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Abstract

OPTIMAL CONTROL METHODS FOR CHAGAS DISEASE

Francis Mastrome, Masters of Science in Mathematics

The University of Texas at Arlington, 2018

Supervising Professor: Christopher Kribs

Chagas disease is the world’s most neglected tropical disease. Having a lack of cure

makes the primary focus on the disease preventing it and controlling it. This study takes

into account three different control measures: bed nets, low-volume insecticide spraying,

and improving housing conditions, analyzes their cost effectiveness compared to each other,

and determines which combination of the three control measures prevents the most T. cruzi

infections in a rural Latin American village over a decade.

It was shown that there is a a hierarchical importance in the control measures when

preventing the spread of Chagas disease. In order of highest effectiveness, they are bed

nets, low-volume insecticide spraying, and improving overall housing conditions. It was

found that the most cost-effective scenario occurs when full coverage for bed nets and low-

volume insecticide spraying is obtained, followed by devoting the remaining portion of the

budget towards improving overall housing conditions. It was shown that if at least 36.30

USD per month is devoted to bed nets, then R0 < 1.
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1. Introduction

Chagas disease, also known as American trypanosomiasis, is a life-threatening illness caused

by the protozoan parasite Trypanosoma cruzi. T. cruzi is spread through a number of different

ways. A few leading causes include vertical transmission in hosts, oral transmission, and ster-

corarian transmission via blood meal, where the vector bites the host and then defecates near

the wound. The parasite is contained in the feces of the vector, which is therefore transferred

upon defecation onto the host, where it spreads into the body. Nearly ten million individuals

throughout Latin America are infected with Chagas disease. Chagas disease causes organ de-

formity and early death in nearly one third of the infected population. The disease can also be

transmitted through organ transplants and blood transfusions.

Preventative measures for Chagas disease focus on controlling vector population density.

The main approaches include spraying insecticides, improving the quality of housing, using

bed nets, and screening blood donors. There are currently no effective vaccinations to treat

Chagas disease. The only drug treatments are for the acute stages of Chagas disease, but they

are highly toxic. In fact, the efficacy of these drug treatments has been called into question on

a number of occasions [10]. For these reasons, current studies and methods of prevention are

focused on vector control and monitoring blood work.

Chagas disease is most prevalent in South America, mainly in people who cannot afford

health care. For that reason, this study will focus on optimizing control methods of Chagas

disease to describe how those who cannot afford screening or treatment can prevent infection.

We will focus on optimizing control methods for Chagas disease using bed nets, spraying in-

secticides, and improving housing conditions.

There have been numerous studies regarding domestic transmission of Chagas disease. One

such study, [19], modeled the long-term population effects insecticide spraying had on Tri-

atoma infestans. [3] modeled the overall population dynamics of vectors (both infected and
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uninfected), infected hosts, and other mammals in a village over a decade. This allows us to see

how Triatoma infestans reproduce and spread T. cruzi in a small area.

Numerous studies have been conducted over the past few decades regarding control mea-

sures for vector populations. In [21], insecticide was sprayed in a large number of communities

in Argentina over a twelve year period on a fixed budget. [1, 22] analyzed the cost effective-

ness of implementing low-volume insecticide spraying vs not doing anything at all. They also

analyzed the efficiency with which certain insecticides can control vector populations, namely

Deltamethrin. [15] analyzed the effectiveness of long-lasting insecticidal nets, particularly on

preventing contacts between humans and vectors infected with Malaria in Africa. [17] studied

the effectiveness of different combinations of control methods, namely spraying insecticides on

timed intervals, improving housing conditions, and combining the two. [17] conducted a study

that compared different combinations of spraying insecticide and improving housing condi-

tions. Interestingly, they showed that spraying insecticide every few months near the beginning

of making housing improvements proved the most effective at maintaining low vector popula-

tions for extended periods of time. The study done in [17] was conducted in real time at multiple

villages. This study will only focus on modeling spraying at regular intervals throughout the

period in question.

Using bed nets is the most affordable control option available to prevent infections. The

main purpose of a bed net is to reduce contact with vectors, which would prevent blood meals

on hosts and therefore reduce the number of potential infections. Throughout this study, we will

assume that a bed net is a Long-Lasting Insecticidal Net (LLIN). We will assume that the use

of bed nets affects only the contact rate (and thus potentially vector longevity).

Spraying insecticides is a very common method used to control vector populations. Multiple

health organizations have conducted studies on insecticide effectiveness, vector resistance, and

its ability to slow infection rates [24, 18]. Unlike bed nets, this is both a preventative and control
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measure. It does cost more to spray insecticides in a residence, but it temporarily annihilates

the vector population.

Theoretically, the best way to control populations of vectors is to improve overall housing

conditions. In rural Latin America, most dwellings are made of materials that would not be

acceptable in developed countries. Doing things such as filling in holes in walls, replacing

roofing materials, caulking, etc. will decrease the number of points for vectors to enter into a

host’s dwelling. Doing so will also decrease the population of vectors by reducing the number

of hosts available to them. This is the most expensive option available that is being considered

in this study. It could very well be an issue for those who cannot afford health care as they

might not be able to afford to perform upgrades in their housing situations.

Bed nets, insecticide spraying, and housing improvements are all potential control methods

for Chagas disease. This model will analyze each control method on its cost efficiency and its

effectiveness to minimize infections given a specific budget. It will do so by creating a dynam-

ical system that models T. cruzi which incorporates all three control methods and determines

which combination of control measures reduces infections the most.
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2. Model

To describe the effects of optimizing control methods for Chagas disease, we will first de-

scribe the underlying assumptions. For simplicity purposes, we will only consider a small en-

vironment. Our setting will focus on domestic transmission in a rural Latin American village.

We will focus on two different populations, the hosts (humans) and vectors (which may or may

not be infected by T. cruzi). Throughout this paper, the subscripts H and V will correspond to

hosts and vectors, respectively.

Variables, notation, and parameters are summarized in Tables 1 and 2. In Table 1, we follow

the approach used in [19] of assuming a village with a population of 400 and extrapolating an

initial figure for vector population and infection prevalence from published data.

Table 1: Variables and notation for optimization of control methods model.

Var. Meaning Units I.C. Source
NH(t) Density of hosts hosts/village 400 [19]
SH(t) Density of uninfected hosts hosts/village 310 [19]
IH(t) Density of hosts infected with T. cruzi hosts/village 90 [19]
NV (t) Density of vectors vectors/village 33995 [19]
SV (t) Density of uninfected vectors vectors/village 23049 [19]
IV (t) Density of vectors infected with T. cruzi vectors/village 10946 [19]

The total host density is given by NH = IH + SH , and similarly for NV . Since vertical

transmission of Chagas disease is not present in vectors, birth produces only susceptible vectors.

The birth rate of vectors will be accounted for logistically. In this model, however, improving

housing conditions will impact the birth rate of vectors. More specifically, improving housing

conditions will decrease the carrying capacity by a factor of c.

The dynamics of the system are shown in Figure 1.

The resulting dynamics can be summarized by the following system of ordinary differential

equations:
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Table 2: Parameter definitions and estimates.

Parm. Definition Units Value Source
rH Maximum growth rate for hosts per year 9.637e-2 [8]
rV Maximum growth rate for vectors per year 2.20925 [8]
µH Natural mortality rate of hosts per year 2.57e-5 [4]
µV Natural mortality rate of vectors per year 3.27e-3 [12]
ωV Starvation mortality rate of vectors per year 0.02857 [16]
βH Infection rate for hosts hosts per vec-

tor per year
4.00876e-4 [8]

βV Infection rate for vectors per year 5.424e-3 [8]
KH Carrying capacity for hosts hosts per vil-

lage
1000 [8]

KV Carrying capacity for vectors vectors per vil-
lage

37000 [8]

q Vertical transmission percentage in hosts 0.01 [14]
T Insecticide spraying time step days 90 [1]
budget Allocated budget for control measures USD/month 355.16 [21]
a Proportion of vectors not affected by ——– control parm

bed nets
b Proportion of vectors remaining after ——– control parm

spraying insecticide
c Proportion of vector carrying capacity ——– control parm

remaining under housing improvements
pa Portion of budget allocated to bed nets ——– control parm
pb Portion of budget allocated to insecti-

cides
——– control parm

pc Portion of budget allocated to housing
improvements

——– control parm

I ′H(t) = a(pa)βHSH(t)
IV (t)
NH(t)

− µHIH(t) + rHqIH(t)
(
1− NH(t)

KH

)

S ′H(t) = −a(pa)βHSH(t)
IV (t)
NH(t)

− µHSH(t) + rH(NH(t)− qIH(t))
(
1− NH(t)

KH

)

I ′V (t) = a(pa)βV SV (t)
IH(t)
NH(t)

−m(a(pa))IV (t)

S ′V (t) = −a(pa)βV SV (t)
IH(t)
NH(t)

−m(a(pa))SV (t) + rVNV (t)
(
1− NV (t)

c(pc)KV

)
5



Figure 1: Flow chart showing the dynamics of our system between spraying.

Note that in the above system, the insecticide coefficient is not accounted for. It is assumed

for this model that a proportion of the dwellings, depending on pb, will be sprayed once each

time period T, when the vector population will be reset to a proportion b of its current value.

This produces a metered model, with the resets given by the equation

NV (nT
+) = bNV (nT

−), n = 1, 2, 3, ... (1)

More detailed information about metering effects on populations can be found in [2].

Each of the coefficients a, b, and c are uniquely determined during each simulation. The

coefficient a will be determined using the following equation,

a(pa) = 1− 0.93min

(
1,
pa
p∗a

)
, (2)
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Figure 2: Shows the overall behavior of a(pa), which is the proportion of vector-host contacts
not prevented by bed nets, as a function of the budget proportion allocated to providing the nets.

which can be visualized in Figure 2.

In Figure 2, a(0) = 1, p∗a is the budget proportion at which control measure a (bed nets)

is covered for the entire community (to be determined), and 0.93 is the average maximum

effectiveness of a bed net at preventing infection when the entire population is utilizing a bed

net as a control measure [15].

The behavior of the coefficients b and c will be nearly identical to a, and will be represented

by the following equations, respectively:

b(pb) = 1− 0.976min

(
1,
pb
p∗b

)
(3)
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c(pc) = 1− 0.9min

(
1,
pc
p∗c

)
(4)

For b, 0.976 is its maximum efficiency when used consistently [1]. For c, 0.9 is its maximum

efficiency [17].

The total number of deaths occurring in the vector population is determined both by natural

deaths, µV , and starvation deaths, ωV , caused by bed nets. We will denote this by m(a(pa)),

where

m(a(pa)) =
µV ωV

µV + a(pa)(ωV − µV )
. (5)

The mortality rates given for this equation are accurate for all a ∈ [0, 1]. More specifically,

m(0) = ωV and m(1) = µV . When a(pa) ∈ (0, 1), m(a(pa)) yields the appropriate mortality

rate for the vectors.

Since studies have been done in the past analyzing control methods for Chagas disease on

a budget, namely [21], this study was used to replicate a similar budget. This study had a total

budget of 309,426 USD over twelve years, which was distributed over 242 communities found

in Moreno, Argentina, each of which contained an average of 2.5 houses per community. Com-

paratively, since the village in our model consists of 100 houses, taking the monthly average and

multiplying by forty yields a monthly control budget of 355.16 USD. Along with cost estimates,

this will be used to calculate p∗a, p
∗
b , and p∗c .
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3. Analysis

3.1. Unmetered Model

3.1.1. Population Dynamics

Since population dynamics are separate from infection dynamics, we can look at the resulting

equations for the total population of hosts and vectors separately, given by the equations:

N ′H(t) = rHNH(t)

(
1− NH(t)

KH

)
− µHNH(t) (6)

N ′V (t) = rVNV (t)

(
1− NV (t)

c(pc)KV

)
−m(a(pa))NV (t) (7)

Each equation has an extinction equilibrium and a survival equilibrium. They are N∗H = 0,

N∗V = 0,

N∗H = KH

(
1− µH

rH

)
, (8)

and

N∗V = c(pc)Kv

(
1− m(a)

rv

)
. (9)

The extinction equilibrium points are locally asymptotically stable if the maximum growth rate

is less than the mortality rate, i.e, if rH < µH and rV < m(a). The survival equilibrium points

are locally asymptotically stable if the reverse is true for both equations, i.e, µH < rH and

m(a(pa)) < rV .

Moreover, both equations above are autonomous and their solutions are monotone. There-

fore, the respective locally-asymptotic equilibria are in fact globally-asymptotically stable.

Since both populations persist in reality, we will henceforth assume that µH < rH andm(a(pa)) <

rV . This way, the hosts and vectors will approach their respective survival equilibrium points.
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3.1.2. Infection dynamics

To study infection dynamics, we consider a simplified system in which population dynamics

have reached equilibrium. By substituting SH = NH − IH and SV = NV − IV , we can reduce

the number of equations in our non-metered dynamical system down to two. Namely, only the

infected classes will be remaining. The new system of equations is:

I ′H(t) = a(pa)βH(N
∗
H − IH(t))

IV (t)

N∗H
− µHIH(t) + rHqIH(t)

(
1− N∗H

KH

)
(10)

I ′V (t) = a(pa)βV (N
∗
V − IV (t))

IH(t)

N∗H
−m(a(pa))IV (t) (11)

From the previous section, N∗H = KH

(
1 − µH

rH

)
and N∗V = c(pc)Kv

(
1 − m(a)

rv

)
. Using

the Next-Generation Operator (NGO) method from [11], we were able to calculate R0 for this

system. Specifically,

R0 =
q

2
+

√
q2

4
+
a(pa)2βHβVN∗V
µHm(a(pa))N∗H

(12)

For simplification purposes, we will use an alternative threshold quantity equivalent to R0.

Namely,

R̂0 =

√
a(pa)2βHβVN∗V

m(a(pa))µH(1− q)N∗H
(13)

Note that R0 < 1 iff R̂0 < 1. We will look at the disease-free equilibrium (DFE), (0,0), and

endemic equilibrium (EE),

(
a(pa)

2βHβV
N∗

V

N∗
H
− µH(1− q)m(a(pa))

a(pa)βV
N∗

H

(
µH(1− q) + a(pa)βH

N∗
V

N∗
H

) ,
a(pa)

2βHβV
N∗

V

N∗
H
− µH(1− q)m(a(pa))

a(pa)βH
N∗

H

(
a(pa)βV +m(a(pa))

) )

of the above system. First, we observe by inspection that the expression for the endemic equi-

librium is only positive when R̂0 > 1. Second, the NGO definition of R̂0 gives us that the
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DFE is locally asymptotically stable when R̂0 < 1. Third, using the Routh-Hurwitz criteria, we

can determine local asymptotic stability for the EE. Let J denote the Jacobian of the EE. It was

determined that tr(J) < 0 and det(J) > 0 when R̂0 > 1. For more details, see Appendix A.

Thus, when R̂0 > 1, although the DFE is unstable, the EE is locally asymptotically stable.

Now, let’s consider global behavior. By Dulac’s Criterion, using β = 1
IHIV

, there are no

periodic orbits. Since IH ≤ N∗H and IV ≤ N∗V , together with the coordinate axes, N∗H and N∗V

form a bounding box around IH and IV . To prove this, first assume that IH(t) ≥ N∗H . Here,

I ′H(t) = a(pa)βHIV (t)
[
1 − IH(t)

N∗
H

]
+ µH(q − 1)IH(t) < 0 since q < 1 and IH(t)

N∗
H

> 1. Second,

assume that IV (t) ≥ N∗V . Here, I ′V (t) = a(pa)βV (N
∗
V − IV (t))

IH(t)
N∗

H
− m(a(pa))IV (t) < 0

since m(a(pa))IV (t) > 0 and IV (t) > N∗V . This shows that all solutions tend to an equilib-

rium point inside the bounding box and don’t leave once inside. This eliminates unbounded

growth of solutions. Therefore, by the Poincaré-Bendixson Theorem, since we have eliminated

unbounded growth and periodic orbits, all solutions of the above system approach an equilib-

rium. When R̂0 < 1, the disease-free equilibrium is therefore globally asymptotically stable.

When R̂0 > 1, the disease-free equilibrium is unstable and the endemic equilibrium is therefore

globally asymptotically stable. For both cases, there is at most one saddle point equilibrium,

so there are no phase polygons. Therefore, by [20], we can extend the stability criteria of the

reduced system above to the overall dynamical system.

3.1.3. Cost Analysis

By substituting pc = 1− pa into (13), R̂0 can be turned into a function of pa. Along
[
0, 1
]
, we

can see how R̂0 fluctuates for the unmetered model in Figure 3.

When 0 ≤ pa < p∗a, R̂0 is monotonically decreasing. R̂0 reaches its minimum when pa = p∗a.

When p∗a < pa ≤ 1, R̂0 increases slightly since pc is decreasing.

Let p̂a = 0.102189. In
[
0, p∗a

]
, R̂0 = 1 when pa = p̂a. The disease is endemic for pa < p̂a,
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Figure 3: This graph shows the value of R̂0 as a function of pa. Values were used from Table 2
to generate this graph.

but for pa > p̂a, R̂0 < 1, with a minimum at p∗a.

3.2. Metered Model

3.2.1. Effects of Metering

Using the baseline parameter values given in Table 2, the graph of the infected host population

for the metered model trends downward, while the graph for the unmetered model trends up-

ward. This difference is due to spraying insecticide at regular intervals, which causes oscillatory

behavior. The unmetered graph exhibits stable growth, specifically non-oscillatory growth. The

effects of metering on I ′H(t) can be seen in Figure 4.

Using the baseline parameter values given in Table 2 and choosing pa such that 0 ≤ pa < p̂a,

R̂0 > 1 when pb = 0 (as verified using (13)). However, when p̂a < pa ≤ 1, R̂0 < 1. This can
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Figure 4: Shows the effects of metering on IH . The oscillations are due to ”spraying” the vector
populations every 90 days.

be seen in Figure 5.

This specific example was plotted using the following combination of control measures:

pa = 0.09, pb = 0.47, pc = 0.44. Here, R̂0 ≈ 3, I∗H ≈ 808, so R̂0 > 1 for the unmetered model.

However, Figure 5 shows that R̂0 < 1 for the metered model.

3.2.2. Cost Analysis

Allocating a monthly budget of only 355.16 USD for an entire village restricts what resources

can be allocated towards the control measures. [15] determined that a LLIN cost 6.59 USD per

unit and lasts 36 months before it needs to be replaced. Using this data, we can calculate the

three-year cost to ensure full coverage of LLINs by:

6.59 USD
net
× 2 nets

house
× 100 houses

village
= 1318 USD

village
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Figure 5: Shows the population of IH . Parameters from Table 2 were used to generate this
curve. This was used to determine the asymptotic behaviors of R̂0 for the metered model.

The monthly allocation of money needed to ensure full coverage of LLINs is given by :

1318
36

= 36.61 USD
month

Therefore, p∗a is given by:

p∗a =
36.61

355.16
= 0.10308 (14)

Similarly, low-volume insecticide spraying costs 8 USD per house and lasts 3 months [22].

Improving housing conditions costs 700 USD per house and was measured to last for 21 months

[21]. Taking this into account, we found p∗b = 0.7508 and p∗c = 9.385.

After running 4947 numerical simulations over all possible combinations of budget alloca-

tions, the scenarios were ranked in regards to resource allocation. Results were measured by

the level of infected hosts after a period of ten years.
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Results indicate that in order to achieve the best outcome, you should allocate your budget

by setting pa = min(p∗a, 1), pb = min(1, 1−p∗a), and pc = 1−pa−pb. That is, bed nets proved

most cost-effective, followed by insecticide spraying. For the case when p∗a > 1, full coverage

for LLINs is not obtained. For the case when p∗a < 1, but p∗b > 1 − p∗a, this means that full

coverage for LLINs is obtained, but not for insecticide spraying.

The budget used in this study was 355.16 USD per month. With the given costs for each

control measure, we have p∗a + p∗b < 1, but p∗a + p∗b + p∗c > 1. In other words, full coverage

with LLINs and insecticide spraying is obtained, but fully improving housing conditions for an

entire village is impossible. After devoting the portions of your budget for LLINs and insec-

ticide spraying (i.e., p∗a and p∗b), devote the remaining portion of the budget towards housing

improvements (1− p∗a − p∗b).

Figure 6: Shows the total infected host population IH with each combination of control mea-
sures and the given estimated budget.
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Figure 6 shows that there are high levels of infections when less than p∗a of the budget is

allocated towards bed nets. It also shows that infection levels remain consistent when more

than p∗a of the budget is allocated towards bed nets. This shows that allocating more than p∗a to

the bed nets is not cost-effective.

Due to the high cost of improving housing conditions, a significantly larger budget of

3636.61 USD must be implemented to allow for full coverage of all three control measures.

This is nearly ten times the budget used in this model. Results show, however, that the total

number of infections only decreases between five and ten percent in the long run compared to

the original budget. The differential impact of all the extra housing improvements is minimal,

so it’s not cost-effective from a public health standpoint (even if it’s highly desirable from the

perspective of an individual family).

Conversely, infections skyrocketed when full coverage for LLINs is not obtained (i.e., p∗a >

1). It was shown earlier that to ensure full coverage of LLINs, a minimum monthly budget

of 36.61 USD must be allocated. For this specific budget, p∗a = 1. With this minimal budget

implemented, infections reached a minimum when pa = p∗a. More specifically, R̂0 < 1 if

pa = 1. This shows that allocating a minimum budget equivalent to the value of p∗a is extremely

important in the long run in order to reduce the spread of infection.

If pb = p∗b and a monthly budget of 303.26 USD is allocated towards control measures, an

additional 266.65 USD must be allocated plus the minimum monthly budget from the previous

case. For this budget, p∗a ≈ 0.13 and p∗b ≈ 0.87.This budget shows that R̂0 is at its lowest point

when pa = p∗a and pb = p∗b . For all t, IH(t) for the 303.26 USD per month budget was ≈ 9%

lower than IH(t) for the same t in the 36.61 USD per month budget.

One potential issue with the model is due to the high cost of improving housing conditions.

Some potential solutions include finding cheaper materials than used in studies such as [21].

In fact, reducing the overall cost of these materials by approximately ninety-five percent only

16



caused a five percent decrease in the total infected hosts after each simulation. This confirms

that improving housing conditions is the least important control measure out of three focused

on in this study, whether or not full coverage for improving housing conditions is met.
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4. Conclusions

It was shown that the control measures do in fact have a hierarchical importance when it

comes to preventing the spread of Chagas disease. Ordered by the highest effective rate of

preventing infections, they are LLINs, followed by insecticide spraying and improving housing

conditions.

This model addressed a few different budget scenarios. If pa > p∗a, the number of infections

doesn’t decrease since a smaller portion of the budget is being allocated towards the other two

control measures. This is a waste of the budget since each host will possess an LLIN at this

point. Conversely, if pa < p∗a, then the infection rate is significantly higher since the contact rate

between humans and vectors is not at its lowest. In another case, when p∗a < 1 and p∗b > 1− p∗a,

the total number of infections is at its lowest point when p∗a of the budget is allocated towards

LLINs and the remaining portion of the budget is allocated towards p∗b . Another case is when

p∗a+p
∗
b < 1 and p∗c > 1−p∗a−p∗b , infections reached the lowest point when p∗a+p

∗
b of the budget

is allocated towards full coverage of LLINs and insecticide spraying. Finally, if p∗a+p
∗
b+p

∗
c ≤ 1,

the full coverage is obtained for all three control measures. Numerical analysis indicated that the

number of infections after ten years under a budget large enough to maximize all three control

measures was reduced by less than 5% from that obtained when only a and b are maximized.

These different cost scenarios have shown that the case with the estimated budget when

p∗a + p∗b < 1 and p∗c > 1 − p∗a − p∗b proved most effective at preventing infections in a cost

effective manner.

For the model presented in this paper, it was found that R̂0 > 1 without control measures.

However, it was shown in both the unmetered and metered model that R̂0 < 1 when LLINs are

applied.

Specifically, it is possible to make R̂0 < 1 by ensuring that at least p̂a of the budget is

allocated towards LLINs. More specifically, R̂0 < 1 on
(
p̂a, 1

]
.
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With the analysis performed on the cost effectiveness of all three control measures, it was

shown that increasing the budget ten-fold to improve the housing conditions of each dwelling in

the village only minimally reduced infections over a long period of time. If these details were

presented in front of a committee, it could be argued that they would not approve the allocation

of so much money to improving the conditions of a host’s dwelling. Keeping a budget at a

relatively small number annually (similar to the initial estimate) is most effective at reducing

infections when comparing the cost-effectiveness of all three control measures.

The total number of infections for the estimated realistic budget (p∗a + p∗b < 1 and p∗c >

1 − p∗a − p∗b) show that the total number of infections after ten years was approximately one-

third that of other cases when fewer or no control measures reach full coverage. This lines

up with other studies performed in Latin America [17, 21]. The effectiveness of LLINs and

insecticide spraying are comparable to the levels shown in [15] and [1].

There are a few factors that contribute to the limitations of the budget involved in this study.

One such factor is the size of the village and the contributions it makes to its country’s GDP.

Smaller villages get less budget allocated towards them than larger villages. There are also a

large number of villages in a country. If a village makes small contributions relative to its size

towards its country’s GDP, it will likely not receive enough of the country’s budget to control

the disease.

Since insecticide can only safely be applied to a dwelling every 90 days without being fatal

to a host [1], this limits how frequently a vector population can be controlled. This was the

main factor in deciding the metering portion of the model.

Another factor that would contribute to limiting the budget is the cost of creating the control

measure, shipping them, and distributing them. It is often the case that shipping and distributing

costs are more than double that of creating the control measure [15].

Assumptions made about the model include the budget allocated for the village used in this
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study. For specifics on how the budget was obtained, see [21]. Initial conditions were obtained

from similar studies [3, 8] to compare results. Costs for each control measure were obtained

from studies done using each control measure [1, 15, 21].

Future work includes introducing other control measures such as predators that feed on

Triatoma infestans. Also, the current model can be extended to incorporate different stages of

the vector’s life cycle into the model. Vectors have more stages in their life cycle than were

assumed for this model. For more information regarding these stages, see [3]. Extending the

model to incorporate these different stages would allow for a more accurate representation of

the contact rates, death rates, and reproduction rates of vectors.
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Appendix A

Endemic equilibrium of unmetered model
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Solving for I∗H and I∗V , we set I ′H(t) = I ′V (t) = 0 and get the following:

0 = a(pa)βHI
∗
V −

a(pa)βH
N∗H

I∗HI
∗
V − (1− q)µHI∗H (15)

0 =
a(pa)βV
N∗H

N∗V I
∗
H −

[a(pa)βV
N∗H

I∗H +m(a(pa))
]
I∗V (16)

From (15), we see that:

I∗H =
a(pa)βHI

∗
V

(1− q)µH + a(pa)βH
N∗

H
I∗V
. (17)

Plugging (17) into (16) yields:

0 =
a(pa)

2βHβV
N∗

V

N∗
H
I∗V

µH(1− q) + a(pa)βH
N∗

H
I∗V
−

a(pa)
2βH

βV
N∗

H
I∗V

2

µH(1− q) + a(pa)βH
N∗

H
I∗V
−m(a(pa))I

∗
V . (18)

Thus, either I∗V = 0, or we have:

0 =
a(pa)

2βHβV
N∗

V

N∗
H
− a(pa)2βH βV

N∗
H
I∗V

µH(1− q) + a(pa)βH
N∗

H
I∗V

−m(a(pa)). (19)

Then we have:

0 = a(pa)
2βHβV

N∗V
N∗H
− a(pa)2βH

βV
N∗H

I∗V −m(a(pa))
(
µH(1− q) +

a(pa)βH
N∗H

I∗V

)
. (20)

Thus, solving for I∗V yields:

I∗V =
a(pa)

2βHβV
N∗

V

N∗
H
− µH(1− q)m(a(pa))

a(pa)βH
N∗

H

(
a(pa)βV +m(a(pa))

) . (21)
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Plugging (21) into (17), we obtain:

I∗H =
a(pa)

2βHβV
N∗

V

N∗
H
− µH(1− q)m(a(pa))

a(pa)βV
N∗

H

(
µH(1− q) + a(pa)βH

N∗
V

N∗
H

) (22)
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Appendix B

Jacobian calculations from Infection Dynamics
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From (10) and (11), we obtain the Jacobian:

J(IH , IV ) =

 −
(
µH(1− q) + a(pa)βH

I∗V
N∗

H

)
a(pa)βH

(
1− I∗H

N∗
H

)
a(pa)βV

(
N∗

V −I
∗
V

N∗
H

)
−
(
m(a(pa)) + a(pa)βV

I∗H
N∗

H

)


Using the substitutions m̃ = m(a(pa)), µ̃ = µH(1 − q), β̃V = a(pa)βV , and β̃H =

a(pa)βH
N∗

V

N∗
H

, then the Jacobian becomes:

J(IH , IV ) =

 −
(
µ̃+ β̃H

I∗V
N∗

V

)
β̃H

N∗
H

N∗
V

(
1− I∗H

N∗
H

)
β̃V

N∗
V

N∗
H

(
1− I∗V

N∗
V

)
−
(
m̃+ β̃V

I∗H
N∗

H

)


Applying the same substitutions to (21) and (22), we obtain that:

I∗H =
β̃H β̃V − µ̃m̃
β̃V
N∗

H
[µ̃+ β̃H ]

(23)

and that:

I∗V =
β̃H β̃V − µ̃m̃
β̃H
N∗

V
[m̃+ β̃V ]

(24)

It is easily seen that trace(J) < 0. More specifically,

tr(J) = −
(
µ̃+ m̃+ β̃H

I∗V
N∗V

+ β̃V
I∗H
N∗H

)
(25)

It can also be seen that det(J) > 0. More specifically,

det(J) =
(
µ̃+ β̃H

I∗V
N∗V

)(
m̃+ β̃V

I∗H
N∗H

)
− β̃H β̃V

(
1− I∗H

N∗H

)(
1− I∗V

N∗V

)
=
(
µ̃+ β̃H

I∗V
N∗V

)(
m̃+ β̃V

I∗H
N∗H

)
− µ̃m̃

= µ̃β̃V
I∗H
N∗H

+ m̃β̃H
I∗V
N∗V

+ β̃H β̃V
I∗V
N∗V

I∗H
N∗H
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