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ABSTRACT

LARGE-SCALE DEEP LEARNING WITH APPLICATION IN MEDICAL

IMAGING AND BIO-INFORMATICS

ZHENG XU, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Junzhou Huang

With the recent advancement of the deep learning technology in the artificial

intelligence area, nowadays people’s lives have been drastically changed. However, the

success of deep learning technology mostly relies on large-scale high-quality data-sets.

The complexity of deeper model and larger scale datasets have brought us significant

challenges. Inspired by this trend, in this dissertation, we focus on developing efficient

and effective large-scale deep learning techniques in solving real-world problems, like

cell detection in hyper-resolution medical image or drug screening from millions of

compound candidates.

With respect to the hyper-resolution medical imaging cell detection problem,

the challenges are mainly the extremely large scale pixel information. Also the cell

density in the region of interests are usually super high, meaning that the cells will

clump and congest in small areas. These challenges hence demand high quality ef-

ficient modeling to address this cell detection problem at scale. In this paper, we

will discuss the large-scale cell detection problem from both mathematical/statistical
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modeling and architectural system perspective and reach to a comprehensive solution,

which is both incredibly efficient and effective.

With respect to the drug discovery problem, every drug company with R&D

department has carried out numerous initiatives for speeding up its drug discovery

process. Drug discovery is the process through which potential new medicines are

identified. Modern drug discovery is usually implemented as drug compound selec-

tion, while, for every candidate chemical compound, the chemical drug properties,

e.g., affinity, selectivity, metabolic stability, are biologically tested in the lab envi-

ronment. Once all the properties pass the drug requirement tests, it will be selected

as a new potential drug candidate. However, this process is excessively expensive

and labor-intensive, and costs hundreds of million dollars each year. The major chal-

lenge for deep learning is to take in the sequence representation of drug compound,

i.e, SMILE representation as input and infer chemical properties from limited high-

quality dataset. Within this context, we propose several effective unsupervised/semi-

supervised techniques in generating the powerful chemical representation and models

that provide strong inference.
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CHAPTER 1

INTRODUCTION

This thesis focus on developing large-scale deep learning techniques for the

purpose of handling medical imaging and bio-informatics tasks, e.g. cell detection,

drug discovery, etc.

1.1 Motivation

First of all, we focus on the automatic lung cancer cell detection problem using

deep learning techniques [2, 3]. Automatic lung cancer cell detection is the basis of

many computer-assisted methods for cell-based experiments and diagnosis. However,

at present, very few work has been focused on lung cancer cell detection. The diffi-

culty in lung cancer cell detection problem is basically three-fold. First, the density

of lung tumor cells is generally very high in the histopathological images. Second, the

cell size might vary and cell clumping is usual. Third, the time cost of cell detection

method, especially in high-resolution histopathological images, is very high in cell-

based diagnosis. With these challenges mentioned above, it is still in great demand

for researchers to develop efficient and robust lung cancer cell detection methods.

To alleviate these problems, we propose an efficient and robust lung cancer cell de-

tection method based on the Deep Convolution Neural Network(DCNN)[4]. Other

than computationally-intensive frameworks [5, 6], or ROI(region of interest)-based

detection method[1, 7], it exploits the deep architecture to learn the hierarchical dis-

criminative features, which has recently achieved significant success in biomedical

image analysis[8, 9].
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Secondly, we investigate the problem of handling small-scale labeled drug dis-

covery data with large-scale unlabeled drug discovery data [10, 11]. Specifically, iN

the past few years, the application of Artificial Intelligence (AI) technologies in drug

discovery has become significant and increasingly popular. Observing the most re-

cent rapid growth of a key technology in AI, namely deep learning (or deep neural

network), the whole industry and academia are looking towards AI to speed up the

drug discovery, cut R&D cost and decrease the failure rate in potential drug screening

trials [12].

However, the previous success of deep learning in multiple applications, e.g., im-

age understanding [13, 14], medical imaging [15, 3, 16], video understanding [17, 18],

bioinformatics [10, 19, 20], and machine translation [21], etc., has implied a reliance

on large-scale high-quality labeled data-sets. The training procedure of those deep-

learning-based state-of-the-art models generally involve millions of labeled samples.

In the meantime, however, for the drug discovery tasks, the scale of labeled data-set

stays around only thousands of examples due to the insanely high cost of obtaining

the clean labeled data through the biological experiments. The available amount of

the labeled training data is absolutely insufficient to secure the success of the appli-

cation of deep learning in the drug discovery. This huge gap between the requirement

and availability of the labeled data in drug discovery has become a bottleneck of

applying deep learning techniques into drug discovery.

1.2 Our Techniques

In the original problem of large-scale cell segmentation, we propose a novel

DCNN based model for lung cancer cell detection in this paper. Our contributions

are summarized as three parts: 1) We built up a deep learning-based framework in

lung cancer cell detection with modified sliding window manner in both training and

2



testing stage. 2) We modify the training strategy by only acquiring weak annotations

in the samples, which decreases both labeling and training cost. 3) We present a

novel accelerated DCNN forwarding technology by reducing the redundant convolu-

tion computation, accelerating the testing process several hundred times than the

traditional DCNN-based sliding window method. To the best of our knowledge, this

is the first study to report the application of accelerated DCNN framework for lung

cancer cell detection.

To the best of our knowledge, the research presented in this paper represents the

first attempt to develop an extremely efficient deep neural network based pixel-wise

cell detection framework for whole-slide images. Particularly, it is general enough

to cooperate with any deep convolutional neural networks to work on whole-slide

imaging. Our technical contributions are summarized as: 1) A general sparse kernel

neural network model is applied for the pixel-wise cell detection, accelerating the

forwarding procedure of the deep convolutional neural networks. 2) An asynchronous

prefetching technique is proposed to reduce nearly 95% of the disk I/O time. 3)

We propose a scalable and communication efficient framework to extend our neural

network to multi-GPU and cluster environments, dramatically accelerating the entire

detecting process. Extensive experiments have been conducted to demonstrate the

efficiency and effectiveness of our method.

In this paper, for drug discovery problem, we propose an unsupervised data-

driven deep-learning-based molecular fingerprint method, named seq2seq finger-

print. To overcome the issues mentioned above, 1) the proposed method is data-

driven, without any human expertise knowledge required. 2) the fingerprints gener-

ated by the proposed method are completely revertible to original molecular repre-

sentations, ensuring the sufficiency of information encoded in the fingerprint vector.

3) the proposed method employs an unsupervised training on a huge unlabeled
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dataset, sufficiently releasing the horsepower of deep neural network. We illustrate

a comparison among all mentioned fingerprint methods and our seq2seq fingerprint

method.

Furthermore, to wield the power of the supervised learning, we proposed seq3seq

fingerprint framework. The seq3seq fingerprint network can be considered as a

pipeline with one input and two outputs. The designed neural network can take the

molecule inputs for training, with or without labels. The input is the raw sequence

representation of a molecule, namely SMILE representation. The two outputs will

correspond to the two tasks inside this network. The first one is the self-recovery.

The network is expected to be able to generate a vector representation which is able

to be recovered back to original raw sequence representation. The second task is the

inference whenever the label is available. For instance, it can be a task to predict the

acidity, alkalinity or solubility of a single molecule. The two tasks are trained within

the same network in an end-to-end fashion. As a result, in a specific inference task,

the vector representation will be able to provide both good recovery performance and

inference performance. Also, the network can be trained inside a mixture data pool

with both labeled and unlabeled data, which is sufficient enough to ensure the fine

training of the neural network.

1.3 Thesis Overview

Finally, we provide the overview of this thesis in brief. In Chapter 2, we present

our efficient deep learning modeling approach to handle large-scale whole-slide image

for cell detection/segmentation task. Then, Chapter 3 generalize the deep learning

approach to a broader context to make it more practical in distributed computing en-

vironment. Chapter 4 presents our unsupervised learning-based embedding approach

(seq2seq fingerprint) on another kind of data: sequence-based drug discovery data.
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Then, Chapter 5 presents the semi-supervised version of the seq2seq fingerprint, which

brings a relatively small amount of supervised data into the modeling and improve

the inference performance significantly.

As the ending, Chapter 6 draws our conclusions of the thesis, where we summa-

rize the presented large-scale deep learning techniques, highlight their contributions

in both theory and practice, and provide some future research directions.

5



CHAPTER 2

EFFICIENT LUNG CANCER CELL DETECTION WITH DEEP

CONVOLUTION NEURAL NETWORK

Lung cancer cell detection serves as an important step in the automation of

cell-based lung cancer diagnosis. In this paper, we propose a robust and efficient

lung cancer cell detection method based on the accelerated Deep Convolution Neural

Network framework(DCNN). The efficiency of the proposed method is demonstrated

in two aspects: 1) We adopt a training strategy, learning the DCNN model parameters

from only weakly annotated cell information (one click near the nuclei location). This

technique significantly reduces the manual annotation cost and the training time. 2)

We introduce a novel DCNN forward acceleration technique into our method, which

speeds up the cell detection process several hundred times than the conventional

sliding-window based DCNN. In the reported experiments, state-of-the-art accuracy

and the impressive efficiency are demonstrated in the lung cancer histopathological

image dataset. [2]

2.1 Introduction

Automatic lung cancer cell detection is the basis of many computer-assisted

methods for cell-based experiments and diagnosis. However, at present, very few

work has been focused on lung cancer cell detection. The difficulty in lung cancer

cell detection problem is basically three-fold. First, the density of lung tumor cells

is generally very high in the histopathological images. Second, the cell size might

vary and cell clumping is usual. Third, the time cost of cell detection method, espe-
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cially in high-resolution histopathological images, is very high in cell-based diagnosis.

With these challenges mentioned above, it is still in great demand for researchers to

develop efficient and robust lung cancer cell detection methods. To alleviate these

problems, we propose an efficient and robust lung cancer cell detection method based

on the Deep Convolution Neural Network(DCNN)[4]. Other than computationally-

intensive frameworks [5, 6], or ROI(region of interest)-based detection method[1, 7], it

exploits the deep architecture to learn the hierarchical discriminative features, which

has recently achieved significant success in biomedical image analysis[8, 9].

In the proposed method, the training process is only performed on the local

patches centered at the weakly annotated dot in each cell area with the non-cell area

patches of the same amount as the cell areas. This means only weak annotation

of cell area (a single dot near the center of cell area) are required during labeling

process, significantly relieving the manual annotation burden. Another benefit for

this technique is to reduce the over-fitting effect and make the proposed method

general enough to detect the rough cell shape information in the training image,

providing the benefit for further applications, e.g. cell counting, segmentation and

tracking.

During testing stage, the conventional sliding window manner for all local pixel

patches is inefficient due to the considerable redundant convolution computation. To

accelerate the testing process for each testing image, we present a fast forwarding

technique in DCNN framework. Instead of preforming DCNN forwarding in each

pixel patch, the proposed method performs convolution computation in the entire

testing image, with a modified sparse convolution kernel. This technique almost

eliminates all redundant convolution computation compared to the conventional pixel-

wise classification, which significantly accelerates the DCNN forwarding procedure.

Experimental result reports the proposed method only requires around 0.1 second

7



to detect lung cancer cells in a 512 × 512 image, while the state-of-the-art DCNN

requires around 40 seconds.

To sum up, we propose a novel DCNN based model for lung cancer cell detection

in this paper. Our contributions are summarized as three parts: 1) We built up a deep

learning-based framework in lung cancer cell detection with modified sliding window

manner in both training and testing stage. 2) We modify the training strategy by only

acquiring weak annotations in the samples, which decreases both labeling and training

cost. 3) We present a novel accelerated DCNN forwarding technology by reducing the

redundant convolution computation, accelerating the testing process several hundred

times than the traditional DCNN-based sliding window method. To the best of our

knowledge, this is the first study to report the application of accelerated DCNN

framework for lung cancer cell detection.

2.2 Methodology

Given an input lung cancer histopathological image I, the problem is to find

a set D = {d1, d2, . . . , dN} of detections, each reporting the centroid coordinates for

a single cell area. The problem is solved by training a detector on training images

with given weakly annotated ground truth information G = {g1, g2, . . . , gM}, each

representing the manually annotated coordinate near the center of each cell area. In

the testing stage, each pixel is assigned one of two possible classes, cell or non-cell,

the former to pixels in cell areas, the latter to all other pixels. Our detector is a

DCNN-based pixel-wise classifier. For each given pixel p, the DCNN predicts its class

using raw RGB values in its local square image patch centered on p.
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Positive Samples

Tile

Negative Samples

Whole Slide Image

Figure 2.1: The illustration of generation of training samples: 1) Tiles are randomly
sampled from the whole slide images. 2) The sampled tiles are manually annotated
by well-trained pathologists, which construct the weakly annotated information. 3)
We only feed the local pixels patches center on the annotated pixels and the randomly
sampled non-cell patches of the same amount as the cell ones.

2.2.1 Training the detector

Using the weakly annotated ground truth data G, we label each patch centered

on the given ground truth gm as positive(cell) sample. Moreover, we randomly sample

the negative(non-cell) samples from the local pixel patches whose center are outside of

the boundary of positive patches. The amount of negative sample patches is the same

as the positive ones. If a patch window lies partly outside of the image boundary, the

missing pixels are fetched in the mirror padded image.

For these images, we only feed very few patches into the proposed model for

training, therefore extremely accelerating the training stage. Besides, this technique

also partly eliminates the effect of over-fitting due to the under-sampling usage of

sample images.
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Figure 2.2: The DCNN architecture used in the training process of the proposed
framework. C, MP, FC, ReLU represents the convolution layer, max pooling layer,
fully connected layer and rectified linear unit layer, respectively.

2.2.2 Deep Convolution Neural Network architecture

Our DCNN model contains two pairs of convolution and max-pooling layers, fol-

lowed by a fully connected layer, rectified linear unit layer and another fully connected

layer as output. Figure 2.2 illustrates the network architecture for training stage.

Each convolution layer performs a 2D-convolution operation with a square filter.

If the activation from previous layer contains more than one map, they are summed

up first and then convoluted. In the training process, the stride of max-pooling

layer is set the same as its kernel size to avoid overlap, provide more non-linearity

and reduce dimensionality of previous activation map. The fully connected layer

mixes the output from previous map into the feature vector. A rectified linear

unit layer is followed because of its superior non-linearity. The output layer is sim-

ply another fully connected layer with just two neurons(one for cell class, the other

for non-cell class), activated by a softmax function to provide the final possibility

map for the two classes. We detail the layer type, neuron size, filter size and filter

number parameters of the proposed DCNN framework in the left of Table 2.2.
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Table 2.1: Backward network architecture. M : the number of patch samples, N : the
number of testing images. Layer type: I - Input, C - Convolution, MP - Max Pooling,
ReLU - Rectified Linear Unit, FC - Fully Connected

Type Maps Filter Filter Stride
and neurons size num

I 3× 20× 20M - - -
C 20× 16× 16M 5 20 1
MP 20× 8× 8M 2 - 2
C 50× 4× 4M 5 50 1
MP 50× 2× 2M 2 - 2
FC 500M 1 - -
ReLU 500M 1 - -
FC 2M 1 - -

2.2.3 Acceleration of Forward Detection

The traditional sliding window manner requires the patch-by-patch scanning

for all the pixels in the same image. It sequentially and independently feeds patches

to DCNN and the forward propagation is repeated for all the local pixel patches.

However, this strategy is time consuming due to the fact that there exists a lot

of redundant convolution operations among adjacent patches when computing the

sliding-windows.

To reduce the redundant convolution operations, we utilize the relations be-

tween adjacent local image patches. In the proposed acceleration model, at the test-

ing stage, the proposed model takes the whole input image as input and can predict

the whole label map with just one pass of the accelerated forward propagation. If a

DCNN takes n× n image patches as inputs, a testing image of size h× w should be

padded to size (h+n−1)×(w+n−1) to keep the size consistency of the patches cen-

tered at the boundary of images. The proposed method, in the testing stage, uses the

exact weights solved in the training stage to generate the exactly same result as the

traditional sliding window method does. To achieve this goal, we involve the k-sparse
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Table 2.2: Accelerated forward network architecture. M : the number of patch sam-
ples, N : the number of testing images. Layer type: I - Input, C - Convolution, MP -
Max Pooling, ReLU - Rectified Linear Unit, FC - Fully Connected

Type Maps Filter Filter Stride
and neurons size number

I 3× 531× 531N - - -
C 20× 527× 527N 5 20 1
MP 20× 526× 526N 2 - 1
C 50× 518× 518N 9 50 1
MP 50× 516× 516N 3 - 1
FC(C) 500× 512× 512N 5 - 1
ReLU 500× 512× 512N 1 - -
FC(C) 2× 512× 512N 1 - -

kernel technique[22] for convolution and max-pooling layers into our approach. The

k-sparse kernels are created by inserting all-zero rows and columns into the original

kernels to make every two original neighboring entries k-pixel away. To accelerate

the forward process of fully connect layer, we treat fully connected layer as a special

convolution layer. Then the fully connect layer could be accelerated by the mod-

ified convolution layer. The proposed fast forwarding network is detailed in Table

3.1(right). Experimental results show that around 400 times speedup is achieved on

512× 512 testing images for forward propagation.

2.3 Materials, Experiments and Results

2.3.1 Materials and Experiment Setup

2.3.1.1 Data Set

The proposed method is evaluated on part of the National Lung Screening

Trial (NLST) data set [23]. Totally 215 tile images of size 512×512 are selected from

the original high-resolution histopathological images. The nuclei in these tiles are
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Input Image Padded Image

C MP C MP FC(C) ReLU

FC (Output)

Accelerated DCNN

Figure 2.3: The illustration of acceleration forward net: 1) The proposed method
takes the whole image as input in testing stage. 2) The input image is mirror padded
as the sampling process in the training stage. 3) The padded image is then put into the
accelerated forward network which generates the whole label map in the rightmost.
Note that the fully connected layer is implemented via a modified convolution layer
to achieve acceleration.

manually annotated by the well-trained pathologist. The selected dataset contains a

total of 83245 nuclei objects.

2.3.1.2 Experiments Setup

We partition the 215 images into three subsets: training set (143 images), val-

idation set (62 images) and evaluation set (10 images). The evaluation result is re-

ported on evaluation subset containing 10 images. We compare the proposed method

with the state-of-the-art method in cell detection[1] and the traditional DCNN-based

sliding window method[4].
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Table 2.3: F1 scores on the evaluation set

1 2 3 4 5 6 7 8 9 10 Mean
MSER[1] 0.714 0.633 0.566 0.676 0.751 0.564 0.019 0.453 0.694 0.518 0.559
Proposed 0.790 0.852 0.727 0.807 0.732 0.804 0.860 0.810 0.770 0.712 0.786

Table 2.4: Mean time cost comparison on the evaluation set

1 2 3 4 5 6 7 8 9 10 Mean
MSER[1] 37.897 29.000 37.172 43.332 42.806 37.843 28.548 41.570 38.346 37.012 37.353

Pixel-wise[24] 38.936 38.923 38.306 38.080 37.126 38.038 37.030 37.398 37.407 38.470 37.972
Proposed 0.128 0.124 0.116 0.115 0.114 0.125 0.115 0.127 0.116 0.126 0.121

2.3.2 Results

2.3.2.0.1 Training Time Cost The mean training time for the proposed method

is 229 seconds for the training set described below. The unaccelerated version with

the same training strategy costs the same time as the proposed method. Besides,

the state-of-the-art MSER-based method[1] costs more than 400000 seconds, roughly

5 days for training 143 images of size 512 × 512. The proposed method is able to

impressively reduce several thousand times time cost of training stage than the state-

of-the-art MSER-based method due to the proposed training strategy.

2.3.2.1 Accuracy of Testing

Table 2.3 reports the F1 score metric comparison between the proposed method

and MSER-based method. The proposed method outperforms the state-of-the-art

method in almost all of the evaluation images in terms of F1 scores. We also visually

compares our results with the MSER-based method in Figure 2.4. The proposed

method detects almost all of the cell regions even in images with intensive cells.
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Extremal region boundaries = green/red. Centroids = yellow
Ground truth = blue

MSER

Extremal region boundaries = green/red. Centroids = yellow
Ground truth = blue

ProposedOriginal

Figure 2.4: Visual Comparison between the proposed method and MSER-based
method[1]. The green area denotes the detected cell area by the corresponding
method. Blue dots denote the ground-truth annotation. The proposed method is
able to detect the cell area missed by the MSER-based method as denoted in red
circle. Better viewed in ×4 pdf.

2.3.2.2 Testing Time Cost

As shown in Table 2.4, the proposed method only costs around 0.1 second for

a single 512 × 512 tile image, which is the fastest among the three methods. The

proposed method accelerates the forwarding procedure around 400 times compared

with the traditional pixel-wise sliding-window method, which is due to the accelerated

forwarding technique.

2.4 Conclusion

In this paper, we propose an efficient and robust lung cancer cell detection

method. The proposed method is designed based on the Deep Convolution Neural

Network framework[24], which is able to provide state-of-the-art accuracy with only

weakly annotated ground truth. For each cell area, only one local patch containing

the cell area is fed into the detector for training. The training strategy significantly

reduces the time cost of training procedure due to the fact that only around one
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percent of all pixel labels are used. In the testing stage, by utilizing the relation

of adjacent patches, the proposed method provides the exact same results within a

few hundredths time. Experimental results clearly demonstrate the efficiency and

effectiveness of the proposed method for large-scale lung cancer cell detection. In the

future, we shall attempt to combine the structured techniques[25, 26, 27] to further

improve the accuracy.
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CHAPTER 3

DETECTING 10,000 CELLS IN ONE SECOND

In this paper, we present a generalized distributed deep neural network archi-

tecture to detect cells in whole-slide high-resolution histopathological images, which

usually hold 108 to 1010 pixels. Our framework can adapt and accelerate any deep

convolutional neural network pixel-wise cell detector to perform whole-slide cell detec-

tion within a reasonable time limit. We accelerate the convolutional neural network

forwarding through a sparse kernel technique, eliminating almost all of the redundant

computation among connected patches. Since the disk I/O becomes a bottleneck when

the image size scale grows larger, we propose an asynchronous prefetching technique

to diminish a large portion of the disk I/O time. An unbalanced distributed sam-

pling strategy is proposed to enhance the scalability and communication efficiency

in distributed computing. Blending advantages of the sparse kernel, asynchronous

prefetching and distributed sampling techniques, our framework is able to accelerate

the conventional convolutional deep learning method by nearly 10, 000 times with

same accuracy. Specifically, our method detects cells in a 108-pixel (104× 104) image

in 20 seconds (approximately 10, 000 cells per second) on a single workstation, which

is an encouraging result in whole-slide imaging practice. [3].

3.1 Introduction

Recently, increased interests have been raised in the research community con-

cerning the cell detection problem. A large number of cell detection methods on small

images (with around 104 to 106 pixels) have been proposed [1, 28, 29, 30]. Due to the
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recent success of deep convolutional neural network in imaging, several deep neural

network based methods have been proposed for cell-related applications in the past

few years [28, 29, 30]. While these methods have achieved great success on small

images, very few of them are ready to be applied into practical whole-slide cell de-

tection, in that the real whole-slide images usually have 108 to 1010 pixels. It takes

several weeks to detect cells in a single whole-slide image by directly applying the

deep learning cell detection methods [28, 29, 30], which is definitely prohibitive in

practice.

To alleviate the issue, we hereby propose a generalized distributed deep convo-

lutional neural network framework for the pixel-wise cell detection. Our framework

accelerates any deep convolutional neural network pixel-wise cell detector. In the

proposed framework, we first improve the forwarding speed of the deep convolutional

neural network with the sparse kernel technique. Similar techniques are referred to

[31, 22]. In order to reduce the disk I/O time, we propose a novel asynchronous

prefetching technique. The separable iteration behavior also suggests needs for a

scalable and communication efficient distributed and parallel computing framework

to further accelerate the detection process on whole-slide images. We, therefore, rec-

ommend an unbalanced distributed sampling strategy with two spatial dimensions,

extending the balanced cutting in [32]. The combination of the aforementioned tech-

niques thus yields a huge speedup up to 10,000x in practice.

To the best of our knowledge, the research presented in this paper represents the

first attempt to develop an extremely efficient deep neural network based pixel-wise

cell detection framework for whole-slide images. Particularly, it is general enough

to cooperate with any deep convolutional neural networks to work on whole-slide

imaging. Our technical contributions are summarized as: 1) A general sparse kernel

neural network model is applied for the pixel-wise cell detection, accelerating the
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forwarding procedure of the deep convolutional neural networks. 2) An asynchronous

prefetching technique is proposed to reduce nearly 95% of the disk I/O time. 3)

We propose a scalable and communication efficient framework to extend our neural

network to multi-GPU and cluster environments, dramatically accelerating the entire

detecting process. Extensive experiments have been conducted to demonstrate the

efficiency and effectiveness of our method.

3.2 Methodology

3.2.1 Sparse Kernel Convolutional Neural Network

The sparse kernel network takes the whole tile image, instead of a pixel-centered

patch, as input and can predict the whole label map with just one pass of the accel-

erated forward propagation. The sparse kernel network uses the same weights as the

original network trained in the training stage to generate the exact same results as the

original pixel-wise detector does. To achieve this goal, we involve the k-sparse kernel

technique [22] for convolution and blended max-pooling layers into our approach. The

k-sparse kernels are created by inserting all-zero rows and columns into the original

kernels to make every two original neighboring entries k-pixel away. In [22], however,

it remains unclear how to deal with fully connected layers, which is completed in our

research. A fully connected layer is treated as a special convolution layer with kernel

size set to the input dimension and kernel number set as the output dimension of

the fully connected layer. This special convolution layer will generate the exact same

output as the fully connected layer does when given the same input. The conversion

algorithm is summarized in Algorithm 1.
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3.2.2 Asynchronous Prefetching

Comparing with other procedures in the whole cell detection process, e.g. the

memory transfer between GPU and CPU memory, the disk I/O becomes a bottle-

neck in the cell detection problem. In this subsection, we describe our asynchronous

prefetching technique to relieve the bottleneck of the disk I/O. To reduce frequent

I/O operations and, meanwhile, ensure the absence of insufficient memory problems,

we propose an asynchronous prefetching technique to resolve this. We first load a

relatively large image, referred to as cached image, into memory (e.g., 4096× 4096).

While we start to detect cells on the first cached image tile by tile, we immediately

start loading the second cached image in another thread. Thus, when the detection

process of the first cached image is finished, since the reading procedure is usually

faster than the detection, we’ve already loaded the second cached image and can start

detection in the second cached image and load the next cached image immediately.

Hence, the reading time of the second cached image, as well as the cached images

thereafter, is hidden from the overall runtime. Experiments have exhibited that this

technique reduces approximately 95% of the disk I/O time. It achieves an even larger

speedup on a cluster since the NFS (Network File System) operation is even more

time-consuming and we reduce most of them.

3.2.3 Multi-GPU Parallel and Distributed Computing

When considering distributed optimization, two resources are at play: 1) the

amount of processing on each machine, and 2) the communication between ma-

chines. The single machine performance has been optimized in Section 4.2.3.0.3 and

3.2.2. We then describe our unbalanced distributed sampling strategy with two spa-

tial dimensions of our framework, which is a gentle extension to [32]. Assuming
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T = {(1, 1), (1, 2), . . . , (H,W )} is the index set of an image with size H ×W , we aim

at sampling tiles of sizes not larger than h× w.

3.2.3.0.1 Unbalanced Partitioning Let S := dHW/Ce. We first partition the

index set T into a set of blocks P (1), P (2), . . . , P (C) according to the following criterion:

1. T =
⋃C

c=1 P
(c),

2. P (c′)
⋂
P (c′′) = ∅, for c′ 6= c′′,

3. |P c| ≤ S,

4. P (c) is connected.

3.2.3.0.2 Sampling After the procedure of partitioning, we now sample small

tiles from C different machines and devices. For each c ∈ {1, . . . , C}, the Ẑ(c) is a

connected subset of P (c) satisfying |Ẑ(c)| ≤ hw and Ẑ(c′)
⋂
Ẑ(c′′) = ∅, for c′ 6= c′′.

The set-valued mapping Ẑ =
⋃C

c=1 Ẑ
(c) is termed as (C, hw)-unbalanced sam-

pling, which is used for fully sampling tile images from the entire image. Note this is

not a subsampling process since all the tile images are sampled from the whole slide

in one data pass. Since only index sets are transmitted among all the machines, the

communication cost is very low in network transferring. This distributed sampling

strategy also ensures the scalability of the proposed framework as indicated in Section

3.3.4.
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3.3 Experiments

3.3.1 Experiment Setup

Throughout the experiment section, we use a variant [30, 2]1 of LeNet [4] as

a pixel-wise classifier to show the effectiveness and efficiency of our framework. We

have implemented our framework based on caffe [24] and MPI. The original network

structure is shown in Table 3.2 (left). The classifier is designed to classify a 20× 20

patch centered at specific pixel and predict the possibility of whether the pixel is in

a cell region. Applying Algorithm 1, we show the accelerated network on the right

of Table 3.2, which detects cells on a tile image of size 512× 512. Since the classifier

deals with 20× 20 image patches, we mirror pad the original 512× 512 tile image to

a 531× 531 image.

Table 3.1: Original LeNet Classifier network architecture. M : the training batch size,
N : the testing batch size. Layer type: I - Input, C - Convolution, MP - Max Pooling,
ReLU - Rectified Linear Unit, FC - Fully Connected

Type Maps Filter Filter Stride
and neurons size num

I 3× 20× 20M - - -
C 20× 16× 16M 5 20 1
MP 20× 8× 8M 2 - 2
C 50× 4× 4M 5 50 1
MP 50× 2× 2M 2 - 2
FC 500M 1 - -
ReLU 500M 1 - -
FC 2M 1 - -

1The code is the publicly available at https://github.com/uta-smile/caffe-fastfpbp. We

also provide a web demo for our method at https://celldetection.zhengxu.work/.
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Table 3.2: Accelerated forward network architecture. M : the training batch size, N :
the testing batch size. Layer type: I - Input, C - Convolution, MP - Max Pooling,
ReLU - Rectified Linear Unit, FC - Fully Connected

Type Maps Filter Filter Stride
and neurons size number

I 3× 531× 531N - - -
C 20× 527× 527N 5 20 1
MP 20× 526× 526N 2 - 1
C 50× 518× 518N 9 50 1
MP 50× 516× 516N 3 - 1
FC(C) 500× 512× 512N 5 - 1
ReLU 500× 512× 512N 1 - -
FC(C) 2× 512× 512N 1 - -

3.3.2 Effectiveness Validation

Our framework can be applied to any convolutional neural network for pixel-

wise cell detection, e.g., [28, 29, 30]. Thus, the effectiveness of our framework highly

depends on the performance of the original deep neural networks designed for the

small-scale cell detection. In this subsection, we validate the result consistency be-

tween our framework and the original work [30]. We conduct experiments on 215

tile images sized 512× 512 sampled from the NLST2 whole-slide images, with 83245

cell object annotations. These tile images are then partitioned into three subsets:

the training set (143 images), the testing set (62 images) and the evaluation set (10

images). The neural network model was trained on the training set with the original

network described on the Table 3.2 (left). We then applied Algorithm 1 to transfer

the original network into our framework. This experiment was conducted on a work-

station with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz CPU, 32 gigabyte RAM,

and a single Nvidia K40 GPU.

2https://biometry.nci.nih.gov/cdas/studies/nlst/
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For quantitative analysis, we used a precision-recall-F1score evaluation metric to

measure the performance of the two methods. Since the proposed method detects the

rough cell area, we calculated the raw image moment centroid as its approximate

nuclei location. Each detected cell centroid is associated with the nearest ground-

truth annotation. A detected cell centroid is considered to be a True Positive (TP )

sample if the Euclidean distance between the detected cell centroid and the ground-

truth annotation is less than 8 pixels; otherwise, it is considered as False Positive

(FP ). Missed ground-truth dots are counted as False Negative (FN) samples. We

consider F1 score F1 = 2PR/(P +R), where precision P = TP/(TP +FP ) and recall

R = TP/(TP + FN). We report the precision, recall and F1 score of the original

work and our framework in Table 3.3.

Table 3.3: Quantitative Comparison between Original Work and Our Framework

Methods Precision Recall F1 score Overall Runtime Pixel Rate
Original Work[30] 0.83±0.09 0.84±0.10 0.83±0.07 38.47±1.01 6814.24±174.43
Our Framework 0.83±0.09 0.84±0.10 0.83±0.07 0.10±0.00 2621440.00±24.01

Table 3.3 also shows the overall runtime (in seconds) and pixel rate (pixels per

second) comparison. While our framework produced the same result as the original

work, our overall speed was increased by approximately 400 times in small scale

images on a single GPU device. This is reasonable since our method reduces most

redundant convolution computation among the neighbor pixel patches.

3.3.3 Prefetching Speedup

In this subsection, we validate the effectiveness of the proposed asynchronous

prefetching technique. Fig.3.1 shows the disk I/O time comparison among memory,

file and prefetching modes in a whole-slide image (NLSI0000105 with spatial dimen-
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sion 13483× 17943). The I/O time is calculated by the difference between the overall

runtime and the true detection time. As mentioned in Section 3.2.2, memory mode

is slightly faster than file mode in that memory mode requires less hardware inter-

ruption invocation. Note that the prefetching technique doesn’t truly reduce the I/O

time. It hides most I/O time into the detection time, since the caching procedure and

detection occur simultaneously. So for a 108-pixel whole-slide image, our technique

diminishes (or hides) 95% I/O time compared with file mode. This is because the

exposed I/O time with our prefetching technique is only for reading the first cached

image.

3.3.4 Parallel and Distributed Computing

Figure 3.1: I/O Time Com-

parison among Memory, File

and proposed Asynchronous

Prefetching modes (in sec-

onds)

In this subsection, we show our experiment re-

sults in several whole-slide images. We randomly se-

lected five whole-slide images, in Aperio SVS format,

from NLST and TCGA [33] data sets, varying in size,

from 108 to 1010 pixels. In order to show the efficiency

of our methods, we conducted experiments in all five

whole-slide images on a single workstation with In-

tel(R) Core(TM) i7-5930K CPU @ 3.50GHz, 64 Gi-

gabytes RAM, 1 TB Samsung(R) 950 Pro Solid-State

Drive and four Nvidia Titan X GPUs. Table 3.4 shows

the overall runtime on cell detection in these whole-

slide images. On a single workstation, our method

is able to detect cells in a whole-slide image of size

around 104× 104 (NLSI0000105) in 20 seconds. Since

the detection result of this whole-slide image includes
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approximately 200, 000 cells, our method detects nearly 10, 000 cells per second on av-

erage on a single workstation, while the original work [30] only detects approximately

6 cells per second, reaching a 1, 500 times speedup.

Table 3.4: Time Comparison on Single Workstation (in seconds)

Image Name (Dimension) 1 GPU 2 GPUs 3 GPUs 4 GPUs
NLSI0000105 (13483× 17943) 71.43 38.81 26.89 20.88
NLSI0000081 (34987× 37879) 366.74 194.99 131.30 99.20

TCGA-05-4405 (83712× 50432) 1502.16 800.24 529.00 449.94
TCGA-35-3615 (62615× 133335) 2953.99 1519.57 1100.32 861.17
TCGA-38-4627 (65033× 149642) 3385.28 1773.11 1216.80 972.36

The workaround of our method in distributed computing environment is demon-

strated on TACC Stampede GPU clusters3. Each node is equipped with two 8-core

Intel Xeon E5-2680 2.7GHz CPUs, 32 Gigabytes RAM and a single Nvidia K20 GPU.

We show only the distributed results for the last four images from Table 3.4, since the

first image is too small to be sliced into 32 pieces. Table 3.5 shows that our method

detects cells in a whole-slide image (TCGA-38-4627) with nearly 1010 pixels within

155.87 seconds. When directly applying the original work, it takes approximately 400

hours (1440000 seconds) even without considering the disk I/O time. Our method has

impressively achieved nearly 10, 000 times speed up compared with naively applying

[30]. The linear speedup also exhibits the scalability and communication efficiency,

since our our sampling strategy reduces most overhead in communication.

3.4 Conclusions

In this paper, a generalized distributed deep neural network framework is intro-

duced to detect cells in whole-slide histopathological images. The innovative frame-

3https://www.tacc.utexas.edu/stampede/
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Algorithm 1 Network To Sparse Kernel Network Conversion Algorithm

Input: Original network N with K layers denoted as N = {N (1), . . . ,N (K)}.

Output: Sparse kernel network N̂ with K layers.

Initialization: d = 1

for k = {1, 2, . . . , K} do

if N (k) is convolution layer then

Set N̂ (k) as ConvolutionSK layer

N̂ (k)
stride := 1, N̂ (k)

kstride := d, N̂ (k)
kernel := N (k)

kernel

else if N (k) is pooling layer then

Set N̂ (k) as PoolingSK layer

N̂ (k)
stride := 1, N̂ (k)

kstride := d

else if N (k) is fully connected layer then

Set N̂ (k) as ConvolutionSK layer

N̂ (k)
stride := 1, N̂ (k)

kstride := d, N̂ (k)
num output := N (k)

num output

N̂ (k)
kernel size := N (k−1)

output shape, N̂
(k)
kernel := N (k)

weight

else

N̂ (k) = N (k)

end if

d := d×N (k)
stride

end for

Table 3.5: Time Comparison on Multi-node Cluster (in seconds)

Image Name (Dimension) 1 2 4 8 16 32
NLSI0000081 (34987× 37879) 520.94 266.06 143.99 77.16 44.10 26.03

TCGA-05-4405 (83712× 50432) 1820.08 945.77 508.23 271.02 155.39 86.31
TCGA-35-3615 (62615× 133335) 3558.48 1834.00 944.91 487.47 266.35 147.07
TCGA-38-4627 (65033× 149642) 4151.56 2107.46 1086.53 559.28 293.98 155.87
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work can be applied with any deep convolutional neural network pixel-wise cell detec-

tor. Our method is extremely optimized in distributed environment to detect cells in

whole-slide images. We utilize a sparse kernel neural network forwarding technique to

reduce nearly all redundant convolution computations. An asynchronous prefetching

technique is recommended to diminish most disk I/O time when loading the large

histopathological images into memory. Furthermore, an unbalanced distributed sam-

pling strategy is presented to enhance the scalability and communication efficiency of

our framework. These techniques construct three pillars of our framework. Extensive

experiments demonstrate that our method can approximately detect 10, 000 cells per

second on a single workstation, which is encouraging for high-throughput cell data.

While our result enables the high speed cell detection, our result can expect to benefit

some further pathological analysis, e.g. feature extraction [34].
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CHAPTER 4

SEQ2SEQ FINGERPRINT: AN UNSUPERVISED DEEP MOLECULAR

EMBEDDING FOR DRUG DISCOVERY

Many of today’s drug discoveries require expertise knowledge and insanely ex-

pensive biological experiments for identifying the chemical molecular properties. How-

ever, despite the growing interests of using supervised machine learning algorithms to

automatically identify those chemical molecular properties, there is little advancement

of the performance and accuracy due to the limited amount of training data.

In this paper, we propose a novel unsupervised molecular embedding method,

providing a continuous feature vector for each molecule to perform further tasks, e.g.,

solubility classification. In the proposed method, a multi-layered Gated Recurrent

Unit (GRU) network is used to map the input molecule into a continuous feature

vector of fixed dimensionality, and then another deep GRU network is employed to

decode the continuous vector back to the original molecule. As a result, the continuous

encoding vector is expected to contain rigorous and enough information to recover

the original molecule and predict its chemical properties. The proposed embedding

method could utilize almost unlimited molecule data for the training phase. With

sufficient information encoded in the vector, the proposed method is also robust and

task-insensitive. The performance and robustness are confirmed and interpreted in

our extensive experiments [10].
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4.1 Introduction

In the most recent decade, every drug company with R&D department has car-

ried out numerous initiatives for speeding up its drug discovery process [35]. Drug

discovery is the process through which potential new medicines are identified. Mod-

ern drug discovery is usually implemented as drug compound selection, while, for

every candidate chemical compound, the chemical drug properties, e.g., affinity, se-

lectivity, metabolic stability, are biologically tested in the lab environment. Once all

the properties pass the drug requirement tests, it will be selected as a new potential

drug candidate. However, this process is excessively expensive and labor-intensive,

and costs hundreds of million dollars each year.

Therefore, using machine learning methods to automatically predict the chem-

ical properties has recently raised great interests in the drug discovery community

[36, 37, 38, 39]. However, the majority of machine learning algorithms take fixed-

length continuous feature vectors as inputs [40, 41, 42]. However, the nature of

molecules makes it extremely hard to represent molecules with fixed-length vectors

[43, 44, 45]. The readers might refer to Figure 5.1 to grab some intuition. As a simple

example, we may consider H2O (water) and O2 (oxygen). They differ in atom types,

numbers as well as bond types. One might find it is tricky to represent each molecule

as a fixed-length vector. So a large class of research papers has been published to

generate the fixed-length continuous vector representation for molecules. Overall, the

choice of the representation of molecules is at the heart of the machine learning-based

drug discovery [46, 47, 48, 49].

Traditionally, the design of new fixed-length vector molecular representations,

named fingerprints, is not data-driven and based on human expertise knowledge

[59, 60, 61, 62, 63]. One type of those design is based on some hashing procedure,

e.g., Extended Connectivity FingerPrint (ECFP) [56]. Those fingerprints are usually
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Table 4.1: Comparison among different types of fingerprint methods, in three differ-
ent aspects: 1) if the design of the fingerprint requires biologists’ expertise knowledge,
2) if the fingerprint has enough information to be reverted to original SMILE repre-
sentation, and 3) if the fingerprint method requires many labeled data. DL is short
for Deep learning while FP is short for FingerPrint.

Properties
Non-data driven Methods

Supervised DL FP [50, 51, 52] Seq2seq FP (ours)
Hash-based [53, 54, 55, 56] Local feature[57, 58]

Without biologist guide X × X X
Revertible × × × X

Less thirsty on label data X X × X

efficient in speed, but is much like a lossy compression in the imaging area [64, 65, 66,

67] and the operation is non-invertible. The other sort of non-data-driven fingerprint

is based on local sub-structures of molecules. Biologists look for several highly related

chemical molecular sub-structures for specific tasks and design the fingerprint feature

vector accordingly. Representative works are [57, 58]. However, this kind of design

obviously requires years of expertise experience and is highly task-sensitive. To sum

up, the non-data-driven fingerprint is either limited in encoding enough information

or highly lean to expensive and accurate human knowledge. Hence it has raised a

great demand for the data-driven fingerprints, which does not require years of human

guide and expensive biological experiments.

Observed the recent success of deep learning on imaging understanding [68, 2]

or natural language processing [69, 70], there are a few attempts made in applying

deep neural network to generate fingerprints. Among the most famous ones are the

neural fingerprint [52] as well as [50, 51, 71, 72]. However, most supervised deep

learning methods are data-hungry and usually completely fail when data scale is

limited [73, 74], and unfortunately this is usually the case in the drug discovery due

to the insane expensiveness of the lab experiment.

In this paper, we propose an unsupervised data-driven deep-learning-based

molecular fingerprint method, named seq2seq fingerprint. To overcome the issues
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mentioned above, 1) the proposed method is data-driven, without any human exper-

tise knowledge required. 2) the fingerprints generated by the proposed method are

completely revertible to original molecular representations, ensuring the sufficiency

of information encoded in the fingerprint vector. 3) the proposed method employs

an unsupervised training on a huge unlabeled dataset, sufficiently releasing the

horsepower of deep neural network. We illustrate a comparison among all mentioned

fingerprint methods and our seq2seq fingerprint method.

Our fingerprint is designed based on a recent breakthrough model, called sequence-

to-sequence learning (seq2seq learning). The seq2seq learning method comes from

a seemingly unrelated area, English-to-French translation. The seq2seq learning

method takes an English sentence as the input, encodes it into a meaning vector

and then translates it back to a French sentence as the output. The crux of our

method is similar, but differs in the way that we set both the input and output of the

seq2seq learning as the same SMILE string, a text representation of a molecule. We

map the SMILE string to a fixed-sized vector and then translates it back to the orig-

inal SMILE string. The intermediate fixed-sized vector is extracted as the seq2seq

fingerprint. Once the model is well-trained, the intermediate feature vector is con-

sidered to encode all the information to recover the original molecular representation.

Hence, the seq2seq fingerprint is expected to capture the rigorous information with

which we can accurately predict the molecular properties.

The benefits of the seq2seq fingerprint are three folds: 1) the training phase of

seq2seq fingerprint is completely label-free, avoiding the costly and labor-intensive

label acquiring procedure. 2) it is data-driven, eliminating the reliance on expert’s

subjective knowledge. 3) since the unlabeled data is almost unlimited in practice, we

can fully utilize the power of deep learning, without suffering from the short supply

of labeled data.
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Figure 4.1: The examples of SMILE representations.

The technical contributions of this paper are summarized as: 1) the seq2seq

fingerprint method is clearly the first attempt to apply the seq2seq learning method

to perform drug discovery tasks, coupling two seemingly unrelated areas. 2) sev-

eral important adaptations are made into the original seq2seq learning to suit drug

discovery applications:

• GRU cell is used, instead of LSTM, to accelerate the training process,

• Attention Mechanism is employed to centralize the fingerprint space,

• Dropout layer is added to overcome the over-fitting issue during the training

phase,

• An extra fingerprint extraction layer set is added to pull the fingerprint out.

3) extensive experiments confirm the superior performance on different tasks over the

state-of-the-art methods.

The rest of the paper is organized as follows. We summarize several related

work, in both drug discovery and sequence to sequence learning, in Section 5.2. In

Section 5.3, we describe our entire pipeline in details. We show our experiment results

in Section 5.4, demonstrating the superior performance of our method. We conclude

and discuss the future direction of our paper in Section 5.5.
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4.2 Related Work

In this section, we present several related work. First, we introduce the initial

representation of molecules, i.e., how the molecular data is persisted in the data

store. Second, we list several state-of-the-art fingerprint methods, including the most

recent ones using deep learning techniques. Last but not least, we briefly describe our

cornerstone learning method, i.e., seq2seq learning, with several of its related work in

language translation area.

4.2.1 SMILE Representations of Molecules

Initially, the molecules are represented through the Simplified Molecular-Input

Line-Entry system (SMILE) [75], which is a line notation for describing the structure

of chemical species using text strings. The SMILE system represents the chemical

structures in a graph-based definition, where the atoms, bonds and rings are en-

coded in a graph. Simple examples of SMILE representations are 1) dinitrogen with

structure N ≡ N (N#N), 2) methyl isocyanate with structure CH3 − N = C = O

(CN=C=O), where corresponding SMILE representations are included in the brack-

ets. We show some more complex examples in Figure 5.1.

4.2.2 Fingerprint Methods

4.2.2.0.1 Hash-based Fingerprints Many hash-based has been developed to

generate unique molecular feature representation [53, 54, 55]. One of the most famous

ones being Extended-Connectivity FingerPrint (ECFP) [56]. Circular fingerprints

generate each layer’s features by applying a fixed hash function to the concatenated

features of the neighborhood in the previous layer. However, due to the non-invertible

nature of the hash function, the hash-bashed fingerprint methods usually do not
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encode enough information and hence result in lower performance in the further

predictive tasks.

4.2.2.0.2 Biologist-guided Local-Feature Fingerprints Another mainstream

of traditional fingerprint methods is designed based on the biological experiments and

the expertise knowledge and experience, [57, 58]. Biologist look for several important

task-related sub-structures (fragments), e.g., CC(OH)CC for pro-solubility predic-

tion, and count those sub-structures as local features to produce fingerprints. This

kind of fingerprint methods usually work well for specific tasks, but generalize very

poorly for other tasks.

4.2.2.0.3 Supervised Deep Learning-based Fingerprints The growth of

deep learning has provided the flexibility and performance to create the molecular

fingerprint from data samples, without explicit human guide, [52, 50, 51, 76, 77]. The

state-of-the-art work is the neural fingerprint [52]. The neural fingerprint mimics the

process of generating circular fingerprint but instead the hash function is replaced

by a non-linear activated densely connected layer. This method is based on the

data-hungry deep neural network. To acquire enough labeled data, biologists need to

perform a sufficiently large number of tests on chemical molecules, which is extremely

expensive.

4.2.3 Encoder-Decoder Structured Neural Network

4.2.3.0.1 Variational Auto-Encoder Variational Auto-Encoder (VAE) model

[78] shares some similar structure as our method, which uses a encoder to encode the

original representation to a vector or scalar then a decoder to decode the vector to

original representation. The difference is that the VAE model puts the assumption
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that the embedded space follows some specific Gaussian distribution. In most recent

months, the authors become aware of an unpublished VAE report in drug discovery

[79]. However, there is no evidence and experimental results to support the Gaussian

assumption on the embedded fingerprint space. Moreover, we still lack the evaluation

on how the VAE will perform in the predictive tasks.

4.2.3.0.2 Generative Adversarial Network Generative Adversarial Network

(GAN) [80] has recently become popular in the machine learning area. A GAN is

constructed by a discriminator and a generator. The discriminator acts as a cop to

distinguish the training data samples from the samples generated from the generator.

Hence, the learning process actually learns from both training data set and the gen-

erated fake data samples. It works well when the scale of data sample is limited. But

such network is hard to train and we are not aware of any publicly available report

that documents the attempt to adapt GAN into drug discovery.

4.2.3.0.3 Sequence to Sequence Model The sequence to sequence model [81]

has been recently used in English-to-French translation and demonstrated as a break-

through success. The basic strategy of sequence to sequence learning is to map the

input sequence, e.g., an English sentence, to a fixed-sized vector using one deep Long

Short-Term Memory (LSTM) network, and then map the vector to the target se-

quence, e.g., the translated French sentence, with another deep LSTM network. The

fixed-sized vector is considered as an intermediate representation and contains the

“meaning” of sentences.
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Figure 4.2: This figure shows how the entire pipeline works. 1) The seq2seq fingerprint
model is trained on a large pool of unlabeled SMILE data. 2) The trained model is fed
with SMILE strings to generate the seq2seq fingerprint. 3) Coupling the fingerprint
and label, the pairs are fed into supervised classifiers/regressors to train a predictive
model.

4.3 Methodology

In the sequel, we present the entire pipeline of the proposed method. First, we

overview the entire pipeline with an introduction of the crux of our fingerprint method.

Second, we detail each step of our method and our improvements and adaptations

upon the original seq2seq learning method. Last, we discuss our methods to end this

section.
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Figure 4.3: An example on how the unsupervised training works. The perceiver net-
work understands the molecule SMILE representation, e.g., CCC#N, and encodes
it into a fixed-length vector, i.e., seq2seq fingerprint. The interpreter network
will then translate the fingerprint back to the sequence, e.g. N#CCC.

4.3.1 Overview

The entire pipeline of our method consists of three steps: 1) we first train the

seq2seq fingerprint model on a huge pool of unlabeled training data. 2) Then the

trained model is used to generate the seq2seq fingerprint for the labeled data set. 3)

The resulting fingerprints and their labels are fed to some supervised learning method

to train a predictive model, e.g., Gradient Boosting, Multi-Layer Perceptron (MLP).

An illustration of the pipeline is shown in Figure 5.3. As a result, the entire pipeline

is able to transfer knowledge from a large number of unlabeled data samples to the

supervised training on a relatively small labeled dataset and thus improve the final

predictive performance.

The crux of our unsupervised seq2seq fingerprint method, seq2seq finger-

print, is to set both input and output sequences to the same SMILE string for each

molecule in sequence-to-sequence learning for unsupervised training, or simply trans-

late the SMILE string to itself. Since the intermediate vector is considered to

maintain the “meaning” of the sequence, we thus extract the intermediate vector as

the fingerprint. While the sequence to sequence learning [81] could in principle di-
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rectly work with our idea, however, there are still many drawbacks yet to limit the

application in the molecular predictive tasks.

First, at least in theory, our model can train on a pool of infinite molecular data.

While the LSTM is famous for its slow training, the time invested in the training

process on a large amount of data is absolutely unbearable. Second, the original

sequence to sequence learning does not explicitly output the embedding vector, and

therefore lacks an extra layer in order to output the fingerprint vector. Third, as

argued in [82], when the length of the input sequence grows, the performance of the

neural network decreases rapidly. However, SMILE representation usually contains

several tens of characters (up to 250 characters), which is too long to be handled

by the original sequence to sequence model. Finally, due to the large training data

scale, the number of model parameters tends to be relatively smaller than demanded,

yielding the over-fitting issue.

Here, we propose the seq2seq fingerprint, with various of improvement upon

the original sequence-to-sequence learning [81] used in English-to-French translation

to generate an effective fingerprint for drug discovery tasks. We detail each step in

the following sub-sections.

4.3.2 Unsupervised Seq2seq Training

To train a fingerprint generator on a huge unlabeled dataset, we first employ

a deep Gated Recurrent Unit (GRU) network, named perceiver network, to map

the original molecular SMILE string to a fixed-sized vector, i.e., the seq2seq finger-

print. Then another deep GRU neural network, called interpreter network, is used to

generate the original SMILE string back from the seq2seq fingerprint. A work-flow

illustration of our method is shown in Figure 4.3. In the following, we show, in the
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descent order of importance from the authors’ perspective, the details we altered to

adapt the drug discovery application.

GRU Units The Gated Recurrent Unit (GRU) is used in our experiment

instead of LSTM. GRU is famous for its LSTM-like performance but faster training

process. A GRU network computes a sequence of outputs (s1, . . . , sT ) from the input

sequences (x1, . . . , xT ) by iterating

zt = σg(Wzxt + Uzst−1 + bz)

rt = σr(Wrxt + Urst−1 + br)

ht = tanh(Uhxt +Wh(st−1 ◦ rt))

st = (1− zt) ◦ ht−1 + zt ◦ st−1. (4.1)

A GRU cell has two gates: the update gate z and the reset gate r. Each gate has

the trainable parameter W,U, b. The activation function σ for each gate is usually

the sigmoid function. GRU also has the ”hidden memory” h, which holds another

set of trainable parameters U,W . In contrast with LSTM which has three gates, it

has similar performance but faster training speed [83].

Attention Mechanism So far, the only connection between the perceiver and

interpreter networks is the sharing hidden memory. When the sequence becomes

longer, it becomes extremely challenging to pass the information from the perceiver

to the interpreter network through the hidden memory. To address this issue, the

attention mechanism is employed to establish a stronger connection and provide soft-

alignment between the perceiver and interpreter networks. More details are referred

to [82].

Dropout Layer One of the most favorable features in our model is the capa-

bility to use nearly unlimited molecular training data. However, the over-fitting issue

will come to play if we grow our data unrestrictively. To enhance the generalizability
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of our model, we add dropout layer to each input, output gate and yet we do not add

the dropout for the hidden memory transferring gate, following the practices in [84].

What do we inherit? While we improve the original sequence-to-sequence

model from several aspects, we keep using the reverse technique introduced in [81],

where the source sequence is mapped to the reverse sequence of the target. For

example, instead of mapping a, b, c to α, β, γ, we map a, b, c to γ, β, α. This trick

is observed to make it easier for the Stochastic Gradient Descent (SGD) algorithm

to “establish communication” between the source and target sequences. Another

important technique we keep is the bucket training, where all the training sequences

are distributed into several buckets, and all the sequences in the same bucket are

padded to the same length. This technique can parallel the training process on GPUs

for acceleration.

C C # NC <EOS>

Perceiver Network Fingerprint Extraction Layer

Seq2seq 
Fingerprint

Figure 4.4: The illustration of how to extract the seq2seq fingerprint. Only the per-
ceiver network is feed-forwarded with an extra fingerprint extraction layer to extract
the resulting seq2seq fingerprint.
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4.3.3 Fingerprint Extraction

During the fingerprint extraction stage, we only feed-forward the perceiver net-

work, leaving the interpreter network behind to save computational resources. More-

over, the original sequence to sequence model does not explicitly output the em-

bedding vector, which brings us challenges to extract fingerprints we need. A fixed

unit fully connected layer together with a GRU cell state concatenation layer is in-

jected between the perceiver network and interpreter network to extract the seq2seq

fingerprint from the network. The illustration of this process is in Figure 4.4.

4.3.4 Supervised Training on Labeled Data

Since our method embedded the molecular graph into a vector space with fixed

dimension, the resulting fingerprint can be almost trained with almost all popular

regressors or classifiers. Those methods include but not limited to linear Support

Vector Machine (SVM), ν-support vector machine, and ensemble methods, e.g., Ad-

aBoost, Extra Trees, etc. In our experiments, we investigate our fingerprints with

three ensemble methods: AdaBoost, GradientBoost and Random Forest.

4.3.5 Discussion

Our method can indeed transfer knowledge from unlabeled data to the labeled

data training. However, it is not technically semi-supervised, since the unlabeled

data is not directly used in the supervised training. So we still name our fingerprint

method as unsupervised.

4.4 Experiments

In this section, we first detail the experimental setup, e.g., the data set descrip-

tion, hardware and software settings, etc. Then we report the recovery performance
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Table 4.2: The comparison of classification accuracy on the LogP data.

Adaboost (Ours) GradientBoost (Ours) RandomForest (Ours)
Circular Neural 512 768 1024 512 768 1024 512 768 1024

Mean 0.3674 0.6080 0.7044 0.6837 0.7342 0.7350 0.7149 0.7664 0.6895 0.6664 0.6845
StDev 0.0074 0.0135 0.0042 0.0097 0.0042 0.0060 0.0058 0.0043 0.0061 0.0100 0.0032

Table 4.3: The comparison of classification accuracy on the PM2-10k data.

Adaboost (Ours) GradientBoost (Ours) RandomForest (Ours)
Circular Neural 512 768 1024 512 768 1024 512 768 1024

Mean 0.3938 0.5227 0.5535 0.5561 0.6036 0.5741 0.5713 0.6206 0.5316 0.5282 0.5481
StDev 0.0114 0.0112 0.0132 0.0070 0.0147 0.0086 0.0151 0.0198 0.0110 0.0081 0.0088

of the seq2seq fingerprint method, i.e., how the SMILE self-translation performance

is. Finally, we show the superior performance on two predictive tasks for our seq2seq

fingerprint method.

4.4.1 Experiment Setup

Unsupervised Train Dataset Our training data was collected from a com-

bination of two large datasets: LogP and PM2-full datasets. Those datasets were

obtained from National Center for Advancing Translational Sciences (NCATS) at

National Institutes of Health (NIH). The training dataset contains 334,092 valid

molecular SMILE representations.

Labeled Datasets We performed the classification on two smaller datasets:

• LogP: LogP dataset contains a total of 10,850 samples. Each sample contains

a pair of a SMILE string and a water-octanol partition coefficient (LogP) value.

A certain threshold of 1.88 is suggested by an NCATS expert. Samples with

LogP value smaller than 1.88 will be classified as the negative samples, while

the opposites are considered the positive samples.

• PM2-10k: PM2-10k dataset contains 10,000 pairs of SMILE strings and binary

promiscuous class labels.
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Comparison Methods We compared our seq2seq fingerprint method with two state-

of-the-art methods: the ECFP [56] (circular fingerprint) and the neural fingerprint

method [52]. The circular fingerprint is a hand-crafted hash-based feature. The neural

fingerprint is constructed on a supervised deep graph convolutional neural network.

The circular fingerprint was generated through RDKit 1 and we use Multi-Layer

Perceptron for the future predictive task as suggested in [52]. We obtained the neural

fingerprint from https://github.com/HIPS/neural-fingerprint and we carefully

followed the authors’ instructions to apply our datasets.

Infrastructure and Software The seq2seq fingerprint method was implemented

through tensorflow package [85], and the trained models used in our experiments

were trained on a workstation with Intel i7 6700K @ 4.00 GHz CPU, 16 Gigabytes

RAM and a Nvidia GTX 1080 GPU. We performed the hyper-parameter grid search

and the training process of the classifiers on the TACC Lonestar 5 cluster 2. In

addition to the traditional MPI package for distributed grid-search, we used a more

flexible master-worker task distribution package for Python called dgsearch. The code

for training the seq2seq fingerprint will become publicly available after the acceptance

of this paper.

4.4.2 Seq2seq Fingerprint Recovery Performance

Throughout the entire experiment sections, we discuss three variants of our

seq2seq fingerprint, varying in feature vector lengths as 512, 768, and 1024. Each

model was trained for 24 hours. These three models differ only in the number of

GRU layers and yet with the same Latent Dimension (LD). We report the training

details and the recovery power of each fingerprint model in Table 4.4. The recovery

1http://www.rdkit.org
2https://www.tacc.utexas.edu/systems/lonestar
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performance is evaluated through the perplexity and Exact Match (EM) accuracy.

The perplexity is calculated by the entropy of the probability distribution over the

training set. The EM accuracy is the ratio between the exactly recovered SMILE

strings and the total number of SMILEs in the test sets.

Table 4.4: The reconstruction performance with different number of GRU layers.

Model Layer LD Perplexity EM Accuracy
seq2seq-512 2 256 1.00897 94.24%
seq2seq-768 3 256 1.00949 92.92%
seq2seq-1024 4 256 1.01472 90.26%

Table 4.4 reveals a decreasing trend of recovery performance when we increase

the layer number of stacked GRU cells. One might expect a deeper GRU network to

have a better EM accuracy, which contrasts with the observation. The reason might

be complex. First, the training of longer seq2seq fingerprint might take longer time to

have better performance. Also, increasing the length of fingerprint actually expands

the representation space of molecules, leaving more null spaces in the fingerprints.

However, this observation does not indicate a longer fingerprint will decrease the

performance in other tasks, as shown in the next subsection.

4.4.3 LogP Solubility and PM2 Promiscuous Classification

In this section, we report the classification performance of all three seq2seq

models with fingerprint lengths 512, 768, and 1024, compared with the circular fin-

gerprint [56] and neural fingerprint [52]. We use three ensemble classifiers for our

seq2seq fingerprints: Adaboost [86], GradientBoost [87], and RandomForest [88]. We

report the accuracy means and standard deviations of 5-fold classification cross vali-

dation on both LogP and PM2-10k data, in Table 5.1 and 4.3 respectively. All results
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Figure 4.5: The mean accuracy of five methods. AdaBoost, GradientBoosting and
RandomForest our methods. The circular and neural fingerprint are the state-of-the-
art methods.

are the 100-run averages to reduce the randomness. We also show the impact of

seq2seq fingerprint length on the accuracy in Figure 4.5.

From the Table 5.1 and 4.3, we observe, on both data sets, our methods signif-

icantly outperform the circular and neural fingerprints, regardless of classifiers and

fingerprint lengths. The circular fingerprint is hashing-based and abandons a large

portion of information and is not invertible to original molecule, while our finger-

print is completely invertible and encodes rigorous information. One might argue if

the ensemble classifiers will improve the performance of circular fingerprint. Accord-

ing to [52] and our preliminary experimental observation, the results will be worse

if we switch the MLP classifier to ensemble classifiers, e.g., GradientBoost, due to

the limited length and information of circular fingerprint. The neural fingerprint is

a supervised deep learning-based algorithm, and it could be highly limited by the

amount of labeled training data. While our method transfers knowledge from a fairly

large amount of unlabeled data, our method could outperform the neural finger-

print method in classification tasks. Overall, our seq2seq fingerprints encode rigorous
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information for molecules and could train on a huge amount of data to achieve task-

insensitive performance.

In Figure 4.5, however, despite the lower recovery performance of seq2seq-1024

fingerprint, it does always provide the best classification performance, while, surpris-

ingly, the seq2seq-768 seems to always have lower classification performance. The

longer fingerprints might have more information for ensemble classification methods,

but might also bring in noise. While the noise takes the major effects, the performance

might decrease. But when the information is encoded enough, the performance will

boost.

4.5 Conclusions

In this paper, we discuss a new unsupervised molecular representation system,

called seq2seq fingerprint, based on the idea from the recent breakthrough on the

English-to-French language translation, named sequence to sequence learning model.

Our model translates the molecular SMILE string to the SMILE itself, while at the

same time generates a fixed length fingerprint vector. The experiments on classifica-

tion task demonstrate its superior performance. Also, the nature of our data-driven

label-free model brings us even more benefits. 1) Our fingerprint system is completely

unsupervised, meaning it will never be limited by the expensive label collection pro-

cess. In fact, it could utilize each of every valid molecule, theoretically reaching the

amount of infinite. 2) Contrast to the supervised learning models trained with very

limited data samples, the seq2seq fingerprint is trained from a sufficiently large pool

of samples, and therefore it is more robust to the specific task.

This seq2seq fingerprint is definitely not the end. It widely opens tons of new

possibilities. Also due to the long training time, we might introduce efficient dis-

tributed training strategy [3, 85]. There are still many hyper-parameters in our
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training algorithms, in the future, we might want to pick an optimal method for

hyper-parameter tuning [89]. Another quick future work would lie on how to embed

some label information [90] to the fingerprint training to enhance its performance on

the future machine learning task. Those type of semi-supervised learning could be a

trend in the future drug discover tasks.

48



CHAPTER 5

SEQ3SEQ FINGERPRINT: IMPROVING DEEP SUPERVISED DRUG

DISCOVERY WITH UNSUPERVISED TRAINING

Observing the recent progress in Deep Learning, the employment of AI is surging

to accelerate drug discovery and cut R&D costs in the last few years. However, the

success of deep learning is usually attributed to large-scale clean high-quality labeled

data, which is generally unavailable in drug discovery practices.

In this chapter, we address this issue by proposing an end-to-end multi-task deep

learning framework in a semi-supervised learning fashion. Given the enormous avail-

ability of unlabeled drug-like molecular data-sets, we reveal that significant improve-

ment can be observed when employing large-scale unlabeled data and an auxiliary

unsupervised self-recovery task. Compared with previous state-of-the-arts, the pro-

posed method, named as seq3seq fingerprint, trains in a mixed data pool with both

unlabeled and labeled data. Furthermore, an auxiliary unsupervised self-recovery task

(loss) is coupled with specific inference tasks to regularize the supervised training, e.g.,

molecule solubility, promiscuousness, etc. Extensive experiments confirm the signifi-

cant improvements over a variety of drug data-sets and demonstrate the effectiveness

of the proposed techniques.

5.1 Introduction

In the past few years, the application of Artificial Intelligence (AI) technologies

in drug discovery has become significant and increasingly popular. Observing the

most recent rapid growth of a key technology in AI, namely deep learning (or deep
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neural network), the whole industry and academia are looking towards AI to speed

up the drug discovery, cut R&D cost and decrease the failure rate in potential drug

screening trials [12].

However, the previous success of deep learning in multiple applications, e.g., im-

age understanding [13, 14], medical imaging [15, 3, 16], video understanding [17, 18],

bioinformatics [10, 19, 20], and machine translation [21], etc., has implied a reliance

on large-scale high-quality labeled data-sets. The training procedure of those deep-

learning-based state-of-the-art models generally involve millions of labeled samples.

In the meantime, however, for the drug discovery tasks, the scale of labeled data-set

stays around only thousands of examples due to the insanely high cost of obtaining

the clean labeled data through the biological experiments. The available amount of

the labeled training data is absolutely insufficient to secure the success of the appli-

cation of deep learning in the drug discovery. This huge gap between the requirement

and availability of the labeled data in drug discovery has become a bottleneck of

applying deep learning techniques into drug discovery.

Given the high cost of obtaining sufficient labeled data points, it seems imprac-

tical to increase the labeled data-set scale to a satisfactory level. To address this issue,

we propose a semi-supervised deep learning modeling strategy. In simple terms, the

proposed deep learning framework can learn from both labeled and unlabeled data,

while the unlabeled data is almost infinitely available. For instance, the ZINC data-

set [91] is publicly available and contains over 35 million unlabeled molecule data.

With such scale of data being used, the deep learning model is expected to be trained

with enough representation power to help the inference task.

In this paper, we propose a semi-supervised data-driven multi-task deep-learning-

based drug discovery method, named as seq3seq fingerprint. The reasons behind

this naming are two-fold: 1) this is the next-generation seq2seq fingerprint [10],
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whose major upgrade is that the original two-stage pipeline has been combined into

an multi-task one-stage end-to-end pipeline to ensure much more decent inference

performance; 2) the seq3seq fingerprint framework contains three ends with one in-

put and two outputs while the seq2seq fingerprint contains two ends with one input

and one output.

To briefly introduce the proposed seq3seq fingerprint framework, the seq3seq

fingerprint network can be considered as a pipeline with one input and two outputs.

The designed neural network can take the molecule inputs for training, with or

without labels. The input is the raw sequence representation of a molecule, namely

SMILE representation. Examples are referred in Figure 5.1. The two outputs will

correspond to the two tasks inside this network. The first one is the self-recovery.

The network is expected to be able to generate a vector representation which is able

to be recovered back to original raw sequence representation. The second task is the

inference whenever the label is available. For instance, it can be a task to predict the

acidity, alkalinity or solubility of a single molecule. The two tasks are trained within

the same network in an end-to-end fashion. As a result, in a specific inference task,

the vector representation will be able to provide both good recovery performance and

inference performance. Also, the network can be trained inside a mixture data pool

with both labeled and unlabeled data, which is sufficient enough to ensure the fine

training of the neural network.

The benefits of the seq3seq fingerprint are three folds: 1) the training phase of

seq3seq fingerprint takes both labeled and unlabeled data into consideration, which is

able to provide both strong vector representation and good inference performance. 2)

it is data-driven, eliminating the reliance on expert’s subjective knowledge. 3) since

the unlabeled data is almost unlimited in practice, it will significantly complement

the sole training with labeled data, ensuring a final good inference performance.
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Figure 5.1: The examples of SMILE representations.

The technical contributions of this paper are summarized as: 1) the seq3seq

fingerprint method is obviously the first attempt to utilize both labeled data and

unlabeled data for sequence-based end-to-end deep learning in drug discovery. 2)

We reveal that the following unsupervised training techniques gain largely on the

supervised deep drug discovery task performance:

• mixed unlabeled and labeled data training training on a mixture of both

unlabeled and labeled data can significantly improve the final inference results.

• unsupervised task it is beneficial for the inference training to involve a self-

recovery unsupervised task.

3) Extensive experiments demonstrate the superior performance on different tasks

over both supervised and unsupervised state-of-the-art fingerprint methods.

The rest of the paper is organized as follows. We summarize several related

work in drug discovery, in Section 5.2. In Section 5.3, we describe our entire pipeline

in details. We show our experiment results in Section 5.4, demonstrating the superior

performance of our method. We conclude and discuss the future direction of our

paper in Section 5.5.
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5.2 Related Work

In this section, we briefly introduce several related works. First, we present the

raw representation of molecules, namely SMILE representation, i.e., the persistence

form of the molecular data in the cold data storage. Second, we list a few state-of-

the-art fingerprint methods, including the ones using human-designed and hash-based

features.. Finally, we briefly describe some most recent deep learning based methods,

e.g., neural fingerprint [82], seq2seq fingerprint [10].

5.2.1 SMILE Representations of Molecules

5.2.1.1 Vanilla SMILE Representation System

Initially, the molecules are stored in the form of a sequence representation,

namely the Simplified Molecular-Input Line-Entry system (SMILE) [75], which is a

line notation for describing the structure of chemical species using text strings. The

SMILE system represents the chemical structures in a graph-based definition, where

the atoms, bonds and rings are encoded in a graph and represented in text sequences.

Simple examples of SMILE representations are 1) dinitrogen with structure N ≡ N

(N#N), 2) methyl isocyanate with structure CH3 −N = C = O (CN=C=O), where

corresponding SMILE representations are included in the brackets. Simply speaking,

the letters, e.g., C,N , generally represent the atoms, while some symbols like −,=,#

represent the bonds. We show some more complicated examples in Figure 5.1.

5.2.1.2 Canonical SMILE: Bijective Mapping Between SMILEs and Molecules

SMILE system is not perfect in that the vanilla SMILE system is not a bijective

mapping between SMILE sequence and a molecule. For example, a molecule can have

multiple corresponding SMILE representations, e.g., CCO, OCC and C(O)C. To ad-
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dress this issue and providing a one-to-one mapping between SMILEs and molecules,

multiple canonicalization algorithms are invented to ensure the representation unique-

ness of each molecular structure [92]. In this paper, all of our SMILEs are canonical

SMILEs to ensure the bijectiveness of the mapping.

5.2.2 Fingerprint Methods

Traditionally, there is a major class of molecular representation system called

fingerprint. A fingerprint is basically a vector of a corresponding molecule as its

continuous representation. Hence fingerprints can be thereafter fed into a machine

learning system as an initial vector representation. A large number of previous studies

are inventing new fingerprint systems which can benefit future predictive tasks.

5.2.2.1 Hash-based Fingerprints

Many hash-based methods has been developed to generate unique molecular fea-

ture representation [53, 54, 55]. One important class is called circular fingerprints.

Circular fingerprints generate each layer’s features by applying a fixed hash function

to the concatenated features of the neighborhood in the previous layer. One of the

most famous ones is Extended-Connectivity FingerPrint (ECFP) [56]. However, due

to the non-invertible nature of the hash function, the hash-bashed fingerprint meth-

ods usually do not encode enough information and hence result in lower performance

in further predictive tasks.

5.2.2.2 Biologist-guided Local-Feature Fingerprints

Another mainstream of traditional fingerprint methods is designed based on

the biological experiments and the expertise knowledge and experience, e.g., [57, 58].

Biologists look for several important task-related sub-structures (fragments), e.g.,

54



CC(OH)CC for pro-solubility prediction, and count those sub-structures as local

features to produce fingerprints. This kind of fingerprint methods usually work well

for specific tasks, but poorly generalize for other tasks.

5.2.3 Deep-learning-based Models

The growth of deep learning has provided the great flexibility and performance

to create the molecular fingerprint from data samples, without explicit human guide,

[52, 50, 51, 76, 77, 10]. In this subsection, we discuss two major classes, namely

supervised and unsupervised learning models.

5.2.3.1 Supervised Models

Many of deep learning-based fingerprint methods are still trained in a supervised-

learning fashion [76, 93], which is using only labeled molecular data samples as inputs

and adjusting model weights according to their labels [94]. However, as mentioned

earlier, the performance of the deep supervised learning models are generally lim-

ited by the availability of the labeled data. The state-of-the-art work is the neural

fingerprint [52]. The neural fingerprint mimics the process of generating circular fin-

gerprint but instead the hash function is replaced by a non-linear activated densely

connected layer. This method is based on the deep graph convolutional neural net-

work [72, 95, 96, 94]. There are also few attempts that address the insufficient label

issue by using few-shot learning strategies, e.g., [97]. To secure a satisfactory per-

formance and acquire enough labeled data, biologists need to perform a sufficiently

large number of tests on chemical molecules, which is prohibitively expensive.
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5.2.3.2 Unsupervised Models

Recently, few unsupervised fingerprint methods, e.g., seq2seq fingerprint [10],

are proposed to alleviate the issue brought by the insufficient labeled data. These

models generally train deep neural networks to provide strong vector representations

using a big pool of unlabeled data. The vector representation model is thereafter used

for supervised training with other models, e.g., Adaboost [86], GradientBoost [87],

and RandomForest [88], etc. Since the deep models are trained with a sufficiently

large data-set, the representation is expected to contain enough information to provide

good inference performance. However, this type of methods are not trained end-to-

end, meaning that the representation only adjusts to the recovery task of the original

raw representation. It is robust to the specific labeled task, but might not provide

optimal inference performance for each task.

5.2.4 Relationship with Natural Language Processing Models

One might spot that the modeling with sequence-based drug discovery shares

many similarities with the Natural Language Processing (NLP) modeling. For ex-

ample, they both use famous Recurrent Neural Network (RNN) techniques as state-

of-the-art methods in deep learning-related methods. However, the problem itself in

drug discovery might be quite different from that in NLP area. First, the vocabulary

in drug discovery tends to be much smaller but much less related. For example, token

C (carbon) is basically no same as token O (oxygen) while, in NLP, the word ”man”

and ”woman” can be embedded to a space where they can be close to each other

using techniques like word2vec [98]. Also, in general, say in English, the length of

a sequence (or sentence) in NLP is generally shorter than that in drug discovery. A

drug-like SMILE sequence in drug discovery can generally size around 100 tokens,
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while English sentences usually contain 15-20 words each 1. This brought significant

challenges to some models, especially Long Short-term Memory (LSTM) which uses

a forgot gate to constantly ”forget” older memory, which is absolutely not ideal for

long sequences.

We have been most recently aware of a similar work in NLP area [99]. This

work comes out mostly in parallel with our work. This paper tackles multiple tasks

in NLP area, e.g., textual entailment, question answering, semantic assessment, and

document classification. They reveal that large gains can be realized by generative

pre-training on a large pool of unlabeled text corpora, which, to some extent, confirms

our solid work of the mixed training on both unlabeled and labeled data. Dating back

earlier, there is also some work in semi-supervised learning for sequence learning [100],

or adversarial training on sequence [101].

Figure 5.2: This figures shows how semi-supervised training is used for our proposed
model. We mix the unlabeled data and labeled data together to train our proposed
model. The SMILEs with label 0/1 come from labeled dataset and the SMILEs
without labels (N/A in the figure) come from unlabeled dataset.

1https://strainindex.wordpress.com/2008/07/28/the-average-sentence-length/
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5.3 Methodology

In this section, we describe the details of our semi-supervised seq3seq fingerprint

model. First, an overview of the proposed seq3seq fingerprint model is given. The

proposed semi-supervised model is trained in an end-to-end fashion by completing two

tasks, a self-recovery task for molecule (without any label) and an inference task (with

specific classification/regression label). Second, we will detail the perceiver network,

the self-recovery and the drug discovery task-specific loss, respectively. Finally, we

provide a discussion of different views of the proposed framework, e.g., from a multi-

task scaffolding view from frame-semantic parsing [102] in natural language processing

area.

5.3.1 Overview

Different from traditional models [82, 10], the proposed seq3seq fingerprint

model works in a semi-supervised fashion. It means that our training data comes

from two sources, the labeled data, for classification/regression, as well as the unla-

beled data. The labeled data contains the SMILE strings for molecule data and their

labels, such as acidity or other molecular activities. The unlabeled data contains

just molecular SMILE strings and the unlabeled data is almost infinitely available.

The proposed seq3seq fingerprint model takes the mixture of the labeled data and

unlabeled data together as training inputs to the network. The work flow is depicted

in Figure 5.2. The semi-supervised training is done by two tasks: the self-recovery

task and the inference task. The whole pipeline is illustrated in Figure 5.3.

5.3.2 Perceiver Networks

In this subsection, we introduce more details about the neural network de-

signed to encode a SMILE sequence to a feature vector, i.e., perceiver network. As a
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sequence-encoding network, we naturally use Recurrent Neural Network (RNN)-based

structure for the perceiver network. Specifically, in our work, we use both LSTM and

GRU units in our experiments. We then detail each of them.

5.3.2.1 LSTM Units

The Long Short-Term Memory (LSTM) [103] is the most widely used recurrent

neural network units. The LSTM Units have three gates: input gate, forgot gate, and

output gate. A LSTM network computes a sequence of network outputs (s1, . . . , sT )

from the input sequences (x1, . . . , xT ) by iterating

ft = σg(WfXt + Ufht−1 + bf )

it = σg(Wixt + Uist−1 + bi)

ot = σg(Woxt + Uost−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wc + Ucht−1 + bc)

ht = ot ◦ σh(ct). (5.1)

The LSTM cell has a ”forgot” gate ft which is to block some of the previous

state to pass through the entire sequence. it and ot are the input and output gates

for the LSTM cell at time step t. ct and ht are the LSTM cell state and hidden

state. σ represents activation function. σg is usually set to sigmoid function, while

σc and σh are usually the hyperbolic tangent functions.

5.3.2.2 GRU Units

The Gated Recurrent Unit (GRU) [104] is used in our experiment. GRU

is famous for its LSTM-comparable performance but faster training process. A
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GRU network computes a sequence of outputs (s1, . . . , sT ) from the input sequences

(x1, . . . , xT ) by iterating

zt = σg(Wzxt + Uzst−1 + bz)

rt = σr(Wrxt + Urst−1 + br)

ht = tanh(Uhxt +Wh(st−1 ◦ rt))

st = (1− zt) ◦ ht−1 + zt ◦ st−1. (5.2)

A GRU cell has two gates: the update gate z and the reset gate r. Each gate has

the trainable parameter W,U, b. The activation function σ for each gate is usually

the sigmoid function. GRU also has the ”hidden memory” h, which holds another

set of trainable parameters U,W . In contrast with LSTM which has three gates, it

has similar performance but faster training speed [83].

5.3.3 The Duo Tasks in Seq3seq Fingerprint Model

In this subsection, we introduce the multi-task training of the proposed frame-

work. The framework incorporates two tasks for training: self-recovery and molecular

inference tasks. Though the major task in drug discovery might be molecular infer-

ence, the self-recovery task can help the training as well because it builds up a stronger

and richer vector representation of the SMILE sequence. Finally, we introduce the

overall training procedure for the multi-task model framework.

5.3.3.1 The Self-recovery Task

The self-recovery task is to learn a strong, rich vector representation (usu-

ally noted as fingerprint in the drug discovery literature) for each input molecular

SMILE string by allowing the vector representation to be recovered to the original

representation, i.e., SMILE sequence. It is an unsupervised learning task since
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no task-specific label information is used in training. As shown in Figure 5.3, this

task will use the perceiver network and adds an interpreter network to recover the

original SMILE sequence from the fingerprint vector. This structure is motivated by

the seq2seq model [10, 81]. The original seq2seq model is used in machine transla-

tion [81]. It is to learn a vector representation from a sentence in a given language,

e.g., English, then translate the learned representation into another language such as

French. Seq2seq fingerprint [10] combines the idea from seq2seq learning and the idea

of auto-encoder to learn the vector representation for molecule.

The neural network used to recover the original SMILE sequence, namely in-

terpreter network, shares similar fundamental parts with the perceiver network,

i.e., Recurrent Neural Network (RNN). In this paper, we limit our scope to use same

type of RNN for both perceiver and interpreter networks. However, it is worth to

mention they can be selected to different types of RNNs, e.g., LSTM for perceiver

network and GRU for interpreter network as long as their internal state sizes match.

The proposed framework thus allows a great extent of flexibility for model design.

For self-recovery task, we use the sparse cross entropy loss. The token vo-

cabulary {v1, v2, . . . , vN} of SMILE sequence is unique and limited. Set zt ∈ RN

as the output token distribution from the RNN cell outputs, and lt ∈ RN as the

one-hot vector of the given original SMILE sequence token at time step t. Thus the

unsupervised loss Lunsup is given by:

Lunsup =
T∑
t=1

lTt log(zt). (5.3)

The crux of this loss is a sum of sparse cross entropy loss of each SMILE sequence

token.
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5.3.3.2 The Molecular Inference Task

The inference task in the proposed seq3seq fingerprint model is to predict the

activity of molecules. In the proposed model, the inference task includes the perceiver

network and the inference network. The perceiver network is shared in both self-

recovery and inference tasks. It is trained by both labeled and unlabeled data in an

end-to-end fashion. The inference network maps the seq3seq fingerprint to a final

inference result on a certain prediction task. The structure of the inference network

can be any trainable network which maps the vector into a inference value. It allows

huge flexibility for the choice of the inference network. For instance, it could be a

Convolutional Neural Network (CNN), a Multi-Layer Perceptron (MLP) or even a

single fully-connected layer.

Depending on whether the inference task is classification or regression, the loss

for the inference task Lsup could be either classification loss (usually a cross entropy

loss) or regression loss (usually a `1 smooth/`2 distance loss). Since computing the

Lsup needs labels, the inference task is only trained on labeled data.

5.3.3.3 End-to-end Semi-supervised Learning

As shown in Figure 5.3, the semi-supervised loss Lsemi combines the unsuper-

vised loss Lunsup and the supervised loss Lsup together as

Lsemi =


Lunsup + λLsup, if label is present,

Lunsup, if label is not present

. (5.4)

where λ is a hyper-parameter of the proposed model to balance the two tasks. The

proposed model is trained with both supervised data and unsupervised data together.

When the data is unlabeled, the supervised loss Lsup will be zero. Thus, in this case,

only the part of the model in self-recovery task will be trained. While the data is
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labeled, both the part of the model in self-recovery and inference will be trained.

The end-to-end training avoids the model from pre-trained model or separated classi-

fier [10]. As a result, the proposed end-to-end model is expected to provide an optimal

inference performance for specific task than that in a multi-stage model from [10].
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COCCOCCO
CCOCCOCCO
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Figure 5.3: This figure shows the proposed seq3seq fingerprint model. The proposed
model is trained through two tasks: a self-recovery task and an inference task. The
self-recovery task contains a perceiver network and an interpreter network; the infer-
ence task shares the perceiver with self-recover task and has an inference network.
The semi-supervised loss is the sum of supervised loss and unsupervised loss.
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5.3.4 Discussion

5.3.4.1 A Multi-task Scaffolding View of Seq3seq Fingerprint

In [10], the authors viewed seq2seq fingerprint as a machine translation problem

in the Natural Language Processing (NLP) area, with both source and target language

set to be the SMILE representation. Interestingly, the proposed seq3seq fingerprint

model can be viewed, to some extent, as a multi-task scaffolding framework [102]

in the NLP area as well. In [102], the authors focus on solving the frame-semantic

parsing problem, which is basically finding the action (frame) with its associated

objects from a sentence. For example, in sentence ”Alice loves Bob.”, the frame

is ”loves” with its associated objects being ”Alice” and ”Bob”. However, a single

sequence-to-frame network model generally performs poorly in this task. In [102],

they proposed to use a multi-task framework to refine the predictions. Besides the

frame parsing task, they also introduce the syntactic parsing task. The second task

is basically predicting the word categories, e.g., nouns, adverbs, adjectives, etc. For

the previous ”Alice loves Bob.” sentence, the result will be that ”Alice” being noun,

”loves” being verb and ”Bob” being another noun. In [102], it is demonstrated that

the second task significantly helps the success of the main (frame parsing) task. To

sum up, the multi-task scaffolding frame parsing framework utilizes a second syntactic

parsing task to reinforce the main task which is the frame parsing. Our seq3seq

fingerprint can be viewed in a very similar fashion: the self-recovery task serves as

the auxiliary task to augment the main prediction task. This modification is also

further demonstrated superior in our experiments described in Section 5.4.
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5.4 Experiments

In this section, we first detail the experimental setup, e.g., the data set descrip-

tion, hardware and software settings, etc. Then we report the benchmark performance

of the seq3seq fingerprint methods among state-of-the-art methods. Furthermore, to

show the flexibility of our methods and complete our experiments, we offer ablation

studies for the sensitivity of the hyper-parameters of our seq3seq fingerprint models,

e.g., the multi-task balance weight λ, the Recurrent Neural Network (RNN) layer

hidden size and layer number, RNN cell type, etc.

5.4.1 Experiment Setup

Table 5.1: The comparison of classification accuracy on the LogP data. We report
the average classification accuracy (Mean) and the corresponding Standard Deviation
(StDev) of 5-fold cross-validation result.

Circular [56] Neural [52] seq2seq [10] seq3seq (Ours)
Mean 36.74% 60.80% 76.64% 89.72%
StDev 0.74% 1.35% 0.43% 0.41%

Table 5.2: The comparison of classification accuracy on the PM2-10k data. We report
the average classification accuracy (Mean) and the corresponding Standard Deviation
(StDev) of 5-fold cross-validation result.

Circular [56] Neural [52] seq2seq [10] seq3seq (Ours)
Mean 39.38% 52.27% 62.06% 68.45%
StDev 1.14% 1.12% 1.98% 0.80%

Datasets As we mentioned in the introduction, the seq3seq fingerprint can be

trained from a mixture of both unlabeled and labeled data. In practices, we usually

use an unlabeled data set of a much larger size than that of a labeled dataset.
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Unlabeled Dataset For (large) unlabeled dataset, we use ZINC drug-like datasets

[91]. ZINC is a free database of commercially-available compounds for virtual screen-

ing. The drug-like dataset from ZINC contains 18,691,354 molecular SMILE repre-

sentations.

Labeled Dataset Two additional datasets, LogP and PM2-10k, were used for semi-

supervised training and test. They are obtained from National Center for Advancing

Translational Sciences (NCATS) at National Institutes of Health (NIH). Each of them

contains around 10,000 molecular SMILE representations with multiple scores, each

score quantifies some chemical property. Classification was conducted on LogP and

PM2-10k.

• LogP: Totally 10,850 samples were used from LogP, Each sample contains a

pair of a SMILE string and a water-octanol partition coefficient (LogP) value.

A threshold of 1.88 is used to label the data. For those samples with LogP value

smaller than 1.88 were classified as negative samples, the rest were labeled as

positive samples.

• PM2-10k: PM2-10k dataset contains 10,000 samples of SMILE strings and

binary promiscuous class labels. Similarly, a threshold of 0.024896 was used

to classify each SMILE. Samples with value larger than the threshold were

considered as positive 1; otherwise, labeled as 0.

We mix the ZINC drug-like dataset with the labeled dataset and train the

recovery and inference task simultaneously on the mixed dataset.

Neural Network Structures As we mentioned earlier, the proposed seq3seq finger-

print framework is super flexible in the choice of the network structure. Theoretically,

both perceiver and interpreter network can use any stacked Recurrent Neural Net-

work (RNN) with different layers and layer hidden sizes. Also the RNN cell can be

formed in different types, e.g., LSTM, GRU, etc. Due to the page limit of this paper,
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we hereby assume the perceiver and interpreter network always use the same type

of RNN cells with the same number of layers and hidden sizes. In this section, we

discuss different types of RNN cells, e.g., GRU [104], LSTM [103], etc. Also, we limit

the discussion of the inference network to a single densely connected layer with the

output number equaling the number of the classification class number. For simplicity,

we use GRU − L − H to represent the network structure, where GRU is the RNN

cell type (it can be LSTM as well), L ∈ N+ is the stacked RNN layer number and

H ∈ N+ is the RNN cell hidden size. For instance, GRU−2−256 represents a seq3seq

model where both perceiver and interpreter network use 2-layer GRU cell with 256

hidden units.

Learning Hyper-parameters For optimization, we use the Stochastic Gradient

Descent (SGD) with a heuristic learning rate decaying schedule. The initial learning

rate is 0.5 for any training models. The learning rate will be decayed by a factor

of 0.99 if the test loss does not decrease after 600 training steps. The training will

automatically halt if the learning rate is smaller than 1e− 7. Under the above hyper-

parameter sets, the training of each model in the semi-supervised setting can generally

finish within a few hours.

Evaluation Metrics Given that we have two tasks of our semi-supervised learning

framework, i.e., recovery and inference task, we report two evaluation metrics for

each model we trained. For recovery task, we use an Exact Match Accuracy (EMA)

for evaluation. This metric measure the portion of the exactly recovered sequence

within the entire set of sequences. Furthermore, we report the classification accuracy

(hereafter SSLA for Semi-Supervised Learning Accuracy) for our classification task.

Comparison Methods We compare our semi-supervised method with the unsuper-

vised seq2seq fingerprint method [10] as well as several other state-of-the-art meth-

ods: the ECFP [56] (circular fingerprint) and the neural fingerprint method [52]. We
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download the official implementation of the seq2seq fingerprint 2 and carefully follow

the experimental setting of the authors. The circular fingerprint is a hand-crafted

hash-based feature that was generated through RDKit 3. The neural fingerprint

implementation is obtained from https://github.com/HIPS/neural-fingerprint,

which we slightly modify to adapt our dataset file format.

Infrastructure and Software The seq3seq fingerprint method was implemented

through Tensorflow package [85], and our semi-supervised model was trained in a self-

hosted 16-GPU cluster platform with Intel i7 6700K @ 4.00 GHz CPU, 64 Gigabytes

RAM and four Nvidia GTX 1080Ti GPUs on each workstation. The code will be

released upon the acceptance of this paper.

5.4.2 Comparison with State-of-the-art Methods

In Table 5.1 and 5.2, we report the 5-fold cross validation average classification

accuracy on LogP and PM2-10k datasets. The proposed methods are compared with

ECFP (circular) fingerprint [54], neural fingerprint [82] and seq2seq fingerprint [10].

For seq2seq fingerprint, according to their paper, the seq2seq fingerprint with length

1024 + Gradient Boosting always provides best performance, so we only report those

results on our paper.

It is shown that on both datasets, the seq3seq fingerprint always provides best

inference performance. On LogP dataset, our seq3seq model performs significantly

superior than the other state-of-the-art methods, up to 13% in terms of classifica-

tion accuracy (SSLA in the tables). Compared with circular fingerprint, the seq3seq

fingerprint is data-driven and contains enough information to be recovered. The per-

formance of neural fingerprint is generally limited by the availability of the labeled

2https://github.com/XericZephyr/seq2seq-fingerprint
3http://www.rdkit.org

68

https://github.com/HIPS/neural-fingerprint


data. Seq2seq fingerprint is the closest work in terms of accuracy for now since it

can be also trained on the huge pool of unlabeled data, extracting a good represen-

tation and train/infer with a sophisticated classification model. However, seq2seq

fingerprint is, unfortunately, not an end-to-end framework, which means the recovery

and inference training of seq2seq fingerprint are separate. The unsupervised recovery

training can bring in considerable amount of noise in the representation which limits

further improvements of the inference performance. The seq3seq fingerprint, which

uses the inference task to correct the recovery task during training, can constantly

provide the best performance among all of the comparison methods.

Table 5.3: The performance variations with λ and GRU model parameters for LogP
data. Layer: the stacked layer number of RNN cells. LD: Latent Dimension (hidden
size) of RNN cells. EMA: Exact Match Accuracy for self-recovery task. SSLA:
classification accuracy for inference task.

Layer LD λ EMA SSLA
2 128 1 86.31% 89.46%

0.1 91.80% 89.62%
0.01 90.23% 81.05%
0.001 91.42% 64.95%

2 256 1 93.59% 90.18%
0.1 94.52% 89.35%
0.01 95.77% 84.65%
0.001 95.48% 69.16%

5.4.3 Sensitivity Analysis of Multi-task Weight Balance Parameters

In multi-task machine learning practice, the weight balancing hyper-parameters

among different tasks (in our case, λ in the multi-task loss function (5.4)) are some-

times critical and sensitive to data. This might not be an intriguing feature in prac-

tices. However, our method is quite robust and tolerant with λ variations. In this
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Table 5.4: The performance variations with λ and GRU model parameters for PM2-
10k data. Layer: the stacked layer number of RNN cells. LD: Latent Dimension
(hidden size) of RNN cells. EMA: Exact Match Accuracy for self-recovery task.
SSLA: classification accuracy for inference task.

Layer LD λ EMA SSLA
2 256 1 87.48% 65.28%

0.1 89.84% 64.85%
0.01 91.73% 62.37%
0.001 91.31% 50.66%

3 256 1 82.40% 64.90%
0.1 87.61% 67.92%
0.01 89.33% 68.24%
0.001 90.25% 50.07%

Table 5.5: The comparison of 5-fold cross validation classification accuracy among
different seq3seq GRU models on the LogP data. Both average (Mean) and Standard
Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.
SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for
self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256
FP Length 256 384 512 640 512 768 1024 1280
SSLA Mean 89.62% 89.12% 89.05% 89.72% 89.48% 89.64% 88.90% 88.11%
SSLA StDev 0.62% 0.22% 0.10% 0.41% 0.44% 0.42% 0.31% 0.40%
EMA Mean 91.39% 85.75% 77.13% 68.64% 96.13% 94.24% 87.99% 83.86%
EMA StDev 0.46% 0.53% 0.56% 0.80% 0.21% 0.31% 0.45% 0.41%

Table 5.6: The comparison of 5-fold cross validation classification accuracy among dif-
ferent seq3seq GRU models on the PM2-10k data. Both average (Mean) and Standard
Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.
SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for
self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256
FP Length 256 384 512 640 512 768 1024 1280
SSLA Mean 65.65% 67.11% 65.80% 67.23% 66.74% 68.08% 68.45% 67.09%
SSLA StDev 0.19% 0.85% 0.61% 0.52% 0.57% 0.35% 0.80% 0.67%
EMA Mean 83.84% 81.24% 78.60% 74.38% 92.49% 91.72% 87.36% 82.64%
EMA StDev 0.45% 0.67% 0.88% 0.88% 0.37% 0.25% 0.29% 0.76%
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subsection, we report our sensitivity studies of λ. We choose different scale of λ

to see how the final model performance responds to the variance of λ , showing the

robustness of our method with regard to different weight balancing hyper-parameters.

In Table 5.3, 5.4 as well as Figure 5.5, we vary λ in the logarithm scale with a

base of 10. We tried 100, 10−1, 10−2, 10−3. On both datasets, it looks that within a

quite wide range of λ, i.e., 10−2 − 100, the performance is quite robust to the change

of λ. The reason behind this robustness might be the huge unlabeled data pool used

in the training process. Given the model has been trained with a sufficiently large

(up to dozens of millions) molecular data pool, the resulting model will automatically

adjust to a small task weight perturbation.

5.4.4 The Ablation Study of Neural Network Structures
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(b) Model hyper-parameter comparison on the PM2-10k data
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Figure 5.4: Impacts of the network structures on different metrics on both LogP and
PM2-10k dataset. 1) The robustness of inference performance (SSLA, blue bars) is
revealed. 2) The positive and negative correlations with regard to the self-recovery
performance (EMA, red bars) are observed for RNN network depths and widths,
respectively.

In this section, we provide a comprehensive study of the impacts of different

layers and layer hidden sizes of our seq3seq fingerprint models. We report the 5-
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fold cross validation Exact Match Accuracy (EMA) and the classification accuracy

(SSLA) in Table 5.5 and 5.6 for each of the two datasets, respectively. Figure 5.4 (a)

and (b) also illustrates the trends when varying the layer numbers and layer hidden

sizes.

Inference Task It is super exciting to reveal the robustness of classification

accuracy to the change of network structures on both datasets. In Figure

5.4, the classification accuracy (blue bars) almost stays at the same height when

varying the layer numbers and layer hidden sizes. This implies the importance of

the representation learning inside the seq3seq fingerprint. This further support the

positive effects of the large-scale (up to dozens of millions) unlabeled data utilization.

When the inference is super robust to the network changes, for self-recovery

task (in terms of EMA), we observe a decreasing trend when increasing the layer

depth (numbers). Meanwhile, the increasing number of hidden units inside each layer

generally yields better EMA. This suggests that the improvement of self-recovery task

has higher reliance on the layer hidden sizes. Deeper network might not always be an

elixir for a simple auxiliary task like self-recovery. This observation might help future

network design. To simultaneously ensure high inference performance and reduce

training time (deeper network generally takes longer to train.), it might be a good

idea to use reasonably deep and wide RNN networks.

5.4.5 Influences of Different RNN Cells

In this section, we study the effects of varying different types of Recurrent

Neural Network (RNN) cells. In Table 5.7 and 5.8, we show the results for GRU

and LSTM on LogP and PM2-10k datasets. For the ease of presentation, we only

show the results for 3-layer stacked RNN cells with hidden size set to 256. For the

supervised inference task, it appears that GRU always performs better than LSTM,
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Table 5.7: Comparison between different types of RNN cells with or without self-
Recovery loss function on LogP data-set. SSLA: classification accuracy for inference
task. EMA: Exact Match Accuracy for self-recovery task.

Network SSLA EMA
GRU w/o Rec Loss 89.47% 00.00%
GRU w/ Rec Loss 91.41% 56.65%
LSTM w/o Rec Loss 90.22% 00.00%
LSTM w/ Rec Loss 90.87% 57.75%

Table 5.8: Comparison between different types of RNN cells with or without self-
Recovery loss function on PM2-10k data-set. SSLA: classification accuracy for infer-
ence task. EMA: Exact Match Accuracy for self-recovery task.

Network SSLA EMA
GRU w/o Rec Loss 54.87% 00.00%
GRU w/ Rec Loss 63.91% 49.38%
LSTM w/o Rec Loss 52.42% 00.00%
LSTM w/ Rec Loss 52.94% 58.15%

while for the unsupervised self-recovery task, LSTM is usually the winner. From this

observation, we might conclude that LSTM generally performs better to memorize

the original sequence while the GRU can learn the specific task faster and better.

We also switch the self-recovery task on and off and see the effects. It is observed

that, without the recovery loss, the self-recovery is totally messy as the Exactly Match

Accuracy (EMA) is zero. Also, when the self-recovery loss is appended, the supervised

inference performance, in terms of SSLA, also always boosts (up to 9.04% as shown

in Table 5.8). It also demonstrates the promising results when applying self-recovery

task to augment the supervised task.

5.4.6 Ablation Study of Large-scale Pre-training and Self-recovery Loss

In this section, we introduce the ablation study of two major components of

the proposed framework, i.e., the unsupervised pre-training on a (relatively) huge
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unlabeled dataset and the self-recovery unsupervised auxiliary task. For simplicity,

we fix model structure to a 3-layer stacked GRU units, each with hidden size 256.

We compare the models with/without the unsupervised pre-training (pre/nopre) on

a large unlabeled dataset and the models with/without the self-recovery task/loss

(rec/norec). We show the results of the ablation study on both LogP and PM2-10k

datasets in Table 5.9 and Table 5.10.

On both datasets, we can observe the best performance occurs when we utilize

both techniques that we propose in this paper. Especially on PM2-10k data-set,

we observe a huge improvement (up to 14.72% in terms of accuracy) when using

both proposed techniques. For supervised (binary classification) task, we observe

the utilization of a pre-training model on a big unlabeled dataset always helps the

supervised task performance. This suggests proper use of a unsupervised pre-training

model can even help unrelated supervised task. The unsupervised pre-training can

provide a stronger and richer representation when training offline on a huge unlabeled

dataset. It can help the further supervised predictive tasks.

Furthermore, we observe the self-recovery task, which can be trained in an un-

supervised manner, can also augment the supervised predictive task. This indicates

that representation learning on-the-fly can also benefit the inference task training.

One might spot the models with self-recovery task and those without self-recovery

tasks when using pre-training technique generally have very similar inference perfor-

mance. But they diff a lot in self-recovery task. This implies the self-recovery task

can make the inference task training escape the original local minima and have a

better comprehensive performance.
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Table 5.9: Ablative comparison of unlabeled data pre-training and self-recovery tasks
on LogP data-set. ”rec” indicates the self-recovery task, ”pre” indicates the pre-
training technique. Prepending ”no” means the opposite, e.g., ”nopre” means not
using pre-training technique. SSLA: classification accuracy for inference task. EMA:
Exact Match Accuracy for self-recovery task.

Network SSLA EMA
GRU-3-256-norec-nopre 89.80% 00.00%
GRU-3-256-norec-pre 91.00% 00.00%
GRU-3-256-rec-nopre 90.80% 82.25%
GRU-3-256-rec-pre 91.77% 97.19%

Table 5.10: Ablative comparison of unlabeled data pre-training and self-recovery tasks
on PM2-10k data-set. ”rec” indicates the self-recovery task, ”pre” indicates the pre-
training technique. Prepending ”no” means the opposite, e.g., ”nopre” means not
using pre-training technique. SSLA: classification accuracy for inference task. EMA:
Exact Match Accuracy for self-recovery task.

Network SSLA EMA
GRU-3-256-norec-nopre 50.68% 00.00%
GRU-3-256-norec-pre 63.62% 00.00%
GRU-3-256-rec-nopre 65.39% 47.23%
GRU-3-256-rec-pre 65.40% 65.54%

5.5 Conclusions

In this paper, we discuss a new semi-supervised deep learning based molecular

prediction system, called seq3seq fingerprint. Our model is the first attempt in

sequence-based deep learning method utilizing both unlabeled and labeled data for

drug discovery. The reinforcement from the unlabeled data is demonstrated to sig-

nificantly improve the inference performance by enhancing the representation power

of the perceiver network. Furthermore, adding the auxiliary self-recovery task also

augment the predictive performance. As a result, the superior inference performance

over multiple state-of-the-art methods is revealed in our extensive experiments.

Our seq3seq fingerprint method still share some common aspects with Natural

Language Processing (NLP) area as the seq2seq fingerprint does [10]. In the future,
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it might be interesting to further investigate bonds between drug discovery and NLP

area, which might bring in many novel methods to further accelerate drug discov-

ery research. The techniques described in this paper might also be extendable and

beneficial to NLP research.
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(a) GRU-2-128 on the Logp data.
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(b) GRU-2-256 on the Logp data.

EMA
SSLA

1 0.1 0.01 0.001
40

60

80

100

λ

P
er

fo
rm

an
ce

A
cc

u
ra

cy
(%

)

(c) GRU-2-256 on the PM-2-10k data.
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(d) GRU-3-256 on the PM-2-10k data.
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Figure 5.5: Impacts of the multi-task balance weights on different scales on both
LogP and PM2-10k dataset. Within a very wide range (usually 10−2 − 100), both
self-recovery (EMA) and inference (SSLA) performance are quite robust to the change
of λ.
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CHAPTER 6

Conclusions

This thesis aims at developing large-scale deep learning techniques for large-

scale data. We investigate several typical type of data in the big data era including

1) high-resolution medical images; 2) sequence drug discovery data.

We have demonstrated, both in theory and practice, our deep learning ap-

proaches formed effective and efficient solutions with clear performance gains in ex-

tensive experiments on large-scale data. Specifically, we have developed the following

methods:

Efficient lung cancer cell detection with deep convolution neural net-

work: We propose an efficient and robust lung cancer cell detection method. The pro-

posed method is designed based on the Deep Convolution Neural Network framework[24],

which is able to provide state-of-the-art accuracy with only weakly annotated ground

truth. For each cell area, only one local patch containing the cell area is fed into

the detector for training. The training strategy significantly reduces the time cost of

training procedure due to the fact that only around one percent of all pixel labels are

used. In the testing stage, by utilizing the relation of adjacent patches, the proposed

method provides the exact same results within a few hundredths time. Experimental

results clearly demonstrate the efficiency and effectiveness of the proposed method

for large-scale lung cancer cell detection. In the future, we shall attempt to combine

the structured techniques[25] to further improve the accuracy.

Detecting 10,000 cells in one second: A generalized distributed deep neu-

ral network framework is introduced to detect cells in whole-slide histopathological
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images. The innovative framework can be applied with any deep convolutional neural

network pixel-wise cell detector. Our method is extremely optimized in distributed

environment to detect cells in whole-slide images. We utilize a sparse kernel neural

network forwarding technique to reduce nearly all redundant convolution computa-

tions. An asynchronous prefetching technique is recommended to diminish most disk

I/O time when loading the large histopathological images into memory. Furthermore,

an unbalanced distributed sampling strategy is presented to enhance the scalability

and communication efficiency of our framework. These techniques construct three

pillars of our framework. Extensive experiments demonstrate that our method can

approximately detect 10, 000 cells per second on a single workstation, which is en-

couraging for high-throughput cell data.

Seq2seq fingerprint: An unsupervised deep molecular embedding for

drug discovery: we discuss a new unsupervised molecular representation system,

called seq2seq fingerprint, based on the idea from the recent breakthrough on the

English-to-French language translation, named sequence to sequence learning model.

Our model translates the molecular SMILE string to the SMILE itself, while at the

same time generates a fixed length fingerprint vector. The experiments on classifica-

tion task demonstrate its superior performance. This model translates the English

sentences to French ones, but meanwhile creates a intermediate continuous vector,

encoding the abstract meaning of the sentence. Our study starts from one simple

question: if we translate the molecule to molecule representation itself using this

model, could the intermediate vector produces a meaningful representation for future

machine learning tasks? The answer is excitingly promising as demonstrated in our

experiments. Also, the nature of our data-driven label-free model brings us even more

benefits. 1) Our fingerprint system is completely unsupervised, meaning it will never

be limited by the expensive label collection process. In fact, it could utilize each of
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every valid molecule, theoretically reaching the amount of infinite. 2) Contrast to

the supervised learning models trained with very limited data samples, the seq2seq

fingerprint is trained from a sufficiently large pool of samples, and therefore it is more

robust to the specific task.

Seq3seq Fingerprint: Towards End-to-end Semi-supervised Deep Drug

Discovery: We discuss a new semi-supervised deep learning based molecular predic-

tion system, called seq3seq fingerprint. Our model is the first attempt in sequence-

based deep learning method utilizing both unlabeled and labeled data for drug dis-

covery. The reinforcement from the unlabeled data is demonstrated to significantly

improve the inference performance by enhancing the representation power of the per-

ceiver network. Furthermore, adding the auxiliary self-recovery task also augment the

predictive performance. As a result, the superior inference performance over multiple

state-of-the-art methods is revealed in our extensive experiments.

Our seq3seq fingerprint method still share some common aspects with Natural

Language Processing (NLP) area as the seq2seq fingerprint does [10]. As described in

Section 5.3, it looks that we have found a new direction to invent new drug discovery

methods. In the future, it might be interesting to further investigate bonds between

drug discovery and NLP area, which might bring in many novel methods to further

accelerate drug discovery research. The techniques described in this paper might also

be extendable and beneficial to NLP research.
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