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Abstract 

 
GENERATING AN ADAPTIVE PATH USING RRT SAMPLING AND POTENTIAL 

FUNCTIONS WITH DIRECTIONAL NEAREST NEIGHBORS 

Sandeep Chahal, M.S.  

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Manfred Huber 

Planning algorithms have attained omnipresent successes in several fields 

including robotics, animation, manufacturing, drug design, computational biology and 

aerospace applications. Path Planning is an essential component for autonomous robots.  

The problem involves searching the configuration space and constructing a desired 

collision-free path that connects two states (the start and the goal) for a robot to gradually 

navigate from one state to another. In global path planners, the complete path is computed 

prior to the robot set off. Sampling based planning like Rapidly Expanding Random Trees 

(RRT) and Probabilistic Road Maps (PRM) used for single or multi-query planning has 

gained popularity since it is probabilistic complete and scales well to complex configuration 

spaces. However, re-planning (re-calculating the complete path) is almost unavoidable as 

path execution is inherently uncertain since a robot will deviate from the path due to 

slippage and other uncertainties in the environment. Local path planners which only 

calculate the path direction at the current location partially alleviate this problem since they 

do not pre-calculate a complete path and are thus less affected by deviations. However, 

local path planners are either not complete or, if they use navigation functions, do not scale 

well to complex environments. 

To address this, this work presents an approach that combines the advantages of 

sampling-based global path planning with the benefit of a local, navigation function-based 
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path planning on the generated sample space. This reduces the need for re-planning if the 

robot diverges from the original path by utilizing a harmonic function potential field 

computed over the RRT sample set and directional nearest neighbors. The proposed work 

derives the samples in the environment using a simple randomized algorithm and 

systematically sampled obstacles that are hit during random sampling of the space. It 

therefore avoids sampling of the complete space. Additionally, samples generated during 

one planning phase can be exploited further for new goals in the environment. 
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Chapter 1  

INTRODUCTION AND RELATED WORK 

1.1 Introduction 

In recent years, research in the area of robotics has proliferated as use of intelligent 

robots has advanced from warehouses to aiding in surgeries. Of the key requirements of 

autonomous robots, navigation is the most well-known problem which inherently requires 

path planning. Consider a robot that needs to navigate in an environment that contains 

obstacles. The challenge for this robot is to move from state A to state B without colliding 

with obstacles. To address this, research has been proposed continuously in the area of 

path planning since the 1970s.  

Humans always come up with a plan in all the situations they encounter throughout 

their life. Given an environment, a plan is a sequence of actions that can be taken to 

achieve a solution. One question that often arises is whether a plan is optimized. As criteria 

of optimization differ, the formulation of an optimized plan can be difficult. Even if the right 

criteria can be formulated, computation of an optimized plan might not be tractable. 

Instead, one strives to achieve a solution that is acceptable (or preferred) within the defined 

criterion. This preferred or acceptable solution is referred to as a satisficing plan. For 

problems that involve probabilistic uncertainty, the need for optimization arises more 

frequently than in deterministic domains, and utilization of probabilities is often reflected in 

terms of expected costs [1]. An optimal path does not strictly have be the shortest path to 

reach the goal as various criteria like time, expense, distance from obstacle etc. affect the 

notion of an optimal path. Cost is an important aspect of optimality and is often included in 

the optimality criterion. Some research neglects the cost to reach the goal [4]. Besides the 

optimality of a path itself, it is also important to consider the cost of the planning process 

and in particular the fact that a robot should not waste time due to re-planning of the path 
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or other factors when it gets stuck at any place during path execution. This consideration 

often leads to a tradeoff between the optimization of a path and the avoidance of re-

planning costs. 

In global path planning approaches like Roadmaps and Cell Decomposition, the 

complete path is calculated before the robot executes it. In such planners, determination 

of goal reachability is straightforward and known to a robot prior to path execution. Since 

a robot needs to operate in a domain with the presence of uncertainties, however, the robot 

will in general deviate from the path. This results in re-calculation of the entire path where 

the robot is immobile until re-calculation is completed. While the re-calculation is potentially 

significantly faster than the initial calculation since a correction of the existing path might 

be possible, it still introduces additional costs and potentially risks for the robot during re-

calculation. Local path planners tend to avoid this problem as they only compute the next 

step instead of the entire path. However, local path planners are either not complete, i.e. it 

is not known whether the goal is reachable, or, if using navigation functions to avoid this, 

do not scale well to complex domains. 

The approach presented in this thesis is focused on reducing the need of re-

planning by combining aspects of global and local path planning. The proposed system 

samples the domain by using a simple bidirectional randomized algorithm that generates 

paths from start to goal through random walks in the domain. The resulting sample space 

is then augmented by replacing the existing path connections with new directional 

connections and by generating virtual samples to represent the unsampled, unknown part 

of the domain. These improved samples can then be interpolated using a navigation 

function approach in a way such that the strict following of the initially sampled path is not 

necessary. A harmonic function potential field is here computed over the space described 

by the samples to form a robust potential function that avoids formation of local minima 
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while providing flexibility in terms of the local paths that can be chosen. If a robot deviates 

from the original path, it computes the gradient of the potential of its current state by finding 

the directional neighbors and continues following the gradient to reach the goal. In other 

words, the robot does not have to strictly follow the original path and can still reach the 

goal by utilizing the potential value which is minimal at the goal. Besides addressing local 

deviations from the path, this allows the system to also include secondary path objectives 

at run-time as long as the system does not leave the part of the domain described by the 

generated samples. The sampling-based mechanism here generates a tractable 

representation of the relevant parts of the space while the potential function based on local 

point neighborhoods provides the task flexibility. In this form, the combined approach 

addresses part of the scaling challenge for the navigation function path planner by allowing 

it to be computed on a sample space covering the relevant parts of the domain, and also 

addresses the challenge for the sampling-based global path planner arising from deviations 

from the path and dynamic changes in the task objectives. 

The main contribution of the approach presented in this thesis is to provide a way 

of calculating the potential value and generating virtual samples. The advantages of this 

method include reducing the need of re-planning in case of a robot deviating from the 

original path and if a new goal is within the space that has been already explored. In the 

latter situation, the values of the already generated samples over the domain can be 

interpolated with regards to the new destination to reach that goal. If a new goal lies outside 

this space, additional random sampling will be utilized to extend the sample set into 

relevant portions of the space that have not been explored. 

The remainder of this thesis is structured as follows: The rest of this chapter 

reviews related work dealing with approaches used by this thesis and similar methods that 

focus on similar problem used in the field of planning. Chapter 2 introduces the 
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background, underlying notion and formalism of Path Planning. Chapter 3 describes the 

approach used by this thesis and presents the formalization. It also discusses the details 

and module descriptions for an experimental implementation of the proposed method. 

Finally, in Chapter 4 we present the conclusion and future work. 

 

1.2 Related Work 

The Path Planning problem is well known in the field of robotics [1]. Over the past 

decades the problem of motion planning has been studied to a large degree with the 

increase in use of robots. Discrete and continuous state space planning are two categories 

that exists in path planning. Discrete search methods such as A-star [27], Breadth-First 

Search or Bidirectional Search [28] are some of the methods used that are complete and 

thus guaranteed to find a feasible path in a finite set of states. Planning in a continuous 

state space has been explored since the 1970s and initially mostly referred to planning for 

a robot in 2D or 3D world, but more recently has moved into higher-dimensional, kino-

dynamic state spaces.  

Depending on the availability of information about the domain, path planning can 

be divided into two categories which are global path planning and local path planning. In a 

local path planner, only information about the next step of a potential path is computed 

without the derivation of a complete path to the goal. In contrast to local path planning, 

complete path information about the domain is provided in global path planning. This leads 

to obtaining a complete path from the start state to the goal state and thus contains direct 

information regarding reachability of the goal and path cost which are often not available 

in local path planning approaches. A wide range of traditional path planning methods have 

been developed an applied successfully, including deterministic Roadmap methods, such 

as Visibility graphs and Voronoi Diagrams, and Convex Cell Decomposition approaches 
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[???]. Many of these, however, do not scale well to higher dimensions and larger domains 

with complex obstacle geometries even if the relevant part of that space is locally confined 

around the robot system.  Besides deterministic, complete methods, global path planners 

have also used Genetic Algorithms to derive a path which considers if the path is 

traversable and generates a new path if it is not traversable [3] . To address scalability 

issues in larger, more complex domains, sample-based planning has been exploited for 

global path planning and has been very successful for solving some problems in robotics. 

To decouple the motion planning approach from the geometric and kinematic models of 

the robot, most of these system use collision detection as “black box”[1], allowing them to 

perform sampling in a lower-dimensional space with the robot constraints leading to a 

rejection of some of the generated samples. In situations where most samples are still 

valid, this can dramatically reduce the complexity of finding a path while still allowing the 

planner to find a path through areas where the robot constraints are relevant.  

Since first proposed in 1998 by Steven LaVelle, the randomized algorithm Rapidly-

Exploring Random Tree (RRT) [5][6], considered as part of Monte Carlo methods to bias 

search in Voronoi regions, has attained great success and is widely used as the basis for 

path planning techniques since it easily handle the problems with obstacles, nonholonomic 

and kino-dynamic constraints. There have been various improvements and modifications 

of RRT over time [7]-[13]. Randomly exploring random graphs (RRG) [14] were proposed 

in 1996 which have a learning and a query phase. RRG’s initially construct a probabilistic 

roadmap graph whose nodes correspond to collision-free configurations and edges 

represent the feasible paths between these nodes and are computed using a simple local 

planner. Though RRT and RRG work in a similar fashion by generating random node and 

connecting them, RRTs are used to answer a goal single query whereas RRGs are used 

for multi query in a given state space. A tree version of RRG called RRT* preserves 
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asymptotic optimality of the RRG while maintaining a tree structure of RRT [14], and thus 

the computational advantages for path formation. Bidirectional RRTs have also been 

explored that use two RRTs, one rooted at the start and one rooted at the goal. The main 

advantage of this being that it will generally focus more efficiently on the relevant parts of 

the domain. 

A variety of potential field methods have also been proposed where a potential 

field is applied to the goal and the obstacles and then the robot makes use of the resultant 

field from the obstacles and the goal. Artificial potential fields were initially used by Khatib 

[15] which involved the use of a potential field in Cartesian space. Newman and Hogan 

[16] extended this to Configuration-space. However, many potential methods suffered from 

local minima which resulted in a robot being trapped or stuck in a place. Various 

approaches have been suggested to address this issue. One of those notable approaches 

is to design the potential field as a harmonic function. Other approaches include treating 

local minima as obstacles [17], designing potential functions such that it avoids creation of 

local minima [18] etc. Harmonic functions govern a wide range of physical processes, 

including fluid flow or oscillation motions where the restoring force is directly proportional 

to the displacement and acts in the direction opposite to that of displacement [19]. In 

general, harmonic functions satisfy Laplace’s equation [20] and therefore do not contain 

local minima.  

To address the rate of convergence of RRT, potential function-based planning has 

been used in recent work in conjunction with RRT to guide the samples towards the goal 

[21] [22]. The resulting approaches proved to have more efficient memory utilization and 

accelerated convergence rate. The focus of the work in  [22] is to change the function that 

connects two samples. Even though [22] makes the individual connection formation slower, 
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it links two samples more effectively, thus resulting in an overall acceleration of the 

planning process.  

 Focused D* [23], an extension of A* addresses the problem of path planning in a 

dynamic environment. Anytime Dynamic A* [24] presents a graph based planning and re-

planning algorithm to produce bounded suboptimal solutions within the available time.  

An important issue in practical path planning is to reduce the need of re-planning. 

To address this, the objective of this thesis is to propose a technique that can reduce the 

need of re-planning when a robot moves away from the original path that was derived by 

the planner. Founded on some of the recent works presented in this section, the proposed 

approach accomplishes this by initially using a bidirectional randomized algorithm and then 

computing a potential field harmonic function over those samples by utilizing directional 

nearest neighbors. As a result, if a robot deviates from path, the potential value that has 

been computed based on its neighbors can direct the robot towards the goa, traversing the 

area spanned by the freespace samples instead of strictly following the initially computed 

path. In addition to this reduction in re-planning in the case of deviations from the intended 

path, this approach also allows the samples generated during one planning phase to be 

utilized in later query phase when other goal locations are presented.  
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Chapter 2  

TECHNICAL BACKGROUND 

2.1 Configuration Space and Map Representation 

Planning in a robot’s workspace is hard due to the potentially complex structure of 

a robot and its kino-dynamic constraints. To overcome this, configuration space, also called 

C-Space, was first introduced by Lozano-Perez in 1987 [2]. A robot in C-Space 

(Configuration Space) is represented by a point and legal positions for a robot configuration 

space are denoted by 𝐶𝐹𝑅𝐸𝐸  and illegal positions or obstacles are denoted  by  𝐶𝑂𝐵𝑆. As 

shown in Figure 2-1. 

 

 

Figure 2-1 Workspace(left), C-Space (right) 
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𝐶𝑆𝑃𝐴𝐶𝐸 =  𝐶𝐹𝑅𝐸𝐸 ∪ 𝐶𝑂𝐵𝑆 

 

The key ingredient in constructing configuration space is extension of obstacles 

from workspace to 𝐶𝑆𝑃𝐴𝐶𝐸. In other words, configuration space is the space of all possible 

configurations of a robot and is described as topological manifold. C-Space is obtained by 

marking any configuration in which any part of the robot collides with an obstacle as an 

obstacle configuration. In simple situations where the robot is a solid body, this 

corresponds to extending the obstacles by sliding the robot along the edges of obstacle 

regions, extending them by the size of the robot. 

 

2.2 Path Planning Problem Formulation 

The basic idea is that each situation of the world is a state x, such that x ∈ X where 

X is the state space. The start state of the robot is denoted by XS and the goal state is the 

location to be reached by a robot, denoted by XG, where XS, XG ∈ X. 

 
Figure 2-2. Configuration Space and Path  
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The path planning problem can be now formulated as finding a sequence of states 

leading from start state XS, to goal state XG in C-Space (Configuration space) such that all 

connections of states from XS to XG to be traversed by the robot belong to the free space 

as shown in Figure 2-2. 

 
2.3 Sampling based motion planning 

 

Sample based motion planners are not complete but are efficient. They find path 

from start to goal by using collision detection to make sure it avoids hitting any obstacle in 

the path. These algorithms are known as resolution complete or probabilistic complete 

which guarantees to find a solution if it exists, provided it runs for an infinite amount of time. 

Although the state space for motion planning is infinite, sampling-based planning can 

consider at most a finite number of states if it is to find a solution in given amount of time. 

As a consequence, it is important how samples are generated and evaluated. 

RRT (Rapidly-exploring random trees) [21] is a sample based path planner which 

uses a specific exploration strategy where the objective is to get close to the goal within a 

threshold distance. RRT builds a tree which is rooted at a point from which grow branches 

in random directions. To extend the tree at a given point in time, they generate random 

samples and then grow the closes branch towards that point by some fixed step size (s) to 

a new sample which is considered instead of the initial random sample. To determine the 

node to extend using a newly drawn random sample, its distance is calculated with respect 

to each sample in the tree and then connected to the nearest sample. The base algorithm 

is given below: 
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𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑅𝑟𝑡 

𝐼𝑛𝑝𝑢𝑡: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑓𝑖𝑔 𝑋𝑖𝑛𝑖𝑡, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑅𝑅𝑇 𝑛, 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 𝑠 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑇𝑟𝑒𝑒  

1. 𝑇. 𝑖𝑛𝑖𝑡(𝑋𝑖𝑛𝑖𝑡) 

2. 𝑇. 𝑖𝑛𝑖𝑡 𝑛 = 1 𝑡𝑜 𝑛 

3. 𝑋𝑟𝑎𝑛𝑑 < −𝑟𝑎𝑛𝑑_𝑐𝑜𝑛𝑓𝑖𝑔()  

4. 𝑋𝑛𝑒𝑎𝑟 < −𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑟𝑎𝑛𝑑, 𝑇)  

5. 𝑋𝑛𝑒𝑤 < −𝑛𝑒𝑤_𝑐𝑜𝑛𝑓𝑖𝑔(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑟𝑎𝑛𝑑, 𝑠) 

6. 𝑇. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑛𝑒𝑤)  

7. 𝑇. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑛𝑒𝑤) 

8. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑇 

 

2.4 Space Sampling 

Sampling can be categorized into two categories as probabilistic and non 

probablistic sampling. probabilistic sampling is used to reduce bias in sampling. Hence, 

 
Figure 2-3. Adding New Node in RRT  
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providing an unbiased representation of the population. Probabilistic sampling is cost-

effective and does not require any technical knowledge given the simplicity with which it 

can be done. Simple random sampling and systematic sampling are types of sampling 

techniques.  

Random sampling can be done using a random number generator once you have 

the size of the population as shown in Figure 2-4. The probability density function for a 

continuous uniform distribution can be written as  

𝑓(𝑎) =
1

𝑦 − 𝑥
 𝑖𝑓 𝑥 ≤ 𝑎 ≤ 𝑦 

𝑓(𝑎) = 0  𝑖𝑓 𝑎 < 𝑥 𝑜𝑟 𝑥 > 𝑏 

A uniformly distributed random variable depends on the size of the interval but not 

on the location of the interval. Uniform random variable sampling techniques include 

sampling a random variable from a uniform distribution following the steps mentioned 

below: 

1. Determine the sampling interval size of the population. 

2. Get the upper and lower bound. 

 
Figure 2-4. Uniform Sampling 
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3. Use a uniform random number generator to generate a random number 

between lower and upper bound. 

Systematic sampling is better for representing a population in a faster and simpler 

manner involving element selection from an ordered sample frame. A systematic sampling 

technique works by choosing the nth sample of the population as in Figure 2-5.  

𝑛 =
𝑁

x
 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

Systematic sampling works as follows: 

1. Arrange population in a sequence (N). 

2. Select the sample size (x). 

3. Calculate the sampling interval n = N/x. 

4. Select random number r between 1 to n including n. 

5. Add the sampling interval x to the chosen random number to add the next 

member to a sample and repeat this to add the remaining members. 

 

 
Figure 2-5. Linear Systematic Sampling 

 



 

21 

Linear and Circular systematic sampling work in a similar fashion except that the 

start point and end point in linear systematic sampling are distinct while it restarts from the 

start point in circular systematic sampling once the entire population has been sampled.  
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2.5 Potential Field 

Initially proposed by Khatib [15], a goal and obstacle potential field represents two 

imaginary forces acting in the Configuration Space (C-space) called attractive force and 

repulsive force as in Figure 2-6. The attractive force is produced by the goal whereas the 

repulsive force is produced by obstacles. The direction to move for a robot can be 

computed by calculating the combined force at any point in in the C-space. The goal has 

minimum potential and obstacles have the highest potential in C-space where a robot 

follows gradient descent to reach the goal. In a mixture of potentials approach, the 

attractive force is 

𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) = −∇ 𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) 

and the repulsive force is  

𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢) = −∇ 𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢) 

 
Figure 2-6. Imaginary Combined Forces 
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The resultant force is the combination of these two forces as in Figure 2-7 

𝐹𝑡𝑜𝑡𝑎𝑙(𝑢) = 𝐹𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) + 𝐹𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢) 

where the potential value of u is given as 

𝑈(𝑢) = 𝑈𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑢) + 𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒(𝑢) 

2.6 Harmonic Functions  

As discussed in related work, potential fields, and in particular mixtures of 

potentials approaches, can have local minima where a robot can get stuck. Navigation 

functions can be used to generate potential fields that do not suffer from this issue. One 

class of these functions are harmonic functions. One property of a harmonic function is that 

it satisfies Lapace’s Equation which means it is twice continuiously differentiable such that 

the sum of second order derivatives is 0. 

∆u = ∑
𝜕2𝑢

𝜕𝑥𝑖
2

 =

𝑛

𝑖 =1

0 

which can also be written as 

 
Figure 2-7. Resultant Force at Any Location 

 



 

24 

∆𝑢 =
𝜕2𝑢

𝜕𝑥1
2

+
𝜕2𝑢

𝜕𝑥2
2

+ ⋯ +
𝜕2𝑢

𝜕𝑥𝑛
2

= 0 

An example with variables x,y z would be 

∆𝑢(𝑥, 𝑦, 𝑧) =
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0 

Solutions to Lapace’s equation can be computed by boundary conditions. One of 

the methods is to treat boundaries as obstacles and assign them the same value as that 

of real obstacles. In contrast to that the other method assigns boundary conditions such 

that the gradient of the potential field is tangential to the obstacle boundary which results 

in a robot staying close to obstacle surfaces [16]. Some of the techniques used for 

numerical calculation of the value of the harmonic function at each location [20] are Jacobi 

Iteration and successive over-relaxation, all of which require descretization of the 

environment into a finite number of locations to make computation tractable. Jacobi 

Iteration requires a higher number of iterations to converge and is more effective on SIMD 

architectures. It works by traverse through the state space and the value of a location is 

calculated as the average of its neighbours for relaxation. For a grid value which considers 

only four neighbours the Jacobi iteration for each grid can be written as 

𝑢𝑘(𝑥, 𝑦) =
1

4
[𝑢𝑘−1(𝑥𝑖+1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖−1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖+1) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖−1)] 

where k is iteration number. 

The Gauss- Seidel approach uses a similar iteration but neighboring values used for 

relaxation are partially from the previous iteration and partially from the current iteration. 

𝑢𝑘(𝑥, 𝑦) =
1

4
[𝑢𝑘−1(𝑥𝑖+1, 𝑦𝑖) + 𝑢𝑘(𝑥𝑖−1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖+1) + 𝑢𝑘(𝑥𝑖 , 𝑦𝑖−1)] 

SOR relaxation also know as Successive Over Relaxation converges more quickly 

compared to the previous methods by anticipating the effect tha the change of the value 

will have on itself. 
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𝑢𝑘(𝑥, 𝑦) =  𝑢𝑘(𝑥, 𝑦) +
𝑤

4
[𝑢𝑘−1(𝑥𝑖+1, 𝑦𝑖) + 𝑢𝑘(𝑥𝑖−1, 𝑦𝑖) + 𝑢𝑘−1(𝑥𝑖 , 𝑦𝑖+1) + 𝑢𝑘(𝑥𝑖 , 𝑦𝑖−1)] 

where k is the iteration number and w is a weight larger than 1, sometimes also referred to 

as the relaxation factor. 

The iterations used in the above methods are repeated until the values at each location 

stop changing. In other words, until it converges.   

 

2.7 Nearest Neighbor 

Neareset neighbor is a proximity search that involves finding a point closest to the 

query point in terms of distance. The nearest neighbor search problem is well known in 

many fields, including computer vision, statistical classification, computaional geometry, 

DNA sequence, chemical similarity and sample based motion planning. Two types of 

approaches exits which are exact nearest neighbor and approximate nearest neighbors. 

The discussion in this section is about data structures used for efficient nearest neighbors, 

in particular kd-trees [29]. It will discuss space partitioning, building kd-trees, and finding 

 
Figure 2-8. Attractive Potential (left), Repulsive Potential (center), Combined Potential (right) 
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nearest neighbors within them as these techniques can be used for efficient nearest 

neighbor computation. 

The time for evaluation of nearest neighbors in a naïve implementation with a set 

of samples and without additional data structures is linear in the number of vertices for 

each computation. Running time increases with the number of vertices in tree. However, 

increasing vertices improves approximation quality. KD-tree is a data structure to efficiently 

represent multidimensional data in a binary tree. KD-tree construction uses either sliding 

distance or a median node to split the nodes in the binary tree based on the location of the 

nodes. Construction time for a KD-tree is O (dn log n) time, where d is the number of 

dimensions of the underlying locations and n is the number of points. 

Example of construction of a KD tree where d =2 which is (x, y) is given below: 

1. Find the minimum and maximum along the x axis and assign this and all data 

points to the root node. 

2. For the node: 

a. Determine the minimum, maximum, and median of the x-axis values in 

the node.  

i. Assign the points with values below the median to the left child 

node and the ones with values larger than the median to the right 

child 

3. For each of the children which contains more than one data point:  

a. Determine the minimum, maximum, and median along the y axis of all 

data points in the node  

i. Assign the points with values below the median to the left child 

node and the ones with values larger than the median to the right 

child. 
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4. For each of the children which contains more than one data point go to step 

2 

5. Repeat steps 2-4 until all the data is placed in the leaf nodes. 

 

Searching in a KD-tree for nearest neighbors is relatively efficient since it allows to 

eliminate large portions of the data points relatively rapidly. To find neighbors, the tree is 

traversed for the given data point coordinates and only the partitions surrounding the 

partition containing the data point have to be examined for potential neighbors. Query for 

the node is here performed by branching based on the medians stored in the nodes.  
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Chapter 3  

PROPOSED APPROACH AND IMPLEMENTATION 

 

3.1 Architecture Overview and Details 

In this work we propose an approach that reduces the need of re-planning if a robot 

diverges from the original path. The architecture contains four sub-sections, a depiction of 

which is as given in the architecture layout in Figure 3-1.  

The planner assumes that the map of the environment or the state space with all the 

information, including the obstacle states and the start and goal states, is available. It then 

generates samples in the state space using a simple version of the randomized algorithm 

RRT and builds two random trees rooted at the start state and the goal state respectively 

which guarantees to never generate a point on an obstacle. The path is found when these 

trees hit or connect with each other. The randomized algorithm is stopped once a path to 

the goal is found. The nodes in the resulting path tree are then treated as free space 

samples that describe the neighborhood of the found path. In addition to the freespace 

samples, the algorithm systematically samples all obstacles that are encountered to 

produce an obstacle samples. Figure 3-2 shows the details of this sampel generation part 

of the proposed approach. 

 
Figure 3-1. Architecture Layout 
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Figure 3-2. Detailed Overview of Part-1 of the Architecture  
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Once the sample set has been generated, all the connections produced by the 

trees in the previous step are ignored and instead a nearest neighbor connectivity structure 

is established. For this, The points are then stored in a data structure (KD-tree) for nearest 

neighbor query and one nearest neighbor is found for every node in each of a pre-

determined set of directions within an upper distance threshold Ɦ. The closest neighbor is 

considered in each direction and if no sample is found a virtual sample is generated and 

preserved in the data structure. The next step involves propagating potential values for 

each of these samples using Successive Over-Relaxation until it converges to form a 

harmonic function potential. The last step involves reducing the number of samples in the 

free space that have been generated by the first step of the process. A sample, S, is 

removed if all neighbors of S are free samples and all the samples which have S as 

neighbor have another free sample within threshold Ɦ in the same directions. This second 

part of the approach effectively overlays the space described by the samples generated 

previously with a harmonic potential, establishing the ability to generate paths that do not 

go strictly through sample points. This process is detailed in Figure 3-3.  

This approach results in an area for a robot to reach the goal by following the 

gradient of the potential at any point which reduces re-planning as at any given point if the 

robot diverges its potential value can be calculated by finding its neighbors which results 

in the gradient for a robot to follow. In the following the approach is described in more 

detail. 
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Figure 3-3. Detailed Overview of Part-2 of the Architecture  
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3.2 Initial Sampling 

The initial sampling of the space is done using a simple bidirectional randomized 

RRT algorithm that uses a front and a back tree to explore relevant parts of the 

configuration space. The front tree is rooted at the start node and the back tree is rooted 

at the goal state. A new random sample is generated from a uniform distribution over the 

space using a density function f(ai) for each dimension, i,  of the configuration space: 

𝑓(𝑎𝑖) =
1

𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛

 𝑖𝑓 𝑖𝑚𝑖𝑛 ≤ 𝑎𝑖 ≤ 𝑖𝑚𝑎𝑥 

𝑓(𝑎𝑖) = 0  𝑖𝑓 𝑎𝑖 < 𝑖𝑚𝑖𝑛  𝑜𝑟 𝑎𝑖 > 𝑖𝑚𝑎𝑥 

The next step is to find the closest sample (CS) for this random sample in the front 

tree by computing the distance of each node from the tree and keeping track of the node 

found at the minimum distance so far. The distance is calculated as the Euclidian distance 

of the two points p and q which is given by   

𝑑𝑖𝑠𝑡(𝑝, 𝑞) =  √(𝑝n − 𝑞n)2 + ⋯ + (𝑝2 − 𝑞1)2 + (𝑝1 − 𝑞1)2 

which connects two points by a straight-line segment given as in 2D [26] 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) =  √(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2  𝑤ℎ𝑒𝑟𝑒 𝑋 = (𝑥1, 𝑦1), 𝑌 = (𝑥2, 𝑦2) 

which in 3D can be given as  

𝑑𝑖𝑠𝑡(𝑝, 𝑞) =  √(𝑝3 − 𝑞3)2 + (𝑝2 − 𝑞2)2 + (𝑝1 − 𝑞1)2  

A new sample NS is then generated in the direction of this point from the closest 

point at a distance of s, which is called the step size. This is illustrated in Figure 3-4. 
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In Figure 3-4 the actual point, 𝑄(𝑥𝑞,𝑦𝑞), is given by  

𝑄(𝑥𝑞,𝑦𝑞) = ((1 −
𝐿

𝐿′
) 𝑥1 +

𝐿

𝐿′
𝑥2) , ((1 −

𝐿

𝐿′
) 𝑦1 +

𝐿

𝐿′
𝑦1)  

𝑤ℎ𝑒𝑟𝑒 0 < 𝑡 < 1  

This new sample is then added to the front tree as a child of CS. A new sample is 

then generated with respect to the back tree and similar steps are repeated. This process 

is repeated until a path is found. In general, a maximum number of nodes is defined, and 

the process is repeated until it hits that limit. If it hits the maximum limit and no path is found 

it is assumed that there exists no path. 

If the RRT hits any obstacle during the process of building the tree, the surface of 

the encountered obstacles is systematically sampled as mentioned in Section 2.4. 

 

3.3 Nearest Neighbor and KD-tree 

All the freespace samples and obstacles sample generated are then used to 

construct a KD-tree. After construction of the KD-tree, each sample is queried for its 

nearest neighbors in 2 ∗ 2𝑑 directions to establish spatial connectivity for the potential field 

calculation. In a 2D Configuration space this leads to connections in 8 directions, resulting 

in 8 closest neighbors within the threshold range Ɦ. If no free sample or obstacle sample 

in a given direction is found within the distance threshold, it is considered to lie on the edge 

 
Figure 3-4. Point on Line 
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of the known workspace in that direction and a virtual obstacle is generated in that direction 

at threshold = Ɦ. At the same time, it is verified that the space spanned by the neighbors 

does not contain an obstacle and if an obstacle is encountered in that space, it is 

systematically sampled, those samples are added, and the process continues. The 

resulting samples are then stored in a data structure that also contains all the neighbors. 

An example of a query sample is as shown in Figure 3-5 left where the query 

sample is orange with a threshold radius Ɦ showed with a red circle from the sample.  

 

The picture on the right shows the neighbors found in each direction in green. In 

the case when no sample exist in a direction, virtual obstacle (workspace boundary) 

samples are generated in that direction at distance Ɦ as shown with the yellow samples in 

Figure 3-6. 

 
Figure 3-5. Query Sample (orange, left), Nearest neighbor in each direction (green, right) 
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The KD- tree construction used here is based on a sliding distance and builds an 

unbalanced tree [29] . An example of how the KD- tree is constructed from data samples 

is as shown below.  

 

 
Figure 3-6. Query Sample and neighbors in each direction(left), Generated virtual 

obstacles (yellow, right) 

 
Figure 3-7. Space Partition KD-Tree Based on Sliding Distance 
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Figure 3-7 shows the space partition based on the sliding distance and Figure 3-8 

shows a KD-tree from the space partition of the state space. Leaf size in this example is 1 

show as yellow in Figure 3-8.  

 

 

3.4 Potential Field Harmonic Function 

After all the samples have been queried for neighbors, potential values are 

propagated with the goal being at a minimum and the obstacles being at a maximum. Each 

value is then updated by  

𝑈(𝑢) =
∑ 𝑊𝑖

𝑛
𝑖=1  𝑈(𝑖)

∑ 𝑊𝑖
𝑛
𝑖=1

 

where the weight 𝑊𝑖 of each sample in the equation is related to its distance from 

the point u with 𝑊𝑖 =
1

𝑑(𝑢,𝑖)2 and 𝑈(𝑢) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑈(𝑖) =

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒. In other words, the value of each sample is the weighted 

average of the sample values of its nearest neighbors. The potential value of the sample 

is affected more by the potential value of the samples that are near to it and affected less 

 
Figure 3-8. KD-Tree Based on Space Partition 
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by the potential value of sample that is far from it. This process is repeated until it converges 

which means until values stop changing.  

 

3.5 Thinning Path 

Since the sample density in the space is uneven and, in particular, the density 

along the sampled path is very high, the sample density in many freespace regions could 

be reduced without significantly affecting the potential. To do so, some of the unnecessary 

samples in free space can be removed. This approach uses two criteria to remove a 

sample; in particular, a sample S can be removed only if 

1. All the neighbor sample of sample S are free samples. 

2. All the neighbor samples of S contain all free neighbors. 

3. All the samples that contains S as neighbor have another free sample in 

that direction within distance threshold Ɦ. 

A KD-tree for this reduced sample set can be constructed with all obstacle samples 

and remaining free samples after thinning out the path. A robot can now reach the location 

of the goal by simply following the gradient. If a robot diverges from path its potential value 

 
Figure 3-9. Potential Field effect of a neighbor based on distance 1/X2 



 

38 

can be calculated by querying the neighbors using the KD-tree which is O (k logN) time 

and navigate along the negative potential gradient.  

 

3.6 New Goal 

If a new goal is generated and lies in the space which has been already explored, 

the harmonic function can be used to recalculate potential values for each sample and the 

resulting values can be interpolated across the samples to allow the robot to navigate by 

following the negative potential gradient to the goal.  

If the new goal in in an area which is unexplored, a new biased tree can be built 

from the goal which generates a new random goal tree and is expanded until it hits the 

samples which that have been already generated. Then the samples for this tree are added 

to the KD-tree and the potential field is recalculated to drive the robot to the new goal. 
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Chapter 4  

IMPLEMENTATION AND EXPERIMENTS 

4.1 Implementation 

The experiments introduced here assume that the world map, start sate, goal state 

and obstacles are available to the robot. For the purpose of execution this map is generated 

by an algorithm. The world or map for experimental purpose is generated by first setting 

the size of the environment. Then the obstacles in the map or domain are generated and 

returned to the simple bidirectional randomized path planner. It is worth mentioning that 

this 𝐶𝑆𝑃𝐴𝐶𝐸 is not generated by the robot but instead is randomly generated by 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑎𝑝(). 

 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑎𝑝 

𝑖𝑛𝑝𝑢𝑡: 𝑠𝑝𝑎𝑐𝑒 𝑠𝑖𝑧𝑒 𝑆, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝑛 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑎𝑝(𝑆, 𝑛): 

1. 𝑚𝑎𝑝 < −𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑝𝑎𝑐𝑒(𝑆) 

2. 𝑚𝑎𝑝 < −𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠(𝑚𝑎𝑝, 𝑛) 

3. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑚𝑎𝑝 

 

Once this data is available, the next step is to utilize a bidirectional algorithm to 

generate the initial samples to find a path between the start state and the goal state. This 

randomized bidirectional algorithm generates two different sample sets originating from 

start and goal states. These samples may or may not be biased towards converging either 

with the root of another sample set or towards the last sample generated in the other 

sample set. These two sample sets are stored in a tree data structure. The function returns 
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no path found and exists, if no path is found within a specified threshold of maximum 

number of samples generated. The algorithm for this is given below.  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

𝑖𝑛𝑝𝑢𝑡: 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑋𝑆, 𝑔𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑋𝐺 , 𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑒 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑠𝑡𝑎𝑡𝑒 𝑇𝑠, 𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑒 𝑎𝑡 𝑔𝑜𝑎𝑙,

⋅ 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 ▲, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ₼, 𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 𝑆,

𝑔𝑜𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 € 

𝑜𝑢𝑡𝑝𝑢𝑡: 𝑇𝑆, 𝑇𝐺  

1. 𝑤ℎ𝑖𝑙𝑒 𝑛 ≤ ₼: 

2.     T= 𝑇𝑆 

3.     𝑋𝑅𝐴𝑁𝐷 < −𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆) 

4.     𝑋𝑁𝐸𝐴𝑅 < −𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑅𝐴𝑁𝐷 , 𝑇)  

5.     𝑋𝑁𝐸𝑊 < −𝑛𝑒𝑤_𝑐𝑜𝑛𝑓𝑖𝑔(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑟𝑎𝑛𝑑, ▲) 

6.     ℎ𝑖𝑡 =  𝑇. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑁𝐸𝑊) 

7.     If hit: systemetic_sample(obstacle) 

8.     𝑇. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑋𝑁𝐸𝐴𝑅 , 𝑋𝑁𝐸𝑊) 

9.     𝑖𝑓 𝑔𝑜𝑎𝑙_𝑐ℎ𝑒𝑐𝑘(𝑇𝑆 , 𝑇𝐺) 𝑖𝑠 𝑡𝑟𝑢𝑒: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑇𝑠 , 𝑇𝐺   

10.     𝑆𝑤𝑎𝑝 𝑇𝑠, 𝑇𝐺  

11. 𝑒𝑥𝑖𝑡(𝑛𝑜 𝑝𝑎𝑡ℎ) 

 

With the generated samples a KD-tree is built to store the information such that it 

can be queried quickly when needed. For each point in the sample set, the function 

searches directional nearest neighbors and generates virtual obstacles. If there are no 

nearest neighbors found it updates the nearest neighbors for nodes. Continuing within this 

loop it generates and update neighbors for each sample in the generated sample set. 
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𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 

𝑖𝑛𝑝𝑢𝑡: Samples S (from 𝑇𝑠, 𝑇𝐺,), threshold Ɦ,  

             𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑛𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝐷𝑁    

𝑜𝑢𝑡𝑝𝑢𝑡: 𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑛𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝐷𝑁 

1. 𝐾𝐷 =  𝑏𝑢𝑖𝑙𝑑_𝑘𝑑𝑡𝑟𝑒𝑒(𝑆, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 = 𝑏𝑜𝑜𝑙, 𝑙𝑒𝑎𝑓𝑠𝑖𝑧𝑒 = 1) 

2. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑆: 

3.     𝑠𝑁 < − 𝐾𝐷 . 𝑓𝑖𝑛𝑑_𝑘𝑑𝑖𝑟_𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝑠 ) 

4.     𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑡 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑎𝑛𝑦 𝑑𝑖𝑟)  

5.          ℎ𝑖𝑡 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑠𝑁 , 𝑑𝑖𝑟, Ɦ  ) 

6.           If hit: systemetic_sample(obstacle) 

7. 𝐷𝑁 . 𝑎𝑑𝑑_𝑠𝑎𝑚𝑝𝑙𝑒(𝑠𝑁) 

8. 𝑟𝑒𝑡𝑢𝑟𝑛 𝐾𝐷 , 𝐷𝑁   

 

 

Given the set of samples, there exists a potential field from the start state to the 

goal state which the robot can follow to reach the goal. The issue with this potential field is 

that if looked at strictly from the perspective of the path generated in the RRT formation, it 

may contain local minima and thus would not lend itself to navigation. To address this 

issue, this approach utilizes a harmonic function to propagate potential values in a way that 

completely removes local minima from potential field. For this, the potential value for each 

freespace point is iteratively updated as the weighted average of its neighbors and this way 

the potential function is relaxed until it converges. 
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𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁 , goal_state()  

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁 

1. 𝑈𝑛𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 

2.    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑆: 

3.        𝑖𝑓 𝑔𝑜𝑎𝑙 ∶  𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) = 𝑚𝑖𝑛 

4.        𝑒𝑙𝑠𝑒 𝑖𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 ∶  𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) = 𝑚𝑎𝑥  

5.         𝑒𝑙𝑠𝑒 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) =         𝑠𝑁(𝑣𝑎𝑙𝑢𝑒) + 𝑎𝑙𝑝ℎ𝑎 ( 
∑ 𝑊𝑖

𝑛
𝑖=1  𝑠𝑁 

𝑊𝑖
− 𝑠𝑁(𝑣𝑎𝑙𝑢𝑒)) 

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝐷𝑁   

 

Now there the system has a potential field which leads to the goal. In an attempt 

to further optimize this path, this approach utilizes a method for path thinning. This leads 

to a smooth path connecting start and goal state, which the robot can now follow. 

  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑡ℎ𝑖𝑛_𝑝𝑎𝑡ℎ 

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁  

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁 

1. 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝐷𝑁   

2.    𝑖𝑓  𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑜𝑟𝑠 𝑎𝑟𝑒 𝑓𝑟𝑒𝑒 

3.        𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑐𝑜𝑛 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑏𝑦 𝑓𝑟𝑒𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

4.        𝑟𝑒𝑚𝑜𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝐷𝑁   
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The next location for the robot at any time step is calculated by  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑛𝑒𝑥𝑡_𝑙𝑜𝑐 

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑜𝑏𝑜𝑡 

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁 

1. 𝑓𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  

2.    𝑖𝑓  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑎𝑡ℎ  

3.        𝑛𝑒𝑥𝑡_𝑙𝑜𝑐 =  −⌔ 𝐷𝑁(𝑎𝑟𝑔𝑚𝑖𝑛(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)). 𝑣𝑎𝑙𝑢𝑒 

4.        𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑥𝑡𝑙𝑜𝑐 

5.   𝑒𝑙𝑠𝑒  

6.           𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛𝑒𝑥𝑡_𝑙𝑜𝑐() 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛𝑒𝑥𝑡_𝑙𝑜𝑐 

𝑖𝑛𝑝𝑢𝑡: 𝐾𝐷 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 𝐷𝑁 , 𝑔𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑋𝐺   

𝑜𝑢𝑡𝑝𝑢𝑡: 𝑛𝑒𝑥𝑡𝑙𝑜𝑐 

1.      𝐾𝐷 . 𝑓𝑖𝑛𝑑_𝑘𝑑𝑖𝑟_𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ) 

2.      𝑛𝑒𝑥𝑡𝑙𝑜𝑐 =  −⌔ 𝐷𝑁(𝑎𝑟𝑔𝑚𝑖𝑛(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)). 𝑣𝑎𝑙𝑢𝑒 

3.       𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑥𝑡𝑙𝑜𝑐 

 

When the robot navigates to a given goal state, it might receive a new goal state. 

In this case, the function new_goal checks if the new goal state resides within the already 

sampled space. If not, a biased randomized algorithm is invoked from the new goal state 

that samples the space until it finds any of the old samples. Once it finds a path, the 

harmonic function is reinvoked and potential values for each sample are re calculated in a 

similar fashion. 
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𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 

𝑖𝑛𝑝𝑢𝑡: 𝐷𝑁 , 𝐾𝐷 , new_𝑔𝑜𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 𝑋𝑁𝐺 , 𝑏𝑖𝑎𝑠𝑒𝑑 𝑏 

𝑜𝑢𝑡𝑝𝑢𝑡: 𝐷𝑁𝑜𝑟 𝑁𝑇 

4. 𝑖𝑛_𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑐𝑒 = 𝐾𝐷.𝑓𝑖𝑛𝑑_𝑘𝑑𝑖𝑟_𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟(𝑋𝑁𝐺) 

5. 𝐼𝑓 𝑖𝑛_𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑠𝑝𝑎𝑐𝑒:  

6.      𝐷𝑁 . 𝑎𝑑𝑑(𝑋𝑁𝐺), 𝐾𝐷.𝑎𝑑𝑑(𝑋𝑁𝐺) 

7.       ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐷𝑁 , 𝑋𝐺) 

8. 𝑒𝑙𝑠𝑒  

9.       while max 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒 

10.          𝑅𝑅𝐴𝑁𝐷 < −𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑛𝑢𝑚𝑏𝑒𝑟(0,1) 

11.          𝑖𝑓 𝑅𝑅𝐴𝑁𝐷 < 𝑏: 𝑋𝑅𝐴𝑁𝐷 =   𝑟𝑜𝑏𝑜𝑡_𝑐𝑢𝑟𝑟_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

12.          𝑒𝑙𝑠𝑒: 𝑋𝑅𝐴𝑁𝐷 < −𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆) 

13.           𝑋𝑁𝐸𝐴𝑅 < −𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑅𝐴𝑁𝐷 , 𝑇)  

14.          𝑋𝑁𝐸𝑊 < −𝑛𝑒𝑤_𝑐𝑜𝑛𝑓𝑖𝑔(𝑋𝑛𝑒𝑎𝑟, 𝑋𝑟𝑎𝑛𝑑, 𝑠) 

15.          ℎ𝑖𝑡 =  𝑇. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑋𝑁𝐸𝑊) 

16.          𝐼𝑓 ℎ𝑖𝑡: 𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑡𝑖𝑐_𝑠𝑎𝑚𝑝𝑙𝑒(𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒) 

17.           𝑖𝑓 𝑔𝑜𝑎𝑙𝑓𝑜𝑢𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑁𝑇 

12.      𝑒𝑥𝑖𝑡(𝑛𝑜 𝑝𝑎𝑡ℎ) 
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4.2 Experiments 

The environment for the experiments is created in a 1000x1000 2-dimensional 

continuous space. Some example location samples in this space can be (30, 30), (12.678, 

16.00001458). To illustrate this environment, a visualization of it is shown in Figure 4-1 

where the right half of the picture depicts the domain or environment for planning which 

contains random obstacles as shown in blue. The right half of the picture shows the uniform 

samples generated while building RRT during initial phase.  

Figure 4-2 represents a built Bi-directional RRT in the domain (C-space). The green 

points indicate the locations on obstacles hit during exploration of the Configuration space 

by the bidirectional RRT which are then systematically sampled into obstacle samples as 

shown in Figure 4-3. 

 
Figure 4-1. An example of environment set up (left), random sample generated (right)  
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Figure 4-2. Path from Bidirectional RRT with Obstacles (Blue) and Obstacle 

Hits(green) 

 
Figure 4-3. Systematic Samples on Obstacle Surface (Red), Virtual Obstacles 

(White) and Original Path Samples (Green) 
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Once the RRT is built and surfaces of obstacles that were hit during the RRT 

building phase are systematically sampled, all these samples are used to construct a kd-

tree as mentioned in Section 3.3. The resulting samples are then stored in the data 

structure that also contains neighbors as shown in Figure 4-3, where white points indicate 

virtual obstacles which represent the boundary of the space described by the available 

samples. The virtual obstacles (workspace boundary) of one sample does not affect other 

samples and is thus only linked to a single freespace sample. 

Figure 4-4and Figure 4-5 show an example of the change in the potential of a 

sample set derived on the same environment during the relaxation process at iteration 1 

and iteration 100, respectively. The goal is at left bottom.  

 

 

 
Figure 4-4. Freespace sample values at iteration 1 with the goal at the left bottom and 

the start at the right top (left), and change in values (right) 
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The values are stable after 3000 iterations and, as can be observed in the value 

plot of Figure 4-6 the value function behavior is exponential as mentioned in Section 3.4. 

This figure also represents the gradient along the path after the values are stable. Note 

that the values are plotted in linear scale. Since the function values resulting from a 

harmonic function relaxation behave like an exponential, some of the differences in the 

gradient values, specifically near the start location, are not easily discernable.  

 
Figure 4-5., Freespace sample values at iteration 100 (left) and change in values (right) 
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A similar example with a different random path is as shown in Figure 4-7 and Figure 

4-8 at 4, 80, 1000 and 3000 iterations.Figure 4-7. At iteration 4 

 
 

Figure 4-6. Freespace sample values at iteration 3000 (top), change in values (bottom 

left) and gradient of a random path (bottom right) 
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Figure 4-7. At iteration 4(top), iteration 80(bottom) 
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The path generated by the randomized algorithm and the potential value gradient 

along the path are shown in Figure 4-9 and the alternate path that the robot can follow to 

reach the goal when following the potential by moving to the directional nearest neighbor 

sample that has the lowest potential value is as shown in Figure 4-10. 

 
Figure 4-8. At iteration 1000(top), iteration 3000(bottom) 
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Figure 4-9. Random path generated by RRT (Top, Red), log scale of the negative 

gradient of the potential along the RRT path (Bottom blue)  
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Figure 4-10. Potential value path generated by visiting the minimum value neighbor at 

each node (Top, Black), log of the negative gradient along the path (Bottom, blue)  
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Figure 4-11 and Figure 4-12 display the alternate paths the robot can take to reach 

the goal. Besides the random RRT path and the path following the lowest potential 

directional nearest neighbor, this also shows the path generated when following the 

gradient of the potential function. This path, which does not have to go through any of the 

sampled points, is generated by taking steps along the negative gradient calculated based 

on the nearest neighbors of the current location of the robot, resulting in a smoother path. 

 

 

 
Figure 4-11. Smooth path along the gradient (Green), traversing samples based on 

gradient value (Red) and RRT(Blue) for step size 10(top) and step size 0.1(bottom) 
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To illustrate the benefits of the potential function superimposed on the sample set, the 

following example shows a case where RRT sampling resulted in a larger number of 

branches in close proximity to each other. As a result, samples on different branches form 

neighbors and thus connect regions of freespace, yielding larger numbers of paths. This 

experiment shows the effect of the harmonic function potential which prefers paths with 

lower collision probabilities when utilizing the potential field and moving down the gradient. 

The RRT here finds a first path that moves close to an obstacle and thus includes higher 

collision risk. Figure 4-13 shows the extended sample set generated from the RRT run. 

Here the path found by the RRT planner passes close to obstacle. Figure 4-14 shows that 

the path generated by moving along the directional nearest neighbors with the smallest 

potential value follows a similar but alternate path to the one initially generated by the RRT. 

 

 
 

 
Figure 4-12. Smooth path along the gradient (Green), traversing samples based on 

gradient value (Red) and RRT(Blue) for step size 1 
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However, if the path is computed based on the gradient of the potential function calculated 

based on the nearest neighbors at each step (step size here is 1), the resulting path takes 

a different route which stays further away from the obstacle but is slightly longer, reflecting 

the tradeoff made by the harmonic potential. Note, that in this example, both routes strictly 

move downhill on the potential function and would be a valid path from the perspective of 

the potential function 

 

 

 
 

 
Figure 4-13.  Smooth path along the gradient (Green), traversing samples based on 

gradient value (Red) and RRT(Blue) for step size 1 
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Figure 4-14. Imposed Potential Field 
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Chapter 5  

CONCLUSION AND FUTURE WORK 

Combining sampling-based global path planning with the benefits of navigation 

function based potential fields is one way to reduce re-planning when a robot deviates from 

the path. In addition, by using these navigation functions, secondary runtime constraints 

can be incorporated on the fly using a control composition scheme akin to Nullspace 

control. In the approach proposed in this thesis, RRT is exploited to address the scalability 

issue of harmonic functions by generating a targeted sample set based on the star and 

goal location on which the harmonic potential is computed using nearest neighbor relations. 

The use of RRT for sample generation here tends to generate fewer points even in larger 

spaces compared with structured sampling techniques (such as grid-based techniques) 

while being fast and efficient. The advantage of computing a potential over the resulting 

sample space in this method is the inherent availability of multiple paths to achieve the goal 

within the potential function which addresses deviations from the path and makes it easier 

to incorporate secondary conditions at runtime. The proposed technique is effective in 

handling the deviation of the robot from the original path and exploits the swiftness with 

which the RRT finds a path to generate a sample set and potential for subsequent smooth 

paths. Different versions of RRTs can be in cooperated in the proposed method.  

As autonomous robots gain popularity. There needs to be continuous efforts 

towards increasing their efficiency. In striving to achieve more flexible path gerneation, this 

research has made a small contribution towards path plannig. Future work will focus on 

optimizing  this technique by reducing the number of freespace samples along the originally 

generated path and adding additional sampling techniques to add samples that can bridge 

regions between different branches of the RRT tree, thus yielding a larger area that is 
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traversable using the harmonic potential. In addition to the sample generation, traversal in 

the KD-tree could be further improved to yield faster nearest neighbor calculations. In 

addition to that, extending the work to non-holonomic robots and higher dimensions could 

be a focus in future. 
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