A1, regardless of what values the

tuples have on B1. As such, the inference of v[B1] from tuple ranks becomes infeasible.

Despite of the worst-case infeasibility, however, in practice it is quite likely for a Q-

only adversary to find enough queries to unveil v[B1], as we shall show in the experimental

results. To address these cases, we now develop Algorithm Q-Point for a Q-only adversary

to launch a rank-based inference attack over a point query interface. Once again, our goal

here is to find a pair of differential queries qθ and q′θ for each value θ ∈ V B
1 \v[B1]. Like in

the Q&I-case, without loss of generality, we denote the domain values in V B
1 as 0, 1, . . . ,

|V B
1 | − 1.

We start by calling Algorithm FIND-Q to find a query q which returns v. Then, we

construct and issue |V B
1 | queries f0(q), f1(q), . . . , f|V B

1 |−1(q). While all these queries share
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the exact same predicates as q on A1, . . ., Am, B2, . . ., Bm′ , there is fi(q)[B1] = i for

all i ∈ [0, |V B
1 | − 1]. Due to the additivity property, at least one of these |V B

1 | queries

must return v. If only one does, then our attack on v[B1] already succeeds - the one which

returns v must have the same value as v on B1. If more than one return v, we can do two

things: First, we can exclude from consideration those values corresponding to the queries

that do not return v - for those, we have already found their differential queries to support

the exclusion. Second, we can proceed to revise q (and correspondingly fi(q)) as follows

to continue the exclusion process.

A2 B2A1

B2 B3

B3

B3A2 B2 B3

q

Figure 5.2: Enumeration Tree in Algorithm Q-Point

Specifically, our query-revision process can be considered performing a breadth-first

search over the tree structure depicted in Figure 5.2, which demonstrates a special case

where m = 2 and m′ = 3. In the tree, each node consists of a class of revisions to

q. Specifically, a node contains all queries that differ from q exactly on the attributes that

appear on the path from the node to the root in the tree. For example, the bottom-left corner

node in Figure 5.2 contains all queries that differ from q on A1 and A2.

During the search process, for each node encountered, we enumerate all queries q′

in the node and repeat the value-exclusion process described above by issuing fi(q′) for all

i ∈ [0, |V B
1 | − 1]. Note that the enumeration can be made more efficient with a pruning-

based optimization: If for a query q′, none of the |V B
1 | queries fi(q′) returns v, then we can

safely exclude from future consideration all queries in the subtree of the current node which
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only differs from q′ on public attribute values. Algorithm 12 summarizes the pseudocode

for Algorithm Q-Point.

Performance Analysis: One can see from the design of Q-Point that, in the worst-case

scenario, it issues enough queries to determine for every query specifiable through the

point-query interface whether it returns v. Thus, Q-Point always accomplishes the attack

as long as such an attack is at all feasible over the point-query interface. Nonetheless, the

query complexity of Q-Point is O(
∏m

i=1 |V A
i | ·

∏m′

i=1 |V B
i |) - much higher than Q&I-Point,

given that real-world databases often feature more public attributes with large domains.

We consider again the linear ranking function in the running example and a database

where each tuple is generated i.i.d. uniformly at random. We have the following result for

Q-Point:

Theorem 7. In the above scenario, given q produced by FIND-Q, the probability (taken

over the randomness of database D) for Q-Point to infer v[B1] after issuing only |V B
1 |

queries is at least1−
∏

t∈D,t6=v

1 + erf

(
(dA(v,t)−w′1)√

2
∑m′

i=2(w
′2
i ·(|V B

i |−1)/|V B
i |2)

)

1 + erf

(
dA(v,t)√

2
∑m′

i=2(w
′2
i ·(|V B

i |−1)/|V B
i |2)

)

|V B

1 |−1

(5.11)

Proof. Following the results from the proof of Theorem 5, the expected ratio of point

queries q which has q[Ai] = v[Ai] for all i ∈ [1,m] and returns v is

p =
∏

t∈D,t6=v

1

2
+

1

2
· erf

 dA(v, t)√∑m′

i=1 2w′2i ·
|V B

i |−1
|V B

i |2


 (5.12)

because dA(v, t) is the extra distance a tuple t 6= v has compared with v - and such a

distance has to be “covered” by the private attributes in order for t to be returned. A

key observation here is that, changing q[B1] between adjacent values in V B
1 changes the

distance by at most w′1. Thus, in order for a tuple t to be returned after the change, the
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private attributes of t still have to “cover” a distance of at least dA(v, t) − w′1. In other

words, the expected ratio of point queries q which (1) has q[Ai] = v[Ai] for all i ∈ [1,m],

(2) returns v, and (3) still returns v after the flip of q[B1] is at most

p′ ≤
∏

t∈D,t6=v

1

2
+

1

2
· erf

 (dA(v, t)− w′1)√
2
∑m′

i=2(w
′2
i · (|V B

i | − 1)/|V B
i |2)


 (5.13)

Thus, among all point queries q which have q[Ai] = v[Ai] for all i ∈ [1,m] and return v,

the ratio that, upon changing the value of q[B1] to all values in V B
1 \ v[B1], return another

tuple in the database is at least

(
1− p′/p

)|V B
1 |−1 =1−

∏
t∈D,t 6=v

1 + erf

(
(dA(v,t)−w′1)√

2
∑m′

i=2(w
′2
i ·(|V B

i |−1)/|V B
i |2)

)

1 + erf

(
dA(v,t)√

2
∑m′

i=2(w
′2
i ·(|V B

i |−1)/|V B
i |2)

)

|V B

1 |−1

(5.14)

One can see that if a point query q has q[Ai] 6= v[Ai] for certain i ∈ [1,m], then this

ratio must be even higher because of the now shorter distance dA(q, t) a tuple t 6= v needs

to “cover” with the private attributes. Thus, (5.14) is indeed a lower bound on the expected

ratio for all point queries which return v.

Similar to the Q&I case, the attack is more (likely to be) efficient with a smaller

|V B
1 |. Nonetheless, an interesting observation here is that, contrary to the Q&I case, now

the largerw′1 is, the more efficient the attack is likely to be. On the other hand, the efficiency

also increases with a larger database size |D| and a smaller weight on other private attributes

w′i (as erf(x) has a larger derivative when x is close to 0).
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Algorithm 12 Q-Point
1: Input: v Output: v[B1]

2: while some query returns v do

3: q ← FIND-Q(v,Hv); Construct enumeration tree Tq for q

4: for i = 1 to m+m′ do

5: for each query node q′ in level i of Tq do

6: Construct queries f0(q′) . . . f|V B
1 |−1(q

′)

7: if none return v then prune subtree(q′)

8: if only fj(q′) returns v then return j as v[B1]

9: Exclude query nodes fk(q′) that does not return v

10: return failure

5.5 IN Query Interface

5.5.1 Q&I Adversary

For Q&I adversaries, the feasibility of rank-based inference attack is established for

point-query interface in §5.4. Since point-query interface is a special case of IN, the attack

feasibility here is already established. Thus, our focus here is to study how the additional

power of IN queries further empowers Q&I adversaries.

Recall from §5.4 that, for Q&I adversaries, rank-based inference can be fairly effi-

ciently reduced to the task of FIND-Q - i.e., identifying a (now IN) query returning victim

v. We shall start by showing that, despite of the larger space of queries, the reduction still

holds - leading to the design of Algorithm Q&I-IN. Then, we show that, while FIND-Q for

IN has the same worst-case query cost as in Q&I-Point, the query cost in practice is likely

much smaller.
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5.5.1.1 Reduction to finding an IN query that returns v

We start by showing that, so long as a Q&I adversary can call upon FIND-Q to

identify an IN query q that returns v, it can always infer v[B1] within O(m′ ·
∑m′

i=1 |V B
i |)

queries. The reduction in §5.4 cannot be directly used here as it relies on the ability to find

a point query returning v - which we do not want FIND-Q to do over an IN-query interface

due to high query cost associated with it.

To enable the reduction to finding an IN query, the only difference from point-query

case (§5.4.2.1) is that now the input q might have ranges like {0, 1, 2} specified as predi-

cates on Bi, instead of a single value as in the point-query case (which we denoted as 0).

Fortunately, this change does not alter the key design of reduction construction. What we

do now is to define B′1, . . . , B
′
h as those attributes on which the inserted tuple t has a value

that differs from the set specified in q. This could be that t[B′i] falls outside of the range

specified in q[B′i] (e.g., when t[B′i] = 3 while q[B′i] = {0, 1, 2}; or that t[B′i] is in the range

but not the only element of q[B′i] (e.g., when t[B′i] = 0 and q[B′i] = {0, 1, 2}. Here is an

example of the sequence of queries we construct:

A1, . . . , Am B′1 B′2 B′3 Bothers

q {0} {0,1} {1,2} {1} {0}
q0 {0} {0,1} {1,2} {1} {0}
q1 {0} {0,1} {1,2} {0} {0}
q2 {0} {0,1} {0} {0} {0}
q3 {0} {0} {0} {0} {0}
t 0 0 0 0 0

Once again, there must exist a pair of adjacent queries qi and qi+1 such that qi returns

v while qi+1 does not. The remaining inference process follows §5.4.2.1. For example, if

q1 returns v but q2 does not, then we can safely infer that v[B′2] 6= 0 due to the additivity

condition. Similarly, if q2 returns v while q3 does not, we can infer that v[B′1] 6= 0. Thus,
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just like in the Q&I-Point case, excluding the query cost of FIND-Q, a Q&I-adversary

requires at most O(m′ ·
∑m′

i=1 |V B
i |) queries to compromise v[B1].

5.5.1.2 Efficiency Enhancement in Q&I-IN

Given that the reduction still holds, we are now ready to study how IN queries em-

power an adversary to quickly accomplish FIND-Q and find a query that returns v. In

the following, we describe a concrete example which demonstrates the significant saving

brought by IN queries, followed by the design of Algorithm Q&I-IN.

Example of significant query savings: To understand why IN queries significantly re-

duce the query cost, consider a simple example where: (1) the number of public attributes

m is sufficiently large, so each tuple in the database has a unique value combination for

the m public attributes; and (2) the number of private attributes m′ is even larger, so the

probability for a randomly generated point query to return v is extremely small.

The first observation from this example is that FIND-Q over a point-query interface

actually requires an extremely large number of queries. Specifically, note from Theorems

4 and 5 that, for a given m, the query cost can be made arbitrarily large with an increasing

m′. On the other hand, if IN queries are available, the attack query cost - more specifically,

the number of queries required to find one query returning v - is exactly 1 because an IN

query q with Ai = v[Ai] for i ∈ [1,m] and Bj = V B
j (essentially “*”, i.e., do-not-care) for

j ∈ [1,m′] always returns v.

One can see from the example that the usage of IN queries significantly reduces the

attack query cost because of a simple reason: the ability for an adversary to eliminate all

private attributes from a query specification makes it much easier for FIND-Q to unveil the

victim tuple from the database, so that the adversary can compromise the private attributes

one at a time using the above-described reduction. In other words, with IN queries, an
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adversary no longer has to get lucky and guess multiple private attributes correctly at the

same time (e.g., in order to have v returned by a point query).

Design of Q&I-IN: Algorithm 13 depicts the pseudocode for Algorithm Q&I-IN, which

enables a Q&I-adversary to launch our rank-based inference attack on v[B1] over an IN

query interface. With the algorithm, we start with a query q which has q[Ai] = v[Ai] for

all i ∈ [1,m] and q[Bj] = V B
j for all j ∈ [1,m′]. Then, if q does not return v, we gradually

replace predicates on Bi with point predicates (i.e., Bi = v where v ∈ V B
i ). Specifically,

we perform what is essentially a breadth-first search process which enumerates all value

combinations for B1, {B1, B2}, {B1, B2, B3}, . . ., {B1, . . . , Bm′} in order. For example,

when V B
1 = V B

2 = {0, 1}, the queries we issue are B1 = 0, B1 = 1, B1 = 0 AND B2 = 0,

B1 = 0 AND B2 = 1, B1 = 1 AND B2 = 0, B1 = 1 AND B2 = 1, . . ., where each

query also includes q[Ai] = v[Ai] for all i ∈ [1,m] and q[Bj] = V B
j for all unspecified Bj .

When we find a query that returns v, we launch the above-described reduction process to

complete the attack of v[B1].

One can see from the algorithm design that, just like in the point-query case, we

guarantee a successful attack. But the worst-case query cost for Q&I-IN is also just like

Q&I-Point - i.e., O(
∏m′

i=1 |V B
i |). As we shall demonstrate in the following worst-case anal-

ysis, this query cost still cannot be improved beyond a constant factor.

Algorithm 13 Q&I-IN
1: Input: v Output: v[B1]

2: Initialize starting query q: q[Ai] = v[Ai]∀i ∈ [1,m] and q[Bj] = V B
j ∀j ∈ [1,m′]

3: Iteratively convert q to a point query till it returns v

4: v[B1]← Q&I-Point(q, v)
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5.5.1.3 Query cost analysis

The main result here is that, while the availability of an IN query interface does

not help a Q&I adversary at all in the worst-case scenario, it does have the potential to

significantly reduce the query cost in practice - especially when the number of public at-

tributes is large. To understand why the worst-case scenario remains unchanged, consider

the construction in the proof of Theorem 4 which inserts to the database
∑m′

i=1(|V B
i | − 1)

tuples described in §5.4. Given the worst-case assumption that, when there is a draw (i.e.,

s(t1|q) = s(t2|q)), any inserted tuple will be returned before the victim v, one can see that

the adversary gets no help from IN queries - because as long as a query q contains an IN

predicate, say on Bi, it is impossible for q to return the victim tuple v as there must exist

an inserted tuple which matches q on Bi, has the exact same value combination as v on

all other attributes, and therefore will be returned ahead of v in the answer to q. Thus, the

worst-case query cost Q&I-IN remains Ω(
∏m′

i=1 |V B
i |) - same as Q&I-Point.

Theorem 8. In the running example, the expected number of queries FIND-Q requires for

finding a query that returns v is 1 if mint∈D,t6=v d
A(v, t) > 0, and at most

∑m′−1
h=1 (ch+1 ·

(1− (1− p(h))ch) otherwise, where ch =
∑h

i=1

∏i
j=1 |V B

i | and

p(h) =
∏

t∈D,t6=v

1

2
+

1

2
· erf

 dA(v, t)√
2
∑h

i=1w
′2
i ·
|V B

i |−1
|V B

i |2


 (5.15)

Proof. First, when no other tuple t ∈ D shares the same public-attribute value-combination

as v (i.e., mint∈D,t6=v d
A(v, t) > 0), then as we discussed in the design of Q&I-IN, only

one query (with point-predicates and IN-predicates on all public and private attributes,

respectively) is required. For other cases, in analogy to the proof of Theorem 5, one can see
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that the probability for a randomly generated query q with q[Ai] = v[Ai] for all i ∈ [1,m]

and h point-query predicates specified on private attributes to return v is

p(h) =
∏

t∈D,t6=v

1

2
+

1

2
· erf

 dA(v, t)√
2
∑h

i=1w
′2
i ·

|V B
i |−1
|V B

i |2


 (5.16)

Since the total number of such queries is ch, and the overall query cost after enumerating

queries with h or fewer predicates is (i.e., on B1, {B1, B2}, . . ., {B1, . . . , Bh}, as spec-

ified in Q&I-IN) is ch+1, the expected number of queries required by Q&I-IN is at most∑m′−1
h=1 (ch+1 · (1− (1− p(h))ch).

One can see from the theorem the substantial promise for IN queries to significantly

reduce the query cost - not only the query cost can be cut to 1 when no other tuple shares the

same public-attribute value-combination as v, but the value of p(h) - i.e., the probability for

a query with h point-predicates on private attributes to return v - actually decreases with h.

As such, the query cost is likely much smaller than Q&I-Point, especially when the number

of public attributes m is large (which leads to a large dA(v, t)).

5.5.2 Q-only adversary

Just like the availability of IN queries does not help reduce the worst-case query

cost for Q&I-adversaries, it cannot change the (in)feasibility result for Q-only adversaries

either. To understand why, consider a database with the aforementioned linear ranking

function and all tuples sharing the same value on B1. Clearly, the returned tuples will be

of the same order regardless of what range the query specifies on B1. Thus, there is no

way for a Q-only adversary to infer which value in v[B1] all tuples take - proving that Q-

only adversaries cannot guarantee the success of rank-based inference even for IN query

interfaces. Nonetheless, as we shall show in this subsection and in the experimental results,
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the availability of IN queries does help with reducing the query cost in practice, especially

when the number of public attributes is large.

Algorithm 14 depicts the pseudocode for Algorithm Q-IN, which enables a Q-only

adversary to launch our rank-based inference attack on v[B1] over an IN query interface.

We start with calling Algorithm FIND-Q to find one query q which returns v. Note that,

according to the design of FIND-Q, q always has q[Ai] = v[Ai] for all i ∈ [1,m]. After

obtaining q, Algorithm Q-IN issues |V B
1 | queries f0(q), . . . , f|V B

1 |−1(q) defined in the same

way as in §5.4 - i.e., while all these queries are exactly the same as q on A1, . . ., Am,

B2, . . ., Bm′ , there is fi(q)[B1] = i for all i ∈ [0, |V B
1 | − 1]. Similar to the discussion in

Algorithm Q-Point, one can see that at least one of these queries must return v, and the

attack is already successful if only one of them does. If more than one returns v, we can

exclude from consideration those values corresponding to queries that do not return v, and

then gradually revise q according to the following procedure.

Specifically, we start with revising q to q1, . . . , qm by changing the predicate of qi on

Ai to (Ai IN V A
i ). For each qi which returns v, we repeat the above process and issue fj(qi)

for each j ∈ [0, |V B
1 | − 1] that is not yet excluded as a possible value of v[B1]. Once again,

this either directly reveals v[B1] or further excludes additional values from consideration.

If we still cannot pin down v[B1] after enumerating q1, . . . , qm, we consider the process by

setting an additional public attribute to its entire domain. For example, if q1 returns v, we

construct q1,x1 , . . . , q1,xh , such that (1) qx1 , . . . , qxh also return v, and (2) q1,i is the same as

q1 on all attributes but Ai, for which there is q1,i[Ai] = V A
i . We repeat this value-exclusion

process until finding the exact value of v[B1], or when we have exhausted all combinations

of public attributes - at which time we move back to Algorithm FIND-Q, find another query

q which returns v, and attempt the revision process again.
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Algorithm 14 Q-IN
1: Input: v Output: v[B1]

2: while some query returns v do

3: q ← FIND-Q(v,Hv)

4: for i = 0 to m do

5: for each
(
m
i

)
combination of C of {A1, . . . , Am} do

6: q′ ← q; q[Ai′ ] = V A
i′ ∀Ai′ ∈ C

7: Construct queries f0(q′) . . . f|V B
1 |−1(q

′)

8: if only fj(q′) returned v then return j as V [B1]

9: Exclude query nodes that did not return v

One can see from the design of Algorithm Q-IN that its worst-case query cost is the

same as Q-Point, i.e., O(
∏m

i=1 |V A
i | ·

∏m′

i=1 |V B
i |). For the running example and a database

where each tuple is generated i.i.d. uniformly at random, we have the following results:

Corollary 3. In the above scenario, given q from FIND-Q which (1) has point-predicates

on S ⊆ {A1, . . . , Am}, (2) has point-predicates on B1 and S ′ ⊆ {B2, . . . , Bm′}, and (3)

returns v, the probability (taken over the randomness of database D) for Q-IN to infer

v[B1] after issuing only |V B
1 | queries is at least1−

∏
t∈D,t6=v

1 + erf

(
(dS(v,t)−w′1)√

2
∑

i:Bi∈S′
(w′2i ·(|V B

i |−1)/|V B
i |2)

)

1 + erf

(
dS(v,t)√

2
∑

i:Bi∈S′
(w′2i ·(|V B

i |−1)/|V B
i |2)

)

|V B

1 |−1

(5.17)

The corollary follows directly from Theorem 7. We can observe from the theorem

the substantial promise for IN queries to significantly reduce the query cost - specifically,

note that the smaller S or S ′ is, the higher this expected ratio will be. As such, the overall

query cost is likely much smaller than Q-Point.
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5.6 Discussions

5.6.1 Numeric Attributes

Attack Precision for Numeric Private Attribute: In the original problem definition dis-

cussed in §5.2, we consider an attack to succeed if and only if the adversary unveils the

exact value of a (Boolean or categorical) private attribute. For a numeric (private) attribute,

however, it becomes more complex to measure the success of an attack. Specifically, as

we shall demonstrate as follows, while there are cases where an adversary can able infer

a numeric attribute value to an arbitrary precision, there are also cases where the preci-

sion is limited to a (small) fixed range. Nonetheless, either case still represents serious

compromise of user privacy.

Interestingly, whether an adversary can infer a numeric attribute Bi to arbitrary pre-

cision depends on the ranking function, specifically the definition of s(q[Bi]|t[Bi]), used by

the query interface. If the query interface allows a range to be specified for each attribute,

and the ranking function simply assigns s(q[Bi]|t[Bi]) = 0 if t[Bi] ∈ q[Bi] and 1 otherwise,

then any adversary which can successfully launch the attack (i.e., finding q1 and q2 which

only differ on B1 yet return t at different ranks) can always infer t[Bi] to any precision

level (by continuously shrinking q[B1]) as long as the interface allows an arbitrarily small

range to be specified in the query. On the other hand, if the interface is point-query only

and the ranking function is s(q[Bi]|t[Bi]) = |q[Bi] − t[Bi]| (or with range-query allowed

and s(q[Bi]|t[Bi]) being the difference between t[Bi] and the center point of q[Bi]) with

precision set to two digits after decimal point, then clearly no adversary can infer v[B1]

beyond a precision level of 0.01.

Given the wide variety of ranking functions a query interface might feature, and the

fact that even a fairly wide interval on B1 (as long as it is significantly narrower than the

entire domain) is usually a significant threat to privacy in practice, discussing the achievable
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precision for each type of interfaces is beyond the scope of this paper. Instead, we make an

assumption that numeric attributes can be properly discretized (and treated as a categorical

one) according to two principles: (1) the discretized range is narrow enough so each tuple

has a unique value combination of all attributes, and (2) the range should be as wide as

possible, so as to minimize |V A
i | and |V B

i |, thereby minimizing the query cost of the attack.

5.6.2 Defense Against Rank-based Inference

Since our main objective here is to unveil a novel rank-based inference attack on web

databases, a comprehensive discussion of defense methodologies is beyond the scope of

this paper. Nonetheless, we would like to briefly describe a few simple defense strategies,

and discuss how the analysis of various algorithms in the paper might shed lights on the

design of defense.

An obvious defense methodology is to enforce more stringent practical constraints

discussed in the paper - e.g., requiring a user to answer a CAPTCHA challenge [72] before

issuing each query, performing rigid authentication for each tuple insertion/update opera-

tion, etc. Another possible strategy here is to delay any new tuples from appearing in query

answers. As one can see from the design of Q&I-Point and Q&I-IN, this delay may signif-

icantly prolong the amount of time a Q&I-adversary needs to launch the attack. However,

it is important to note that all defense strategies in this category are essentially making a

tradeoff between privacy protection and the convenience of bona fide users, and therefore

must be designed and implemented carefully (e.g., after user studies).

Another category of defense is to adjust the assignment of public/private attributes

and/or the design of ranking function. Recall from the discussions of Q&I-Point and Q-

Point that the more attributes the database owner assigns to be private, and the higher

weights the ranking function assigns on private attributes, the more difficult it is for an

adversary to launch the attack, as the prior knowledge held by an adversary on the victim
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tuple (i.e., v[A1], . . . , v[Am]) now plays a lesser role on determining the rank, making it

harder for the adversary to efficiently locate the victim tuple.

Nonetheless, this strategy does not work as effectively on an IN-query interface.

To understand why, note from the design of Q&I-IN that, as long as the public attributes

are sufficient for uniquely identifying the victim tuple, a Q&I-adversary can succeed with

O(
∑m′

i=1 |V B
i |) queries no matter how much weight the ranking function places on the pri-

vate attributes. In this case, the defender can choose to publicize fewer attributes (if doing

so prevents an adversary from learning these attribute values for the victim tuple), or dis-

abling IN-query predicates on certain attributes. As we discussed in §5.5, the reduction of

IN-query predicates may significantly delay the attack in the average-case scenario.
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5.7 Experimental Results

5.7.1 Experimental Setup

Hardware and Platform: All our experiments were performed on a quad-core 2 GHz

AMD Phenom machine running Ubuntu 14.04 with 8 GB of RAM. The algorithms were

implemented in Python.

Offline Datasets: To verify the correctness of our results, we started by testing our al-

gorithms locally over two real-world and one synthetic dataset. We have full access to
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these datasets, along with full control of the ranking function used. One dataset is from

eHarmony [73], a prominent online dating service [74] and consists of anonymized pro-

file information of 500K users. Each user has 56 attributes, of which more than 30 are

boolean. The second dataset is Yahoo! Autos, which contains 200K used cars for sale in

the Dallas-Fort Worth area with 32 Boolean attributes and 6 categorical attributes, the do-

main cardinalities of which vary from 5 to 447. The third dataset is a synthetic Boolean

i.i.d. dataset with 200K tuples and 40 attributes, each following the uniform distribution.

The public and private attributes were randomly chosen from the set of available at-

tributes. By default, we randomly picked 20 attributes for testing, designated m = 10 of

them as public and m′ = 10 as private, while varying m and m′ between 10 and 30 in var-

ious tests. Target attribute B1 was chosen uniformly at random from all private attributes.

Unless otherwise specified, we used the ranking function from (5.2) with all weights set to

1.

Online Demonstration: In order to demonstrate the success of our attacks over real-

world websites, we selected three high-profile real-world websites - Renren.com, Amazon

Goodreads, Catch22Dating - and conducted live experiments using our algorithms. We

would like to note that, without a partnership with these websites, we do not possess/assume

any knowledge of their ranking function (other than the monotonicity and additivity proper-
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ties defined in §5.2, which we verified through the correctness of our experiment outputs).

The results of the online experiments can be found in §5.7.3.

Performance Measures: As discussed earlier in §5.3, we measure efficiency through query

cost, i.e., the number of queries required for each attack - consistent with prior work [75,

76].

5.7.2 Experiments over Real-World Datasets

Empirical Evaluation of Attack Success Rate: Figure 5.3 shows the attack success rate of

all our algorithms over 3 offline datasets and the relevant algorithm (based on the problem

subspace the website falls) over 3 online datasets. As expected, Q&I-adversary has 100%

success rate for all datasets. For Q-only adversaries over real-world datasets, we were able

to achieve a success rate of almost 100%. The same holds for online tests except CD - the

main reason here is that CD allows NULL value on the private attribute we are targeting,

leading to failed attacks.

In the following discussion of offline experiments, we focus on results over eHar-

mony. The results on Yahoo! Autos and the synthetic dataset were largely similar and

detailed at the end of this section.

Query Cost versus k: We first investigated the performance of our algorithms for different

values of k. Figure 5.4 shows that query cost decreases with higher values of k as expected.

Extending our algorithms for k > 1 is straightforward. First, we seek to find a query that

returns v in top-k (not just top-1). Second, we extend the notion of differential queries (see

§5.4.1) such that the v has a higher rank for query q′θ than for qθ. The query cost of our

algorithms can be broadly categorized into two parts - the query cost to identify a query

q that returns the victim tuple and the query cost required to construct additional queries

from q through which the private attribute is inferred. When the value of k increases, the
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former query cost falls dramatically. Further, the figure also shows that when IN-queries

are available (Q&I-IN and Q-IN), the query cost is lower than the cases where only point

queries are allowed (Q&I-Point and Q-Point), consistent with our discussions in §5.5.

Query Cost versus Database Size, n: Figure 5.5 depicts the impact of database size on

query cost when k = 1 (which is henceforth used as the default setting unless otherwise

specified). As expected, the increase in database size do not have any major impact and

only results in a slight increase in overall query cost. This is due to the fact that the number

of queries needed to identify a randomly chosen tuple increases much more slowly than the

database size.

Query Cost versus m,m′: In our next experiments, we investigate how varying the num-

ber of public and private attributes affect the query cost. The results of these experiments

are shown in Figures 5.6 and 5.7. As expected, when the number of public attributes in-

crease, the query cost drops significantly. When the number of public attributes are limited,

their values are not adequate to distinctly identify a random tuple. Hence, we need to re-

sort to using randomly chosen values for the private attributes which increases query cost.

However, when m increases, most tuples become uniquely identified based on their public

attributes only. For a fixed m, the query cost increases with increasing m′ - when the pub-

lic attributes are inadequate for uniquely identifying the victim tuple, our algorithms resort

to issuing queries where the private attributes are chosen randomly from their respective

value domains. But the number of such possible queries increases with higher m′ - hence

the phenomenon.

Query Cost versus Ranking Weights: In this experiment, we fixed the weight of all public

attributes to 1 and varied the weights of private attributes w′i between 0.01 and 100. The

results shown in Figure 5.8 are consistent with our theoretical results from Sections 5.4 and

5.5. When the weights over private attributes decrease, the query cost for Q&I adversaries
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also decreases. This is due to the fact that identifying the query q that returns the victim

tuple v becomes much easier for this case. The opposite holds for Q-only adversaries where

increasing the weights decreases the query cost.

Other Experiments: In order to identify the fraction of tuples in a database that could be

successfully compromised using our algorithms, we randomly chose 100K tuples and tried

to compromise them. Recall that the Q&I adversary based algorithms are always guar-

anteed to succeed. Figure 5.9 shows that the Q-only algorithms are able to compromise

almost all the tuples. Even with a highly restrictive interface of k = 1, Q-Point compro-

mises more than 99% of the tuples. We then adapted our inference algorithms so that they

seek to infer all m′ = 25 private attributes. Figure 5.11 shows the result. While the overall

query cost seems high, the amortized query per private attribute varies between 35 and 60.

Figure 5.10 shows how varying the domain size of the private attribute affects the query

cost. Consistent with our analysis query cost increases with larger domain size.
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Experiments over Other Datasets: In addition to eHarmony dataset, we also con-

ducted experiments over two other datasets, Yahoo Autos and BOOL-IID. The results of

experiments over Yahoo Autos can be found in Figures 5.13-5.20 while the results for

BOOL-IID can be found in Figures 5.21-5.28. We can see that the results are very similar

to that of eHarmony demonstrating the wide spread applicability of our algorithms over

diverse datasets.
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5.7.3 Online Demonstration

In the online experiments, we sought to compromise private attributes of user profiles

from Amazon Goodreads (GR), Catch22-Dating (CD) and Renren.com (RR) respectively.

A detailed description of the procedure we used and its correctness can be found in §5.8.

Note that since we have no connection with these websites and thus do not have access to

the ground truth, we limit the scope to a small-scale proof-of-concept.

Renren: Renren (RR) [77] is a major Chinese social networking website (similar to Face-

book) with more than 160 million users. The user profile consists of details like demo-

graphics, education and work affiliation. The website supports extensive privacy settings -

allowing a user to specify any subset of profile attributes as public, private or only visible

to friends. In our experiments, we focused on one attribute hometown province with

a domain size of 34 - which is set to private by all users we target. Renren has a search
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interface that accepts keyword queries on a user’s public attributes such as profile name.

It displays appropriate information depending on who issued the query - i.e. everyone can

see public attributes, only friends can see attributes marked as visible to friends and none

can see the private attributes. The results are ordered based on a ranking function that takes

into account the entire profile regardless of privacy settings (as shown in §5.1).

Renren enforces tuple insertion constraint and also allows NULL values. We con-

ducted our attack using Q-Point algorithm. One can see from Table 5.2 that we were able

to successfully infer the private attribute for 75 out of 76 profiles with an average query

cost of 20 per profile. We also conducted an experiment to measure the success rate of our

attacks by varying k. The search interface of Renren, has a large value of k (ranging in

hundreds). In our experiment, we artificially truncated the results for different values of k
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and verified if we can infer the private attribute. Figure 5.12 shows that for k as little as 50,

we achieve a success rate of 92%.

Catch22Dating: Catch22Dating (CD) [78] is an online dating website where users create

profiles that are then matched to other users. The public attributes here capture the de-

mographic information of a user, whereas the private attributes specify a user’s matching

preferences - e.g., the one private attribute we focus on is Boolean “Is it OK if your matches

have been married before” (henceforth referred to as Married). The search interface of

Catch22Dating has an option called “Both Perspectives”, which enables the ranking func-

tion to take into account both public and private attributes of all profiles on the website. It

does enforce the tuple insertion constraint by requiring Student ID from selected univer-

sities during user registration. It also allows IN queries to be specified (e.g., one can set

an attribute to be “do not care” in the query). Hence, we model the adversary as Q-only

operating over an IN-interface.

The website allows NULL values on almost all attributes. As a result, our Q-IN

attack might fail simply because the user specified NULL as the attribute value. One can

see from Table 5.2 that out of the 120 users we attacked, we compromised the private

attribute Married for 61 of them. For the other 60, either the user did not specify whether

he/she would like to accept matches who have been married, or Q-IN attack fails on these

users. The average query cost for the success and NULL/failure cases are 60 and 660,

respectively, consistent with our prior discussions that failures generally consume many

more queries than the successful cases.

Amazon Goodreads (GR) [79] a social cataloging site where the users can connect to each

other and share their experience/opinions about books. The user profile consists of demo-

graphic information such as user name which is always public, and attributes such as

zipcode which can be set as private. Regardless of a user’s choice on location privacy,
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the ranking function used in the website’s “user search” interface ranks each user according

to its (geographic) distance from the location of the user performing the search. Goodreads

allows free and instant account registration - i.e., there is no tuple insertion constraint - but

no range query. Hence we use the Q&I-Point algorithm.

We started with registering 10 fake accounts with randomly generated ZIP codes,

and launched Q&I-Point over it to verify the correctness of our algorithm. Then, to enable

verification on real accounts, we identified 53 “special” users at Goodreads who have their

ZIP code hidden but chose to reveal their city/state (in US). We launched Q&I-Point suc-

cessfully on all these users, and then verified that every ZIP code we compromised indeed

belongs to its corresponding city/state revealed by the user. The average query cost, as

shown in Table 5.2, is 455 per victim.

Table 5.2: Summary of Online Experiments

#Accounts
At-
tacked

#Success Avg
Cost
(Suc-
cess)

Avg
Cost
(Fail-
ure)

CD 120 61 60 660
GR 53 53 455 N/A
RR 76 75 20 34

5.8 Additional Details for Online Experiments

In this section, we provide some additional details for online experiments. We first

describe a practical attack where we infer the private attribute of a user in Catch22Dating

website and provide a general approach followed by a formal argument as to its correct-

ness. We then provide the equivalent algorithm for Goodreads. The logic and correctness

argument for Goodreads is similar.

154



Figure 5.29: Query q1 where Anya is
top ranked

Figure 5.30: Query q2 where Anya is
not top ranked

Example Attack over Catch22Dating: Catch22dating (CD) is an online dating website

with millions of users. CD allows users to create profiles containing public (such as demo-

graphics) and private (such as matching preferences). CD also has a search interface where

users could specify a query (based on public information only) to search for other users.

CD uses a ranking function that matches the profile using both public and private informa-

tion. Suppose, we wish to infer a private information (Is it ok if your matches have been

married before) of a user v (with screen name Anya). We first created a fake user profile u

where we specified the marital status as ‘Never married’. Under these circumstances, our

results in Anya as the best matching user. Figures 5.29 shows the result. We then change

u’s profile to specify the marital status as ‘Previously Married’. When we issue the same

query (but for the modified profile), we can see that the rank of Anya has dropped. We can

now plausibly infer that Anya has specified that she prefers her matches not to be married

before.

Catch22Dating Inference: Using the notations from the technical sections, let v be

the victim tuple whose private attribute value v[B1] we seek to infer. In the context of

Catch22Dating, the private boolean attribute B1 stores the user’s response to question: Is it

ok if your matches have been married before. It can take two values - No or No Preference.

The public attribute most relevant to B1 is A1 which stores the user’s response to the ques-

tion: Have you married before. It takes two values - Yes and No. We construct a random

point query by using the public attributes from v’s profile and chose the values for private
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attributes randomly. However, we set the value for the attribute Have you married before

to No. If this randomly constructed query (say q1) returned v, then we create an alternate

query q2. q2 is identical to q1 on all attributes except for the value of attribute A1 - q1[A1]

= No (not married before) and q2[A1] = Yes (had married before). Now if the rank of v is

lower in q2 than in q1 (i.e., dl(q2, v) > dl(q1, v)), the attacker can infer that the target profile

v has private attribute B1 value set to No.

Correctness Argument: If the target profile v has B1 value set to No Preference, then

dl(q1, v) = dl(q2, v). This is because by setting v[B1] to No Preference, the target profile

is accepting any value of A1 in the search query. On the other hand if v[B1] = No then

dl(q1, v) < dl(q2, v). When the attacker issues a query q2 followed by q1, one of the three

scenarios can arise:

1. rank of v remains same as it was in q1

2. rank of v increases

3. rank of v decreases

If v[B1] = No Preference, only (1) or (2) is possible. While scenario (1) is easy to

understand, scenario (2) may appear if there exists a tuple t, such that t[B1] = No, dl(q1, t) <

dl(q1, v) and dl(q2, t) > dl(q2, v). Scenario (3) is impossible when v[B1] = No Preference

as it is not possible to find a tuple t that has dl(q1, v) < dl(q1, t) and d(q2, v) > dl(q2, t). So

when the attacker finds that the rank of the target profile v decreases after switching from

q1 to q2, he/she can correctly infer that v[B1] = No, because the only assignment v[B1] can

have other than No Preference is No.

Goodreads Inference: Goodreads has a single private attribute zipcode. The search

interface to find other similar users allows only a single attribute - user name. When dis-

playing the results of a search query it ranks the user profiles (who have the user name

from the query) according to a proprietary distance function from the location of the user
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Figure 5.31: Demonstration of an attack over Goodreads

performing the search. Based on our observations, Goodreads seems to use some propri-

etary variant of zipcode-zipcode distance function. We used a publicly available distance

function - but to address the uncertainty of Goodreads’ ranking function we added an error

margin.

Our attack proceeds in two stages. We start with the set of all zipcodes in USA.

Since Goodreads allows an adversary to create multiple accounts, we create two accounts,

say a1, a2. We set the zipcode of a1, a2 to two different randomly chosen zipcodes. We

issue a search query based on victim v’s user name. Suppose for a1, v has a higher rank

than a2 (which has the same name as a1), then remove all zipcodes that has distance higher

than the distance between zipcodes of a1 and a2 (with an additional error margin) and vice

versa. This process is repeated till the zipcode list cannot be pruned anymore. Let the set of

all non-pruned zipcodes be Z. In the second stage, we set the zipcode of a1 to be a random

zipcode from Z. We set the zipcode of a2 to each value in Z and search for v till v has a

higher rank than a1. We then use this information to narrow the zipcodes till we identify

the user’s zipcode. The results of our experiments can be found in Figure 5.31.
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5.9 Related Work

Database Ranking: The area of ranking has been extensively studied in the context of

deterministic [6, 70], probabilistic [60] and incomplete [80] data. Processing top-k query

when the ranking score is a combination of scores of individual attributes was studied

in [11,59]. A popular ranking function is nearest neighbor [69] where the tuples are ordered

based on the distance between tuple t and the given query q. Other categorizations such

as monotone, generic or no ranking (such as Skyline queries) has also been studied [6].

Recently, there have been studies on learning the rank of a tuple [81] or the ranking function

design [82, 83] through a top-k static ranking interface.

Inference Control: Prior work on privacy inference [65] studied the problem of inferring

individual tuple values [67, 84] and the existence of a tuple in a database [85] from aggre-

gates such as SUM, MIN, MAX, etc. The field of inference control [65, 66, 86] seeks to

prevent such attacks by through query auditing, controlling the number of tuples that match

a query or modify query responses using perturbation, distortion etc [87]. Researchers have

also proposed multiple privacy preserving aggregate query processing techniques [88, 89].

Recently, [90] has showed that it is possible to infer the location of a user in a Location

based Social Network (LBSN) (which could be considered as a private attribute) if the

ranking function returns the distance between the query and the victim tuple. However,

we do not assume the availability of such information as most websites do not display the

score of a tuple for a query.

5.10 Final Remarks

In this paper, we identified a novel problem of rank-based inferencing over databases

that use ranked retrieval model. We introduced a taxonomy of the problem space into

four important subspaces based on varying interface designs and adversarial capabilities.
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For each problem subspace, we developed nontrivial attacking algorithms and conducted

theoretical analysis of their feasibility and performance. We verified the effectiveness of

the attacks using a comprehensive set of experiments on real-world datasets and online

demonstrations on high-profile real-world websites.

It is our hope that the paper initiates a new topic of research on the privacy implica-

tions of database ranking; and future research will address the many open problems, e.g.,

how to design effective defensive strategies that thwart the rank-based inference of private

attributes yet maintain the utility of ranking functions.
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CHAPTER 6
Eicient Computation of Subspace Skyline

over Categorical Domains

Platforms such as AirBnB, Zillow, Yelp, and related sites have transformed the way

we search for accommodation, restaurants, etc. The underlying datasets in such applica-

tions have numerous attributes that are mostly Boolean or Categorical. Discovering the

skyline of such datasets over a subset of attributes would identify entries that stand out

while enabling numerous applications. There are only a few algorithms designed to com-

pute the skyline over categorical attributes, yet are applicable only when the number of

attributes is small.

In this paper [91], we place the problem of skyline discovery over categorical at-

tributes into perspective and design efficient algorithms for two cases. (i) In the absence of

indices, we propose two algorithms, ST-S and ST-P, that exploit the categorical characteris-

tics of the datasets, organizing tuples in a tree data structure, supporting efficient dominance

tests over the candidate set. (ii) We then consider the existence of widely used precomputed

sorted lists. After discussing several approaches, and studying their limitations, we propose

TA-SKY, a novel threshold style algorithm that utilizes sorted lists. Moreover, we further
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optimize TA-SKY and explore its progressive nature, making it suitable for applications

with strict interactive requirements. In addition to the extensive theoretical analysis of the

proposed algorithms, we conduct a comprehensive experimental evaluation of the combi-

nation of real (including the entire AirBnB data collection) and synthetic datasets to study

the practicality of the proposed algorithms. The results showcase the superior performance

of our techniques, outperforming applicable approaches by orders of magnitude.

6.1 Introduction

6.1.1 Motivation

Skyline queries are widely used in applications involving multi-criteria decision

making [5], and are further related to well-known problems such as top-k queries [6, 92],

preference collection [7], and nearest neighbor search [8]. Given a set of tuples, skylines

are computed by considering the dominance relationships among them. A tuple p domi-

nates another tuple q, if q is not better than p in any dimension and p is better than q in at

least one dimension. Moreover, a pair of tuples p and q are considered to be incomparable

if neither p nor q dominates the other. The Skyline is the set of tuples that are not dominated

by any other tuple in the dataset [9].

In recent years, several applications have gained popularity in assisting users in tasks

ranging from selecting a hotel in an area to locating a nearby restaurant. AirBnB, TripAd-

visor, hotels.com, Craigslist, and Zillow are a few such examples. The underlying datasets

have numerous attributes that are mostly Boolean or categorical. They also include a few

numeric attributes, but in most cases the numeric attributes are discretized and transformed

into categorical attributes [10]. For example, in the popular accommodation rental service

AirBnB, the typical attributes are type and number of rooms, types of amenities offered,

the number of occupants, etc. Table 6.1 shows a toy example that contains a subset of
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Table 6.1: A sample hosts dataset

Host Name Breakfast Pool Cable TV Internet Ratings
Host 1 T F T T 4.0
Host 2 T T F T 4.5
Host 3 T F F T 3.5
Host 4 T F F F 3.0
Host 5 F F T T 3.5

attributes present in AirBnB. Note that most of the attributes are amenities provided by

the hosts (the temporary rental providers) and are primarily Boolean. The AirBnB dataset

features more than 40 such attributes describing amenities users can choose. One way of

identifying desirable hosts in such a dataset is to focus on the non-dominated hosts. This

is because if a listing t dominates another listing t′ (i.e., t is at least as good as t′ on all the

attributes while is better on at least one attribute), t should naturally be preferred over t′.

In the example shown in Table 6.1, ”Host 1” and ”Host 2” are in the skyline, while

all the others are dominated by at least one of them. In real-world applications, especially

when the number of attributes increases, users naturally tend to focus on a subset of at-

tributes that is of interest to them. For example, during an AirBnB query, we typically

consider a few attributes while searching for hosts that are in the skyline. For instance,

in the dataset shown in Table 6.1, one user might be interested in Breakfast and Internet,

while another user might focus on Internet, Cable TV, and Pool when searching for a host.

In this paper, we consider the problem of subspace skyline discovery over such

datasets, in which given an ad-hoc subset of attributes as a query, the goal is to identify

the tuples in the skyline involving only those attributes1. Such subspace skyline queries

are an effective tool in assisting users in data exploration (e.g., an AirBnB customer can

explore the returned skyline to narrow down to a preferred host).

1Naturally this definition includes skyline discovery over all attributes of a relation.
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In accordance with common practice in traditional database query processing, we

design solutions for two important practical instances of this problem, namely: (a) assum-

ing that no indices exist on the underlying dataset, and (b) assuming that indices exist on

each individual attribute of the dataset. The space devoted to indices is a practical con-

cern; given that the number of possible subset queries is exponential we do not consider

techniques that would construct indices for each possible subset as that would impose an

exponential storage overhead (not to mention increased overhead for maintaining such in-

dices under dynamic updates as it is typical in our scenario). Thus we explore a solution

space in which index overhead ranges from zero to linear in the number of attributes, trad-

ing space for increased performance as numerous techniques in database query processing

typically do [93–95].

To the best of our knowledge, LS [10] and Hexagon [96] are the only two algorithms

designed to compute skylines over categorical attributes. Both of these algorithms operate

by creating a lattice over the attributes in a skyline query, which is feasible only when the

number of attributes is really small.

6.1.2 Technical Highlights

In this paper, we propose efficient algorithms to effectively identify the answer for

any subspace skyline query. Our main focus is to overcome the limitations of previous

works ( [10, 96]), introducing efficient and scalable skyline algorithms for categorical

datasets.

For the case when no indices are available, we design a tree structure to arrange the

tuples in a “candidate skyline” set. The tree structure supports efficient dominance tests

over the candidate set, thus reducing the overall cost of skyline computation. We then

propose two novel algorithms called ST-S (Skyline using Tree Sorting-based) and ST-P

(Skyline using Tree Partition-based) that incorporate the tree structure into existing sorting-
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and partition-based algorithms. Both ST-S and ST-P work when no index is available on

the underlying datasets and deliver superior performance for any subset skyline query.

Then, we utilize precomputed sorted lists [11] and design efficient algorithms for the

index-based version of our problem. As one of the main results of our paper, we propose

the Threshold Algorithm for Skyline (TA-SKY) capable of answering subspace skyline

queries. In the context of TA-SKY, we first start with a brief discussion of a few approaches

that operate by constructing a full/partial lattice over the query space. However, these

algorithms have a complexity that is exponential in the number of attributes involved in the

skyline query. To overcome this limitation, we propose TA-SKY, an interesting adaptation

of the top-K threshold (TA) [11] style of processing for the subspace skyline problem.

TA-SKY utilizes sorted lists and constructs the projection of the tuples in query space.

TA-SKY proceeds by accumulating information, utilizing sequential access over the

indices that enable it to stop early while guaranteeing that all skyline tuples have been

identified. The early stopping condition enables TA-SKY to answer skyline queries with-

out accessing all the tuples, thus reducing the total number of dominance checks, resulting

in greater efficiency. Consequently, as further discussed in §6.6, TA-SKY demonstrates

an order of magnitude speedup during our experiments. In addition to TA-SKY, we subse-

quently propose novel optimizations to make the algorithm even more efficient. TA-SKY is

an online algorithm - it can output a subset of skyline tuples without discovering the entire

skyline set. The progressive characteristic of TA-SKY makes it suitable for web applica-

tions, with strict interactive requirements, where users want to get a subset of results very

quickly. We study this property of TA-SKY in §6.6 on the entire AirBnB data collection for

which TA-SKY discovered more than two-thirds of the skyline in less than 3 seconds while

accessing around 2% of the tuples, demonstrating the practical utility of our proposal.
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6.1.3 Summary of Contributions

We propose a comprehensive set of algorithms for the subspace skyline discovery

problem over categorical domains. The summary of main contributions of this paper are as

follows:

• We present a novel tree data structure that supports efficient dominance tests over

relations with categorical attributes.

• We propose the ST-S and ST-P algorithms that utilize the tree data structure for the

subspace skyline discovery problem, in the absence of indices.

• We propose TA-SKY, an efficient algorithm for answering subspace skyline queries

with a linear worst case cost dependency to the number of attributes. The progressive

characteristic of TA-SKY makes it suitable for interactive web-applications. This is

a novel and the first (to our knowledge) adaptation of the TA style of processing to a

skyline problem.

• We present a comprehensive theoretical analysis of the algorithms quantifying their

performance analytically, and present the expected cost of each algorithm.

• We present the results of extensive experimental evaluations of the proposed algo-

rithms over real-world and synthetic datasets at scale showing the benefits of our

proposals. In particular, in all cases considered we demonstrate that the performance

benefits of our approach are extremely large (in most cases by orders of magnitude)

when compared to other applicable approaches.

6.1.4 Paper Organization

The rest of the paper is organized as follows. We discuss preliminaries, notations,

and problem definition in §6.2. Then, in §6.3, we present the algorithm for identifying the

subspace skyline over low-cardinality datasets, in the absence of precomputed indices. The

algorithms for the case of considering the precomputed sorted lists are discussed in §6.4.
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Following related work in §6.5, we present the experimental results in §6.6. §6.7 concludes

the paper.

6.2 Preliminaries

Consider a relation D with n tuples and m + 1 attributes. One of the attributes

is tupleID, which has a unique value for each tuple. Let the remaining m categorical

attributes be A = {A1, . . . , Am}. Let Dom(·) be a function that returns the domain of one

or more attributes. For example, Dom(Ai) represents the domain of Ai, while Dom(A)

represents the Cartesian product of the domains of attributes in A. |Dom(Ai)| represents

the cardinality of Dom(Ai). We use t[Ai] to denote the value of t on the attribute Ai.

We also assume that for each attribute, the values in the domain have a total ordering by

preference (we shall use overloaded notation such as a > b to indicate that value a is

preferred over value b).

6.2.1 Skyline

We now define the notions of dominance and skyline [9] formally.

Definition 2. (Dominance). A tuple t ∈ D dominates a tuple t′ ∈ D, denoted by t � t′,

iff ∀A ∈ A, t[A] ≥ t′[A] and ∃A ∈ A, t[A] > t′[A]. Moreover, a tuple t ∈ D is not

comparable with a tuple t′ ∈ D, denoted by t sim t′, iff t � t′ and t′ � t.

Definition 3. (Skyline). Skyline, S, is the set of tuples that are not dominated by any other

tuples in D, i.e.: S = {t ∈ D|@t′ ∈ D s.t. t′ � t}

For each tuple t ∈ D, we shall also be interested in computing its score value,

denoted by score(t), using a monotonic function F (·). A function F (·) satisfies the mono-

tonicity condition if F (t) ≥ F (t′)⇒ t′ � t.
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Subspace Skyline: Let Q ⊆ A be a subset of attributes. The attributes in Q forms a |Q|-

dimensional subspace ofA. The projection of a tuple t ∈ D in subspaceQ is denoted by tQ

where tQ[A] = t[A], ∀A ∈ Q. Let DQ be the projection of all tuples of D in subspace Q .

A tuple tQ ∈ DQ dominates another tuple t′Q ∈ DQ in subspace Q (denoted by tQ �Q t′Q)

if t′Q is not preferred to t on any attribute inQ while t is preferred to t′ on least one attribute

in Q.

Definition 4. (Subspace Skyline). Given a subspaceQ, the Subspace Skyline, SQ, is the set

of tuples in DQ that are not dominated by any other tuples, i.e.: SQ = {tQ ∈ DQ|@t′Q ∈

DQ s.t. t′Q �Q tQ}

6.2.2 Sorted Lists

Sorted lists are popular data structures widely used by many access-based techniques

in data management [11, 97]. Let L = {L1, L2, . . . , Lm} be m sorted lists, where Li

corresponds to a (descending) sorted list for attribute Ai. All these lists have the same

length, n (i.e., one entry for each tuple in the relation). Each entry of Li is a pair of the

form (tupleID, t[Ai]).

A sorted list supports two modes of access: (i) sorted (or sequential) access, and (ii)

random access. Each call to sorted access returns an entry with the next highest attribute

value. Performing sorted access k times on list Li will return the first k entries in the list.

In random access mode, we can retrieve the attribute value of a specific tuple. A random

access on list Li assumes tupleID of a tuple t as input and returns the corresponding

attribute value t[Ai].

6.2.3 Problem Definition

In this paper, we address the efficient computation of subspace skyline queries over

a relation with categorical attributes. Formally:
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Table 6.2: Table of notations

Notation Semantics
D Relation
n Number of tuples in the relation
m Number of attributes
t1, . . . , tn Set of tuples in D
A Set of attributes in D
Dom(·) Domain of a set of attributes
score(t) Score of the tuple t computed using a monotonic function F (·)
t � t′ t dominates t′

L Set of m sorted lists
Q Subspace skyline query
m′ Number of attributes in Q
DQ Projection of D in query space Q
SQ Set of skyline tuples in DQ
tQ Projection of tuple t in Q
tQ �Q t′Q tQ dominates t′Q on query space Q
LQ Set of sorted lists corresponds to attributes in Q
cvij Attribute value returned by i-th sorted access on list Lj
T Tree for storing the candidate skyline tuples
pi the probability that the binary attribute Ai is 1

SUBSPACE SKYLINE DISCOVERY: Given a relation D with the set of categorical

attributes A and a subset of attributes in the form of a subspace skyline query

Q ⊆ A, find the skyline over Q, denoted by SQ.

In answering subspace skyline queries we consider two scenarios: (i) no precom-

puted indices are available, and (ii) existence of precomputed sorted lists.

Table 6.2 lists all the notations that are used throughout the paper (we shall introduce

some of these later in the paper).

6.3 Skyline Computation Over Categorical Attributes

Without loss of generality, for ease of explanation, we consider a relation with

Boolean attributes, i.e., categorical attributes with domain size 2. We shall discuss the
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extensions of the algorithms for categorical attributes with larger domains later in this sec-

tion.

Throughout this section, we consider the case in which precomputed indices are not

available. First, we exploit the categorical characteristics of attributes by designing a tree

data structure that can perform efficient dominance operations. Specifically, given a new

tuple t, the tree supports three primitive operations – i) INSERT(t): inserts a new tuple t

to the tree, ii) IS-DOMINATED(t): checks if tuple t is dominated by any tuple in the tree,

and iii) PRUNE-DOMINATED-TUPLES(t): deletes the tuples dominated by t from the

tree. In §6.8.1, we further improve the performance of these basic operations by proposing

several optimization techniques. Finally, we propose two algorithms ST-S (Skyline using

Tree Sorting-based) and ST-P (Skyline using Tree Partition-based) that incorporate the tree

structure to state-of-art sorting- and partition-based algorithms.

6.3.1 Organizing Tuples Tree

Tree structure: We use a binary tree to store tuples in the candidate skyline set. Con-

sider an ordering of all attributes in Q ⊆ A, e.g., [A1, A2, . . . , Am′ ]. In addition to tuple

attributes, we enhance each tuple with a score, assessed using a function F (·). This score

assists in improving performance during identification of the dominated tuples or while

conducting the dominance check. The proposed algorithm is agnostic to the choice of

F (·); the only requirement is that the function does not assign a higher score to a domi-

nated tuple compared to its dominator. The structure of the tree for Example 1 is depicted

in Figure 6.1. The tree has a total of 5 (= m′ + 1) levels, where the i’th level (1 ≤ i ≤ m′)

represents attribute Ai. The left (resp. right) edge of each internal node represents value

0 (resp. 1). Each path from the root to a leaf represents a specific assignment of attribute

values. The leaf nodes of the tree store two pieces of information: i) score: the score of

the tuple mapped to that node, and ii) tupleID List: list of ids of the tuples mapped to that
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Table 6.3: Example 1 relation

tupleID A1 A2 A3 A4 Score
t1 1 1 0 0 12
t2 0 0 1 1 3
t3 0 1 1 0 6
t4 1 0 0 1 9
t5 1 0 1 0 10

A1

A2

A3

A4

t1t2 t3 t4 t5

Figure 6.1: Tree structure for relation in
Example 1
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t1t2 t3 t4 t5
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c

de

f

g

h

Figure 6.2: Prune dominated tuples

node. Note that all the tuples that are mapped to the same leaf node in the tree have the

same attribute value assignment, i.e. have the same score. Moreover, the attribute values

of a tuple t can be identified by inspecting the path from the root to a leaf node containing

t. Thus, there is no requirement to store the attribute values of the tuples in the leaf nodes.

Only the leaf nodes that correspond to an actual tuple are present in the tree.

Example 1. As a running example through out this section, consider the relation D with

n = 5 non-dominated tuples where its projection on Q = {A1, A2, A3, A4} is depicted

in Table 6.3. The last column of the table presents the score of each tuple, utilizing the

function F (·) provided in Equation 6.1.

F (tQ) =
m′∑
i=1

2m
′−i · t[Ai] (6.1)

INSERT(t): In order to insert a tuple t into the tree, we start from the root. At level i

(1 ≤ i ≤ m′), we check the corresponding attribute value, t[Ai]. If t[Ai] = 0 (resp.

t[Ai] = 1) and the left (resp. right) child of current node already exists in the tree, we

simply follow the left (resp. right) child. Otherwise, we first have to create a new tree
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Figure 6.3: Tree after removing domi-
nated tuples
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Figure 6.4: Check if tuple t is dominated

node as left (resp. right) child before traversing it. After reaching the leaf node at level

m′ + 1, the tupleID of t is appended to tupleID List and the score value is assigned to

newly constructed leaf.

Algorithm 15 INSERT
1: Input: Tuple t, Node n, Level l, Query Q;

2: if l == |Q|+ 1:

3: if n.score is None: n.score = score(t)

4: Append t[tupleID] to n.tupleIDList

5: else:

6: if t[Al] == 0:

7: if n.left is None:

8: temp = New Node();

9: t.left = temp;

10: INSERT(t, n.left, l + 1)

11: if t[Al] == 1:

12: if n.right is None:

13: temp = New Node();

14: t.right = temp;

15: INSERT(t, n.right, l + 1)
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PRUNE-DOMINATED-TUPLES(t): The pruning algorithm to delete from the tree, tu-

ples dominated by t, is recursively developed as follows: We start from the root node of

the tree. If t[A1] = 1, we search both the left and right subtree. Otherwise, only the left

child is selected. This is because if t[A1] = 1, a tuple t′ dominated by t can assume value

0 or 1 on attribute A1. On the other hand, t cannot dominate a tuple t′ if t[A1] = 0 and

t′[A1] = 1. We follow the same approach at each internal node visited by the algorithm - at

level i (1 ≤ i ≤ m′), value of t[Ai] is used to select the appropriate subtree. After reaching

a leaf node, we compare score(tQ) with the score value of leaf node. If both values are

equal, no action is required, since, all the tuples mapped into the current leaf node have the

same attribute value as tQ. Else, the leaf node is deleted from the tree. Upon return from

the recursion, we check if both the left and right child of the current (internal) node are

empty. In that case, the current node is also deleted from the tree.

Figure 6.2 demonstrates the pruning algorithm for t = 〈1, 0, 1, 1〉. Tuples in the tree

that are dominated by t are: t2, t4, and t5. The bold edges represent paths followed by the

pruning algorithm. Both the left and right children of node a are visited since t[A1] = 1,

whereas, at nodes f and b only the left subtree is selected for searching. The final structure

of the tree after deleting the dominated tuples is shown in Figure 6.3.

IS-DOMINATED(t): The algorithm starts traversing the tree from the root. For each node

visited by the algorithm at level i (1 ≤ i ≤ m′), we check the corresponding attribute value

t[Ai]. If t[Ai] = 0, we search both the left and right subtree; otherwise, we only need to

search in the right subtree. This is because when t[Ai] = 0, all the tuples dominating t can

be either 0 or 1 on attributeAi. If we reach a leaf node that has an attribute value assignment

which is different than that of t (i.e., score 6= score(t)), t is dominated. Note that, when

t[Ai] = 0 both the left and right subtree of the current node can have tuples dominating

t, while the cost of identifying a dominating tuple (i.e., the number of nodes visited) may
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Algorithm 16 PRUNE-DOMINATED-TUPLES
1: Input: Tuple t, Node n, Level l, Score s, Query Q;

2: if n is None or n.minScore > s return

3: if l == |Q|+ 1 and score(tQ) 6= n.score:

4: Delete n from tree

5: return

6: if t[Al] == 1:

7: PRUNE-DOMINATED-TUPLES(t, n.right, l + 1, s)

8: s′ = s− weight(Al) · t[Al]

9: PRUNE-DOMINATED-TUPLES(t, n.left, l + 1, s′)

10: else:

11: PRUNE-DOMINATED-TUPLES(t, n.left, l + 1, s)

12: if Both left and right children of n is None

13: Delete n from tree

vary depending on whether the left or right subtree is visited first. For simplicity, we always

search in the right subtree first. If there exists a tuple in the subtree of a node that dominates

tuple t, we do not need to search in the left subtree anymore.

Figure 6.4 presents the nodes visited by the algorithm in order to check if the new

tuple t = 〈0, 0, 1, 0〉 is dominated. We start from the root node a and check the value of t

in attribute A1. Since t[A1] = 0, we first search in the right subtree of a. After reaching to

node d, the algorithm back-tracks to b (parent of d). This is because t[A3] = 1 and d has no

actual tuple mapped under it’s right child. Since t[A2] = 0 and we could not identify any

dominating tuple in the right subtree of b, the algorithm starts searching in the left subtree

and moves to node c. At node c, only the right child is selected, since t[A3] = 1. Applying

the same approach at node f , we reach the leaf node e that contains the tupleID t5. Since
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the value of the score variable at leaf node e is different from score(t), we conclude that

tuples mapped into e (i.e., t5) dominate t.

Please refer to §6.8.1 for further optimizations on the tree data structure.

Algorithm 17 IS-DOMINATED
1: Input: Tuple t, Node n, Level l, Score s, Query Q; Output: True if t is domi-

nated else False.

2: if n is None or s > n.maxScore: return

3: if l == |Q| and score(tQ) 6= n.score: return True

4: if l == |Q| and score(tQ) = n.score: return False

5: if t[Al] == 0:

6: s′ = s+ weight(Al) · t[Al]

7: dominated = IS-DOMINATED(t, n.right, l + 1, s′)

8: if dominated == True: return True

9: return IS-DOMINATED(t, n.left, l + 1, s)

10: else:

11: return IS-DOMINATED(t, n.right, l + 1, s)

6.3.2 Skyline using Tree

Existing works on skyline computation mainly focus on two optimization criteria:

reducing the number of dominance checks (CPU cost), limiting communication cost with

the backend database (I/O cost). Sorting-based algorithms reduce the number of dominance

check by ensuring that only the skyline tuples are inserted in the candidate skyline list.

Whereas, partition-based algorithms achieve this by skipping dominance tests among tuples

inside incomparable regions generated from the partition. However, given a list of tuples
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T and a new tuple t, in order to discard tuples from T that are dominated by t, both the

sorting- and partition-based algorithms need to compare t against all the tuples in T . This

is also the case when we need to check whether t is dominated by T . The tree structure

defined in §6.3.1 allows us to perform these operations effectively for categorical attributes.

Since the performance gain achieved by the tree structure is independent of the optimization

approaches of previous algorithms, it is possible to combine the tree structure with existing

skyline algorithms. We now present two algorithms ST-S (Skyline using Tree Sorting-

based) and ST-P (Skyline using Tree Partition-based) that incorporates the tree structure

into existing algorithm.

ST-S: ST-S combines the tree structure with a sorting-based algorithm. Specifically, we

have selected the SaLSa [98] algorithms that exhibits better performance compared to

other sorting-based algorithms. The final algorithm is presented in Algorithm 18. The

tuples are first sorted according to “maximum coordinate”, maxC, criterion2. Specifically,

Given a skyline query Q, maxC(tQ) = (maxAi∈Q{t[Ai]}, sum(tQ)), where sum(tQ) =∑
Ai∈Q t[Ai]. A tree structure T is used to store the skyline tuples. Note that the mono-

tonic property of the scoring function maxC(·) ensures that all the tuples inserted in T are

skyline tuples. The algorithm then iterates over the sorted list one by one, and for each

new tuple t, if t is not dominated by any tuple in tree T , it is inserted in the tree (lines

7-8). For each new skyline tuple, the “stop point” tstop is updated if required (line 10-12).

The algorithm stops if all the tuples are accessed or tstop dominates the remaining tuple.

Detailed description of the “stop point” can be found in the original SaLSa paper [98]. We

denote with t+ = minAi∈Q{t[Ai]} the minimum attribute of tuple t.

ST-P: We have selected the state-of-art partition-based algorithm BSkyTree [99] for de-

signing ST-P. The final algorithm is presented in Algorithm 19. Given a tuple list T , the

2Assuming larger values are preferred for each attribute.
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Algorithm 18 ST-S
1: Input: Tuple list T , Query Q and Tree T ;

Output: SQ

2: Sort tuples in D using a monotonic function maxC(·)

3: if T is None: T ← New Tree()

4: tstop ← undefined

5: for each tuple t ∈ D

6: if t+stop ≥ maxC(tQ) and tstop 6= t: return

7: if not IS-DOMINATED(tQ, T.rootNode, 1, score(t))

8: INSERT(tQ, T.rootNode, 1)

9: Output tQ as skyline tuple.

10: t+ ← minA∈Q{t[A]}

11: if t+ > t+stop: tstop ← tQ

SELECT-PIVOT-POINT method returns a pivot tuple pV such that it belongs to the skyline

of Q (i.e., SQ). Moreover, pV partitions the tuples in T in a way such that the number

of dominance test is minimized (details in [99]). Tuples in T are then split into 2|Q| lists,

each corresponding to one of the 2|Q| regions generated by pV (lines 7-9). Tuples in L[0]

are dominated by pV , hence can be pruned safely. For each pair of lists L[i] and L[j]

(max ≥ j > i ≥ 1), if L[j] partially dominates L[i], tuples in L[i] that are dominated by

any tuple in L[j] are eliminated. Finally, skylines in L[i] are then discovered in recursive

manner (lines 10-15).

Performance Analysis: We now provide a theoretical analysis of the performance of prim-

itive operations utilized by ST-S and ST-P. To make the theoretical analysis tractable, we

assume that the underlying data is i.i.d., where pi is the probability of having value 1 on

attribute Ai.
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Algorithm 19 ST-P
1: Input: Tuple list T and query Q;

Output: SQ

2: if |T | ≤ 1: return T

3: max← 2|Q| − 2 //Size of the lattice

4: L[1,max]← {}

5: pV ← SELECT-PIVOT-POINT(T )

6: SQ ← SQ ∪ pV //pV is a skyline tuple

7: for each tuple t ∈ T

8: Bi ← |Q|-bit binary vector corresponds to t wrt pV

9: if i 6= 0: L[i]← L[i] ∪ t

10: for i← max to 1

11: T ← New Tree()

12: Insert tuples in L[i] in T

13: for ∀j ∈ [max, i) : Bj � Bi

14: for ∀t ∈ L[j]: PRUNE-DOMINATED-TUPLES(tQ, T.rootNode, 1, score(tQ))

15: SQ ← SQ∪ ST-P(tuples in T )

16: return SQ

The cost of INSERT-TUPLE(tQ) operation isO(m′), since to insert a new tuple in the

tree one only needs to follow a single path from the root to leaf. For IS-DOMINATED(tQ)

and PRUNE-DOMINATED-TUPLES(tQ), we utilize the number of nodes visited in the

tree as the performance measure of these operations.

Consider a tree T with s tuples; Let Cost(l, s) be the expected number of nodes

visited by the primitive operations.
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Theorem 9. Considering a relation with n binary attributes where pi is the probability that

a tuple has value 1 on attribute Ai, the expected cost of IS-DOMINATED(tQ) operation on

a tree T , containing s tuples is:

C(m′, s) = 1

C(l, 0) = 1

C(l, s) = 1 +

s∑
i=0

(
s

i

)
(1− pl)ips−il C ′(l, i, s− i) (6.2)

where S(l, s− i) = 1− (1−
∏|Aones(t[l+1:m′])|

i=1 pi)
s−i and3 C ′(l, i, s− i) = C(l+ 1, s− i) +

(1− pl)(1− S(l, s− i))C(l + 1, i)

Please refer to §6.8.3 for the proof.

Theorem 10. Given a boolean relation D with n tuple and the probability of having value

1 on attribute Ai being pi, the expected cost of PRUNE-DOMINATED-TUPLES(tQ) oper-

ation on a tree T , containing s tuples is

C(m′, s) = 1

C(l, 0) = 1

C(l, s) = 1 +
s∑
i=0

(
s

i

)
(1− pl)ips−il (C(l + 1, i) + plC(l + 1, s− i)) (6.3)

The proof is available in §6.8.3

Figure 6.5 uses Equations 6.2 and 6.3 to provide an expected cost for the IS-

DOMINATE and PRUNE-DOMINATED-TUPLES operations, for varying numbers of tu-

ples in T (s) where m′ = 20. We compare its performance with the appraoch, where

candidate skyline tuples are organized in a list. Suppose there are s tuples in the list; the

best case for the domination test occurs when the first tuple in the list dominates the input

tuple (O(1 × m′)), while in the worst case, none or only the very last tuple dominates it

(O(s × m′)) [9]. Thus, on average the dominance test iterates over half of its candidate

3Aones(t[l+1:m′]) = {Ai|t[Ai] = 1, l + 1 ≤ i ≤ m′} is the set of remaining attributes of t that has value equals 1.

178



Figure 6.5: Expected cost of IS-DOMINATED and PRUNE-DOMINATED-TUPLES op-
erations as a function of s

list (i.e.,
s

2
×m′ comparisons). On the other hand, in order to prune tuples in the list that

are dominated by tQ, existing algorithms need to compare tQ with all the entries in the list.

Hence, expected cost of PRUNE-DOMINATED-TUPLES is s ×m′. From the figure, we

can see that the expected number of comparisons required by the two primitive operations

are significantly less when instead of a list, tuples are organized in a tree. Moreover, as pi

increases, the cost of the primitive operations decreases. This is because, when the value

of pi is large, the probability of following left edge (edges corresponds value 0) of a tree

node decreases.

The above simulations show that the tree structure can reduce the cost of dominance

test effectively thus improving the overall performance of ST algorithms. Although the

analysis has been carried out for i.i.d. data, our experimental results in §6.6 show similar

behavior for other types of datasets.

6.3.3 Extension for Categorical Attributes

We now discuss how to modify ST algorithm for relations having categorical at-

tributes. We need to make the following two changes:

• The tree structure designed in §6.3.1 needs to be modified for categorical attribute.
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• We also need to change the tree traversal algorithms used in each of the three primi-

tive operations.

Tree structure: The tree structure will not be binary anymore. In order to incorporate

categorical attributes, each node u at level l (1 ≤ l ≤ m) of the tree now should have

|Dom(Al)| children, one for each attribute value v ∈ Dom(Al). We shall index the edges

from left to right, where the left most edge corresponds to the lowest attribute value and

the attribute value corresponding to each edge increases as we move from left most edge to

right most edge.

INSERT(t): After reaching a node u at level l, select the t[Al]-th child of u for moving to

the next level of the tree.

IS-DOMINATED(t): We need to follow all the edges that has index value grater or equal

to t[Al].

PRUNE-DOMINATED-TUPLES(t): Search in all the subtrees reachable by following

edges with index value less than or equal to t[Al].

6.4 Subspace Skyline using Sorted

Lists

In this section, we consider the availability of sorted lists L1, L2, . . . Lm, as per §6.2

and utilize them to design efficient algorithms for subspace skyline discovery. We first

briefly discuss a baseline approach that is an extension of LS [10]. Then in §6.4.1, we over-

come the barriers of the baseline approach proposing an algorithm named TOP-DOWN.

The algorithm applies a top-down on-the-fly parsing of the subspace lattice and prunes the

dominated branches. However, the expected cost of TOP-DOWN exponentially depends

on the value of m (§6.8.2). We then propose TA-SKY (Threshold Algorithm for Skyline)
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Table 6.4: Example: Input Table

A1 A2 A3 A4 A5

t1 0 1 0 1 1
t2 0 0 1 1 0
t3 0 0 1 0 1
t4 0 0 0 1 1
t5 1 0 1 1 1
t6 1 1 1 0 0

in §6.4.2 that does not have such a dependency. In addition to the sorted lists, TA-SKY also

utilizes the ST algorithm proposed in §6.3 for computing skylines.

L1 L2 L3 L4

(t5, 1) (t1, 1) (t2, 1) (t1, 1)

(t6, 1) (t6, 1) (t3, 1) (t2, 1)

(t1, 0) (t2, 0) (t5, 1) (t4, 1)

(t2, 0) (t3, 0) (t6, 1) (t5, 1)

(t3, 0) (t4, 0) (t1, 0) (t3, 0)

(t4, 0) (t5, 0) (t4, 0) (t6, 0)

Figure 6.6: Example: Sorted Lists, Organi-
zation 1

L1 L2 L3 L4

(t5, 1) (t6, 1) (t5, 1) (t5, 1)

(t6, 1) (t1, 1) (t6, 1) (t1, 1)

(t1, 0) (t2, 0) (t2, 1) (t2, 1)

(t2, 0) (t3, 0) (t3, 1) (t4, 1)

(t3, 0) (t4, 0) (t1, 0) (t3, 0)

(t4, 0) (t5, 0) (t4, 0) (t6, 0)

Figure 6.7: Example: Sorted Lists, Organi-
zation 2

Example 2. Let Q ⊆ A denotes the set of attributes in a subspace skyline query and DQ

be the projection of D inQ. We denote the set of sorted lists corresponding to a query (one

for each attribute involved in the query) as LQ, LQ = {Li|Ai ∈ Q}. Also, let m′ ≤ m be

|Q|. Our running example uses the relation shown in Table 6.4 through out this section.

There are a total of n = 6 tuples, each having m = 5 attributes. Consider a subspace

skyline query Q = {A1, A2, A3, A4}, thus, m′ = 4. Figure 6.6 shows the corresponding

sorted lists LQ = {L1, L2, L3, L4}.

BASELINE: We use sorted lists in LQ to construct the projection of each tuple t ∈ D in

the query space. For this, we shall perform n sequential accesses on sorted list L1 ∈ LQ.

For each (tupleID, value) pair returned by sequential access, we create a new tuple tnew.
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tnew has tupleID as its id and tnew[A1] = value. The remaining attribute values of tnew

are set by performing random access on sorted list Lj (∀j ∈ [2,m′]). After computing the

projections of all tuples in query space, we create a lattice overQ and run the LS algorithm

to discover the subspace skyline.

We identify the following problems with BASELINE:

• It makes two passes over all the tuples in the relation.

• It requires the construction of the complete lattice of size |Dom(Q)|. For example,

when Dom(Ai) = 4 and m′ = 15, the lattice has more than one billion nodes; yet

the algorithm needs to map the tuples into the lattice.

One observation is that for relations with categorical attributes, especially when m′

is relatively small, skyline tuples are more likely to be discovered at the upper levels of

the lattice. This motivated us to seek alternate approaches. Unlike BASELINE, TOP-

DOWN and the TA-SKY algorithm are designed in a way that they are capable of answering

subspace skyline queries by traversing a small portion of the lattice, and more importantly

without the need to access the entire relation.

6.4.1 TOP-DOWN

Key Idea: Given a subspace skyline query Q, we create a lattice capturing the dominance

relationships among the tuples inDQ. Each node in the lattice represents a specific attribute

value combination in query space, hence, corresponds to a potential tuple in DQ. For a

given lattice node u, if there exist tuples in DQ with attribute value combination same as

u, then all tuples in DQ corresponding to nodes dominated by u in the lattice are also

dominated. TOP-DOWN utilizes this observation to compute skylines for a given subspace

skyline query. Instead of iterating over the tuples, TOP-DOWN traverses the lattice nodes

from top to bottom; it utilizes sorted lists LQ to search for tuples with specific attribute
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value combinations. When |Q| is relatively small, it is likely one will discover all the

skyline tuples just by checking few attribute value combinations, without considering the

rest of the lattice. However, the expected cost of TOP-DOWN increases exponentially as

we increase the query length. Please refer to §6.8.2 for the details and the limitations of

TOP-DOWN.

6.4.2 TA-SKY

We now propose our second algorithm, Threshold Algorithm for Skyline (TA-SKY)

in order to answer subspace skyline queries. Unlike TOP-DOWN that exponentially de-

pends on m, as we shall show in §6.4.2.1, TA-SKY has a worst case time complexity of

O(m′n2); in addition, we shall also study the expected cost of TA-SKY. The main in-

novation in TA-SKY is that it follows the style of the well-known Threshold Algorithm

(TA) [11] for Top-k query processing, except that it is used for solving a skyline problem

rather than a Top-k problem.

TA-SKY iterates over the sorted lists LQ until a stopping condition is satisfied. At

each iteration, we perform m′ parallel sorted access, one for each sorted list in LQ. Let cvij

denote the current value returned from sorted access on list Lj ∈ LQ (1 ≤ j ≤ m′) at iter-

ation i. Consider τi be the set of values returned at iteration i, τi = {cvi1, cvi1, . . . , cvim′}.

We create a synthetic tuple tsyn as the threshold value to establish a stopping condition for

TA-SKY. The attribute values of synthetic tuple tsyn are set according to the current values

returned by each sorted list. Specifically, at iteration i, tsyn[Aj] = cvij,∀j ∈ [1,m′]. In

other words, tsyn corresponds to a potential tuple with the highest possible attribute values

that has not been seen by TA-SKY yet.

In addition, TA-SKY also maintains a candidate skyline set. The candidate skyline

set materializes the skylines among the tuples seen till the last stopping condition check.

We use the tree structure described in §6.3.2 to organize the candidate skyline set. Note
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that instead of checking the stopping condition at each iteration, TA-SKY considers the

stopping condition at iteration i only when τi 6= τi−1 (2 ≤ i ≤ n). τi 6= τi−1 if and only if

cv(i−1)j 6= cvij (1 ≤ j ≤ m′) for at least one of the m′ sequential accesses. This is because

the stopping condition does not change among iterations that have the same τ value. Let

us assume the value of τ changes at the current iteration i and the stopping condition was

last checked at iteration i′ (i′ < i). Let T be the set of tuples that are returned in, at least

one of the sequential accesses between iteration i′ and i. For each tuple t ∈ T , we perform

random access in order to retrieve the values of missing attributes (i.e., attributes of tQ for

which we do not know the values yet). Once the tuples in T are fully constructed, TA-SKY

compares them against the tuples in the candidate skyline set. For each tuple t ∈ T three

scenarios can arise:

1. t dominates a tuple t′ in the tree (i.e., candidate skyline set), t′ is deleted from the

tree.

2. t is dominated by a tuple t′ in the tree, it is discarded since it cannot be skyline.

3. t is not dominated by any tuple t′ in the tree, it is inserted in the tree.

Once the candidate skyline set is updated with tuples in T , we compare tsyn with

the tuples in the candidate skyline set. The algorithm stops when tsyn is dominated by any

tuple in the candidate skyline set.

We shall now explain TA-SKY for the subspace skyline query Q of Example 2.

Sorted lists LQ corresponding to queryQ are shown in Figure 6.6. At iteration 1, TA-SKY

retrieves the tuples t1, t2 and t5 by sequential access. For t1 we know its value on attributes

A2 and A4 whereas for t2 and t5 we know their value on A3 and A1 respectively. At this

position we have T = {t1, t2, t5} and τ1 = {1, 1, 1, 1}. Note that in addition to storing the

tupleIDs that we have seen so far, we also keep track of the attribute values that are known

from sequential access. After iteration 2, T = {t1, t2, t3, t5, t6} and τ2 = {1, 1, 1, 1}.

At iteration 3 we retrieve the values of t1, t2, t5 and t4 on attributes A1, A2, A3, and A4
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respectively and update the corresponding entries T . Since τ3 = {0, 0, 1, 1} is different

from τ2, TA-SKY checks the stopping condition. First, we get the missing attribute values

(attribute values which are not known from sequential access) of each tuple t ∈ T . This is

done performing random access on the appropriate sorted list in LQ. After all the tuples in

T are fully constructed, we update the candidate skyline set using them. The final candidate

skyline set is constructed after considering all the tuples in T is {t1, t5, t6}. Since the

synthetic tuple tsyn = 〈0, 0, 1, 1〉 corresponds to τ3 is dominated by the candidate skyline

set, we stop scanning the sorted lists and output the tuples in the candidate skyline set as

the skyline answer set.

The number of tuples inserted into T (i.e., partially retrieved by sequential accesses)

before the stopping condition is satisfied, impacts the performance of TA-SKY. This is

because for each tuple t ∈ T , we have to first perform random accesses in order to get the

missing attribute values of t and then compare t with the tuples in the candidate skyline

set in order to check if t is skyline. Both the number of random accesses and number of

dominance tests increase the execution time of TA-SKY. Hence, it is desirable to have a

small number of entries in T . We noticed that the number of tuples inserted in T by TA-

SKY depends on the organization of (tupleID, value) pairs (i.e., ordering of pairs having

same value) in sorted lists. Figure 6.7 displays sorted lists L′Q for the same relation in

Example 2 but with different organization. Both withLQ andL′Q TA-SKY stops at iteration

3. However, For LQ after iteration 3, T = {t1, t2, t3, t4, t5, t6} and we need to make a total

of 12 random accesses and 12 dominance tests4. On the other hand, with L′Q, after iteration

3 we have T = {t1, t2, t5, t6}, requiring only 4 random accesses and 8 dominance tests.

One possible approach to improve the performance of TA-SKY is to re-organize the

sorted lists before running the algorithm for a given subspace skyline query. Specifically,

4For each tuple t ∈ T , we need to perform two dominance checks: i) if t is dominating any tuple in the candidate skyline set and ii)

if t is dominated by tuples in the candidate skyline set.
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∀t, t′ ∈ D that t[Ai] = t′[Ai], position t before t′ in the sorted list Li (1 ≤ i ≤ m′) if t has

better value than t′ on the remaining attributes. However, re-arranging the sorted lists for

each subspace skyline query will be costly.

We now propose several optimization techniques that enable TA-SKY to compute

skylines without considering all the entries in T .

Selecting appropriate entries in T : Our goal is to only perform random access and domi-

nance checks for tuples in T that are likely to be skyline for a given subspace skyline query.

Consider a scenario where TA-SKY needs to check the stopping condition at iteration k,

i.e, τk 6= τ(k−1). LetQ′ be the set of attributes for which the value returned by sequential ac-

cess at iteration k is different from (k−1)-th iteration,Q′ = {Ai|Ai ∈ Q, cvki < cv(k−1)i}.

In order for the tuple tsyn to be dominated, there must exist a tuple t′ ∈ T that has

t′[Ai] ≥ tsyn[Ai], ∀Ai ∈ Q and ∃Ai ∈ Q s.t. t′[Ai] > tsyn[Ai]. Note that each tuple

t ∈ T has t[Ai] = tsyn[Ai],∀Ai ∈ Q \ Q′. This is because for all Ai ∈ Q \ Q′ sorted

access returns same value on both (k − 1)-th and k-th iteration (i.e., cv(k−1)i = cvki).

Hence, the only way a tuple t′ ∈ T can dominate tsyn is to have a larger value on

any of the attributes in Q′. Therefore, we only need to consider a subset of tuples

T ′ = {t|t ∈ T ,∃Ai ∈ Q \ Q s.t. t[Ai] = cv(k−1)i}. Note that it is still possible that

∃t, t′ ∈ T ′ s.t. t �Q t′. Thus, we need to only consider the tuples that are skylines among

T ′ and the candidate skyline set. To summarize, before checking the stopping condition at

iteration k, we have to perform the following operations: (i) Select a subset of tuples T ′

from T that are likely to dominate tsyn, (ii) For each tuple t ∈ T get the missing attribute

values of t performing random access on appropriate sorted lists, (iii) Update the candidate

skyline set using the skylines in T ′, and (iv) Check if tsyn is dominated by the updated

candidate skyline set.
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Note that in addition to reducing the number of random access and dominance test,

the above optimization technique makes the TA-SKY algorithm progressive, i.e, tuples that

are inserted into the candidate skyline set will always be skyline in the query spaceQ. This

characteristic of TA-SKY makes it suitable for real-world web applications where instead

of waiting for all the results to be returned users want a subset of the results very quickly.

Utilizing the ST algorithms: We can utilize the ST algorithms for discovering the skyline

tuples from T ′. This way we can take advantages of the optimization approaches proposed

in §6.3. For example, we can call ST-S algorithm with parameter: tree T (stores all the

tuples discovered so far) and tuple list T ′. The output skyline tuples in T ′ that are not

dominated by T . Moreover, after sorting the tuples in ST-S, if we identify that score(ti) =

score(ti−1) (2 ≤ i ≤ |T ′|) and ti−1 is dominated, we can safely mark ti as dominated.

This is because score(ti) = score(ti−1) implies that both ti and ti−1 have same attribute

value assignment. When the number of attributes in a subspace skyline query is small, this

approach allows us to skip a large number of dominance tests.

The pseudocode of TA-SKY, after applying the optimizations above, is presented in

Algorithm 20.

6.4.2.1 Performance Analysis

Worst Case Analysis: In the worst case, TA-SKY will exhaust all the m′ sorted lists.

Hence, will perform O(m′n) sorted and O(m′n) random accesses. After all the tuples are

fully constructed, for each tuple t, we need to check whether any other tuple in T dominates

t. The cost of each dominance check operation is O(m′n). Hence, cost of n dominance

checks is O(m′n2). Therefore, the worst case time complexity of TA-SKY is O(m′n2)

Expected Cost Analysis:

187



Algorithm 20 TA-SKY
1: Input: Query Q, Sorted lists LQ;

Output: SQ.

2: T = New Tree(); T = ∅

3: repeat

4: τ = ∅

5: for each sorted list Li ∈ LQ

6: Ai = Attribute corresponds to Li

7: (tupleID, value) = SortedAccess(L)

8: T [tupleID][Ai] = value

9: τ [Ai] = value

10: if τ remains unchanged from prev. iteration:

11: continue;

12: Q′ = {Ai|Ai ∈ Q, τ [Ai] changed from prev.iteration}

13: T ′ = {t|t ∈ T ,∃Ai ∈ Q′, T [t][Ai] is set}

14: Delete entries from T that are inserted in T ′

15: for each t ∈ T ′

16: for each attribute Ai ∈ Q \Q′

17: if t[Ai] is missing:

18: t[Ai] = RandomAccess(L,Ai)

19: Update score of t

20: ST-S(T , Q, T )

21: tsyn = Synthetic tuple with values of τ

22: until IS-DOMINATED(tsyn, T.root, 1, score(tsyn))
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Lemma 2. Considering pi as the probability that a tuple has value 1 on the binary attribute

Ai, the expected number of tuples discovered by TA-SKY after i iterations is:

nPseen(t, i) (6.4)

where Pseen(t, i) is computed using Equation 6.5.

Pseen(t, i) = 1−
m′∏
j=1

(
(1− pj)

( i−1∑
k=0

PLj
(k)

n− i
n− k

+
n∑
k=i

PLj

)
+ pj

n∑
k=i+1

PLj
(k) (6.5)

Refer to §6.8.3 for the proof.

Theorem 11. Given a subspace skyline query Q, the expected number of sorted accesses

performed by TA-SKY on an n tuple boolean relation with probability of having value 1 on

attribute Aj being pj is,

m′
n∑
i=1

i× Pstop(i) (6.6)

where Pstop(i) is computed using Equations 6.7, 6.8, and 6.9.

Pstop(i) =
m∑
k=1

P0(i, k)×
(
m′

k

)
× (1− (1− Pstop(t,Qk))i

′
) (6.7)

P0(i, k) =

(
m′

k

) ∏
Aj∈Qk

(1− pj)n−i
∏

Aj∈Q\Qk

(
1− (1− pj)n−i

)
(6.8)

Pstop(t,Qk) = Π
∀Aj∈Q\Qk

pj(1− Π
∀Aj∈Qk

(1− pj)) (6.9)

The proof is available in §6.8.3

6.5 Related Work

In the database context, the skyline operator was first introduced in [9]. Since then

much work aims to improve the performance of skyline computation in different scenarios.

In this paper, we consider skyline algorithms designed for centralized database systems.
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To the best of our knowledge, LS [10] and Hexagon [96] are the only two algorithms

designed to compute skylines over categorical attributes. Both algorithms operate by first

creating the complete lattice of possible attribute-value combinations. Using the lattice

structure, non-skyline tuples are then discarded. Even though LS and Hexagon can discover

the skylines in linear time, the requirement to construct the entire lattice for each skyline is

strict and not scalable. The size of the lattice is exponential in the number of attributes in a

skyline query. Moreover, in order to discover the skylines, the algorithms have to scan the

entire dataset twice, which is not ideal for online applications.

Most of the existing work on skyline computation concerns relations with numeric

attributes. Broadly speaking, skyline algorithms for numerical attributes can be catego-

rized as follows. Sorting-based Algorithms utilize sorting to improve the performance of

skyline computation aiming to discard nonskyline objects using a small number of dom-

inance checks [100, 101]. For any subspace skyline query, such approaches will require

sorting the dataset. SaLSa [98] is the best in this category and we demonstrated how our

adaptation on categorical domains, namely ST-S outperforms SaLSa.

Partition-based Algorithms recursively partition the dataset into a set of disjoint re-

gions, compute local skylines for each region and merge the results [9, 102]. Among

these, BSkyTree [99] has been shown to be the best performer. We demonstrated that our

adaptation of this algorithm, namely ST-P, for categorical domains outperforms the vanilla

BSkyTree when applied to our application scenario. Other partitioning algorithms, such as

NN [8], BBS [103] and ZSearch [104] utilize indexing structures such as R-tree, ZB-tree

for efficient region level dominance tests. However, adaptations of such algorithms in the

subspace skyline problem would incur exponential space overhead which is not in line with

the scope of our work (at most linear to the number of attributes overhead).

A body of work is also devoted to Subspace Skyline Algorithms [105–107] which

utilize pre-computation to compute skylines for each subspace skyline query. These algo-
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rithms impose exponential space overhead, however. Further improvements to reduce the

storage overhead in numeric settings [108–111] are highly data dependent and offer no

performance guarantee.
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6.6 Experimental Evaluation

6.6.1 Experimental Setup

In this section, we describe our experimental results. In addition to the theoretical

analysis presented in §6.3 and §6.4, we compared our algorithms experimentally against
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existing state-of-the-art algorithms. Our experiments were run over synthetic data, as well

as two real-world datasets collected from AirBnB5 and Zillow6.

Synthetic Datasets: In order to study the performance of the proposed algorithms in dif-

ferent scenarios, we generated a number of Zipfian datasets, each containing 2M tuples

and 30 attributes. Specifically, we created datasets with attribute cardinality ranging from

2 − 8. In this environment, the frequency of an attribute value is inversely proportional

to its rank. Therefore, the number of tuples having a higher (i.e., better) attribute value

is less than then number of tuples with a comparatively lower attribute value. We used a

Python package for generating these datasets. For each attribute, we specify its distribution

over the corresponding domain by controlling the z value. Two attributes having the same

cardinality but different z values will have different distributions. Specifically, the attribute

with lower z value will have a higher number of tuples having higher attribute value. Un-

less otherwise specified, we set the z values of the attributes evenly distributed in the range

(1, 2] for generating synthetic datasets.

Choice of dataset: we used Zipfian datasets as they reflect more precisely situa-

tion with real categorical datasets. Specifically, in real-world applications, for a specific

attribute, the number of objects having higher attribute values (i.e., better) is likely to be

less than the number of objects with lower attribute values. For example, in AirBnB, 3 bed

room hosts are less frequent than hosts having a single bed room. Similarly, in Craigslist,

sedans are more prevalent than sports cars. Moreover, in real-world applications, the dis-

tributions of attributes are different from one another. For example, in our AirBnB dataset,

approximately 600k out of the 2M hosts have amenity Cable TV. Whereas, the approximate

number of hosts with amenity Hot Tub is only 200k.

5http://www.airbnb.com/
6http://zillow.com/
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AirBnB Dataset: Probably one of the best fits for the application of this paper is AirBnB.

It is a peer-to-peer location-based marketplace in which people can rent their properties or

look for an abode for a temporary stay. We collected the information of approximately 2

million real properties around the globe, shared on this website. AirBnB has a total number

of 41 attributes for each host that captures the features and amenities provided by the hosts.

Among all the attributes, 36 of them are boolean (categorical with domain size 2) attributes,

such as Breakfast, Cable TV, Gym, and Internet, while 5 are categorical attributes, such as

Number of Bedrooms, and Number of Beds etc. We tested our proposed algorithms against

this dataset to see their performance on real-world applications.

Zillow Dataset: Zillow is a popular online real estate website that helps users to find houses

and apartments for sale/rent. We crawled approximately 240k houses listed for sale in Texas

and Florida state. For each listing, we collected 9 attributes that are present in all the houses.

Out of 9 attributes, 7 of them are categorical, such as House Type, Number of Beds, Number

of Baths, Parking Space etc., and two are numeric - House size (in sqft), and Price. The

domain cardinalities of the categorical attributes varies from 3 to 30. Using discretization

we mapped the numeric attributes into the categorical domain, each of cardinality 20.

Algorithms Evaluated: We tested the proposed algorithms, namely ST-S, ST-P, TOP-

DOWN, and TA-SKY as well as the state-of-art algorithms LS [10], SaLSa [98] and

BSkyTree [99] that are applicable to our problem settings.

Performance Measures: We consider running time as the main performance measure of

the algorithms proposedIn this paper. In addition, we also investigate the key features of

ST-S, ST-P and TA-SKY algorithm and demonstrate how they behave under a variety of

settings. Each data point is obtained as the average of 25 runs.
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Hardware and Platform: All our experiments were performed on a quad-core 3.5 GHz

Intel i7 machine running Ubuntu 14.04 with 16 GB of RAM. The algorithms were imple-

mented in Python.

6.6.2 Experiments over Synthetic Datasets

Effect of Query Size m′ : We start by comparing the performance of our algorithms with

existing state-of-art algorithms that exhibit the best performance in their respective domain.

Note that, unlike TA-SKY, the rest of the algorithms do not leverage any indexing structure.

The goal of this experiment is to demonstrate how utilizing a small amount of precompu-

tation (compared to the inordinate amount of space required by Skycube algorithms) can

improve the performance of subspace skyline computation. Moreover, the precomputation

cost is independent of the skyline query. This is because we only need to build the sorted

lists once at the beginning. For this experiment, we set n = 500k and vary m′ between

6 − 24. In order to match real-world scenarios, we selected attributes with cardinality c

ranging between 2 − 6. Specifically, 50% of the selected attributes have cardinality 2,

30% have cardinality 4, and 20% have cardinality 6. Figure 6.8 shows the experiment re-

sult. We can see that when m′ is small, TA-SKY outperforms other algorithms. This is

because, with small query size, TA-SKY can discover all the skylines by accessing only

a small portion of the tuples in the dataset. However as m′ increases, the likelihood of a

tuple dominating another tuple decreases. Hence, the total number of tuples accessed by

TA-SKY before the stopping condition is satisfied also increases. Hence, the performance

gap between TA-SKY and ST-S starts to decrease. Both ST-S and ST-P exhibits better

performance compared to their baseline algorithms (SaLSa and BSkyTree). Algorithms

such as ST-P, BSkyTree, and LS do not scale for larger values of m′. This is because all

these algorithms operate by constructing a lattice over the query space which grows ex-
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ponentially. Moreover, even though TOP-DOWN initially performed well, it did not not

complete successfully for m′ > 4.

Figure 6.9 demonstrates the effect m′ and z on the performance of TA-SKY and

ST-S. For this experiment, we created two datasets with cardinality c = 6 and different z

values. In the first dataset, all the attributes have same z value (i.e., z = 1.01), whereas, for

the second dataset, z values of the attributes are evenly distributed within the range (1, 2].

By setting z = 1.01 for all attributes, we increase the frequency of tuples having preferable

(i.e., higher) attribute values. Hence, the skyline size of the first dataset is less than the

skyline size of the second dataset. This is because tuples with preferable attribute values

are likely to dominate more non-skyline tuples, resulting in a small skyline size. Moreover,

this also increases the likelihood of the stopping condition being satisfied at an early stage

of the iteration. Hence, TA-SKY needs less time for the dataset with z = 1.01. In summary,

TA-SKY performs better on datasets where more tuples have preferable attribute values.

The right-y-axis of Figure 6.9 shows the skyline size for each query length. One can see

that as the query size increased, the chance of tuples dominating each other decreased,

which resulted in a significant increase in the skyline size. Please note that the increases in

the execution time of TA-SKY are due to the increase in the skyline size which is bounded

by n. Moreover, as m′ increases, there is an initial decrease in skyline size. This is because

when m′ is small (i.e., 2), the likelihood of a tuple having highest value (i.e., preferable) on

all attribute is large.

Effect of Dataset Size (n): Figure 6.10 shows the impact of n on the performance of TA-

SKY and ST-S. For this experiment, we used dataset with cardinality c = 6, m′ = 12 and

varied n from 500K to 2M. As we increase the value of n, the number of skyline tuples

increases. With the increase of skyline size, both TA-SKY and ST-S needs to process more
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tuple before satisfying the stop condition. Therefore, total execution time increases with

the increase of n.

Effect of Attribute Cardinality (c): In our next experiment, we investigate how changing

attribute cardinality affects the execution time of TA-SKY and ST-S. We set the dataset size

to n = 1M while setting the query size to m′ = 12, and vary the attribute cardinality c from

4 to 8. Figure 6.11 shows the experiment result. Increasing the cardinality of the attributes

increases the total number of skyline tuples. Therefore, effects the total execution time of

TA-SKY and ST-S.
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Progressive Behavior of TA-SKY: Figure 6.12 and 6.13 demonstrates the incremental

performance of TA-SKY for discovering the new skylines for a specific query of size m′ =

12, while n = 1M and all the attributes having cardinality c = 12. Figure 6.12 shows the

CPU time as a function of the skyline size returned. We can see that even though the full

skyline discovery takes 250 seconds, within the first 50 seconds TA-SKY outputs more than

50% of the skyline tuples. Figure 6.13 presents the number of tuples TA-SKY accessed

as a function of skyline tuples discovered so far. The skyline contains more than 33k

tuples. In order to discover all the skylines, TA-SKY needs to access almost 700K (70%)

tuples. However, we can see that more than 80% of the skyline tuples can be discovered by

accessing less that 30% tuples.

6.6.3 Experiments over AirBnB Dataset

In this experiment, we test the performance of our final algorithm, TA-SKY, against

the real Airbnb dataset. We especially study (i) the effects of varying m′ and n on the

performance of the algorithm and (ii) the progressive behavior of it.

Effect of Varying Query Size (m′): In our first experiment on AirBnB dataset, we com-

pared the performance of different algorithms proposed in the paper with existing works.

We varied the number of attributes in the query (i.e., m′) from 2 to 24 while setting the

number of tuples to 1,800,000. Figure 6.14 shows the experiment result. Similar to our ex-

periment on the synthetic dataset (Figure 6.8), TA-SKY and ST-S perform better than the

remaining algorithms. Even though initially performing well, TOP-DOWN did not scale

after query length 4. This is because, with m′ > 4, the skyline hosts shift to the middle

of the corresponding query lattice, requiring TOP-DOWN to query many lattice nodes.

Figure 6.15 shows the relation between the performance of TA-SKY and the skyline size.

Unlike the generally accepted rule of thumb that the skyline size grows exponentially as the

number of attributes increases, in this experiment, we see that the skyline size originally
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started to decrease as the query size increased and then started to increase again after query

size 12. The reason for that is because when the query size is small and n is relatively large,

the chance of having many tuples with (almost) all attributes in Q being 1 (for Boolean at-

tributes) is high. None of these tuples are dominated and form the skyline. However, as the

query size increases, the likelihood of having a tuple in the dataset that corresponds to the

top node of the lattice decreases. Hence, if the query size gets sufficiently large, we will

not see any tuple corresponding to the top node. From then the skyline size will increase

with the increase of query size.

Effect of Varying Dataset Size (n): In this experiment, we varied the dataset size from

500,000 to 1,800,000 tuples, while setting m′ to 20. Figure 6.16 shows the performance of

TA-SKY and ST-S in this case. Once can see that between these two algorithms, the cost

of ST-S grows faster. Moreover, even though in the worst case TA-SKY is quadratically

dependent on n, it performs significantly better in practice. Especially in this experiment,

a factor of 4 increase in the dataset size only increased the execution time by less than a

factor of 3.

Progressive Behavior of TA-SKY: As explained in §6.4.2, TA-SKY is a progressive al-

gorithm, i.e., tuples that are inserted into the candidate skyline set are guaranteed to be in

SQ. This characteristic of TA-SKY makes it suitable for real world (especially web) appli-

cations, where, rather than delaying the result until the algorithm ends, partial results can

gradually be returned to the user. Moreover, we can see that TA-SKY tends to discover

a large portion of the skyline quickly within a short execution time with a few number of

tuple accesses (as a measure of cost in the web applications). To study this property of

the algorithm, in this experiment, we set n = 1, 800, 000 and m′ = 20 and monitored the

execution time, as well as the number of tuple accesses, as the new skyline tuples are dis-

covered. Figures 6.17 and 6.18 show the experiment results for the execution time and the
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number of accessed tuples, respectively. One can see in the figure that TA-SKY performed

well in discovering a large number of tuples quickly. For example, (i) as shown in Fig-

ure 6.17, it discovered more than 2
3

of the skylines in less that 3 seconds, and (ii) as shown

in Figure 6.18, more than half of the skylines were discovered by only accessing less than

2% of the tuples (20, 000 tuples).

6.6.4 Experiments over Zillow Dataset

We performed the similar set of experiments on Zillow dataset.

In our first experiment, we varied the number of attributes from 2 to 9 while the n is

set to 236,194. The experiment result is presented in Figure 6.19. Similar to our previous

experiments, ST-S and TA-SKY outperforms the remaining algorithms. This result also

shows the effectiveness of ST-S and TA-SKY on categorical attributes with large domain

size. For the next experiment, we varied the dataset size (n) from 50,000 to 240,000 tuples,

while setting m′ to 9. Figure 6.20 shows the performance of ST and TA-SKY for this

experiment. Figure 6.21 and 6.22 demonstrate the progressive behavior of TA-SKY for

m′ = 9 and n = 236, 194. We can see that 90% of skylines are discovered withing the first

second and by accessing only 1% tuples.

6.7 Final Remarks

In this paper, we studied the important problem of subspace skyline discovery over

datasets with categorical attributes. We first designed a data structure for organizing tuples

in candidate skyline list that supports efficient dominance check operations. We then pro-

pose two algorithms ST-S and ST-P algorithms for answering subspace skyline queries for

the case where precomputed indices are absent. Finally, we considered the existence of pre-

computed sorted lists and developed TA-SKY, the first threshold style algorithm for skyline
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discovery. In addition to the theoretical analysis, our comprehensive set of experiments on

synthetic and real datasets confirmed the superior performance of our algorithms.

6.8 Appendix

6.8.1 Tree Data Structure Optimization

Early termination: The tree structure described in §6.3.1, does not store any information

inside internal nodes. We can improve the performance of primitive operations (i.e., re-

duce the number of nodes visited) by storing some information inside each internal node.

Specifically, each internal node maintains two variables minScore and maxScore. The min-

Score (resp. maxScore) value of an internal node is the minimum (resp. maximum) tuple

score of all the tuples mapped in the subtree rooted at that node. The availability of such

information at each internal node assists in skipping search inside irrelevant regions.

While searching the tree to discover tuples dominated by or dominating a specific

tuple t, we also maintain an additional variable currentScore, which initially is the same as

score(t) at the root of the tree. During traversals, if we follow an edge that matches the

corresponding attribute value of t, currentScore remains the same7. However, if the edge

selected by the algorithm differs from the actual attribute value, we update the currentScore

value accordingly. In the PRUNE-DOMINATED-TUPLES(t) operation, we compare the

minScore value of each internal node visited by the algorithm with currentScore. If the

minScore value of a node u is higher than currentScore, we stop searching in the subtree

rooted at u, since it’s not possible to have a tuple t′ under u that is dominated by t (due to

monotonicity). Similarly, while checking if t is dominated by any other tuple in the tree,

we stop traversing the subtree rooted at an internal node u if currentScore is higher than

the maxScore value of u.
7An edge selected by the algorithm coming out from an internal node at level i matches the attribute value of t if t[Ai] = 0 (resp.

t[Ai] = 1) and we follow the left (resp. right) edge.

200



Figure 6.23 presents the value of minScore and maxScore at each internal node of the

tree for the relation in Table 6.3. Consider a new tuple t = 〈1, 0, 0, 0〉. In order to prune the

tuples dominated by t, we start from the root node a. At node a currentScore = score(t)

= 8. Since, t[A0] = 1, we need to search both the left and right subtree of a. The value

of currentScore at node c remains unchanged since the edge that was used to reach c from

a matches the value of t[A0]. However, for b the value of currentScore has to be updated.

The currentScore value at node b is obtained by changing the value of t[A0] to 0 (values

of the other attributes remain the same as in the parent node) and compute the score of the

updated tuple. Note that the value of currentScore is less than minScore in both nodes b and

c. Hence we can be sure that no tuple in subtrees rooted at node b and c can be dominated

by t.
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Figure 6.23: Example: Early termination
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Here we provide the details of the TOP-DOWN algorithm proposed in § 6.4.1. Given

a subspace skyline query Q, consider the corresponding subspace lattice. Each node u in

the lattice corresponds to a unique attribute combination which can be represented by a

unique id. We assume the existence of the following two functions, (i) ID(C): returns

the id of an attribute value combination, and (ii) InvID(id,m′): returns the corresponding

attribute-value combination for id. The details of these functions can be found in [96].

We observe that given a node identifier id, one can identify the ids of the parents

(resp. children) of its corresponding node by calling the two functions InvID and ID.

To do so, we first determine the corresponding attribute combination of id. Then identify

its parents’ (resp. children) combinations by incrementing (resp. decrementing) the value

of each attribute, and finally compute the id of each combination using the function ID.

TOP-DOWN starts by traversing the lattice from the top node of the lattice. At this node all

attributes have the maximum possible value; then conducts a BFS over it while construct-

ing the level (i − 1) nodes from the non-empty nodes at level i. A node in the lattice is

dominated if either one of its parents is dominated or there exists a tuple in the relation that

matches the combination of one of its parents.

Let id denote the id of the node in the lattice currently scanned by TOP-DOWN. The

algorithm first identifies the parents of the current node and checks if all of them (i) have

been constructed (i.e. have not been dominated) and (ii) are marked as not present (i.e.,

there is no tuple in DQ that had the combination of one of its parents). If so, the algorithm

then checks if there exist tuples in DQ with the same attribute value combination. We

use the term querying a node in order to refer to this operation. Algorithm 21 presents

pseudocode of this operation for a specific attribute value combination. If no such tuple

exists in DQ, it marks id as not present and moves to the element. Otherwise, it labels id

as present and outputs the tuples, returned from GET-TUPLES, as the skyline. The TOP-

DOWN algorithm queries a node only when the attribute value combination corresponding
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to the node is incomparable with the skylines discovered earlier. The algorithm stops when

there are no other ids in its processing queue.

Algorithm 21 GET-TUPLES
1: Input: Array values, Sorted lists LQ;

2: Output: List of tuples that have the same attribute value assignment as values.

3: tupleIDSet = ∅

4: for i = 1 to len(values) do

5: currV alue = values[i]

6: currtupleIDSet = Get all tupleIDs from Li ∈ LQ that has value currV alue

7: tupleIDSet = tupleIDSet ∩ currtupleIDSet

8: tupleList = [ ]

9: for tupleID in tupleIDSet do

10: Construct new tuple tnew with attribute values same as values and t[tupleID] =

tupleID

11: tupleList.append(tnew)

12: return tupleList;

The lattice structure for the subspace skyline query Q in Example 2 is shown in

Figure 6.24. Each node u in the lattice represents a specific attribute value assignment in

the data space corresponding toQ. For example, the top-most node in the lattice represents

a tuple t with all the attribute values 1 (i.e., t[Ai] = 1,∀Ai ∈ Q). We start from the top

node of the lattice. No tuple in DQ has value 1 on all the attributes in Q. Therefore, TOP-

DOWN marks this node not present (np). We then move to the next level and start scanning

nodes from the left. There exists a tuple t6 ∈ DQ with attribute values 〈1, 1, 1, 0〉. Hence,

we mark this node present (p) and output t6 as skyline. The algorithm stops after querying
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node 〈0, 1, 0, 1〉. TOP-DOWN only needs to query 6 nodes (i.e., check 6 attribute value

combinations) in order to discover the skylines. Note that the number of nodes queried by

TOP-DOWN is proportional to the number of attributes in Q and inversely proportional to

the relation size n. This is because with large n and small |Q|, the likelihood of having

tuples in the relation that correspond to the upper-level nodes of the lattice is high.

Algorithm GET-TUPLES: The algorithm to retrieve tuples in the relation matching the

attribute value combination of a specific node is described in Algorithm 21. The algorithm

accepts two inputs: (1) values array representing the value of each attribute Ai ∈ Q, and

(2) Sorted lists LQ. For each attribute Ai ∈ Q (1 ≤ i ≤ m′), the algorithm retrieves the

set of tupleIDs Si, that have value equals values[i]. This is done by performing a search

operation on sorted list Li. The set of tupleIDs that are discovered in every Si are the ids

of the tuple that satisfy the current attribute value combination. We identify these ids by

performing a set intersection operation among all the Sis (1 ≤ i ≤ m′). Once the ids of all

the tuples that match values of array values are identified, the algorithm creates tuples for

each id with the same attribute value and returns the tuple list.

6.8.2.1 Performance Analysis

For each non-dominated node in the lattice, the TOP-DOWN algorithm invokes the

function GET-TUPLES. Hence, we measure the cost of TOP-DOWN as the number of

nodes in the lattice for which we invoke GET-TUPLES, times the cost of executing GET-

TUPLES function. Since the size of all sorted lists is equal to n, applying binary search on

the sorted lists to obtain tuples with a specified value on attribute Ai requires O(log(n));

thus the retrieval cost from all the m′ lists is O(m′ log(n)). Still taking the intersection

between the lists is in O(nm′), which makes the worst case cost of the GET-TUPLES

operation to be O(nm′). Let k be the cost of GET-TUPLES operation over LQ, for the
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Algorithm 22 TOP-DOWN
1: Input: Query Q, Sorted lists LQ;

Output: SQ.

2: processed = ∅;

3: C = the attribute combination of Q with maximum possible value for each attribute

4: addQ(queue, ID(C))

5: while queue is not empty do

6: id = delQ(queue)

7: for pid in parents(InvID(id))

8: if pid /∈ processed or pid is marked as present

9: continue //skip this node

10: tupleList = GET-TUPLES(values, LQ)

11: if len(tupleList) == 0:

12: append processed by 〈id,not present〉

13: children = children(InvID(id))

14: for c ∈ children

15: if c is not in queue: addQ(queue, c)

16: else:

17: append processed by 〈id,present〉

18: Output all the tuples in tupleList as skyline.

given relation D. Moreover, considering pi as the probability that a tuple has value 1 on

the binary attribute Ai, we use C(l) to refer to the expected cost of TOP-DOWN algorithm

starting from a node u at level l of the lattice.

Theorem 12. Consider a boolean relation D with n tuples and the probability of having

value 1 on attribute Ai being pi, and a subspace skyline query Q with m′ attributes. The
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expected cost of TOP-DOWN on D and Q starting from a node at level l is described by

the following recursive forumula:

C(m′) = k/m′

C(l) =


k + (1− p!∅(l))m′C(l + 1) if l = 0

1
l {k + (1− p!∅(l)(m′ − l)C(l + 1)} otherwise

(6.10)

where p!∅(l) = 1− (1−
∏l

i=1(1− pi)
∏m′−l

i=1 pi)
n.

Proof. Consider a node u at level l of the lattice. Node u represents a specific attribute

value assignment with l number of 0s and (m′ − l) number of 1s. Querying at node u will

return all tuples in dataset that have the same attribute value assignment as u. Let p(t, l) be

the probability of a tuple t ∈ DQ having l number of 0s and (m′ − l) number of 1s.

p(t, l) =
∏l

i=1
(1− pi)

∏m′−l

i=1
pi (6.11)

If querying at node u returns at-least one tuple then we do not need to traverse the

nodes dominated by u anymore. However, if there exists no tuple in DQ that corresponds

to the attribute value combination of u, we at-least have to query the nodes that are imme-

diately dominated by u. Let p!∅(l) be the probability that there exists a tuple t ∈ DQ that

has the same attribute value assignment as u. Then,

p!∅(l) = 1− (1−
l∏

i=1

(1− pi)
m′−l∏
i=1

pi)
n (6.12)

There are total (m′ − l) number of nodes immediately dominated by u. Therefore,

Cost at node u is the cost of query operation (i.e., k) plus with (1 − p!∅(l)) probability the

cost of querying its (m′ − l) immediately dominated nodes.
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C(l) = k + (1− p!∅(l))(m′ − l)C(l + 1) (6.13)

Note that a node u at level l has total l number of immediate dominators causing the

cost at node u to be computed l times. However, TOP-DOWN only needs to perform only

one query at node u. Hence, the actual cost can be obtained by dividing the computed cost

with value l.
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Figure 6.25: Expected number of nodes queried vs. query length

Limitation: We use Equation 6.10 to compute |C(l)| as a function of |Q| over three uni-

form relations containing one million tuples with cardinality 2, 4, and 6 respectively. The

expected cost increases exponentially as we increase the query length. Moreover, the ex-

pected cost also increases when the attributes in Q have higher cardinality.

6.8.3 Proofs

In this section, we provide detailed proofs for the theorems from the main section of

the paper.

THEOREM 9. Considering a relation with n binary attributes where pi is the prob-

ability that a tuple has value 1 on attribute Ai, the expected cost of IS-DOMINATED(tQ)

operation on a tree T , containing s tuples is as specified in Equation 6.2.
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Proof. Consider t be the tuple for which we have to check if it is dominated. IS-

DOMINATED stops the recursion when we reach a leaf node or move to a node that is

empty (i.e., has no tuple mapped under it). Therefore, C(m′, s) = 1 and C(l, 0) = 1.

Let us assume that we are in node u at level l of the tree and there are s tuples mapped

in the subtree rooted at u.

If t[Al] = 0, IS-DOMINATED first searches in the right subtree. If no tuple t′Q in

the right subtree dominates tQ, we then move to the left subtree. Let us assume the right

subtree of u contains sright number of tuples (sright ≤ s). Let S(l, sright) be the probability

that there exists a tuple in the right subtree of u containing sright tuples that dominates tQ.

In order for a tuple t′Q to dominate tQ, it must have at-least value 1 on the attributes in

Aones(t[l+1:m′]). This is because, since t′[Ai] ≥ t[Ai] (1 ≤ i ≤ l − 1) and t′[Al] > t[Al],

having value 1 on attributes in Aones(t[l+1:m′]) is enough for t′Q to dominate tQ. Hence, the

probability of t′Q dominating tQ is
∏|Aones(t[l+1:m′])|

i=1 pi. Therefore,

S(l, sright) = 1− (1−
∏|Aones(t[l+1:m])|

i=1
pi)

sright (6.14)

The expected cost of IS-DOMINATED, when t[Al] = 0 is then,

(1− S(l, sright))C(l + 1, s− sright) + C(l + 1, sright) (6.15)

If t[Al] = 1, IS-DOMINATED will always search in the right subtree. Hence, the

expected cost when t[Al] = 0 is,

C(l + 1, sright) (6.16)

A node at level-l containing s tuples under it with the probability of having 1 on

attributeAl being pl, the left subtree will have i tuples with the binomial probability
(
s
i

)
(1−

pl)
ips−il . Hence, expected cost node u, C(l, s) is,
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1 +
s∑
i=0

(
s

i

)
(1− pl)ips−il (C(l + 1, s− i)+

(1− pl)(1− S(l, s− i))C(l + 1, i)) (6.17)

THEOREM 10. Given a boolean relationD with n tuple and the probability of having

value 1 on attribute Ai being pi, the expected cost of PRUNE-DOMINATED-TUPLES(tQ)

operation on a tree T , containing s tuples is as computed in Equation 6.3.

Proof. PRUNE-DOMINATED-TUPLES(tQ) stops the recursion when we reach a leaf

node or move to a node that is empty (i.e., has no tuple mapped under it). Therefore,

C(m′, s) = 1 and C(l, 0) = 1.

Suppose we are in node u at level l of the tree and there are s tuples mapped in the

subtree rooted at u.

If t[Al] = 0, we need to search only in the left subtree. Whereas, for t[Al] = 1 we

need to search both the left and right subtree.

Let pl be the probability of having value 1 on attribute Al. The left subtree of node

u at level l (with s tuples under it) will have i tuples with the binomial probability
(
s
i

)
(1−

pl)
ips−il . Hence, expected cost at node u, C(l, s), is:

1 +
s∑
i=0

(
s

i

)
(1− pl)ips−il ((1− pl)C(l + 1, i)+

pl(C(l + 1, i) + C(l + 1, s− i))) (6.18)
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LEMMA 2. Considering pi as the probability that a tuple has value 1 on the binary

attribute Ai, the expected number of tuples discovered by TA-SKY after iterating i lines is

as computed in Equation 6.4.

Proof. The probability that a tuple t is discovered by iterating i rows is one minus the

probability that t is not discovered in any of the m′ lists in LQ. Formally:

Pseen(t, i) = 1− Πm′

j=1P!seen(t, i, Lj) (6.19)

where P!seen(t, i, Lj) is the probability that t is not discovered at list Lj until row i.

P!seen(t, i, Lj) depends on the number of (tupleId, value) pairs with value 1 in list Lj .

A list Lj has k number of (tupleId, value) pairs with value 1 if the database has k tuples

with value 1 on attribute Aj , while others have value 0 on it. Thus, the probability that Lj

has k number of (tupleId, value) pairs with value 1:

PLj
(k) =

(
n

k

)
(1− pj)n−kpkj (6.20)

t is not seen until row i at list Lj if either of the following cases happen:

• t[Aj] = 0 and (considering the random positioning of tuples in lists) t is located after

position i in list Lj for all the cases that Lj has k (k < i) number of (tupleId, value)

pairs with value 1.

• t[Aj] = 1 and (considering the random positioning of tuples in lists) t is located after

position i in list Lj for all the cases that Lj has k (k > i) number of (tupleId, value)

pairs with value 1.

Thus:

P!seen(t, i, Lj) =

(1− pj)
( i−1∑
k=0

PLj
(k)

n− i
n− k

+
n∑
k=i

PLj

)
+ pj

n∑
k=i+1

PLj
(k)

k − i
k

(6.21)
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We now can compute Pseen(t, i) as following:

Pseen(t, i) =

1−
m′∏
j=1

(
(1− pj)

( i−1∑
k=0

PLj
(k)

n− i
n− k

+
n∑
k=i

PLj

)
+ (6.22)

pj

n∑
k=i+1

PLj
(k)

k − i
k

)
Having the probability of a tuple being discovered by iterating i lines, the expected number

of tuples discovered by iterating i lines is:

Eseen[i] = nPseen(t, i) = Equation 6.4

THEOREM 11. Given a subspace skyline query Q, the expected number of sorted

access performed by TA-SKY on a n tuple boolean database with probability of having

value 1 on attribute Aj being pj is,

m′
n∑
i=1

i× Pstop(i)

where Pstop(i) is computed using Equations 6.7, 6.8, and 6.9.

Proof. Let us first compute the probability that algorithm stops after visiting i rows of the

lists. Please note that the algorithm checks the stopping condition at iteration i if cvij = 0

for at least one sorted list. Thus the algorithm stops when (1) cvij = 0 for at least one sorted

list AND (2) there exists a tuple among the discovered ones that dominates the maximum

possible tuple in the remaining lists.

Suppose i′ tuples have seen at least in one of the list so far. Using Lemma 2 we can

set i′ = Eseen[i]. Let Pj0(i) be the probability that cvij = 0 for sorted list Lj .

Pj0 = (1− pj)n−i (6.23)
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Moreover, Consider P0(i, k) be the probability that after iteration i, cvi = 0 for k

sorted lists and Qk is corresponding attribute set. Therefore,

P0(i, k) =

(
m′

k

) ∏
Aj∈Qk

Pj0
∏

Aj∈Q\Qk

(1− Pj0) (6.24)

For a given setting that cvi = 0 for k sorted lists, the algorithm stops, iff there exists

at least one tuple among the discovered ones that dominate the maximum possible value in

m′ sorted lists; i.e. the value combination that has 0 in k and 1 in all the remaining m′ − k

positions.

A tuple t need to have the value 1 in all the m′−k list and also at least one value 1 in

one of the k lists (Qk) to dominate the maximum possible remaining value. The probability

that a given tuple satisfies this condition is:

Pstop(t,Qk) = Π
∀Aj∈Q\Qk

pj(1− Π
∀Aj∈Qk

(1− pj)) (6.25)

Thus, the probability of having at least one tuple that satisfies the dominating condition is:

Pdominate(i, k) =

(
m′

k

)
× (1− (1− Pstop(t,Qk))i

′
) (6.26)

We now can compute the probability distribution of the algorithm cost as following:

Pstop(i) =
m∑
k=1

P0(i, k)× Pdominate(k) (6.27)

Finally, the expected number of sorted access performed by TA-SKY is:

m′
n∑
i=1

i× Pstop(i) (6.28)
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