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ABSTRACT

Deep Learning based Fast Mode Decision in HEVC Intra Prediction using Region

Wise Feature Classification

SHIBA KUANAR, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: K.R. Rao

The High Efficiency Video Coding (HEVC) standard has achieved best coding

efficiency as compared to previous H.264/AVC standard. But the computational time

of HEVC encoder has increased mainly because of the hierarchical quad-tree based

structure, recursive search for finding the best coding units, and the exhaustive pre-

diction search up-to 35 modes. These advances improve the coding efficiency, but

result into a very high computational complexity. Furthermore selecting the optimal

modes among all prediction modes are necessary for the subsequent rate distortion

optimization process.

Therefore we propose a convolutional neural network (CNN) based algorithm

which learns the region wise image features and performs a classification job. These

classification results are later used in the encoder downstream systems for finding the

optimal coding units in each of the tree blocks, and subsequently reduce the number

of prediction modes. For our model training, we gathered a new dataset which in-

cludes diverse images for the better generalization of our results. The experimental
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results show that our proposed learning based algorithm reduces the encoder time

up to 66.15 % with a minimal Bjontegaard Delta Bit Rate (BD-BR) loss of 1.34 %

over the state-of-the-art machine learning approaches. Furthermore our method also

reduces the mode selection by 45.91 % with respect to the HEVC baseline.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

With the emergence of next-generation digital media and fast development of

multimedia technology, the high definition (HD) and ultra-high definition (UHD) res-

olution videos are becoming more and more popular. This explosive growth of video

content creates an urgent need for a new and better coding technology. In order to

meet this demand, the Joint Collaborative Team on Video Coding (JCT VC) has come

up with High Efficiency Video Coding (HEVC) standard [2]. HEVC adopts various

advanced coding techniques like, flexible quad-tree coding structure, sample adap-

tive offset, advanced motion vector predictions, and strives to achieve around 50%

bitrate reduction as compared to previous video coding standard [2], [3]. Although

the latest HEVC video coding standard supports block-based hybrid framework [3],

the coding efficiency improvement came from recursive quad-tree based flexible CU

partitioning of ranging from 8 × 8 to 64 × 64 [4]. To support more flexible coding

segmentation, the HEVC standard provides a hierarchy of adaptive coding tree units

(CTUs) which include non-overlapping coding units (CU) and prediction units (PU).

Each CU can be recursively split into four sub-CUs and again further split into one

or multiple PUs as shown in Fig. 1.1. For intra coding the CU supports two PU

partitioning types 2N×2N and N×N . The spatial intra prediction [3] in HEVC has

been significantly improved with more fine granular predictions which include mode

0 for planar, mode 1 for DC and 33 angular modes. These modes are employed to

adapt to different videos with diverse contents. According to HEVC standard, the
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rate-distortion optimization (RDO) process performs an iterative check for the CTU,

all combinations of CU partitions, PU modes, and selects the optimal ones which are

normally with the minimum RD cost. The above increased number of mode searches

in all directions includes a top-down checking, bottom-up comparison process and

hence requires a huge computation load. Again selecting smaller CU/PU size usually

results in a large number of bits to signal the mode information. It might become

an overhead to the network. Therefore, the encoder computation time becomes a big

burden for the real-time video applications. So it is essential to optimize the original

partition procedure of the quad-tree structure and lower the entire computational

complexity of encoding process.

Figure 1.1: (a) CTU structure partition, (b) PU sizes for CU intra prediction, and

(c) Hierarchical depth of a CTU divided into various CU sizes and (d) TU structure.
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To reduce the computational time in HEVC intra prediction, many efficient

algorithms have been proposed in the past decade. Piao et al. [5] introduced a rough

mode decision method to pick N best candidates from 35 modes using Hadamard cost.

Zhao et al [4] added most probable modes to the rough mode decision candidates

by utilizing the direction information of image edges and mode correlations. These

kinds of algorithms have positive effects on accelerating the intra prediction process,

but they need to search all CU depths to find the optimal tree partition. Wang

et al [6] introduced a three step prediction algorithm where the fast prediction of

CU splits, and the low precision rough mode decision (RMD) were used to speed

up the intra coding. In Shen et al [7] an effective CU size decision algorithm was

adopted to bypass the intra prediction for large CUs, and an early determination

strategy was used to reduce the number of candidate CU sizes. This strategy utilized

texture homogeneity and coding information from the neighbors. Min et al [8] also

released a fast CU size decision algorithm by utilizing both the global and local edge

complexities in different directions to decide the CTU partitions. Xiong et al [9]

proposed a pyramid motion divergence based faster CU selection algorithm for the

HEVC inter prediction. They investigated the correlation between the CU splitting,

motion divergences which was calculated using pixel motion vectors, and subsequently

made a more precise CU splitting decision. This method worked effectively, but

calculated the pixel wise optical flows which required additional hardware resources

for the final implementation. In spite of above various algorithmic implementations,

the encoder computation time is still high. On the other hand, the intra frame CU

predictions are highly correlated to that of neighboring units in terms of texture,

color, and shape cues which are not investigated in great detail. Hence, there is still

some space for further reduction in encoder time.
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In this thesis, we propose a deep CNN based algorithm to find the optimal CU

depth and subsequently reduce the number of prediction modes search. Our CNN

model learns the features from the input CTU image regions and classifies those, by

using a softmax classifier. For our model parameter learning, we collected a diversified

dataset [10] which contains thousands of images with different textures (homogeneous,

granular and dynamic), object shapes (small or big) and colors. Textures, patterns,

and colors are the key components in analyzing the natural objects and describe

the low-level image attributes [11]. Textures in images represent the high-intensity

variations and exhibit repeated structures. Again the number of details present in

textures can be quantified based on the granularity labels and used as an attribute

in our classification task. For our object detection, we are applying a region proposal

network on top of the convolution layer (fifth) and follows the training steps explained

in [12], [13]. For texture analysis, the low-level image cues are collected from the

coarser convolution layer (third) and later merged to the fully connected (FC7) layer.

Our approach effectively detects image texture and object shapes in CUs and classifies

the spatial patterns into four classes. Based on the classification results our algorithm

is able to predict the CU depth partition and later reduces the angular mode search

which has a good tradeoff between RD costs and encoding time. We provide our

results in terms of BD-BR [10], BD-PSNR, and encoder time-saving T in section 6.

1.2 Related Work

To the best of our knowledge in recent years, there are fewer deep learning

based papers published on encoder intra predictions. But in general the HEVC intra

prediction can be divided into two classes: heuristic based and learning based. In

heuristic methods, some intermediate encoding features are learned and determines

the CTU partitions. Cho et al [14] developed a fast splitting and pruning method at
4



Figure 1.2: Discussions of the implications of the results shown in the figure should

be left for the main text.

each CU depth level according to a Bayes decision rule based on RD costs (full and

low complexity). Khan et al [15] proposed a content-based scheme that adaptively

combined smaller PUs into larger PUs by recursively comparing the RD cost. The

arbitrariness of the above heuristic methods is found difficult in correlating the inter-

mediate features and achieving desired RD performance. To solve such problems the

machine learning based methods have emerged to reduce the intra mode coding com-

plexity. Correa et al [16] proposed a partition structure optimization scheme based on

decision tree mining technique and simplified the optimal CTU structure. Zhang et

al [17] introduced the learning based CU depth decision method with a joint support

vector machine (SVM) classifier. Hu et al [18] modeled the optimal CU partition as

a binary classifier using logistic regression and further alleviated the encoder compu-

tation. In all the above methods, some handcrafted features were manually extracted

to predict the partition patterns. Again these handcrafted features rely heavily on

the prior knowledge about their relationships with CTU partitions. To overcome the

above difficulties the CNN based architectures are introduced. Liu et al [19] have

5



developed two convolutional layered shallow CNN architectures to predict the CTU

structure. Li et al [1] introduced a CNN based model for complexity reduction on the

CU partition with a new CHIP data set.

Figure 1.3: (a) Prediction modes (angular) from 2 to 34 and associated displace-

ment parameters, (b) CU partitions of “BasketballPass Frame” given by HM16.9

with HEVC Intra coding and QP = 22
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1.3 Overview of Intra Prediction

In HEVC the intra prediction is employed to remove spatial redundancies.

Again the angular prediction is adapted to efficiently model different structures present

in the frames. Hence, the selection of the number of prediction directions provides

a trade off between the encoding time and coding efficiency. The prediction of the

target block is conducted by referring the neighboring samples within a frame and

the boundary region pixels. The prediction directions have angles measured by the

displacement of rows in PU and its reference rows both in the vertical and horizontal

directions [3]. As a result, HEVC provides up to 35 distinct directions for each PU

blocks in Fig. 1.3 (a). Again image textures have consistent orientation and might

cover several neighboring blocks. Hence, it is desirable to analyze the texture feature

statistics of the neighboring blocks and use those to improve the intra mode decision.

In order to accelerate the encoding process with an acceptable RD cost, it is necessary

to make a detailed analysis of CU size decision process.

A CTU represents the basic processing unit in the encoding and consists of

both Luma and Chroma components. The recursive splitting of CTU includes a se-

ries of non-overlapping coding units (CUs) with variable sizes and further splits into

prediction units (PUs). As shown in Fig. 1.1, CTU can either contain a single CU or

multiple CUs with size ranging from 64 × 64 to 8 × 8. As a result, a single 64 × 64

CTU can have 85 possible CUs in brute search. Finally, the CU partition which has

the minimum RD cost among all combinations of CU partitions will be selected as

the optimal CUs for our encoding process. With further split of CU, a typical HEVC

reference encoder must check a total of 40 + 41 + 42 + 43 + 44 = 341 PU blocks

to find the optimal combination of CU/PU partitions. Each PU includes 35 modes

(Fig. 1.3b) for its angular prediction and carry the information related to prediction
7



Figure 1.4: (a): Flowchart for finding Optimal CU on a single CTU, and 4 (b):

Pseudo code for the PU mode selection (PUMS).
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processes. Again the intra mode operation in HM software [20] is performed by using

all best possible CU/PU sizes and modes to find the ones with the least RD cost.

These exhaustive encoding iterations of the Rate-distortion optimization (RDO) pro-

cess considers the encoding possibilities and compares all of them in terms of bit rate

and image quality. Therefore, both the nested structure and encoding process are

responsible for the overall increase in computational time and would cause a great

burden to encoder. However, if we are able to predict most probable CUs according

to the relevant depth information and reduce mode checking range of PUs in advance,

then the computational complexity of the intra prediction would be significantly re-

duced. So our final objective is to find the optimal CUs and the best PU prediction

modes at each iteration. Fig. 1.4 (a) shows our proposed algorithm flowchart and

the subsequent pseudo-code loop for PU mode selection (PUMS). In our algorithm,

the CU depth splits are considered based on four classification scores ranging from 0

to 3.

The video frames are usually of different textures, object shapes and change over

time. The homogeneous or static image regions like an open sky or background (Fig.

3 (b) green box) do not contain much image textural information. Hence, further

CU depth split is avoided on these static regions and only a few simple directional

modes are chosen as optimal for RDO estimation. On the other hand, the dynamic

and granular regions contain rich textures. These image regions need further splitting

into CU/PUs and find the video contents. Again it is observed that the object motion

mostly exists at image edge regions. Hence, an accurate object and texture detection

measure is included in those dynamic regions with a subsequent increase in the number

of modes. Therefore, an exhaustive CU search is not necessary except at rich image

regions. As a result, the whole process saves lot of encoder computation time. In our
9



work, we introduce a CNN based architecture which is able to predict classes based

on the region feature statistics. The depth prediction helps in reducing a number of

search modes in PU by skipping some superfluous modes. According to pseudocode

loop (Fig. 4 (a), (b)), the number of PU prediction directions at class = 0 is reduced

to four modes and some mode reduction also followed at other class labels. Fig.

1.3 (b) displays the final CU partitions for ‘BasketballPass’ video sequence encoded

by HEVC HM 16.9 [20]. The block A is a CU of size 32 × 32 and split into four

16 × 16 CUs. The sub-CU of Block A (first row and second column) has relatively

high texture complexity and further split into smaller blocks. Similarly, the block B

has a size of 16×16, which has two sub-CUs (first column) with high complexity and

is split into small blocks. From these scenarios, we would find that if there is any

texture complexity difference among the sub-CUs, then the current CU is split into

smaller CUs. Thus, the complexities of the four sub-CUs are also important during

the quad-tree CU size decision process.

10



CHAPTER 2

PROPOSED CNN NETWORK

2.1 Introduction

We propose a deep CNN architecture which hypothesizes the texture and ob-

jects location features using an efficient region proposal technique and then classifies

the features using a soft-max classifier (Figs. 2.1, and 2.2). Our end to end process

comprises three steps: 1) region proposal network for region predictions, 2) object

shape detection, and 3) texture feature merging. Our object detection procedure is

inspired by the state-of-the-art detection technique explained in [12], [13] and ex-

tracts feature representations from the input images through a series of coarser to

finer convolutions. For texture feature calculation, we added a separate order less

Fisher Vector pooling operation (i.e. a region based texture descriptor) to our net-

work on top of the convolution features. The object and texture features are later

merged at a fully connected (FC) layer. Finally, the output probabilistic scores are

classified into four discriminate classes which in turn help to predict the CU depth

splitting in our HEVC intra prediction.

Fig. 2.1 gives the overview of our CNN based joint classification model, which

includes both texture and object features. The upper half of the Fig. 2.1 describes the

region proposal network (RPN) which proposes a set of regions of interest (ROI) for

object detection. The RPN network and its training procedure are more elaborately

explained in Fig. 2.3. As shown on the lower half of Fig. 2.1, the proposed ROIs from

11



Figure 2.1: Overview of our CNN based joint classification model by exploiting the

region category information.

RPN are merged into the main flow of CNN model and classified into four classes.

The classification task details are illustrated in Fig. 2.2.

2.1.1 Review of CNN Architecture

For our CNN model design we empirically experimented with the different num-

ber of layers, convolution receptive fields (filter kernel size), and a combination of

both. Finally, we came up with an architecture which operates jointly in an end to

end framework (Fig. 6). Our architecture mimics ZFnet [21] model and includes a

scalable architecture with five convolution layer and three fully-connected (FC) layers.

Each layer in the network is responsible for a specific task and learns features starting

from low-level features (blobs, edges, color pieces) to high- level features (rough object

structures) as we move into deeper and deeper convolution layers. The input image

to ConvNet is a fixed size of 224 × 224 and passed through a stack of convolution

layers with various kernel sizes as shown in the Fig. 2.2. Multiple convolution layers

are stacked together and then followed by a 2 × 2 max-pool layer with a stride of

12



2. To restore the spatial resolution, intermediate convolution layer inputs are zero

padded. All the hidden layers are equipped with Rectified Linear Unit non-linearity

(ReLU, max (0, x)) [22] and applied threshold on the filter responses. The number of

parameters, and the memory required for each network layer are summarized in Fig.

2.4. The memory requirements assume that each parameter is of 8 bytes or a double

precision floating-point number.

Figure 2.2: Our Deep CNN architecture with Object detection and Texture classifi-

cation.

During the training process, the network follows a forward path which stores

the gradients w.r.t. to its parameter. The stored values are then used in the back

propagation path. As a result, the memory requirement is doubled as shown in Fig.

2.4 which is sufficient for our GPU machine with 12 GB on board.
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Figure 2.3: Region Proposal Network with Bounding Box Regression and object

classification using BasketballDrill sequence.

2.1.2 Object Detection

The first step of the object shape detection network is to identify the regions

of interest (ROI) from the last convolution layer. In our implementation, the output

of ConvNet5 feature map forms the basis for the ROI network. These ROIs serves

as an attention model and proposes the possible potential object locations, which are

examined in the final step for object detection. In our implementation, we consider

ROI as the rectangular window and defined by a tuple(x, y, h, w), where (x, y) spec-

ifies its bottom-left corner and (h, w) its height and width. Fig. 2.3 illustrates the

region proposal network which simultaneously predicts object bounds and region wise

object-ness score at each position.

Our region proposal network (RPN) takes an input image and generates a dense

grid of rectangle anchor regions with specified size and aspect ratio. Looking into the

HEVC CTU depth partition structure we consider a range of anchor box scales from

16× 16, 32× 32, 64× 64 to 128× 128 (Fig. 2.5). Each anchor box is accommodated

14



Figure 2.4: Analysis of Network Parameters in CNN

with four aspect ratios (0.5, 0.5), (1, 2), (2, 1), (1, 1). To generate the region proposals

a 2× 2 sliding window is used over all positions on ConvNet5 feature maps, with the

center coinciding with the center of proposed regions. Each window is then mapped

to a 128-d dimensional vector which comprises 64 positive anchors and 64 negative

anchors. The above 128 vectors are then connected to FC6 and FC7 layers. The last

FC7 layer is then fed into 1) a box classification layer with two probability scores

and 2) a bounding box regression layer with four coordinates. The above process is

repeated for 16 times (4 box scales 4 aspect ratios) at a single position and continued

for all 20×30 ConvNet-5 features locations. Overall our prediction process generates

20×30 ×16 possible anchor boxes. The total number of anchor boxes are reduced to

1000 by using non-maxima suppression technique and ignore the boxes which cross the

image boundary. The anchor box is a mechanism to judge an image region whether

it contains an object or not. For our RPN training, we assign a binary class label to

each anchor. A positive label is assigned to an anchor box that has an intersection
15



over union (IoU) overlap (w.r.t its ground truth) higher than 0.6. Similarly, for an

anchor box whose IoU ratio lower than 0.3 is assigned with a negative label. Anchor

boxes which are neither positive nor negative (e.g. background) do not contribute to

our training (Fig. 2.5). During our training time the above hyper-parameter values

are tuned to best fit the different types of objects, which we are trying to find.

Figure 2.5: Generated 16 anchor boxes for each sliding window on the ConvNet5

feature map.
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2.1.3 Texture Feature Calculation

Textures have an important role in characterizing many natural objects, par-

ticularly for those objects that best qualifies a pattern such as a granularity, static

and dynamicity as illustrated in Fig. 2. Fisher Vector (FV) has been widely used to

aggregate the local descriptors of an image into a global representation in large-scale

image retrieval [23], [24]. The FV pools the local features densely within the described

regions, and is therefore more apt at describing textures. Traditionally the convolu-

tion layers are regarded as filter banks and considered the best for feature learning

[11], [25]. So on the top of our ConvNet3 layer, we build representations using the

FV pooling which is commonly done in the bag-of-words approach. Our pooling op-

eration is order less, single scale i.e. 32× 32, and hence suitable for the textures [8].

We extracted 32× 32 patches sampled with a stride of 16 pixels. The above 32× 32

patch size is considered, as it is reasonable for the CU size. For our texture analysis

we calculate the texture descriptors based on FV’s, over the ConvNet-3 (Fig. 6) and

collected the low level image cues. The FV pools the local features densely within

the described regions and are therefore apt at describing the image textures. Our

network results in 256 dimensional local features for Fisher vector computation and

pools into a representation with 32 Gaussian components. Finally, it results in 16K

dimensional descriptors which are much higher than the FC6 layer (1024-d) and is

highly redundant. So the FV dimension is projected to 1024-d by using the principal

component analysis (PCA) technique. After above dimension reduction the effective

dimension of FC and FV are comparable and are merged at FC6 layer.

Let Xi = {xij}mij=1 to be a set of local SIFT descriptors (e.g. scale-invariant fea-

ture transform descriptor) [26] [29] extracted from an image, where xij ∈ RD, and mi

is the number of local descriptors. We first revisit the traditional FV φ(Xi), which en-
17



codes a set of local descriptors Xi extracted from an image by fitting a K - component

Gaussian Mixture Model (GMM) uλ(x) =
∑K
k=1wG

k uk(x) to the local descriptors. FV

encodes the derivatives of loglikelihood with respect to its parameter set [23], denoted

as λ = {wG
k , µk(x),

∑
k, k = 1, 2...K}, where wG

k ∈ R, µk ∈ RD×1, ∑
k ∈ RD×D. The

wGk , µk,
∑
k are the mixture weight, mean vector and co-variance matrix of the GMM

model, and µk = diag (σ2
k), σk ∈ RD×1. We assume that the co-variance matrices are

diagonal, and denoted by the variance vector σ2
k. In particular, the proposed Fisher

Layer makes two simplifications to the original FV: 1) all GMM components have

equivalent weights; 2) co-variance matrices of all the Gaussian components share the

same determinant so that the kth Gaussian distribution uk(xij) can be written as:

uk(xij) = 1
(2π)D/2 exp{1

2(xij -µk)T
∑−1
k (xij -µk)} (2.1)

The gradients of a single descriptor xij w.r.t the parameters uk and σk of the

simplified GMM can be written as:

Gxij
µk

= γj(k)[wGk � (xij + bk)] (2.2)

Gxij
µk

= γj(k)[(wGk � (xij + bk))2 − 1] (2.3)

Where � is an element-wise product operation, wGk = 1
σk
, bk = −uk. wGk and

bk are sets of learn-able parameters for each Gaussian component k. γj(k) is the

posterior probability, and can be written as follows:

γj(k) = uk(xij)∑K
n=1 uk(xij)

=
exp{−1

2(wGk � (xij + bk)T )(wGk � (xij + bk)}∑K
n=1 exp{−1

2(wGk � (xij + bk)T )(wGk � (xij + bk)}

(2.4)

For any single local descriptor xij, itś output Fisher layer can be denoted as:

φ(xij) = [Gxij
µ1

T , ..., Gxij
µk

T ;Gγij
µ1

T , ..., Gxij
γk

T ] (2.5)
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As a result, the final FV φ(Xi) of the local feature set Xi from an image is

the mean-pooling of all local representations in Xi, i.e. φ(Xi) = 1
mi

∑mi
j=1φ(xij). All

the operations in Fisher layer are differentiable and the parameters wk and bk can be

derived via back-propagation. Before using the representation into a linear model,

the aggregated descriptor φ(Xi) is divided by its norm ‖ φ(Xi) ‖2 i.e. L2 normalized

as described in [23].

2.1.4 Loss Function

A multi-objective loss function is employed to train our region proposal network

(RPN) for both feature classification and bounding box regression. The loss function

is given below:

L(pi, pi∗, ti, ti∗, θ) = 1
Ncls

∑
i Lcls(pi, pi∗, θ) + λ1

1
Nloc

∑
i pi
∗ × Lcls(ti, ti∗, θ) + λ2LFVi

(2.6)

pi = Probability (predicted) of an anchor i being an object.

pi
∗ = Ground truth label 1 for +ve anchor or 0 for –ve anchor

Ncls = Number of anchors in mini batch of 128

Nloc = Number of total anchors i.e. 1000

λ1 and λ2 = Regularization parameters

i = Index of an anchor box in a mini batch

θ = Represents the network weight and bias parameters

Lcls = Classification loss

Lloc = Bounding box regression loss

LFV = L2 normalization on Fisher vector space
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ti is a 4d vector representing the four coordinates of a predicted bounding box

and ti∗ is that of the ground truth box, associated with a positive anchor. A simple

bounding box regression is adapted such that ti and ti∗ become close to each other

and improves localization performance after a couple of iterations. The classification

loss Lcls is the cross-entropy loss −{logpip∗
i,θ
} which is determined over two classes

(object or not object). The term Lloc is defined as the regression loss over a tuple of

true bounding-box regression target for class pi∗ with co-ordinate ti(x, y, w, h), and

a predicted tuple ti∗(x′, y′, w′, h′). We used the L1 smoothing function, as defined

in [12], and calculated the loss between the predicted bounding anchor box and the

ground truth. Our final bounding box regression Lloc loss is defined below:

L(ti, ti∗, θ) =
∑

i∈{x,y,w,h}
L1(ti∗ − ti) in which

L1(x) = 0.5 x2 if |x| < 1 , else |x| − 0.5

The regression loss term pi
∗×LLoc is only activated for positive anchors (pi∗ =

1) and disabled at negative anchors. The third term LFV is the L2 normalization on

Fisher vector space. We chose the L2 norm because it is the natural norm associated

with the dot-product. So our final loss function L in equation (1) consists of pi, ti, θ

and φ terms only. In our implementation, the two terms Lcls and Lloc are normalized

by Ncls and Nloc respectively. λ1 and λ2 are the regularization parameters to balance

the three losses in eq. 2.1. At the region generation steps, we set the regularization

values λ1 = 7 and λ2 = 0.001, which implies that we are biased towards better box

locations. After RPN training we have thousand proposed bounding boxes all over

input image as shown in Fig. 2.3. Our objective is also to detect both small and

big objects present on frames. The small object detection is quite challenging for the

proposed regions like 8× 8 or 16× 16. To overcome this we consider a bigger context
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region i.e. 32×32, 64×64 anchor box over a small object size like 8×8 and followed the

technique explained in ContextNet [27]. So our proposed rectangular region justifies

the above context based technique for small object detection too. Our RPN + CNN

network is able to achieve detection accuracy up to 65.28% mean Average Precision

(mAP) over the above proposed regions per image. At test time our model is able

to generate region proposals in forty-two milliseconds and achieves classification with

near real-time computation.

Table 2.1: Summary of Six step CNN training Process
Step 1: Pre-train a Deep CNN model (ZFnet) for initializing basic

layers in Step 2 and Step 3.

Step 2: Train CNN for the region proposal generation

Step 3: Train CNN for object shape detection using region

proposals obtained from Step 2.

Step 4: Fine-tune CNN for region proposal generation, by sharing

CNN feature layer weights trained in Step 3.

Step 5: Fine-tune CNN for region wise object and texture detection

using region proposals obtained from Step 4, with feature layers fixed.

Step 6: Output the unified CNN classification as the final

single model, by training jointly in Step 4 and Step 5.

On the final classification step, an end to end training is performed by using

the predicted bounding box regions from the first stage (Fig. 2.3). The image regions

(CTU/CU) are then classified into four classes by using the Softmax classifier. For our

model training, a six-step process is included for the joint optimization and detailed
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steps are summarized in Table 2.1 . In steps 2 and 3, the object proposal and detection

networks are separately trained. After fined tuning steps 4, and 5, both the networks

shared their parameters for CNN feature extraction. Finally, two separate networks

are combined into a unified network and perform our classification task as seen in

Fig. 2.2 and step 6 of Table 2.1. All the training hyper-parameters i.e. IoU, anchor

box scale, aspect ratio, regularization parameters step size, and learning rate values

are included in section IV and V.

Figure 2.6: BD-BR, BD-PSNR (dB), Time Reduction T (%) for our Proposed Algo-

rithm on HM16.9 Main Profile Video Sequences and other state-of-the-art Models at

QP = 22, 27, 32, 37
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Figure 2.7: Table IV: BD-BR, BD-PSNR (dB) and T (%) for our Proposed Algorithm

on HM16.9, Class F videos at QP =22, 27, 32, 37

2.2 CNN NETWORK TRAINING

For our CNN training we randomly select 20K images from PASCAL VOC

2007 object data sets [28], texture data sets like DynTex (comprehensive database

of Dynamic Textures) [29] , and DTD (describable textures dataset ) [30]. The

ground truth images are collected by wrapping into various image regions. For our

experiment we consider only the luminance Y frames and extracted patches of size

224× 224. As our model mimics the ZFnet, we try to maintain the input patch size

as 224 × 224 for our better network simplification. Again we know from the paper

[2] , that the maximal CTU sizes in HEVC can go up to 64× 64. Initially we have a

plan to introduce an image pyramid [31] as an input to CNN which can accommodate

various CTU shapes. But we convinced that the above pyramid because of network

complexity and moved it as a future study. As a result the entire CTU is feed into

to our CNN trained model. Though our patch size is larger than the current CTU

size, but it helps training our deeper model and gives a simple model as compared to

recent CNN models explained in [1] and [32]. We believe that our bigger patch size

might accommodate bigger CTU/CU sizes on the future video coding standard. To

use the data set efficiently we adopt three data augmentation techniques 1) horizontal
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flipping 2) scaling by a factor of 0.7, 0.5, 0.4, and 3) rotation by degrees of 90, 180

and 270. Then our training set is multiplied into 2 × 4 × 4 = 32 times to that of

the original data set. The objective loss functions L (θ) on equation (1) is minimized

using the stochastic gradient descent with standard back propagation [33].

Figure 2.8: A plot of training data Epochs and validation loss over all cross validation

folds.

The layer weight parameters are initialized from a zero-mean Gaussian distri-

bution with 0.05 standard deviation. The weight matrices are updated in terms of

learning rate and weight gradients. The momentum parameter was set to 0.99 and

weight decay to 0.001 [34]. Our implementation is derived from publicly available

python/C++ based Tensorflow framework [35] and the training is performed on an

NVIDIA K40 GPU machine. The multi-core training operation is carried out by

splitting the training images into batches and parallelly process the task on each
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core. After the batch gradients are computed at each core, they are averaged to

obtain the gradient of a full batch. The mini batch sizes are set to 128 anchors,

which are extracted from two images and contain both positive and negative anchors

as shown in [12]. The mode parameters are converged after around 1100 iterations

with twenty-four epochs. The entire model training process took around 22 hours on

our GPU system. Fig. 2.8 shows the validation loss along with number of epochs

over the training data set. The thick blue line is the average loss over all the cross

validation folds. The trained files along with different quantization parameter (QP)

parameters are compiled and integrated on a locally installed HM software. For our

implementation we modified the “getPartitionSize”, “getPredictionMode” and “get-

Depth” procedures in “TEncSlice.cpp”, “TEncSearch.cpp”, “TEncCU.cpp” modules

and respective header files on HM software 16.9 [20]. During the testing phase, all the

encoder parameter changes occurred at the “encoder_infra_main·cfgconfiguration

file.

2.3 RESULTS

To evaluate our algorithm performance we compared our model output and

three other benchmark models on the HEVC HM16.9 reference software [36]. All

the experiments are performed on a desktop computer (Windows operating systems)

with Intel I7 2.99GHz processor and NVIDIA Tesla K40 GPU @875 MHz graphics

card with 12 GB memory, CUDA version 8.0. The experimental results for various

test sequences are presented in this section. Our proposed region wise feature clas-

sification algorithm was compared with the recent CNN method by T. Li et al [1],

and the heuristic methods Zhang et al [17] and Min et al [8]. Our experiment strictly

followed the common test conditions defined in [37] and HM [20] software.
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To verify the performance of our algorithm we tested with the standard video

sequences of class A, B, C (WVGA), D (WQVGA), E, and separately with the Class

F videos. A group of experiments were carried out with QP = 22, 27, 32 and 37 on

the above recommended video sequences and the results are shown in Tables 2.6, and

2.7. The BD-BR and Bjøntegaard delta peak signal-to-noise ratio (BD-PSNR) are

applied to evaluate the RD performance of different schemes and was compared with

the original HM output. The encoder time- saving ∆T is calculated to measure the

time reduction of the tested methods. The coding efficiency loss was measured by

using BD-BR [10] and the encoder time saving was derived by,

∆T = 1
4

∑4
i=1

Tprep(QPi)−Torg(QPi)
Torg(QPi) ∗ 100%

where Torg denotes the encoding time consumed by original HM and Tprop de-

notes the algorithms considered in our simulation. As shown in Table 2.6, our al-

gorithm was able to achieve on an average of 66.89% encoder time saving along all

the intra encoding experiments. Since we focused on intra coding performance (AI

mode), the experiments were carried out for all intra I-frame sequences. In our sim-

ulation, we included two phases of coding performance evaluation. One was to make

the comparison between the coding performances of our proposed algorithm and the

state-of-the-art algorithms. The other was the number of mode reductions compari-

son between the proposed algorithm and the HEVC baseline.

2.3.1 Evaluation of Encoding Time Complexity Reduction

The BD-BR, BD-PSNR, and encoding time complexity reduction (∆T) results

of our algorithm are tabulated in Tables 2.6, 2.7 and successively compared with Min
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et al. [8], Zhang et al. [17], and Li et al. [1] methods. It is observed that our deep

CNN based approach saved more encoding time at four given different QPs i.e QP

= 22, 27, 32, 37. On an average our deep learning approach (66.15%) outperformed

other three approaches, (62.92 %) for [1], (-51.77 %) for [8], and (-48.02%) for [17]

in terms of encoding time complexity reduction. We noticed that our CNN approach

consumed less time than that of shallow CNN Li et al. [1] model. It might be rea-

son that, the Li et al. [12] requires RDO search for the decision by splitting CTU

from 64 × 64 to 16 × 16, and learned three separate CNN models for obtaining the

classification (three scales). We further found that the gap of time-savings between

our and other heuristic approaches become larger at given QPs. Perhaps it is due to

rich feature learning at various image regions and efficient classification task of our

CNN model. In addition, we can see from Table 2.7 that our algorithm was able to

reduce the average encoding time as compared to [1] and [17] on all the class F video

data sets. The number of modes evaluated on our RDO process are analyzed and the

results are displayed in Table 2.8. It is observed that an average of four modes are

evaluated in our RDO process as compared to seven modes in HEVC i.e. reduced up

to 45.91% modes.

In our simulation, we also included Class F video sequences which are called the

non-camera capture uncompressed source video sequences. Even though the encoding

time complexity reduction is still retained on the Class F sequences, but observed that

the increase of BD-BR on class F (1.84% ) was larger than the conventional class A-E

video sequences (1.34%) for all intra coding (Table 2.6 and 2.7). This was probably

due to different content distributions between Class F video and other classes. We

will address the above subjects on our next research exploration and will come up
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with an updated algorithm with better encoding time.

2.3.2 Computational Complexity of CNN

The recent success of CNN models in multimedia applications, promises to im-

prove the effective algorithm implementation and reduces the computational cost.

One direction is to 1) improve the CNN algorithm is by using GPUs and field-

programmable gate arrays (FPGAs) as in [38], [39], and [40], and the other direc-

tion is to reduce the number of basic mathematical operations needed in CNN layer

computations. Here, we analyze the time complexity of CNN by counting number

of floating-point operations which include only multiplications and additions. So we

investigate the linear algebraic properties in CNN computations without analyzing

the hardware cost.

The CNN layers mainly comprise three steps: convolution, pooling, and ac-

tivation rectified linear unit (ReLU). The convolution is simply multiplication and

accumulation with additive operations, and depends on six factors: 1) Size of the

filter or kernel (X × Y ), 2) Number of filters (N), 3) Size of the input feature map

(FX × FY ), 4) Number of input feature maps (n), 5) Number of channels per input

feature map (C), 6) Stride i.e. S (step by which the filter slides over input feature

map). As explained in [41], the number of multiplication and addition operations in

a convolution stage can be calculated as:

(Fx −X + S)/S × (Fy − Y + S)/S × C ×N × n (2.7)

We calculated the execution time of convolution steps in detail and understand

how the overall execution time is affected. A breakdown of run time is given in Table
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2.10. We also observe that the overall run time is dominated by convolution opera-

tions and accounts approximately 90% of the total computation time in a given layer

and is liable for most of the execution time.

Figure 2.10: Breakdown of CNN run time in nanosecond, for feature classification of

image size = 224× 224

To understand the time complexity of our model we counted the number of

floating-point operations across each layer, which include the number of additions

and multiplications. The Table VII reports the numbers of floating-point operations

for each layer of CNN and performs a total of around 0.63× 106 floating-point opera-

tions, including 453,858 additions and 471,143 multiplications. To better understand

the total encoding time, we implemented CNN in a GPU mode. In our implementa-

tion we used Intel I7 desktop which holds NVidia K40 GPU inside. The K40 GPU

full performance is double-precision with 1.43 Tera Floating point operations per sec-
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ond (TFLOPS). But the floating point operations in our CNN convolution stages

need double precision (FP 64). Again each multiplication or addition operation is

considered as a FLOP on its own. Since each convolution is simply a multiplication

and accumulation operation, now it takes two FLOPs. We followed the convolution

specification in Fig. 2.4 and calculated total number of MAC operations in our model

by using the Eq. 2.7. As shown on Table 2.10, the model requires 638K MACs to

process a 224× 224 image patch. As a result, the time taken by K40 GPU machine

is t = 2×638×103

10×1012 = 126.8 nano-seconds to execute the convolution stages. We compare

our model performance (run time) with Li et al model [1] and it is observed that

our CNN model performs fewer floating-point operations by at least two orders of

magnitude.

Figure 2.11: Number of multiplication and accumulation (MAC) operations in CNN

layers for a single image patch of 224× 224
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A comparison of our CNN model with the Li et al model [1] is performed in

terms of GFLOPS savings and is shown in Fig. 2.12. We used different convolution

kernel sizes and feature maps in Fig. 6, Table-I and calculated % FLOP saving in

each convolution layers. From Fig. 2.12 it is observed that the Li et al model [1]

may not bring benefits on higher matrix size (activation map), but could lead to

more than 100% overhead, especially when the size of the matrix is small. But in our

model setting a greater benefit is achieved due to the element-wise multiplications

and redefined granularities of matrix elements.

Figure 2.12: Comparison of our CNN model with Li et al. model [1] in terms of

GFLOPS saving
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2.3.3 Evaluation of Rate-Distortion Optimization

In addition to encoding time reduction, the rate distortion (RD) performance

is also a critical metric for our evaluation. In our simulation, we compared the RD

performance of our method w.r.t. other methods in terms of BD-BR and BD-PSNR.

We can see from Table 2.6 that the BD-BR increment of our deep CNN approach is

averaged at 1.34% for the test sequences and outperformed other machine learning

methods (1.875 %) [17], (1.638 %) [1], and (2.388 %) [8].

Figure 2.13: RD curves of proposed by our CNN algorithm and that of HEVC base

line.

On the other hand our approach incurred -0.044 dB PSNR degradation for

videos which is far better than those of (-0.084 dB) for [1], (-0.188 dB) for [8], and
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Figure 2.14: Comparison between the bit rate vs. encoding time of our CNN algorithm

and that of HEVC baseline

(-0.107 dB) for [17]. Though Li et al [1] are able to achieve a significant encoding

time reduction, a notable degradation is found on the RD findings. The main rea-

son of the above degradation is that it could not maintain sufficient high prediction

classifier accuracy for different QPs. Thus, our approach performed best among the

three approaches by benefiting from the deeper CNN structures with better transfer

parameter learning from our large diversified data set. The improvement of the RD

performance by our approach is mainly attributed to the optimal prediction accuracy

of CU partition and from efficient PU mode search. The RD curves of our proposed

algorithm and the original test model HM16.9 are shown in Fig. 2.13. The BD-bitrate

vs PSNR graph included the best case “BQMall” and the worst case “PeopleOnStreet”

in terms of RD performance. We observed that the proposed model achieves better
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image quality with the original HEVC reference encoder throughout different QPs.

Again Fig. 2.14 shows the BD-Bitrate vs. encoding time graphs at four different

QPs which justified that our CNN model can efficiently reduce the encoding time

as compared to original HEVC test model. Furthermore, in our model the encoding

time reduction is observed for the high-activity sequences such as “KristenAndSara”,

“RaceHorses”, and for the low-activity sequences like “BasketballDrill”, “Kimono1”,

and “SlideShow”. The minimum encoding time reduction is observed at “Blowing-

Bubbles”.

2.4 CONCLUSIONS

In this thesis, we presented a CNN based algorithm which learns the special im-

age features to predict the optimal intra frame CU partitions and reduces the number

of mode searches instead of conventional brute-force search. The experimental results

show that our deep learning approach performed better than the state-of-the-art ma-

chine learning processes in terms of BD–BR, BD–PSNR, encoding time and mode

search in RD evaluation. The improvement of RD performance by our approach is

mainly due to high prediction accuracy of CTU partitions. The evaluation of video

test sequences demonstrated that our approach is able to outperform the previously

studied state-of-the-art machine learning models [1], smadi:spk30, [8] in terms of re-

ducing encoder time. Again we compared the number of RDO modes selected by

our model to that of HEVC baseline and achieved up to 45.91% reduction in CU/PU

mode search process. Although our deep learning based network shows a possible

alternative to faster mode selection, more careful training strategies are important

for the real-time usages. The videos usually vary widely in the temporal dimen-

sion. So to capture the long-term temporal dynamics within and between frames a
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bi-directional long short-term memory (LSTM) will be very effective [42], [43]. In a

future direction: we would also like to extend our work to 1) inter frame (P and B)

predictions by using broader data set categories and recurrent LSTM network [44],

which is a widely used learning-based algorithm for video analysis, 2) introduce an

image pyramid [31] as input to CNN to handle different image scales and resolutions.
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APPENDIX A

JENSEN’S INEQUALITY FOR CONVEX FUNCTIONS AND

SYSTEM INSTRUCTIONS
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In this appendix, we present a procedure for improving the bounds obtained by

the application of Jensen’s inequality. The methiod is based on the idea of reducing

the thickness of a convex region into many thinner convex regions.

A.1 Convex Functions

A real valued function f is defined to be convex over an interval Ω = [α, β] if

λΦ{x1) + (1− λ)Φ(x2) ≥ Φ(λx1 + (1− λ)x2}. (A.1)

If the above inequality is reversed or

λΦ(x1) + (1− λ)Φ(x2) ≤ Φ(λx1 + (1− λ)x2), (A.2)

then Φ is called concave.

A.2 Jensen’s Inequality for Convex Functions

Let x be a random variable with a finite mean. If Φ(x) is real-valued convex

function, then

E[Φ(x)] ≥ Φ (E[x]) (A.3)

where E[.] is the mathematical expectation.

A.3 System Instructions

In order to run the core system the following dependencies are required:

• Python 3.6.

• Keras

• Tensorflow
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• Numpy

• Python Imaging Library (PIL)

• h5py

• imgaug

• opencv-python

The system has only been tested with Ubuntu 14.04 (Linux Singularity box),

but it should be possible to run on both Windows and Linux as long as the listed

dependencies have been installed. Ubuntu is highly recommended because of a more

convenient installation process.

A Nvidia GPU is also highly recommended for running the system. In most

instances a GPU can give considerable speed improvements when training compared

to a CPU. This is critical when having to deal with large datasets and models with

millions of parameters. In order for Tensorflow Keras to efficiently use your GPU

while training, CUDA Toolkit has to be installed.

A graphical user interface can also be utilized for monitoring the training. Run-

ning experiments can be stopped from this user interface, as well as a debugging option

which displays examples and model predictions. In addition all experimental data and

results are stored as JSON, and can be viewed in the user interface. This includes, a

loss per epoch plot, precision and recall graph and hyper-parameter configuration.

For installation instructions, please read the included README files of the

repositories.
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The URL of these repositories are listed below:

• https://github.com/fizyr/keras-retinanet

• https://github.com/fizyr/keras-retinanet/tree/master/keras_retinanet

• https://github.com/fizyr/keras-retinanet/blob/master/keras_retinanet/bin/train.py
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APPENDIX B

ESTIMATION of BD - PSNR and BD - BITRATE
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In this appendix, we provide the computation of BD- PSNR and BD bit rate

[10], [51]. BD-PSNR (Bjontegaard – PSNR) and BD-bit rate (Bjontegaard – bit

rate) metrics are used to compute the average gain in PSNR and the average per cent

saving in bit rate between two rate-distortion graphs respectively and is an ITU-T

approved metric [10]. This method was developed by Bjontegaard and is used to

gauge compression algorithms from a visual aspect in media industry and referenced

by many multimedia engineers. The MATLAB code is available online [51].

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode)

% R1,PSNR1 - RD points for curve 1

% R2,PSNR2 - RD points for curve 2

% mode -

% ’dsnr’ - average PSNR difference

% ’rate’ - percentage of bit rate saving between data set 1 and

% data set 2

% % avgdiff - the calculated Bjontegaard metric (’dsnr’ or ’rate’)

%

% (c) 2010 Giuseppe Valenzise

%

% References:

%

% [1] G. Bjontegaard, Calculation of average PSNR differences between

% RD-curves (VCEG-M33)

% [2] S. Pateux, J. Jung, An excel add-in for computing Bjontegaard metric and

% its evolution

% convert rates in logarithmic units
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lR1 = log(R1);

lR2 = log(R2);

switch lower(mode)

case ’dsnr’

%PSNRmethod

p1 = polyfit(lR1, PSNR1, 3);

p2 = polyfit(lR2, PSNR2, 3);

%integration interval

min_int = min([lR1; lR2]);

max_int = max([lR1; lR2]);

%find integral

p_int1 = polyint(p1);

p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

%find avg diff

avg_diff = (int2-int1)/(max_int-min_int);

case′rate′

%ratemethod

p1 = polyfit(PSNR1,lR1,3);

p2 = polyfit(PSNR2,lR2,3);

%integrationinterval

min_int = min([PSNR1; PSNR2]);

max_int = max([PSNR1; PSNR2]);

%findintegral

p_int1 = polyint(p1);
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p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

%findavgdiff

avg_exp_diff = (int2-int1)/(max_int-min_int);

avg_diff = (exp(avg_exp_diff)-1)*100;

end
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ACRONYMS

BD-BR Bjontegaard Delta Bit Rate

CNN Convolutional neural networks

ConvNet Convolutional networks

CTU Coding tree unit

CU Coding unit

DTD Describable textures dataset

DynTex Comprehensive database of DynamicTextures

HEVC High Efficiency Video Coding

FC Fully connected

FPGAs Field programmable gate arrays

FV Fisher Vector

GMM Gaussian Mixture Model

GPU Graphics processing unit

JCT-VC Joint Collaborative Team on Video Coding

L1 Least Absolute Deviation

L2 Least Squares
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LSTM Long short-term memory

PCA Principal component analysis

PSNR Peak Signal to Noise Ratio

PU Prediction units

PUMS PU mode selection

RDO Rate-distortion optimization

ReLU Rectified Linear Unit

RMD Rough mode decision

ROI Region of interest

RPN Region proposal network

SIFT Scale-invariant feature transform

SVM Support vector machine

TFLOPS Tera Floating point operations per second

w.r.t with respect to
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