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ABSTRACT

CYBER-PHYSICAL SYSTEMS: FROM SPECIFICATION INFERENCE

TO DESIGN ANALYSIS

Luan Viet Nguyen, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Taylor T. Johnson

Due to the high degree of uncertainty and complexity, design and analysis of cyber-

physical systems (CPS) are very challenging tasks. The challenge arises immediately in the

early CPS development cycle, which is the stage of developing the requirements to capture

the desirable behaviors of a system. Missing or incomplete requirements make the CPS

design untestable or unverifiable, resulting in CPS failures. Hence, there is an urgent need

for the development of specification language as well as specification inference techniques

that can efficiently determine formal specifications, well-formulated requirements for CPS.

This dissertation presents three different methodologies to determine formal specifications

and facilitate the design and analysis of CPS including:

1. the dynamic analysis prototype for automatically identifying cyber-physical specifica-

ii



tion mismatches of unsafe CPS upgrades,

2. the first study of hyperproperties of real-valued signals, along with a new temporal

logic to express them, and

3. the logic-driven classification mechanism to detect abnormal signal behaviors in both

time and frequency domains.

The above approaches focus on developing formalisms and mining algorithms to formally

express and infer many classes of CPS specifications. Based on that, we build a variety of

prototypes that can automatically identify specification mismatches arising due to system

upgrades, enable simulation-based verification, and detect abnormal model behaviors.
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Chapter 1

INTRODUCTION

1.1 Motivation and Background

Cyber-physical systems (CPS) are networked computing devices that communicate with

one another and tightly interact with physical environments. Today, CPS have extraordi-

nary impacts on human life, appear everywhere as the foundations of smart homes, smart

power/energy systems, intelligent transportation, and biotechnology. These systems are

characterized by both continuous and discrete dynamics, with numerous subsystems inter-

acting with each other in sophisticated manners. Due to the high degree of complexity, the

design and analysis of CPS associated with modeling, verification, and validation activities

are very challenging [9]. In the last two decades, many research efforts from both aca-

demic communities and industrial companies have been initiated in developing automated

tools and methods to determine correct specifications and improve the modeling and ver-

ification of safety-critical CPS. However, safety-critical failures arising from the complex

interaction of software and physical processes in CPS are still prevalent and rampant as ex-

emplified by frequent product recalls across many CPS domains such as medical devices [7],

aerospace [90, 92], and automotive [111]. These safety-critical failures in CPS are mounting
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evidence of a critical need for new scalable approaches in testing and verification to ensure

design correctness and safe operation of CPS.

1.1.1 CPS Modeling and Verification

Modeling. CPS are characterized as mixed discrete-continuous systems, so they are

often considered as hybrid systems that can be modeled through hybrid automata. Hybrid

automata [10] are a modeling formalism which illustrate dynamical systems including both

continuous states and dynamics as well as discrete states and transitions. In essence, hy-

brid automata augment finite state machines with a set of real-valued variables that evolve

continuously over intervals of real time according to some ordinary differential equations

or inclusions. Depending on the dynamics of systems, hybrid automata can be classified

into different classes such as time automata [12], rectangular hybrid automata [127], linear

hybrid automata [68], and nonlinear hybrid automata [69]. Several hybrid automata mod-

eling frameworks have been developed by the academic community to model CPS such as

Petri Nets [42], Shift [45], HyVisual [34], and PowerDEVS [26]. Other commercial environ-

ments including Simulink/Stateflow (SLSF), Modelica, and LabView are also widely used

for modeling CPS across industrial domains.

Verification. Verification is an important process that aims to prove the correctness

and reliability of a system design. Intuitively, verification procedure answers the question

of whether we build a system in a correct manner. Formally speaking, given a system

model with its desirable requirements, verification problem is to design an algorithm which

can prove that the model always satisfies its requirements. If the model does not meet the

2



requirements, it returns a counterexample (a specific behavior that violates the requirements)

that allows us to determine a bug existing in the current system design.

Solving a verification problem, especially for CPS including continuous states and discrete

transitions, is a very challenging task. For CPS modeled as hybrid automata, the verification

problem is equivalent to computing all reachable states of the automata to ensure that there

is no state of the model violating a given requirement. Unfortunately, such reachability

computation is known to be undecidable [10], and hence there is no complete algorithm

to determine whether a given system does or does not satisfy a formal requirement. To

overcome this challenge, a standard approach is to compute an over-approximation for a set

of reachable states. If an over-approximated reachable set does not contain any unsatisfied

state, neither does the precise reachable set. Several automatic verification tools have been

developed from academic communities to compute the over-approximated reachable sets of

various types of hybrid automata such as PHAVer [59] and SpaceEx [60] for linear/affine

hybrid automata, Flow* [36] and dReach [86] for nonlinear hybrid automata, C2E2 for

hybrid systems modeled as continuous or hybrid SLSF models [53]. Alternatively, several

interactive theorem prover tools such as PVS [125], SAL [44], and Keymaera [128] have been

successfully applied to verify various classes of hybrid systems.

Although all of the existing hybrid analysis tools have similar formal semantics, their

model description languages are quite different. Given a particular hybrid automaton model,

it is difficult to compare the reachable sets of the model calculated by different tools to eval-

uate the verification results. To overcome this problem, Bak et al. introduced a conversion

tool for hybrid automata called HyST [18], which allows the same model to be analyzed

3



simultaneously in several verification tools such as HyCreate, Flow*, and dReach. HyST1

takes a source input model in SpaceEx xml format, parses it to an intermediate represen-

tation, and then prints a resulting output to some desired formats. The automatic model

generation by HyST saves a lot of time and effort for a developer involved in comparing the

performance of newly developed algorithms by existing hybrid systems analysis tools. In

addition, HyST can automatically translate hybrid automata to trajectory-equivalent SLSF

models, which enables a correct-by-construction compositional design for CPS with embed-

ding hybrid automata into large-scale SLSF models [17]. Furthermore, HyST can also be

used as a runtime monitor with randomized differential testing for several components (from

parsers to analysis algorithms) in hybrid analysis tools. Indeed, a test subject is the hybrid

automaton randomly generated in the input format for SpaceEx using a prototype tool

called HyRG2 [118], which is then translated to equivalent automata in different formats by

HyST. Next, the automata will be analyzed using different tools, such as SpaceEx, Flow*,

dReach, and HyCreate, or simulated in SLSF. By comparing all analysis results, potential

bugs existing in either HyST or those analysis tools can be determined [119].

Another difficulty of verifying hybrid systems is the state-space explosion or the curse of

dimensionality. This problem can be interpreted that when the number of state variables of

a system increases, the size of the system state-space will grow exponentially. This difficulty

makes most of the existing formal verification techniques infeasible for verifying industrial

large-scale system models. Instead, simulation-based verification is an alternative approach

that can be applied to find a violating behavior of a large-scale model. Simulation-based ver-

1The tutorial and source code of HyST are available at: https://github.com/verivital/hyst
2The tool description and source code of HyRG are available at: http://www.verivital.com/hyrg
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ification computes numerical approximations of system behaviors by extensively simulating

a system and checking whether there is any executed trace violating a given specification.

As a system may have infinitely many different executions, this approach does not provide

formal guarantees for the system correctness, but presents only the probabilistic correctness

assurances. However, since simulation is cheap and usually fast, it is often chosen by control

engineers to perform testing or quality checking for large-scale design models in practice.

Falsification is a recently-developed simulation-based, automated best-effort approach

which can be used to identify system behaviors that violate a given formal specification

efficiently [113]. Formally speaking, given a hybrid system as a Simulink/Stateflow model

and a set of properties, a falsification problem is to find inputs, parameters and initial

conditions that drive the model toward violations of these properties. Although falsification

cannot prove the system correctness, it can efficiently find bugs existing in the real-world

models of CPS that are too complex to be formally verified [80]. Several falsification tools

such as Breach [48], S-taliro [14], and S3CAM [153] have been introduced and successfully

applied to falsify automotive control systems.

1.1.2 CPS Specifications

To successfully design and analyze safety-critical systems, the first important stage is

to develop correct requirements (or specifications) that characterize the correctness and

reliability of a system. Based on that, engineers can iteratively develop a precise model

and then perform verification and validation activities to ensure that the model satisfies its

requirements. Several important classes of CPS requirements include safety requirement (i.e.,

5



a system never reaches a bad state), liveness requirement (i.e., a system always eventually

visits some good state), and stability requirement (i.e., a system eventually visits good state

and stays there).

The requirement development stage is vital as any errors in this first stage of system

development will result in errors in the later design stages and increase the development cost

to fix them. Ambiguous and incomplete requirements make the design unverifiable and are

often root-causes of system failures [16, 47, 67, 148, 149]. In practice, engineers often write

specifications in terms of informal expressions such as natural language and then validate

their design manually against those informal requirements. In many cases, they simply

execute a system, acquire the simulation data and then use their domain expertise to justify

the design quality subjectively. To avoid system failures and reduce development cost, it is

essential to develop well-formulated requirements that accurately specify the design goals in a

precise mathematical expression [47,76]. However, formal requirements are often difficult and

costly to write, and determining them is not always an easy task that requires a significant

investment of time and effort [16,71].

In the last two decades, temporal logic has emerged as one of the most powerful for-

malisms that can be used to express specifications for many systems such as reactive systems,

embedded control systems, and hybrid systems. Various classes of the temporal logic such

as Linear Temporal logic (LTL) [129], Metric Temporal Logic (MTL) [88] and Signal Tem-

poral Logic (STL) [95] have been developed and applied to formally specify different types of

system requirements. Among these logics, STL is powerful in specifying many CPS require-

ments defined over continuous-real valued signals. However, there are two main limitations

of STL that prevents its usage from expressing other class of CPS requirements. First, STL

6
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Figure 1.1: A typical V-process in model-based development.

only deals with a signal in a time domain; it cannot be used to specify a system require-

ment involving frequency information. In many cases, the most distinguished information

is hidden in the frequency content of a signal, especially for signal processing applications.

Second, STL only expresses properties of individual execution traces; we also could not use

STL to specify and test requirements comparing multiple execution traces of a system. In

this dissertation, we focus on the extensions of STL to overcome these limitations. In fact,

we introduce a notion of time-frequency logic (TFL) using continuous wavelet transform to

specify system requirements in a time-frequency domain, and a HyperSTL logic to express

the hyperproperties of real-time, real-valued signals.

1.1.3 CPS Model-based Development

To determine the correct specifications and facilitate the verification and validation chal-

lenges of CPS, engineers can utilize a model-based development (MBD) paradigm as shown

in Figure 1.1. This typical V-process allows us to check whether the design goals are met

7



at every phase of the development. In this process, the phases on the left-hand side are

with regards to specification and model development, while those on the right-hand side

correspond to implementation, integration and operational testing activities. Here, system

requirements are provided beforehand to ensure that the subsequent models, as well as the

final system implementation, always produce behaviors that satisfy the requirements.

Instead of verifying that a final hardware/plant implementation meets system require-

ments, engineers can perform verification and validation activities on a system model to

check whether the design satisfies system requirements early in the design process, before

implementing the model on hardware. As a result, this will allow necessary improvements of

the specifications and the design to be made early in the design process and reduce the cost

of rework at later phases. The focus of this dissertation is to develop specification inference

or requirement mining techniques to specify different classes of CPS requirements and facil-

itate verification and validation activities to be performed early on the specification model

shown in Figure 1.1.

1.2 Dissertation Contributions and Organization

In summary, the contributions of this dissertation include the development of specification

formalisms as well as sufficient mining algorithms to formally specify and verify many classes

of CPS specifications.

Chapter 2 presents an automated method towards identifying unstated assumptions in

CPS. Dynamic specifications in the form of candidate invariants of both the software and

physical components are identified using dynamic analysis (executing and/or simulating the

8



system implementation or model thereof). A prototype tool called Hynger (for HYbrid

iNvariant GEneratoR) was developed that instruments SLSF model diagrams to generate

traces in the input format compatible with the Daikon invariant inference tool, which has

been extensively applied to software systems. Hynger, in conjunction with Daikon, is able

to detect the candidate invariants of several CPS case studies. We use the running example

of a DC-to-DC power converter, and demonstrate that Hynger can detect a specification

mismatch where a tolerance assumed by the software is violated due to a plant change.

Another case study of an automotive control system is also introduced to illustrate the power

of Hynger and Daikon in automatically identifying cyber-physical specification mismatches.

In Chapter 3, we introduce the first study of hyperproperties of CPS. A hyperproperty is

a property that requires two or more execution traces to check. This is in contrast to prop-

erties expressed using temporal logics such as LTL, MTL, and STL, which can be checked

over individual traces. Hyperproperties are important as they are used to specify critical

system performance objectives, such as those related to security, stochastic (or average) per-

formance, and relationships between behaviors. We introduce a new formalism for specifying

a class of hyperproperties defined over real-valued signals, called HyperSTL. The proposed

logic extends signal temporal logic (STL) by adding existential and universal trace quantifiers

into STL’s syntax to relate multiple execution traces. Several instances of hyperproperties

of CPSs including stability, security, and safety are studied and expressed in terms of Hyper-

STL formulae. Furthermore, we propose a testing technique that allows us to check or falsify

the hyperproperties of CPS models. We present a discussion on the feasibility of falsifying or

verifying various classes of hyperproperties for CPSs. We extend the quantitative semantics

of STL to HyperSTL and show its utility in formulating algorithms for falsification of Hy-
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perSTL specifications. We demonstrate how we can specify and falsify HyperSTL properties

for two case studies involving automotive control systems.

Chapter 4 proposes a technique to investigate abnormal behaviors of signals in both time

and frequency domains using an extension of time-frequency logic that uses the continuous

wavelet transform. Abnormal signal behaviors such as unexpected oscillations, called hunting

behavior, can be challenging to capture in the time domain; however, these behaviors can be

naturally captured in the time-frequency domain. We introduce the concept of parametric

time-frequency logic and propose a parameter synthesis approach that can be used to classify

hunting behavior. We perform a comparative analysis between the proposed algorithm, an

approach based on support vector machines using linear classification, and a method that

infers a signal temporal logic formula as a data classifier. We present experimental results

based on data from a hydrogen fuel cell vehicle application and electrocardiogram data

extracted from the MIT-BIH Arrhythmia Database.

Chapter 5 summarizes the dissertation and introduce potential directions for future re-

search.
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Chapter 2

CYBER-PHYSICAL SPECIFICATION MISMATCH AND SAFE CPS

UPGRADES

2.1 Introduction

Systems interacting with their physical environments are becoming increasingly depen-

dent upon computers and software, such as in emerging CPS. For instance, typical modern

cars utilize hundreds of microprocessors, many communications buses, and a complex in-

terconnection between sensors, actuators, and processors. In the design and development

process for most engineered systems, the vast majority of resources are devoted to ensuring

systems meet their specifications [24]. However, in spite of significant technical advances for

designing verification and validation such as model checking, Software/Hardware-In-The-

Loop (SIL/HIL) testing, automatic test case generation for software, and sophisticated sim-

ulators, there still remain products recalled across industries for safety concerns due to soft-

ware problems and system integration between the cyber and physical subcomponents. The

verification community typically focuses on the developmental verification, where a model

of a system is developed and properties (specifications) are (manually, semi-automatically,

or automatically) checked for that system. However, many product recalls and safety disas-
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Figure 2.1: High-level diagram of a closed-loop control system.

ters induced by software bugs are not a result of design errors, but are the result of either:

(a) implementation errors, or (b) reuse, upgrade, and maintenance errors. Initiatives like a

priori MBD are important research efforts and may someday lead to synthesizing provably

correct implementations from specifications. However, most systems being designed today

still utilize a development process that has engineers writing the software, and systems are

integrated with numerous components in a potentially error-prone process. For instance,

a typical CPS that has been used widely in control systems is a closed-loop feedback con-

troller shown in Figure 2.1, where a plant describes physical changes of the environment and

a controller represents cyber/software computations corresponding to these changes. The

physical evolution of the plant can be sensed and sampled by a sensor, and then fed into

the controller. Based on the measurement of the plant provided by the sensor, the controller

provides a corresponding control signal to regulate the physical changes in the plant. This

control signal is converted by an actuator before sending it to the plant. Such a system

may contain different possibilities of failure due to the following main reasons: (a) the con-

troller may make wrong assumptions about the plant, sensor or actuator. For example,

changing parameters of the plant, sensor, or actuator without updating the controller may

produce potential specification mismatches. This controller-reuse issue can lead to safety

failures such as the Honda vehicles recalls or the Ariane 5 flight 501 disaster described in
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Section 2.2. (b) The plant may be influenced by uncontrolled factors (disturbances) from the

environment, (c) the controller is initially encoded based on wrong information about the

physical plant, (d) the sensor and actuator may have conversion errors, and (e) the control

conflicts may arise when using a shared sensor and actuator network.

In this chapter, we propose a method to address such challenges that arise in the product

evolution and upgrade process in CPS. Our proposed method enables dynamic analysis us-

ing well-established software engineering tools for large classes of Simulink/Stateflow (SLSF)

models that are frequently used in CPS engineering. In particular, the method infers can-

didate invariants of SLSF models. Invariants are properties of a system that should always

hold, while conditional invariants may hold at certain program points, for example, at the

beginning or end of a function call (pre/post conditions). This is important because such

models are amenable to formal verification using existing research tools and hybrid system

model checkers. Finding invariants can aid this process as they represent potential abstrac-

tions with a possibly less complex representation than the set of reachable states. The SLSF

block diagrams may be black box components, white box components, or even system im-

plementations (such as when SLSF is used in SIL/HIL simulation). In the case when the

underlying SLSF models are known, they may be formalized using hybrid automata [97].

Candidate invariants inferred with our Hynger (for HYbrid iNvariant GEneratoR) software

tool in conjunction with Daikon [55,56] may be formally checked as actual invariants using a

hybrid system model checker [60]. Figure 2.2 shows a preliminary overview of our proposed

methodology. As a prelude, we just intuitively demonstrate how Hynger and Daikon can be

used to detect specification mismatches. The proposed framework will be fully presented in

Section 2.5.
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Figure 2.2: Preliminary overview of the proposed methodology using Hynger and Daikon to infer

candidate invariants and detect specification mismatches.

Contributions. The primary contributions of this chapter are: (a) the formalization of

the cyber-physical specification mismatch problem, (b) a methodology for performing tem-

plate-based automated invariant inference of white box (known) and black box (unknown)

CPS models using dynamic analysis, (c) the Hynger software tool, which supports instru-

menting large classes of SLSF diagrams for dynamic analysis using tools like Daikon, (d) a

methodology for checking if the inferred invariants are actual invariants by using formal

models of the underlying SLSF model diagrams and hybrid systems model checkers such as

SpaceEx [60], etc., (e) two proof-of-concept CPS case studies using Hynger to automatically

identify cyber-physical specification mismatches. These results can be used to help bridging

the worlds of actual embedded systems software (e.g., detailed SLSF diagrams and generated

C code) with hybrid system models.
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2.2 Cyber-Physical Design Reuse and Upgrade

In this section, we review cases where CPS design reuse and upgrade have led to failures

in existing systems. This motivates the need for our proposed method and our Hynger tool,

which can be used to find and formalize unstated assumptions in CPS.

A recent example of a design-reuse problem is the National Highway Transportation and

Safety Administration (NHTSA) recall of 1.5 million Honda vehicles due to Electronic Con-

trol Module (ECM) software problems that could damage the car’s transmission, resulting

in possible stalls. The root cause of the safety defect was the result of a physical component

(a bearing in the transmission) being upgraded to an improved design between different

model-year vehicles without appropriate ECM software updates [111]. This problem was

widespread because there was a five year delay before the problem was identified, and it was

used across model makes and years (e.g., from 2005− 2010 model year Accords, 2007− 2010

CR-Vs, and 2005 − 2008 Elements). This difficulty in root-cause analysis emphasizes the

point that such problems are probably underreported, and the reuse of components in CPS

can lead to widespread serious problems.

Similar design-reuse problems have famously occurred in aviation—the Ariane 5 flight

501 disaster was a result of reusing Ariane 4’s software without appropriate updates for the

increased thrust of the new rocket [1, 92]. Here, software developers made an assumption

about the physical dynamics of the rocket, but the software was reused from Ariane 4, while

Ariane 5 had greater thrust, so this assumption was invalid. Finally, when considering the

future of CPS, the Defense Advanced Research Projects Agency’s System of Systems Integra-

tion Technology and Experimentation (DARPA SoSITE) program [99] describes modularized
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military aviation systems which are capable of rapid component swapping and upgrade. Left

unaddressed, issues related to unstated assumptions in components are likely to get worse

in future CPS, where changes can occur in the software and hardware.

Besides design-reuse problems, software upgrades without being thoroughly tested and

validated may result in an epic system failure. One famous example of this type of problem is

the disaster of Mars Climate Orbiter (MCO), developed by NASA’s Jet Propulsion Labora-

tory (JPL). The root-cause of this disaster was that different parts of the software developer

team were using different units of measurements. In fact, one part of the ground software

upgraded by Lockheed Martin Astronautics (LMA) measured the thrusters in English units

of pounds (force)-seconds instead of metric units of Newton-seconds as defined in its original

Software Interface Specification (SIS) used by JPL [90,142]. Therefore, the trajectory of the

MCO was erroneously calculated by ground support system computers using the incorrect

thruster performance data. This type of software failure occurred due to the lack of ade-

quate communication between different parts of the software team and the uncovered issues

of verification and validation processes [142].

2.2.1 Related Work

The idea evaluated in this work, that of inferring physical system specifications from

embedded software in conjunction with physical system models and evaluating them for

mismatches, was inspired by previous work finding program specifications for pure software

systems [124]. Cyber-physical specification mismatch is closely related to model inconsis-

tency [133], architectural mismatch [63], and requirements consistency [145]. There are many
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benefits of dynamic analysis such as using implementations instead of models [55, 56, 124]

to find dynamic program specifications [124], providing documentation over program evolu-

tion and checking if specifications change drastically over program evolution, etc. For one,

models are not actually required for analysis, and implementations may be used [55, 56].

The benefit of executing a system implementation is that there are no mismatches between

a model (potentially documentation-based) and implementation, since it is not necessary

to have a model at all. The candidate specification generated may be viewed as a form of

input-output abstraction of the actual implementation. The limitation includes results that

are unsound without additional reasoning.

Recently, Medhat and his collaborators introduced a new framework for inferring hybrid

automata from black-box implementations of embedded control systems by mining their

input/output traces [103]. In their work, the input/output training traces collected from

executing a system are clustered and then translated to event sequences. Under several

assumptions, hybrid automata representing the behaviors of the system can be inferred using

the input/output correlation. Although the work suffers some limitations, their proposed

approach is a proof-of-concept of using dynamic analysis to infer the specifications of black-

box systems. This work is highly relevant to our proposed method as there is an analogy

between inferring hybrid automata and finding a candidate invariant for a black-box system.

In fact, both of them can be considered as doing specification inference using dynamic

analysis.

There are also several tools such as DepSys [110] and EyePhy [109] that used both static

and dynamic analysis to detect and address the control conflict due to dependencies when

using multiple CPS applications. Particularly, DepSys is a utility sensing and actuation
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infrastructure for a smart home that can simultaneously operate multiple CPS applications.

The main novelty of DepSys is that it provides a comprehensive strategy to specify, detect

and automatically address the control conflicts between sensors and actuators used in a

home setting. Similarly, EyePhy is an integrated system that can detect dependencies and

then perform a dependency comprehensive analysis across HIL CPS medical applications. A

built-in simulator, HumMod, in EyePhy is able to model the complex interactions of the hu-

man body using more than 7,800 physiological variables. HumMod demonstrates the model

parameters and the quantitative relationship among them in XML files that makes it easier

to update the physiological models without the recompilation of the whole system. EyePhy

can be considered as the first tool that performs the dependency analysis across applica-

tions’ control actions on the human body. Additionally, the sensor networks with devices

used in smart homes or medical devices can be built using the family of Smart Transducer

Interface Standards (IEEE 1451). IEEE 1451 has been developed in order to provide the

common communication interfaces for connecting transducers (sensors or actuators) to their

instrumentation systems or control networks [89]. The Transducer Electronic Data Sheets

(TEDS) embedded in smart transducers are memory devices, which store the manufacture-

related information of the transducer such as manufacture ID, measurement ranges, serial

number, etc. Thus, TEDS allows transducers to be self-identified and self-descriptive to

the device networks. It also provides a standardized mechanism to facilitate the plug and

play of transducers with different control networks. Hence, IEEE 1451 enables the access of

transducer data through a common set of interfaces, allowing users to select transducers and

networks for their applications. This advantage is crucial in facilitating the device and data

interoperability, detecting and resolving conflicts due to dependencies when concurrently
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using multiple transducers in the device networks.

Finding specifications is a maturing field within software engineering [32, 40, 55, 56, 124].

Daikon, which is used by Hynger, processes program traces to generate invariants [55, 56].

For several languages (C, C++, etc.), this process is performed without access to the source

code by instrumenting the compiled program using Valgrind [112]. This makes it difficult to

use on non-x86/x86-64 platforms (although Valgrind is gaining access to other architectures),

which is a serious limitation, as most embedded platforms utilize other architectures (e.g.,

ARM, AVR, PIC, 8051, MSP430, etc.). Due in part to these limitations, Hynger instru-

ments architecture-independent SLSF diagrams directly. In the long run, the Hynger tool is

envisioned to take an arbitrary SLSF model, instrument it, then analyze the resulting traces

with dynamic analysis to identify broad classes of cyber-physical specification mismatches.

The most closely related work using Daikon is to find candidate invariants of hybrid

models of biological system [27], and this also illustrates a proof-of-concept of using Daikon

as a trace analyzer for non-purely software systems. Daikon can generate invariants of many

forms for variables and data structures, such as: ranges (a ≤ x ≤ b), linear (y = ax + b),

variable ordering (x ≤ y), sortedness of lists, etc. Daikon works by instrumenting source code

and/or compiled binaries with changes that allow for looking at variable values, then Daikon

essentially checks if variables satisfy some template invariants. For instance, if an integer

variable x is observed to always be smaller than some number, say 50, Daikon may generate

a candidate invariant of x ≤ 50. Based on many advantages of using Daikon as a trace

analyzer [55, 56], we prefer to use Hynger with Daikon to infer candidate invariants in our

proposed framework. However, we note that Hynger can generate a trace file in many input

formats that are compatible with other invariant-inference tools using dynamic analysis not
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just Daikon. Other research tools like DySy [40] and commercial tools like Agitagor [32] can

be used for generating candidate invariants for other languages.

2.3 Cyber-Physical System Models

The approach presented in this chapter applies to the systems with formal models, in-

formal models, and unknown models/implementations. The primary assumption is that

interfaces to the models or systems are available as SLSF blocks. There are two main cate-

gories of blocks appearing in an SLSF diagram that are supported by our method, white box

and black box systems. The white box systems may contain: (a) known, informal models,

(b) known, informal implementations, or (c) known, formal models (e.g., hybrid automata,

or more precisely, classes of SLSF diagrams that may be converted to hybrid automata [97]).

The black box systems may be completely unknown, and may contain: (a) unknown imple-

mentations (e.g., compiled executable binaries with no source available, such as commercial

off-the-shelf [COTS] components and other third-party systems), (b) unknown models, and

(c) actual cyber-physical systems (e.g., embedded controllers, networked computers, and

physical plants, all that may show up in HIL/SIL simulations interfaced with SLSF).

Next, we define a structure of CPS models used in SLSF. We will not define formal

semantics of this structure or SLSF diagrams in this chapter. However, in the case where

an SLSF diagram is a white box and formal semantics may be defined, a formal framework

like hybrid input/output automata (HIOA) [94] may be used to specify the semantics, such

as done in the HyLink tool [97]. Additionally, if an SLSF diagram is a white box and

linear, we may also be able to use SL2SX Translator for transforming it into a corresponding
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formal model [104]. Interested readers can find some graphical examples of the translation

in [97,104]. Other formalisms like actors and hierarchical state machines are commonly used

for formal modeling of other diagrammatic frameworks similar to SLSF [11, 25, 143, 151].

Given a formal model A and candidate specification Σ (e.g., found using Hynger), we can

check if A meets the specification, i.e., A |= Σ by using a hybrid system model checker like

SpaceEx [60]. In some instances, we know when an SLSF diagram corresponds precisely to a

hybrid automaton model [97], and in these cases, we can check if candidate invariants found

with Hynger are actual invariants.

First, we define the hierarchy represented by SLSF diagrams.

Definition 1 (SLSF diagram) An SLSF diagram is a tuple A ∆
= 〈M,E,V〉, where:

• M is a set of blocks (vertices) that represent block diagrams (and sub-blocks/models),

• E ⊆M ×M is a set of edges between blocks representing a parent-child hierarchy, and

• V is a set of variables, written as V
∆
=
⋃
v∈M V(v), where V(v) is a set of variables for

each block v ∈M .

According to Definition 1, the graph G
∆
= (M,E) defined by the vertices (blocks) M and

edges E is a rooted tree, where M are block diagrams and E represents a parent-child

hierarchical relationship (e.g., sub-modules and sub-blocks). Here, the root (i.e., top-level)

block diagram of the model is the unique root of the tree, which we denote as root(M). For

a block v ∈M , the children of v are denoted as children(v) and defined as the set of blocks

{w ∈ M | w ∈ E(v)}. For a block v ∈ M , the parent of v is denoted as parent(v) and is

defined as the singleton set {w ∈ M | v ∈ children(w)}. Clearly, parent(root(M)) = ∅. For
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a block v ∈ M , the ancestors of v are denoted as ancestors(v) and defined inductively as

the set of blocks {w ∈ M | v ∪ w ∈ children(v) ∪ children(w)} (or equivalently, as the

transitive closure of children(v)).

For a block v ∈M , the set of variables of v is V(v) and is partitioned into sets of input and

output variables, written respectively as VI(v) and VO(v), and we have V(v) = VI(v)∪VO(v).

A variable x ∈ V(v) is a name for referring to some state of A, and is associated with a

data type denoted type(x). Typical data types are reals, floating points, arrays, lists, etc.

The valuation of a variable x ∈ V(v) is the set of all values it may take and is denoted

val(x). The state-space of A is the set of valuations of all the variables V. An element s

of the state-space is called a state, and a trace is a sequence of states. The SLSF diagram

may also have internal (local) variables, although they are not externally visible, so we do

not include them, as only input/output interfaces are visible for external observation and

instrumentation.

Next, we define CPS models that appear in SLSF diagrams.

Definition 2 (CPS model) A CPS model is an SLSF diagram with a set of n typed vari-

ables, V = {x1, x2, . . . , xn}, which is classified into two subsets as follows.

• VP = {α1, α2, . . . , αnp} is a set of np ≤ n physical variables such that their values are

continuously updated, and

• VC = {β1, β2, . . . , βnc} is a set of nc cyber variables that are discretely updated, where

n = np + nc.

Here, the set of variables for each block of a CPS model is also partitioned into sets of

physical and cyber variables, V(v) = VP (v) ∪ VC(v). In practice, this may be accomplished
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with subtyping using, for example, an overloaded type for floats or fixed points used for

approximations of real variables (e.g., in C, typedef double physical; typedef physical

temperature;). The dynamic changes of the variables of the CPS model may be described

using different SLSF blocks such as S-Function block, look-up table, etc. In case the CPS

model is a white-box and simple enough, we may translate it to a formal framework like HIOA

(e.g using Hylink). In fact, we can specify a set of real-valued variables and their dynamic

changes for the converted formal model based on capturing the output variables from unit

delay, integrator, state-space blocks in the corresponding SLSF diagram [13]. Moreover, we

note that the input and output variables are disjoint, and the cyber and physical variables

are disjoint, although these are not all mutually disjoint. Hence, we further classify the set

of variables V(v) into different types as follows.

Definition 3 (Variable Classification) For a block v ∈ M , a variable x ∈ V(v) is con-

sidered as:

• an input cyber variable if x ∈ VC(v) and x ∈ VI(v),

• an output cyber variable if x ∈ VC(v) and x ∈ VO(v),

• an input physical variable if x ∈ VP (v) and x ∈ VI(v), or

• an output physical variable if x ∈ VP (v) and x ∈ VO(v).

We extend these notations in Definition 3 naturally to sets of variables if all variables in a

set of variables fall into these classes, and will reference them as such. An arbitrary set of

variables may not be mutually disjoint from each of the input, output, cyber, and physical

variables. Thus, for a set of variables X ⊆ V, we say: (a) X is cyber-physical if there exist

24



both cyber and physical variables in X, (b) X is input-output if there exist both input and

output variables in X, and (c) X is cyber input-output, physical input-output, cyber-physical

input, or cyber-physical output for the other natural permutations.

Next, using these variable classes, we define classes of SLSF blocks appearing in SLSF

diagrams. For a block v ∈ M , we say: (a) v is a cyber-physical block if there exist both

cyber and physical variables in V(v), (b) v is a cyber block if there exist only cyber variables

in V(v), and (c) v is a physical block if there exist only physical variables in V(v).

Cyber-Physical Variable Interactions. Next, we will formalize a notion of influence between

cyber and physical models and their variables. For example, consider a typical closed-

loop plant-controller architecture, where outputs of a plant are sensed, used as inputs to a

controller, and outputs of the controller are converted by actuators as inputs to the plant (and

potentially disturbances affect everything). Generally, we would say the plant is a physical

model, the controller is a cyber model, and the sensors and actuators are cyber-physical

models. However, it is clear that the physical variables of the plant affect the cyber variables

of the controller, and vice-versa, albeit not directly, but through the transitive closure of

input-output connections over all blocks in the SLSF diagram. We note that this is related

to the notion of tainted variables in program analysis that is popular in security [138].

To formalize this notion, we specify interconnections between input and output variables

between blocks v ∈M at the same hierarchical level in the diagram.

Input-output connections may only exist between models with the same parent (i.e., those

in the same hierarchical structure). For a block v ∈ M , we denote all blocks with the same

parent as siblings(v), which is defined as the set {w ∈M | parent(w) = parent(v)}. Output

variables of a block v ∈ M may be connected to input variables of a block w ∈ M . Let
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GV
∆
= (VV, EV) be a directed graph where the vertices VV are variables of blocks v ∈M and

the edges specify the interconnection between output variables to input variables for some

model w ∈ siblings(v), and we have EV ⊆ V(v)× V(w). In general, for a fixed block v ∈ M

and variable x ∈ V(v), this interconnection relation is a tree, rooted at the output variable

x and connected to possibly many input variables of other blocks w ∈M for w 6= v. For two

blocks v, w ∈ M , we say v connects to w if there exists an output variable y ∈ VO(v) and

an input variable u ∈ VI(w) with EV(u) = y, denoted v ↪→ w. For two blocks v, w ∈ M ,

we say v has a path to w if w is in the transitive closure of blocks that v connects to (i.e.,

v ↪→∗ w), denoted v ; w. We note that the ; relation may have cycles, and such cases arise

in feedback control loops. For a block v ∈ M , for an input variable u ∈ VI(v) and output

variable y ∈ VO(v), we say u directly influences y if the value of y changes as a function of

u.1 Finally, for two blocks v, w ∈ M such that v ; w, for an output variable y ∈ VO(v)

and an input variable u ∈ VI(w), we say y influences u if there exists a sequence of directly

influenced variables between y and u. Thus, we can see that a cyber variable in one model

may influence a physical variable in another model (or even its own model if there is a cycle),

and vice-versa. The software physical variables are all cyber variables that are influenced

by physical variables, and are denoted VSP . Typical examples of software physical variables

include those used for sensed and sampled measurements, variables used in feedback control

calculations, etc.

Example 4 Here, we describe a CPS case study used throughout the remainder of the chap-

ter for illustrating concepts. The case study is a DC-to-DC power converter (like buck,

1Internally the blocks may be very sophisticated, could represent complex physical systems, could be

Turing complete, etc., so we use this abstract notion.

26



boost, and buck-boost converters) [115], all of which have similar modeling, but we focus

particularly on a buck converter. The buck converter has two real-valued state variables

modeling the inductor current iL and the capacitor voltage VC. These state variables are

written in vector form as: x = [iL;VC ]. The dynamics of the continuous variables in

each mode m ∈ {Open,Close,DCM } are specified as linear (affine) differential equations:

ẋ = Amx + Bmu, where u = VS is a source voltage. The Am matrices consist of L > 0,

R > 0, C > 0 real-valued constants, respectively representing inductance (in Henries), resis-

tance (in Ohms), and capacitance (in Farads). A buck converter takes an input voltage of

say 5V and “bucks” or drops the voltage to some lower DC voltage, say 2.5V. These circuits

are used in many electronic devices (e.g., personal computers, cellphones, embedded systems,

aircraft, satellites, cars). These circuits are also used as modular components in a variety of

novel power electronics architectures, such as AC/DC microgrids and distributed DC-to-AC

multilevel inverters [120].

The general architecture of the buck converter that we focus on consists of a plant (physical

system) model and a controller (cyber model/software), along with models of actuators and

sensors interfacing the plant and controller. A controller for the buck converter may be

constructed as a hysteresis controller, which changes the mode of the buck converter plant

based on the measured output voltage [72]. In fact, the converter is meant to transform a

given source voltage VS to create an output voltage Vout approximately equal to a desired

reference voltage (or set-point) Vref . To accomplish this, the switch controlling whether VS

is connected to the output or not is toggled depending on whether Vout > Vref or Vout < Vref .

In practice, to avoid switching too often, a hysteresis band is used and switches occur when

Vout > Vref + Vtol or Vout < Vref − Vtol . The choice of Vtol , along with the system dynamics,
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will determine the voltage ripple Vrip about the set-point Vref . Typical specifications require

the voltage ripple to be small, so that the output voltage Vout is approximately Vref , that

is, Vrip is chosen so that for Vout = Vref ± Vrip, we have Vout ≈ Vref . The sensor model

performs quantization and sampling, as would occur in typical analog to digital conversion

(ADC) used to digitize analog signal measurements. The actuator models likewise perform

the inverse process of digital to analog conversion (DAC) to convert the digital (cyber) signals

to analog signals.

Generally, we can model the plant as a physical block, the hysteresis controller as a cyber

block, and the sensors and actuators as cyber-physical blocks in SLSF. The plant voltage is

an output physical variable that affects the output cyber variable—a switching mode signal

that enables the transition between each mode in the plant—of the controller, and vice-versa.

This interaction between the plant and the controller is accomplished through the transitive

closure of input-output connections with the sensor and the actuator in the SLSF model.

We will formalize specifications and mismatches of the buck converter in Section 2.4. As a

prelude, we highlight that Hynger finds its candidate invariant (that can be shown to be an

actual invariant when modeled as a hybrid automaton [72, 79, 115]).

2.3.1 Cyber-Physical Input-Output Automata

To further investigate cyber-physical specification mismatches of CPS models, we consider

ones that may be formally represented as cyber-physical input-output automata.

Definition 5 A cyber-physical input-output automaton (CPIOA) Ã is a tuple, Ã ∆
= 〈Loc,

Var, Flow, Inv, Traj , Lab, Trans, Init〉, consisting of the following components:
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• Loc: a finite set of discrete locations.

• Var: a finite set of n continuous, real-valued variables, where ∀x ∈ Var, val(x) ∈ R

and val(x) is a valuation—a function mapping x to a point in its type—here, R; and

Q ∆
= Loc × Rn is the state space. Var is the disjoint of a set of input variables I and

a set of output variables O. Furthermore, C and P classify Var into sets of cyber and

physical variables, respectively.

• Inv: a finite set of invariants for each discrete location, ∀` ∈ Loc, Inv(`) ⊆ Rn.

• Flow: a finite set of derivatives for each continuous variable x ∈ Var, and Flow(`, x) ⊆

Rn describes the continuous dynamics of each location ` ∈ Loc. if x is a physical

variable, Flow(`, x) is a non-zero Lipschitz continuous differential equation over time.

Otherwise, if x is a cyber variable, Flow(`, x) = 0.

• Traj : a finite set of continuous trajectory models the valuations of variables over an

interval of real time [0, T ]. Let ∆0, ∆t and ∆T be the valuations of variable x at time

points 0, t, and T respectively, ∀t ∈ [0, T ], ∀x ∈ Var, ∃` ∈ Loc, a trajectory τ ∈ Traj

is a mapping function τ : [0, T ]→ val(Var) such that:

� ∆t = ∆0 +
∫ t
δ=0

Flow(`, x)dδ, and

� ∆0 |= Inv(`), ∆t |= Inv(`), and ∆T |= Inv(`).

• Lab: a finite set of synchronization labels.

• Trans: a finite set of transitions between locations; each transition is a tuple γ
∆
=

〈`, `′, g, u〉, which can be taken from source location ` to destination location `′ when a
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guard condition g is satisfied, and the post-state is updated by an update map u.

• Init is an initial condition, which consists of a set of locations in Loc and a formula

over Var, so that Init ⊆ Q.

Next, we define the semantics of a CPIOA Ã in term of executions. An execution of Ã

is a sequence of states, written as ρ
∆
= s0 → s1 → s2 → . . ., where s0 ∈ Init , and si →

si+1 is the update from the current-state si to the post-state si+1, that is specified by the

transition relations of the CPIOA Ã including: (a) a discrete transition that demonstrates

the instantaneous state update, or (b) a continuous trajectory that represents the state

update over a real time interval. We say a state sk is reachable from an initial state s0 if

there exists an execution ρ
∆
= s0 → s1 → . . .→ sk.

Invariant Property. An invariant property ϕ of a CPIOA Ã is a formula over Var and Loc

that is always true for every reachable state of Ã. Formally, we say Ã |= ϕ iff ∀s ∈ Reach(Ã),

s |= ϕ, where Reach(Ã) denotes the set of reachable states of Ã.

Parallel Composition. Consider two CPIOAs Ã1
∆
= 〈Loc1, Var 1, Inv 1, Flow 1, Traj 1, Lab1,

Trans1, Init1〉, and Ã2
∆
= 〈Loc2, Var 2, Inv 2, Flow 2, Traj 2, Lab2, Trans2, Init2〉, we consider

that Ã1 and Ã2 is compatible if (a) I1 ⊆ O2, (b) I2 ⊆ O1, and (c) O1 ∩O2 = ∅. The parallel

composition operation combines two compatible CPIOAs into a single CPIOA that represents

the synchronous interaction between these two CPIOA when running simultaneously.

Definition 6 (Parallel Composition) Given two compatible CPIOAs Ã1 and Ã2, the par-

allel composition of Ã1 and Ã2 is a CPIOA Ã , written as Ã ∆
= Ã1‖Ã2, where:

• Loc = Loc1 × Loc2,

• Var = Var 1 ∪ Var 2,
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• Q = Q1 ×Q2,

• O = O1 ∪O2,

• I = (I1 ∪ I2) \O,

• ∀`1, `2 ∈ Loc, Inv(`1, `2) = Inv 1(`1) ∧ Inv 2(`2)

• ∀`1, `2 ∈ Loc, ∀x ∈ Var, ((`1, `2), val(x) ∈ Init) iff (`1, val(x)) ∈ Init1 ∧ (`2, val(x)) ∈

Init2,

• Lab = Lab1 ∪ Lab2,

• ∀i ∈ {1, 2}, there is a trajectory τ ∈ Traj iff τ ↓ (Loci ∪ Var i) ∈ Traj i, where τ ↓

(Loci ∪ Var i) denotes the projection of τ onto the sets of variables and locations of

component i.

• Given γ1 ∈ Trans1, γ1
∆
= 〈`1, `′1, g1, u1〉 and γ2 ∈ Trans2, γ2

∆
= 〈`2, `′2, g2, u2〉, there

exists a transition γ ∈ Trans, γ
∆
= 〈`, `′, g, u〉 iff:

� ` = (`1, `2), `′ = (`′1, `2), g = g1, and u = u1, or

� ` = (`1, `2), `′ = (`1, `
′
2), g = g2, and u = u2, or

� ` = (`1, `2), `′ = (`′1, `
′
2), g = g1 ∧ g2, and u = u1 ∪ u2.

Closed-loop CPIOA. One type of CPS model that we focus on in this chapter is a closed-

loop model, e.g., the closed-loop buck converter. Such a model can be formally represented as

a closed-loop CPIOA, which is a parallel composition of a plant and controller CPIOA. The

plant CPIOA has continuous dynamics modeled by ordinary differential equations, and the
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Fig. 3. A hybrid automaton models the buck converter plant with hysteresis controller.

CPIOA, which is a parallel composition of a plant and controller CPIOA. The plant CPIOA has
continuous dynamics modeled by ordinary di�erential equations, and the controller CPIOA can be
purely discrete. For instance, the hybrid automaton of the closed-loop buck converter (without
sensor and actuator) shown in Figure 3 can be considered as one closed-loop CPIOA, where θ is a
synchronization label and mode is a discrete control signal. The capacitor voltage variable VC is
not only an output physical variable for the plant CPIOA, but is also an input cyber variable of the
controller CPIOA. In this case, we can check whether the candidate invariants of the closed-loop
buck converter found with Hynger and Daikon are actual invariants by investigating its formal
model (e.g., a closed-loop CPIOA shown in Figure 3) using some hybrid systems model checkers
such as SpaceEx [20].

3.2 Candidate Invariant Checking Problem
The formal de�nition of the candidate invariant checking problem for CPS is described as follows.

De�nition 3.7 (Candidate Invariant Checking). Given a CPS model A with a set of candidate
invariants Φ̂, Ã is a formal model converted from A, a candidate invariant φ̂ ∈ Φ̂ is considered as
an actually invariant property of Ã i� Reach(Ã) |= φ̂.

According to De�nition 3.7, if a CPS model A is a white box system that can be represented in
terms of a formal model such as a CPIOA Ã, a hybrid system model checker may be used to check
whether φ̂ is an invariant property of Ã. If there exists any reachable state of Ã that does not
satisfy φ̂, we can conclude that φ̂ is not an actual invariant of the CPS model A.

4 CYBER-PHYSICAL SPECIFICATIONS AND MISMATCHES
In this section, we will formalize the concept of candidate cyber-physical speci�cation mismatches
of CPS, and introduce a potential method to detect such speci�cation mismatches.
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Figure 2.3: A hybrid automaton models the buck converter plant with hysteresis controller.

controller CPIOA can be purely discrete. For instance, the hybrid automaton of the closed-

loop buck converter (without sensor and actuator) shown in Figure 2.3 can be considered as

one closed-loop CPIOA, where θ is a synchronization label and mode is a discrete control

signal. The capacitor voltage variable VC is not only an output physical variable for the plant

CPIOA, but is also an input cyber variable of the controller CPIOA. In this case, we can

check whether the candidate invariants of the closed-loop buck converter found with Hynger

and Daikon are actual invariants by investigating its formal model (e.g., a closed-loop CPIOA

shown in Figure 2.3) using some hybrid systems model checkers such as SpaceEx [60].

2.3.2 Candidate Invariant Checking Problem

The formal definition of the candidate invariant checking problem for CPS is described

as follows.

Definition 7 (Candidate Invariant Checking) Given a CPS model A with a set of can-
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didate invariants Φ̂, Ã is a formal model converted from A, a candidate invariant ϕ̂ ∈ Φ̂ is

considered as an actually invariant property of Ã iff Reach(Ã) |= ϕ̂.

According to Definition 7, if a CPS modelA is a white box system that can be represented

in terms of a formal model such as a CPIOA Ã, a hybrid system model checker may be used

to check whether ϕ̂ is an invariant property of Ã. If there exists any reachable state of Ã

that does not satisfy ϕ̂, we can conclude that ϕ̂ is not an actual invariant of the CPS model

A.

2.4 Cyber-Physical Specifications and Mismatches

In this section, we will formalize the concept of candidate cyber-physical specification mis-

matches of CPS, and introduce a potential method to detect such specification mismatches.

2.4.1 Cyber-Physical Specifications

Our goal is to find specifications that are invariants or conditional invariants, so we do

not consider more general temporal logic formulas. Under this assumption, a specification

is equivalent to a predicate over the state-space of the system. Equivalently, a specification

is a multi-sorted first-order logic (FOL) sentence (of a restricted class), so we assume the

specification may be represented in the Satisfiability Modulo Theories (SMT) library stan-

dard language [20, 108]. Under these assumptions, candidate invariants may be specified

as quantifier-free SMT formulas over the variables of the SLSF model, where the type of a

variable corresponds to the SMT sort. For a formula φ, let vars(φ) be the set of variables

appearing in φ. For a formula φ: (a) if vars(φ) are all physical, then φ is a physical specifi-
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cation, (b) if vars(φ) are all cyber, then φ is a cyber specification, and (c) if vars(φ) consists

of both cyber and physical variables, then φ is a cyber-physical specification.

Next, while we will try to infer interesting specifications φ using dynamic analysis later

in the chapter, we first highlight examples of specifications made a priori in system design,

as these are necessary to define specification mismatches. Let Σ be a set of specifications for

A, which is a set of formulas over the variables of A. Referring to Figure 2.4, we separate the

specification Σ into sets of cyber and physical specifications, written respectively as ΣC and

ΣP . These specifications include assumptions about the physical environment, such as the

value of gravitational force, temperature bounds, time constants, etc. The physical specifi-

cation also includes assumptions about the physical system’s behavior and subcomponents,

such as motor torque limits, temperature bounds of components, sampling rates, velocity

limits, etc. Here ΣC denotes the set of cyber specifications. The cyber specifications include

assumptions about software-physical interfaces, such as ADC resolution, DAC resolution,

sampling rates, etc. It also includes assumptions about the software system, subcompo-

nents, and software-software interfaces, such as data formats, control flow, event orderings,

etc. For example, the buck converter has the following physical specifications:

σ1
P

∆
= t ≥ ts ⇒ Vout(t) = Vref (t)± Vrip ,

σ2
P

∆
= VS(t) = VS(0)± δS,

σ3
P

∆
= Vref (t) = Vref (0)± δref ,

and ΣP
∆
= {σ1

P , σ
2
P , σ

3
P}. Here, σ1

P states that after some amount of constant startup time

ts, the output of the buck converter Vout(t) remains near a reference (desired) output voltage

Vref (t). Both σ2
P and σ3

P specify assumptions about the buck converter’s environment, namely
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Figure 2.4: Hynger overview, inference of physical specifications assumed by software, and cyber-

physical specification mismatch identification.

that its source voltage VS and reference voltage Vref always remain near their initial values.

We note that while time may not typically be thought of as a state of the system, it can

be encoded in this way easily, for example, by including a state variable t with ṫ = 1. To

evaluate whether A has cyber-physical specification mismatches, we hypothesize that the

cyber specification contains (at least a subset) of the physical specification. This process is

made more explicit in Figure 2.4 and described next.

2.4.2 Cyber-Physical Specification Mismatches

A CPS model or implementation will be provided as an SLSF diagram, denoted A as

formalized above. Next, A is instrumented using the Hynger yielding a modified SLSF

diagram Â. Now, Â is executed to generate a set of sampled, finite-precision traces T for
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each initial condition θ in a set of initial conditions Θ, which effectively corresponds to a

test suite. The traces T are analyzed using dynamic analysis methods, such as Daikon, to

generate a set of candidate invariants Φ̂, each element ϕ̂ of which may be checked as actual

invariants if A corresponds to a formal model (e.g., a CPIOA) or may be converted to one,

Ã. If that is the case, then a hybrid system model checker may be employed to see if ϕ̂ is

an actual invariant ϕ, and the set of actual invariants Φ is collected.

Definition 8 (Cyber-Physical Specification Mismatch) Given an SLSF diagram A with

a set of actual physical specifications ΣP , let Φ̂P
∆
= Φ̂ ↓ VSP be a set of candidate physical in-

variant, A has a cyber-physical specification mismatch iff: ∃σP ∈ ΣP , ∀ϕ̂P ∈ Φ̂P , σP 6|= ϕ̂P .

In Definition 8, Φ̂ ↓ VSP denotes the projection or the restriction of Φ̂ to the set of software

physical variable VSP . In all cases, each candidate invariant ϕ̂ ∈ Φ̂ is projected (restricted)

onto the software physical variables VSP to yield a candidate physical invariant ϕ̂P and

corresponding set Φ̂P . Such a projection may be computed using quantifier elimination

methods available in many modern SMT solvers, such as Z3 [43]2. Now, Φ̂P corresponds

to the candidate, inferred physical invariants from the perspective of the cyber-physical

system, each element of which may be compared to each element σP of a set of actual

physical specifications ΣP . Since ϕ̂P and σP are both formulas, we construct new formulas

ϕ̂P ⇒ σP and σP ⇒ ϕ̂P , each of which may be discharged with an SMT solver. If these

checks are not valid, then these specifications are candidate cyber-physical mismatches. These

checks basically compare whether the inferred specification and actual specification are more

2Z3 may be downloaded: http://z3.codeplex.com/.
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or less restrictive than one another, in terms of the sizes of corresponding sets of states

satisfying the predicates. We hypothesize that it is generally the case that the inferred

physical specification should always be stronger than the actual physical specification, and

only the check ϕ̂P ⇒ σP would be needed. This would correspond to the case where the

software’s assumptions about the physical world are at least as restrictive as those made

in the actual physical specification. For instance, suppose that the physical specification

of the output voltage of the buck converter is σP
∆
= t ≥ ts ⇒ 4.8V ≤ Vout(t) ≤ 5.2V ,

and the candidate physical invariant is ϕ̂P
∆
= t ≥ ts ⇒ 4.9V ≤ Vout(t) ≤ 5.1V , then the

check of the formula ϕ̂P ⇒ σP using an SMT solver like Z3 will indicate that the system

does not have a specification mismatch. Otherwise, if the candidate physical invariant is

ϕ̂P
∆
= t ≥ ts ⇒ 4.7V ≤ Vout(t) ≤ 5.0V , then the check of the formula ϕ̂P ⇒ σP will indicate

that the system has a specification mismatch. On the other hand, it may also be useful to

check ϕ̂P ⇐ σP , which would correspond to cases where the inferred physical specification

is weaker than the actual physical specification. In this case, there may be a trace that

violates the actual specification, and this may be useful in analysis like falsification to drive

simulations towards a violating behavior.

2.5 Hynger: Generating Invariants for SLSF Models

Hynger—HYbrid iNvariant GEneratoR—is a software tool developed for invariant infer-

ence of CPS models represented as SLSF block diagrams3. Hynger is written primarily in

3A prototype of Hynger with examples is available online at: https://bitbucket.org/verivital/

hynger. The repository also includes Daikon input (*.dtrace) trace files generated from the examples, as

well as the Daikon output candidate invariant (*.inv) files.
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Matlab and uses the Matlab APIs to interact with SLSF diagrams. Hynger also uses some

Java code (natively inside Matlab) to interface with Daikon, which is written in Java. Daikon

versions 5.0.0 to 5.1.8 were tested with Hynger4.

Given an SLSF model A, Hynger automatically inserts callback functions into the model

to print model variables at block inputs and outputs at certain events in the SLSF simulation

loop. Consequently, a trace file generated by Hynger will then be formatted in the trace

input format required by Daikon. While configurable, the default behavior of Hynger is to

add instrumentation (observation) points for every input and output signal for every block

(recursively) in the SLSF diagram. That is, Hynger walks the tree of blocks starting from

the root, and for each v ∈M , adds instrumentation points for the input variables VI(v) and

the output variables VO(v) of v. Of course, this may incur a drastic performance overhead,

so if this is not desired, the user may select only a subset of the blocks to instrument and

our performance results (see Section 2.6) illustrate this distinction. When an SLSF model is

simulated with these instrumentation callback functions added by Hynger, it will generate

a trace file in the input trace format for Daikon. Hynger also provides the capability to

automatically call Daikon from Matlab (by using an appropriate Java call to Daikon), which

will then return the set of candidate invariants from each program point to the user.

The Hynger flow is summarized in Figure 2.4. The inputs are: (a) SLSF diagrams

(containing embedded software code and a set of physical variables along with their physical

dynamics models [e.g., ODEs]), and (b) a set of physical variables along with their dynamics

models (specified as SLSF children diagrams), and (c) a test suite for the embedded software

and initial conditions for the physical simulation (such as noisy initial conditions, θ ∈ Θ).

4Daikon may be downloaded: http://plse.cs.washington.edu/daikon/.

38

http://plse.cs.washington.edu/daikon/


1 /*@ requ i r e s n >= 0; // at l e a s t 0 e lements

@ requ i r e s \ v a l i d ( b+ ( 0 . . n−1)); // a l l e lements e x i s t

3 @ ass i gn s \nothing ; // no s i d e e f f e c t s

@ ensures \ r e s u l t == \sum(0 ,n−1,\ lambda in t e g e r j ; b [ j ] ) ;

5 @ ensures \ r e s u l t >= 0; // f a l s e , array may be nega t i v e

*/

7 int sum_array(int b[], unsigned int n) {

int i;

9 int s = 0;

/*@ loop invar i an t

11 \ f o r a l l i n t e g e r j ; (0 <= i <= n) ==> s == \sum(0 , i −1,\ lambda in t e g e r j ; b [ j ] ) ; */

for (i = 0; i < n; i++) {

13 s += b[i];

}

15 return s;

}

Figure 2.5: Example C function that sums an array b of n integers. Requirements on the function

inputs (i.e., preconditions on b and n for the function to be called) are specified as requires

assertions in the ACSL language. Correctness specifications (i.e., postconditions following the

function call) are specified as ensures assertions in the ACSL language.

The output of the Hynger tool is a set of candidate invariants, which, when projected onto all

the software physical variables VSP , represent a candidate specification the software assumes

for the physical parts of the system. Finally, candidate specifications can be checked for

conformance with the actual physical requirements by comparing the two specifications:

the actual physical specification and the candidate physical specification from the software

perspective.
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============== Precondition

2 .. sum_array ()::: ENTER

b has only one value // i t ’ s a po in t e r to only one l o c a t i on o f memory

4 b[] elements >= 0 // a l l e lements were non−nega t i v e f o r t h i s s e t o f t r a c e s

n == 100 // a l l t e s t s were 100 element arrays f o r t h i s s e t o f t r a c e s

6 size(b[]) == 100 // a l l t e s t s were 100 element arrays

============== Postcondition

8 .. sum_array ()::: EXIT

b[] == orig(b[]) // no s i d e e f f e c t s

10 return == sum(b[]) // does re turn the sum

sum(b[]) == sum(orig(b[]))

12 b[] elements >= 0

Figure 2.6: Daikon candidate invariant output (with some additional markup in C-style comments

for readability) for the sum array example from Figure 2.5.

2.5.1 Dynamic Invariant Inference with Daikon

Next, we illustrate the dynamic invariant inference methodology used by Daikon on a pure

software example. However, this pure software example (a C function) is actually specified

for the controller in the buck converter case study (shown in Figure 2.7) in a different manner.

The loop in the controller SLSF model of Figure 2.9 also computes a sum of an array, and

Daikon can find this specification for both the SLSF controller model using Hynger, and

the C-frontend for the following example. Note that, in Figure 2.9 the digitized output

voltage from the buck-converter plant is used to determine the mode of the switch. Here,

Vtol is denoted by the variable Vtol, Vref is Vref. We highlight that the controller computes

a moving average by summing an array. With Hynger and Daikon, we automatically infer

that the result of this is the sum of the samples, similar to the sum return specification
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shown in Figure 2.6 found for the C function in Figure 2.5.

Example C Program, Formal Specification, and Candidate Invariants Inferred. Figure 2.5

shows an example C function to illustrate the use of dynamic analysis with Daikon to find

candidate invariants. The function computes and returns the sum of an array of integers.

This example was recreated from an example in the original Daikon paper [55]. Additionally,

a formalized correctness specification is given in the modern ANSI/ISO C Specification

Language (ACSL), used by tools such as Frama-C [41]. Using Daikon and a small suite

of unit tests, we were able to successfully find the invariant that returns from the function

sum array, the returned value is the sum of the elements in the array b. The suite of tests

included arrays with: (a) all the same length and same elements, (b) all the same length and

uniformly randomly chosen elements, (c) different lengths and all the same elements, and

(d) different lengths and uniformly randomly chosen elements. Daikon successfully found the

sum postcondition in all these cases with only a few test conditions. The candidate invariant

outputs of Daikon appear in Figure 2.6, where we can see Daikon has inferred a candidate

invariant that the function returns the sum of an array. We highlight that we find the sum

return result of the moving average filter from Figure 2.9 using Hynger and Daikon.

2.6 Experimental Results

Hynger was tested on Windows 10 64-bit using Matlab 2016b, and 2017a, executed on

a x86-64 laptop with a 2.3 GHz dual-core Intel i5-6200U processor and 12 GB RAM. All

performance metrics reported were recorded on this system using Matlab 2017a. We tested

and evaluated Hynger using a number of SLSF examples, including: (a) the closed-loop buck
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converter with sensor and hysteresis controller described in Section 2.6.1 and detailed further

in [115], (b) a solar array case study that uses a buck-boost converter [120], (c) benchmarks

from S-TaLiRo [14], (d) benchmarks from Breach [48,75], (e) benchmarks created as a part of

the ARCH 2014 CPSWeek workshop (particularly [74,115]) and (f) example models provided

by Mathworks. Overall, these examples vary from fairly simple with tens of blocks (such as

the buck converter case study we detail), to complex (with hundreds of blocks). Runtime

Overhead from Instrumentation with Hynger and Invariant Inference with Daikon. First,

we present an aggregate performance evaluation for some of these examples in Table 2.1,

with column descriptions appearing in the caption. Overall, the performance overhead of

instrumenting diagrams and performing invariant inference is around an order of magnitude

increase in the best cases, and two-to-three orders of magnitude increase in the worst cases,

which we note is comparable with typical Daikon instrumentation frontends like Valgrind’s

overhead [56, 112]. We conducted performance profiling of Hynger and identified the main

source of overhead (about 75 to 90 percent) as file I/O operations. Additionally, as Hynger

has several different usage scenarios and operating modes (where it may be used to instru-

ment few blocks [subsystem and function blocks by default], many blocks [all blocks except

ones such as constants, scopes, etc.], every single block, or user-selected blocks), the table

illustrates these differences to give some comparison of how the methods scale on a given

model. Next, we will describe two CPS case studies in details to evaluate the capability of

Hynger in detecting cyber-physical specification mismatches. The first model is the closed-

loop buck converter that has been used to illustrate the concepts of this chapter, and the

second model is derived from a collection of the automotive powertrain control benchmarks

proposed by Toyota [75].
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Model Solver Tmax Sim SimInst Inv Overhead BDAll BDInst BDPct

buck (Section 2.6.1) ode45 0.0083 6.2985 38.4518 5.7335 7.0152 14 3 21.4286

buck (Section 2.6.1) ode45 0.0083 6.4567 44.698 7.0913 8.021 14 4 28.5714

buck (Section 2.6.1) ode45 0.0083 6.5301 78.3176 7.2224 13.0993 14 14 100

heat25830 [14] ode45 50 4.6913 254.5776 14.09 57.2692 28 1 3.5714

heat25830 [14] ode45 50 4.7328 2882.7808 15.6488 612.4233 28 10 35.7143

fuel1 [74] ode15s 15 5.3747 976.6274 7.923 183.182 208 17 8.1731

fuel1 [74] ode15s 15 4.2131 2824.2804 11.604 673.1137 208 63 30.2885

fuel2 [74] ode15s 20 3.3838 36.8312 2.9881 11.7674 25 6 24

fuel2 [74] ode15s 20 2.7353 42.4074 3.2771 16.7018 25 13 52

fuel3 [58] ode15s 20 3.7425 292.9976 4.1131 79.3892 90 11 12.2222

fuel3 [58] ode15s 20 3.6083 945.3992 4.3904 263.2236 90 46 51.1111

Table 2.1: Hynger performance results for several of the examples evaluated. Solver is the ODE

solver used by SLSF. Tmax is the virtual simulation time in seconds (i.e., time from the perspective

of the model). All runtime results are in seconds and are the mean of 20 runs. Sim is the simulation

runtime (s). Inv is the invariant generation runtime (Daikon) (s). Overhead is the overall relative

performance overhead (extra runtime) (×) using Hynger and Daikon versus only SLSF simulation

(i.e., ((SimInst+Inv)/Sim)). BDInst and BDAll are the numbers of block diagrams instrumented

and the overall number of block diagrams, respectively. BDPct is the percentage (%) of block

diagrams instrumented using different Hynger modes of operation (i.e., BDInst/BDAll).

2.6.1 Closed-Loop Buck Converter Cyber-Physical Specification Mismatch

A basic cyber-physical specification mismatch is easy to encode in the buck converter,

since the software controller inherently uses a tolerance to encode the desired output voltage

ripple. This hysteresis tolerance band is typically chosen based on the system dynamics and
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desired output voltage ripple to ensure the output voltage meets the ripple specification. As

a concrete example, the physical specification may contain a fixed constraint that Vout =

Vref ± Vrip , e.g., Vref = 5V and Vrip = 0.1V . The hysteresis band Vtol is then selected based

on the system dynamics to ensure 4.9V ≤ Vout ≤ 5.1V so that it meets the requirements of

the physical specifications defined by ΣP in Section 2.4.1.

Sources of Cyber-Physical Specification Mismatches of the Closed-Loop Buck Converter.

There are different possibilities of specification mismatch that may occur to the closed-loop

buck converter. We present three scenarios that result in specification mismatches. First, if

the plant parameters change (i.e., different circuit elements are used), and the software is not

updated with a new hysteresis band Vtol to accommodate the changes in the plant dynamics,

then a specification mismatch manifests. This mismatch can be detected using Hynger and

the methodology described in this chapter. Of course, this is a somewhat obvious mismatch,

as the controller relies on variables computed as functions of the plant parameters (here,

the R, L, and C values, as well as the source and desired/reference output voltage values).

So if these plant components are changed, clearly the software must be updated. Second,

the hysteresis controller is initially constructed using wrong information about the physical

evolution of the plant. In fact, the hysteresis band Vtol is far different from the actual out-

put voltage ripples Vrip of the plant. Third, the analog sensor of the buck converter may

have ADC conversion errors that reduce the accuracy of the voltage measurement. These

errors can be an offset error, a full-scale error, differential and integral non-linearity errors,

etc. Moreover, a typical error that cannot be avoided in ADC sensor is the quantization er-

ror [141]. Overall, these conversion errors may cause a significant impact to result in system

failures.
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Figure 2.7: General CPS case study architecture overview of the buck converter in SLSF. The

system is composed of a plant (physical system) model, a controller (software/cyber), and poten-

tially sensor and actuator models. The cyber model uses some of the physical model output states

to determine a control action or input. The controller in SLSF appears in Figure 2.9, and the

sensor model appears in Figure 2.8. An example of this closed-loop buck converter including only

plant and controller can be formally represented as the hybrid automaton in Figure 2.3.

Experimental Results in Identifying Cyber-Physical Specification Mismatches of the Closed-

Loop Buck Converter. We consider the closed-loop buck converter A shown in Figure 2.7

with VS = 100, Vref = 48V , Vrip = 5%Vref = 2.4V , and assume that δS, δref are equal to zero.

The physical specification of the output voltage is σP
∆
= t ≥ ts ⇒ 45.6V ≤ Vout(t) ≤ 50.4V .

For the initial setup, with R = 6Ω, L = 2.65mH, C = 2.2mF , and a sampling frequency

fs = 60kHz, the magnitude bound of the output voltage inferred from Hynger and Daikon

is ϕ̂P
∆
= t ≥ ts ⇒ 46.559V ≤ Vout(t) ≤ 50.203V . Then, ϕ̂P is considered as the candidate
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Sample

Hold

{samples_length = 16;
Index = 0;}

// restart circular
// buffer
{index = 0;}

[index < samples_length]

{samples[index] = V;}

{index++;}

12

Figure 2.8: Stateflow model of sensor with a sample and hold for the buck converter case study.

invariant of the system since the formula ϕ̂P ⇒ σP is true. Next, we investigate different

possibilities of cyber-physical specification mismatches that may occur when changing the

source voltage, the desired/reference output voltage, the sampling frequency, and the plant

parameters of the buck converter.

First, we increase the source voltage VS from 100V to 120V , the new magnitude bound

of the output voltage inferred from Hynger and Daikon is ϕ̂P
∆
= t ≥ ts ⇒ 46.804V ≤

Vout(t) ≤ 51.118V . Then, the formula ϕ̂P ⇒ σP is false, that indicates the system may have

a cyber-physical specification mismatch.

Second, we drop the desired/reference output voltage Vref to 36V . Thus, the physical

specification of the output voltage becomes σ′P
∆
= t ≥ ts ⇒ 34.2V ≤ Vout(t) ≤ 37.8V . In

this case, the inferred physical specification of the output voltage from Hynger and Daikon

becomes ϕ̂′P
∆
= t ≥ ts ⇒ 35.068V ≤ Vout(t) ≤ 39.053V , so that the formula ϕ̂′P ⇒ σ′P is
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{index = 0; sum = 0; 
v_sample = Vref;}

{v_sample = sum/samples_length;}

[v_sample≤ (Vref – Vtol)]

[v_sample ≥ (Vref + Vtol)]

// default: state same 
// (inside hysterestis band)

{sum = sum + samples[index];}

1

Figure 2.9: Stateflow model of the buck-converter voltage hysteresis controller.

false. Therefore, changing the reference output voltage may also produce a cyber-physical

specification mismatch for the buck converter.

Third, we decrease the sampling frequency fs from 60kHz to 30kHz. As a result, the

new inferred physical specification of the output voltage from Hynger and Daikon is ϕ̂P
∆
=

t ≥ ts ⇒ 45.853V ≤ Vout(t) ≤ 51.091V . The check of the formula ϕ̂P ⇒ σP will return false

to indicate that the system may contain a cyber-physical specification mismatch.

Next, we keep the controller unchanged and vary the values of R, L, and C to change

the plant parameters. We then run the buck converter with Hynger in conjunction with

Daikon, and collect candidate physical specifications associated with the output voltage. The

comparison between the actual physical specification σP and the physical specification ϕ̂P
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inferred from Hynger and Daikon is shown in Table 2.2, and also illustrated in Figure 2.10.

Note that in Table 2.2, ϕ̂P describes the magnitude bound of the output voltage when

t ≥ ts. The checks of the formula ϕ̂P ⇒ σP occasionally return False, that are depicted in

Figure 2.10 when the bound of the inferred output voltage overlaps its actual bound. This

indicates that changing the plant parameters without updating the controller may produce

cyber-physical specification mismatches. That also proves the capability of Hynger and our

proposed methodology in automatically detecting a candidate cyber-physical specification

mismatch of CPS.

Another possibility of the specification mismatch may occur when the controller is en-

coded based on wrong information about the plant. For the buck converter, the hysteresis

controller is built with an assumption that the output voltage ripple Vrip is equal to 5% of

the reference voltage Vref . However, the actual value of Vrip may be much smaller than this

assumption percentage. The percentage of the output voltage ripple of the buck converter

is calculated as follows [54],

Vrip
Vref

=
1−D
8LCf 2

s

, (2.1)

where D =
Vref
ηVS

is a duty cycle, and η is an efficiency coefficient of the converter. Here,

with L = 2.65mH, C = 2.2mF , fs = 60kHz, η = 0.79, Vref = 48V , and VS = 100V ,

the percentage of the output voltage ripple is approximately equal to 0.0002%. Thus, the

hypothesized output voltage ripple used to build the controller is far larger than the actual

output voltage ripple calculated by Equation 2.1. It definitely shows that the system may

have specification mismatches since the controller is encoded depending on wrong information

about the physical plant.
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Parameter Values ϕ̂P ϕ̂P ⇒ σP σP ⇒ ϕ̂P

R = 4Ω, L = 2.65mH, C = 2.2mF 45.137V ≤ Vout(t) ≤ 49.723V False False

R = 8Ω, L = 2.65mH, C = 2.2mF 46.964V ≤ Vout(t) ≤ 50.405V False False

R = 6Ω, L = 0.65mH, C = 2.2mF 47.141V ≤ Vout(t) ≤ 50.074V True False

R = 6Ω, L = 6.65mH, C = 2.2mF 45.429V ≤ Vout(t) ≤ 50.439V False True

R = 6Ω, L = 2.65mH, C = 1.2mF 45.426V ≤ Vout(t) ≤ 51.109V False True

R = 6Ω, L = 2.65mH, C = 3.2mF 46.859V ≤ Vout(t) ≤ 49.774V True False

Table 2.2: Experimental data showing the comparison between actual physical specifications and

inferred physical invariants from Hynger and Daikon of the buck converter system. Here, the plant

component is changed due to the changes of R, L, and C values.

Furthermore, changing the length of voltage measurement array (samples length) in the

sensor of the buck converter (shown in Figure 2.8) may also cause a specification mismatch.

For example, if we increase it from 16 to 32, the inferred physical specification using Hynger

and Daikon becomes ϕ̂P
∆
= t ≥ ts ⇒ 46.095V ≤ Vout(t) ≤ 50.788V , which no longer implies

the actual physical specification of the output voltage σP
∆
= t ≥ ts ⇒ 45.6V ≤ Vout(t) ≤

50.4V .

2.6.2 Abstract Fuel Control System Benchmarks

In the second case study, we present the potential cyber-physical specification mismatches

of the abstract fuel control (AFC) system benchmarks provided by Toyota [74,75], and further

studied in [58]. The goal of these benchmarks is to determine the fuel rate that should be

injected into the manifold to maintain the air-fuel ratio within a desirable range using the
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Figure 2.10: A plot represents simulation traces and magnitude bounds of Vout of the buck

converter with different values of R, L, and C. Here, σP denotes the actual bound of Vout , and ϕ̂kP ,

k ∈ [1, 6] denotes the inferred bound of Vout listed orderly in Table 2.2.

feedforward and Proportional-Integral (PI) controllers. Particularly, we focus on the third

model of the benchmarks including a sequence of Simulink blocks and Stateflow chart that

increase levels of sophistication and fidelity of the system [58]. The model consists of four

operation modes and four continuous variables. The modes include startup, normal, power,

and failure; and the variables are (a) p: an intake manifold pressure, (b) pe: an intake

manifold pressure estimate, (c) λ: an air-fuel ratio, and (d) i: an integrator state, PI control

signal. The evolution of the continuous variables in each mode is governed by nonlinear
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polynomial differential equations as follows,

ṗ = c1(2θ(c20p
2 + c21p+ c22)− ṁc) (2.2)

ṗe = c1(2c23θ(c20p
2 + c21p+ c22)− (c2 + c3ωpe + c4ωp

2
e + c5ω

2pe)) (2.3)

λ̇ = c26(c15 + (c16c25Fc + c17c
2
25F

2
c + c18ṁc + c19ṁcc25Fc − λ) (2.4)

i̇ = c14(c24λ− c11), (2.5)

where Fc = 1
c11

(1 + i+ c13(c24λ− c11))(c2 + c3ωpe+ c4ωp
2
e + c5ω

2pe), and ṁc = c12(c2 + c3ωp+

c4ωp
2 + c5ω

2p). θ and ω are throttle angle (in degrees) and engine speed inputs (in rpm),

respectively. The values of all constant parameters cj, j ∈ [1, 25], θ and ω are specified in [75].

We note that this system can be formally represented as a closed-loop CPIOA, which is the

parallel composition of a plant and controller model, and both of them have three exogenous

inputs including θ, ω, and sensor failure event fail event [58].

AFC Plant Model. The plant can be modeled as a CPIOA with a single mode and two output

physical variables p, λ whose continuous evolutions over time are described in Equation 2.2

and Equation 2.4, respectively. This model has an input cyber variable Fc, that is a fuel

command.

AFC Controller Model. The controller model is a CPIOA with four operation modes includ-

ing startup, normal, power, and failure. The controller has two output physical variables pe,

and i whose continuous evolutions over time are described in Equation 2.3 and Equation 2.5,

respectively. Here, p and λ are considered as two input cyber variables of the controller.

Reachability analysis of a sophisticated system like the AFC system is a major contri-

bution to both industrial and research community. However, it is a challenge to design

and verify such a system using existing hybrid system verification tools. Instead, we can
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attempt to verify some safety requirements of the system. The AFC system has several

actual physical specifications that can be found in [52]. In this section, we select two main

physical specifications to evaluate the capability of Hynger and the proposed methodology.

The first physical specification requires the undershoot and overshoot of the air-fuel ratio of

the system should be in the settling region of ±2% of its reference value λref . The second

physical specification requires the air-fuel ratio should be maintained within ±2% of λref in

the normal mode when t ≥ ts. These properties can be formally expressed as:

σ1
P

∆
= mode = startup ∧ t ≤ ts ⇒ 0.98λref ≤ λ(t) ≤ 1.02λref (2.6)

σ2
P

∆
= mode = normal ∧ t ≥ ts ⇒ 0.98λref ≤ λ(t) ≤ 1.02λref . (2.7)

Initially, we set λref = 14.7, θ ∈ [8.8◦, 90◦], w = 1800rpm ts = 9.5s, and the maximum

simulation time Tmax = 20s, the proportional and integral gains of the PI controller are

c13 = 0.04 and c14 = 0.14, respectively. Next, we investigate different possibilities of cyber-

physical specification mismatches for each physical specification. For the first physical spec-

ification σ1
P , the AFC system may have specification mismatches when changing the engine

speed and throttle inputs. For the second physical specification σ2
P , the system may contain

specification mismatches when changing controller and plant parameters.

Cyber-physical specification mismatches according to σ1
P . With the initial setup mentioned

earlier, the physical specification in Equation 2.6 becomes σP
∆
= mode = startup ∧ t ≤

9.5 ⇒ 14.406 ≤ λ(t) ≤ 14.994. Here, the magnitude bound of the air-fuel ratio at the

startup mode of the system inferred from Hynger and Daikon is ϕ̂1
P

∆
= mode = startup∧ t ≤

9.5 ⇒ 14.505 ≤ λ(t) ≤ 14.97. Thus, the check of the formula ϕ̂1
P ⇒ σ1

P is valid, that

indicates ϕ̂1
P is a candidate invariant of the AFC system. Next, we vary the input values
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and observe the consequent behaviors of the system.

First, we vary the value of the engine speed and keep other parameters unchanged.

Assuming w = 2200rpm, the inferred physical specification of the air-fuel ratio from Hynger

and Daikon becomes ϕ̂1
P

∆
= mode = startup ∧ t ≤ 9.5⇒ 14.129 ≤ Vout(t) ≤ 15.033. Hence,

the formula ϕ̂1
P ⇒ σ1

P is false indicating that the AFC system may contain a cyber-physical

specification mismatch as we change the engine speed input.

Second, we change the range of the throttle input to [40◦, 70◦]. Then, the inferred physical

specification of the air-fuel ratio from Hynger and Daikon becomes ϕ̂1
P

∆
= mode = startup∧

t ≤ 9.5 ⇒ 14.396 ≤ Vout(t) ≤ 14.849. Hence, ϕ̂1
P no longer implies σ1

P . Therefore, there

exists a cyber-physical specification mismatch when changing the throttle input as well.

Cyber-physical specification mismatches according to σ2
P . Initially, the physical specification

in Equation 2.7 is σ2
P

∆
= mode = normal ∧ t ≥ 9.5 ⇒ 14.406 ≤ λ(t) ≤ 14.994. Here,

the magnitude bound of the air-fuel ratio at the normal mode of the system inferred from

Hynger and Daikon is ϕ̂2
P

∆
= mode = normal ∧ t ≥ 9.5 ⇒ 14.645 ≤ λ(t) ≤ 14.84. Then,

we can consider ϕ̂2
P as a candidate invariant of the system because the formula ϕ̂P ⇒ σP is

true.

Next, we investigate whether there is a specification mismatch for the AFC system as

we change the proportional and integral gains of its PI controller. Table 2.3 describes the

comparison between the actual physical specification σ2
P and the physical specification ϕ̂2

P

inferred from Hynger and Daikon, where ϕ̂2
P ↓ λ denotes the inferred bound for λ when

t ≥ ts and mode = normal. In Table 2.3, the check of the formula ϕ̂2
P ⇒ σ2

P returns false in

some cases (e.g., when c13 = 0.04, c14 = 0.04) indicating that the changes in the controller

gains may produce cyber-physical specification mismatches for the AFC system.
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Controller Gain ϕ̂2
P ↓ λ ϕ̂2

P ⇒ σ2P σ2P ⇒ ϕ̂2
P

c13 = 0.01, c14 = 0.14 14.567 ≤ λ(t) ≤ 15.058 False False

c13 = 0.02, c14 = 0.14 14.592 ≤ λ(t) ≤ 15.033 False False

c13 = 0.06, c14 = 0.14 14.634 ≤ λ(t) ≤ 14.955 True False

c13 = 0.8, c14 = 0.14 14.642 ≤ λ(t) ≤ 14.929 True False

c13 = 0.04, c14 = 0.04 14.649 ≤ λ(t) ≤ 15.007 False False

c13 = 0.04, c14 = 0.34 14.581 ≤ λ(t) ≤ 14.937 True False

c13 = 0.04, c14 = 0.64 14.577 ≤ λ(t) ≤ 14.888 True False

c13 = 0.04, c14 = 0.94 14.589 ≤ λ(t) ≤ 14.855 True False

Table 2.3: Experiment results illustrate the comparison between actual physical specifications

and inferred physical invariants from Hynger and Daikon of the AFC system when changing the

proportional gain and the integral gain of its PI controller.

2.7 Discussion

Identifying a cyber-physical specification mismatch of CPS with dynamic analysis is a

challenging problem. Although the Hynger prototype in conjunction with Daikon can detect

potential cyber-physical specification mismatches of CPS, such as those in the case studies

described in Section 2.6, however, it has some limitations. First, the Daikon tool used by

Hynger may only infer extremely limited classes of nonlinear invariants by default (e.g.,

squares like x2), and not general polynomials (e.g., x2 + y2 + z3). So we plan to extend

the invariant templates to be able to capture more interesting relations, particularly for

physical variables. Second, although Daikon can infer candidate invariants in terms of logical
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predicates over variables, it has limitation for checking complex specifications related to real-

time requirements such as STL, MTL and HyperSTL [117]. Industrial-scale CPS usually

have safety and liveness requirements depending on precise real-time relations of signals, so

strengthening the capability of checking temporal logic like STL, MTL and HyperSTL in

Daikon would leverage the methodology presented in this chapter.

Additionally, while the Hynger tool is a prototype, it can be envisioned to take an arbi-

trary SLSF model, instrument it, feed the resulting traces to Daikon to generate candidate

invariants, then check if these candidate invariants are actual invariants or not (using, e.g.,

SpaceEx [60] or other hybrid system model checkers), as well as identify specification mis-

matches. For example, the candidate invariants inferred from Hynger and Daikon of the

buck converter including only plant and controller represented in term of hybrid automata

in Figure 2.3 would easily be checked to see whether they are actually invariants using

SpaceEx. In long term, Hynger could be extended for runtime assurance tasks like detecting

and thwarting security violations and attacks, similar to the ClearView tool that also uses

Daikon [126]. ClearView’s success for software systems illustrates that finding sets of candi-

date invariants and monitoring their evolution over time may be useful for runtime assurance

and resiliency methods in CPS. If the candidate invariants are checked at runtime using a

real-time reachability method [19,78], a formal and dynamic runtime assurance environment

may be feasible.
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2.8 Conclusion

The results illustrate the feasibility of using dynamic invariant inference for analysis of

embedded and cyber-physical systems. The Hynger prototype enables a powerful extension

of dynamic invariant inference to CPS for two main reasons. First, it enables potentially

model-free and black box invariant inference, since the internals of the SLSF blocks may

remain unknown. If no model is available (in the black box case), the candidate invariants

represent what may be the most formal model available, otherwise (in the white box case),

then candidate invariants represent a candidate abstraction of that model. If the candidate

invariants are actual invariants, this is powerful, as they represent what is likely a less

complex representation of the set of reachable states of the system. Second, if we view

the SLSF models as hybrid automata in a formal context, it represents the first use of

dynamic execution analysis for hybrid systems with sophisticated software state and discrete

complexity. Two proof-of-concept CPS case studies including the DC-to-DC power converter

and the powertrain fuel control system are presented to illustrate the capability of Hynger

in detecting potential cyber-physical specification mismatches.
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Chapter 3

HYPERPROPERTIES OF REAL-VALUED SIGNALS

3.1 Introduction

Hyperproperties were first proposed by Clarkson and Schneider to characterize proper-

ties of security policies that cannot be defined over individual traces, such as service level

agreements and information-flow properties [38]. In this work, we extend the notion of hy-

perproperties to cover a broad range of requirements for CPS, and we present a taxonomy

of hyperproperties used to address security and control design concerns for CPS. Also, we

provide practical techniques for automating the process of testing hyperproperties of CPS.

In contrast to trace properties expressed over individual execution traces, hyperproperties

are defined over multiple execution traces. For example, one execution of a system cannot

be checked against a service level agreement property such as “the average time elapsed

between a user’s request and response over all executions should be less than 1 second”; the

property can only be evaluated over all system execution traces. Moreover, we can consider

an information-flow policy of noninterference specified as “for all pairs of traces of a system

that have the same low-level security inputs, they will also have the same low-level security

output” [65,131]. This noninterference property is a hyperproperty as it is expressed over all

57



pairs of traces of a system.

Hyperproperties generalize more traditional formal properties by specifying relationships

between disparate execution traces, instead of behaviors of individual execution traces. Tra-

ditional logics that consider traces individually, such as LTL, cannot be used to specify

hyperproperties, and thus, hyperproperties are more expressive. Logics such as CTL and

CTL* allow properties over multiple paths of a computation tree, but they do not permit

comparisons between the paths themselves. Instead, to express and efficiently check hyper-

properties, Clarkson et al., introduced notions of HyperLTL and HyperCTL* [37]. Both

logics directly extend LTL and allow us to reason about more than one execution trace at a

time. The main difference between HyperLTL and HyperCTL* is that the former requires

trace quantifiers appearing at the beginning of a formula, but the latter allows us to specify

them within a formula.

Although hyperproperties are well studied in the context of security policies for software

systems, hyperproperties have not been explored for CPS. For CPS that include stochastic

factors such as noise, environment disturbance, or transducer inaccuracies, it is realistic for

design engineers to expect that the system has some acceptable performance in a probabilistic

sense rather than requiring an absolute performance limit be met for all individual behaviors.

Acceptable performances defined over the averages of settling time, overshoot, undershoot,

or error bounds cannot be specified and checked using individual execution traces; they must

be quantified over all execution traces.

Recently, security-aware function modeling of CPS has emerged as an important re-

search topic in computer science and system verification. CPS, that are an integration

between cyber and physical subcomponents, can be vulnerable to both cyber-based and
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physical-based attacks [6, 61, 106, 144]. For instance, consider a modern automobile, which

is a complex system composed of many computer units such as an Engine Control Unit

(ECU), the Transmission Control Module (TCM), and an Electronic Brake Control Module

(EBCM), all interacting with the physical world via sensors and actuators. Cyber-based

attackers can gain access to the communication channels of a modern automobile through

wireless or in-vehicle networks. As a result, attackers can infiltrate an ECU or EBCM to stall

the engine or disable the brake system [87, 136]. An alternative method of attack involves

gaining physical access to the system, for example by manipulating the signals processed by

the sensors (known as sensor spoofing), to compromise secure information or to alter system

behaviors [6, 139]. Instances of active physical-based attacks include vehicle braking system

attacks, where faulty data is injected into the wheel speed sensor of a vehicle to disrupt

the braking function [144], and insulin delivery device attacks, where glucose level sensor

data is corrupted to compromise the function of the insulin delivery service [91]. A passive

physical-based attack, also called a side-channel attack, is based on physically observing the

system behavior and using leaked information to gain insights into the system implemen-

tation [82, 84, 132]. Some well-known side channel attacks are power analysis attacks [83],

timing attacks [85], electromagnetic attacks [134] and differential fault analysis attacks [29].

Designing safety-critical CPS that are entirely secure from both cyber-based and physical-

based attacks is challenging or impossible. A reasonable approach is to iteratively improve

CPS control designs using a falsification technique. Falsification is an automated best-effort

approach to identify system behaviors that violate a given formal specification [113]. The

design approach would be to first formally specify safety properties of CPS that protect the

systems against possible cyber-based and physical-based attacks using formalisms such as
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temporal logic and to then iteratively improve the design using falsification, which would

automatically identify vulnerabilities in the designs. Despite the attractiveness of falsifica-

tion techniques, attacks for CPS often need to be defined over multiple execution traces of

the system, which is something that cannot be expressed or falsified using existing temporal

logics such as LTL, MTL, and STL. Thus we propose an extension to these logics that would

be compatible with the appropriate specifications. In this chapter, we present a study of

hyperproperties including stability, security and safety, as applied to CPS. We introduce

several instances of hyperproperties capturing relationships (e.g input-output relationships)

between multiple traces of CPS. We extend the syntax and semantics of STL [50] to spec-

ify hyperproperties over dense-time real-valued signals, which results in a new logic called

HyperSTL. Basically, we add quantifiers at the beginning of an STL formula to express rela-

tionships between multiple traces. We also introduce a testing algorithm based on a fragment

of HyperSTL and apply it to find falsifying traces for hyperproperties of industrial Simulink

models. Moreover, we provide a discussion on the feasibility of falsifying or verifying various

classes of hyperproperties for CPS.

Related work. The study of hyperproperties for CPS evaluated in this chapter was in-

spired by the previous work of Clarkson and Schneider, who introduced hyperproperties to

express security policies such as secure information flows and service level agreements [38].

In [35], Bryans et. al. presented a general formalization of opacity policies that prevent

observers from deducing the truth value of a predicate; those opacity policies require behav-

iors to be specified over multiple paths of a system. In earlier work [102], McLean showed

that some “possibilistic” security properties like restrictiveness [100], noninterference [65]
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and nondeducibility [146] are closure properties that cannot be expressed by individual ex-

ecution traces. In [102], those properties are specified with respect to different sets of trace

contractors called selective interleaving functions.

Following the introduction of hyperproperties [38], Clarkson et al. introduced HyperLTL

and HyperCTL*, which are extensions to existing temporal logics, to express and check

classes of information-flow hyperproperties [37]. These logics extended LTL and CTL* by

adding the path quantifiers that permit specifications involving multiple paths in the system.

Model checking algorithms and complexity of fragments of HyperLTL and HyperCTL* were

also given in [37], which were then further exploited and applied to check some classes of

information-flow hyperproperties in [131].

Prototype implementations of model checkers for HyperLTL and HyperCTL*, which

assume the system is modeled as a Kripke structure, can verify some information-flow hy-

perproperties of a discrete-time system, but extending that work to check hyperproperties

defined over continuous traces is a challenging endeavor. For complex CPS models or for

models built in frameworks with proprietary or otherwise obfuscated semantics, such as

Simulink®, formal verification of hyperproperties is effectively impossible, as no correspond-

ing Kripke structure may be obtained from those models1. Alternatively, an easier but still

difficult task is to develop an efficient testing framework, which could be used to check hy-

1Some have created their own translation of Simulink models to modeling languages with well-defined

formal semantics (for example, see [4, 152]), but these translations necessarily only handle a subset of the

SLSF modeling language. This is due to the fact that some Simulink constructs correspond to behaviors

that cannot be modeled using standard frameworks for hybrid systems. One such construct is the Variable

Transport Delay block, which, roughly speaking, corresponds to a delay differential equation, a construct

that is not handled by standard modeling frameworks for hybrid systems.
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perproperties for finite collections of traces or could be used to falsify hyperproperties of a

CPS model; this is the contribution of the work presented herein.

In [147], Xu et al. introduced a notion of CensusSTL that utilizes STL by adding an

outer logic to quantify the number of individual agents of a multiagent system whose be-

haviors satisfy an inner STL formula. CensusSTL is similar to the HyperSTL proposed

in this chapter; however, the former is only able to specify group behaviors from different

components of an individual trace while the latter allows us to express relationships between

multiple traces.

3.2 Preliminaries

In this section, we review the concepts of signal, system, trace property and STL.

Signal. We define a signal w as a function w : T→ D, where T ⊆ R≥0 is the time domain.

If D = B, w is a Boolean signal whose value is either true or false, and if D = R, then we

say that the signal is real-valued. A trace, w : T → D1 × . . . × Dn , is a collection of n

signals, where ∀t ∈ T,w(t)
∆
= (w1(t), w2(t), ..., wn(t)). Intuitively, we can consider w as one

execution trace of a continuous-time system with n variables that describes an evolution of

the system. In what follows, we reserve the use of bold letters like w, w′ for traces (i.e.,

tuples of signals), while we use lowercase italicized letters such as wi to represent signals.

System. We define a deterministic or nonstochastic2 cyber-physical system Σ as a function

2Note the contrast with stochastic systems. In stochastic systems, one or more parts of the system have

randomness associated with them; for instance, the value of a particular system parameter may be drawn

from a probability distribution. The key difference is that the stochastic system may not produce the same

output for a given input. Unless otherwise specified, all the systems that we consider in this chapter are
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mapping a given input trace in (T → Dm) to an output trace in (T → Dn). We denote by

JΣK the set of traces w such that the first m components of w correspond to the m input

signals for JΣK, and the next n components correspond to the n output signals.

Trace properties. A trace property ϕ is a finite or infinite set of individual traces. A trace

property is either satisfied or violated by any given set of traces [8, 131]. A set of traces W

satisfies the trace property ϕ if W ⊆ ϕ. As noted above, an individual trace can have several

components, for example, a trace could contain m input signals and n output signals of a

given system Σ. We say that the trace property ϕ holds for a system Σ (denoted as Σ |= ϕ)

if the set of input-output traces compatible with the system description is contained in the

trace property, i.e., JΣK ⊆ ϕ.

Signal Temporal Logic. Next, we recall the concept of STL which can be used to specify

the trace properties of continuous real-valued signals.

Syntax. The syntax of STL is defined as follows:

ϕ := true | φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 ,

A signal operator φ is a formula of the form y(w(t)) ≥ 0, where y is an arbitrary real-

value function. A notion I is an interval over R≥0 such as [a, b), (a, b), (a, b], [a, b], (a,+∞),

or [a,+∞), and a, b are real numbers and 0 ≤ a < b. If I is not specified, we assume that

I = [0,∞). We also allow Boolean operators ∨ and =⇒ with their standard meaning.

Temporal operators used in STL formulas include always (2), eventually (3), and until (U),

respectively, where 3Iϕ = trueUIϕ, and 2Iϕ = ¬3I¬ϕ. For example, a trace w
∆
= {w1, w2}

satisfies the formula ϕ
∆
= 3[1,2)(w1(t) > w2(t)) if there exists a time instance t, 1 ≤ t < 2 such

deterministic.
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that w1 is greater than w2. Next, we will describe the Boolean and quantitative semantics

of STL.

Boolean Semantics. The Boolean semantics of STL are specified by the following condi-

tions:

(w, t) |= φ iff φ(w, t) = true

(w, t) |= ¬ϕ iff w 2 φ

(w, t) |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

(w, t) |= ϕ1UIϕ2 iff ∃t1 ∈ t+ I s.t. (w, t1) |= ϕ2 and ∀t2 ∈ [t, t1], (w, t2) |= ϕ1

Quantitative Semantics. The quantitative semantics of STL reflect the robustness satis-

factions of STL formulas [50, 95]. Given γ is a real-valued function of a formula ϕ, a trace

w, and a time t, the quantitative semantics γ(ϕ,w, t) is defined as follows:

γ(w(t) ≥ 0,w, t) = y(w(t))

γ(¬ϕ,w, t) = −γ(ϕ,w, t)

γ(ϕ1 ∧ ϕ2,w, t) = min(γ(ϕ1,w, t), γ(ϕ2,w, t))

γ(ϕ1UIϕ2,w, t) = sup
t1∈t+I

min(χ(ϕ2,w, t1), inf
t2∈[t,t1]

γ(ϕ1,w, t2))

Instead of returning the Boolean values, the quantitative semantics provide a real value

representing the distance to the robustness satisfaction value of a formula ϕ at each time

instance. Intuitively, this distance quantifies how much a trace satisfying a given trace

property.
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3.3 Hyperproperties of Real-Valued Signals

Hyperproperties generalize formal properties of a system by considering sets of sets of

execution traces, instead of only sets of execution traces.

Definition 9 (Hyperproperty) Let S denote the set of all traces. Let the power set of S

be written as P
∆
= P(S). A hyperproperty is any subset of P(S).

We say a set of tracesW satisfies a hyperproperty φ ⊆ P ifW ∈ φ. Given a hyperproperty

φ and a system Σ, the falsification task is to find a non-empty set W ⊆ JΣK such that W 6∈ φ.

Similarly, given a hyperproperty φ and a system Σ, the verification task is to show that

JΣK ∈ φ.

In this section, we introduce hyperproperties for deterministic systems to characterize

properties such as security, safety, and stability. We focus on a class of hyperproperties

capturing relationships ( e.g., the input-output relationship) between multiple traces of a

system. We will show several examples of hyperproperties related to safety, stability and

security for CPS. In rest of this section, we use dsup(w,w
′) to denote the sup-norm distance

between traces w and w′, where dsup(w,w
′) = supt∈R≥0

||w(t)−w′(t)||.

• Robust behavior is a requirement that guarantees that small differences in system inputs

result in small differences in system outputs. Consider the following property: “For all

pairs of traces of a system with an input difference less than ε1, the output difference should

be bounded by ε2”. Such a property is a hyperproperty as it requires at least two execution

traces to check. This hyperproperty can be formally written as:

φ1
∆
= {W ∈ P | ∀w,w′ ∈ W : dsup(win,w

′
in) ≤ ε1 =⇒ dsup(wout,w

′
out) ≤ ε2}. (3.1)
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This type of property is related to certain stability notions, such as bounded input,

bounded output (BIBO) stability and the L2 gain, as these notions also bound the varia-

tion in the output, based on bounded variation in the input. We note, however, that the

robust behavior hyperproperty differs from BIBO stability and the L2 gain, as the robust

behavior hyperproperty is specified over all pairs of execution traces while the BIBO and

L2 properties are defined based on individual traces. The robust behavior hyperproperty

is also related to bisimulation relations [57] and conformance-closeness [3] for a dynamical

system, as all three of these properties are based on some constraints on the distances

between multiple traces. In fact, we may specify bisimulation or conformance-closeness

functions in terms of hyperproperties. Lastly, we note that the robust behavior hyper-

property is perhaps most closely related to Lipschitz Robustness of systems [70], which

bounds differences in output behaviors based on bounded differences in input behaviors,

though Lipschitz Robustness was originally developed for timed input/output systems as

opposed to general CPS models.

• Side-channel attacks are attacks against cryptographic devices based on studying leak-

ing information about the operations they process, such as power consumption, heat

generation, and execution time. The side channel attack is an instance of an inactive

physical-based attack that can be used against a CPS in which some physical behaviors

are observable. Attackers can deduce the working principle of a system without either

access to the system itself or an understanding of the internal operation of the system.

For example, attackers can analyze an abnormal change in the power consumption of an

integrated circuit while an encryption process is being executed and then reconstruct the
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encryption key to access secret data [83,84]. The following property permits side-channel

attacks:

φ2
∆
= {W ∈ P | ∃w ∈ W : ∀w′ ∈ W : (dsup(w,w

′) > 0

∧ Power(w(t)) > c1) =⇒ Power(w′(t)) < c2}, (3.2)

where Power(w(t)) represents the power consumption corresponding to w over time, and

c1, c2 are arbitrary constants such that c1 > c2. A system that satisfies this property

allows an attacker to detect that a particular behavior has occurred (w in Formula 3.2)

by monitoring the power associated with the behavior. The property is a hyperproperty

as it is expressed in terms of multiple traces. To ensure the safety of a system from the

power-monitoring attack, the system should satisfy ¬φ2. We note that other classes of

side-channel attacks such as timing attacks, electromagnetic attacks, and differential fault

analysis attacks can be specified using properties similar to Formula 3.2.

• Robust control invariance is a property that can be used to synthesize safe controllers, or

more to the point, can be utilized to determine whether a safe controller exists for systems

with disturbances [30]. Informally, the property states that, for a given set of behaviors

that is deemed safe, a control action exists, such that the system remains within the safe

set for any allowable disturbance input. This can be stated formally as follows:

φ3
∆
= {W ∈ P | ∃w ∈ W : ∀w′ ∈ W : (w,w′) |= φ}, (3.3)

where (w,w′) |= φ means that the pair (w,w′) satisfies some property φ. In this for-

mulation, wu(t) is the component of w that represents the controller action, wd(t) is a

disturbance input, wy(t) is a system output, and (w,w′) |= φ enforces both that wu = w′u
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and w′y(t) ∈ Ω, where Ω is the set of safe behaviors. The robust control invariance property

is related to fault data injection (FDI) attacks, which are active physical-based attacks

where attackers try to input faulty data into a system to corrupt the behavior of the con-

troller. For example, attackers can spoof the sensors of DC microgrids by injecting false

data such as the past outputs of the sensors at previous time instants. This instance of

FDI attack is also well known as a replay attack [23,91,144]. FDI attacks have been stud-

ied widely for CPS, and many techniques have been proposed to efficiently detect those

attacks in the early stages [23,93,98]. However, the optimal solution is to design a system

that can defend itself against FDI attacks [105]. To guarantee that a system can defend

against a sensor attack, given a specification φ, it must be possible to choose a controller

that ensures that the output of the system always satisfies φ, i.e. φ3 must hold.

3.3.1 Beyond Hyperproperties?

A hyperproperty is more expressive than a trace property as it is defined over a set

of sets of traces and requires multiple traces to check. If a system is modeled as trace

sets, one interesting question to ask is whether there are system properties inexpressible

as hyperproperties. For security policies, all properties of trace sets can be considered as

hyperproperties, so the answer may be negative [8, 38]. For CPS, there may exist some

properties that are challenging to classify.

Consider the following property specifying the Lyapunov stability of a dynamical control

system:

φLy
∆
= {∀ε ∈ [0,∞),∃δ ∈ [0, ε),∀w ∈ W : ||w(0)|| < δ =⇒ (t > 0 ∧ ||w(t)|| < ε)}. (3.4)
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Figure 3.1: Illustration of a Lyapunov stable system.

Intuitively, this property indicates that a system is Lyapunov stable if for any ε-ball around

the origin, there exists a δ-ball around the origin (δ < ε) such that if the system starts

within the δ-ball, then it will never leave the ε-ball [28]. The illustration of a Lyapunov

stable system is shown in Figure 3.1.

Lyapunov stability is specified over the space of parameters and execution traces, and

involves two alternations between universal and existential quantifiers. As we cannot check

the Lyapunov stability with individual traces, it is not a trace property; so is it a hyper-

property? Consider the parameters δ and ε as constant signals, and then rewrite Lyapunov

stability as follows:

φ′Ly
∆
= {W ∈ P | ∀w ∈ W : ∃w′ ∈ W : ∀w′′ ∈ W :

||w′′out(0)|| < w′δ(0) =⇒ (t > 0 ∧ ||w′′out(t)|| < wε(t))}, (3.5)

where a trace w is composed of two constant input signals wδ, wε and an output signal

wout. By mapping parameters into constant signals, we can express interesting properties

of the system as hyperproperties. Then Lyapunov stability is a hyperproperty that requires
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multiple traces to check; and it can be formally specified using the HyperSTL introduced in

the next section. As to the original question of whether all system properties of interest can

be specified as hyperproperties, we leave this open.

Remark 10 Although we focus on describing hyperproperties defined over real-valued sig-

nals, we note that there are other hyperproperties that can be specified in the context of CPS

as well. For instance, the nondeducibility property is an important information-flow secu-

rity policy that prevents a low-level observer with sufficient knowledge of a target CPS from

deducing high-level (confidential) information. The nondeducibility property is defined such

that for each low-level input trace, there are more than one possible high-level input traces that

produce the same output. Intuitively, an attacker should not be able to distinguish between

permissible high-level behaviors based on low-level behaviors [62,101]. On the other hand, the

noninterference property is another important information-flow security policy that requires

that high-level security users should not interfere with low-level security users. Intuitively,

the outputs observed by the low-level security users remain unchanged despite the actions

of the high-level security users [65]. Other variants of the noninterference property such as

noninference [102], observational determinism [150], declassification [135], and quantitative

nonterinference [140] are also hyperproperties that need to be specified over multiple traces.

Though the nondeducibility and noninterference properties are relevant for CPS, in many

cases their impact on and from real-valued signals is tenuous, and so we do not treat them

further herein.
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3.4 HyperSTL

In this section, we introduce HyperSTL, a temporal logic that can be used to specify a

class of hyperproperties of real-valued signals. The syntax and semantics of HyperSTL are

naturally extended from those of STL by adding existential and universal trace quantifiers

into STL’s syntax to relate multiple execution traces [50].

Syntax. Let v be a trace variable from an infinite set of trace variables V . The syntax of

HyperSTL is then defined as follows:

φ := ∃v.φ | ∀v.φ | ϕ

ϕ := true | µV | ¬ϕ | ϕ ∧ ϕ | ϕUIϕ

Here, we add a universal quantifier ∀ and an existential quantifier ∃ to the syntax to indicate

whether we want to specify that a formula holds over all traces or over at least one trace,

respectively. For instance, ∀v.∃v′.φ means that for any trace w assigned to trace variable

v , there exists a trace w′ that can be assigned to trace variable v′ such that φ holds

on these two traces. We define Π : V → S as a trace assignment (i.e., a valuation),

which is a partial function mapping trace variables to traces, and S is a set of all infinite

traces. Let vi be the projection of a trace variable v along its ith component, the projection

of a trace assignment Π(vi) maps vi to the ith component of a trace w (i.e., wi). Also,

we abuse the subscript notation of a trace’s component to write its corresponding trace

variable’s component in a HyperSTL formula, e.g., wout is represented by vout. A relationship

between multiple traces can be Booleanized through atomic predicates of the form µv =

f(Π(v1)(t),Π(v2)(t), ...,Π(vk)(t)) > 0, where f is an arbitrary real-valued function over

71



trace variables v1, ...,vk ∈ V . Note that we use trace variables such as v, v′ to express

HyperSTL formula and the corresponding traces represented by these trace variables like w

w′ to interpret the formula. Consider the HyperSTL formula φ := ∃v.∀v′.2[0,1](||v−v′|| < 1).

This property says that there is always a trace w, such that for all times in the interval [0, 1],

every other trace w′ is at a bounded distance of 1 from w.

Boolean Semantics. A HyperSTL formula satisfied by a set of traces W at a time t is

written as Π, t |=W φ, the validity judgment of a HyperSTL formula at a given time t is

specified according to the following recursive semantics:

Π, t |=W ∃v.φ iff exists w ∈ W : Π(v) = w and Π, t |=W φ

Π, t |=W ∀v.φ iff forall w ∈ W : Π(v) = w and Π, t |=W φ

Π, t |=W µV iff f(Π(v1)(t),Π(v2)(t), ...,Π(vk)(t)) > 0

Π, t |=W ¬ϕ iff Π, t 6|=W ϕ

Π, t |=W ϕ1 ∧ ϕ2 iff Π, t |=W ϕ1 and Π, t |=W ϕ2

Π, t |=W ϕ1UIϕ2 iff ∃t1 ∈ t+ I s.t Π, t1 |=W ϕ2 and ∀t2 ∈ [t, t1] s.t Π, t2 |=W ϕ1

Using HyperSTL, we can express the hyperproperties described in Section 3.3 over some

time interval [t1, t2] as follows3.

• The robust behavior in Formula 3.1 can be specified as:

φ′1
∆
= ∀v.∀v′. 2[t1,t2](dsup(vin,v

′
in) ≤ ε1 =⇒ dsup(vout,v

′
out) ≤ ε2). (3.6)

3 For a robust control invariance hyperproperty, an instance of the corresponding HyperSTL formula will

be shown in Section 3.7.2.
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• The power-monitoring attack in Formula 3.2 can be written as:

φ′2
∆
= ∃v.∀v′. 2[t1,t2]((dsup(v,v

′) > 0 ∧ Power(v) > c1) =⇒ Power(v′) < c2). (3.7)

Furthermore, we can rewrite the Lyapunov stability specified in Formula 3.5 as the following

HyperSTL formula,

φ′′Ly
∆
= ∀v.∃v′.∀v′′. (v′′out < v′δ =⇒ 2(0,∞)v

′′
out < vε). (3.8)

According to the possible alternation of quantifiers in a HyperSTL’s syntax, we classify

the above HyperSTL formulae into two fragments:

(a) alternation-free HyperSTL formulae including one type of quantifier, and

(b) k-alternation HyperSTL formulae that have k number of alternations between existen-

tial and universal quantifiers.

Thus, the robust behavior property can be expressed using alternation-free HyperSTL while

the power-monitoring attack property can be specified using 1-alternation HyperSTL. The

Lyapunov stability property is more complex as it must be expressed using 2-alternation

HyperSTL.

Falsification or Verification of Hyperproperties? We have introduced several classes

of hyperproperties for CPS and a temporal logic approach to express them. Next, we in-

vestigate whether we can falsify or verify those hyperproperties using existing methods.

Hyperproperties are more complex and expressive than traditional properties, and perform-

ing falsification and verification for hyperproperties is harder, in many cases. Despite this,

we observe that certain classes of hyperproperties can be falsified or verified. For instance,
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we can falsify an alternation-free HyperSTL formula that contains a universal quantifier

(e.g., the robust behavior hyperproperty), and we can verify an alternation-free HyperSTL

formula that contains an existential quantifier. For the class of hyperproperties that includes

alternating quantifiers, falsification or verification are often undecidable unless we impose

some assumption about the sets of execution traces (e.g., quantified over some finite set of

traces with bounded time).

3.4.1 t-HyperSTL

We introduce t-HyperSTL as a fragment of HyperSTL in which a nesting structure of

temporal logic formulas involving different traces is not allowed. For example, a formula

∀v.∃v′.2[0,2]v > 1 =⇒ 3[1,2]v
′ > 2 is allowed but a formula ∀v.∃v′.2[0,2](v > 1 =⇒

3[1,2]v
′ > 2) is not allowed. Also, t-HyperSTL restricts the until operator to be specified over

an individual trace, e.g., t-HyperSTL does not allow the formula ∀v.∃v′.(v > 1)U[0,1](v
′ >

2).

Inherited from the syntax of HyperSTL, t-HyperSTL formulae are also classified into

alternation-free and k-alternation types. t-HyperSTL suffices to express the class of hy-

perproperties formulated in Section 3.3, and its corresponding semantics, which is more

restrictive than that of HyperSTL, allow us to perform falsification for these hyperproper-

ties.

Quantitative Semantics. The quantitative semantics of t-HyperSTL reflects the robust-

ness satisfaction of a t-HyperSTL formula. It is a natural extension of those for STL [50,95].

Given χ is a real-valued function of a formula ϕ, a trace assignment Π, a trace variable v,
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and a time t, the quantitative semantics of t-HyperSTL is defined inductively as follows:

∃v.χ(ϕ,Π, t) = sup
w∈W

χ(ϕ,Π(v) = w, t)

∀v.χ(ϕ,Π, t) = inf
w∈W

χ(ϕ,Π(v) = w, t)

χ(µV > 0,Π, t) = µV

χ(¬ϕ,Π, t) = −χ(ϕ,Π, t)

χ(ϕ1 ∧ ϕ2,Π, t) = min (χ(ϕ1,Π, t), χ(ϕ2,Π, t))

χ(ϕ1UIϕ2,Π, t) = sup
t1∈t+I

min (χ(ϕ2,Π, t1), inf
t2∈[t,t1]

χ(ϕ1,Π, t2))

3.5 Falsifying alternation-free t-HyperSTL

We first consider the falsification of alternation-free t-HyperSTL formulae. This fragment

of HyperSTL is expressive enough to capture a broad range of hyperproperties specifying

input-output relationships over all pairs of execution traces. We use a translation scheme

called self-composition [21], which allows us to falsify an alternation-free t-HyperSTL formula

that includes only universal quantifiers using a robust testing method for a normal STL

formula. Then, given an alternation-free t-HyperSTL that includes universal quantifiers, we

attempt to find a set of falsifying traces for CPS corresponding to this formula.

Falsification algorithm. The procedure that addresses the falsification problem of a system

Σ with respect to a given hyperproperty ϕh over a time duration T is shown in Algorithm

1, and further interpreted as follows.

2 We first transform the alternation-free t-HyperSTL formula ϕh into the equivalent STL

formula ϕSTL.
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Algorithm 1 Falsification of alternation-free t-HyperSTL

Require: a system Σ, a parameter space Θ,

2 a t-HyperSTL formula ϕh, a time duration T ,

a maximum number of simulations N

4 begin

ϕSTL ← HyperSTL2STL(ϕh) // t rans f o rm s p e c i f i c a t i o n

6 Σ′ ← NewSystemGen(Σ, ϕh) // t rans f o rm model

χmin,Θf ← FalsifySTL(Σ′, ϕSTL,Θ, T,N)

8 if χmin < 0 then

return Θf

10 end

end

2 We then call a function NewSystemGen to generate a new model that contains copies of

the original system. The number of copies is equal to the number of quantifiers of the

formula ϕh.

2 Then, we apply existing falsification mechanisms for an STL formula such as Breach4 [49]

to compute the minimum robustness value χmin of the system Σ′ according to ϕSTL.

Breach allows us to parametrically generate different input signals over a parameter

space. For example, parameters can represent control points, and an input signal can

be created using interpolation between these points. If χmin is negative we return the

optimal set of parameters Θf ∈ Θ that produces a falsifying behavior.

4Breach [49] is a tool that applies a best-effort approach to automatically check whether a system satisfies

a given STL formula.
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We note that, unlike formal verification, performing falsification cannot ensure a system

is always safe; even if falsification fails to identify a falsifying behavior, a counterexample

may still exist.

Example 11 Consider a mechanical mass-spring damper system whose dynamics are de-

fined by the second-order ordinary differential equation:

ẍ(t) + 2ẋ(t) + 5x(t) = 3F (t), (3.9)

where x is the vertical position of the mass, and F is the random external force. The robust

behavior hyperproperty of the system is specified as follows: for all pairs of traces of the system

with the external force difference less than ε1 , the output difference should be bounded by

ε2; here ε1 = 0.2 and ε2 = 0.3. We apply the Algorithm 1 to falsify the robust behavior

hyperproperty for the system with a duration T = 10 seconds. Formula 3.6 can be reduced to

the normal STL formula as follows:

φM
∆
= 2[0,10](ρin ≤ ε1 =⇒ ρout ≤ ε2), (3.10)

where a trace p
∆
= (ρin, ρout) of the system Σ′ captures the input-output difference between

two traces w,w′ of the original system Σ′, e.g., ρin(t) = ||win(t)−w′in(t)||. Here, the system

Σ′ contains two copies of the mechanical mass-spring damper system Σ. The falsification

result shown in Figure 3.2 illustrates the inductive checking procedure for the satisfaction of

Formula 3.10 using Breach, where alw[0,10] is equivalent to 2[0,10], and the left y-axis denotes

robustness degree. Here, we observe that the violation of the robust behavior hyperproperty

of the mechanical mass-spring damper system occurs during the overshoot period of the

outputs of the system.
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Figure 3.2: Falsification result of the mass-spring damper system. The counterexample pair of

traces found by Breach for the robust behavior hyperproperty.

Remark 12 There is a duality between addressing the falsification problem of an alternation-

free t-HyperSTL that only contains universal quantifiers and solving the verification prob-

lem of an alternation-free t-HyperSTL that only contains existential quantifiers. Given an

alternation-free t-HyperSTL such as ∃v.∃v′.φe, our purpose is to extensively simulate a sys-

tem and find a single pair of execution traces of the system that satisfies φe. Here, we do not

attempt to falsify the system, but verify the system. Thus, this process is dual to finding the

falsifying traces of the system corresponding to the formula ∀v.∀v′.¬φe. Also, we note that

we can leverage Algorithm 1 such that it includes a parameter synthesis approach to mine

hyperproperties for CPS, as in [73,76]. For instance, we could use a requirement mining ap-

proach to automatically infer appropriate values for the ε1 and ε2 variables in Formula 3.10.
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3.6 Falsifying k-alternation t-HyperSTL

Falsifying k-alternation t-HyperSTL formulas is a challenging task, as it requires us to

examine all execution traces of a system. Consider a 1-alternation t-HyperSTL formula such

as ∃v.∀v′.φ; falsifying a system for this property is as hard as verifying the system, since

we need to show that for all traces w ∈ S, there exists a trace w′ that the formula φ is

violated, where S is an infinite set of traces. It is even more difficult to perform falsification

for CPS whose dynamics evolve continuously over time. Furthermore, if a hyperproperty

contains more than one alternation of quantifiers (e.g. the Lyapunov stability property),

the falsifying algorithm may suffer an exponential growth in complexity. Despite this, if we

assume a CPS can be modeled by a finite set of traces, we can develop a falsifying algorithm

for the system that can prove or disprove φ.

In general, there may not exist a unique answer to the question of whether we can verify

or falsify a system with respect to the formula ∃v.∀v′.φ using finite simulations. We can

consider several possible answers for that question as follows.

2 Case 1: if both w,w′ belong to some infinite set of traces, then we can neither verify

nor falsify φ.

2 Case 2: if w belongs to an infinite set of traces and w′ belongs to a finite set of traces,

then we cannot falsify but we can verify φ.

2 Case 3: if w belongs to a finite set of traces and w′ belongs to an infinite set of traces,

then we cannot verify but we can falsify φ.

2 Case 4: If both w and w′ belong to a finite set of n traces, we are able to verify the
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system with n simulations as well as falsify the system with n(n−1)
2

simulations.

We note that in all of the cases that we are able to falsify the system corresponding to

the formula ∃v.∀v′.φ with finite simulations, we can apply Algorithm 1 to transform the

falsification problem to another equivalent problem that uses a traditional STL specification.

The falsification procedure is similar to solving the falsification problem of alternation-free

t-HyperSTL.

For the case that both execution traces of a system, w and w′, belong to some infinite

sets, and if we have a verification oracle to address the last quantifier (e.g., by conservatively

estimating the set of possible system behaviors, under certain conditions), we can either

falsify or verify the system. Given a set of initial states, a verification oracle can be a method

that mathematically overapproximates the reachable set of the system or a simulation-based

technique [2, 64] that may verify the system with finite simulations.

Alternatively, for a hyperproperty that requires two or more alternations of quantifiers

to express, even if we have a verification oracle corresponding to the last quantifier, we can

neither falsify nor verify a system. Using a verification oracle, the feasibility of addressing

the falsification and verification problems associated with a k-alternation t-HyperSTL for-

mula is equivalent to that of a (k − 1)-alternation t-HyperSTL formula; this is shown in

Table 3.1. We emphasize that any hyperproperties for general CPS that are as complex

as, or more complicated than Lyapunov stability, are not verifiable or falsifiable without

reasonable restrictions on sets of execution traces.

80



Type
A1: Finite Simulation A2 : Verification Oracle

on the Last QuantifierFalsification Verification

∀ Yes No -

∃ No Yes -

∀∃ No No ∀

∃∀ No No ∃

∀∃∀ No No ∀∃

∃∀∃ No No ∃∀

Table 3.1: Feasibility of solving the falsification and verification problems for properties and

hyperproperties expressed using STL and k-alternation t-HyperSTL under two assumptions: A1)

using finite simulation and A2) applying a verification oracle that can do reachability analysis with

respect to the last quantifier.

3.7 Case study

In this section, we introduce two proof-of-concept case studies in the domain of automo-

tive control systems: a) an industrial-scale Simulink model of a closed-loop airpath control

(APC) system and b) a Simulink model of a fault-tolerant fuel (FTF) control system. We

will demonstrate how to apply the testing framework of HyperSTL built on top of Breach

to falsify the robust behavior hyperproperty of the APC system, and the robust control

invariance hyperproperty of the FTF system under FDI attacks.
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3.7.1 Airpath Control Model

We use a prototype APC system to evaluate the capability of our proposed method on

an industrial control system. The APC is a key subsystem for a hydrogen Fuel-Cell (FC)

vehicle powertrain. The purpose of the APC is to regulate the air flow rate into the FC

stack using multiple actuators. The FC stack generates electrical power for the vehicle using

a mixture of air and hydrogen. The FC stack only operates under restricted conditions,

such as temperature, pressure and moisture level within the stack. An excess of moisture in

the stack will impede the performance while moisture deficiency could permanently damage

the FC stack. Thus, to achieve high performance while still operating the system in a safe

regime, the controller is required to accurately regulate the air flow rate.

The closed-loop Simulink model of the APC system is complex; it contains more than

7,000 Simulink blocks such as integrators, saturations, S-Function blocks, lookup tables,

and data store memory blocks. The model has two input signals including i) the ambient

temperature and ii) the fuel cell current request (FCI). Details of the system, such as units

and expected signal ranges, are suppressed due to proprietary concerns. Intuitively, an FCI

value is proportional to the desired torque requested by the driver, which is ultimately based

on the accelerator pedal angle. The output of the APC system is an air flow rate (AFR). The

purpose of the controller model is to regulate the AFR to some desirable reference value.

To ensure the APC system works properly, for some small perturbations of the ambient

temperature and FCI values, the differences in AFR values should be bounded within a

desirable range. In other words, to avoid unexpected changes in the air flow rate at the

inlet of an FC stack, which may cause undesirable behavior, the system should satisfy the
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Figure 3.3: Falsification result of the APC system. The counterexample pair of traces found by

Breach for the robust behavior hyperpropperty.

robust behavior hyperproperty. The robust behavior hyperproperty of the APC system can

be formalized as follows,

φAPC
∆
= {W ∈ P | ∀w,w′ ∈ W : (dsup(wtemp, w

′
temp) ≤ ε1 ∧ dsup(wFCI , w′FCI) ≤ ε2)

=⇒ dsup(wAFR, w
′
AFR) ≤ ε3)}, (3.11)

which can be translated to the following STL formula using Algorithm 1 to perform the

falsification task,

φ′APC
∆
= 2[0,T ]((ρtemp ≤ ε1 ∧ ρFCI ≤ ε2) =⇒ ρAFR ≤ ε3), (3.12)

where a trace w is composed of the temperature and FCI input signals wtemp and wFCI

respectively, and the AFR output signal wAFR. Here, we create a new model including two
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copies of the original APC system; and a trace p
∆
= (ρtemp, ρFCI , ρAFR) of the new model

captures the input-output difference between two traces w,w′ of the original model, for

instance, ρtemp(t) = ||wtemp(t)− w′temp(t)||.

The result of falsification of the robust behavior hyperpropety of the APC system is

shown in Figure 3.3, where the blue lines present the distance signals ρtemp, ρFCI , ρAFR

respectively, and the red lines demonstrate their corresponding bounds. Here, the parameter

values selected by a design engineer are normalized to 0.5. That is, ε1 = 0.5, ε2 = 0.5, and

ε3 = 0.5. The sampling time is 0.001024 seconds and the simulation time T is 10 seconds.

For proprietary reasons, we normalize the quantities and suppress the units for the data

shown in the figure. The counterexample pairs of traces reported by Breach demonstrate a

behavior where the output difference exceeds its allowed bounds when the input differences

are still less than their given thresholds, which is a violation of Formula 3.12. Finding this

counterexample is significant, as it can help automotive control engineers to improve the

controller design to eliminate such an undesirable behavior of the APC system.

3.7.2 Fault-tolerant Fuel Model

We consider a fault-tolerant fuel (FTF) model that includes both Simulink blocks and

Stateflow charts5. The model has two external input signals, engine speed and throttle

command, and one output signal, which is the effective air-fuel ratio inside the combustion

chamber. The model also contains four sensors measuring throttle angle, engine speed, the

amount of residual oxygen in the exhaust gas (EGO), and the manifold absolute pressure

5We use a modified version of the FTF model available at https://www.mathworks.com/help/simulink/

examples/modeling-a-fault-tolerant-fuel-control-system.html
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(MAP). The controller has three different control strategies: a normal operation mode, which

is used when no sensor faults are present, a fault mitigation mode, which is used when one

sensor fault has occurred, and a mode that disables fuel control, which is used when two or

more sensor faults are detected. We only consider the normal and fault mitigation modes

for this example. The goal of the controller is to regulate the air-fuel ratio output, denoted

as λ, so that it remains within a desirable range, despite a failure in at most one sensor.

In this case study, we evaluate the ability of the FTF controller to tolerate an engine

speed sensor fault. In the original version of the model, a speed sensor fault consists of the

speed sensor output being set to 0.0 rad/sec; the controller detects the fault when the sensor

reading equals 0.0. In the modified version that we use, we do not fix the controller mode

based on the sensor reading, but instead we evaluate the controller performance when either

the normal or fault mitigation modes are selected. In the modified version of the model

that we use, a speed sensor fault consists of a sensor output producing a fixed but randomly

selected value in the sensor range [0, 620] rad/sec. This kind of sensor fault could occur

when an attacker uses a sensor spoofing approach to inject incorrect measurements into the

sensor readings or when a real fault occurs in the speed sensor. We use the robust control

invariance property to specify desired controller performance in the presence of the indicated

class of sensor faults:

φFTF
∆
= ∃v.∀v′.2[τ,∞](dsup(vu, v

′
u) = 0 =⇒ 0.8λref ≤ v′λ ≤ 1.2λref ), (3.13)

where λref is the reference value of the air-fuel ratio λ, and τ is the settling time. Here, a trace

variable v can be mapped to a trace w composed of the controller input wu corresponding

to a controller mode decision, a disturbance wd representing the fixed random sensor input
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injected into the speed sensor, and an output wλ. In general, we cannot falsify Formula 3.13

according to the discussion shown in Table 3.1; however, for systems like the FTF model

that have a finite set of control strategies, we can effectively perform falsification by creating

a new model that contains copies of the original system, one copy for each control mode

(two copies, in this case). The external input (the speed sensor reading) is connected to each

of the copies of the model. The specification φFTF is converted to the following equivalent

formula in standard STL:

φ̂FTF
∆
= ∀wd.2[τ,∞](0.8λref ≤ wλ1 ≤ 1.2λref ) ∨2[τ,∞](0.8λref ≤ wλ2 ≤ 1.2λref ), (3.14)

where wλ1 and wλ2 are the air-fuel ratios of the first and second copies of the model. We

note that Formula 3.14 is arrived at by applying the quantitative semantics provided in Sec.

3.4; the disjunction in Formula 3.14 appears due to the ∃ quantifier in Formula 3.13, which

effectively applies a max operator over the two available control modes. The formula φ̂FTF

can be tested using the falsification methods for traditional STL available in Breach.

Figure 3.4 illustrates the falsification result of the FTF model. The blue lines correspond

to a simulation trace representing the falsifying behavior, the green line illustrates an instance

of the correct speed, and the red lines represent the error bound of λ, where τ = 10 seconds,

T = 50 seconds, and λref = 14.6. Based on the results, we can conclude that there exists

a trace, which includes outputs wλ1 and wλ2 that both evolve beyond the tolerance bound

regardless of whether the controller operates in the normal mode or the fault mitigation mode

(i.e., the performance requirement is violated despite which control mode is used). This

experiment demonstrates the capability of using a falsification approach to automatically

test hyperproperties for CPS.
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Figure 3.4: A pair of falsifying traces found by Breach illustrating the FTF model cannot tolerate

the fault under a speed sensor fault.

3.8 Conclusion

In this chapter, we represented the first study of the hyperproperties of CPS. We defined

a new temporal logic, called HyperSTL, to express several hyperproperties including sta-

bility, security, and safety for CPS. HyperSTL allows us to effectively specify more general

requirements of CPS rather than STL as it can express the relationships between multiple

execution traces. The testing framework of t-HyperSTL, a fragment of HyperSTL, was also

given and applied to falsify the robust behavior hyperproperty of a hydrogen fuel-cell power-

train model, and the robust control invariance hyperproperty of the fuel control model under

a fault data injection attack. We also discuss the feasibility of performing the falsification
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and verification for various classes of hyperproperties for CPS.
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Chapter 4

ABNORMAL DATA CLASSIFICATION USING TIME-FREQUENCY

LOGIC

4.1 Introduction

For the last decade, signal temporal logic (STL) [95] has been successfully extended and

applied in many domains such as exploring requirements for closed-loop control systems [76],

identifying oscillatory behaviors of biology systems [46], and formalizing and recognizing

music melodies [51]. Recently, Kapinski et al. introduced a new signal library template for

constructing formal requirements of automotive control applications using STL [81]. These

requirements involve various control signal behaviors such as settling time, overshoot, and

steady state errors. Although most of such control signal behaviors can be characterized in

the time domain, some abnormal signal behaviors such as hunting (undesirable oscillations)

or spikes (abrupt, momentary jumps in signal values) are challenging to capture without

frequency information. In most practical control systems, hunting behaviors are considered

undesirable, or at least not ideal, and care is taken to minimize or eliminate the behavior.

In signal processing, hunting behavior can manifest around sharp transitions, as a result

of compression artifacts; this occurs, for example, in image processing, resulting in ghostly
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bands near edges, or in audio compression, resulting in forward echo problems. In circuit

design, a hunting behavior can be the unwanted oscillation of an output current or voltage,

which may cause a significant rise in power consumption, temperature, electromagnetic ra-

diation, or settling time [77]. Although some hunting behaviors can be defined loosely as

an oscillation around a given average and can be well captured using STL, some modulated

hunting signals are challenging to detect using only time domain information [81]. Because

hunting signals relate to oscillatory properties, it is appropriate to investigate them using

time-frequency analysis.

The first attempt to introduce a specification formalism for both time and frequency

properties of a signal, called time-frequency logic (TFL), was proposed by Donzé and his

collaborators [51]. There, a signal is preprocessed using a Short-Time Fourier Transform

(STFT) [39] to generate a spectral signal that represents the evolution of the STFT coeffi-

cients at some particular frequency over time. The time-frequency predicates and arithmetic

expressions constructed from this spectral signal are added into an STL formula to yield a

TFL formula. TFL was originally applied to music, though it can be easily extended to other

application domains. A key limitation of the approach using the STFT is the inherent trade-

off required between resolution in the time domain and resolution in the frequency domain;

it is difficult or impossible to obtain satisfactory resolution in both time and frequency using

the STFT for the analysis. Such limitations can be overcome using the continuous wavelet

transform (CWT).

In the following, we extend the notion of TFL by using the CWT to specify and check

time-frequency properties of signals. We introduce the concept of parametric time-frequency

logic (PTFL) and use it to perform parameter synthesis for the purpose of classifying hunting
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behavior. Previous efforts have focused on data classification of time-series signals using

STL [22, 31, 76], but identifying some abnormal behaviors such as hunting requires both

time and frequency information [81]. Moreover, existing classification methods require an

extensive amount of data, and the inferred classifier is often difficult for engineers to interpret.

In contrast, our proposed method using PTFL can efficiently classify abnormal behaviors

with an interpretable data classifier and requires less data than existing techniques. We note

that although the below presentation is focused on one behavior type, it is straightforward to

extend the work to detect other abnormal behaviors such as noise, spikes, or other anomalous

behavior, in the time-frequency domain. We evaluate the proposed algorithm by comparing

the performance against two existing classification techniques: a traditional machine learning

technique using a support vector machine with a linear kernel, and a method that infers

STL formulae as data classifiers [31]. To perform the evaluation, we use data sets from two

different domains, the automotive and medical domains.

4.2 Time-Frequency Logic Using CWT

Although many control system behaviors can be naturally characterized in the time

domain, there are some signal behaviors, such as hunting and spikes, that are challenging

to capture without frequency information. This is especially true for non-stationary signals

whose frequency components vary over time; for this class of signals, it is essential to analyze

the signal properties in the time-frequency domain. Fourier transform (FT) breaks signals

into series of sinusoidal components with different frequencies and phases, so it reveals what

frequency components existing in signals. However, the shortcoming of the FT is that it
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is unable to associate features in the frequency domain with their locations in the time

domain. Short-Time Fourier Transform (STFT) is a popular transformation that has been

widely used in time-frequency analysis [39]. STFT partitions a signal into small segments

(each segment is assumed to be stationary) whose lengths are equal to the width of a chosen

window function. This function will modulate the signal to emphasize the time instant

associated with each segment. Unfortunately, the STSF provides a fixed time-frequency

resolution so that it is not effective for signals that need to be analyzed with different time-

frequency resolutions [130]. Moreover, it is difficult to choose a proper window function with

an appropriate size that not only provides both desirable time and frequency resolutions but

also does not violate a stationary condition [130]. To overcome the limitation of the STFT,

we use the CWT to analyze a signal in the time-frequency domain.

4.2.1 Continuous Wavelet Transform

The CWT of a signal x(t) is formally defined as follows:

Wf(ζ, τ) =

∫ +∞

−∞
x(t)ψ∗ζ,τ (t), (4.1)

where ψ∗ζ,τ (t) is the complex conjugation of a basic wavelet function ψζ,τ (t) which is derived

from a mother-wavelet function ψ(t). This function has zero average in the time domain,

i.e.
∫ +∞
−∞ ψ(t)dt = 0. Furthermore, a basic wavelet function ψζ,τ (t) can be written as:

ψζ,τ (t) =
1√
ζ
ψ

(
t− τ
ζ

)
, (4.2)

where ζ ∈ R>0 is a scale parameter representing the width of the basic wavelet function,

τ ∈ R is a translation factor representing the location of the basic wavelet function, and 1√
ζ

is
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the energy normalization across different scales. Thus, the CWT maps an original signal to

a function of ζ and τ that provides both time and frequency information. Note that the scale

factor is inversely proportional to the frequency of a signal [130]. The CWT in Equation 4.1

measures the similarity between a basic wavelet function and a signal. Indeed, if a signal

x(t) has a frequency component f corresponding to a particular scale ζ of a wavelet function

ψζ,τ (t), then the portion of x(t) at some particular time interval where f exists will be similar

to ψζ,τ (t). As a result, the CWT coefficients of x(t) corresponding to f will be relatively

large over this time interval. Moreover, the time-frequency energy density of the CWT is

equivalent to the square norm of the CWT coefficients:

PWf(ζ, τ) = ||Wf(ζ, τ)||2. (4.3)

Time-frequency resolution. In contrast to the STFT, the CWT can either dilate or

compress the window size of the wavelet function, and translate it along the time axis. The

Heisenberg box [96] is a range of times and frequencies that indicates the accuracy of a

time-frequency transformation. Although the area of the Heisenberg box does not change,

the time and frequency resolutions can be varied depending on the value of ζ. As a result,

the CWT can analyze all frequency components within a signal by considering appropriate

scales of the mother-wavelet function. For instance, the CWT can use the wavelet function

with a short duration and low scale for analyzing high frequency components, and vice versa.

This advantage of the CWT allows us to efficiently analyze a signal that includes abnormal

behaviors such as spikes and hunting.

Example 13 Suppose we have a signal x(t) composed from different sinusoid components

93



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-1

0

1

|x
(t

)|

(a) x(t)

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

0

0.05

0.1

0.15

jŵ
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Figure 4.1: Plot showing the difference between the transformations of x(t) using the FT, STFT

and CWT

such that:

x(t) =



cos(80πt), if 0.1 ≤ t < 0.3

sin(200πt), if 0.7 ≤ t < 0.9

0, otherwise

Figure 4.1 illustrates the differences in representing a signal in the time-frequency domain
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between the FT, STFT, and CWT. Here, the FT provides us the exact dominant frequencies

of the signal x(t) that are respectively equal to 40Hz and 100Hz, but it does not reveal when

these frequencies occur within x(t). The spectrogram (representing the square norm of the

transform coefficients in the time-frequency domain) of x(t) using the STFT with Hanning

window function [66] is shown in Figure 4.1(c). The STFT can localize the dominant fre-

quency bandwidths of x(t) occurring over time. However, the time resolution is very poor as

the time intervals including these dominant frequencies are overlapped each other. On the

other hand, Figure 4.1(d) shows that using the Morlex WT [39] can give us a much better

time resolution with a slightly lower frequency resolution compared to the STFT. Overall,

x(t) has a better time-frequency presentation using the Morlex WT rather than the STFT.

Especially, this advantage of the CWT is essential in specifying the signal properties over

some precise time intervals using temporal logic.

4.2.2 Time-Frequency Logic

TFL is an extension of STL that can be used to specify both time and frequency properties

of a signal [51]. In TFL, a signal predicate is defined over the signal representing the evolution

of the STFT coefficient at a particular frequency over time. Given a pair (f, τ) of frequency

and time, the STFT of a signal x(t) is obtained by:

Sf,τ =

∫ +∞

−∞
x(t)ψL(t− τ)e−2iπftdt , (4.4)

where ψL(t) is a window function. A spectral signal y(t) = ||Sf,t||2 is the projection of the

spectrogram of x(t) on a particular frequency f . Such a signal can be incorporated in TFL

formulae to form some interesting time-frequency specifications. We can see that a TFL
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formula is actually an STL formula in which the signal predicate is defined over y(t) instead

of x(t). TFL has been used to formalize and recognize music melodies, where time-frequency

requirements are simply specified as ϕ
∆
= ||Sfp,t||2 > θ, where fp is the pitch frequency and

θ is the STFT coefficient threshold [51]; however, the shortcomings of the STFT mentioned

previously may reduce the ability of TFL to precisely specify and evaluate time-frequency

properties of a signal. We extend TFL to use the CWT to obtain spectral signals from a

given time-series signal. In effect, we construct a TFL formula based on the CWT coefficients

of the spectral signals instead of the STFT coefficients. Because the CWT can appropriately

use various scaling factors, ζ, to analyze all frequency components at different time intervals,

it gives us an ability to study signals at flexible time-frequency resolutions.

Although the following presentation focuses on the classification of hunting behaviors,

we note that the proposed approach using TFL and CWT can be used to capture other

time-frequency specifications as well. For instance, consider the property: “For some time

in the future, the dominant frequency of the signal is ω for 5 time units, and the dominant

frequency subsequently rises to twice of this value within 10-time units.” Here, the dominant

frequency, f(t), of a signal x(t) is defined as the frequency corresponding to the maximum

magnitude frequency component of the signal at time t, as provided by a CWT. Such a time-

frequency property can be written as a TFL formula, ϕ
∆
= 3(2[0,5](f = ω)∧3[5,15](f = 2ω)).

Then, the TFL formula ϕ can be evaluated as a normal STL formula using Breach1 [49].

Consider another property such as “At some time in the future the energy densities of the

signal within a particular time interval and a particular frequency bandwidth are always

greater than some threshold value θ.” This property can be specified as a TFL formula,

1Breach [49] is a tool that allows evaluation of STL and TFL formulae on signals.
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φ
∆
= 32[t1,t2](z(f, t) > θ), where z(f, t) is a spectral signal that captures the minimum value

of the CWT coefficients of a signal over some frequency bandwidth [f1, f2].

Parametric Time-Frequency Logic. We introduce parametric time-frequency logic (PTFL),

which is an extension of TFL where the parameters in TFL template formulae are symbolic

parameters. Similar to the concept of parameter signal temporal logic (PSTL) introduced

in [15], PTFL allows constants in intervals bounding the temporal operators and constant

values in the predicates of PTFL formulae to be replaced with parameters.

The p parameters in a PTFL formula are classified into two sets:

(a) Υ = {τ1, ..., τpt} is a set of pt time parameters occurring in the time intervals of the

temporal operators, and

(b) Θ = {θ1, ..., θp−pt} is a set of p− pt threshold parameters occurring in the signal predi-

cates.

For any fixed values of Υ and Θ, a PTFL formula ϕ(τ1, . . . , τpt , θ1, . . . , θp−pt) yields a TFL

formula corresponding to the fixed values of the parameters. For instance, consider a PTFL

formula ϕ(τ, θ)
∆
= 2[0,τ ](y(t) > θ), where y(t) is a spectral signal, τ and θ are time and

threshold parameters, respectively. The formula ϕ(5, 10) is defined as the TFL formula

2[0,5](y(t) > 10).

4.3 Hunting Classification

In this section, we will describe three different approaches using PTFL and TFL to effi-

ciently classify hunting behaviors in signals. Informally, a hunting behavior is an undesirable

oscillation appearing within a signal over some time interval.
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4.3.1 Parameter Synthesis Approach

We now propose a method to classify hunting behavior based on mining parameters of

the following PTFL formula:

ϕh
∆
=

m∧
i=1

3[0,τi](Wfi(t) > θi). (4.5)

Intuitively, this formula specifies that “the energy densities of the given signal at particular

frequencies are eventually greater than some threshold value”. Here, Wfi(t) is a spectral

signal over time that captures the energy densities of the CWT of an original time-series

signal x(t) at a particular frequency fi ∈ F . Note that F is a set of frequencies based on the

scales of the CWT. Each spectral signal, Wfi(t), is the row vector of the matrix representing

the energy densities of the CWT of x(t); such a matrix is obtained using Equation 4.1 and

Equation 4.3. Also, τi ∈ Υ and θi ∈ Θ denote a time and threshold parameter corresponding

to each spectral signal Wfi(t). We note that the satisfaction value of the property ϕh mono-

tonically increases in τi and decreases in θi. Because of monotonicity, we can exponentially

reduce the search over the parameter space so that the synthesis procedure is efficient [76].

Figure 4.2 conceptually illustrates a spectral signal Wfi(t), and an instance of a hunting be-

havior that may occur within a signal. We say that a signal x(t) contains hunting behavior if

the property ϕh holds. Overall, the hunting classification problem can be written as follows.

• Given the following inputs:

◦ a set of labeled traces Ψ
∆
= {Ψα,Ψβ}, where Ψα and Ψβ denote a set of training and

testing traces, respectively. Moreover, we the notation Ψ.B and Ψ.G to respectively

denote the set of traces with and without hunting behavior. Note that all traces in
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Figure 4.2: A sketch illustrates the hunting classification problem using time-frequency parameter

synthesis. The set of spectral signals Wfi is acquired from the CWT of an original time-series signal.

the training set exhibit hunting behavior, so that Ψα = Ψα.B

◦ a cut-off frequency δ.

◦ sets of parameters Υ, and Θ.

• Find values for Υ and Θ, such that:

◦ xj(t) |= ϕh(Υ,Θ) for all xj(t) ∈ Ψβ.B.

◦ xj(t) 6|= ϕh(Υ,Θ) for all xj(t) ∈ Ψβ.G.

We introduce the cut-off frequency δ to reduce the effort to exhaustively mine parameters

over the entire time-frequency domain. It is essential for the control engineers to indicate

that hunting behavior only occurs at some high-frequency region above δ.

Classification Algorithm. Next, we propose a heuristic to automatically obtain values for
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Υ and Θ that can be used to separate the hunting and non-hunting signals. An overview of

the heuristic is described in Algorithm 2. The heuristic can be interpreted as follows.

Line 2 initializes a matrix Σ that represents the k m-dimensional spectral signals trans-

formed from k original time-series signals in the training set using the CWT. We iterate over

each trace in Ψα to construct sets of spectral signals {Wf1(t), ...,Wfm(t)} using the CWT,

and assign them to Σ. Next, we call the function TruncateParam to reduce the effort of ex-

haustively mining all parameters over the entire time-frequency domain. Here, Σ′ represents

the k n-dimensional (n < m) matrix of Σ corresponding to the frequency range above δ.

Next, we call the function HuntingParamSyn incorporated inside Breach to mine values for

Υ and Θ. Then, we test the classifier with a given set of testing traces Ψβ. The function

Classifier checks the satisfaction of ϕh for each trace in Ψβ, and returns the misclassification

rate (MCR) value and the set of misclassified traces Ψm. The values of Υ, Θ and the set Ψm

are then returned for further analysis. Furthermore, we can call EnhancedParam function to

strengthen the values Υ and Θ and reduce the MCR value for the purpose of optimizing the

classifier formula. Note that in the case studies, we do not use this function to evaluate the

performance of the classifier to avoid the bias in our comparative analysis.

4.3.2 Decision Tree Approach

An approach based on decision trees to classify time series data using STL formulae was

implemented in the tool DT4STL [31]. That method uses a parameterized procedure to

infer STL formulae from labeled data. Given a two-class training data and a set of PSTL

templates, a decision tree for classification is recursively built such that each node of a tree is
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Algorithm 2 Hunting Classification Using Parameter Synthesis

1 function HuntingClassification(Ψα,Ψβ , δ)

Σ← 0

3 for each trace xj(t) ∈ Ψα, j ≤ k

Σ(j, :, :)←Wf1(t), ...,Wfm(t)← CWT (xj(t))

5 end for

Σ′ ← TruncateParam(δ,Σ)

7 Υ,Θ← HuntingParamSyn(Σ′)

MCR,Ψm ← Classifier(Υ,Θ,Ψβ)

9 return Υ, Θ, Ψm

end function

11 function EnhancedParam(Ψm,Ψα,Ψβ , δ)

if Ψm.B 6= ∅ then

13 Ψ′
α ← Ψα ∪Ψm.B

HuntingClassification(Ψ′
α,Ψβ , δ)

15 end if

end function

associated with a simple formula, selected from the given PSTL templates. The parameter

synthesis is then conducted to find the STL formula that yields the best split for the data at

each node. This technique can be used to automatically construct classifiers based on STL

formula, but to achieve a low MCR value, the inferred STL formulae may be long and not

easily interpretable by engineers. In this section, we apply this approach to classify hunting

versus non-hunting signals. Instead of inferring an STL formula, we intend to infer a TFL

formula as a data classifier. Thus, we need to transform original time series data into a
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collection of time-frequency data (spectral signals).

We assume that control engineers initially designate the frequency threshold separating

hunting versus non-hunting behavior. A hunting behavior is specified as any oscillatory

behavior occurring at frequencies above some specified cut-off frequency δ. Thus, the time-

frequency profile of a hunting signal at some frequency component f > δ contains larger

values for the CWT coefficients compared to those of non-hunting signals. So we define the

spectral signal WThcoef based on the CWT coefficients of the signal in a high-frequency

region such that:

WThcoef(t) = max
ζ∈[ fc

TsFmax
, fc
Tsδ

)
PWf(ζ, t), (4.6)

where fc is a center frequency associated with the mother-wavelet function, Fmax is the

maximum frequency that appears in the CWT, and Ts is the sampling period. We use such

a spectral signal as an input for the DT4STL to infer a simple TFL formula. Note that in

this scenario, the inferred TFL formula captures the non-hunting behavior of a signal.

4.3.3 Support Vector Machine Approach

Next, we present another approach that can solve the problem of hunting classification:

linear classification using support vector machines (SVM) [137]. A linear SVM is a set of

hyperplanes or decision boundaries that can correctly separate data into two classes. The

general form of hyperplanes is 〈w · x〉 + b = 0, where w is a normal to the hyperplane,

and b
||w|| is the perpendicular distance from the hyperplane to the origin. The sign of the

linear discriminant function f(x)
∆
= 〈w · x〉 + b determines on which side of the decision

boundary the test data point is located. The distance from the decision boundary to the
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closest data point determines the margin of the linear classifier. Suppose that we have a set

of n labeled training data (xi, ci), ..., (xn, cn) where xi ∈ Rd and ci ∈ {1,−1}, the constrained

optimization problem of linear classification using SVM is written as:

minimize
w,b

1

2
||w||2 + C

n∑
i=1

ζi

subject to ci(〈w · xi〉+ b) ≥ 1− ζi, i = 1, . . . , n

ζi ≥ 0. (4.7)

Here, ζ is a slack variable. If 0 < ζ ≤ 1, the data point lies somewhere between the

margin and the correct side of hyperplane, and the data point is misclassified if ζ > 1.

C is a regularization parameter that defines the trade-off between errors of the SVM on

training data and margin maximization. A large value of C results in the low possibility

of misclassified training data points, because the optimization in Equation 4.7 will choose a

narrow margin hyperplane that correctly separates training data points as much as possible.

In contrast, a small value of C will result in a large margin hyperplane, but it may yield a

better result in terms of correctly separating testing data points. Due to space limitation,

we will not discuss the formal optimization problem solved to obtain the SVM, but refer

interested readers to [137]. In this work, instead of applying the linear SVM directly to

original time series signals, we need to preprocess them to yield a corresponding set of

time-frequency features. For each time-series signal x(t), we collect a real-valued vector

Wmax ∆
= [Wfmax1 , ...,Wfmaxm ] such that each element Wfmaxi ∈ Wmax is the maximum value

of a spectral signal Wfi(t). Such a vector will be used as a time-frequency feature to design

the SVM.
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4.4 Case Studies

In this section, we evaluate the capabilities of three different methods to classify hunting

behavior for two case studies. The first case study is based on data from an air compressor

motor speed (ACMS) system in a fuel cell (FC) vehicle application. The second case study is

based on electrocardiogram (ECG) data. In both examples, we apply the Morlet CWT [96]

to perform the time-frequency analysis on the time-series signals.

4.4.1 ACMS Data

The ACMS system uses a compressor to regulate the air intake of a hydrogen FC vehicle.

An FC stack uses a mixture of air and hydrogen to generate electrical power for the vehicle.

Accurate control of the compressor which translates to control of the quantities of hydrogen

and oxygen (air) is required to achieve good performance and proper operation from the

FC stack. Also, the water balance (moisture level) within the stack needs to be carefully

regulated, which requires regulation of the air pressure at the inlet of the stack. The task

of the ACMS system is to regulate air flow and air pressure delivered to the inlet of the FC

stack.

We consider ACMS data from an FC vehicle application. Specifics of the data, such as

units and descriptions of the measured quantities are omitted here for proprietary reasons.

The ACMS data are partitioned into a collection of traces that are 100 seconds in length and

are labeled as either good (the trace does not exhibit hunting behavior) or bad (the trace

does exhibit hunting behavior). The ACMS data has a sampling period of 0.02 seconds. We

note that the same training data is used for all of the evaluations, though the parameter
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Figure 4.3: The classified testing data of the ACMS signals using parameter synthesis approach.

synthesis approach only uses the bad traces. In this experiment, we use the training data

including 50 total traces, in which 30 traces are labeled as good and the others are labeled

as bad. We also use the same testing data including 10 good traces and 10 bad traces for all

of the evaluations.

Parameter Synthesis. We now illustrate the performance of the classification heuristic

shown in Algorithm 2 to classify hunting behavior for the ACMS signals. Because we do

not know the frequency range where a hunting behavior may occur, we exhaustively mine

all parameters τi ∈ Υ and θi ∈ Θ. We choose the maximum frequency of the CWT as

Fmax = 25Hz. Here, the Algorithm 2 will search for the best θi ∈ [0, 1] and τi ∈ [0, 100]

such that all spectral signals transformed from original time-series traces in the training data

satisfy ϕh. We then use Breach with the optimized parameters of ϕh to classify good versus

bad traces in the testing set.

Figure 4.3 shows the experimental results of classifying abnormal ACMS signals, using
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the function HuntingClassification. In the figure, we only show five representative signals in

which good traces correctly classified are shown in green, and bad traces correctly classified

are shown in blue. The one good trace that is misclassified is shown in red. The total

running time of the classification process is approximately 3 minutes.

Decision Tree Approach. Next, we utilize the DT4STL toolbox to infer TFL formulae

that can be used to classify hunting behavior for the ACMS data.

We preprocess the training data to yield the corresponding set of spectral signals WThcoef

with δ = 15Hz and Fmax = 25Hz. We then run the DT4STL toolbox with this set of spectral

signals using 2-fold cross-validation. As a result, we obtain the two following TFL formulae:

ϕh1
∆
= 2[37.4,98.2)(WThcoef < 0.0435) (4.8)

ϕh2
∆
= 2[1.29,91.3)(WThcoef < 0.0394). (4.9)

The procedure takes approximately 75 seconds to infer each formula. Using Breach, we then

evaluate those formulae with the set of testing data. The formula ϕh1 gives us all misclassified

traces that are bad traces with the MCR value being equal to 25%. On the other hand, the

formula ϕh2 results in one misclassified trace, which is a bad trace.

SVM Approach. We apply the SVM method to classify normal versus abnormal ACMS

data. We first transform all of the traces in the training data into sets of time-frequency

features. Next, we run the linear SVM to learn the decision boundaries that separate data as

either good or bad. Finally, we predict the testing data from the learned decision boundaries

with different values of the SVM classifier margin C.

The MCR of the hunting classification for the ACMS data using SVM is 10% with C = 10

and reduces to 5% with C = 100. In this case, a larger value of C gives a better result for
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Figure 4.4: The classified testing data of the ECG signals using parameter synthesis approach.

the classification. Moreover, the classification process takes only 0.393 seconds.

4.4.2 ECG Data

An electrocardiogram (ECG) test is a noninvasive procedure used to monitor the electrical

activities of a heart via a collection of electrodes attached to the patient’s skin. A doctor can

read an ECG output signal to diagnose abnormal structure or function of the patient’s heart.

A normal ECG signal includes three signals: (a) the P wave representing the depolarization

or contraction of the atrium (b) the QRS complex (the R wave) indicating the ventricular

depolarization and (c) the T wave describing the ventricular repolarization. The distance

between two consecutive R peaks is considered as a heartbeat. A healthy patient has a

resting normal heartbeat (frequency) from 60 to 100 beats per minute (bpm).

In this chapter, we focus on classifying the ECG signal that may contain a ventricular

tachycardia (VT), a very fast heart rhythm arising in the ventricles that may cause a sudden
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heart failure. VT is defined as a sequence of three or more ventricular beats with the

frequency varying from 110 to 250 bpm. Thus, a VT can be considered as a hunting behavior

in an ECG signal. We conduct our classification approaches on the MIT-BIH Arrhythmia

ECG Database. These data contain a variety of ECG signals collected from patients 23 to 89

years of age, including patients who experience ventricular arrhythmia [107]. We transform

ECG signals 20 seconds in duration (provided at a sampling period of 0.0028 secs.) to spectral

signals using the Morlet CWT. Here, the maximum frequency of the CWT is Fmax = 4.5Hz

(∼ 270 bpm). For all of the evaluations, we use the same training data including 20 bad

traces (the traces do contain a VT) and 40 good traces (the traces do not contain a VT),

and the same testing data including 10 good traces and 10 bad traces.

Parameter Synthesis. In this scenario, we only mine the parameters for 20 bad traces in

the training dataset. Here, we will search for the best θi ∈ [0, 5] and τi ∈ [0, 20]. Figure 4.4

shows the experimental results of using the function HuntingClassification to classify abnormal

ECG signals that contain VT. Here, we only show three signals for illustration. The approach

results in one (5%) misclassified (red) trace, which is a bad trace. The total running time of

the classification process is approximately 1 minute.

Decision Tree Approach. Next, we utilize the DT4STL toolbox to classify hunting be-

havior for the ECG data. We first preprocess the training data to yield the corresponding

set of spectral signals WThcoef with δ = 1.5Hz. Then, we run the DT4STL toolbox with

this set of spectral signals using 2-fold cross-validation. As a result, we obtain two following
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TFL formulae:

φh1
∆
= 2[1.73,17.3)(WThcoef < 3.16) (4.10)

φh2
∆
= 2[2.36,20)(WThcoef < 3.21). (4.11)

The procedure takes approximately 105 seconds to infer each formula. We then use Breach

to evaluate these formulae with a set of spectral data acquired from the CWT of 10 good

traces and 10 bad traces in the testing data. The MCR values of using φh1 and φh2 to classify

these data are both equal to 5% (but misclassified traces are different).

SVM Approach. Finally, we apply the SVM approach to classify hunting in the ECG

data. Note that we use the same training and testing data used for the other methods.

The hunting classification of the ECG data using an SVM results in 5% MCR for all values

of C (the one misclassified trace is a bad trace), and the classification procedure takes 0.3

seconds.

4.5 Discussion

In this section, we discuss the trade-offs related to the three classification approaches

presented above to classify normal versus abnormal signals. Table 4.1 shows an aggregate

performance evaluation between the approaches in four different categories, including (a)

the ability to interpret the structure and parameters used to define the classifier, (b) the

computation time, (c) the capacity to localize where bad behavior occurs in a signal, and (d)

the ability to correctly classify normal versus abnormal signals. Although the linear SVM

can classify abnormal signals much faster and more accurately than the parameter synthesis

and the decision tree approaches, the main drawback of this method is that it cannot reveal
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PS DT4STL SVM

Interpretation of data classifier ©
a

×

Computation time × × ©

Bad behavior localization © © ×

Low misclassification rate
a a

©

Table 4.1: The comparison between parameter synthesis (PS) using PTFL, DT4STL toolbox using

TFL, and linear SVM in classifying abnormal signals, where ©,
a

, × respectively denote good,

ok, bad.

where the bad behavior occurs within a signal. We found that the decision tree approach can

infer specifications that accurately classify data as either good or bad; however, it is not easy

to interpret the inferred formula unless the user has some expertise about the input data. If

a dataset is not homogeneous (i.e., both normal and abnormal signals are very different from

each other), the DT4STL toolbox may infer a complicated formula that cannot be easily

interpreted. The parameter synthesis using PTFL and the decision tree approach using TFL

have similar performance except the former provides a clearer intuition about the classifier,

as the temporal logic formula that results is usually simpler for the PTFL case. Overall, we

conclude that a traditional machine learning technique such as the linear SVM is the best

choice if the only goal is to classify data as either good or bad, and the most important

thing is to select a proper feature on which to base the classification algorithm. Otherwise,

if the designer additionally wishes to both understand the meaning of a data classifier and

automatically localize where abnormal behaviors occur within a signal, we conclude that the

parameter synthesis approach is the best option, as a simple temporal logic formula that
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defines the classifier results from the analysis.

4.6 Conclusion

In this chapter, we present the extension of TFL using CWT that can be used to specify

and capture signal properties in the time-frequency domain. We propose the parameter syn-

thesis algorithm using PTFL to classify hunting behavior appearing within a signal. Further-

more, we perform the comparison analysis between the proposed algorithm, the traditional

machine learning techniques using SVM with linear kernel, and the work of inferring STL

formula as data classifier. In fact, we apply these techniques to classify hunting behavior

for the ACMS data provided by the Fuel-cell group at Toyota, and the ECG data extracted

from the MIT-BIH Arrhythmia Database.
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Chapter 5

DISSERTATION SUMMARY AND FUTURE WORKS

On the whole, this dissertation presented different approaches to determine formal spec-

ifications and facilitate the design and analysis of CPS. This chapter summarizes the con-

tributions of those approaches and proposes a specific future research direction for each of

them.

Chapter 2 formalizes a problem of cyber-physical specification mismatches arisen in the

product evolution and upgrade process in CPS, and presents a dynamic analysis prototype

tool Hynger to capture such mismatches. Our experimental results prove that Hynger, in

conjunction with Daikon, can efficiently detect candidate invariants of two CPS case studies

including a DC-to-DC power converter and an automotive control system. Overall, there

are several directions for future research, including: (a) extending the classes of invariants

that may be inferred, particularly to nonlinear (polynomial) [121] and disjunctive/max-plus

forms [123], potentially by integrating Daikon with techniques from Dig [122], (b) runtime

assurance and verification with real-time reachability of inferred invariants [19], (c) improving

and refining Hynger, particularly with regard to performance (such as using Daikon in the

online mode with direct pipes between Hynger and Daikon, so that file I/O is minimized),

and (d) analyzing more industrial-scale CPS using Hynger.
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In Chapter 3, we presented the first study of hyperproperties of real-valued signals that

characterizes many CPS requirements including safety, security, and stability. We also in-

troduced HyperSTL, which is a new extension of STL to specify a class of hyperproperties

defined over multiple continuous-time traces of CPS. Furthermore, we provided a technique

that automates the process of testing hyperproperties for CPS using HyperSTL. Our pro-

posed methodology has been applied to specify and falsify several HyperSTL properties of

industrial-scale automotive control systems. There are several directions for the future work

of HyperSTL. We first plan to introduce a library of HyperSTL formulae that encapsulates

different general classes of hyperproperties of CPS including those presented in this dis-

sertation. Second, the falsification algorithm of HyperSTL proposed in this dissertation is

incomplete as it relies on self-composition (i.e., making copies of a system) and only falsifies

a restricted class of hyperproperties. Thus, extending the falsification algorithm to bypass

self-composition to falsify more interesting hyperproperties is planned. Also, the monitoring

algorithms of HyperLTL recently proposed in [5, 33] could be applied to HyperSTL.

Chapter 4 introduces another extension of STL using the continuous wavelet transform

to specify time-frequency properties of signals in a time-frequency domain. We proposed

a method using parametric time-frequency logic as an interpretable data classifier that can

efficiently classify abnormal behaviors of continuous signals. We have successfully applied

our method to perform anomaly detection on the data sets extracted from automotive and

medical domains. For a future direction, we will conduct the parametrized procedure using

PTFL to detect and classify other abnormal behaviors such as spike. We intend to generalize

the technique using PTFL to classify and capture requirement dependencies between different

sets of signal traces. For instance, a possible requirement we want to capture is that “if there
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exist anomaly sudden changes in a signal x1, a signal x2 will then eventually exhibit some

hunting behaviors in the near future”.
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