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ABSTRACT

Hyper-Optimized Machine Learning and Deep Learning Methods for Geo-Spatial

and Temporal Function Estimation

Neelabh Pant

The University of Texas at Arlington, 2018

Supervising Professor: Ramez Elmasri

Owing to a high degree of freedom in human mobility, accurate modelling/estimation

of human mobility function remains a challenge. Numerous work in the literature have

tried to address the challenge using various traditional machine learning methods on

spatio-temporal attributes of data. We compare the use of Varied-K Means clus-

tering, Hidden Markov Model techniques, feed forward neural networks, recurrent

neural networks (RNN) and Long Short Term Recurrent Neural Networks (LSTM)

to predict a user’s future movement based on the user’s past historical data. Al-

though several techniques were proposed to predict a user’s movement, not many

have concentrated on a user’s location based on weekday and time period within the

day, as well as other features such as weather conditions (for example, temperature

and precipitation). We introduce machine learning and deep neural network models

using regression and classification techniques that can answer day-specific queries

like “Where is the user most likely to be on a specific day of the week”, day-time

specific queries like “Where is the user most likely to be on a specific day of the
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week and time of the day” or spatio-temporal-weather queries like “The user is

currently at a specific location with temperature of 70 degree and precipitation < 0.1,

where would the user most likely to travel next given a day of the week and time of

the day”. Our deep learning classifier gives an average classification accuracy of 88%,

which is almost 1.4 times better than other traditional machine learning methods.

Deep learning regression’s loss constantly keeps on decreasing as we train the model

more.

We then shift our domain from geospatial data to financial data by introducing

the famous problem of predicting future stock prices and future currency exchange

rates. Researchers have done extensive work in creating models to predict stock

prices but to the best of our knowledge most of the works have not shown techniques

to optimize the hyperparameters and find “the best” model out of all the possible

models to predict stock prices as close as possible. In this work we have worked on

a meta-heuristic hyperparameter optimization technique called Genetics Algorithm /

Evolutionary Algorithm through which we have selected the best model for a specific

kind of problem. We also make use of the sliding window technique to capture

the patterns within the data for better prediction. We decide the size of window

more by calculating the partial-auto-correlation between the data to calculate the

best window size. In our temporal analysis we chose to predict future Apple stock

prices using technical and fundamental analysis (hybrid approach). By making use

of hyperparameter optimization using genetics we try to compare different artificial

neural networks among themselves and try to find the best model with the right

hyperparameters for a certain kind of problem. Our method also determines the most

important features (parameters) for the accurate prediction of future stock prices.
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CHAPTER 1

INTRODUCTION

In this chapter, we first introduce the area of this dissertation research, known

as Spatial and Temporal Function Estimation (STempFEst), and our research contri-

butions to Human Mobility Function Estimation in Section 1.1. Then, in Section 1.2,

we discuss our research contribution to the area of Stocks and Currency Exchange

Prediction. Then, in Section 1.3, we give an outline of the remaining chapters of the

dissertation.

1.1 Human Mobility Function Estimation

The most utilized application in today’s time is the Global Positioning System

or GPS. A user through such a device views spatial objects like roads, gas stations,

cities or continents. It also helps the user to find different routes to reach a destination

dynamically or to look for traffic on a specific route to his/her work place. All

such information about the real world data objects, for example, human transit or

stationary objects like routes, cities, etc. are stored and retrieved from a database.

User’s location history is stored every time a user commutes between places and often

a user follows a certain pattern in his daily life. According to [1] human behavior is

93% predictable. The research shows that the common perception is that the human’s

actions are random and unpredictable, human mobility follows a regular pattern.

Most people are equally predictable in their travel patterns even when there

lies a significant differences in mobility behavior. An individual’s future locations

can be predicted based on past travel/location history. We also investigate the high
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2
correlation between time and frequency of travel. The correlation also is between

time and locations where the user is currently available. Weather (temperature and

precipitation) on the other hand also plays an important role and shows a high positive

or negative correlation with frequency of travel.

In this project we implement multiple predictive technologies to predict the

future locations of a user. We implement predictive models like

• Hidden Markov Models

• Decision Trees

• K-Nearest Neighbors

• Support Vector Machines

• Feed Forward Neural Networks

• Recurrent Neural Networks (RNN)

• Long Short-Term Memory Neural Network (LSTM)

We begin by implementing Hidden Markov Model (HMM) to predict a user’s

future locations. Data used in this research was the GPS trajectories collected by

Microsoft Research Asia. There are 182 users in a period of three years (April 2007 to

August 2012). The dataset is a sequence of time stamped points containing latitude,

longitude and altitude [2–4].

This work describes correctly classifying future locations of a user such that we

can answer questions like “Where is the user most likely to be when it is a Monday?”

or day and time-specific queries like “Where is the user most likely to be between

6:00 pm and 9:00 pm on Saturdays?”. The first step is to cluster locations and

to solve this we use varied K-means algorithm, which unlike traditional K-means,

sophisticatedly decides that number of significant clusters of a user. These clusters

are then considered as visible states in the HMM and the hidden states are the days

of the week and time of the day.



3
The universal approximation theorem, which states that a feed-forward network

with finite number of hidden layers and neurons are capable of estimating continuous

functions on compact subsets of euclidean space Rn [5]. According to this theorem a

neural network can represent a wide variety of functions with appropriate parameters

(hyper-parameters). Although, the hyper-parameters need to be fine tuned by the

network designer.

We then design neural networks to predict future locations both by classifying

the clusters and using regression technique to predict coordinates. We fine tune the

algorithms by using meta-heuristic technique called genetic algorithm [6, 7]. Meta-

heuristics are used to find or generate heuristic designs that provide a sufficiently good

solution to an optimization problem especially with limited computational capacity.

It samples a set of solutions, which is too large to be completely sampled and make few

assumptions about the optimization problem being solved and so they may be usable

for a variety of problems. Compared to optimization algorithms and iterative methods

meta-heuristics cannot guarantee that a globally optimal solution can be found [8].

In combinatorial optimization by searching over a large set of feasible solutions meta-

heuristics can often find good solutions with less computational efforts [9]. Genetic

algorithm is inspired by evolution (natural selection, reproduction and survival of the

fittest).

We begiin by setting the benchmark by implementing traditional machine learn-

ing algorithms like, SVM [10], Decision Tree [11], K-Nearest Neighbors [12]. We then

implement a regular Feed Forward Neural Network and compare its performance with

a Recurrent Neural Network (RNN) and Long Short Term Memory Neural Network

(LSTM). All the models are fine tuned using genetics algorithm.



4
1.2 Stocks and Currency Exchange Prediction

This works describes prediction of purely temporal data using optimized regular

and time series neural networks like RNN and LSTM. We shift our domain from

spatio-temporal to pure temporal data like stocks and currency exchange price. We

gather Apple Inc. stock prices along with other companies stocks, which show either

high positive or negative correlation with Apple’s stock price. For the purpose of

currency exchange price prediction we gather the currency exchange rates between

United States Dollar and Indian Rupees. The currency exchange data collected is

from 1987 to 2017 (30 years).

Forecasts of stocks can be considered in two categories: technical analysis and

fundamental analysis. In technical analysis we only consider past historical data and

in fundamental analysis we consider external effects [13]. In our work we have used a

hybrid approach that considers both technical and fundamental analysis. We try to

predict next day’s Apple’s stock closing price by including its own high, low, volume,

close data along with Microsoft’s, IBM’s and Standard and Poor’s high, low, volume

and closing price. We have a total of past 10 years of data from 2008 to 2018.

Prediction of how much a dollar will cost tomorrow can guide one’s decision

making and can be very important in minimizing risks and maximizing returns. The

dataset used in this project is the exchange rate data between January 2, 1980 and

August 10, 2017. The dataset displays the value of $1 in rupees. We have a total of

13,730 records starting from January 2, 1980 to August 10, 2017. Over the period,

the price to buy $1 in rupees has been rising.

We make use of feed forward neural network, recurrent neural network and long

short term memory neural network to predict the stocks and currency exchange rates.
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1.3 Dissertation Organization

In Chapter 2, we describe the use of Varied-K Means clustering and Hidden

Markov Model techniques to predict a user’s future movement based on the user’s

past historical data. In this work, we have used real-world geospatial data (including

latitude, longitude, day and time) recorded using GPS devices to extract meaningful

locations, and model them in such a way that we may predict where a user will be at

a given time and day of the week. We cluster the locations using the varied K-means

algorithm and implement hidden markov model to learn the pattern of a user not just

based on days of the week but also including the time of day. With such a model,

we would be able to answer queries like “Where is a user most likely to be at 6 pm

on Wednesday?”. The visible states display the location clusters of the user but the

hidden states show the weekday and time of day. To reduce the number of hidden

states, we divided the 24-hours of a day into 8 periods, each period consisting of a

3-hour interval, starting from 12am - 3am, 3am - 6am, ..., 9pm - 12am. In this way,

we divided a day into 8 equal periods where each period of a day was a hidden state

for each visible state.

In Chapter 3, we implement regression and classification for the purpose of

predicting locations by making use of regular feed-forward neural networks. For

the purpose of regression the model is successfully able to estimate a user’s spatio-

temporal movement function to make accurate predictions and the classifier is able to

classify location clusters accurately by learning novel concepts. Our model assumes a

completely realistic setting of first the availability of GPS coordinates for individual

users, second an access to open weather API for obtaining current weather condi-

tions. We have tested the validity of our claims using a real-life dataset from a user

and found the accuracy of our model to be accurate 88% of the time.
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In Chapter 4 we talk about predicting stocks, currency exchange rates and

user’s locations using hyper optimized models using genetics algorithm. The models

we take into consideration for predictions are feedforward neural networks, recurrent

neural networks and long short term memory neural networks.

Finally, Chapter 5 summarizes the contributions made in the dissertation.



CHAPTER 2

Detecting Meaningful Places and Predicting Locations Using Varied

K-Means and Hidden Markov Model

2.1 Introduction

This work describes the use of Varied-K Means clustering and Hidden Markov

Model techniques to predict a user’s future movement based on the user’s past his-

torical data. Several techniques [14,15] were proposed to predict a user’s movement,

but not many have concentrated on the user’s location based on both weekday and

time period within the day. We have introduced a method which models the user’s

data, not by just taking day of the week into consideration but also time interval.

Our model is able to answer day-specific queries like “Where is the user most likely

to be when it is a Monday?” or day and time-specific queries like “Where is the user

most likely to be between 6:00 pm and 9:00 pm on Saturdays?” Our work gives us

much higher prediction accuracy than previous research on this topic [16].

In this work, we have used real-world geospatial data (including latitude, lon-

gitude, day and time) recorded using GPS devices to extract meaningful locations,

and model them in such a way that we may predict where a user will be at a given

time and day of the week.

The dataset (GeoLife) contains GPS trajectories collected by Microsoft Re-

search Asia from 182 users during a period of over 3 years. The dataset is a sequence

of time stamped points containing latitude, longitude and altitude [2–4]. GPS loggers

and GPS phones were used to record the trajectories approximately every 5 seconds.

When a user’s location change occured at a speed of less than 3 mph (assumed walk-

7
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ing speed), the GPS logger did not record the data points. The dataset is distributed

over 30 cities in China but mainly comprises locations in Beijing, China.The dataset

was cleaned and uploaded to SQLite database.

Since the dataset is just a set of trajectories with a time difference of 5 seconds

between pairs of consecutive points (latitude, longitude), there was a need to develop

an algorithm which would intelligently group the points together to identify locations

where a particular user spent most of their time. These locations are then considered

as meaningful places where the user not only frequently went but also where the user

spent substantial time.

Though the locations history of a user normally remains private and secured, if

a user chose to share their locations with another individual, then an application of

this research would be a shared location recommendation system. Consider a scenario

where user1 and user2 have shared their locations histories with each other and are

aware of each user’s normal daily locations and tasks. This information can help them

to plan tasks more efficiently and help each other if needed. For example, user1 has

their things to do “input” list saved on their smartphone and “buying groceries” is

listed as a pending task. The system predicts that user2 will be near or at a grocery

store during the day while user1 is busy at the office and cannot go. With the help

of such a system, user2 would be able to retrieve user1’s grocery list and a reminder

to buy groceries for user1.

One may also make use of this system in terms of online security. Any website

where a user must log in to his/her account using their login credentials needs to place

a special focus on securing the user’s account on various devices. Such websites make

use of the device’s MAC address so that when a user tries to log in from any unknown

device, the website requires the user to perform an extra step to confirm their identity.

If such websites make use of location prediction technology, such as presented in this
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paper, then the website will automatically know the predicted behavior of the user

and will recognize him/her without having to further confirm their identity.

2.2 Related Works

The two-stage approach to location prediction has been used by several re-

searchers. In [14, 15], the focus is on predicting user’s location based on GPS data.

They use K-means to cluster the locations, which influenced our approach, but they

make use of a basic Markov Model as part of their predictive model. Their prediction

is dependent on the user’s past location only and does not include day and time as

in our work. We use Hidden Markov Model to incorporate weekdays and time as

hidden states. Although a person’s future location will depend on past and present

locations, for a more comprehensive prediction we need to include weekday and time

in the features set, which is lacking in [14, 15]. They can predict “where someone

will go next, but not when”. In our research, we can answer the ”when?” including

weekday and time.

[17] has proposed a similar approach by using DBSCAN [18] instead of K-

means [19] to cluster the data points, and using a variable order Markov Model instead

of HMM for predictions. DBSCAN focuses mainly on the density of the data points

and cluster them accordingly. Our K-means clustering algorithm can be customized

based on different users and their pattern of stopping at specific locations, which is

unrelated to the density of the data points. K-means gave us the liberty to set the

number of K clusters, which was calculated by looking at the pattern of “time spent

at locations” for each user. Hence, each user has different numbers of clusters based

on their own behavioral pattern. Using Hidden Markov Model in our research we

included weekday and time in our predictions. In our work, we are successfully able
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to answer the questions like “Where is a user most likely to be at 7pm on Friday?”.

Such queries were not answered in [17].

[20] talks about predicting future locations based on historical data, but also

address the “data sparsity problem”, which means “unavailable historical trajectories”.

They propose a method which they call “sub-trajectory systhesis” (SubSyn) to address

the data sparsity problem. They also have considered the privacy protection issue in

order to hide sensitive location information of a user.

[16] proposed a different technique to cluster user’s data based on temporal

characeristics i.e. a cluster for sequences whose visits are made on weekdays by day-

time (7am-7pm) and so on. The clustering algorithm is a very simple approximation

that uses the timestamp of the last visited location. In our work, we have a more

sophisticated algorithm that clusters a user’s data points according to their pattern

of stopping at a point of interest.

[21] on the other hand introduces a data mining approach to predict future

location of a moving object. The author mines the database of moving object to match

the unseen trajectory with the extracted trajectory to select the best association rule.

2.3 Clustering of Locations

We used the K-means algorithm to cluster the dataset but have modified it for

our purpose. In general, the traditional K-means algorithm takes randomly-selected-

user-defined k numbers of centroids to form k clusters. Each centroid compares its

distance from the remaining set of points. The closest points to each centroid make a

cluster, for which the mean location is calculated. The mean of all the points in a set

is used as the new centroid for the next clustering iteration. This process is repeated

until the mean stops changing. Once the mean no longer moves, all the points within
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it represent a cluster and are removed from consideration. This process is repeated

until no centroid is remaining [19].

Our variation of the K-means algorithm was influenced by [14, 15], which con-

centrated on ”where the user is instead of how the user got there”. Our focus was to

find locations where a user spent most of their time and to relate those locations to

days of the week and times of the day. We targeted our algorithm to find the time

elapsed between two consecutive points. If the elapsed time satisfied a threshold, then

we marked it as a significant point according to that user. In this approach, we iden-

tified the points which have more than a threshold time difference “τ” between them

and their corresponding previous points. Another challenge was to find a significant

value of τ . In order to do this, we plotted a graph of Graph to identify meaningful

locations.

Figure 2.1: Graph to identify meaningful locations.

Figure 2.1 shows the graph that represents the average number of sites (y-

axis) found for all 178 users when stopped for different durations of time (x-axis).

We looked for the elbow or knee in the graph and made that duration of time a
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generalized condition for all the users on unique locations to focus on where each user

stopped. As the time approached zero, the number of sites found were approximately

485,000.

After deciding on right time duration, which in our case was 10 minutes, we

started extracting the sites’ locations (latitude, longitude). Once we extracted all

those points, we kept them in a set which we called the significant sites. In the

traditional K-means algorithm, we would need to initialize the algorithm with a value

of k. In our approach, the total count of significant sites where a user stopped for at

least 10 minutes was chosen as the value of k, or the number of desired clusters.

The next step was to cluster points around these centroids. Since the data

set consists of GPS recordings of people from China, the data is spread widely on

a city-wide scale. We needed to have a good measure of the radius for a cluster.

This was very important because if the radius was too large, we would end up with

insignificant places in the cluster which will eventually give us incorrect results. If

the radius was too small, we might end up getting one single point in the cluster.

To select the best value of the radius for a cluster, we found the distances between

each significant centroid. The distance between two points δ was calculated using the

Haversine formula, which is defined as:

hav(d
r

) = hav(ϕ2 − ϕ1) + cos(ϕ1)cos(ϕ2)hav(λ1 − λ2),

where hav is haversine function which is defined as:

hav(θ) = sin2(θ2) = (1− cosθ
2 ),
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Figure 2.2: Clusters found for user3 when radius=0.2 miles

d = distance between two points,

r = radius of sphere,

ϕ1, ϕ2 = latitude of point 1 and point 2,

λ1, λ2 = longitude of point 1 and point 2, and
d
r

= central angle in radians.

We used the Haversine formula to calculate the great-circle distance between

two points on a sphere from their latitudes and longitudes, which is the shortest

distance over the earth’s surface [22].

After calculating the distances between all sites, we extracted the minimum

δ and used it as our radius of the clusters. For different users, δ came out to be

different as one value of δ cannot be generalized for all the users. Figure 2.2 displays

the clusters for a specific user, user3 in this case. The δ value was set to 0.2 miles.

The black dots are the clusters shown in the figure. There are a total of 253

clusters for user3, 6 of which are shown in the figure. These clusters, if examined

closely, are around areas like a residential district, university (Tsinghua University,
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Beijing), hotel, airport, etc. A lot of information may be inferred from these clusters

for better analysis, and we used such information for our prediction problem.

2.4 Hidden Markov Model

After we ran the clustering algorithm described in the previous section to create

clusters of locations based on the two parameters time τ and radius δ, we got a set

of clusters which represented the sites or locations where a user tended to visit.

After we got all the clusters of locations, we updated our SQLite database where the

GPS records are saved chronologically in order to update each user location with its

respective cluster id (called LocID). One may name the clusters with specific names

(if known) to make more sense of them, like ”Home,” ”Grocery store,” ”Work place,”

etc., but we named them with integer ids for our purpose. The database table for a

user consists of the records shown in table 2.1:

User ID Latitude Longitude DateTime LocID

Table 2.1: Database Records of a User

Each latitude and longitude point is a member of a cluster and hence gets the

cluster id in LocID attribute in the database table. After this process is completed,

we have LocIDs in the database updated. These LocIDs are aligned chronologically,

which helps us to get the transition from one cluster to another. As an example,

figure 2.3 shows transitions between some of the sets of clusters for user3.

A line between any two clusters represents that the user moved from one cluster

to another at some point in time. We do not show the direction of transition in figure

2.3, but direction is included in the data itself. We can thus analyze the number of
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Figure 2.3: Transition Between Clusters

times the user has traveled from one cluster to another. This will help us to calculate

the probability of the user travelling from one cluster to another cluster.

Figure 2.4: Transition Between Clusters with Probabiities

In figure 4, we have shown an example of how the transitions take place between

different clusters. Figure 2.4 shows 7 clusters out of 212 clusters of user3. These

clusters were given names using integer numbers (1, 2, 3, ..., 212). The ones which

are shown in the figure are LocID 33, LocID 7, LocID 63, LocID 66, LocID 177, LocID

193 and LocID 153. A markov model was created for each location in the map with

transitions to other locations. Markov Models are state transition models with the
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nodes being the locations with corresponding state transitions between the nodes. It

follows the Markov rule which states that the future state depends on the current

state and observational data but are independent of past states [23]

Each cluster is a node in the Markov Model and the lines between each cluster

represent the probability of the user to transition from one cluster to another cluster.

For example, there is a 45% probability for user3 to go to LocID 66 when the user

is currently at LocID 33 or 23% probability to go to LocID 193 when the user is

currently at LocID 66. We ran the algorithm on the whole dataset of user3, which

gave us the results in form of transition probability which was used to answer queries

like “Where is user3 most likely to travel next if he is currently at location 46?”.

Places Times Transition Frequency Prob.
39 1 15 to 39 1/49 0.02
44 1 15 to 44 1/49 0.02
45 16 15 to 45 16/49 0.33
64 2 15 to 64 2/49 0.04
88 2 15 to 88 2/49 0.04
105 24 15 to 105 24/49 0.48
126 1 15 to 126 1/49 0.02
138 2 15 to 138 2/49 0.04

Total Visits 49

Table 2.2: Probability of User3 from Location 15

Such results are helpful to analyze the spatial behavior of a user, but with such

analysis we miss out on the temporal behavior of the user. The primary objective of

this research is to predict a user’s location given a day and a time of the day through

which we can answer queries like “Where is a user most likely to be when it is a
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Places Times Transition Frequency Prob.
7 1 67 to 7 1/44 0.02
66 31 67 to 66 31/44 0.7
100 3 67 to 100 3/44 0.07
108 1 67 to 108 1/44 0.02
182 2 67 to 182 1/22 0.04
194 2 67 to 194 2/44 0.04
212 4 67 to 212 1/11 0.09

Total Visits 44

Table 2.3: Probability of User3 from Location 67

Monday?” or “Where is a user most likely to be when it is 6 pm on Sunday?” or,

“Give me the next most probable location of a user when he is currently at home and

it is Thursday at 5 pm.” Such queries cannot be obtained by the analysis done above.

For such analysis, we make use of the Hidden Markov Model [24] where we introduce

day and time as the hidden states for each visible state which, in our experiments,

are the site locations.

There are multiple queries one may think of when predicting the location of a

user. One of the most common prediction queries is to know where a user is on a

specific day like Sunday, for example. To answer such a query, we make use of the

Hidden Markov Model represented in figure 2.5, where A, B and C are the visible

states, or the clusters, and the hidden states are the days of the week. Thus, by the

use of Bayesian approach, we can answer the above query by

P(x|Sunday) = P(Sunday|x) ∗P(x)
P(Sunday) ,where

x = ClusterID.



18
The query result is delivered by finding the x with the maximum probability.

P(Sunday—x) , can be calculated by finding out the total number of visits to cluster

x on Sunday divided by the total number of visits to cluster x. P(x) is the ratio of

total points in cluster x over the total number of points in all the clusters. Finally, if

X = set of all clusters, then:

P(Sunday) = [P(Sunday—x) * P(x)] + [P(Sunday—y) * P(y)] + ...+ [P(Sunday—n)

* P(n)], where (x, y, ..., n) ∈ X.

Figure 2.5: Hidden Markov Model for Days In a Week

Next, we take our model to one extra level where we let the model learn the

pattern of a user not just based on days of the week but also including the time of day.

With such a model, we would be able to answer queries like “Where is a user most

likely to be at 6 pm on Wednesday?”. Figure 2.6 shows the model where the visible

states remain the same as figure 5 but the hidden states have been expanded with

the time of day. To reduce the number of hidden states, we divided the 24-hours of a

day into 8 periods, each period consisting of a 3-hour interval, starting from 12am -

3am, 3am - 6am, ..., 9pm - 12am. In this way, we divided a day into 8 equal periods

where each period of a day was a hidden state for each visible state. As an example,

consider figure 6 below.
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Figure 2.6: Hidden Markov Model for Days and Time

States A, B and C have their corresponding hidden states Monday 1st period,

Monday 2nd period, ..., Sunday 7th period and Sunday 8th period. Each period

will contribute towards the prediction by having some probability of its occurrence

based on the user’s historical data. For example, if we were to find the answer for

the above query, which asks for the most probable location of a user when it is 6 pm

on Wednesday, we will try to answer P(x—Wednesday.6), which can be found by

calculating:

P(x|Wednesday.6) = P(Wednesday.6|x) ∗P(x)
P(Wednesday.6)

Even though this looks like a simple conditional probability, if examined closely

one may now see an extra feature in our calculations, the addition of time within the

day. Intuitively, here we are first trying to calculate the contribution of quarter and

day together for a user to be in a specific cluster. For simplicity, we calculate this

beforehand by running the algorithm over the whole data set, which we will show in

our experiment section, and later plugin the values for the final calculation.
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2.5 Experiments

The system used to carry out the experiments had the following configuration:

Processor: 2.2 GHz Intel Core i7, Memory: 16 GB, Programming language: MAT-

LAB.

The predictive system we have built in our research is generalized for all the

users and the experiments were conducted for 150 users with an average accuracy of

22%. Our accuracy was better than [16], which gave 13.85% prediction accuracy. We

attribute this to including day of week and time interval in the HMM, and the use of

varied K-means clustering. This is nearly a 70% improvement in prediction accuracy.

In this paper we have shown the results for one specific user, i.e user3. user3 has

about 500,000 data points.

The first set of experiments was to find the locations where a user is most likely

to be on a specific day. Given a cluster x for user3, we use the following formula

(Bayes theorem) to predict where user3 is on Sunday:

P(x|Sunday) = P(Sunday|x) ∗P(x)
P(Sunday)

We find the cluster x which has the maximum probability. For our experimental

purposes, we used the data from multiple users whose data size ranged from 31,830

points to 935,576 points. For the purpose of this paper, we will show experiments for

user3 only.

After, we found the clusters of user3, part of which is shown in table 2 and

3, we were interested to see where does this user often go on all the weekdays, i.e.,

Monday-Sunday. We ran the algorithm and following were the results (table 2.4). We

show the top three clusters for each day of the week.
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We then matched clusters with known locations on the map. We found places

like the university “Tsinghua University, Beijing” and the housing area “Tsinghua

Dormitory” and university departments like “Biomedical department” in cluster ID

208 (figure 2.7). This is why the probability of user3 being at cluster ID 208 is highest

during the weekdays. The user may be a student, staff or faculty at the Tsinghua

University and visits the university during weekdays. If we look at the probability

distribution during the weekends, we see different cluster IDs like cluster 195 and

cluster 85 having the highest probability.

In this experiment, we have taken a cluster’s radius based on the δ value that

was calculated in the previous section of clustering algorithm. Since the dataset is

spread in a city-wide scale, and the δ came out to be 0.2 miles, we are predicting a

user’s location based on the clusters with size 0.2 miles. There could be another set

of places within, say, cluster 208 where the user might be spending more time and

which needs to be analyzed. To make more accurate predictions, we would need to

cluster places within the clusters found above. This is one of the future works that

we intend to work on.

Figure 2.7: Cluster 208
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Figure 2.8 displays cluster 195, which has the highest probability on Saturday.

If examined closely, we find places like hostels ”PekingUni International Hostel” where

a user could reside, food places where they might eat and places where a user could

go in his/her free time.

Figure 2.8: Cluster 195

In the second set of experiments, we were interested to find the answer to queries

such as ”What is the most likely place for a user to be when it is 6 pm on Sunday?”

To answer this query, we made use of Hidden Markov Model as in figure 2.6. Each

hidden state has its corresponding probability of occurrence with respect to the day

of the week. We divided each day into 8 equal time intervals or periods. For example,

Monday, 8th time interval, which is 9 pm-12 am, has a probability of occurrence for

cluster ID, let’s say, 208. In such a way, we calculated each interval’s probability

corresponding to its cluster along with probability of transition from one cluster to

another. Once we calculated that, we constructed our Hidden Markov Model which

was ready to answer queries like, ”What is the most probable location of a user when

it is 2 pm on Monday?” We ran this algorithm on user3 and found out locations

where it is most likely for user3 to be at each period of the day (figure 2.6). Since



23
the results generated were for each time interval and for each day of the week, for the

purpose of this paper (instead of displaying all possible 56 results), in table 2.5, we

have shown Monday’s 1st, 2nd, 7th and 8th along with Sunday’s 1st, 2nd, 7th and

8th period’s results.

2.6 Conclusion

In this chapter, we have demonstrated the use of the clustering algorithm K-

Means and a predictive technology, the Hidden Markov Model, to predict a user’s

future locations. We introduced a method which will model the user’s data not by

just taking day of the week into consideration but also time interval within the day.

Our model is able to answer day-specific queries like ”Where is the user most likely to

be when it is Monday?” or day and time specific queries like ”Where is the user most

likely to be between 6:00 and 9:00 pm on Saturdays?” Such a model can be applied to

multiple applications which we discussed in the Introduction and Motivation section.

We furthur plan to improve our work with the use of other new technologies which

will benefit society in some form.
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Monday Tuesday

Cluster ID Probability Cluster ID Probability
208 0.211 208 0.238
211 0.155 211 0.128
198 0.064 195 0.061

Wednesday Thursday

Cluster ID Probability Cluster ID Probability
208 0.166 208 0.14
211 0.115 211 0.128
195 0.063 195 0.111

Friday Saturday

Cluster ID Probability Cluster ID Probability
208 0.156 195 0.194
211 0.101 211 0.088
195 0.084 208 0.0825

Sunday

Cluster ID Probability
85 0.172
195 0.118
211 0.092

Table 2.4: Top Three Most Probable Locations With Day
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Monday.1 Monday.2

Cluster ID Probability Cluster ID Probability

208 0.18241 208 0.18241
211 0.11924 203 0.045506
203 0.045506 51 0.035027

...
Monday.7 Monday.8

Cluster ID Probability Cluster ID Probability

208 0.18241 208 0.18241
211 0.11924 211 0.11924
195 0.075195 195 0.075195

...

Sunday.1 Sunday.2

Cluster ID Probability Cluster ID Probability

208 0.18241 195 0.1936
211 0.11924 211 0.118
203 0.045506 85 0.0632

...
Sunday.7 Sunday.8

Cluster ID Probability Cluster ID Probability

85 0.16245 85 0.15266
195 0.1265 195 0.11767
211 0.09879 211 0.03462

Table 2.5: Top Three Most Probable Locations With Day and Time



CHAPTER 3

Deep Learning Models to Predict User’s Spatial Locations Using GPS

Data

3.1 Introduction

Accurate location prediction has been an active objective of consideration in

plethora of applications including recommender systems, healthcare applications,

traffic planner, marine biology, cellular handshaking, etc. Works abound in litera-

ture pertaining location prediction using data mining [25], pattern mining [26, 27],

Markov models [28], however application and infrastructure reliance are quintessen-

tial constitution of these algorithms (eg: network topology in case of networks [26],

radio frequency signal strength reliance [29,30], specialized hardware [31], social net-

work check-in [32], etc. ). We ask ourselves these fundamental questions, ‘what if we

do not have the specific information of the infrastructure, can we still make accurate

predictions about an individual’s location ?’, ‘How can we learn the features of motion

pertaining a particular individual ?’.

Location Prediction using GPS data has sustained its interest to scientists ow-

ing to direct applicability in various walks of life. With the prevalence of location

identification features in smartphones and wearable accessories, reliable location data

became more accessible however, challenges in prediction remained unchanged. Chal-

lenges alleviate if we were to account for other factors influencing the prediction such

as user preferences, choices and demographic information.

Attributed to a high degree of freedom, modeling human mobility function

remains a challenge even for an single user. Even though location identification fea-

26
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tures on smart phones and wearable gadgets enabled faster and reliable GPS data

collection, obtaining a dataset fulfilling the research requirements remains a chal-

lenge even today. Ascribed to Orwellian implications of social and demographic data

pertaining a user, which establishes some causal relations with mobility, individuals

remain dubious towards such requests [33] adding further challenges. This work also

bridges the gap that ensued from these inadequacies of GPS datasets, by amalgamat-

ing a users GPS database with a readily and more openly accessible local weather

attributes(using secure APIs), tailoring a ‘unified location prediction model’.

In a classical study by [14], he conducted experiments to predict future loca-

tions using markov model. The dataset Ashbrook used was a single user dataset

collected over a period of four months. Inspired by his work we plan to improve the

predictions using deep learning on a single user GPS data collected from a student

at the University of Texas at Arlington colected over a period of 6 months.

In this chapter we implement regression and classification for the purpose of

predicting locations by making use of regular neural networks. As depicted in image

we have a representation learning phase and further regression and classification. For

the purpose of regression the model is successfully able to estimate a user’s spatio-

temporal movement function to make accurate predictions and the classifier is able

to classify location clusters accurately by learning novel concepts.

Our model assumes a completely realistic setting of first the availability of GPS

coordinates for individual users, second an access to open weather API for obtaining

current weather conditions. We have tested the validity of our claims using a real-life

dataset from a user and found the accuracy of our model to be accurate 88% of the

time.
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3.2 Related Works

There has been some work done in predicting locations. [14,15] used two stage

approach by clustering user’s location using K-Means clustering algorithm and Markov

Model as predictive model. They use simple markov models to predict the spatial

behavior of a user. In their research, they have not considered time as a dimension,

which apparently is one of the important predictive features. Although a person’s

future location will depend on past and present locations, for a more comprehensive

prediction we need to include weekday, time and weather conditions in the features

set, which is lacking in [14,15].

[17] use DBSCAN to cluster the locations and use variable order Markov Model

for predictions. We make use of varied K-Means clustering algorithm to cluster a

user’s data points into significant locations, which can also be customized for different

users and stop patterns at different locations. This is unrelated to density of the data

points, which is the focus of DBSCAN algorithm.

[34] introduces time prediction methods for buses using multi-layer perceptron.

The objective of this work was to predict the real-time travel time of buses. This is

however not directly related to our problem but the use of multi-layer perceptron in

this work for similar prediction gave us confidence in MLPs for predicting a user’s

future locations.

[35] propose a new framework for predicting future locations using recurrent

neural network. Their model is known as ST-RNN, which stands for spatial-temporal

recurrent neural network. ST-RNN models spatial locations and temporal features

within each layer to predict where a user is going to be next. The recurrent neural

network helps to make intelligent decisions based on the historical pattern followed by

the user. However, the system does not account weather conditions, which is one of the

most important predictors. Human mobility heavily depends on weather conditions.
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According to best of our knowledge no work has included weather information to

their dataset to make sensible predictions. Our work demonstrates promising results

by having temporal, spatial and weather information in the dataset to make better

predictions.

3.3 Methodology

3.3.1 Multiple Linear Regression for Predicting Location Using ANN

One of the methods of predicting “where is a user most likely to be at when

it is Wednesday 6pm, temperature of 70 degrees and precipitation less than 0.1?” is

by implementing multiple linear regression using ANNs. We have different predictive

features like time, weekday, month, temperature and precipitation and based on that

we try to predict where the user is. The target feature (location) is a linear function

of the predictive features. This is also true in general when we say the relationship

between features and target is like a straight line or a flat plane and that there is a

linear relationship connecting them. In other way to say this is we are formulating a

hypothesis,

y′ = b+X0.wo +X1.w1 + ...+Xn.wn

This hypothesis says y′ is the linear function of X0, X1, ..., Xn ∈ X plus some small

error and the parameter b and w0, w1, ..., wn ∈ w control our linear hypothesis. [36]

Since this is a supervised learning algorithm the cost function associated with

linear regression calculates the residual, i.e., yi− y′i, where yi is the ground truth and

y′i is the predicted value. Since the residual carries a sign it will be positive if our

hypothesis underestimates the ground truth and negative if hypothesis over estimates

it. We can define the total error as the sum of the absolute values of the residuals.
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Figure 3.1: Feed Forward Neural Network (Regression)

TotalError =
∑

i

|εi| =
∑

i

|yi − y′i|

The total error is one possible example of the cost function. However, in our

work we use mean squared error. Mean Squared Error or MSE is calculated by taking

the square of each residual, summing all the squares and dividing by the total number

of data points.

MSE = 1
N

∑
i

(yi − y′i)2

Since MSE is smooth and is guaranteed to have a global minimum so it is our

favorable cost function for this algorithm [37]

Figure 3.1 represents a feed forward neural network or multilayer perceptron.

This model is known as feed forward because information flows through the function

being evaluated from x (input layer), through the intermediate computations used to

define f (hidden layer), and finally to the output y’ (output layer). The model does

not have a feed back connection through which the output of the model are fed back
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Figure 3.2: Sigmoid Function

into the model itself. By applying a deep feed forward neural network to our problem

we can overcome the problem of non linearity.

3.3.2 Location classification using ANN

Amongst the two types of classification, supervised and unsupervised, this sec-

tion discusses supervised classification. Typical classification technique involves a

Logistic Regression; a bivariate classifier. Logistic regression, models the probability

of an outcome variable using a logistic curve.

y′ = f(b+X.w)

where the function f is called sigmoid, shown in figure 3.2, and it is expressed

by the formula

f(z) = 1
(1 + e(−z))

Unlike in linear regression models, mean squared error could not be used as

a cost function in a logistic regression owing to its non-convexity and the ensued

inability to find a global minimum. A better cost function to account for error is a

log loss or cross entropy cost, defined as follows:
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ci = −(1− yi) log(1− y′i)− yi log(y′i)

where yi is the predicted probability

ci


− log(1− y′i), yi = 0

− log(y′i), yi = 1

With the given cost function, we can define a total cost for a single point as the

arithmetic mean of the individual errors with the other points.

c = 1
N

∑
i

ci

This cost function is known as average cross entropy or binary log loss. Best

use of logistic regression is in binary classifier wherein we have just two classes (0 or

1) [38, 39]. However, our model necessitates a multivariate classification model for

classifying entries into multiple clusters, based on varying user locations. The cost

function used in this model is called categorical cross entropy. [40]

Softmax imparts probabilities by giving probability distribution for each targets

and finds out the class where the probability of the class is maximum.

σ(Zj) = eZj∑K
k=1 e

ZK
, for j = 1, ..., K

Categorical crossentropy is used to calculate loss between two probability distribution

by making use of one hot encoding.

D(y′, y) = −Σyj ln y′j
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Figure 3.3: Dummy Variables

Neural Networks can be extended to cases where the outputs are not only

limited to binary classes. To do regression with multiple outputs, we group the

outputs in a single vector and add as many output nodes as the components of the

output vector. Each of the nodes will generate an independent output value that will

be assigned to the corresponding output vector coordinate.

Classification accuracy is an attribute of the activation function involved and

hence, require a careful examination before incorporation into the model. In multivari-

ate classification, we will be predicting Mutually Exclusive Classes or Non-Exclusive

Classes. In mutually exclusive classes, an observation can correspond to only one

exclusive class and in non-exclusive classes an observation can be a member of mul-

tiple classes. A famous example being the document classification. When someone

organizes the documents, a document can only be in one single folder, the same doc-

ument cannot be in any other folder, which is mutually exclusive class. Conversely,

we can attach multiple tags to a file, (eg.: a document can be tagged both photo and

person, which falls under non-exclusive class). Our research focus is for the mutually

exclusive class.

To treat this problem with a neural network, we need to transform the output

to a series of dummy binary columns also known as One Hot Encoding. In the case of

mutually exclusive classes each row will only host one non-zero value corresponding

to the class the record belongs to.
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In Figure 3.3 the first row has 1 in column A and 0s in all the other columns

and that is because Location 1 belongs to cluster A, similarly Location 3 belongs to

cluster B and Location 4 belongs to cluster C. At this point our output is a vector

of zeros and ones and we need to apply the correct activation function. In mutual

exclusive classes, we want to interpret the output of each node as the probability of

being in the corresponding class we need to choose an activation function that forces

the sum of the output to be equal to 1. In this way if a location is likely to be in the

class ‘A’ it will correspondingly be unlikely to be in any other class. We are achieving

this using Softmax activation function.

σ(Zj) = eZj∑K
k=1 e

ZK
forj = 1, ..., K

Softmax is a soft continuous version of the maximum function. Softmax function

is a way of forcing the outputs of a neural network to sum to up to one, so as to

represent the probability distribution across discrete mutually exclusive alternatives.

Softmax receives some total input it has accumulated from the previous layer that

is Zj and the output does not just depend on their own Zj but depends on the Z’s

accumulated by their rivals as well. This way we force the output to lie to represent

and a probability distribution over mutually exclusive alternatives.

3.3.3 Optimization Algorithm and Regularization

To train a neural network, we need an algorithm such that we create a facility

for the program to be able to understand what it needs to do on its own. The idea

is to adjust the learnable parameters, weights (W) and bias (b) values of the neural

network based on the cost/loss/error function associated with the neural network.

The learnable parameters are used in computing the output values and are learned
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and updated in the direction of optimal solution i.e. minimizing the loss. The most

common and the widely-used approach to adjust the weights is backpropagation.

In backpropagation technique, the network looks at one or a batch of observations,

calculates the cost function and based on that adjusts the weights of the neural net-

work by using the concept of stochastic gradient descent (SGD). SGD is a stochastic

approximation of the gradient descent optimization method for minimizing the cost

function written as a sum of differentiable functions [41].

w = w − ηOQ(w) = w − η
n∑

i=1
OQi(w)/n

The stochastic gradient descent applies a correction O Q(w) to the weight w

where η is the learning-rate parameter of the SGD algorithm. If smaller learning

rate is chosen, changes to the weights are smaller and with larger learning rates

larger change to the weights will occur such that the network becomes unstable. We

wanted to experiment and observe the changes in accuracy with different learning

rates applied to the network, which is currently in progress and kept as one of the

future works.

When designing a neural network, which is responsible to estimate a function

to represent human mobility, there was a need of generating a complex nonlinear

function model [42]. However, overfitting is more likely with nonlinear models that

have more flexibility when learning a target function. The model in the case of

overfitting picks up random fluctuations and noise in the training data, which impact

the model’s ability to generalize. To reduce the chances of overfitting we make use of

regularization. It is a method to penalize the loss function by adding a multiple of

L1 (Lasso) or an L2 (Ridge) norm of the weight vector w. In our work, we have used

L1 regularization.
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L(X, Y ) + λN(w)

where N = L1 or L2 and λ is the regularization term.

3.4 Analysis: American Dataset

We validate our claims on improved location prediction of both classification

and regression through a field study over a GPS dataset. The data was collected from

Google Maps1 application installed on a mobile phone for a period of 6 months. We

would like to emphasis on models veracity for any given user taking an example of a

testsubject. Artificial Neural Networks trains itself to accommodate the user mobility

preferences amidst high degree of freedom of movement.

The user in our case study was a student at the University of Texas at Arlington,

while the data was collected. A smartphone, with google maps installed and location

history set to “On”, we collected GPS data from the user for a period of six months

(February 2017 - July 2017). During those six months the user mainly browsed various

locations around Arlington, Texas. At the end of the sixth month the database

collected 9,185 GPS observations. Each of the tuple recorded was of the form,

< Latitude, Longitude,Hour,Day of week,Month of year >

with a precision of 7 decimal points for Latitude and Longitude as shown in Figure

3.8, this greater precision in GPS locations helps in achieving greater precision in

location prediction.
1https://www.google.com/maps
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3.4.1 GPS Data Sampling Rate

As GPS coordinate data is pivotal to our research, the challenge of determining

the appropriate sampling rate is critical. Figure 3.4 presents the significance of sam-

pling with an interval of one sample per minute. The number of records starts to drop

after a three minute difference as you can observe in figure 3.4. This shows that the

user moves frequently and in some occasions, stops at some location for greater than

three minutes. The user might attend meetings, classes at the university, stops by to

eat food or stops at traffic signals. There are some records which have time difference

between them and their consecutive points of greater than twenty-five minutes. This

is because of the limitation of the battery life. GPS receiver draws about 500 − 600

milliwatts from a smartphone. This is worse for continuous data collection and some-

time the phone would die because of low battery. The user missed a couple of hours

of data because of this. Another challenge in data collection was low internet signals

or resetting the smartphone, which either resulted in no GPS signals or absence of

google maps from the phone.

Before discussing the results of the experiments, we would like to highlight some

of the observable properties within the GPS dataset which served as impetus to this

work.

3.4.2 Hour-of-day - Movement Linking

GPS data is collected using a mobile phone based gps tracking offered by google

map based on the given sampling rate. Figure 3.5 illustrates the inherent underlying

pattern observed in the dataset, about the user movements and its correlation with

the hour-of-the-day. For visualization we have constructed 6, four hour brackets(12am

- 04am, 4am- 08am, 08am-12pm, 12pm-4pm, 4pm-8pm, 8pm-12am) for movements

and clustered points based on its generation timestamp. The histogram shows the
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Figure 3.4: Sampling Rate

correlation between the hour of the day and the number of sample points obtained,

clustered over different weekdays. We can see a consistent user movement pattern

over the graph, however this pattern could not be manifested into locations to qualify

as solution points.

3.4.3 Weather and precipitation Correlation with movement

While GPS data does provide some key information pertaining the motion, the

datapoints themselves do not provide any cohesive reason for the movement, which is

important from a prediction perspective. We have investigated the effects of weather

and levels of precipitation on a users movement. We have obtained the weather

information on the users location through NOAA(National Oceanic and Atmospheric

Administration)2website. Figure 3.6 and figure 3.7 presents the user’s travel behavior

during different weather conditions. In Figure 3.6 one can see that how the weather
2https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:53907/detail
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Figure 3.5: Time VS Day

is positively correlated with the number of observations to a certain threshold. The

threshold is of 80 degrees or greater. Once the temperature goes beyond 80 degrees the

number of observations starts declining. Figure 3.7 has a pure negative correlation

between precipitation and number of records. The user during the period of six

months did not have a car and used to walk to commute between work, school and

home. Whenever the precipitation rises the user tend to commute less.

This kind of analysis confirms that weather plays a very important role in ones

commute and the travel plans. We have added the weather features in our dataset

which will be very helpful in training the model for predicting the user’s locations.

It is clear from the distribution that user avoids extreme weather conditions.

The user’s movement increases with the increase in temperature up to a certain point

(in this case up to 70 degrees). However, the movement drastically decreases after the
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temperature rises beyond 80 degrees. This explains that the user prefers temperature

between 70-80 degrees and prefers to travel most between then. This shows that

temperature plays an important role in one’s travel decision making

The map in figure 3.8 displays all the locations from the user’s historical GPS

dataset. The color bar shows different months starting from February 2017 (2) to July

2017 (7). One can see that there is one color trajectory (April 2017) represented as

4 starting from Dallas-Fort Worth (DFW) region to Houston, Texas. This is because

the user had to attend a conference for one day in Houston in the month of April.

However, DFW region is covered with multiple colors as shown in figure 3.9, this
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explains user’s high movement around DFW area. Just by looking at the map one

cannot predict where and what time a user is most probable to travel in future. To

answer such questions, we need a sophisticated model which can take all the predictive

features into account to answer the user’s most probable future locations.

3.5 Experiments

The system used to carry out the experiments had the configuration shown in

table 3.1
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Movement	In	Months

2 7

Month

Figure 3.8: User Locations for 6 Months

Processor Memory Language Package
2.2 GHz Intel Core i7 16 GB Python 2.7 TensorFlow/Keras

Table 3.1: System Configuration

3.5.0.1 Multiple Linear Regression Using Neural Network

The model used for the purpose of multiple linear regression had the configu-

ration shown in table 3.2

For regression we carried out two different sets of experiments. We wanted

to see how the results are affected if we just use following as feature set, which is

explained in table 3.3.

Layers Neurons Activation Function Cost Optimizer
Hidden Layer 1 6 neurons Tangential Hyperbolic
Hidden Layer 2 4 neurons Tangential Hyperbolic
Hidden Layer 3 3 neurons Tangential Hyperbolic
Output Layer 2 neurons Pure Linear MSE SGD

Table 3.2: Multiple Linear Regression Model’s Configuration
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Figure 3.9: Frequent user Locations for 6 Months

We calculated model’s loss (shown in figure 3.10) and validation loss (shown in

figure 3.11) while training the model. For the purpose of validation loss we took 20%

of the training data as the validation data.

From figure 3.10 and figure 3.11 it is clear that the model predicts more accurate

locations with less loss when we add temperature and precipitation in the feature set.

3.5.0.2 Classification Using Neural Network

The model used for the purpose of classification had the hyperparameters listed

in table 3.4.

After learning that weather features play an important role in predicting a user’s

location we carried our classification experiments with weather features appended to

X1 X2 X3 X4 X5 Y1 Y2

Set 1 Month Weekday Hour – – Lat Lon
Set 2 Month Weekday Hour Temperature Precipitation Lat Lon

Table 3.3: Feature Sets
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Layers Neurons Activation Function Cost Optimizer
Hidden Layer 1 5 neurons Tangential Hyperbolic
Hidden Layer 2 5 neurons Tangential Hyperbolic
Hidden Layer 3 5 neurons Tangential Hyperbolic
Output Layer Total Clusters SoftMax CatCross SGD

Table 3.4: Hyperparameters of the Classification Model

the dataset. We used varied K-Means clustering algorithm from the previous chapter

2 to cluster the locations in American study. There were a total of 9 clusters found in

the user’s data, which we used as classes for the purpose of classification of locations.

The model is able to genralize well and that is shown by the validation accuracy

in figure 3.12.

After training the model we also compared our Neural Network with other

traditional classification models by using an average of 3-fold cross validation check

and clearly our Neural Network is much more efficient as compared to traditional

classification machine learning algorithms like K-nearest neighbors, SVM and Ran-

dom Forest classifier, which is shown in figure 3.13. In average our Neural Network

performed 1.41 times better than any of the mentioned traditional machine learning

algorithms to classify the right cluster of the user.

3.6 Conclusion and Future Work

Till now we have made three models that can help one to predict a user’s lo-

cation based on time and weather information. We talked about Hidden Markov

Model in chapter 2 and however HMMs are powerful to learn the probability distri-

bution of different states and model time-varying spectral vector sequence, hidden

markov model has poor accuracy and unacceptable sensitivity to changes in operat-

ing environment. Considering this aspect we decided to implement neural networks
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Figure 3.12: Training/Validation Accuracy

which are more open to changes in the environment. We compared the performance

of the neural network by comparing it with other traditional algorithms and clearly

neural networks stand at the top in the case of classification and regression. In the

next chapter we incorporate a time series model or a recurrent neural network. Long

Short Term Memory (LSTM) Neural Networks are the best example of a recurrent

neural network. LSTM are different from a regular recurrent neural networks because

a simple recurrent neural network suffers from a fundamental problem of not being

able to capture long-term dependencies in a sequence. This is a problem because we
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want our RNNs to analyze data and answer questions, which involves keeping track

of long sequences of locations [43].

However, setting up a neural network requires one to set up different hyper-

parameters like, number of hidden layers, number of neurons or nodes within each

layer, activation functions, cost function, optimizers etc. This problem falls under the

umbrella of “Tuning Hyperparameters”. One way to find the right hyperparameters

is through brute force trial and error method. However just to set up the right hy-

perparameters for a model which has four parameters with five possible settings each

will take about (5**4)*5 minutes, which is equal 3,125 minutes or about 52 hours.
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To overcome this we use “Genetic algorithms”. Genetic algorithms are com-

monly used to generate high-quality solutions to optimization and search problems by

relying on bio-inspired operators such as selection, crossover and mutation. Through

this we plan to make a system which has intelligence of a human and computation

power of a machine. Such systems have already shown their performance and eligi-

bility to overcome any problem with accurate results.



CHAPTER 4

Hyper Optimized ANNs, RNNs and LSTMs with Sliding Window to

Predict Short Term Apple’s Stocks Prices, Currency Exchange and GPS

Locations

4.1 Introduction and Related Works

Predicting stocks prices for different companies has been the most challenging

and intriguing tasks in the field of data science. Researchers have tried to solve the

problem by various means including and not limited to data mining [44], traditional

machine learning [45, 46], neural networks [47], time series neural networks [48, 49]

and other machine learning methods. Predicting next day’s/week’s/month’s/year’s

stock return is a time series problem with time as an important dimension, which

is solved by an algorithm by estimating the function of the moving stocks. Machine

learning models are mathematical formulas with a number of parameters, which are

learned from the data. Models that have been built till now to estimate this time

series functions have learned parameters from the historical data presented that were

shown to the models. Hyperparameters are another kind of parameters, which can-

not be learned directly from the regular training process. The practitioner sets the

hyperparameters before the training process begins. Hyperparameters on a higher

level defines model’s complexity and ability to learn complex non-linear functions.

These are not learned by showing the data to the model but instead are set by a

practitioner by test and trial methods and opting the one, which gives the best re-

sults. On the other hand, hyperparameter optimization techniques are used to set

49
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the right hyperparameters. It is a task of finding an optimal or near-optimal set of

hyperparameters.

Till now researchers have done extensive work in creating models to predict

stock prices but to the best of our knowledge most of the works have not shown

techniques to optimize the hyperparameters and find “the best” model out of all the

possible population of models to predict stock prices as close as possible. In this work

we have worked on a meta-heuristic hyperparameter optimization technique called

genetics algorithm through which we have selected the best model for specific kind

of problem. We also make use of sliding window technique to capture the patterns

within the data for better prediction. Some research also used the sliding window

technique [48, 50] and decided the window size based on error for various window

sizes. We on the other hand have decided the size of window more sophisticatedly

where we calculate the partial-auto-correlation between the data to calculate the

best window size. Partial-autocorrelation function measures the correlation between

an observation with another observation, which is n time steps apart.

Forecasts of stocks can be considered in two categories namely: technical analy-

sis and fundamental analysis. If the forecast is dependent only on historical data such

as past values, volume of trading etc. then it is a technical analysis. On the other

hand, if the forecast is based on external effects such as currency exchange rates,

interest rates etc. then it is fundamental analysis [13]. In our work we have a com-

bination of technical and fundamental analysis. We will see in coming sections that

how these both play a major role and what all features are important in predicting

Apple’s stock prices.

There have been a lot of work done where some researchers [46] tried to assess

different function estimating models while comparing with other models. Some work

also compared traditional machine learning models with artificial neural networks [45].
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By making use of hyperparameter optimization we try to compare different artificial

neural networks among themselves and try to find the best model with the right

hyperparameters for a certain kind of problem. [51] tries to compare different types

of neural networks but is missing the hyperparameter optimization in their models.

[44] uses sentiment analysis techniques to construct a sentiment space to cal-

culate news impact on stocks and use them as a feature set in predicting stock prices.

Their intention is to correlate the market behavior with financial news. They believe

that financial news plays an important role on stock price return. In this work they

have analyzed the news impact from sentiment dimension.

[45] on the other hand have proposed ensemble methods in machine learning

to predict stocks. They have fused models like Support Vector Regression, Random

Forest Regressors and Artificial Neural Networks to create SVR-ANN, SVR-RF and

SVR-SVR predictive models. In this work the researchers have tried to predict short

term stock prices 1-10 days and relatively long term prices 15 and 30 days by giving the

(t)th day values as inputs to predict (t+n)th day value (where t is the current day).

This work shows that the two-stage predictive models outperform the single-stage

predictive models and that the best overall prediction was achieved by SVR-ANN

model.

Another example of ensemble methods can be seen in [46] work. In this work

they have benchmarked ensemble methods (Random Forest, AdaBoost and Kernel

Factory) against single models such as Neural Networks, Logistic Regression, Sup-

port Vector Machines and K-Nearest Neighbors classifiers. By making use of above

seven different predictive modeling techniques they setup a benchmark in the field of

stock prices forecasting. In this work the predictions are one year ahead so all the

algorithms are used for a relative long-term forecasting. The main focus of this work

is not to predict absolute stock prices but the direction of stock prices hence this is a



52
classification problem instead of a regression technique that we have our work focused

on.

[47] make use of artificial neural networks and principal component analysis

to predict the stock prices. In this work the researchers have made use of principal

component analysis technique to find the most important components that shows

high variance across the dataset and have made use of artificial neural networks to

predict the stock prices.

Comparison of different types of neural networks in predicting stock prices have

been done in [13]. In their work the researchers have taken MLP, RNN and CNN as

three different models and have compared their performance in predicting stock prices.

All the models have been optimized to get right and optimum weights, dropout rates

and even the kernel initializer techniques using Tree-structured Parzen Estimator

(TPE) [52]. Their work showed that CNN outperformed the rest two models in

predicting the financial data. They also mentioned that how ensemble methods in

neural networks can outperform any single model not only in just financial data

prediction but also in classification tasks like Netflix customer classification.

[51] have compared three different types of neural networks namely, Muti-

Linear Perceptron, Dynamic Artificial Neural Networks and Hybrid Neural Networks

which use Generalized Autoregressive Conditional Heteroscedasticity. In their work

they determined that MLP outperformed other two neural networks and even a hybrid

model GARCH-ANN did not give satisfying results. GARCH-DAN2 hybrid model

had the worst result while MLP outperformed GARCH-MLP with a little difference.

Their work and experiments showed an important aspect of comparison between

different neural networks but if the model’s hyperparameters were optimized based

on the problem they were required to solve the results could have been different.



53

[53] use Singular Spectrum Analysis (SSA) to analyze and understand the non-

linearity and non-stationarity in a time series data. The purpose of SSA is to extract

series of singular values that explains the original series using Singular Spectral De-

composition (SVD). The purpose of this method is to extract and reduce noise in time

series. Once they decompose the time series using SSA into trend, market fluctuation

and noise they then use Support Vector Machine (SVM) to make price predictions.

They also use method like Ensemble Empirical Mode Decomposition (EEMD) to ex-

tract fundamental features in the time series and provide to SVM for predictions.

Their findings show that SSA-SVM outperformed EEMD-SVM predictions and that

SSA extracts features better than EEMD.

There are other more sophisticated types of neural networks that have been

extensively used for forecasting and predicting time series data. Such networks are

known as Recurrent Neural Networks (RNN).

[50] proposed a new hybrid model known as Hybrid Prediction Model, which

is a combination of RNN, Exponential Smoothing Model (ES) and Autoregressive

Moving Average Model (ARMA). In this work they generate input-output pairs using

Autoregressive Moving Reference (ARMR), which is then fed in RNN in a supervised

fashion (AR-MRNN). HPM is constructed by merging the predictions made by RNN,

ES and ARMA. They claim that RNN makes better predictions than a linear model

but HPM outperformed RNN and that the HPM uses Genetic Algorithm to set the

optimum weights.

[49] in their work have used Long Short-Term Memory, which is another kind

of recurrent neural network to predict stock prices. LSTM is widely known for its

capability to process data which has time as a dimension associated with it. Example

data like sounds, videos or even stock prices. They have used LSTM models to predict

China stock return and claimed to improve the accuracy of stock returns prediction
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from 14.3% to 27.2%. In their work they presented the dataset to the model in 5

different ways where each dataset was feature engineered in some way. They presented

the data by adding closing and volume data, normalized closing and volume, adding

high, low, open to the data, adding close and finally adding volume. They recorded

constant growth in accuracy by adding more dimensions to the dataset.

[48] on the other hand made use of LSTM but also incorporated regular RNN

and Convolutional Neural Network (CNN) by making use of sliding window. In this

work the researchers have introduced a lag in the dataset by using sliding window and

shown this lagged dataset to LSTM, RNN and CNN. They choose the size of a sliding

window, which gives the least error. They have also benchmarked the research by

making use ARIMA model to predict the stock prices and clearly the neural networks

have outperformed the ARIMA model. The models are quantified using percentage

error. LSTM and RNN models are outperformed by CNN due to the sudden changes

that occur in stock markets.

4.2 Methodology for constructing and optimizing models

4.2.1 Four Main Characteristics of Each Experiments

As explained before, forecasts of stocks can be considered in two categories:

technical analysis and fundamental analysis. In technical analysis we only consider

past historical data and in fundamental analysis we consider external effects [13]. In

our work we have used a hybrid approach that considers both technical and funda-

mental analysis. We try to predict next day’s Apple’s stock closing price by including

its own high, low, volume, close data along with Microsoft’s, IBM’s and Standard and

Poor’s high, low, volume and closing price. We have a total of past 10 years of data

from 2008 to 2018. Our ongoing work plans to include every day’s Apple’s sales data
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along with currency exchange rates between US Dollars and Indian Rupees, Chinese

Yuan, Japanese Yen and Euro data in the analysis. There are a lot of unknown fea-

tures, which are important in predicting stock price. We try to add as many features

and based on their coefficients and p-values we identify the statistically significant

ones and eliminate the others.

This work is based on sliding and non-sliding window approach. Our work is

divided in two major categories of experiments where we compare the performance

of different predictive models when presented with non-sliding window data versus

sliding window data. The window size is set by calculating the partial autocorrelation

between the stock prices for lags ranging between past 10 through 40 days and the

best window size was last 30 days of window. The partial autocorrelation shown

in figure 4.1 explains that there were either strong positive or negative correlation

between values of past 30 days and the correlation gradually converged to zero as we

moved further past 30 days.

Figure 4.1: Partial Autocorrelation with 40 Lags
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We present the data to models through Non-Sliding Window (NSW) and Slid-

ing Window (SW) techniques. For each technique we make use of three different

neural network models namely Artificial Neural Network (ANN), Recurrent Neural

Network (RNN) and Long Short-Term Memory (LSTM) Neural Network. Model’s

hyperparameters are optimized by making use metaheuristic optimization technique

called Genetic Algorithm [6,7].

4.2.2 Artificial Neural Network

Artificial Neural Network is composed by nodes (Neurons) and each node can

have many inputs (X1, X2, . . . , Xn) but will only have one output (next day’s stock

price). As shown in figure 4.2, a nueron is connected to input Xi by weight Wi. A

second edge enters the node carrying the value b, called a bias. The net output n is

calculated by ∑n
i=1 Wi.Xi + b, which is passed through an activation function to make

the neural network non-linear. To make the network capable of answering complex

queries and find non-linearity we extend this network with more neurons and more

hidden layers as shown in figure 4.3. The first layer computes Z1 = X.W1 + B1,

where X,W,B are vectors of inputs, weights and biases respectively with as many

components as the number of nodes in the layer. The output of the layer will be the

activation function applied to the linear transformation O1 = f(Z1). This output is

fed to the connecting layer and same computations are done for the following layers.

This structure allows to introduce very complex non-linear relationships between

input and output values.

We have historical stock price data with next day’s stock price as the dependent

variable. We train our ANN in a supervised manner where the cost function associate

with linear regression calculates the residual, yi−ŷi. In our work we use mean squared

error because MSE = 1
N

∑
i(yi − ŷi)2 is smooth and is guaranteed to have a global
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Figure 4.2: A Neuron

minimum. We tune the weights of the network using Adam optimizer. The authors

[54] claim Adam to be fast in achieving good results by making use of exponential

moving average of gradient and the squared gradient where the parameters beta1 and

beta2 control the decay rates of the moving averages.

4.2.3 Recurrent Neural Network

Unlike ANNs, which we described in previous section RNNs have hidden states

distributed across time, which make them to store important information about the

past. Unlike ANNS, RNNs are dynamic neural networks because the output depends

on the current input as well the past hidden states of the network. As shown in
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Figure 4.3: Multi-Layer ANN

Figure 4.4: RNN
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figure 4.4, at time step t the model processes the input vector x(t), calculates the

hidden state h(t) eq. 4.1 using an activation function to predict the output y(t) eq.

4.2. At each forward pass the model holds or remembers the hidden state in the delay

unit, which is fed back to the hidden layer as additional inputs.

h(t) = ReLU(W T
h .h(t− 1) +W T

x x(t) + bh) (4.1)

y(t) = ReLU(W T
o .h(t) + bo) (4.2)

Since the feedback connection represents a time delay of one so the hidden

layer takes both input vector at time t and hidden state at time t− 1. The activation

function we choose is ReLU function as it can help with vanishing gradient problem

[55]. Recurrent neural network suffers from a fundamental problem of not being able

to capture long-term dependencies in a sequence. This is a problem because we want

our RNN to analyze the stock prices, which involve keeping track of long sequences

of past stock prices.

4.2.4 Long Short-Term Memory Neural Network

Long Short-Term Memory (LSTM) was proposed by [43] in late 90’s. LSTM is

a special kind of RNN where hidden state from the RNN is replaced by the memory

block or LSTM cell. Figure 4.5 shows a basic memory block of LSTM, which includes

several operations performed by forget gate, input gate and output gate. We describe

function of each gate below.

1. Forget Gate: ft = σ(Wf .[ht−1, xt] + bf

The forget gate is a sigmoid layer, which ranges between 0 and 1. It helps to

decide whether the previous internal state is completely forgotten or is passed

through unaltered.
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Figure 4.5: LSTM

2. Input Gate: it = σ(Wi.[ht−1, xt] + bi)

The input gate takes the previous output and the new input and passes them

though another sigmoid layer. The value of the input gate is multiplied with

the output of the candidate layer Ct.

Ct = tanh(Wc.[ht−1, xt] + bc)

This layer applies a hyperbolic tangent to the mix of input and previous output,

returning a candidate vector to be added to the internal state. The internal state

is updated with this rule:

Ct = ft ∗ Ct−1 + it ∗ Ct

The previous state is multiplied by the forget gate and then added to the fraction

of the new candidate allowed by the output gate.

3. Output Gate: Ot = σ(Wo.[ht−1, xt] + bo;ht = Ot ∗ tanh(Ct)

The output gate controls how much of the internal state is passed to the output

and it works in a similar way to the other gates.
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4.2.5 Hyper-Parameters Optimization

We make use of meta-hueristic technique called genetics algorithm to optimize

the hyperparameters of our three different predictive models. The hyperparameters

we try to optimize are: hidden layer size, neurons in each layer and weight initial-

ization. Meta-heuristics are used to find or generate heuristic designs that provide a

sufficiently good solution to an optimization problem especially with limited compu-

tational capacity. It samples a set of solutions, which is too large to be completely

sampled and make few assumptions about the optimization problem being solved

and so they may be usable for a variety of problems. Compared to optimization

algorithms and iterative methods meta-heuristics cannot guarantee that a globally

optimal solution can be found [8]. In combinatorial optimization by searching over a

large set of feasible solutions meta-heuristics can often find good solutions with less

computational efforts [9]. Genetic algorithm is inspired by evolution (natural selec-

tion, reproduction and survival of the fittest). The entire process can be represented

as a flowchart shown in figure 4.6.

We apply this algorithm for all the three models to get the optimized number of

hidden layers, number of neurons for each hidden layer and weight initialization. We

keep optimizer, learning rate, activation function, regularizer and number of epochs

constant for all the three models to Adam, 0.001, ReLU, L1 and 50 respectively.

4.3 Experimental Results

4.3.1 Stocks Prediction

We have used past 10 years of Apple, Microsoft, IBM, Standard and Poor’s

data (2008-2018). The data consist of features like high, open, low, volume, close and

status of all four companies. Status, which is a categorical variable (0 or 1) shows
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Figure 4.6: Genetic Algorithm Flowchart

whether today’s closing price grew (1) or declined (0) from yesterday’s closing price.

We make use of sliding and non-sliding window technique to present the data. We

made sure that there exists either strong positive or negative correlation between

independent attributes like Apple (open, high, low, volume), Microsoft’s, IBM’s and

S&P (open, high, low, volume, close) and Apple’s closing price. The correlation

heatmap is presented in figure 4.7.

The heatmap shows that there indeed exists a high positive or negative corre-

lation between other variables and Apple’s closing price.
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Figure 4.7: Attributes Correlation

4.3.1.1 Model Architecture

The hyper-parameters optimized models are fed with the non-sliding window

(NSW) and sliding window (SW) data and we compare the performance of each

case. Hyper-parameters of all the models are tuned using genetics algorithm and the

optimized model summary is shown in table 4.1.
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Non-Sliding Window (NSW)
Models Layers Neurons Weight Initialization

NSW-ANN 4 28, 14, 16, 1 LeCun Uniform
NSW-RNN 3 28, 14, 1 Normal

NSW-LSTM 3 28, 7, 1 Normal
Sliding Window (SW)

Models Layers Neurons Weight Initialization
SW-ANN 5 58, 6, 11, 13, 1 LeCun Uniform
SW-RNN 4 58, 12, 8, 1 Normal

SW-LSTM 3 58, 7, 1 Normal
Cost Function: Mean Squared Error

Model Hyper-Paramters Tuning: Genetics Algorithm
Model Optimization: Adam Optimizer

Table 4.1: Different Models and their Characteristics

4.3.1.2 Results

Table 4.2 shows the mean squared error, r-squared and adjusted r-squared for

three different models when fed with non-sliding window and sliding window data.

From the table it is clearn that LSTM has the least loss and highest r-squared and

adjusted r-squared.

Non-Sliding Window (NSW)
Model MSE R-Squared Adjusted R-Squared

NSW-ANN 0.014 0.847 0.838
NSW-RNN 0.012 0.873 0.866

NSW-LSTM 0.009 0.881 0.874
Sliding Window (SW)

Model MSE R-Squared Adjusted R-Squared
SW-ANN 0.00150 0.962 0.96
SW-RNN 0.00110 0.978 0.975

SW-LSTM 0.00012 0.999 0.998

Table 4.2: MSE, R-Squared and Adjusted R-Squared
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Non-Sliding Window (NSW)
Model APAE Variance APAE

NSW-ANN 8% 36.24
NSW-RNN 7% 14.89

NSW-LSTM 6% 12.18
Sliding Window (SW)

Model APAE Variance APAE
SW-ANN 2% 4.34
SW-RNN 1.85% 2.231

SW-LSTM 0.58% 0.278

Table 4.3: APAE and Variance of APAE

Table 4.3 shows the average prediction absolute error (APAE) and variance

among the percentage error by different models. LSTM in both non-sliding and

sliding window method performs best. In both the cases LSTM provides nearly 98%

improvement in accuracy.

Figure 4.8: NSW Scatter Plot
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Figure 4.9: SW Scatter Plot

Figure 4.10: SW Prediction
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Figure 4.11: SW Prediction

Figure 4.8 and 4.9 displays the scatter plot between the true values and the

predicted values by the three models using non slided window features and slided

window features respectively. One can see that the sliding window features play an

essential role in predicting more accurate values than the non-sliding wondow features.

Figures 4.10 and 4.11 display the same results by overlapping the true and

predicted values. The slided window features play an imporatant role in accurate

prediction of the test data. We can also see that hyper optimized LSTM model

outperforms all the other models used for the purpose of prediction.

4.3.2 Currency Exchange

Prediction of how much a dollar will cost tomorrow can guide one’s decision

making and can be very important in minimizing risks and maximizing returns. Re-

current neural networks can be used in predicting the exchange rate between United

States Dollar and Indian Rupees.

There are a lot of methods of forecasting exchange rates such as:
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• Purchasing Power Parity (PPP), which takes the inflation into account and

calculates inflation differential.

• Relative Economic Strength Approach, which considers the economic

growth of countries to predict the direction of exchange rates.

• Econometric model is another common technique used to forecast the ex-

change rates which is customizable according to the factors or attributes the

forecaster thinks are important. There could be features like interest rate differ-

ential between two different countries, GDP growth rates, income growth rates,

etc.

• Time series model is purely dependent on the idea that past behavior and

price patterns can be used to predict future price behavior.

4.3.2.1 Time Series Prediction

Figure 4.12: SW Prediction
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Figure 4.13: SW Prediction

4.3.2.2 Time Series Prediction

The dataset used in this project is the exchange rate data between January 2,

1980 and August 10, 2017 shown in figure 4.12. The dataset displays the value of

$1 in rupees. We have a total of 13,730 records starting from January 2, 1980 to

August 10, 2017. Over the period, the price to buy $1 in rupees has been rising. One

can see in figure 4.13 that there was a huge dip in the American economy during

2007âĂŞ2008, which was hugely caused by the great recession during that period. It

was a period of general economic decline observed in world markets during the late

2000s and early 2010s.
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This period was not very good for the world’s developed economies, particularly

in North America and Europe (including Russia), which fell into a definitive recession.

Many of the newer developed economies suffered far less impact, particularly China

and India, whose economies grew substantially during this period.

4.3.2.3 Train-Test Split

Figure 4.14: SW Prediction

For the prpose of training and validation we need to divide the dataset into

training and test sets. It is very important to split train and test with respect to a

certain date. In our experiment, we will define January 1, 2010, as our split date.

The training data is the data between January 2, 1980 and December 31, 2009, which

are about 11,000 training data points. The test dataset is between January 1, 2010

and August 10, 2017, which are about 2,700 points, shown in figure 4.14
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In order to normalize the dataset ones need to fit and transform the training

data and just transform the test data. The reason for which is not to assume that

one knows the scale of the test data. Normalizing or transforming the data means

that the new scale variables will be between zero and one.

4.3.2.4 Models

Sliding Window
Models Layers Neurons Weight Initializer Window

ANN 5 10, 7, 4, 3, 1 Lecun Uniform 7
RNN 3 10, 14, 1 Lecun Uniform 7

LSTM 3 10, 7, 1 Lecun Uniform 7

Table 4.4: Hyper-Optimized Models for Currency Exchange Predictions

Table 4.4 shows the three models that we use for the purpose of prediction of

currency exchange rates. All the three models are optimized using meta-heuristic

technique called genetics algorithm. The optimized model configurations are listed in

the table 4.4.

4.3.2.5 Results

Models MSE R-Squared Adj R-Squared APAE Var APAE
ANN 2.102e−3 0.937 0.921 3.14 3.27
RNN 2.75e−4 0.977 0.963 0.428 0.762

LSTM 4.5e−5 0.99 0.99 0.216 0.4275

Table 4.5: Model Performance Metrics for Currency Prediction
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Figure 4.15: Model Predictions Scatter Plot

Table 4.5 shows the performance of three different hyperoptimized models used

for predicting next day’s currency exchange rate between USD and INR. The models

used for the purpose of predictions were artificial neural network (ANN), recurrent

neural network (RNN) and long short term memory neural network (LSTM).

The metrics used to measure model’s performance are mean squared error

(MSE), r-squared, adjusted r-squared, average prediction absolute error (APAE) and

variance among the APAE for each model.

Table 4.5 clearly shows that LSTM has the least MSE, APAE and variance

APAE compared to ANN and RNN. LSTM also has the highest r-squared and ad-
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justed r-squared compared to ANN and RNN. This shows that LSTM is able to

predict future values more accurately than the rest of the models. Such accuracy is

due to LSTM’s capability of learning long term dependencies.

The predicted results by all the three models are shown in figure 4.15. The

diagonal red line displays the ground truth and the circles represents the predicted

values. Blue, green and yellow represent ANN, RNN and LSTM’s predictions respec-

tively. Accuracy is judged by the closeness of the circles to the diagonal red line. It

is clear in the figure that LSTM predictions are much closer to the diagonal line than

compared with the other two models.

4.3.3 Location Prediction

In this section we will discuss the methodology used to predict a user’s future

locations. The dataset used in this project is the same, which was used in chapter 3.

The data was collected from Google Maps1 application installed on a mobile phone

for a period of 6 months.

The user was a student at the University of Texas at Arlington, while the data

was collected. A smartphone, with google maps installed and location history set

to “On”, we collected GPS data from the user for a period of six months (February

2017 - July 2017). During those six months the user mainly browsed various locations

around Arlington, Texas. At the end of the sixth month the database collected 9,185

GPS observations. Each of the tuple recorded was of the form,

< Latitude, Longitude,Hour,Day of week,Month of year >

1https://www.google.com/maps
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with a precision of 7 decimal points for Latitude and Longitude as shown in Figure

3.8, this greater precision in GPS locations helps in achieving greater precision in

location prediction. We also appended weather information to the GPS dataset. We

have obtained the weather information on the users location through NOAA(National

Oceanic and Atmospheric Administration)2website.

The objective is to classify the locations using ANN and LSTM. We also use

Support Vector Machine (SVM), K-Nearest Neighbors and Random Forest classifiers

to set up becnmark values.

4.3.3.1 Location Clustering

Figure 4.16: User’s Clusters
2https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:53907/detail



75
We used varied K-Means algorithm from chapter 2 to cluster user’s locations.

We found 8 and 10 as optimal number of clusters in the dataset. The clusters are

shown in figure 4.16. We manually labelled the clusters after inspection such that it

is easier to differentiate between them.

4.3.3.2 Results

Figure 4.17: Training and Validation Accuracy

Figure 4.17 and 4.18 display the training/ validation accuracy and loss. Look-

ing at the figure 4.17 one can see that ANN is performing better than LSTM. The

validation accuracy by ANN is 91% as compared to 90% by LSTM. Loss, which is

shown in figure 4.18 by ANN is lower than LSTM model.
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Figure 4.18: Training and Validation Loss

The validation data used in this experiment was 20% of the training dataset.

The testing dataset was never shown to the models and the accuracy on this dataset

by each model is shown in figure 4.19. Optimized LSTM performs the best out of

all the models by predicting 90% correct location clusters. Optimized ANN is able

to classify 88% correct locations and traditional machine learning models like SVM,

K-NN, Random Forest classifier predicts about 82, 78 and 74% correct locations

respectively.

Figure 4.20 shows time taken by each model to train. LSTM takes about 500

seconds to train for 500 epochs and is almost 5 times slower than ANN, which takes

about 100 seconds to train.
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Figure 4.19: Testing Data Accuracy

4.4 Conclusion

In this chapter we discussed about feed forwards neural networks, recurrent

neural networks and a special type of RNN known as long-short term neural network.

We also discussed about a meta-heuristic optimization algorithm called genetics al-

gorithm. We used the three typed of neural networks on three different domains to

predict future time series values. The domains we considered for the experiments

were stocks, currency and GPS locations.

We optimized all the models using genetics algorithm and we witnessed that

LSTM outperformed regular neural networks and traditonal machine learning meth-

ods. It can be difficult to train regular feed forward neural networks and RNNs to

solve problems that require learning long-term temporal dependencies. This is be-

cause the gradient of the loss function decays exponentially with time (called the
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Figure 4.20: Time Taken to Train

vanishing gradient problem). As discussed in section 4.2.4, LSTMs use special units

in addition to standard units, which lets them learn longer-term dependencies.



CHAPTER 5

CONCLUSIONS

5.1 Summary of Contributions

This dissertation was focused on prediction of Spatio-Temporal data like GPS

locations, temporal data like stock prices and currency exchange rates. We tackled

the probelms of prediction by implementing state-of-the art models like Feed For-

ward Neural Networks, Recurrent Neural Networks and Long Short Term Neural

Networks. Each of the model’s hyperparameters were optimized using meta-heuristic

optimization technique called Genetics Algorithm.

In Chapter 2, we made use of varied K-means clustering algorithm and Hidden

Markov Model to predict a user’s future locations. This work describes correctly

classifying future locations of a user such that we can answer questions like “Where is

the user most likely to be when it is a Monday?” or day and time-specific queries like

“Where is the user most likely to be between 6:00 pm and 9:00 pm on Saturdays?”.

The first step is to cluster locations and to solve this we use varied K-means algorithm,

which unlike traditional K-means, sophisticatedly decides that number of significant

clusters of a user. These clusters are then considered as visible states in the HMM

and the hidden states are the days of the week and time of the day.

In Chapter 3, we made use of Feed Forward Neural Networks to predict the

future locations of the user. In this work we concentrated on both regression and

classification of user’s locations.

In Chapter 4, we shifted our interest from just spatio-temporal data prediction

to purely temporal data predictions. The domain of interest in this chapter was

79
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stock prices (Apple Inc.) and currency exchange prices (between USD and INR). We

make use of Feed Forward Neural Networks, Recurrent Neural Networks and Long

Short Term Neural Networks. The hyper parameters of each model is optimized

using Genetics Algotihm and we also benchmark the results using traditonal machine

learning techniques like Support Vector Machines, K-Nearest Neighbors and Decision

Trees.
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[25] G. Yavaş, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos, “A data mining ap-

proach for location prediction in mobile environments,” Data & Knowledge En-

gineering, vol. 54, no. 2, pp. 121–146, 2005.

[26] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engineering,

1995. Proceedings of the Eleventh International Conference on. IEEE, 1995, pp.

3–14.

[27] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “Wherenext: a loca-

tion predictor on trajectory pattern mining,” in Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2009, pp. 637–646.



84

[28] N. Pant and R. Elmasri, “Detecting meaningful places and predicting locations

using varied k-means and hidden markov model.”

[29] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user location

and tracking system,” in INFOCOM 2000. Nineteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2.

Ieee, 2000, pp. 775–784.
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