

GENERATING AN ADAPTIVE PATH USING RRT SAMPLING AND POTENTIAL

FUNCTIONS WITH DIRECTIONAL NEAREST NEIGHBORS:

by

SANDEEP CHAHAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2018

Copyright © by Sandeep Chahal 2018

All Rights Reserved

1

To Mom and Dad for their sacrifices and immeasurable love.

2

Acknowledgements

Firstly, I would like to express my gratitude to my advisor Dr. Manfred Huber, for

allowing me to conduct research and for his interminable guidance and support. I shall

eternally be appreciative to numerous conversations furnishing me invaluable knowledge

pertaining to myriad of fields not to mention robotics. These perorations were conveyed

with vitality, candor and patience that assisted in essential assimilation of complex ideas.

I must thank my committee members Dr. Vassilis Athitsos and David Levine for

taking the time to serve in my committee.

I would like to thank Shriiesh, Bhupender, Sourabh, Arun, Azmat, Shirin, Brian,

Taoran, Shreesha, Renon who have been part of journey so far at LEARN Lab. I am also

thankful to Akash, Anil, Jai who have been family away from home.

Lastly, I thank my parents for their quintessence and being mainstay of strength

that has kept me going.

November 27, 2018

3

Abstract

GENERATING AN ADAPTIVE PATH USING RRT SAMPLING AND POTENTIAL

FUNCTIONS WITH DIRECTIONAL NEAREST NEIGHBORS

Sandeep Chahal, M.S.

The University of Texas at Arlington, 2018

Supervising Professor: Manfred Huber

Planning algorithms have attained omnipresent successes in several fields

including robotics, animation, manufacturing, drug design, computational biology and

aerospace applications. Path Planning is an essential component for autonomous robots.

The problem involves searching the configuration space and constructing a desired

collision-free path that connects two states (the start and the goal) for a robot to gradually

navigate from one state to another. In global path planners, the complete path is computed

prior to the robot set off. Sampling based planning like Rapidly Expanding Random Trees

(RRT) and Probabilistic Road Maps (PRM) used for single or multi-query planning has

gained popularity since it is probabilistic complete and scales well to complex configuration

spaces. However, re-planning (re-calculating the complete path) is almost unavoidable as

path execution is inherently uncertain since a robot will deviate from the path due to

slippage and other uncertainties in the environment. Local path planners which only

calculate the path direction at the current location partially alleviate this problem since they

do not pre-calculate a complete path and are thus less affected by deviations. However,

local path planners are either not complete or, if they use navigation functions, do not scale

well to complex environments.

To address this, this work presents an approach that combines the advantages of

sampling-based global path planning with the benefit of a local, navigation function-based

4

path planning on the generated sample space. This reduces the need for re-planning if the

robot diverges from the original path by utilizing a harmonic function potential field

computed over the RRT sample set and directional nearest neighbors. The proposed work

derives the samples in the environment using a simple randomized algorithm and

systematically sampled obstacles that are hit during random sampling of the space. It

therefore avoids sampling of the complete space. Additionally, samples generated during

one planning phase can be exploited further for new goals in the environment.

5

Table of Contents

Acknowledgements ... 2

Abstract ... 3

List of Illustrations ... 6

Chapter 1 INTRODUCTION AND RELATED WORK ... 8

1.1 Introduction ... 8

1.2 Related Work .. 11

Chapter 2 TECHNICAL BACKGROUND .. 15

2.1 Configuration Space and Map Representation .. 15

2.2 Path Planning Problem Formulation ... 16

2.3 Sampling based motion planning ... 17

2.4 Space Sampling .. 18

2.5 Potential Field ... 22

2.6 Harmonic Functions .. 23

2.7 Nearest Neighbor.. 25

Chapter 3 PROPOSED APPROACH AND IMPLEMENTATION 28

3.1 Architecture Overview and Details ... 28

3.2 Initial Sampling ... 32

3.3 Nearest Neighbor and KD-tree ... 33

3.4 Potential Field Harmonic Function .. 36

3.5 Thinning Path .. 37

3.6 New Goal .. 38

Chapter 4 IMPLEMENTATION AND EXPERIMENTS .. 39

4.1 Implementation ... 39

4.2 Experiments .. 45

6

Chapter 5 CONCLUSION AND FUTURE WORK ... 58

References .. 60

BIOGRAPHICAL STATEMENT .. 64

List of Illustrations

Figure 2-1 Workspace(left), C-Space (right) ... 15

Figure 2-2. Configuration Space and Path ... 16

Figure 2-3. Adding New Node in RRT .. 18

Figure 2-4. Uniform Sampling ... 19

Figure 2-5. Linear Systematic Sampling ... 20

Figure 2-6. Imaginary Combined Forces .. 22

Figure 2-7. Resultant Force at Any Location .. 23

Figure 2-8. Attractive Potential (left), Repulsive Potential (center), Combined Potential

(right) ... 25

Figure 3-1. Architecture Layout ... 28

Figure 3-2. Detailed Overview of Part-1 of the Architecture ... 29

Figure 3-3. Detailed Overview of Part-2 of the Architecture ... 31

Figure 3-4. Point on Line ... 33

Figure 3-5. Query Sample (orange, left), Nearest neighbor in each direction (green, right)

 .. 34

Figure 3-6. Query Sample and neighbors in each direction(left), Generated virtual

obstacles (yellow, right)... 35

Figure 3-7. Space Partition KD-Tree Based on Sliding Distance 35

Figure 3-8. KD-Tree Based on Space Partition .. 36

Figure 3-9. Potential Field effect of a neighbor based on distance 1/X2 37

file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722540
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722541
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722542
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722543
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722544
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722545
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722546
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722547
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722547
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722548
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722549
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722550
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722551
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722552
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722552
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722553
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722553
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722554
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722555
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722556

7

Figure 4-1. An example of environment set up (left), random sample generated (right) .. 45

Figure 4-2. Path from Bidirectional RRT with Obstacles (Blue) and Obstacle Hits(green)

 .. 46

Figure 4-3. Systematic Samples on Obstacle Surface (Red), Virtual Obstacles (White)

and Original Path Samples (Green) .. 46

Figure 4-4. Freespace sample values at iteration 1 with the goal at the left bottom and the

start at the right top (left), and change in values (right) .. 47

Figure 4-5., Freespace sample values at iteration 100 (left) and change in values (right)

 .. 48

Figure 4-6. Freespace sample values at iteration 3000 (top), change in values (bottom

left) and gradient of a random path (bottom right) .. 49

Figure 4-7. At iteration 4(top), iteration 80(bottom) ... 50

Figure 4-8. At iteration 1000(top), iteration 3000(bottom) ... 51

Figure 4-9. Random path generated by RRT (Top, Red), log scale of the negative

gradient of the potential along the RRT path (Bottom blue) ... 52

Figure 4-10. Potential value path generated by visiting the minimum value neighbor at

each node (Top, Black), log of the negative gradient along the path (Bottom, blue) 53

Figure 4-11. Smooth path along the gradient (Green), traversing samples based on

gradient value (Red) and RRT(Blue) for step size 10(top) and step size 0.1(bottom) 54

Figure 4-12. Smooth path along the gradient (Green), traversing samples based on

gradient value (Red) and RRT(Blue) for step size 1 ... 55

Figure 4-13. Smooth path along the gradient (Green), traversing samples based on

gradient value (Red) and RRT(Blue) for step size 1 ... 56

Figure 4-14. Imposed Potential Field .. 57

file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722557
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722558
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722558
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722559
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722559
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722560
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722560
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722561
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722561
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722562
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722562
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722563
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722564
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722565
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722565
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722566
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722566
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722567
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722567
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722568
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722568
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722569
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722569
file:///C:/Users/chaha/Documents/Sandeep_Chahal_Thesis_Documentation.docx%23_Toc531722570

8

Chapter 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

In recent years, research in the area of robotics has proliferated as use of intelligent

robots has advanced from warehouses to aiding in surgeries. Of the key requirements of

autonomous robots, navigation is the most well-known problem which inherently requires

path planning. Consider a robot that needs to navigate in an environment that contains

obstacles. The challenge for this robot is to move from state A to state B without colliding

with obstacles. To address this, research has been proposed continuously in the area of

path planning since the 1970s.

Humans always come up with a plan in all the situations they encounter throughout

their life. Given an environment, a plan is a sequence of actions that can be taken to

achieve a solution. One question that often arises is whether a plan is optimized. As criteria

of optimization differ, the formulation of an optimized plan can be difficult. Even if the right

criteria can be formulated, computation of an optimized plan might not be tractable.

Instead, one strives to achieve a solution that is acceptable (or preferred) within the defined

criterion. This preferred or acceptable solution is referred to as a satisficing plan. For

problems that involve probabilistic uncertainty, the need for optimization arises more

frequently than in deterministic domains, and utilization of probabilities is often reflected in

terms of expected costs [1]. An optimal path does not strictly have be the shortest path to

reach the goal as various criteria like time, expense, distance from obstacle etc. affect the

notion of an optimal path. Cost is an important aspect of optimality and is often included in

the optimality criterion. Some research neglects the cost to reach the goal [4]. Besides the

optimality of a path itself, it is also important to consider the cost of the planning process

and in particular the fact that a robot should not waste time due to re-planning of the path

9

or other factors when it gets stuck at any place during path execution. This consideration

often leads to a tradeoff between the optimization of a path and the avoidance of re-

planning costs.

In global path planning approaches like Roadmaps and Cell Decomposition, the

complete path is calculated before the robot executes it. In such planners, determination

of goal reachability is straightforward and known to a robot prior to path execution. Since

a robot needs to operate in a domain with the presence of uncertainties, however, the robot

will in general deviate from the path. This results in re-calculation of the entire path where

the robot is immobile until re-calculation is completed. While the re-calculation is potentially

significantly faster than the initial calculation since a correction of the existing path might

be possible, it still introduces additional costs and potentially risks for the robot during re-

calculation. Local path planners tend to avoid this problem as they only compute the next

step instead of the entire path. However, local path planners are either not complete, i.e. it

is not known whether the goal is reachable, or, if using navigation functions to avoid this,

do not scale well to complex domains.

The approach presented in this thesis is focused on reducing the need of re-

planning by combining aspects of global and local path planning. The proposed system

samples the domain by using a simple bidirectional randomized algorithm that generates

paths from start to goal through random walks in the domain. The resulting sample space

is then augmented by replacing the existing path connections with new directional

connections and by generating virtual samples to represent the unsampled, unknown part

of the domain. These improved samples can then be interpolated using a navigation

function approach in a way such that the strict following of the initially sampled path is not

necessary. A harmonic function potential field is here computed over the space described

by the samples to form a robust potential function that avoids formation of local minima

10

while providing flexibility in terms of the local paths that can be chosen. If a robot deviates

from the original path, it computes the gradient of the potential of its current state by finding

the directional neighbors and continues following the gradient to reach the goal. In other

words, the robot does not have to strictly follow the original path and can still reach the

goal by utilizing the potential value which is minimal at the goal. Besides addressing local

deviations from the path, this allows the system to also include secondary path objectives

at run-time as long as the system does not leave the part of the domain described by the

generated samples. The sampling-based mechanism here generates a tractable

representation of the relevant parts of the space while the potential function based on local

point neighborhoods provides the task flexibility. In this form, the combined approach

addresses part of the scaling challenge for the navigation function path planner by allowing

it to be computed on a sample space covering the relevant parts of the domain, and also

addresses the challenge for the sampling-based global path planner arising from deviations

from the path and dynamic changes in the task objectives.

The main contribution of the approach presented in this thesis is to provide a way

of calculating the potential value and generating virtual samples. The advantages of this

method include reducing the need of re-planning in case of a robot deviating from the

original path and if a new goal is within the space that has been already explored. In the

latter situation, the values of the already generated samples over the domain can be

interpolated with regards to the new destination to reach that goal. If a new goal lies outside

this space, additional random sampling will be utilized to extend the sample set into

relevant portions of the space that have not been explored.

The remainder of this thesis is structured as follows: The rest of this chapter

reviews related work dealing with approaches used by this thesis and similar methods that

focus on similar problem used in the field of planning. Chapter 2 introduces the

11

background, underlying notion and formalism of Path Planning. Chapter 3 describes the

approach used by this thesis and presents the formalization. It also discusses the details

and module descriptions for an experimental implementation of the proposed method.

Finally, in Chapter 4 we present the conclusion and future work.

1.2 Related Work

The Path Planning problem is well known in the field of robotics [1]. Over the past

decades the problem of motion planning has been studied to a large degree with the

increase in use of robots. Discrete and continuous state space planning are two categories

that exists in path planning. Discrete search methods such as A-star [27], Breadth-First

Search or Bidirectional Search [28] are some of the methods used that are complete and

thus guaranteed to find a feasible path in a finite set of states. Planning in a continuous

state space has been explored since the 1970s and initially mostly referred to planning for

a robot in 2D or 3D world, but more recently has moved into higher-dimensional, kino-

dynamic state spaces.

Depending on the availability of information about the domain, path planning can

be divided into two categories which are global path planning and local path planning. In a

local path planner, only information about the next step of a potential path is computed

without the derivation of a complete path to the goal. In contrast to local path planning,

complete path information about the domain is provided in global path planning. This leads

to obtaining a complete path from the start state to the goal state and thus contains direct

information regarding reachability of the goal and path cost which are often not available

in local path planning approaches. A wide range of traditional path planning methods have

been developed an applied successfully, including deterministic Roadmap methods, such

as Visibility graphs and Voronoi Diagrams, and Convex Cell Decomposition approaches

12

[???]. Many of these, however, do not scale well to higher dimensions and larger domains

with complex obstacle geometries even if the relevant part of that space is locally confined

around the robot system. Besides deterministic, complete methods, global path planners

have also used Genetic Algorithms to derive a path which considers if the path is

traversable and generates a new path if it is not traversable [3] . To address scalability

issues in larger, more complex domains, sample-based planning has been exploited for

global path planning and has been very successful for solving some problems in robotics.

To decouple the motion planning approach from the geometric and kinematic models of

the robot, most of these system use collision detection as “black box”[1], allowing them to

perform sampling in a lower-dimensional space with the robot constraints leading to a

rejection of some of the generated samples. In situations where most samples are still

valid, this can dramatically reduce the complexity of finding a path while still allowing the

planner to find a path through areas where the robot constraints are relevant.

Since first proposed in 1998 by Steven LaVelle, the randomized algorithm Rapidly-

Exploring Random Tree (RRT) [5][6], considered as part of Monte Carlo methods to bias

search in Voronoi regions, has attained great success and is widely used as the basis for

path planning techniques since it easily handle the problems with obstacles, nonholonomic

and kino-dynamic constraints. There have been various improvements and modifications

of RRT over time [7]-[13]. Randomly exploring random graphs (RRG) [14] were proposed

in 1996 which have a learning and a query phase. RRG’s initially construct a probabilistic

roadmap graph whose nodes correspond to collision-free configurations and edges

represent the feasible paths between these nodes and are computed using a simple local

planner. Though RRT and RRG work in a similar fashion by generating random node and

connecting them, RRTs are used to answer a goal single query whereas RRGs are used

for multi query in a given state space. A tree version of RRG called RRT* preserves

13

asymptotic optimality of the RRG while maintaining a tree structure of RRT [14], and thus

the computational advantages for path formation. Bidirectional RRTs have also been

explored that use two RRTs, one rooted at the start and one rooted at the goal. The main

advantage of this being that it will generally focus more efficiently on the relevant parts of

the domain.

A variety of potential field methods have also been proposed where a potential

field is applied to the goal and the obstacles and then the robot makes use of the resultant

field from the obstacles and the goal. Artificial potential fields were initially used by Khatib

[15] which involved the use of a potential field in Cartesian space. Newman and Hogan

[16] extended this to Configuration-space. However, many potential methods suffered from

local minima which resulted in a robot being trapped or stuck in a place. Various

approaches have been suggested to address this issue. One of those notable approaches

is to design the potential field as a harmonic function. Other approaches include treating

local minima as obstacles [17], designing potential functions such that it avoids creation of

local minima [18] etc. Harmonic functions govern a wide range of physical processes,

including fluid flow or oscillation motions where the restoring force is directly proportional

to the displacement and acts in the direction opposite to that of displacement [19]. In

general, harmonic functions satisfy Laplace’s equation [20] and therefore do not contain

local minima.

To address the rate of convergence of RRT, potential function-based planning has

been used in recent work in conjunction with RRT to guide the samples towards the goal

[21] [22]. The resulting approaches proved to have more efficient memory utilization and

accelerated convergence rate. The focus of the work in [22] is to change the function that

connects two samples. Even though [22] makes the individual connection formation slower,

14

it links two samples more effectively, thus resulting in an overall acceleration of the

planning process.

 Focused D* [23], an extension of A* addresses the problem of path planning in a

dynamic environment. Anytime Dynamic A* [24] presents a graph based planning and re-

planning algorithm to produce bounded suboptimal solutions within the available time.

An important issue in practical path planning is to reduce the need of re-planning.

To address this, the objective of this thesis is to propose a technique that can reduce the

need of re-planning when a robot moves away from the original path that was derived by

the planner. Founded on some of the recent works presented in this section, the proposed

approach accomplishes this by initially using a bidirectional randomized algorithm and then

computing a potential field harmonic function over those samples by utilizing directional

nearest neighbors. As a result, if a robot deviates from path, the potential value that has

been computed based on its neighbors can direct the robot towards the goa, traversing the

area spanned by the freespace samples instead of strictly following the initially computed

path. In addition to this reduction in re-planning in the case of deviations from the intended

path, this approach also allows the samples generated during one planning phase to be

utilized in later query phase when other goal locations are presented.

15

Chapter 2

TECHNICAL BACKGROUND

2.1 Configuration Space and Map Representation

Planning in a robot’s workspace is hard due to the potentially complex structure of

a robot and its kino-dynamic constraints. To overcome this, configuration space, also called

C-Space, was first introduced by Lozano-Perez in 1987 [2]. A robot in C-Space

(Configuration Space) is represented by a point and legal positions for a robot configuration

space are denoted by 𝐶𝐹𝑅𝐸𝐸 and illegal positions or obstacles are denoted by 𝐶𝑂𝐵𝑆. As

shown in Figure 2-1.

Figure 2-1 Workspace(left), C-Space (right)

16

𝐶𝑆𝑃𝐴𝐶𝐸 = 𝐶𝐹𝑅𝐸𝐸 ∪ 𝐶𝑂𝐵𝑆

The key ingredient in constructing configuration space is extension of obstacles

from workspace to 𝐶𝑆𝑃𝐴𝐶𝐸. In other words, configuration space is the space of all possible

configurations of a robot and is described as topological manifold. C-Space is obtained by

marking any configuration in which any part of the robot collides with an obstacle as an

obstacle configuration. In simple situations where the robot is a solid body, this

corresponds to extending the obstacles by sliding the robot along the edges of obstacle

regions, extending them by the size of the robot.

2.2 Path Planning Problem Formulation

The basic idea is that each situation of the world is a state x, such that x ∈ X where

X is the state space. The start state of the robot is denoted by XS and the goal state is the

location to be reached by a robot, denoted by XG, where XS, XG ∈ X.

Figure 2-2. Configuration Space and Path

17

The path planning problem can be now formulated as finding a sequence of states

leading from start state XS, to goal state XG in C-Space (Configuration space) such that all

connections of states from XS to XG to be traversed by the robot belong to the free space

as shown in Figure 2-2.

2.3 Sampling based motion planning

Sample based motion planners are not complete but are efficient. They find path

from start to goal by using collision detection to make sure it avoids hitting any obstacle in

the path. These algorithms are known as resolution complete or probabilistic complete

which guarantees to find a solution if it exists, provided it runs for an infinite amount of time.

Although the state space for motion planning is infinite, sampling-based planning can

consider at most a finite number of states if it is to find a solution in given amount of time.

As a consequence, it is important how samples are generated and evaluated.

RRT (Rapidly-exploring random trees) [21] is a sample based path planner which

uses a specific exploration strategy where the objective is to get close to the goal within a

threshold distance. RRT builds a tree which is rooted at a point from which grow branches

in random directions. To extend the tree at a given point in time, they generate random

samples and then grow the closes branch towards that point by some fixed step size (s) to

a new sample which is considered instead of the initial random sample. To determine the

node to extend using a newly drawn random sample, its distance is calculated with respect

to each sample in the tree and then connected to the nearest sample. The base algorithm

is given below:

18

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑅𝑟𝑡

𝐼𝑛𝑝𝑢𝑡: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑔 𝑋𝑖𝑛𝑖𝑡, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑅𝑅𝑇 𝑛, 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑠

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑇𝑟𝑒𝑒

1. 𝑇. 𝑖𝑛𝑖𝑡(𝑋𝑖𝑛𝑖𝑡)

2. 𝑇. 𝑖𝑛𝑖𝑡 𝑛 = 1 𝑡𝑜 𝑛

3. 𝑋𝑟𝑎𝑛𝑑 < −𝑟𝑎𝑛𝑑_𝑐𝑜𝑛𝑓𝑖𝑔()

4. 𝑋𝑛𝑒𝑎𝑟 < −𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑟𝑎𝑛𝑑, 𝑇)

5. 𝑋𝑛𝑒𝑤 < −𝑛𝑒𝑤_𝑐𝑜𝑛𝑓𝑖𝑔(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑟𝑎𝑛𝑑, 𝑠)

6. 𝑇. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑛𝑒𝑤)

7. 𝑇. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑛𝑒𝑤)

8. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑇

2.4 Space Sampling

Sampling can be categorized into two categories as probabilistic and non

probablistic sampling. probabilistic sampling is used to reduce bias in sampling. Hence,

Figure 2-3. Adding New Node in RRT

19

providing an unbiased representation of the population. Probabilistic sampling is cost-

effective and does not require any technical knowledge given the simplicity with which it

can be done. Simple random sampling and systematic sampling are types of sampling

techniques.

Random sampling can be done using a random number generator once you have

the size of the population as shown in Figure 2-4. The probability density function for a

continuous uniform distribution can be written as

𝑓(𝑎) =
1

𝑦 − 𝑥
 𝑖𝑓 𝑥 ≤ 𝑎 ≤ 𝑦

𝑓(𝑎) = 0 𝑖𝑓 𝑎 < 𝑥 𝑜𝑟 𝑥 > 𝑏

A uniformly distributed random variable depends on the size of the interval but not

on the location of the interval. Uniform random variable sampling techniques include

sampling a random variable from a uniform distribution following the steps mentioned

below:

1. Determine the sampling interval size of the population.

2. Get the upper and lower bound.

Figure 2-4. Uniform Sampling

20

3. Use a uniform random number generator to generate a random number

between lower and upper bound.

Systematic sampling is better for representing a population in a faster and simpler

manner involving element selection from an ordered sample frame. A systematic sampling

technique works by choosing the nth sample of the population as in Figure 2-5.

𝑛 =
𝑁

x
 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

Systematic sampling works as follows:

1. Arrange population in a sequence (N).

2. Select the sample size (x).

3. Calculate the sampling interval n = N/x.

4. Select random number r between 1 to n including n.

5. Add the sampling interval x to the chosen random number to add the next

member to a sample and repeat this to add the remaining members.

Figure 2-5. Linear Systematic Sampling

21

Linear and Circular systematic sampling work in a similar fashion except that the

start point and end point in linear systematic sampling are distinct while it restarts from the

start point in circular systematic sampling once the entire population has been sampled.

22

2.5 Potential Field

Initially proposed by Khatib [15], a goal and obstacle potential field represents two

imaginary forces acting in the Configuration Space (C-space) called attractive force and

repulsive force as in Figure 2-6. The attractive force is produced by the goal whereas the

repulsive force is produced by obstacles. The direction to move for a robot can be

computed by calculating the combined force at any point in in the C-space. The goal has

minimum potential and obstacles have the highest potential in C-space where a robot

follows gradient descent to reach the goal. In a mixture of potentials approach, the

attractive force is

𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) = −∇ 𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢)

and the repulsive force is

𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢) = −∇ 𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢)

Figure 2-6. Imaginary Combined Forces

23

The resultant force is the combination of these two forces as in Figure 2-7

𝐹𝑡𝑜𝑡𝑎𝑙(𝑢) = 𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) + 𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢)

where the potential value of u is given as

𝑈(𝑢) = 𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) + 𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢)

2.6 Harmonic Functions

As discussed in related work, potential fields, and in particular mixtures of

potentials approaches, can have local minima where a robot can get stuck. Navigation

functions can be used to generate potential fields that do not suffer from this issue. One

class of these functions are harmonic functions. One property of a harmonic function is that

it satisfies Lapace’s Equation which means it is twice continuiously differentiable such that

the sum of second order derivatives is 0.

∆u = ∑
𝜕2𝑢

𝜕𝑥𝑖
2

 =

𝑛

𝑖 =1

0

which can also be written as

Figure 2-7. Resultant Force at Any Location

24

∆𝑢 =
𝜕2𝑢

𝜕𝑥1
2

+
𝜕2𝑢

𝜕𝑥2
2

+ ⋯ +
𝜕2𝑢

𝜕𝑥𝑛
2

= 0

An example with variables x,y z would be

∆𝑢(𝑥, 𝑦, 𝑧) =
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0

Solutions to Lapace’s equation can be computed by boundary conditions. One of

the methods is to treat boundaries as obstacles and assign them the same value as that

of real obstacles. In contrast to that the other method assigns boundary conditions such

that the gradient of the potential field is tangential to the obstacle boundary which results

in a robot staying close to obstacle surfaces [16]. Some of the techniques used for

numerical calculation of the value of the harmonic function at each location [20] are Jacobi

Iteration and successive over-relaxation, all of which require descretization of the

environment into a finite number of locations to make computation tractable. Jacobi

Iteration requires a higher number of iterations to converge and is more effective on SIMD

architectures. It works by traverse through the state space and the value of a location is

calculated as the average of its neighbours for relaxation. For a grid value which considers

only four neighbours the Jacobi iteration for each grid can be written as

𝑢𝑘(𝑥, 𝑦) =
1

4
[𝑢𝑘−1(𝑥𝑖+1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖−1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖+1) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖−1)]

where k is iteration number.

The Gauss- Seidel approach uses a similar iteration but neighboring values used for

relaxation are partially from the previous iteration and partially from the current iteration.

𝑢𝑘(𝑥, 𝑦) =
1

4
[𝑢𝑘−1(𝑥𝑖+1, 𝑦𝑖) + 𝑢𝑘(𝑥𝑖−1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖+1) + 𝑢𝑘(𝑥𝑖 , 𝑦𝑖−1)]

SOR relaxation also know as Successive Over Relaxation converges more quickly

compared to the previous methods by anticipating the effect tha the change of the value

will have on itself.

25

𝑢𝑘(𝑥, 𝑦) = 𝑢𝑘(𝑥, 𝑦) +
𝑤

4
[𝑢𝑘−1(𝑥𝑖+1, 𝑦𝑖) + 𝑢𝑘(𝑥𝑖−1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖+1) + 𝑢𝑘(𝑥𝑖 , 𝑦𝑖−1)]

where k is the iteration number and w is a weight larger than 1, sometimes also referred to

as the relaxation factor.

The iterations used in the above methods are repeated until the values at each location

stop changing. In other words, until it converges.

2.7 Nearest Neighbor

Neareset neighbor is a proximity search that involves finding a point closest to the

query point in terms of distance. The nearest neighbor search problem is well known in

many fields, including computer vision, statistical classification, computaional geometry,

DNA sequence, chemical similarity and sample based motion planning. Two types of

approaches exits which are exact nearest neighbor and approximate nearest neighbors.

The discussion in this section is about data structures used for efficient nearest neighbors,

in particular kd-trees [29]. It will discuss space partitioning, building kd-trees, and finding

Figure 2-8. Attractive Potential (left), Repulsive Potential (center), Combined Potential (right)

26

nearest neighbors within them as these techniques can be used for efficient nearest

neighbor computation.

The time for evaluation of nearest neighbors in a naïve implementation with a set

of samples and without additional data structures is linear in the number of vertices for

each computation. Running time increases with the number of vertices in tree. However,

increasing vertices improves approximation quality. KD-tree is a data structure to efficiently

represent multidimensional data in a binary tree. KD-tree construction uses either sliding

distance or a median node to split the nodes in the binary tree based on the location of the

nodes. Construction time for a KD-tree is O (dn log n) time, where d is the number of

dimensions of the underlying locations and n is the number of points.

Example of construction of a KD tree where d =2 which is (x, y) is given below:

1. Find the minimum and maximum along the x axis and assign this and all data

points to the root node.

2. For the node:

a. Determine the minimum, maximum, and median of the x-axis values in

the node.

i. Assign the points with values below the median to the left child

node and the ones with values larger than the median to the right

child

3. For each of the children which contains more than one data point:

a. Determine the minimum, maximum, and median along the y axis of all

data points in the node

i. Assign the points with values below the median to the left child

node and the ones with values larger than the median to the right

child.

27

4. For each of the children which contains more than one data point go to step

2

5. Repeat steps 2-4 until all the data is placed in the leaf nodes.

Searching in a KD-tree for nearest neighbors is relatively efficient since it allows to

eliminate large portions of the data points relatively rapidly. To find neighbors, the tree is

traversed for the given data point coordinates and only the partitions surrounding the

partition containing the data point have to be examined for potential neighbors. Query for

the node is here performed by branching based on the medians stored in the nodes.

28

Chapter 3

PROPOSED APPROACH AND IMPLEMENTATION

3.1 Architecture Overview and Details

In this work we propose an approach that reduces the need of re-planning if a robot

diverges from the original path. The architecture contains four sub-sections, a depiction of

which is as given in the architecture layout in Figure 3-1.

The planner assumes that the map of the environment or the state space with all the

information, including the obstacle states and the start and goal states, is available. It then

generates samples in the state space using a simple version of the randomized algorithm

RRT and builds two random trees rooted at the start state and the goal state respectively

which guarantees to never generate a point on an obstacle. The path is found when these

trees hit or connect with each other. The randomized algorithm is stopped once a path to

the goal is found. The nodes in the resulting path tree are then treated as free space

samples that describe the neighborhood of the found path. In addition to the freespace

samples, the algorithm systematically samples all obstacles that are encountered to

produce an obstacle samples. Figure 3-2 shows the details of this sampel generation part

of the proposed approach.

Figure 3-1. Architecture Layout

29

Figure 3-2. Detailed Overview of Part-1 of the Architecture

30

Once the sample set has been generated, all the connections produced by the

trees in the previous step are ignored and instead a nearest neighbor connectivity structure

is established. For this, The points are then stored in a data structure (KD-tree) for nearest

neighbor query and one nearest neighbor is found for every node in each of a pre-

determined set of directions within an upper distance threshold Ɦ. The closest neighbor is

considered in each direction and if no sample is found a virtual sample is generated and

preserved in the data structure. The next step involves propagating potential values for

each of these samples using Successive Over-Relaxation until it converges to form a

harmonic function potential. The last step involves reducing the number of samples in the

free space that have been generated by the first step of the process. A sample, S, is

removed if all neighbors of S are free samples and all the samples which have S as

neighbor have another free sample within threshold Ɦ in the same directions. This second

part of the approach effectively overlays the space described by the samples generated

previously with a harmonic potential, establishing the ability to generate paths that do not

go strictly through sample points. This process is detailed in Figure 3-3.

This approach results in an area for a robot to reach the goal by following the

gradient of the potential at any point which reduces re-planning as at any given point if the

robot diverges its potential value can be calculated by finding its neighbors which results

in the gradient for a robot to follow. In the following the approach is described in more

detail.

31

Figure 3-3. Detailed Overview of Part-2 of the Architecture

32

3.2 Initial Sampling

The initial sampling of the space is done using a simple bidirectional randomized

RRT algorithm that uses a front and a back tree to explore relevant parts of the

configuration space. The front tree is rooted at the start node and the back tree is rooted

at the goal state. A new random sample is generated from a uniform distribution over the

space using a density function f(ai) for each dimension, i, of the configuration space:

𝑓(𝑎𝑖) =
1

𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛

 𝑖𝑓 𝑖𝑚𝑖𝑛 ≤ 𝑎𝑖 ≤ 𝑖𝑚𝑎𝑥

𝑓(𝑎𝑖) = 0 𝑖𝑓 𝑎𝑖 < 𝑖𝑚𝑖𝑛 𝑜𝑟 𝑎𝑖 > 𝑖𝑚𝑎𝑥

The next step is to find the closest sample (CS) for this random sample in the front

tree by computing the distance of each node from the tree and keeping track of the node

found at the minimum distance so far. The distance is calculated as the Euclidian distance

of the two points p and q which is given by

𝑑𝑖𝑠𝑡(𝑝, 𝑞) = √(𝑝n − 𝑞n)2 + ⋯ + (𝑝2 − 𝑞1)2 + (𝑝1 − 𝑞1)2

which connects two points by a straight-line segment given as in 2D [26]

𝑑𝑖𝑠𝑡(𝑋, 𝑌) = √(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2 𝑤ℎ𝑒𝑟𝑒 𝑋 = (𝑥1, 𝑦1), 𝑌 = (𝑥2, 𝑦2)

which in 3D can be given as

𝑑𝑖𝑠𝑡(𝑝, 𝑞) = √(𝑝3 − 𝑞3)2 + (𝑝2 − 𝑞2)2 + (𝑝1 − 𝑞1)2

A new sample NS is then generated in the direction of this point from the closest

point at a distance of s, which is called the step size. This is illustrated in Figure 3-4.

33

In Figure 3-4 the actual point, 𝑄(𝑥𝑞,𝑦𝑞), is given by

𝑄(𝑥𝑞,𝑦𝑞) = ((1 −
𝐿

𝐿′
) 𝑥1 +

𝐿

𝐿′
𝑥2) , ((1 −

𝐿

𝐿′
) 𝑦1 +

𝐿

𝐿′
𝑦1)

𝑤ℎ𝑒𝑟𝑒 0 < 𝑡 < 1

This new sample is then added to the front tree as a child of CS. A new sample is

then generated with respect to the back tree and similar steps are repeated. This process

is repeated until a path is found. In general, a maximum number of nodes is defined, and

the process is repeated until it hits that limit. If it hits the maximum limit and no path is found

it is assumed that there exists no path.

If the RRT hits any obstacle during the process of building the tree, the surface of

the encountered obstacles is systematically sampled as mentioned in Section 2.4.

3.3 Nearest Neighbor and KD-tree

All the freespace samples and obstacles sample generated are then used to

construct a KD-tree. After construction of the KD-tree, each sample is queried for its

nearest neighbors in 2 ∗ 2𝑑 directions to establish spatial connectivity for the potential field

calculation. In a 2D Configuration space this leads to connections in 8 directions, resulting

in 8 closest neighbors within the threshold range Ɦ. If no free sample or obstacle sample

in a given direction is found within the distance threshold, it is considered to lie on the edge

Figure 3-4. Point on Line

34

of the known workspace in that direction and a virtual obstacle is generated in that direction

at threshold = Ɦ. At the same time, it is verified that the space spanned by the neighbors

does not contain an obstacle and if an obstacle is encountered in that space, it is

systematically sampled, those samples are added, and the process continues. The

resulting samples are then stored in a data structure that also contains all the neighbors.

An example of a query sample is as shown in Figure 3-5 left where the query

sample is orange with a threshold radius Ɦ showed with a red circle from the sample.

The picture on the right shows the neighbors found in each direction in green. In

the case when no sample exist in a direction, virtual obstacle (workspace boundary)

samples are generated in that direction at distance Ɦ as shown with the yellow samples in

Figure 3-6.

Figure 3-5. Query Sample (orange, left), Nearest neighbor in each direction (green, right)

35

The KD- tree construction used here is based on a sliding distance and builds an

unbalanced tree [29] . An example of how the KD- tree is constructed from data samples

is as shown below.

Figure 3-6. Query Sample and neighbors in each direction(left), Generated virtual

obstacles (yellow, right)

Figure 3-7. Space Partition KD-Tree Based on Sliding Distance

36

Figure 3-7 shows the space partition based on the sliding distance and Figure 3-8

shows a KD-tree from the space partition of the state space. Leaf size in this example is 1

show as yellow in Figure 3-8.

3.4 Potential Field Harmonic Function

After all the samples have been queried for neighbors, potential values are

propagated with the goal being at a minimum and the obstacles being at a maximum. Each

value is then updated by

𝑈(𝑢) =
∑ 𝑊𝑖

𝑛
𝑖=1 𝑈(𝑖)

∑ 𝑊𝑖
𝑛
𝑖=1

where the weight 𝑊𝑖 of each sample in the equation is related to its distance from

the point u with 𝑊𝑖 =
1

𝑑(𝑢,𝑖)2 and 𝑈(𝑢) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑈(𝑖) =

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒. In other words, the value of each sample is the weighted

average of the sample values of its nearest neighbors. The potential value of the sample

is affected more by the potential value of the samples that are near to it and affected less

Figure 3-8. KD-Tree Based on Space Partition

37

by the potential value of sample that is far from it. This process is repeated until it converges

which means until values stop changing.

3.5 Thinning Path

Since the sample density in the space is uneven and, in particular, the density

along the sampled path is very high, the sample density in many freespace regions could

be reduced without significantly affecting the potential. To do so, some of the unnecessary

samples in free space can be removed. This approach uses two criteria to remove a

sample; in particular, a sample S can be removed only if

1. All the neighbor sample of sample S are free samples.

2. All the neighbor samples of S contain all free neighbors.

3. All the samples that contains S as neighbor have another free sample in

that direction within distance threshold Ɦ.

A KD-tree for this reduced sample set can be constructed with all obstacle samples

and remaining free samples after thinning out the path. A robot can now reach the location

of the goal by simply following the gradient. If a robot diverges from path its potential value

Figure 3-9. Potential Field effect of a neighbor based on distance 1/X2

38

can be calculated by querying the neighbors using the KD-tree which is O (k logN) time

and navigate along the negative potential gradient.

3.6 New Goal

If a new goal is generated and lies in the space which has been already explored,

the harmonic function can be used to recalculate potential values for each sample and the

resulting values can be interpolated across the samples to allow the robot to navigate by

following the negative potential gradient to the goal.

If the new goal in in an area which is unexplored, a new biased tree can be built

from the goal which generates a new random goal tree and is expanded until it hits the

samples which that have been already generated. Then the samples for this tree are added

to the KD-tree and the potential field is recalculated to drive the robot to the new goal.

39

Chapter 4

IMPLEMENTATION AND EXPERIMENTS

4.1 Implementation

The experiments introduced here assume that the world map, start sate, goal state

and obstacles are available to the robot. For the purpose of execution this map is generated

by an algorithm. The world or map for experimental purpose is generated by first setting

the size of the environment. Then the obstacles in the map or domain are generated and

returned to the simple bidirectional randomized path planner. It is worth mentioning that

this 𝐶𝑆𝑃𝐴𝐶𝐸 is not generated by the robot but instead is randomly generated by

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑎𝑝().

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑎𝑝

𝑖𝑛𝑝𝑢𝑡: 𝑠𝑝𝑎𝑐𝑒 𝑠𝑖𝑧𝑒 𝑆, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝑛

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑎𝑝(𝑆, 𝑛):

1. 𝑚𝑎𝑝 < −𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑝𝑎𝑐𝑒(𝑆)

2. 𝑚𝑎𝑝 < −𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠(𝑚𝑎𝑝, 𝑛)

3. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑚𝑎𝑝

Once this data is available, the next step is to utilize a bidirectional algorithm to

generate the initial samples to find a path between the start state and the goal state. This

randomized bidirectional algorithm generates two different sample sets originating from

start and goal states. These samples may or may not be biased towards converging either

with the root of another sample set or towards the last sample generated in the other

sample set. These two sample sets are stored in a tree data structure. The function returns

40

no path found and exists, if no path is found within a specified threshold of maximum

number of samples generated. The algorithm for this is given below.

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑖𝑛𝑝𝑢𝑡: 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑋𝑆, 𝑔𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑋𝐺 , 𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑒 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑇𝑠, 𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑒 𝑎𝑡 𝑔𝑜𝑎𝑙,

⋅ 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ▲, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ₼, 𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑆,

𝑔𝑜𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 €

𝑜𝑢𝑡𝑝𝑢𝑡: 𝑇𝑆, 𝑇𝐺

1. 𝑤ℎ𝑖𝑙𝑒 𝑛 ≤ ₼:

2. T= 𝑇𝑆

3. 𝑋𝑅𝐴𝑁𝐷 < −𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆)

4. 𝑋𝑁𝐸𝐴𝑅 < −𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑅𝐴𝑁𝐷 , 𝑇)

5. 𝑋𝑁𝐸𝑊 < −𝑛𝑒𝑤_𝑐𝑜𝑛𝑓𝑖𝑔(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑟𝑎𝑛𝑑, ▲)

6. ℎ𝑖𝑡 = 𝑇. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑁𝐸𝑊)

7. If hit: systemetic_sample(obstacle)

8. 𝑇. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑋𝑁𝐸𝐴𝑅 , 𝑋𝑁𝐸𝑊)

9. 𝑖𝑓 𝑔𝑜𝑎𝑙_𝑐ℎ𝑒𝑐𝑘(𝑇𝑆 , 𝑇𝐺) 𝑖𝑠 𝑡𝑟𝑢𝑒: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑇𝑠 , 𝑇𝐺

10. 𝑆𝑤𝑎𝑝 𝑇𝑠, 𝑇𝐺

11. 𝑒𝑥𝑖𝑡(𝑛𝑜 𝑝𝑎𝑡ℎ)

With the generated samples a KD-tree is built to store the information such that it

can be queried quickly when needed. For each point in the sample set, the function

searches directional nearest neighbors and generates virtual obstacles. If there are no

nearest neighbors found it updates the nearest neighbors for nodes. Continuing within this

loop it generates and update neighbors for each sample in the generated sample set.

41

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑖𝑛𝑝𝑢𝑡: Samples S (from 𝑇𝑠, 𝑇𝐺,), threshold Ɦ,

 𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑛𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝐷𝑁

𝑜𝑢𝑡𝑝𝑢𝑡: 𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑛𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝐷𝑁

1. 𝐾𝐷 = 𝑏𝑢𝑖𝑙𝑑_𝑘𝑑𝑡𝑟𝑒𝑒(𝑆, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 = 𝑏𝑜𝑜𝑙, 𝑙𝑒𝑎𝑓𝑠𝑖𝑧𝑒 = 1)

2. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑆:

3. 𝑠𝑁 < − 𝐾𝐷 . 𝑓𝑖𝑛𝑑_𝑘𝑑𝑖𝑟_𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝑠)

4. 𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑡 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎𝑛𝑦 𝑑𝑖𝑟)

5. ℎ𝑖𝑡 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑠𝑁 , 𝑑𝑖𝑟, Ɦ)

6. If hit: systemetic_sample(obstacle)

7. 𝐷𝑁 . 𝑎𝑑𝑑_𝑠𝑎𝑚𝑝𝑙𝑒(𝑠𝑁)

8. 𝑟𝑒𝑡𝑢𝑟𝑛 𝐾𝐷 , 𝐷𝑁

Given the set of samples, there exists a potential field from the start state to the

goal state which the robot can follow to reach the goal. The issue with this potential field is

that if looked at strictly from the perspective of the path generated in the RRT formation, it

may contain local minima and thus would not lend itself to navigation. To address this

issue, this approach utilizes a harmonic function to propagate potential values in a way that

completely removes local minima from potential field. For this, the potential value for each

freespace point is iteratively updated as the weighted average of its neighbors and this way

the potential function is relaxed until it converges.

42

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁 , goal_state()

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁

1. 𝑈𝑛𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠

2. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑆:

3. 𝑖𝑓 𝑔𝑜𝑎𝑙 ∶ 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) = 𝑚𝑖𝑛

4. 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 ∶ 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) = 𝑚𝑎𝑥

5. 𝑒𝑙𝑠𝑒 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) = 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) + 𝑎𝑙𝑝ℎ𝑎 (
∑ 𝑊𝑖

𝑛
𝑖=1 𝑠𝑁

𝑊𝑖
− 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒))

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝐷𝑁

Now there the system has a potential field which leads to the goal. In an attempt

to further optimize this path, this approach utilizes a method for path thinning. This leads

to a smooth path connecting start and goal state, which the robot can now follow.

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑡ℎ𝑖𝑛_𝑝𝑎𝑡ℎ

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁

1. 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝐷𝑁

2. 𝑖𝑓 𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒

3. 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑐𝑜𝑛 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

4. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝐷𝑁

43

The next location for the robot at any time step is calculated by

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑛𝑒𝑥𝑡_𝑙𝑜𝑐

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁

1. 𝑓𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

2. 𝑖𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑎𝑡ℎ

3. 𝑛𝑒𝑥𝑡_𝑙𝑜𝑐 = −⌔ 𝐷𝑁(𝑎𝑟𝑔𝑚𝑖𝑛(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)). 𝑣𝑎𝑙𝑢𝑒

4. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑥𝑡𝑙𝑜𝑐

5. 𝑒𝑙𝑠𝑒

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛𝑒𝑥𝑡_𝑙𝑜𝑐()

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛𝑒𝑥𝑡_𝑙𝑜𝑐

𝑖𝑛𝑝𝑢𝑡: 𝐾𝐷 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 𝐷𝑁 , 𝑔𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑋𝐺

𝑜𝑢𝑡𝑝𝑢𝑡: 𝑛𝑒𝑥𝑡𝑙𝑜𝑐

1. 𝐾𝐷 . 𝑓𝑖𝑛𝑑_𝑘𝑑𝑖𝑟_𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

2. 𝑛𝑒𝑥𝑡𝑙𝑜𝑐 = −⌔ 𝐷𝑁(𝑎𝑟𝑔𝑚𝑖𝑛(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)). 𝑣𝑎𝑙𝑢𝑒

3. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑥𝑡𝑙𝑜𝑐

When the robot navigates to a given goal state, it might receive a new goal state.

In this case, the function new_goal checks if the new goal state resides within the already

sampled space. If not, a biased randomized algorithm is invoked from the new goal state

that samples the space until it finds any of the old samples. Once it finds a path, the

harmonic function is reinvoked and potential values for each sample are re calculated in a

similar fashion.

44

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑛𝑒𝑤_𝑔𝑜𝑎𝑙

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁 , 𝐾𝐷 , new_𝑔𝑜𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 𝑋𝑁𝐺 , 𝑏𝑖𝑎𝑠𝑒𝑑 𝑏

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁𝑜𝑟 𝑁𝑇

4. 𝑖𝑛_𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑐𝑒 = 𝐾𝐷.𝑓𝑖𝑛𝑑_𝑘𝑑𝑖𝑟_𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝑋𝑁𝐺)

5. 𝐼𝑓 𝑖𝑛_𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑐𝑒:

6. 𝐷𝑁 . 𝑎𝑑𝑑(𝑋𝑁𝐺), 𝐾𝐷.𝑎𝑑𝑑(𝑋𝑁𝐺)

7. ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐷𝑁 , 𝑋𝐺)

8. 𝑒𝑙𝑠𝑒

9. while max 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒

10. 𝑅𝑅𝐴𝑁𝐷 < −𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑛𝑢𝑚𝑏𝑒𝑟(0,1)

11. 𝑖𝑓 𝑅𝑅𝐴𝑁𝐷 < 𝑏: 𝑋𝑅𝐴𝑁𝐷 = 𝑟𝑜𝑏𝑜𝑡_𝑐𝑢𝑟𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

12. 𝑒𝑙𝑠𝑒: 𝑋𝑅𝐴𝑁𝐷 < −𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆)

13. 𝑋𝑁𝐸𝐴𝑅 < −𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑅𝐴𝑁𝐷 , 𝑇)

14. 𝑋𝑁𝐸𝑊 < −𝑛𝑒𝑤_𝑐𝑜𝑛𝑓𝑖𝑔(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑟𝑎𝑛𝑑, 𝑠)

15. ℎ𝑖𝑡 = 𝑇. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑁𝐸𝑊)

16. 𝐼𝑓 ℎ𝑖𝑡: 𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑡𝑖𝑐_𝑠𝑎𝑚𝑝𝑙𝑒(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒)

17. 𝑖𝑓 𝑔𝑜𝑎𝑙𝑓𝑜𝑢𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑁𝑇

12. 𝑒𝑥𝑖𝑡(𝑛𝑜 𝑝𝑎𝑡ℎ)

45

4.2 Experiments

The environment for the experiments is created in a 1000x1000 2-dimensional

continuous space. Some example location samples in this space can be (30, 30), (12.678,

16.00001458). To illustrate this environment, a visualization of it is shown in Figure 4-1

where the right half of the picture depicts the domain or environment for planning which

contains random obstacles as shown in blue. The right half of the picture shows the uniform

samples generated while building RRT during initial phase.

Figure 4-2 represents a built Bi-directional RRT in the domain (C-space). The green

points indicate the locations on obstacles hit during exploration of the Configuration space

by the bidirectional RRT which are then systematically sampled into obstacle samples as

shown in Figure 4-3.

Figure 4-1. An example of environment set up (left), random sample generated (right)

46

Figure 4-2. Path from Bidirectional RRT with Obstacles (Blue) and Obstacle

Hits(green)

Figure 4-3. Systematic Samples on Obstacle Surface (Red), Virtual Obstacles

(White) and Original Path Samples (Green)

47

Once the RRT is built and surfaces of obstacles that were hit during the RRT

building phase are systematically sampled, all these samples are used to construct a kd-

tree as mentioned in Section 3.3. The resulting samples are then stored in the data

structure that also contains neighbors as shown in Figure 4-3, where white points indicate

virtual obstacles which represent the boundary of the space described by the available

samples. The virtual obstacles (workspace boundary) of one sample does not affect other

samples and is thus only linked to a single freespace sample.

Figure 4-4and Figure 4-5 show an example of the change in the potential of a

sample set derived on the same environment during the relaxation process at iteration 1

and iteration 100, respectively. The goal is at left bottom.

Figure 4-4. Freespace sample values at iteration 1 with the goal at the left bottom and

the start at the right top (left), and change in values (right)

48

The values are stable after 3000 iterations and, as can be observed in the value

plot of Figure 4-6 the value function behavior is exponential as mentioned in Section 3.4.

This figure also represents the gradient along the path after the values are stable. Note

that the values are plotted in linear scale. Since the function values resulting from a

harmonic function relaxation behave like an exponential, some of the differences in the

gradient values, specifically near the start location, are not easily discernable.

Figure 4-5., Freespace sample values at iteration 100 (left) and change in values (right)

49

A similar example with a different random path is as shown in Figure 4-7 and Figure

4-8 at 4, 80, 1000 and 3000 iterations.Figure 4-7. At iteration 4

Figure 4-6. Freespace sample values at iteration 3000 (top), change in values (bottom

left) and gradient of a random path (bottom right)

50

Figure 4-7. At iteration 4(top), iteration 80(bottom)

51

The path generated by the randomized algorithm and the potential value gradient

along the path are shown in Figure 4-9 and the alternate path that the robot can follow to

reach the goal when following the potential by moving to the directional nearest neighbor

sample that has the lowest potential value is as shown in Figure 4-10.

Figure 4-8. At iteration 1000(top), iteration 3000(bottom)

52

Figure 4-9. Random path generated by RRT (Top, Red), log scale of the negative

gradient of the potential along the RRT path (Bottom blue)

53

Figure 4-10. Potential value path generated by visiting the minimum value neighbor at

each node (Top, Black), log of the negative gradient along the path (Bottom, blue)

54

Figure 4-11 and Figure 4-12 display the alternate paths the robot can take to reach

the goal. Besides the random RRT path and the path following the lowest potential

directional nearest neighbor, this also shows the path generated when following the

gradient of the potential function. This path, which does not have to go through any of the

sampled points, is generated by taking steps along the negative gradient calculated based

on the nearest neighbors of the current location of the robot, resulting in a smoother path.

Figure 4-11. Smooth path along the gradient (Green), traversing samples based on

gradient value (Red) and RRT(Blue) for step size 10(top) and step size 0.1(bottom)

55

To illustrate the benefits of the potential function superimposed on the sample set, the

following example shows a case where RRT sampling resulted in a larger number of

branches in close proximity to each other. As a result, samples on different branches form

neighbors and thus connect regions of freespace, yielding larger numbers of paths. This

experiment shows the effect of the harmonic function potential which prefers paths with

lower collision probabilities when utilizing the potential field and moving down the gradient.

The RRT here finds a first path that moves close to an obstacle and thus includes higher

collision risk. Figure 4-13 shows the extended sample set generated from the RRT run.

Here the path found by the RRT planner passes close to obstacle. Figure 4-14 shows that

the path generated by moving along the directional nearest neighbors with the smallest

potential value follows a similar but alternate path to the one initially generated by the RRT.

Figure 4-12. Smooth path along the gradient (Green), traversing samples based on

gradient value (Red) and RRT(Blue) for step size 1

56

However, if the path is computed based on the gradient of the potential function calculated

based on the nearest neighbors at each step (step size here is 1), the resulting path takes

a different route which stays further away from the obstacle but is slightly longer, reflecting

the tradeoff made by the harmonic potential. Note, that in this example, both routes strictly

move downhill on the potential function and would be a valid path from the perspective of

the potential function

Figure 4-13. Smooth path along the gradient (Green), traversing samples based on

gradient value (Red) and RRT(Blue) for step size 1

57

Figure 4-14. Imposed Potential Field

58

Chapter 5

CONCLUSION AND FUTURE WORK

Combining sampling-based global path planning with the benefits of navigation

function based potential fields is one way to reduce re-planning when a robot deviates from

the path. In addition, by using these navigation functions, secondary runtime constraints

can be incorporated on the fly using a control composition scheme akin to Nullspace

control. In the approach proposed in this thesis, RRT is exploited to address the scalability

issue of harmonic functions by generating a targeted sample set based on the star and

goal location on which the harmonic potential is computed using nearest neighbor relations.

The use of RRT for sample generation here tends to generate fewer points even in larger

spaces compared with structured sampling techniques (such as grid-based techniques)

while being fast and efficient. The advantage of computing a potential over the resulting

sample space in this method is the inherent availability of multiple paths to achieve the goal

within the potential function which addresses deviations from the path and makes it easier

to incorporate secondary conditions at runtime. The proposed technique is effective in

handling the deviation of the robot from the original path and exploits the swiftness with

which the RRT finds a path to generate a sample set and potential for subsequent smooth

paths. Different versions of RRTs can be in cooperated in the proposed method.

As autonomous robots gain popularity. There needs to be continuous efforts

towards increasing their efficiency. In striving to achieve more flexible path gerneation, this

research has made a small contribution towards path plannig. Future work will focus on

optimizing this technique by reducing the number of freespace samples along the originally

generated path and adding additional sampling techniques to add samples that can bridge

regions between different branches of the RRT tree, thus yielding a larger area that is

59

traversable using the harmonic potential. In addition to the sample generation, traversal in

the KD-tree could be further improved to yield faster nearest neighbor calculations. In

addition to that, extending the work to non-holonomic robots and higher dimensions could

be a focus in future.

60

References

[1]. Steven M. LaValle 2006, Cambridge University Press

[2]. Lozano-Pérez, T. 1987. A Simple Motion-Planning Algorithm for General Robot

Manipulators\ IEEE Transactions on Robotics and Automation, 3(3), 224-238.

[3]. Global Path Planning for Autonomous Mobile Robot using Genetic Algorithm, 2013

International Conference on Signal-Image Technology & Internet-Based Systems

[4]. M. Othman, M. Samadi, and M. Asl, “Simulation of dynamic path planning for real-time

vision-base robots,” in Intelligent Robotics Systems: Inspiring the NEXT, ser.

Communications in Computer and Information Science, K. Omar, M. Nordin, P.

Vadakkepat, A. Prabuwono, S. Abdullah, J. Baltes, S. Amin, W. Hassan, and M.

Nasrudin, Eds. Springer Berlin Heidelberg, 2013, vol. 376, pp. 1–10

[5]. LaValle, Steven M. Rapidly-exploring random trees: A new tool for planning, 1998

[6]. LaValle, Steven M, Juffner Jr. James J Randomized Kinodynamic Planning, The

International Journal of Robotics Research (IJRR). 20 (5): 378–400, 2001

[7]. Ranganathan, Ananth; Koenig, Sven. PDRRTs: "Integrating Graph-Based and Cell-

Based Planning". In Proceedings of the IEEE International Conference on Intelligent

Robots and Systems (IROS), pages 2799–2808, 2004.

[8]. Karaman, Sertac; Frazzoli, Emilio (3 May 2010). "Incremental Sampling-based

Algorithms for Optimal Motion Planning".

[9]. Karaman, Sertac; Frazzoli, Emilio (5 May 2011). "Sampling-based Algorithms for

Optimal Motion Planning

https://en.wikipedia.org/wiki/Sven_Koenig_(computer_scientist)
http://idm-lab.org/bib/abstracts/Koen04j.html
http://idm-lab.org/bib/abstracts/Koen04j.html

61

[10]. Islam, Fahad; Nasir, Jauwairia; Malik, Usman; Ayaz, Yasar; Hasan, Osman;

"RRT*-Smart: Rapid convergence implementation of RRT* towards optimal solution",

in Proceedings of IEEE International Conference on Mechatronics and Automation

(ICMA), pages 1651–1656, Chengdu, China, August 2012.

[11]. Brunner, M.; Bruggemann, B.; Schulz, D. "Hierarchical rough terrain motion

planning using an optimal sampling-based method," in Int. Conf. on Robotics and

Automation (ICRA), Karlsruhe, Germany, 2013.

[12]. Adiyatov, Olzhas; Varol, Huseyin Atakan. "Rapidly-exploring random tree-based

memory efficient motion planning". In Mechatronics and Automation (ICMA), 2013

IEEE International Conference on, pages 354–359, 2013.

[13]. Gammell, Jonathan D., Siddhartha S. Srinivasa, and Timothy D. Barfoot. "Informed

RRT*: Optimal sampling-based path planning focused via direct sampling of an

admissible ellipsoidal heuristic." arXiv preprint arXiv:1404.2334 (2014).

[14]. L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12(4):566–580, 1996.

[15]. O. khatib, Real time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research, 5(1): 90-98, Spring 1986.

[16]. W.S.Newman and N.Hogan. High speed robot control and obstacle avoidance

using dynamic potential function. Precceedings of 1987 IEEE International Conference

on Robotics and Automation, Rayleigh, 1987.

http://save.seecs.nust.edu.pk/pubs/ICMA2012.pdf
https://www.semanticscholar.org/paper/Hierarchical-rough-terrain-motion-planning-using-Brunner-Br%C3%BCggemann/0a7d2ed587df4bf8c3b6d6038cae5ba131861e43/pdf
https://www.semanticscholar.org/paper/Hierarchical-rough-terrain-motion-planning-using-Brunner-Br%C3%BCggemann/0a7d2ed587df4bf8c3b6d6038cae5ba131861e43/pdf

62

[17]. Park M. G., LEE M. C. (2003). A new technique to escape local minimum in artificial

potential field based path planning. KSME International Journal. Vol 17, n 12, pp 1876–

1885.

[18]. Ge S. S., Cui Y. J. (2000). New Potential Functions for Mobile Robot Path

Planning. IEEE Transactions on Robotics and Automation. Vol 16, no 5, pp 615–620.

[19]. Walker, Jearl (2011). Principles of Physics (9th ed.). Hoboken, N.J. :

Wiley. ISBN 0-470-56158-0.

[20]. Connolly, Christopher I., and Roderic A. Grupen. "The applications of harmonic

functions to robotics." Journal of Robotic Systems 10.7 (1993): 931-946, 1993

[21]. Potential Field base Sampling Heuristic for Optimal Path Planning,

arXiv:1704.00264v1 [cs.RO], 2017

[22]. Improving the Efficiency of Rapidly-exploring Random Trees Using a Potential

Function Planner. 44th IEEE Conference on Decision and Control and the European

Control Conference 2005.

[23]. Stentz, Anthony. "The focussed D^* algorithm for real-time replanning." IJCAI. Vol.

95. 1995.

[24]. Likhachev, Maxim, et al. "Anytime Dynamic A*: An Anytime, Replanning

Algorithm." ICAPS. 2005.

[25]. Ernest Julius Wilczynski; Herbert Ellsworth Slaught (1914). "Theorem 1 and

Theorem 2". Plane trigonometry and applications. Allyn and Bacon. p. 85.

[26]. Law, Henry (1853). "Corollary 5 of Proposition XLVII (Pythagoras's

Theorem)". The Elements of Euclid: with many additional propositions, and

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-470-56158-0
https://en.wikipedia.org/wiki/Herbert_Ellsworth_Slaught
https://books.google.com/?id=vxk3AAAAMAAJ&pg=PA85
https://books.google.com/?id=Ssb_OnVOGLgC&pg=PA49

63

explanatory notes, to which is prefixed an introductory essay on logic. John Weale.

p. 49.

[27]. Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and

Cybernetics SSC4. 4 (2): 100–107.

[28]. Pohl, Ira (1971), "Bi-directional Search", in Meltzer, Bernard; Michie,

Donald, Machine Intelligence, 6, Edinburgh University Press, pp. 127–140.

[29]. Maneewongvatana and Mount 1999

https://books.google.com/?id=Ssb_OnVOGLgC&pg=PA49
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/Donald_Michie
https://en.wikipedia.org/wiki/Donald_Michie

64

BIOGRAPHICAL STATEMENT

Sandeep Chahal started his master’s in Computer Science at University of Texas at

Arlington in 2016 specializing in Intelligent Systems. His research interests are Machine

Learning and Robotics. He is continuing with his doctoral program after graduation.

	Acknowledgements
	Abstract
	List of Illustrations
	Chapter 1 INTRODUCTION AND RELATED WORK
	1.1 Introduction
	1.2 Related Work

	Chapter 2 TECHNICAL BACKGROUND
	2.1 Configuration Space and Map Representation
	2.2 Path Planning Problem Formulation
	2.3 Sampling based motion planning
	2.4 Space Sampling
	2.5 Potential Field
	2.6 Harmonic Functions
	2.7 Nearest Neighbor

	Chapter 3 PROPOSED APPROACH AND IMPLEMENTATION
	3.1 Architecture Overview and Details
	3.2 Initial Sampling
	3.3 Nearest Neighbor and KD-tree
	3.4 Potential Field Harmonic Function
	3.5 Thinning Path
	3.6 New Goal

	Chapter 4 IMPLEMENTATION AND EXPERIMENTS
	4.1 Implementation
	4.2 Experiments

	Chapter 5 CONCLUSION AND FUTURE WORK
	References
	BIOGRAPHICAL STATEMENT

