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Abstract 

 
SCATTER CORRECTION AND 4D RECONSTRUCTION OF CONE BEAM COMPUTED 

TOMOGRAPHY (CBCT) WITH A MOVING BLOCKER 

 

Cong Zhao, PhD 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Mingwu Jin 

Come-beam computed tomography (CBCT) is being widely used as an image 

guidance tool in radiation therapy nowadays. The quality of CBCT image is important to 

localize and delineate the tumor and to define relevant volumes when the patient is in the 

treatment position. However, there are several factors that can deteriorate the image 

quality of CBCT. The large amount of scatter signal due to the use of the flat panel 

detector (FPD) is a major factor and greatly degrades the quality of reconstruction 

images. Another major factor is the respiratory motion of the patient, which can cause 

severe motion blurring artifacts. Although four dimensional (4D) CBCT has been 

developed to reduce the motion artifacts, it increases the radiation dose in order to get 

satisfactory reconstruction images as the conventional phase-by-phase reconstruction for 

4D CBCT requires more projection data than 3D CBCT. In this dissertation, we propose 

some methods to address these problems. 

After the brief introduction of CBCT, the factors that deteriorate the CBCT image 

quality and the existing studies are reviewed. Next, the moving blocker scatter correction 

method for CBCT is introduced and its optimization using different deconvolution 

methods is investigated through a simulation study and a slanted-edge experimental 

study. A robust moving blocker scatter correction method is further developed, which 



v 

uses multiple adjacent projection views to estimate a more accurate scatter distribution. 

Finally, 4D CBCT with a moving blocker is developed for simultaneous dose reduction 

and scatter correction. The effectiveness of the proposed scatter correction and 4D 

reconstruction methods is demonstrated either by simulations of digital phantoms or real 

phantom and clinical CBCT data. 
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Chapter 1  

Introduction 

1.1 Scatter correction for CBCT 

Cone beam computed tomography (CBCT) has been widely used in radiation 

therapy for direct visualization of the target and relevant volume when the patient in the 

treatment position [1]. However, huge amount of scatter signal can reach the flat panel 

detector (FPD) and greatly reduce the image quality of CBCT. The shading artifacts 

caused by scatter contamination lead to decreased image contrast and inaccurate CT 

number, where the former makes it difficult to contour the target and organs at risk and 

the latter will result in inaccurate dose calculation. Therefore, scatter correction (SC) is 

critically important to overcome these problems of CBCT for more effective adaptive 

radiation therapy.  

Various strategies have been investigated to correct the scatter signal in CBCT 

projection data, e.g. suppression of scatter signal during the acquisition using anti-scatter 

grids [2] and correction of scatter signal in projections using computational methods [3, 

4]. There have been growing interests in developing measurement based scatter 

correction, such as blocker-based methods [5-11] because these methods derive the 

scatter signal from the attenuator-blocked regions within the projection data and do not 

suffer the computational intense of Monte Carlo simulation [3] or the inability of analytical 

methods for complex/heterogeneous structures [4]. The moving blocker methods [10, 11] 

overcome the limitations of previous developments, such as requirement of additional 

measurements and the reduced imaging volume etc., and are able to simultaneously 

estimate the scatter signal and reconstruct the entire volume within the field of view 

(FOV) from a single CBCT scan. The blocker-based SC methods are founded on the 

assumption that the signal in the blocked region on the FPD is purely scatter, at least for 



 

13 

 

the central part. However, this assumption is rarely satisfied for narrow lead strips in 

reality due to the signals spread from unblocked region. Thus, in practice, the width of 

blocked region to extract scatter signal has to be meticulously chosen to achieve 

satisfying SC results and the extracted signals often need to be carefully scaled to avoid 

under- or over-correction. These empirically adjustments will prevent this promising SC 

method from bringing real benefit for cancer patients. 

1.2 4D CBCT 

Four dimensional (4D) CBCT has been developed for imaging and modeling of 

patient’s respiratory motion in radiation therapy [12-14]. It holds a great potential for a 

tumor motion-of-the-day model right before each treatment fraction for a precise image-

guided radiotherapy (IGRT) of lung cancer. Cone beam CT dose index (CBDI) is usually 

used to measure imaging dose with CTDI phantoms. The CBDI for each CBCT scan 

ranges from several mGy to several tens mGy, depending on difffernt body parts [15]. 

Since there are many fractions along a treamtment course, the accumulated imaging 

dose from repeated CBCT scans beomes detrimental to healthy organs. Furthermoe, in 

order to obtain the similar image quality with 3D CBCT, 4D CBCT needs more exposure 

time to acquire more projections to assure the image quality if the conventional phase-by-

phase 3D reconstruction methods, such as the Feldkamp Davis Kress (FDK) algorithm 

and simultaneous algebraic reconstruction technique (SART) with total variation (TV) 

minimization [16-19], were used. This dramatically increased radiation dose limits clinical 

application of 4D CBCT. Besides, the accuracy of the motion model (DVFs) of the 4D 

CBCT is limited by the phase-by-phase reconstruction [20]. Therefore, to acquire 

projections similar to 3D CBCT and to obtain more accurate DVFs are primary goals for 

4D CBCT. 
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There are various strategies developed to improve the image quality of 4D CBCT 

using the same number of projections as in a 3D CBCT scan. The projections are binned 

into different phases by using motion tracking devices or data-driven methods. One way 

is to reconstruct a prior image from all the projections to obtain a high quality image for 

the static part and to update the motion part using the difference of the projections 

between the forward projection of prior images and the measured projections for each 

phase [22-25]. Another way is to combine the reconstruction and the motion estimation 

by iteratively updating two parts [21, 26, 27]. Over the years, new strategies have been 

developed to improve 4D CBCT. Some of them aimed to optimize the regularization 

terms [16-18], while others focused on new motion estimation methods [28-30]. We 

previously developed a simultaneous motion estimation and image reconstruction 

(SMEIR) method that utilizes all the projections for reconstruction with alternated motion 

estimation [21], to get high quality images and accurate motion fields. However, the 

moving blocker based method has not been investigated for 4D CBCT, despect that it  

holds the great potential for simultaneous dose reduction and scatter correction due to 

the partially blocked incident X-rays. 

1.3 Outlook of the proposed methods to address aforementioned issues 

In this dissertation, we propose several strategies for scatter correction and 

motion correction of 3D and 4D CBCT. We first introduce the moving blocker scatter 

correction method for 3D CBCT. Then we model the signal in blocked regions as 

convolution of the ideal scatter signal and a point spread function (as a combined effect 

of penumbra and veiling glare) and propose a blind convolution method to recover the 

true scatter signal. The proposed method is tested using the Catphan600 phantom. We 

next develop a robust moving blocker scatter correction method, which use scatter 

signals from multiple adjacent projection views to derive a more accurate scatter 
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distribution. Finally, we propose to use a moving blocker for 4D CBCT data acquisition 

with the aim of simultaneous dose reduction and scatter correction. A joint 4D 

spatiotemporal reconstruction method is used to solve the challenging reconstruction 

problem with severely incomplete projection data for each respiratory phase.  
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Chapter 2  

Blocker-based scatter correction for CBCT 

 

2.1 Introduction 

CBCT technology has been a very important modality in the field of medical imaging 

over the last few years. CBCT provides additional information that the traditional X-ray 

radiography cannot provide. These kinds of information are helpful in radiotherapy treatment 

procedures. CBCT has several advantages: (1) The 3D image can provide more accurate 

anatomical information, especially the location of certain tissues; (2) radiation exposure to the 

patient is up to 10 times less than diagnostic fan-beam CT (FBCT); (3) much bigger field of view 

(yet slower scan time than FBCT); (4) lower cost than FBCT. However, the scatter 

contamination in CBCT decreases the reconstruction image quality by introducing artifacts and 

causing errors for CT numbers. The scatter signal has a 2D distribution and only a small portion 

can be received by FBCT because of the use of 1D detector arrays. In contrast, CBCT receives 

most of the scatter signal because of the use of 2D detector arrays.  

Scatter contamination is one of the major sources of degradation of CBCT images. It 

degrades image quality by decreasing the contrast, introducing shading artifacts and causing 

inaccuracies in the reconstructed CT number. The degraded image makes it difficult to 

delineate the low-contrast soft tissues, and inaccurate CT number makes the dose calculation 

of adaptive therapy inaccurate [31-33]. Therefore, scatter correction is very important in CBCT 

imaging.  

There are many methods that have been investigated to correct scatter contamination 

in CBCT, including suppression of scatter signal during the acquisition of projection data using 

anti-scatter grids and increasing the air gap [2, 34-39], and correction of scatter signal in 

projections using computational methods or special scanning protocols [40-55]. The low 

frequency distribution feature of the scatter signal [56, 57] makes it possible to use blockers to 



 

17 

estimate the scatter. Among scatter correction (SC) techniques, blocker-based methods derive 

the scatter signal from the blocked regions within the projection data [49-55] and do not suffer 

the computational intense of Monte Carlo simulation [40-43] or the inability of analytical 

methods for complex or heterogeneous structures [44-48]. However, the static blocker-based 

methods have some limitations, such as the requirement of additional measurements for each 

projection view [49, 54], the reduced imaging volume corresponding to the blocked region [50, 

55], or the inaccuracy caused by the interpolation of primary signal in the blocked regions [53, 

58]. The recent development by keeping the blocker moving during gantry rotation [10, 11] 

overcomes these limitations and is able to simultaneously estimate the scatter signal and 

reconstruct the entire volume within the field of view (FOV) from a single CBCT scan. 

Compared to the primary modulation method [51, 59, 60], not only the lead strip blockers are 

low-cost and easy to make, but also the radiation dose can be significantly reduced since about 

half of the incident x-ray intensity is blocked by moving blockers and statistical compressed 

sensing reconstruction can compensate for sparse view projections and elevated noise due to 

scatter subtraction. 

In this study, we first investigated the moving blocker method [10, 11]. The detected 

signal in the blocked regions is assumed to be the scatter signal. The scatter signal in the 

unblocked regions was obtained by interpolating the detected signal from the blocked regions. 

Then the primary signal was obtained by subtracting the interpolated scatter signal from the 

signal in the unblocked regions. To avoid the inaccuracy caused by the interpolation of primary 

signal, only the primary signal in the unblocked regions was used to reconstruct the 3D image. 

Some improvements of CBCT reconstruction images have been obtained in our experiment 

using a simple phantom. 

The excellent performance of this moving blocker method is based on the assumption 

that the signal in the blocked region is purely scatter signals, at least in the central part. 

However, this assumption is rarely satisfied for narrow lead strips in reality due to the penumbra 
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effect and the detector response effect. These effects make the signal spread from unblocked 

regions to the blocked regions. Therefore, the signal detected in the unblocked regions needed 

to be corrected before it was used to do the interpolation. Then we proposed to model the 

detector response function (DRF) in the blocked regions and several image deconvolution 

methods will be developed for recovering the true scatter signal in the blocked regions. We 

designed a slanted-edge simulation and a slanted-edge experiment to study these effects. This 

study will provide a theoretically sound and practically viable solution for the problems faced by 

the current moving blocker methods. By avoiding laborious parameter tuning, the final 

reconstruction with scatter correction can be more reliable and robust, which is an important 

component for its application in clinical practice. 

2.2 Scatter correction using the moving blocker method 

2.2.1 Moving blocker setup 

The moving blocker system for CBCT imaging is shown in Figure 2-1 [10]. To simplify 

the process in this study, the blocker strips were shifted manually among 6 positions. The 

blocker system consists of equally spaced lead strips aligned along the v-direction of the 

detector. A beam attenuation blocker is inserted between the x-ray source and the phantom, 

and it moves back and forth along the u-direction of the detector as the gantry rotates around 

the z-axis. The signal measured in the blocked regions is assumed to be the scatter signal only, 

and the signal measured in the unblocked regions is the sum of the scatter signal and the 

primary signal. The scatter signal in the unblocked regions can be estimated from the blocked 

regions by using the cubic-spline interpolation. To avoid the penumbra effects of the strips, the 

region (about 10 pixels wide) adjacent to the edges of the strip are excluded from the scatter 

estimation in the experimental study. The primary signal is obtained by subtracting the 

interpolated scatter signal from the signal measured in the unblocked regions. A constrained-

optimization-based TV minimization (CO-TV) algorithm is developed to reconstruct the entire 

volume within the FOV from the the primary signal in the unblocked region. 
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Figure 2-1 The moving blocker system [10] 

2.2.2 Data acquisition 

The blocker consists of 8 lead strips and the width of each lead strip is 3.2 mm. The 

lead strips are placed with a 3.2 mm pitch. The blocker is mounted on the F0 bow-tie filter of a 

CBCT machine. The lead strips of the blocker are aligned perpendicular to the rotation axis and 

cover the entire FOV all the time at a source-to-blocker distance of 310 mm. The source-to-axis 

distance is 1000 mm and the source-to-detector distance is 1500 mm. The number of 

projections for a full 360° rotation is approximately 678 and the total time for acquisition of one 

full circle of projection data is approximately 2 min. Each projection data contains 1024×768 

pixels with a size of 0.388×0.388 mm2. To save computation time during iterative reconstruction, 

projections were downsampled by a factor of 2 to yield a size 512×384 with pixel size 0.776 



 

20 

×0.776 mm2. The tube voltage was 100 kVp and the tube current-time was 0.5 mA s per 

projection.  

A commercial calibration phantom CatPhan® 600 (The Phantom Laboratory, Inc., 

Salem, NY) was used to evaluate the performance of the proposed method. Six CBCT scans 

were performed while the phantom was kept stationary. During each scan, the blocker was 

shifted 1 mm along the u-direction. To simulate continuous motion of the blocker during gantry 

rotation, the projection data of a single CBCT scan were selected from one of the six scans 

according to the following rule. For the nth projection data, let a denote the remainder after n is 

divided by 12. If a is smaller than 6, the nth projection data are chosen from ath of those six 

data sets; if a is larger than or equal to 6, the nth projection data are chosen from (12−a)th of 

those six data sets. By such a choice, the complete projection data set corresponds to a blocker 

moving at 1 cm/s.  

2.2.3 Constrained-optimization-based reconstruction algorithm 

When the blocker strips are used in projection data acquisition, the projection data are 

partially blocked at every projection and the total amount of projection data is smaller than in a 

normal CBCT scan. Iterative image reconstruction algorithms have the potential to substantially 

improve CBCT image quality from limited projection data. [19, 22, 61] Recent development of 

the compressed sensing theorem [62] has demonstrated that a signal can be exactly 

reconstructed from highly undersampled measurements. Several algorithms based [19, 22, 61] 

on the compressed sensing theorem have been proposed for CT image reconstruction from 

undersampled projections. In this work, image reconstruction from partially blocked projection 

data is formulated as a constrained optimization (CO) model under the framework of 

compressed sensing. Constrained optimization incorporates data fidelity and image constraints 

such as positivity, extreme values, and regularity measure. The constrained optimization 

generates a discrete image 𝜇 by minimizing certain functions of the image 

𝜇∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛(𝑓(𝜇))      (2.2.1) 
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subject to the inequality constraints data fidelity and positivity: 

|𝐴𝜇 − 𝑝| ≤ 𝜀          (2.2.2) 

𝜇 ≥ 0                   (2.2.3) 

where 𝑝 is the vector of log-transformed projection measurements after scatter correction and 𝜇 

is the vector of attenuation coefficients to be reconstructed. 𝜀 is the tolerance to enforce the 

data fidelity constraint which accounts for the inconsistency of the measured data such as noise 

and geometric deviation of the system matrix 𝐴. The element 𝑎𝑖𝑗 of the matrix 𝐴 is the length of 

the intersection of projection ray  𝑗  with pixel 𝑖  and 𝑎𝑖𝑗 is calculated by Siddon’s ray-tracing 

technique [63]. 𝑓(𝜇) is the prior knowledge imposed on the image and usually measures certain 

properties of the 𝜇 to be reconstructed. In this work, the total variation (TV) of the image is 

chosen as the regularity measure of 𝜇 

𝑓(𝜇) = ∑ √(𝜇𝑥,𝑦,𝑧 − 𝜇𝑥−1,𝑦,𝑧)2 + (𝜇𝑥,𝑦,𝑧 − 𝜇𝑥,𝑦−1,𝑧)2 + (𝜇𝑥,𝑦,𝑧 − 𝜇𝑥,𝑦,𝑧−1)2
𝑥,𝑦,𝑧    (2. 2.4) 

In the following, we refer to the method described above as CO-TV. The constraint in Eq. (2.2.2) 

is enforced by the standard algebraic reconstruction technique (ART)  

𝜇𝑖
(𝑘+1)

= 𝜇𝑖
(𝑘)

+ 𝜆𝑎𝑖𝑗 [
𝑝𝑗−∑ 𝑎𝑖𝑗𝜇𝑖

(𝑘)
𝑖

∑ 𝑎𝑖𝑗
2

𝑖
]        (2.2.5) 

where 𝑘 is the iterative step and 𝜆 is the relaxation factor which was chosen as 0.1 in this study. 

The objective function of Eq. (2.2.1) is minimized by the standard steepest gradient descent 

method 

𝜇(𝑘′+1) = 𝜇(𝑘′) − 𝛾∇𝑓(𝜇)          (2.2.6) 

where ∇𝑓(𝜇) is the gradient of function 𝑓(𝜇) and 𝑘′ is the iteration step. 𝛾 is the step size and it 

is updated by steepest decent direction (line 15–19 in the pseudocode of [61]). To avoid a 

singularity in calculating ∇𝑓(𝜇), a small constant was added to the term inside the square root in 

Eq. (2.2.4). After each ART operation of Eq. (2.2.5), the resulting image is updated according to 

Eq. (2.2.6). The number of iterations for the steepest gradient descent step is set to 10 and the 

number of iterations for the ART step is set to 20 in this study [22, 61, 64]. 
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2.2.4 Scatter correction scheme 

This section shows some pre-processing steps and how the scatter correction method 

works. During the moving blocker CBCT acquisition, detected signal in the blocked regions is 

assumed to be attributed to scatter photons only, while the measured signal in the unblocked 

regions is contributed by both primary and scattered photons. Previous studies [56, 57] have 

showed that the scatter signal of CBCT projection is smooth and low-frequency signal. Here, 

the scatter signal detected in the blocked region was used to estimate the scatter fluence of the 

unblocked region using cubic-spline interpolation. To avoid the penumbra effect of the strips, 

data from regions adjacent to the edges of the strips were excluded, and only the central one-

third of each blocked region was used in the scatter estimation in the experimental study. 

Before interpolation, a 3 × 3 median filter was applied to exclude extremity values of the 

measured scatters. A 1D 9-pixel moving average filter perpendicular to the lead strips was also 

used to further smooth the interpolated scatter maps [54, 76]. Primary signal in unblocked 

region was obtained by subtracting the estimated scatter signal. A line integral of each ray in 

unblocked region was then calculated by the logarithmic transform. To obtain accurate line 

integrals, a normalization scan (air scan) was acquired without the blocker. Image 

reconstruction was then performed on the corrected unblocked partial projection data.  

Figure 2-2 and Figure 2-3 show an example projection image of air scan and Catphan 

scan respectively. The intensity of the projection image with blocker is decreased compared to 

the projection image without blocker, which can reduce the dose of radiation. 
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                        (a) Air scan without blocker                      (b) Profile 

 
           (c) Air scan with blocker                             (d) Profile 

Figure 2-2 Air scan 
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           (a) Catphan without blocker                     (b) Profile 

 
        (c) Catphan with blocker                            (d) Profile 

Figure 2-3 Catphan scan 

Figure 2-4 shows how to estimate scatter signal from blocked regions. The blue line in 

(a) is the interest of region of measured signal, which is the sum of primary and scatter signal. 

The red line in (b) is the scatter signal we estimated in the blocked regions, and the estimated 

scatter signal in unblocked regions is interpolated in (c). Then the black line in (d) is the scatter 

corrected signal, which obtained by subtracting the red line from the blue line. 
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      (a) Profile of measured signal                   (b) Estimated scatter signal 

 

           (c) Interpolated scatter signal                    (d) Scatter corrected signal 

Figure 2-4 Scatter correction 

2.2.5 Reconstruction results 

This section provides reconstruction results that illustrate the performance of the 

moving blocker method for scatter correction. We compare the axial images of the sensitometry 

module of moving blocker method to three competing methods in Figure 2-4. To evaluate the 

accuracy of the reconstructed CT number in the CBCT images, we calculated the mean CT 

number of seven ROIs within the sensitometry module. We also acquired fan-beam multi-

detector CT (MDCT) images of the CatPhan
® 

600 phantom using a GE Discovery CT scanner 

(GE Medical Systems, Milwaukee, WI). The CT numbers from MDCT were used as the 

standard for comparison. The inaccuracy of CT number in CBCT was quantified by the root 

mean square error (RMSE) in the selected seven ROIs 
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𝑅𝑀𝑆𝐸 =  √∑ (𝐶𝑇𝑐𝑜𝑛𝑒
𝑘 − 𝐶𝑇𝑓𝑎𝑛

𝑘 )27
𝑘=1     (2.2.7) 

where 𝐶𝑇𝑐𝑜𝑛𝑒
𝑘  and 𝐶𝑇𝑓𝑎𝑛

𝑘  denote the mean CT number of the kth ROI for CBCT and fan-beam 

CT, respectively. Table 2-1 lists the CT numbers of different ROIs in Figure 2-5. The CT 

numbers of different ROIs for eleven successive slices are shown in Figure 2-6 to Figure 2-12. 

Table 2-2 lists the RMSE of CT numbers of different ROIs for seven successive slices. The 

RMSE of the CT number in the CBCT images without scatter correction is 130. Using the 

proposed scatter correction strategy, the RMSE of the CT number is reduced to around 20 in all 

of the images reconstructed by different methods. 
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(a) MDCT                                               (b) CBCT 

 

(c) No scatter correction                           (d) Scatter correction 

Figure 2-5 One axial slice of the Catphan 600 phantom sensitometry module 

The selected slice image shown above: (a) benchmark fan-beam MDCT image, 

denoted as “MBCT”;; (b) reconstructed image from CBCT machine (with some model-based 

scatter correction), denoted as “CBCT”; (c) CO-TV from unblocked projection data (no scatter 

correction), denoted as “No Scatter Correction”; and (d) CO-TV using both unblocked projection 

data and partially blocked projection data (with scatter correction) , denoted as “Scatter 

Correction”;. ROIs labeled in (a) were used for evaluating CT number accuracy. Display widow 

[−800, 600] HU. 
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Figure 2-6 CT numbers of ROI-1 

 

Figure 2-7 CT numbers of ROI-2 
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Figure 2-8 CT numbers of ROI-3 

 

 

Figure 2-9 CT numbers of ROI-4 
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Figure 2-10 CT numbers of ROI-5 

 

Figure 2-11 CT numbers of ROI-6 
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Figure 2-12 CT numbers of ROI-7 

 

 
Table 2-1 Comparison of the CT number of seven ROIs of the Catphan 600 

 ROI-1 ROI-2 ROI-3 ROI-4 ROI-5 ROI-6 ROI-7 RMSE 

MDCT 344 948 -999 -187 -97 -39 -999  
CBCT 273 847 -904 -195 -116 -70 -913 70 
No SC 270 820 -800 -124 -15 10 -780 130 

SC 332 970 -991 -202 -111 -37 -993 20 
 

Table 2-2 RMSE of CT numbers of different ROIs for seven successive slices 

Slice number 1 2 3 4 5 6 7 

CBCT 63 63 65 66 67 68 69 
No SC 132 130 128 128 126 130 128 

SC 17 20 19 17 19 16 12 
 

2.2.6 Conclusion 

The results of RMSE show that the moving blocker scatter correction method is 

effective. However, the scatter signal in this experiment had to be carefully extracted by 
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avoiding the edge pixels and a scaling was needed most time to compensate the spread of 

signal from unblocked regions for a good scatter correction performance. Therefore, we 

proposed a deconvolution method to avoid these drawbacks in next section. 

2.3 Simulation study of deconvolution 

2.3.1 Blocker-based scatter correction mathematical models 

The fundamental assumption in blocker-based scatter estimation lies on: 

𝑆𝑖𝑑𝑒𝑎𝑙(𝑢, 𝑣) {
𝑆𝑝(𝑢,𝑣) + 𝑆𝑠(𝑢,𝑣)  ,    (𝑢, 𝑣) ∈ 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛

𝑆𝑠(𝑢,𝑣) ,                (𝑢, 𝑣) ∈ 𝑢𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛
                (2.3.1) 

where 𝑆𝑖𝑑𝑒𝑎𝑙(𝑢, 𝑣)  is the “ideally” measured signal,  𝑆𝑝(𝑢,𝑣)  is the primary signal and 

𝑆𝑠(𝑢,𝑣)  is the scatter signal. Since in the blocked regions the signal is deemed purely scatter and 

the scatter i-s a low-frequency signal at least in longitudinal direction [54], the scatter in blocked 

region can be estimated through interpolation of signals in blocked region. Then, the primary 

signal in unblocked region can be recovered by subtracting estimated scatter signal from 

measured total signal and used for reconstruction. However, the assumption of pure scatter in 

blocked regions is usually violated in reality. As demonstrated by the air scan of the blocker 

(without the object in Figure 1) in Figure 2-2, the edges between blocked and unblocked regions 

do not show a vertically straight transition from high intensity to low intensity. In addition, 

significantly amount of signal still exists in the blocked region, which should be (close to) zero 

by the assumption. Therefore, the scatter signal in the previous experiment had to be carefully 

extracted by avoiding the edge pixels and a scaling was needed most time to compensate the 

spread of signal from unblocked regions for a good scatter correction performance [10, 11].  

In this study, we will investigate the sources for the contamination of scatter in blocked 

regions and propose several methods to extract more faithful scatter signals without empirical 

parameter tuning. If we assume an ideal point x-ray source and no detector veiling/scatter glare, 

the detect signal can be described as 

𝑆𝑖𝑑𝑒𝑎𝑙(𝑢, 𝑣) = 𝑆𝑝(𝑢,𝑣) ∑ Π(
𝑢−𝑢𝑖

𝑤

𝑘
𝑖=1 ) + 𝑆𝑠(𝑢, 𝑣)        (2.3.2) 



 

33 

where the primary signal is 𝑆𝑝(𝑢,𝑣) = 𝐼0𝑒−∫𝐿𝜇(𝑥,𝑦,𝑧)𝑑𝑙 with the uniform source intensity 𝐼0 and the 

ray path L from the source to the point (u,v) on the detector, 𝑆𝑆(𝑢,𝑣) is the object scatter signal 

that can be modeled as a convolution of incident fluence and the scatter kernel [46]. Π(•)is the 

standard rectangular function (1 inside the window and 0 outside) and ∑ Π(
𝑢−𝑢𝑖

𝑤

𝑘
𝑖=1 ) represents 

the ideal projection image of K blockers (with the center 𝜇1and the width w) on the detector. 

Note that blocked regions are outside the rectangular windows. This equation is equivalent to 

Eq. (2.3.1). 

However, the real measured signal does not exactly follow Eq. (2.3.2) as can be seen in 

Figure 2-1. At least two major blurring factors have to be taken into account: 1) the response 

function of the flat panel detector (FPD); and 2) the penumbra effect due to the finite x-ray 

source distribution. (Note that the diffraction effects can be neglected because the x-ray 

wavelengths are very small (~10−11 m) and the width of the blocker is several millimeters. Thus, 

under the usual CBCT imaging setup, Fresnel number is much greater than one, which does 

not satisfy the condition to generate a bright spot behind the blocker.) Therefore, if assuming 

linear shift invariant (LSI) for both effects, the measured data can be expressed as: 

𝑆(𝑢,𝑣) = 𝑆𝑖𝑑𝑒𝑎𝑙(𝑢, 𝑣)⨂𝑃𝑆𝐹(𝑢, 𝑣) + 𝑛(𝑢, 𝑣)                           (2.3.3) 

                              = 𝑆𝑝(𝑢, 𝑣) ∑ Π

𝑘

𝑖=1

{
𝑢 − 𝑢𝑖

𝑤
} ⨂𝐷𝑅𝐹(𝑢, 𝑣)⨂𝑃𝐸𝐹(𝑢, 𝑣) + 𝑛(𝑢, 𝑣) 

where ⊗ denotes convolution, DRF(u,v) is the point spread function of the FPD, PEF(u,v) 

models the blurring due to the penumbra effect, S
S

*
(u,v) is the object scatter signal in Eq. 

(2.3.2) convolved by DRF(u,v) and PEF(u,v), and 𝑛(𝑢, 𝑣) is the detector electronic noise. It is 

straightforward to see that the signal reaching the FPD will be blurred by DRF. The blurring 

effect from PEF comes from the source distribution that can be modeled as convolution of an 

ideal point source (see Eq. (2.3.6)). Comparing Eq. (2.3.3) with Eq. (2.3.2), we can see that the 

primary signal can spread outside the rectangular windows and cause the contamination of the 
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scatter signal in unblocked regions. Although the blocker width may be increased to mitigate 

this contamination, practically this is not desired because it will compromise the primary signal 

coverage and deteriorate the reconstruction.  

The primary goal of this work is to use deconvolution methods to recover the ideal 

signal 𝑆𝑖𝑑𝑒𝑎𝑙(𝑢, 𝑣) in Eq. (2.3.2) from the measured signal 𝑆(𝑢,𝑣) in Eq. (2.3.3). Consequently, the 

signal in the blocked regions (i.e. outside the window function) can better represent true scatter 

(at least in the central part of the region), which will lead to more accurate estimate of the 

primary signal for reconstruction.  

2.3.2 Models of the detector response and the penumbra effect 

A. Modeling detector response function (DRF) 

An ideal point x-ray beam will generate a spread in the FPD due to the effects of 

radiation scatter, light diffusion, and charge sharing etc. Since the ideal point beam is hard to 

achieve, the slanted-edge method [65, 66] will be used to estimate the detector response 

function (DRF), i.e. point spread function [67]. A lead sheet with sharp and straight edge will be 

placed directly on the top of the FPD to avoid off-focal radiation and environmental scatter. A 

uniform incident fluence on the measured area will be assured by calibration. The angle of the 

edge is not parallel to the u or v axis, but slanted slightly (<5°). This allows the gradient of the 

edge to be measured at various phases relative to the detector element and generates an 

oversampled edge profile as shown in Figure 2-13, which will provide extra high frequency 

response information.  
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Figure 2-13 ESF estimation using the slanted edge method [68] 

The empirical line spread function (LSF) can be obtained by taking the derivative of the 

edge profile. The empirical LSF will be further fitted to the following parametric function: 

 

𝐿𝑆𝐹𝑓𝑖𝑡(𝑢) =
𝑎1

√2𝜋𝑏1
2

𝑒−𝑢2/2𝑏1
2

+
𝑎2

𝜋𝑏2
2 |𝑢|𝐾1(

|𝑢|

𝑏2
) +

1−𝑎1−𝑎2

𝜋𝑏3

1

1+𝑢2/𝑏3
2          (2.3.4) 

 

where K1(•) is a first-order modified Bessel function. This function is proposed to model the long 

tail of LSF and the weighted least squares can be used to find the parameters [67]. The LSF will 

be measured and calculated at multiple positions on the detector with both u and v directions to 

make sure that the DRF of FPD is spatial invariant and rotationally symmetric. Given rotational 

symmetry, the DRF can be expressed as:  

 

𝐷𝑅𝐹𝑓𝑖𝑡(𝑟) =
𝑎1

2𝜋𝑏1
2 𝑒−𝑟2/2𝑏1

2
+

𝑎2

2𝜋𝑏2
2 𝑒−𝑟/𝑏2 +

1−𝑎1−𝑎2

2𝜋𝑏3
2

1

(1+𝑟2/𝑏3
2)3/2         (2.3.5) 

 

where 𝑟 is equal to√𝑢2+𝑣2. In Eq. (2.3.5), it is tempting to attribute the three terms as modeling 

the distributions of the incident intensity in the scintillator, the diffusion of scattered optical 
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photons, and the scatter of x-ray photons in the detector panel and housing, respectively [67]. 

However, we treat them as a general description of a point spread function with variable tail 

effects, i.e. the short range for the first Gaussian term, the medium range of the exponential 

term, and the long range of the polynomial (Lorentzian) term.  

B. Modeling penumbra effect function (PEF) 

The finite size of x-ray focal spot (inside the full width half maximum (FWHM) of the 

source, <1 mm) and the off-focal-spot  radiation (outside the FWHM of the source with non-

negligible  radiation, ~several mm) produce the penumbra effect of the blockers.  This effect 

results in different 𝐼0 values as shown in Figure 2-14, where the  black region on the detector is 

totally blocked by the blocker (when  ignoring the detector response in section 2.3.1), the green 

ones are  unblocked, so called umbras, and the red ones are partly shun by x-ray, so called 

penumbras.  

 

Figure 2-14 Penumbra effect 

 

Given the focal spot length 𝐿𝑓  , the source to  the blocker distance 𝑎, and the blocker to 

the detector distance 𝑏, the  penumbra size can be computed as 𝐿𝑝 = (𝑏𝐿𝑓)/𝑎 . If the blockers 
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have the equal width and spacing, denoted as 𝑑, an ideal point source (i.e. an infinitesimally 

small source) would result in a uniform alternating pattern of the blocked and unblocked regions 

on the detector with the equal size of 𝐿𝐼 = 𝑑(𝑎 + 𝑏)/𝑎  , which is the sum of one black (or green) 

region and one red region. Given a typical values of 𝐿𝑓=0.4 mm, 𝑎 =300 mm, 𝑏 = 1200 mm, and 

𝑑 =3 mm [11, 69], 𝐿𝑝 is 1.6 mm and 𝐿𝐼 is 15 mm. Therefore, the penumbra could take more than 

10% of the ideally blocked region even by considering only the finite size of the focal spot. If 

taking the off-focal-spot radiation into account, which is in the same order of the size of the 

blocker, the penumbra effect region could be ten-fold greater and spread to the whole blocked 

region [69]. Following the recent study of penumbra effect of the collimator blades, we can 

model the actual incident intensity 𝐿𝐴 as 

 

𝐼𝐴(𝑢, 𝑣) = 𝐼0 ⨂ 𝑓(𝑢•a/b, v•a/b)= 𝐼0⨂𝑃𝐸𝐹(𝑢, 𝑣)            (2.3.6) 

 

𝐼0 has the uniform value inside the illuminated area and 0 outside, and 𝑓 is the x-ray source 

distribution. The penumbra effect function (PEF) is then defined as the source distribution 

magnified on the detector by a factor of 𝑏/𝑎. Note that the penumbra effect of the collimator 

blades is around the borders of FOV and can be ignored compared to that of the blockers in the 

regions of interest. Although the off-focal-spot radiation is generally small, it significantly 

contributes to the spread due the convolution on a large off-focal-spot area in Eq. (2.3.6).  

The pinhole method will be used for the measurement of source distribution because it 

is easy to implement and able to provide 2D distribution [69, 70]. Briefly, a standard pinhole 

assembly is attached to the surface of the field collimator. After calibration, the focal spot, 

pinhole, and the center of detector are aligned, and a magnified image of the focal spot is 

projected onto the detector. The background signals measured by blocking the pinhole are 

subtracted from the pinhole measurement to get the clean distribution of the source on the 

detector by assuming a negligible DRF influence on PEF. The deconvolution methods 
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described in next section will be used to test the negligible DRF influence hypothesis. If the 

pinhole method cannot provide satisfying measure of PEF, advanced coded aperture methods 

can be used [71]. Assuming a rotational symmetry, a similar parametric function Eq. (2.3.5) can 

be used to break down PEF into different spread range factors.  

2.3.3 Recovery of true scatter in blocked regions 

Once we accurately estimate DRF and PEF based on Eq. (2.3.5), the deconvolution 

techniques can be used to recover true scatter in blocked regions, i.e. to reverse the effect of 

DRF and PEF in Eq. (2.3.3) so that Eq. (2.3.2) can be satisfied to a maximum extent and the 

estimation of scatter in unblocked region can follow the routine. In the following context, we 

denote 𝐹(•) as Fourier transform of the function from the spatial domain to the spatial frequency 

domain, and 𝐹−1(•) as inverse Fourier transform. The multiplication, division and comparison 

involving an array (e.g. 𝑆, 𝑆𝑖𝑑𝑒𝑎𝑙 and their Fourier transform) are element wise, unless otherwise 

stated. 

A. Inverse and Wiener filtering 

The most straightforward method is the inverse filtering. In this method, the derived 

DRF and PEF are transformed into the spatial frequency domain, denoted as ℱ(DRF) and 

ℱ(PEF), so is the measured signal S, ℱ(S). Then, the recovered signal can be expressed as 

𝑆̃𝑖𝑑𝑒𝑎𝑙 = ℱ−1(
ℱ(S)

ℱ(DRF)ℱ(PEF)
). It is well known that the direct inverse filtering will produce the high 

frequency ringing artifacts. Since the contamination in the central part of the blocked region can 

be only introduced by the long tails of DRF and PEF, which can be represented by the last two 

terms (exponential + Lorentzian) or the last one term (Lorentzian), denoted as DRF
LT 

and 

PEF
LT

, the inverse filtering can be achieved by 𝑆̃𝑖𝑑𝑒𝑎𝑙 = ℱ−1(
ℱ(S)

ℱ(DRF)ℱ(PEF)
) instead. As shown in 

[67], this process can effectively remove the long tail effect of the detector scatter without 
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introducing new artifacts. We expect the similar performance for the long tail effect of the 

penumbra. 

The electronic noise term n(u,v) in Eq. (2.3.3) can be modeled as a Gaussian white 

noise and its power spectral function (PSF) can be estimated from either the flood field or the 

dark image. The Wiener deconvolution can be expressed as 

 

𝑆̃𝑖𝑑𝑒𝑎𝑙 = ℱ−1(
H∗•𝑃𝑆𝐹(S)

|𝐻|2PSF(S)+PSF(n)
)                  (2.3.7) 

 

where 𝐻 = ℱ(𝐷𝑅𝐹)ℱ(𝑃𝐸𝐹) or ℱ  (DRF
LT 

) ℱ  ( PEF
LT

), * denotes the complex conjugate, and 

PSF(S) and PSF(n) are power spectral functions of the signal S and n, respectively. 

B. Maximum likelihood estimate using the Richardson-Lucy algorithm 

From Eq. (2.3.3), the ideal signal 𝑆𝑖𝑑𝑒𝑎𝑙 consists of both the primary and scatter signals, 

which follow Poisson distribution and is blurred by a known point spread function, h = DRF ⊗ 

ERF . The maximum likelihood estimate of 𝑆𝑖𝑑𝑒𝑎𝑙   given the measurements S and h can be 

obtained using the iterative Richardson-Lucy algorithm [48, 49] as follows  

 

𝑆𝑖𝑑𝑒𝑎𝑙(𝑡+1) = 𝑆𝑖𝑑𝑒𝑎𝑙(𝑡)(
𝑆

𝑆𝑖𝑑𝑒𝑎𝑙(𝑡)⨂ℎ
⨂ℎ̂)           (2.3.8) 

 

where S
ideal(t) 

and S
ideal(t+1) 

are estimate of S
ideal 

at t
th 

and (t+1)
th 

iteration, respectively, and ℎ̂ =

ℎ(−𝑢, −𝑣)  . In case of high noise, e.g. the blocked region with low statistical counts, a 

regularization term, denoted R(S), can be added to the Richardson-Lucy algorithm [74, 75]. The 

iteration can be modified by adding a scaling factor, (1−λdiv(R(S
ideal(t)

)))
−1

, to the right side of 

Eq. (2.3.8), where div is the divergence of the regularization function R(S). Different 

regularization functions, such as L2 norm, total variation (TV) norm, and Huber-norm, will be 
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tested if the regularization is necessary although the use of heuristic parameter is generally 

avoided. 

 

2.3.4 Model validation and evaluation of scatter recovery methods 

To investigate whether deconvolution methods can improve the scatter estimation 

under different blurring and noise conditions for blocker-based methods for CBCT. An “ideal” 

projection image with scatter was first simulated for blocker-based CBCT data acquisition by 

assuming no blurring effect and no noise. The ideal image was then convolved with long-tail 

PSF with different width to mimic the blurring effect from the finite focal spot and detector 

response. Different levels of noise were also added. Three deconvolution methods: 1) inverse 

filtering; 2) Wiener; and 3) Richardson-Lucy, were used to recover the scatter signal in the 

blocked regions. The root mean square error (RMSE) of estimated scatter serves as a 

quantitative measure for the performance of different methods under different blurring and noise 

conditions.  

2.3.5 Simulation results 

The phantom we simulated is from one of the projection image of CBCT, and six black 

strips is applied as blocker strips in Figure 2-15 (b). The size of the phantom is 1024*768 with 

the 0.388 mm pixel size. Then we generated a 2D scatter signal (d), which is generated from a 

Gaussian function (sigma=600). By adding the scatter signal to the projection image, we 

obtained the profile with scatter contamination(e). 
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                 (a) Projection image                                (b) Applied blocker 

 

      

              (c) Profile without scatter                       (d) Generated scatter signal 

 

                                            (e)  profile with scatter  

Figure 2-15 Simulated phantom and scatter signal 

There are 5 different width of PSF that are simulated using Eq. (2.3.5). The size of the 

PSF is 81*81 pixels (0.388 mm pixel size). We choose the full width tenth maximum (FWTM) as 
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the width of the PSF. The corresponding  FWTM is  0.155mm, 6.2 mm, 12.4 mm, 18.6 mm and 

24.8 mm respectively and first two of them are shown in Figure 2-16.  

  
                                (a) PSF-1                                             (b) LSF 

  
                                 (c) PSF-2                                              (d) LSF 

Figure 2-16 Two different PSF and the corresponding LSF 

There are five different level of noise are added to the image after they convolved the 

five PSF. They are defined as signal-to-noise ratio (SNR) at 160dB, 80dB, 40dB, 20dB and 

10dB (i.e. 0.0001%, 0.01%, 1%,10% and 20% noise).Two convolved image and selected profile 

are shown in Figure 2-17. The sharp edge became smooth because of the blur effect of the 

convolution. 
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                             (a) Convolved with PSF-1                   (b) Selected profile 

   

                             (c) Convolved with PSF-2                  (d) Selected profile 

Figure 2-17 Convolved image 

The final step is to deconvolve the blurred and noisy image using the corresponding 

PSF. The image can be restored to the original image when there is no noise added. However, 

the noise cannot be removed from the blurred image because we don’t have a model of it. 

Using the Wiener and Richardson-Lucy deconvolution, the noise can be suppressed to some 

extent. Two typical line profiles are shown in Figure 2-18, low noise and medium noise. The root 

mean square error (RMSE) for different methods is shown in the Table 2-3. 

 



 

44 

 

                           (a) Low Noise (SNR=80dB)                 (b) Medium Noise (SNR=40dB) 

Figure 2-18 Deconvolved line profiles 

 

The line profiles (perpendicular to the orientation of blockers) of the ground truth and for 

different scatter estimation methods are shown in above. The Ideal means ground truth without 

blur and noise, the Blurred and noisy means measured for direct scatter estimation, the Wiener 

means after Wiener deconvolution of the measured data and the Richardson-Lucy means after 

Richardson-Lucy deconvolution of the measured data. 

 

 

Table 2-3 RMSE of the profile of blurred image 

SNR (dB) 160 80 40 20 10 

PSF-1 0 30 151 303 605 
PSF-2 45 53 130 240 466 
PSF-3 82 82 115 200 393 
PSF-4 110 114 201 355 686 
PSF-5 130 136 187 282 498 

 
 

Table 2-4  RMSE of the profile of deblurred image (Wiener) 

SNR (dB) 160 80 40 20 10 

PSF-1 0 28 77 89 93 
PSF-2 1 8 18 26 37 
PSF-3 4 9 27 31 31 
PSF-4 18 25 34 34 33 
PSF-5 48 36 36 36 37 
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Table 2-5  RMSE of the profile of deblurred image (Richardson-Lucy) 

SNR (dB) 160 80 40 20 10 

PSF-1 0 30 113 216 431 
PSF-2 0 30 114 214 422 
PSF-3 0 30 96 130 343 
PSF-4 0 30 90 128 275 
PSF-5 0 30 91 177 308 

 

The RMSE values of estimated scatter using different methods are summarized In 

Figure 2-19. The direct method suffers from the increased width of PSF and increased noise 

(Blue bars). After either Wiener or Richardson-Lucy deconvolution, the scatter estimation 

performance is significantly improved. In general, Wiener is robust to the change of noise levels 

and Richardson-Lucy seems to work well with the wide PSF. The deconvolution methods can 

achieve from as high as 20-fold improvement (Narrow PSF and Low noise) to a typical 4-fold 

improvement (Medium PSF and Medium noise). 
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                       (a) Narrow PSF (FWTM = 6.2mm)         (b) Medium PSF  (FWTM = 12.4mm) 

 

              (c) Wide PSF (FWTM = 24.8mm) 

Figure 2-19 Root mean square error (RMSE) 

The RMSE of estimated scatter using different methods are shown in above (Direct: 

using signal in the blocked region to estimate scatter directly; Wiener: Wiener deconvolution 

followed by direct scatter estimation; Richardson-Lucy: Richardson-Lucy deconvolution followed 

by direct scatter estimation; under different blurring and noise conditions. (Note the inverse 

filtering is very sensitive to noise and omitted here.) 

2.3.6 Conclusion 

We investigated several deconvolution methods to recover the scatter signal in the 

blocked region for blocker-based scatter correction for CBCT. Our simulation results 

demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the 

scatter estimation compared to the direct method. Due to the blurring effect, the scatter signal in 
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the blocked region is contaminated by the primary signal in the unblocked region. The direct use 

of the signal in the blocked region to estimate scatter (“direct method”) leads to large RMSE, 

whose values increase with the increased width of PSF and increased noise. The inverse 

filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy 

deconvolution methods significantly improve scatter estimation compared to the direct method. 

For a typical medium PSF and medium noise condition, both methods (~20) can achieve 4-fold 

improvement over the direct method (~80). The Wiener method deals better with large noise 

and Richardson-Lucy works better on large PSF. 

2.4 Slanted-edge study for deriving the PSF 

2.4.1 Introduction 

We performed an slanted-edge experiment to model the detector response function 

(DRF) for a flat panel detector (FPD). The slanted-edge method [65, 66] can be used to 

estimate the detector response function (DRF), i.e. point spread function [67]. A lead sheet with 

sharp and straight edge will be placed directly on the top of the FPD to avoid off-focal radiation 

and environmental scatter. A uniform incident fluence on the measured area will be assured by 

calibration. The angle of the edge is not parallel to the u or v axis, but slanted slightly (<5°). This 

allows the gradient of the edge to be measured at various phases relative to the detector 

element and generates an oversampled edge profile as shown in Figure 2-13, which will provide 

extra high frequency response information. The novelty of this work is to investigate the 

effectiveness of deconvolution methods on improving blocker-based CBCT scatter estimation. 

Due to the blurring effect from the X-ray source distribution and the detector response, the 

scatter signal in the blocked region is contaminated by the primary signal in the unblocked 

region, which leads to incorrect estimate of scatter in the whole projection image if no 

empirically adjustments were conducted. This work will provide a theoretically sound and 

practical solution to this problem and preliminary evidence that to what extent deconvolution 

methods can work.  The purpose of this experiment is to measure the line spread function (LSF) 
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and the modulation transfer function (MTF) of the projection image, then estimate the point 

spread function (PSF) and use them to deconvolve the original image to decrease the impact of 

the detector response effect. 

2.4.2 slanted-edge method 

Figure 2-20 and Figure 2-21 show the projection image of a slanted lead plate and its 

edge profile. The ideal edge profile has a sharp corner but the real edge profile doesn’t (shown 

in Figure 2-20(c)). Our goal of this experiment is to process the projection image to make the 

edge profile of the image sharp at the corner.  

  
(a) slanted edge                                           (b) detected edge 

 

  
(c)  estimated ESF                                       (d) estimated LSF 

Figure 2-20 Modeling LSF 
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(a) estimated MTF                                              (b) estimated 2D MTF 

  

(c) estimated 2D MTF                                           (d) estimated 2D PSF 

 

 

      (e) estimated 3D distribution of 2D PSF 

Figure 2-21 Caculation of PSF 
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2.4.3 Results of different LSF 

We compared three kinds of methods to drive the LSF and PSF. The estimated LSF 

and PSF were obtained from the experiment as shown in Figure 2-22. The fitted LSF and PSF 

were obtained by fitting the estimated LSF to the Eq. (2.3.4) and Eq. (2.3.5). The parametric 

LSF and PSF were obtained from the the Eq. (2.3.4) and Eq. (2.3.5) using the parameters in the 

reference [22]. The dotted lines are the corresponding LSF derived from the PSF. From the 

Figure 2-23, we conclude that the estimated LSF is close to the parametric LSF. The fitted LSF 

has some differences from the esimtaed LSF, which is caused by the fitting method  we use. 

The results of the deconvolution for the three kinds of PSF are shown in the Figure 2-23. (a) 

and (b) are estimated PSF. (c) and (d) are parametirc PSF. (e) and (f) are fitted PSF. The 

RMSE for the profile of blurred image is 575. It became 1000, 55, 57 for the three PSF. 

 

 
Figure 2-22 Comparison of LSF and PSF 
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(a) deconvolved image                                     (b) region of interest 

  
(c) deconvolved image                                     (d) region of interest 

  
(e) deconvolved image                                      (f) region of interest 

Figure 2-23 Comparison of profile after deconvolution 

2.4.4 Conclusion 

In this section, we investigated the deconvolution method to remove the detector 

response effect in the slanted-edge experiment. The PSF are derived from the slanted image 

using parametric model and then deconvolve the original projection image. Our results show 
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that the slanted-edge method is effective to derive LSF and PSF for the flat panel detector, and 

the deconvolution method can significantly eliminate the detector response effect. 

The penumbra effect is magnified by the blocker, which is also an important effect for 

blurring the image. We also tried to get the PSF of the projection image from the moving blocker 

method. However, the width of the lead strips is too small to contain the full information of PSF. 

A blind-deconvolution method have been proposed and will be implemented to see the 

performance. 

2.5 Summary 

In summary, the results of reconstruction image and the CT number demonstrated that 

the moving blocker method can estimate the scatter signal in projection data, reduce the 

imaging dose, and simultaneously obtain complete volumetric information within the FOV. In the 

moving blocker methods, the signal detected in the blocked region is deemed scatter through 

an ideal blocking assumption and used to estimate scatter in the unblocked region. The image 

reconstructed by the scatter corrected projection data from the unblocked regions. 

However, the accuracy of the scatter correction using the moving blocker method is 

limited by the detector response effect and the penumbra effect. Then we proposed several 

deconvolution methods to improve the accuracy of the scatter correction and implemented a 

simulation study. The results of the simulation demonstrated that the deconvolution method can 

be used to deblur the projected scatter image. To implement the deconvolution method, we 

proposed a slanted-edge experiment to derive the LSF and PSF using a parametric model. The 

results of the experiment showed that with good PSF estimation, the deconvolution method can 

significantly eliminate the detector response effect. Therefore, the moving blocker system with 

deconvolution method can generate high quality CBCT image. The high quality image can 

improve anatomical visualization and dose calculation accuracy in the treatment position, which 

are essential for the adaptive radiation therapy.  
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Chapter 3  

Robust MB-SC for CBCT using multiple-view information 

3.1 Introduction 

Come-beam computed tomography (CBCT) is being widely used as an image guidance 

tool in radiation therapy nowadays. The quality of CBCT image is important to localize and 

delineate the tumor and to define relevant volumes when the patient is in the treatment position 

[1]. However, due to the use of the flat panel detector (FPD), the large amount of scatter signal 

deteriorates the projection images and greatly reduces the quality of CBCT images [38]. The 

manifest shading artifacts can lead to decreased image contrast and inaccurate CT number, 

which makes it difficult to contour the target and other volumes and to calculate the correct dose 

[34]. Therefore, scatter correction (SC) is critically important to overcome these problems of 

CBCT for a precise adaptive radiation therapy.  

Different strategies have been investigated to correct the scatter contamination in 

CBCT projection data, e.g. suppression of scatter signal during the acquisition using anti-scatter 

grids [2, 39, 77, 78] and correction of scatter signal in projections using computational methods, 

such as analytical models or Monte Carlo simulations [3, 4, 47, 79-81]. There have been 

growing interests in developing measurement-based scatter correction, such as blocker-based 

methods [5-11, 53-55, 76, 82, 83]. These methods assume that the scatter is a low frequency 

signal and derive the scatter signal from the attenuator-blocked regions within the projection 

images, thus avoiding the computationally intensive Monte Carlo simulation [3, 77, 79, 84] or 

the oversimplification of analytical methods [4]. The fixed-blocker methods suffer the problems 

of the requirement of additional scans or the reduced imaging volume. The moving blocker 

method [10, 11] overcomes these limitations of fixed-blocker methods and is cable of 

simultaneously estimating the scatter signal and reconstructing the entire volume within the field 

of view (FOV) from a single CBCT scan. As an extra benefit, the radiation dose can be greatly 

reduced, e.g. by half if the same blocker width and pitch were used. The moving blocker method 
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was further advanced recently by a deconvolution method with an aim to improve the scatter 

signal estimation in the blocked regions by reducing the primary signal contamination [85]. 

Nevertheless, there are still a couple of issues with the moving blocker method, namely the 

large estimation errors in the regions with large scatter signal transition and/or insufficient 

scatter samples in the projection images (called “boundary effect” as follows) and the 

vulnerability to blocker detection errors (called “robustness” as follows). These errors can cause 

significant artifacts in corresponding regions in reconstructed images and possibly make them 

useless.  

In our previous study [11], we constructed a moving blocker system to show the 

effectiveness of simultaneous SC and volumetric reconstruction [10]. The original moving-

blocker SC method uses scatter measures in the blocked regions to estimate the scatter signal 

for unblocked regions for each individual projection view (which is called “single-view” SC 

method in the following context). Such a treatment has achieved much improved image quality 

and more accurate CT numbers compared to CBCT without SC in most cases. However, there 

are a couple of issues arose from the single-view SC method: 1) boundary effect: image slices 

near the boundary of the object that are deteriorated by severe artifacts because the scatter 

signal is changing fast in these regions which violate the low-frequency assumption of scatter 

signal or an extrapolation is needed when the blocked regions (scatter samples) do not cover 

one end of the axial FOV; and 2) robustness: the SC performance is prone to the blocked and 

unblocked region detection errors and thus the accurate blocker position is required for the 

success of the moving-blocker SC method. However, for CBCT projection data, especially for 

half-fan scan for a big-size object, it could be challenging to find the blocker edge because the 

projection image has very limited contrast at the phantom regions. The wrong edge detection 

can lead to unacceptable reconstruction results with severe artifacts. To address these issues 

and make the moving-blocker SC method for a wider and more robust application, in this study, 

we propose a multi-view SC method, which combines the adjacent projection views to jointly 
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estimate the scatter signal for the current projection view. As long as the projections are densely 

acquired around the object (e.g. 670 projections for a full 360° rotation used in this study), the 

scatter signal in adjacent projection views does not change much, because the angular 

difference among adjacent projection views is very small and the scatter signal contains little 

high-frequency information. We hypothesize that these adjacent projection views can provide 

complementary scatter signal in different regions along the rotation axis when the blocker is 

moving with the gantry rotation. Thus, a more accurate estimate of the scatter signal in large 

intensity transition regions can be achieved as the sampling rate is significantly increased (3~5 

times depending on the number of adjacent views used). In order to overcome the adverse 

effect of the blocker detection errors, the estimated scatter from adjacent projection views can 

also be used for more accurate and robust edge detection in low contrast regions. 

Both the Catphan phantom and an anthropomorphic pelvis phantom were used to test 

our multi-view SC method. We compared the quality of reconstructed images and CT numbers 

for different SC methods (no SC, single-view SC, and multi-view SC) using multi-detector CT 

(MDCT) images and CT numbers as a benchmark. This study aims to make the moving 

blocker-based SC method more robust and extend its effectiveness for the target near the 

boundary of the field of view or with sharp intensity changes in the projection images.  

3.2 Methods and Experiments 

3.2.1. Moving-blocker based SC method 

The moving-blocker based SC method has been proposed to simultaneously estimate 

scatter signal and reconstruct the complete volume within the FOV from a single CBCT scan 

[10, 11]. A moving blocker system consists of several lead strips inserted between the X-ray 

source and the object. These lead strips are aligned perpendicularly to the gantry rotation axis 

and move back and forth along it while the source and detector rotating as shown in Figure 3-1.  

The method assumes that the blocked regions only receive the scatter signal, while the 

unblocked regions contain the sum of the primary and scatter signal (“total signal”). A flow chart 
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of the moving blocker scatter correction process is shown in Figure 3-2. As the scatter signal is 

generally a smooth low-frequency signal, the scatter signal in the unblocked regions can be 

estimated by interpolating the scatter signal in the blocked regions.  Then the primary signal in 

the unblocked regions can be recovered by subtracting the estimated scatter signal from the 

total signal. As the blocker is moving along the gantry rotation axis, the missing data (in blocked 

regions) are different in different projection views, which is equivalent to a fewer view projection 

data acquisition, and the reconstruction can be effectively solved by the compressed sensing 

techniques. Accordingly, a total variation (TV) constrained iterative method can be used to 

reconstruct scatter corrected images for the full volume in the FOV [10, 16, 61, 86-89] 

Specifically, the discrete CBCT image of the linear attenuation coefficient μ is solved by 

minimizing the TV function f(u) : 

𝜇 = arg min(𝑓(𝜇)),                                                             (3.1) 

𝑓(𝜇) = ∑ √(𝜇𝑥,𝑦,𝑧 − 𝜇𝑥−1,𝑦,𝑧)
2

+ (𝜇𝑥,𝑦,𝑧 − 𝜇𝑥,𝑦−1,𝑧)
2

+ (𝜇𝑥,𝑦,𝑧 − 𝜇𝑥,𝑦,𝑧−1)
2

𝑥,𝑦,𝑧 , 

where x, y, and z are the three-dimensional coordinates of each voxel of the reconstructed 

image. Eq. (3.1) is enforced by the standard steepest descent algorithm and subjected to the 

data fidelity and the non-negativity constraints: 

                   |𝐴𝜇 − 𝑝̃| ≤ 𝜀 ,                                                               (3.2) 

                    𝜇 ≥ 0 ,                                                                        (3.3) 

where p̃ is the log-transformed projection after scatter correction, A is the forward projection 

system matrix and ε is an error bound determined by the data noise and imaging model error. 

The constraint in Eq. (3.2) is enforced by the standard algebraic reconstruction technique 

(ART): 

    𝜇𝑖
(𝑘+1)

= 𝜇𝑖
(𝑘)

+ λ𝑎𝑖𝑗 [
𝑝𝑗−∑ 𝑎𝑖𝑗𝜇𝑖

(𝑘)
𝑖

∑ 𝑎𝑖𝑗
2

𝑖
],                                            (3.4)                           

where aij is the intersection length of projection ray j with pixel i, calculated by fast ray-tracing 

technique [63], k is the iterative step and  is the relaxation factor. After each ART update of Eq. 
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(3.4), the resulting image was updated according to Eq. (3.1). More details of reconstruction can 

be found in Ref. [10, 11]. 

 

Figure 3-1 Moving blocker CBCT system 

The rotational axis of the gantry is z and the blocker is moving back-and-forth in z 

direction. The blocked region detects the scatter signal and the unblocked region detects the 

total signal, i.e. the sum of the primary and scatter signals. 
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Figure 3-2 Work flow of moving blocker scatter correction 

3.2.2. Issues with single-view moving-blocker SC method (SVSC) 

A. Boundary effect 

If the low-frequency smooth condition of scatter signal is violated, such as at the 

boundaries between the object and the air or between bone and soft tissues inside body where 

the scatter signal changes fast, the current scatter estimation method using a single projection 

view may cause scatter estimation errors in the unblocked regions. In the projection data of 

these regions, some views may contain accurate scatter information if they are blocked, while 

some views are lack of direct measurements as they are unblocked. For these (unblocked) 

views, the interpolation has to be applied to estimate the scatter signal. However, the limited 

sampling points in a single projection view are not sufficient to recover the transition of the 
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scatter signal. As shown in Figure 3-3 for a line profile of projection data of CatPhan (red line: 

true scatter signal; blue dots: sampling points from the blocked region; green line: estimated 

signal by cubic B-spline interpolation of blue dots), there are two kinds of problems due to the 

boundary effect. In region 1, the insufficient sampling points cause the interpolation to 

overestimate the scatter signal. In region 2, the extrapolation has to be used due to the lack of 

sampling points at the end and can introduce large estimation errors. Consequently, these 

significant scatter estimation errors will lead to inaccurate SC and severe artifacts in the 

reconstructed images.  

 

 Figure 3-3 Boundary effect  

 

The boundary effect is caused by the interpolation and extrapolation using limited 

sampling points in the single view SC (SVSC) method for the Catphan phantom. 

B. Robustness 

In the SVSC method, the blocker edges have to be determined for each view so that 

the blocked regions and unblocked regions can be separated for scatter estimation and 

reconstruction, respectively. Therefore, the success of the moving-blocker SC method highly 

depends on the accuracy of the detection of the blocker edges. Ideally, the edges of blockers 
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can be detected in each line profile along the z direction by intensity thresholding. However, this 

can cause erroneous detection in areas with low contrast. In practice, by assuming a straight 

line of the blocker edge, edge detection can be performed at two z lines to get the straight-line 

edge, so called “two-point method”. This two-point method is easily achievable for a high 

contrast projection image (Figure 3-4 left), where two edge points far away from each other 

along one blocker edge. In Fig 4 left, the full-fan mode was used, suitable for the small size of 

the phantom (Catphan). Two points, one on the top and the other at the bottom, can be used to 

calculate the blocker edges and result in very accurate edge detection. In this case, both the 

true edges (solid red lines) and estimated edges (dashed red lines) overlapped with each other. 

However, when imaging a large-size object, the blocker edge detection can be erroneous due 

the large area of low image contrast (Figure 3-4 right). In Figure 3-4 right, due to the large size 

of the phantom (Pelvis phantom), the half-fan mode was used, and consequently only few rows 

on the top of the projection image provide sufficient contrast for reliable blocker edge detection 

as the bottom part’s contrast is too low to identify the blocker edge reliably. Since the two edge 

points are too close, a little error can propagate along the rest part of the straight line and 

generate large blocker edge estimation errors (Figure 3-4 right, red dashed lines) from the true 

edges (Figure 3-4, red solid lines). This erroneous blocker edge detection caused by the two-

point method can lead to artifacts in reconstructed images since both scatter signal and primary 

signal are estimated incorrectly.  
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 Figure 3-4 Blocker edge detection for a small object (left) and a large object (right).  

 

The green arrows denote the position for reliable edge point detection in high-contrast 

regions. The edge is estimated as the line connecting two edge points. The red solid lines 

represent the true blocker edges and the red dashed lines are the estimated edges. 

3.2.3 Multi-view moving blocker SC method (MVSC) 

The multi-view SC (MVSC) method is proposed to address the issues with the single-

view SC (SVSC) method using the moving blocker. The MVSC is to use adjacent projection 

views to jointly estimate the scatter for the current projection view. Should the angles be small 

among the neighboring projection views used for this joint scatter estimation, the change of the 

scatter profile can be negligible. The location change of the blocked regions in these projection 

views due to the axial blocker movement can be exploited to boost the sampling rate of the 

scatter signal, which is only sparsely sampled in the SVSC method due to the limited lead strip 

width and pitch of the blocker. As more samples are used for the interpolation of the scatter 

signal, more accurate scatter estimation can be achieved by MVSC than that by SVSC. This is 

particularly beneficial for the regions with large scatter signal transition. In addition, the 

complimentary scatter information from the neighboring views can be used to cross check for 

the wrong blocker detection and mitigate the scatter estimation errors. On the other hand, the 
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reconstruction process is kept intact in MVSC so that more accurate and robust reconstruction 

can be achieved through more accurate and robust scatter correction. The estimated scatter 

signal for ith projection view through interpolation can be expressed as:  

𝑆𝑖
𝑆𝐸(𝑧) =  ∑ 𝑎𝑘𝑊𝑘(𝑧)𝐾

𝑘=1  ,                                                   (3.5) 

where Wk(z)  and ak are the basis functions and corresponding weights and the lateral 

dimension is omitted for clarity. The smoothness of estimated signal is enforced by the choice of 

the basis functions. In this work, the cubic B-spline functions were used. For the proposed 

MVSC method, the optimal weights can be found by minimizing the following least-squares 

objective function:  

𝐚∗ =  𝑎𝑟𝑔min
𝐚

∑ ∑ ‖𝑆𝑗
𝑆𝑆(𝑧𝑗𝑛) −  ∑ 𝑎𝑘𝑊𝑘(𝑧𝑗𝑛)𝐾

𝑘=1 ‖
2𝑁

𝑛=1𝑗∈ℵ(𝑖)  ,                            (3.6) 

where א(i) is the neighboring projection views for the ith view (including i), S
SS
j (zjn)  is the 

observed scatter signal in the nth blocked region of the jth projection view, and a is the vector of 

all weights ak. In this work, the third order polynomials were used for the basis functions  Wk(z) 

and the weights ak were estimated using Newton’s method. When  א (i) ={i}, the MVSC method 

is collapsed down to SVSC as only one projection image is used for the scatter estimation. In 

contrast, the MVSC method uses more than one projection image, e.g.  א (i) ={ i -1, i, i +1} if 

three adjacent views are used. The caveat is that these adjacent project views shall span only a 

small angle to avoid any significant scatter signal changes among these views. It is worth noting 

that the proposed multi-view scatter correction (MVSC) method still uses projections from a 

single rotation acquisition, thus the imaging dose and the acquisition time are the same as the 

single-view scatter correction (SVSC) method. Essentially, the MVSC method does not change 

the CBCT data acquisition of the SVSC method, using the same total number of projection 

views for reconstruction and scatter correction. The key difference of two methods is that the 

SVSC method uses only one projection view for scatter estimation, while the MVSC method 

uses several adjacent projection views for scatter estimation. 



 

63 

In addition, the scatter signal can be estimated from multiple projection views directly so 

that the wrong blocker edge detection (Figure 3-4) by the two-point method can be avoided. By 

composing the signal profiles from several neighboring views, the scatter profile can be readily 

estimated without the need of the blocker edge detection at first. The procedure is shown in 

Figure 3-5a-f with the signal profiles (vertical axis) along the axial direction (horizontal axis): 1) 

compare signal profiles from two adjacent views (blue and black lines in Figure 3-5a) and keep 

the lower signal in each position to get the derived signal profile (red line in Figure 3-5b); 2) 

compare the derived signal profile from the first step (black line in Figure 3-5c, same as red line 

in Figure 3-5b) with that from the third adjacent view (blue line in Figure 3-5c) and keep the 

lower signal in each position to get the derived signal profile (red line in Figure 3-5d); 3) repeat 

step 2) by comparing a couple of more adjacent views (Figure 3-5e) to get the final scatter 

profile (red line in Figure 3-5f) without detecting the blocker edges in the first place. Once the 

scatter signal (red solid line in Figure 3-5g) was estimated, an adaptive threshold (red dash line 

in Figure 3-5g) can be used to detect the blocker edges for the determination of the unblocked 

region, and then subsequent scatter correction and reconstruction. The fixed threshold (green 

dashed line in Figure 3-5g) derived from the mean of the intensity fails to detect all blocker 

edges in the cases, where the intensity profile has a large fluctuation. Note that the valley point 

detection using a single signal profile for scatter estimation is not reliable due to the large signal 

fluctuation and noise.    
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 Figure 3-5 Multi-view scatter estimation and adaptive threshold  

 

Figure 3-5 is showing an example of multi-view scatter estimation and adaptive 

threshold method for blocker edge detection. (a)-(f): the procedure to get the scatter profile 

(vertical axis) using the lowest signal in the signal profiles along the axial direction (horizontal 

axis) from multiple adjacent views (4 in this case); and (g) adaptive threshold (dashed red line) 

is derived from the scatter profile (red line) for more accurate and robust blocker edge detection, 

while the fixed threshold (green dashed line) fails to detect some edges in this case. 
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3.2.4 Experimental data and processing 

To evaluate the MVSC method, we acquired the CBCT projection data of a commercial 

calibration phantom CatPhan® 600 (ThePhantom Laboratory, Inc., Salem, NY) using a Varian 

TrueBeam OBI system (Varian Medical Systems, Inc., Palo Alto, CA) (with a manual shift to 

mimic the moving blocker acquisition) and an anthropomorphic pelvis phantom CIRS 801-P 

(Computerized Imaging Reference Systems Inc., Norfolk, VA) using an Elekta Synergy XVI 

system (Elekta AB, Stockholm, Sweden) both with and without the moving blocker. The source-

to-axis distance is 1000 mm and the source-to-detector distance is 1500 mm with a full 360° 

coverage in approximately 1 minute for the Varian TrueBeam OBI system. The source-to-axis 

distance is 1000 mm and the source-to-detector distance is 1536 mm with a full 360° coverage 

in approximately 2 minutes for the Elekta Synergy XVI system. There are 660~680 projection 

views acquired and each projection contained 512 × 512 pixels with a pixel size of 0.8 × 0.8 

mm. We use full-fan scan for Catphan phantom (120kVp and 20 mA/10 ms) and half-fan scan 

for the pelvis phantom (120kVp and 80 mA/20 ms). The multi-detector CT (MDCT) (Philips 

Healthcare, Nevada, US) images of both phantoms were also acquired to serve as the 

evaluation benchmark. 

The blocker is inserted between the x-ray source and the phantom and moves back and 

forth during CBCT gantry rotation. The moving blocker consists of equal-width lead strips 

embedded on a 3 mm thickness acrylic board (120 × 180 mm) are aligned along the detector 

face. The lead strips are 3.2 mm in thickness, 3.2 mm in width and are placed with a 3.2 mm 

pitch for the Catphan phantom and a 9.6 mm pitch (for boundary effect) and the 3.2mm pitch 

(for robustness) for the pelvis phantom. To investigate the performance of the MVSC method on 

the boundary effect, we used the both the Catphan data and the anthropomorphic pelvis 

phantom data. The pelvis phantom data was used to demonstrate the robustness of the MVSC 

method to the blocker detection errors (exist in most of the views) since it is more challenging to 
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detect the blocker edge for the half-fan scan of a large object (e.g. the pelvis phantom), while 

the full-fan scan of a small object (e.g. Catphan) is hardly a problem as detailed in Section 2.2.2 

and Figure 3-4.  

3.2.5 Evaluation metrics 

To evaluate the performance of the different SC methods, we compare various 

reconstructed image slices of CBCT with SVSC and MVSC with the corresponding MDCT 

images, served as a gold standard. We also calculate the CT numbers in Hounsfield Unit (HU) 

in several regions of interest (ROIs) for a quantitative evaluation of reconstruction accuracy 

using different SC methods for the pelvis phantom data. Both the mean and standard deviation 

(STD) of CT numbers in the ROIs are presented. The overall accuracy in each ROI is measured 

by the root mean square error (RMSE) following the equation: 

 𝑅𝑀𝑆𝐸𝑅𝑂𝐼 = √∑ (𝐶𝑇𝐶𝐵𝐶𝑇
𝑖 − 𝐶𝑇𝑀𝐷𝐶𝑇

𝑖 )
2

/𝑁𝑁
𝑖=1 ,                                       (3.7) 

where CT
 i 

CBCT and CT
 i 

MDCT denote the CT number of the ith pixel in the selected ROI for CBCT 

and MDCT, respectively, and N denotes the total number of pixels in the selected ROI.  

 

3.3 Results 

3.3.1 Scatter estimation and correction for the Catphan 

Shown in Figure 3-6 are the typical estimated scatter signal profiles using the SVSC 

method (green line) and the MVSC method (red line) using adjacent five views along with the 

observed total raw signal (black line) for the Catphan phantom. The SVSC method using only 

the current projection view for scatter estimation overestimated the scatter signal for the 

unblocked region between 200 and 300 along the horizontal axis (green line), thus leading to 

the underestimated primary signal. The MVSC method corrected this overestimation by utilizing 

more sample points from adjacent projection views and led to more gradual scatter transition 
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(red line). It will be evident from the reconstructed images  that this scatter estimation is more 

accurate.   

In Figure 3-7, the projection images (the line integral of attenuation coefficients by 

taking logarithm of inversely normalized X-ray fluence) in a particular projection view are shown 

for: a) without moving blocker; b) SVSC; and c) MVSC. Severe bright strip artifacts can be 

observed in the unblocked region near the phantom boundary (the leftmost unblocked region, 

Figure 3-7b), where the overestimated scatter signal results in largely reduced primary signal, 

and thus much greater values of the line integral of attenuation coefficients. The MVSC method 

effectively eliminates these artifacts (the leftmost unblocked region, Figure 3-7c).  

One transverse slice (first row) close to the phantom axial left boundary (Figure 3-8e, 

red dashed line) and one center coronal slice (second row) using different methods are shown 

in Figure 3-8. The reconstructed image without the moving blocker (Figure 3-8b, f) shows no 

significant artifacts, but suffers low contrast due to scatter shading effect, which is more obvious 

in the line profile of Figure 3-9. The overestimated scatter signal in the SVSC method results in 

severe streaking artifacts (Figure 3-8c), which is anticipated from the artifacts in the 

corresponding projection image (Figure 3-7b). These artifacts are effectively suppressed by the 

MVSC method using five adjacent views (MVSC, Figure 3-8d, h). The line profiles along the 

middle of the transverse slice of Figure 3-8 are shown in Figure 3-9. MVSC (red line) improved 

the contrast compared to that without SC (black line). However, SVSC (green line) suffers not 

only high noise due to the streaking artifacts, but also overcorrected CT numbers, especially for 

the center air part (30~50% less than -1000 HU). MVSC method significantly improved the 

contrast without introducing notable noise.  
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 Figure 3-6 Comparison of profile 

 
Figure 3-6 is showing the comparison of scatter signal estimated from the single-view 

scatter correction (SVSC) method (green line) and the multi-view scatter correction (MVSC) 

method (red line) for the Catphan phantom (3.2 mm pitch blocker). The observed total raw 

signal is in black. 

 

 

 Figure 3-7 Projection images 
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Figure 3-7 is showing the projection images of the Catphan phantom (the line integral of 

attenuation coefficients by taking logarithm of inversely normalized X-ray fluence): a) without 

blocker; b) with SVSC; and c) with MVSC. Each image was normalized to its maximum intensity 

value, respectively. 

 

 Figure 3-8 Reconstructed images 

 

Figure 3-8 is showing the reconstructed images for CBCT of the Catphan phantom 

(close to the axial left boundary in Figure 3-7): (a, e) benchmark fan-beam MDCT; (b, f) without 

SC; (c, g) SVSC; and (d, h) MVSC. The red dashed line in (e) labels the transverse slice 

location. The difference between without SC and MVSC can be better discerned through the 

line profiles in Figure 3-9. (Display window [−900, 500] HU) 
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 Figure 3-9 Line profile  

 

Figure 3-9 is showing the line profile through the middle line of the transverse slice in 

Figure 3-8. The middle part is air and the CT number should be around -1000. 

3.3.2 Scatter estimation and correction for the Pelvis phantom 

A. Boundary effect 

Figure 3-10 shows the estimated scatter profiles in one row of a projection image using 

the SVSC method (green line) and the MVSC method using 5 adjacent views (red line) along 

with the observed total signal (black line) for the pelvis phantom. The scatter signal is 

underestimated for the SVSC method in the leftmost unblocked region due to the lack of scatter 

signal samples to the left. The similar erroneous scatter estimation is also observed for other 

rows in the same projection image as well as other projection images in this region.  

In Figure 3-11, two transverse slices (the top and middle rows) and one coronal slice 

(the bottom row) are shown for MDCT (Figure 3-11a, e, i), CBCT without SC (Figure 3-11b, f, j), 

CBCT with SVSC (Figure 3-11c, g, k), and CBCT with MVSC (5 views) (Figure 3-11d, h, l) from 
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left to right (display window [-600 800] HU). The locations of the transverse slices are labeled as 

the red dashed lines 1 and 2 on the coronal slice of MDCT (Figure 3-11i). The scatter shading 

artifacts, especially at the central soft tissues, can be seen in CBCT without SC (Figure 3-11b, f, 

j) and lead to greatly reduced image contrast. The erroneous scatter estimation at the boundary 

can introduce severe streaking artifacts for the slices in these regions in the reconstructed 

image with SVSC as shown in Figure 3-11c. The proposed MVSC method effectively eliminates 

these artifacts and largely recovers the image contrast lowered by scatter contamination in 

CBCT (Figure 3-11d). For both SVSC and MVSC, the middle transverse slices (Figure 3-11g 

and 11h) show improved contrast compared to CBCT without SC. In addition, the MVSC image 

(Figure 3-11l) seems to be less noisy than the SVSC (Figure 3-11k) in the coronal view. Note 

that achieving a larger FOV of MVSC at the same radiation dose of SVSC is clinically 

significant. 

 

 

 

 Figure 3-10 Comparison of profiles 
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Figure 3-10 is showing the comparison of the scatter signal profiles estimated from 

SVSC (green line) and MVSC (red line) when the left marginal region is lack of scatter samples 

for the anthropomorphic pelvis phantom (9.6 mm pitch blocker). The observed total signal is in 

black. 

 

 Figure 3-11 Reconstruction images 

 
Figure 3-11 is showing the reconstruction results. Edge effect: two transverse slices (in 

the top and middle row) and one coronal slice (in the bottom row) of the anthropomorphic pelvis 

phantom. First column (a, e, i): MDCT; second column (b, f, j): CBCT without SC; third column 

(c, g, k): CBCT with SVSC; fourth column (d, f, l): CBCT with MVSC. The locations of the 

transverse slices are labeled in (i) (1 for the top row and 2 for the middle row). Regions of 



 

73 

interest (ROIs) labeled in (e) were used for measuring the reconstruction accuracy quantitatively. 

(Display window [−600, 800] HU) 

The mean and standard deviation (STD) of CT numbers in the ROIs delineated in 

Figure 3-11e are shown in Table 3-1 as well as the RMSE values between different CBCT 

reconstructions (without SC (WOSC), SVSC, and MVSC) and MDCT. Both SVSC and MVSC 

greatly reduce the bias (the deviation of the mean from that of MDCT) in all ROIs (with only a 

little STD increase in ROI-1 and ROI-3). Consequently, the RMSE values are largely reduced 

from 379 (WOSC) to 29 (SVSC) and 29 (MVSC) for ROI-1, from 304 (WOSC) to 32 (SVSC) and 

31(MVSC) for ROI-2, from 305 (WOSC) to 35 (SVSC) and 34 (MVSC) for ROI-3. These results 

demonstrate that MVSC not only eliminates the artifacts caused by the lack of scatter signal 

samples in the boundary region, but also maintains the superior scatter correction performance 

of the original SVSC method for the other regions.   

Table 3-1 Comparison of the CT number (HU) of three ROIs 

  ROI-1   ROI-2   ROI-3  

 Mean STD RMSE Mean STD RMSE Mean STD RMSE 
MDCT 72 15  -48 18  70 19  

WOSC -308 23 379 -348 47 304 -234 19 305 
SVSC 71 26 29 -46 30 32 67 35 35 
MVSC 71 26 29 -44 29 31 71 34 34 

 
 

B. Robustness 

Figure 3-12 shows one estimated scatter profile using the SVSC method (green solid 

line) and the MVSC (5 adjacent views) method (red solid line) along with the observed total 

signal (black line). The erroneous blocker edge detection in one projection view caused that the 

signal in the unblocked regions was counted as the scatter signal. It thus introduced large errors 

in the estimated scatter signal by the SVSC method (green solid line in Figure 3-12). In contrast, 

if the neighboring views are taking into account, the MVSC method can utilize signal profiles 

from these views to robustly estimate the scatter signal as shown as red dashed line in Figure 

3-12 without the need of blocker detection. It is important to note that the MVSC method can 
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utilize the derived scatter profile to generate adaptive threshold (red dashed line) and to achieve 

more accurate edge detection. Thus, the primary signal in unblocked regions can be recovered 

more reliably.  

Two transverse slices (the top and middle rows) and one coronal slice (the bottom row) 

are shown in Figure 3-13 for MDCT, SVSC, MVSC (using five adjacent views) from left to right 

(display window [-600 800] HU). The locations of the transverse slices are labeled as the red 

dashed lines 1 and 2 on the coronal slice of MDCT. Both primary signal and scatter signal 

estimation errors in SVSC resulted in severe streak artifacts and underappreciated contrast 

(Figure 3-13b, 13e, 13h). The MVSC (Figure 3-13c, 13f, 13i) effectively corrected such errors 

and greatly improved the image quality with less streaking artifacts and enhanced contrast. It is 

noted that this set of data using the small pitch value (large spatial sampling rate) so that the 

boundary effect has been avoided. 

 

 

 Figure 3-12 Comparison of profiles 
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Figure 3-12 is showing the comparison of scatter signal profiles estimated from SVSC 

(solid green lines) and MVSC (solid red lines) when the blocker edge detection error occurs for 

the anthropomorphic pelvis phantom (3.2 mm pitch blocker). The red dashed line and green 

dashed line are the derived adaptive threshold and the fixed threshold (mean of the profile) for 

blocker detection, respectively. The observed total signal is in black. 

 

 Figure 3-13 Reconstruction images 
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Figure 3-13 is showing the reconstruction results. Robustness: two transverse slices (in 

the top and middle row) and one coronal slice (in the bottom row) of the anthropomorphic pelvis 

phantom. First column (a, d, g): MDCT; second column (b, e, h): CBCT with SVSC; third column 

(c, f, i): CBCT with MVSC of five adjacent views. The locations of the transverse slices are 

labeled in (g) (1 for the top row and 2 for the middle row). (Display widow [−600, 800] HU) 

3.4 Discussion  

In this study, we investigated the scatter estimation errors caused by single-view SC 

(SVSC) used in the moving-blocker SC method for the regions with fast scatter signal changes 

or lack of scatter samples and the blocker detection errors. To make the moving blocker SC 

method suitable for these regions and robust to the blocker detection errors, we proposed a 

multi-view SC (MVSC) method using several neighboring views.  

The scatter estimation and corresponding reconstruction results show that the MVSC 

method can eliminate the scatter estimation errors in the regions with fast scatter signal 

changes (Figure 3-6) or lack of scatter samples (Figure 3-10) and maintain the superior scatter 

correction performance for other regions (Table 3-1). In the regions with fast scatter signal 

changes or missing scatter samples at the margin, the scatter signal is hard to be recovered 

accurately with limited sampling points by using just one projection view in SVSC. The MVSC 

method uses the adjacent projection views, which can provide more information of the scatter 

signal in different locations along the blocker moving direction because of the blocker 

movement during the gantry rotation. The scatter signal is recovered more accurately with the 

MVSC method and result in a reconstructed image with reduced artifacts and more accurate 

quantitative results (CT numbers).  

Furthermore, the accurate blocker detection is required in SVSC not only for accurate 

scatter signal estimation in the blocked regions, but also for the accurate primary signal 

estimation in the unblocked regions. However, the blocker detection error may occur in certain 

views, especially for large objects where the projection image contrast is low. A robust blocker 
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edge detection and scatter estimation method is in need to improve the clinical translation of the 

moving-blocker SC method. The proposed MVSC method can use multi-view information to 

achieve accurate scatter profile estimation without edge detection at first. Consequently, the 

estimated scatter profile can be used for an adaptive thresholding for more accurate and robust 

edge detection for primary signal estimation, thus leading to much improved reconstruction 

image quality. In order to make the proposed method work as shown in Figure 3-5, the detected 

scatter signal from several adjacent projection views shall not have much difference and must 

overlap with each other, which is often the case for a slow moving blocker with a small pitch.  

The number of adjacent projection views that can be used in the MVSC methods was 

also investigated in this study. For the data acquired in this study, if the angle spanned by the 

adjacent views is less than 3o (corresponding to maximum 5 adjacent views in a 0.5 o gantry 

angular sampling), negligible scatter difference is observed among the adjacent projections and 

leads to superior MVSC performance as shown in Figure 3-11, Figure 3-13 and Table 3-1. As 

more adjacent views were used, the MVSC performance deteriorates due to the increased 

discrepancy of the scatter signals in these views. The optimal blocker pitch and speed were 

investigated in another study for SVSC [90] and will be further studied for MVSC in future.  

In this study, we mainly focus on improving the conventional moving blocker method 

and compare between SVSC and MVSC. Although it would be an interesting topic to investigate 

the performance of different SC methods, such as analytic modeling and Monte Carlo 

simulation, it is out of the scope of this work. To shed light on how the moving blocker based 

method compared to the clinical routine, kernel-based scatter correction (K-SC) used on Varian 

TrueBeam OBI (125kVp, 60mA/20ms) and uniform scatter correction (U-SC) used on Elekta 

XVI (120 kVp, 40 mA/40 ms), we show a set of images in Figure 3-14. (At this point, the moving 

blocker can be only mounted on the Elekta system). All these images have less shading 

artifacts than that without SC (Figure 3-11(j)). The proposed MVSC method and the K-SC 

method outperform the U-SC method. The images from Varian using K-SC seem to have better 
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contrast than MVSC on Elekta, partially due to the use of anti-scatter grid and additional image 

processing employed by Varian OBI, such as analytical beam hardening correction, additional 

noise suppression technique and ring artifacts correction [46, 91, 51]. More importantly, heavier 

spatial regularization is deployed in the MVSC method to alleviate the missing data problem 

caused by ~50% of the incident X-ray blocked by the moving blocker in this example. The 

MVSC method is indeed beneficial to the patient since the radiation dose is greatly reduced. 

With additional image processing and increased mAs to compensate the loss of the detected 

photon flux due to the blocker (without increasing the radiation dose), it is envisioned that the 

MVSC method can produce comparable images to Varian with K-SC, if not better.  

Nevertheless, the shading artifact is effectively removed in both Varian with K-SC and the 

proposed MVSC method as shown in the line profiles of Figure 3-15. 

 

 Figure 3-14 Comparison of different SC method 

 
Figure 3-14 is showing the comparison between the proposed MVSC method and the 

clinical SC methods (U-SC: uniform scatter correction; K-SC: kernel-based scatter correction). 
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Figure 3-15 Comparison of line profile 

Figure 3-15 is showing the comparison of the horizontal line profile (red line in Figure 3-

14) for Elekta with U-SC, Varian with K-SC and MVSC. The MDCT profile serves as the ground 

truth.  

Finally, the MVSC method is performed in the projection domain. The increased 

computational time due to use of multiple views instead of a single view is negligible compared 

to the reconstruction time. Thus, it is a practical SC method in terms of the computational 

complexity. 
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3.5 Conclusions 

The results from the phantom studies show that the proposed MVSC method allows the 

moving blocker SC method to estimate the scatter signal more accurately in the regions with 

fast scatter signal changes or lack of scatter samples in the current view and to correct blocker 

detection errors caused by the two-point method. This development will expand the utility of 

moving blocker-based SC for the target with sharp intensity changes in the projection images 

and make it more robust to blocker detection errors. The further investigation is planned to test 

the MVSC method on the phantoms, such as the chest and the head, where the bone/lung and 

body/air interfaces may manifest its benefit. 
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Chapter 4  

  4D CBCT with a moving blocker 

4.1 Introduction 

X-ray Cone-beam computed tomography (CBCT) has been widely used in radiation 

therapy for image-guided radiation beam delivery with accurate tumor localization and holds the 

potential for calculation of the actual dose on the treatment day for an adaptive therapy [1]. 

Since there are multiple fractions in each treatment course and CBCT scan may be repeatedly 

conducted at each treatment fraction. Lowering the radiation dose of CBCT, while maintaining 

or improve image quality, is important to realize the full potential of CBCT as the repetitive 

ionization radiation becomes a concern for patients [92, 93].  

New data acquisition strategies combined with hardware and software advances have 

been vigorously pursued and shown the great potential to substantially lower the CT radiation 

dose without compromising the image quality [94-96]. There are two main strategies for CT 

dose reduction in data acquisition: 1) the X-ray flux reduction by lowering the operating current, 

potential and exposure time of an X-ray tube, which have been adapted in some clinical 

practices; and 2) the sparse sampling including fewer projection views, limited coverage angle, 

and interior scan, which are still in active research stage. They could also be combined to 

achieve the maximum dose reduction. In 4D CBCT for radiation therapy, CT numbers for dose 

calculation and the tumor location and motion for beam delivery are of clinical interests. The 

performance of these clinical tasks, different from diagnostic purposes, may be well maintained 

even if the dose reduction, such as sparse sampling, is applied. In this work, in addition to dose 

reduction using fewer projection views, a moving blocker inserted between the X-ray source and 

the imaging subject, whose main purpose is to achieve the measurement based scatter 

correction, can lead to the subsampling in each projection view for further radiation dose 

reduction. To our best knowledge, this is the first study to investigate dose reduction potential 
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through subsampling of both the view numbers and the projection images, particularly for 4D 

CBCT. 

There are many factors that deteriorate the CBCT image quality. The inferior image 

quality as compared to the planning multi-detector CT (MDCT) becomes the major hurdle for 

CBCT to fulfill aforementioned dose calculation tasks. Among them, scatter is one of major 

problems due to the use of large-area flat panel detector (FPD). Various scatter correction (SC) 

methods have been proposed to address this problem and achieved notable success. These 

methods generally fall into three categories: 1) hardware scatter suppression methods, e.g. anti-

scatter grids [2, 39, 77, 78]; 2) computational methods, either analytical modeling or Monte 

Carlo simulation [3, 4, 47, 79-81]; and 3) measurement-based methods using various kinds of 

blockers or modulators [5-11, 53-55, 76, 82, 97, 98]. Although there is lack of a comprehensive 

comparison of these SC methods, using moving-blockers between the X-ray source and the 

image subject has achieved excellent SC performance with one conventional CBCT scan, 

which can reduce the CT number error less than 100 HU, satisfying less than 2% dose 

calculation error requirement [97]. An added benefit of use of the moving blocker is that the 

blocked X-ray intensity effectively reduced the radiation exposure to the patient as 

aforementioned subsampling of each projection image. 

Another degrading factor for CBCT is the patient motion since the acquisition speed is 

not fast enough to yield motion-frozen images with complete data. This is particular troublesome 

for the radiation therapy of lung cancer as the respiratory motion can be as high as 40 mm 

along superior-inferior direction and 20 mm along anterior-posterior direction [99, 100]. If only 

one 3D CBCT volume image was reconstructed from the whole data, the motion blur would 

introduce severe artifacts in the reconstructed image. It has been shown that respiratory motion 

gated 4D CBCT can greatly reduce these artifacts and improve image quality [12, 13, 15, 21, 

101, 102]. Furthermore, 4D CBCT provides an opportunity to generate a tumor motion-of-the-

day model right before each treatment fraction for a more precise treatment than using a 
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universal motion model. Motion-compensated 4D reconstruction methods have been actively 

pursued to yield a series of images depicting tumor motion [17, 21, 103-117]. Among them, a 

simultaneous motion estimation and image reconstruction (SMEIR) algorithm has been shown 

to yield high-quality respiratory phase images and a tumor motion model [21]. Nevertheless, the 

scatter problem has not been addressed in these previous studies, although some 

computational methods may be adapted [84]. 

In this work, we propose to use moving blockers in a respiratory motion gated 4D CBCT 

acquisition and to develop an effective reconstruction method. This work is founded on our 

previous developments on moving blocker SC for 3D CBCT [10, 11, 97] and SMEIR for 4D 

CBCT [21]. In this novel imaging method, there are two challenges for the highly incomplete 

data reconstruction: 1) for each of total K phases of a respiratory cycle, there are only 

approximately 1/Kth projection views are available for reconstruction; and 2) for each projection 

view, the data is not complete (i.e. partially blocked). By adapting the techniques of compressed 

sensing reconstruction, motion-compensated reconstruction (particularly SMIER in this study), 

and moving-blocker based SC, we develop a 4D moving-blocker (4D-MB) CBCT method that 

can overcome these challenges and serving both dose reduction and scatter correction 

purposes. In this feasibility study of the proposed 4D-MB CBCT method, we demonstrated that 

high quality 4D images could be reconstructed at substantially reduced radiation dose (30% 

lower) with much reduced scatter artifacts using both non-uniform rotational B-spline-based 

cardiac-torso (NCAT) [118] phantom simulation and pseudo-real patient data. 

4.2 Methods 

4.2.1 Moving-blocker based 4D (4D-MB) CBCT acquisition 

The moving-blocker based 4D (4D-MB) CBCT acquisition is illustrated in Figure 4-1 

(transverse view). A blocker made of parallel lead strips is placed between the X-ray source 

tube and the image subject and holds in the plane parallel to the FPD plane. During the data 

acquisition, the blocker is moving along the axial direction (perpendicular to the plane shown in 
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Figure 4-1) as the gantry rotates around the subject (more details about moving blocker setup 

can be found in our previous work [10, 11, 97]). In the meantime, the projection data is binned 

with respect to different phases of the respiratory motion of the subject based on the motion 

amplitude gating. Therefore, at any projection angle, the projection data corresponding to a 

particular respiratory phase is partially blocked (determined by the blocker position). Given non-

synchronized respiratory motion and blocker motion, for each phase, the projection views are 

sparse around the subject with each projection data randomly sampled as lateral strips locate at 

different positions. Both compressed sensing techniques, e.g. total variation (TV) constraints 

exploiting the image gradient space sparsity, and motion-compensated reconstruction 

techniques, such as SMEIR, utilizing the temporal correlation can be adapted to reconstruct 4D 

images using these highly undersampled data. 

The blocker serves two purposes here: 1) to provide scatter information in the blocked 

region; and 2) to lower the radiation dose by blocking substantial amount of X-ray flux. As long 

as the movement of the blocker is not synchronized with the respiratory motion so that the 

sampling data for each respiratory phase will randomly span the whole projection domain, which 

can be effectively reconstructed by compressed sensing techniques. In addition, the scatter 

signal can be estimated from the blocked regions. Thus, the primary signal in the unblocked 

regions for scatter-corrected reconstruction can be recovered by subtracting the scatter signal 

from the total signal. As we showed in our previous work [8], TV-based iterative reconstruction 

can effectively suppress the scatter artifacts and produce high-quality CBCT images using the 

primary signal only in the unblocked regions. It is important to note that the proposed 4D-MB will 

have much less projection data for each 3D phase volume compared to moving-blocker based 

3D CBCT (3D-MB). Indeed, if the number of respiratory phases is K, the projection views for 

each phase in 4D-MB are only approximately 1/Kth of 3D-MB. The temporal redundancy must 

be taken into account to maintain high quality reconstruction. As a proof of concept study, we 
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will adapt our previously developed SMEIR method [21], although other motion-compensated 

reconstruction methods can be equally applied [17, 103-114]. 

 

Figure 4-1 MB based 4D CBCT with respiratory gating (transverse view).  

Figure 4-1 is showing the moving-blocker based 4D CBCT with respiratory gating 

(transverse view). Different colors of blockers and FPDs denote that the projection data at a 

particular angle (view) is a combination of a particular respiratory phase and a particular blocker 

position. (RM: respiratory motion; FPD: flat panel detector. Illustration only, not to scale.) 

4.2.2. Scatter correction and image reconstruction 

From Figure 4-1, we have the total signal received at phase k of a respiratory motion 

gated acquisition (of a total of K phases) as follows,  

1

B
Total Primary Scatter

k k ki
i

S S S


  , k=1, 2, …, K, (4.1) 
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where the element of 
( , , )

0( )
k

L j

x y z dl
Primary

kS j I e


  is the primary signal detected in the detector 

bin j   from an incident source intensity 0I  through the ray path jL , 
i  is the 

thi   rectangle 

window function (1 inside and 0 outside) for i=1, 2, …, B blockers, 
Scatter

kS  is the scatter signal 

and 
Total

kS  is the total signal that is the sum of the primary and scatter signals. The scatter 

signal 
Scatter

kS  can be determined from the blocked regions and then be interpolated and 

subtracted from the total signal 
Total

kS  to recover the primary signal 
Primary

kS  in the unblocked 

regions. Afterward, the normalized logarithm can be taken on the estimated primary signal

Primary

kS to obtain line integrals kp  to have the following linear forward projection model, 

k k kp A  , for k=1, 2, …, K, (4.2) 

where kA  is the projection matrix for phase k , whose element is the intersection length of a 

particular voxel with the ray reaching a particular detector bin. Note that kA   is different for 

different phases due to different view angles and blocker positions. The phase-by-phase 3D 

reconstruction can be achieved by using constrained TV minimization, 

* arg min

k

k k TV


 
, s.t.

2

2k k kA p   , for k=1, 2, …, K, (4.3) 

where
2 2 2

, , 1, , , , , 1, , , , , 1

, ,

( ) ( ) ( )k x y z x y z x y z x y z x y z x y zTV
x y z

                with a 

small constant   (10-6) to avoid zero in the denominator in the gradient of TV and   is an error 

bound for the quadratic data fidelity constraint. The alternated update methods can be used to 

solve Eq 4.3, i.e. the data fidelity enforced by simultaneous algebraic reconstruction technique 

(SART) [17] and the TV minimization achieved by the steepest descent method (with an initial 

step size of 0.2 and a relaxation factor 0.8) [21] are optimized in an interleaved fashion to 

update k. However, this phase-by-phase 3D reconstruction will suffer from substantially 
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undersampled data and can be improved by 4D reconstruction that utilizing the motion 

correlations among the phase volumes.  

If a motion model is available to describe the transformation from phase to phase, an 

image at any phase k can be derived from a reference phase, say phase 1 for convenience,    

1 1k kD  , for k=1, 2, …, K,             (4.4) 

where 1 kD   is the deformation matrix to transform the image at phase 1 to that at phase k. 

Then Eq 4.2 can be re-written as  

1 1k k kp A D  , for k=1, 2, …, K. (4.5) 

letting
' ' ' '

1 2[ , ,..., ]Kp p p p  denote the projections for all phases and

1 1 1 2 1 2 1( , ,..., )K KA A D A D A D    denote the 4D projection matrix, the 4D-MB model can be 

expressed as: 

1p A    (4.6) 

Thus, the projections from all phases can be used to reconstruct the image at the 

reference phase 1, whereas the image at phase k can be obtained by using Eq 4.5 if the 

deformation matrix 1 kD  is available.  

Since the deformation matrix 1 kD  is not known beforehand, the motion model has to be 

estimated and updated with the image reconstruction. Here we adapt the motion estimation 

method used in SMEIR [21] by matching the forward projections at each phase. For the 

convenience of expression of motion estimation, we define a deformation vector field (DVF) 

1 kd   as the displacement vector from phase 1 to phase k, which leads to the following 

equivalency, 

1 1 1 1 1( )k kD d d   
,
 for k=1, 2, …, K, (4.7) 
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where 1d is the coordinate vector. To obtain the inverse consistent forward 1( )kd  and backward

1( )kd  DVFs required by 4D-MB reconstruction, a symmetric energy function is used as, 

1

1

2*

1 1 1 12
arg min ( ) ( )

k

k

k k k
d

d p A d d R d 




    

, 

1

1
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1 1 12
arg min ( ) ( )

k

k

k k k k
d

d p A d d R d 




    

, 

s. t. 1 1 1 1 0k k k kd d d d     , (4.8) 

where ( )R   is a smoothness regularization function for DVFs,   is a parameter balancing the 

first data fidelity term and the second smoothness regularization term, and  is a composition 

operation defined as 1 1 1 1 1( )k k k k kd d d d d d        that is equal to zero to enforce the 

inverse consistent constraint of DVFs. An interleaved optimization can be used to solve Eq 4.8, 

where a nonlinear conjugate gradient algorithm with back-tracking line search is used for two 

regularized minimizations and the inverse-consistency of DVFs is automatically enforced by 

using the solution of one minimization as the initialization of the other minimization. The   

value was set as 0.05 for the phantom data and 0.5 for the patient data through the trial-and-

error test. More details of SMEIR can be found in [21].  

4.2.3 NCAT phantom simulation 

A 4D NCAT phantom [118, 119] was used to simulate and to quantitatively evaluate the 

4D-MB method. Ten respiratory phases of a male phantom were generated with a respiratory 

period 4 s. The maximum diaphragm motion of 20 mm and the maximum anterior-posterior 

motion of 12 mm were used to model the respiratory motion. Three orthogonal views for phase 

1 are shown in Figure 4-3a. A spherical 3D tumor with a diameter of 10 mm was also included 

and indicated by a red arrow in Figure 4-3a. The dimension of the phantom and the 

reconstructed images were 256 × 256 × 100 with a voxel size of 2 × 2 × 2 mm3 and the source 
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to detector distance and the source to isocenter distance was 750 mm and 500 mm, 

respectively, same as our previous work [21]. The Siddon’s ray-tracing algorithm [63] was used 

to generate projection images with a detector matrix of 384 × 150 and a detector pixel size 2 × 2 

mm2. The distance between the blocker and the X-ray source is 75 mm. The moving blocker is 

made of lead strips with 2 mm width and 4 mm pitch (i.e. 4 mm gap between two strips). The 

ideal block of X-ray by the lead strips is assumed in the simulation so that the X-ray incident 

intensity is reduced by 1/3 when the blocker (blocked region : unblocked region = 1 : 2)  is used.  

The noise was added as the sum of Poisson-distributed counting noise (1 × 105 counts/incident 

ray) and Normal-distributed electronic noise (variance of 10) [21, 120]. The blocker motion is 

simulated to have six positions with a step-and-shoot mode. The blocker position related to the 

view angle is shown in Figure 4-2, where the blocker stays in the same position for each 

respiratory cycle (with 10 phases). Although in this ideal simulation case the position of the 

blocker has a repetitive pattern, the randomness arises from that these positions occur at the 

different projection view angles. It is important to note that the blocker positions are evenly 

distributed for each phase so that there is no missing projection area or overexpressing of a 

certain area. Both 4D-CBCT with and without the moving blocker were simulated for 

comparison. We name the acquisition with the moving blocker as “MB” and that without the 

moving blocker as “Conventional”.  
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Figure 4-2 The blocker position versus the projection view angle in the simulation.  

Figure 4-2 is showing the blocker position versus the projection view angle in the 

simulation. The red dot denotes the blocker position of the phase 1, where each blocker position 

has five occurrences. The other phases have the same blocker position distribution. 

In the first experiment, the scatter was not included. Two cases were simulated: one 

with 300 projection views (i.e. 30 projections for each respiratory phase) and the other with 200 

projection views (i.e. 20 projections for each phase), both evenly distributed around the 

phantom for 360. This experiment will be used to compare the reconstruction performance 

using two different dose reduction methods for 4D CBCT: 1) lowering the number of the 

projection views (sparse view); or 2) reducing the X-ray fluence in each projection view (4D-

MB). The moving blocker will be used for the simulation using 300 projection views and be 

compared with the results using 300 and 200 projection views without the moving blocker. Note 
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that the dose level using 300 projection views with each view blocked by 1/3 is equivalent to 

that using 200 views without the moving blocker (=300 × 2/3).  

In the second experiment that used 300 projection views, we investigate the effect of 

the scatter correction rendered by 4D-MB. Specifically, the scatter signal within each projection 

image is simulated by convolving the primary signal with a point spread function derived from an 

experimental study (Gaussian function, sigma = 0.8 mm, size 141 × 141) [4]. The total observed 

signal becomes the sum of the scatter signal and the projection (primary) signal generated in 

the first experiment [10]. Two 4D CBCT acquisitions were simulated: one with the moving 

blocker (4D-MB) and the other without. In 4D-MB, the blocked regions record the scatter signal 

that will be used for scatter correction (See Section 2.B.).  

In summary, we simulated the following three cases for the first experiment without 

including the scatter effect: 1) total 300 views for 10 phases without the moving blocker 

(“Conventional 30 views/phase”); 2) total 200 views for 10 phases without the moving blocker 

(“Conventional 20 views/phase”); and 3) total 300 views for 10 phases with the moving blocker 

(“MB 30 views/phase”). For the second experiment with the scatter effect, we simulated two 

cases: 1) total 300 views for 10 phases without the moving blocker (“Conventional 30 

views/phase”); and 2) total 300 views for 10 phases with the moving blocker (“MB 30 

views/phase”).  Two reconstruction methods were used for the simulation data: 1) phase-by-

phase 3D iterative reconstruction with a TV constraint (“3D TV”); and 2) 4D reconstruction 

combining both spatial TV minimization and motion compensated regularization (“4D SMEIR”). 

Structural similarity index (SSIM) [121] and root mean square error (RMSE) in 

Hounsfield unit (HU) are used as quantitative evaluation criteria. SSIM measures the similarity 

between two images on three aspects: intensity, contrast and structure and RMSE measures 

the overall absolute reconstruction error. The SSIM index and the RMSE are calculated in a 

volume of interest (160 × 90 × 50) centered at the NCAT phantom including the tumor of the 
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first phase (Figure 4-3a), unless otherwise stated. Specifically, the SSIM index is calculated on 

the VOIs (denoted as x for the ground truth and y for the estimate) of two images as follows: 

1 2

2 2 2 2

1 2

(2 ) (2 )
( , )

( )( )

x y xy

x y x y

C C
SSIM x y

C C

  

   

  


   
, 

where  ’s are the average of VOIs,  ’s are variance and covariance, and 1C  and 2C are two 

variables to stabilize the division with weak denominator. In this work, 1C  is calculated as the 

square of 0.01 times of the dynamic range of the estimated image and 2C  is calculated as the 

square of 0.03 times of that. The RMSE is defined as: 

2[ ( ) ] /
n

i ii
RMSE x y n  , 

where i  denotes the voxel index and n  is the total number of voxels in the VOI. 

In addition, the maximum and mean deviations from the tumor motion trajectory of the 

phantom for different methods are used to measure the motion recovery performance.  

4.2.4 Patient study  

To demonstrate the proposed method in a more clinically relevant setting, we generated 

the moving-blocker data from a set of real patient data. This patient underwent radiotherapy for 

lung cancer. CBCT was acquired using an Elekta Synergy® XVI system (Elekta AB, Stockholm, 

Sweden) with a M20 collimator and a F1 bow-tie filter. The acquisition protocol parameters 

were: 120 kVp and 1.6 mAs per projection, a total of 631 projection (512 × 512 pixels with a 

pixel size of 0.8 × 0.8 mm2) views evenly distributed in 360º, and acquisition time of 2 min. The 

source to detector distance was 1536 mm and the source to isocenter distance was 1000 mm. 

The CBCT projections were grouped into eight phases based on the diaphragm position at each 

projection and further downsampled by half, which results in around 49 projections for each 

phase. The reconstructed images are 300 × 300 ×150 with a voxel size of 1.6 × 1.6 × 1.6 mm3. 

A moving blocker blank acquisition was simulated using the same acquisition protocol of the 
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patient data so that the blocked regions in each projection of the real patient data can be 

identified. The pseudo-real moving blocker patient data were obtained by setting the intensity in 

the blocked regions of the real patient projection data as zero. The removed data (i.e. those with 

intensity set as zero) is about 1/3 of the original data, which leads to about 1/3 dose reduction 

for the pseudo-real moving blocker patient data. Since the real moving-blocker data is not 

available at this point, it is not possible to evaluate the scatter correction effect, but will be 

investigated in future work. In this work, we aim to demonstrate the feasibility of 4D-MB with 1/3 

dose reduction on real patient data. It will be compared with reconstruction results at the regular 

dose with and without motion compensation.   

4.3 Results  

4.3.1 Results of 4D NCAT phantom 

A. Results without scatter included 

Figure 4-3 shows the reconstructed images of phase 1 NCAT phantom in three 

orthogonal views: transverse (left), coronal (middle) and sagittal (right).  In all cases, the tumor 

is visible, but clearer for 4D reconstruction. Figs. 3b-d illustrate the images reconstructed by 3D 

TV for conventional 30 views/phase, conventional 20 views/phase, and MB 30 views/phase, 

respectively. The latter two acquisitions (Figure 4-3c and 3d) have 1/3 dose reduction compared 

to the first one (Figure 4-3b). With the number of projection views decreased from 30/phase to 

20/phase, the images in Figure 4-3c suffers more blurring and blocky artifacts than that in 

Figure 4-3b because the stronger TV regularization has to be applied to address the streak 

artifacts caused by the missing-data. Some fine structures in the lungs are missing due to this 

effect (e.g. yellow and blue arrows in Figure 4-3c). It is interesting to see that, at the equivalent 

dose level, 3D TV with MB 30 views/phase (Figure 4-3d) recovered this fine structure to a better 

extent than that with conventional 20 views/phase, likely attributing to the effect of different 

undersampling methods. However, some horizontal streak artifacts can be seen in the coronal 

and sagittal views (e.g. green arrow in Figure 4-3d), likely due to use of the blocker. With 4D 



 

94 

motion-compensated reconstruction (4D SMEIR), the reconstructed images are less blurred and 

maintain better fine structures than those with 3D TV. The images of 4D SMEIR with 

conventional 30 views/phase (Figure 4-3e) achieve the closest similarity to the original phantom 

(Figure 4-3a). The reduction of 1/3 of the number of projection views suffers notable blocky 

artifacts and lowered contrast in the reconstructed images (Figure 4-3f). At the equivalent dose 

level, the proposed method of MB 30 views/phase with 4D SMEIR (Figure 4-3g) seems to suffer 

less blocky artifacts and to maintain more fine structures compared to that in Figure 4-3f. The 

tumor contrast is also notably higher in Figure 4-3g than Figure 4-3f. In addition, the horizontal 

streak artifacts in the coronal and sagittal views in MB 30 views/phase with 3D TV (Figure 4-3d) 

are effectively suppressed in MB 30 views/phase with 4D SMEIR (Figure 4-3g).  

The quantitative measures are listed in Table 3-1. The rankings using SSIM are 

generally the same as that using RMSE, i.e. a higher SSIM value leads to a lower RMSE value. 

It can be seen that the best quantitative results are obtained with conventional 30 views/phase 

with 4D SMEIR, followed by MB 30 views/phase with 4D SMEIR (2/3 dose of the former). It is 

worth noting that 4D SMEIR at reduced dose level through either a reduced view number or the 

moving blocker can achieve higher quantitative accuracy than conventional 30 views/phase with 

3D TV reconstruction. This demonstrates that 4D motion-compensated reconstruction is crucial 

to improve or maintain image quality at lowered imaging dose for 4D CBCT. In summary, both 

the reconstructed images and the quantitative results in this experiment seem to favor 

undersampled projection rays (30 views/phase with MB) over undersampled view angles (20 

views/phase without MB) for a fixed dose level. Further investigation on these two 

undersampling strategies is needed to generalize this finding. 
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(a) NCAT phantom 

 

(b) Conventional 30 views/phase – 3D TV 

 

(c) Conventional 20 views/phase – 3D TV 

 

(d) MB 30 views/phase – 3D TV 

 

(e) Conventional 30 views/phase – 4D SMEIR 

 

(f) Conventional 20 views/phase – 4D SMEIR 

 

(g) MB 30 views/phase – 4D SMEIR 

Figure 4-3 Reconstruction results comparison without scatter 

Figure 4-3 is showing the NCAT phantom and reconstructed images using different 4D 

CBCT acquisition methods (Conventional acquisition and MB acquisition) and reconstruction 
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methods (3D TV and 4D SMEIR). No scatter was included in simulation. (Left: transverse; 

middle: coronal; right: sagittal). The red dashed line in (a) transverse view is the profile position 

of Figure 4-5. The red arrow in (a) coronal view indicates the tumor. The three dot squares in (a) 

are the volume of interest (VOI) for quantitative measures of SSIM and RMSE. The yellow and 

blue arrows indicate the fine structures lost in 3D TV with fewer views and the green arrow 

points the artifact likely due to use of the blocker. Table 4-1 is showing the structure similarity 

index (SSIM) and the root mean square error (RMSE) in HU for different acquisition and 

reconstruction methods, both calculated on the volume of interest (VOI) centered at the 

phantom. 

 
Table 4-1 SSIM and RMSE results  

 3D TV 4D SMEIR  

 Conventional 

30 views/phase 

Conventional 

20 views/phase 

MB  

30 

views/phase 

Conventional 

30 

views/phase 

Conventional 

20 

views/phase 

MB  

30 

views/phase 

SSIM 0.78 0.65 0.67 0.90 0.81 0.86 

RMSE  70 91 89 50 62 59 

 
 

B. Results with scatter included 

Results in this section are with 30 projection views/phase and scatter signal included in 

the CBCT simulation. Figure 4-4 illustrates the reconstructed images with conventional and MB 

acquisitions and different reconstruction methods. Without scatter correction (SC), both 3D TV 

(Figure 4-4a) and 4D SMEIR (Figure 4-4b) suffer the shading artifacts and low contrast, 

although 4D SMEIR images are much better than 3D TV (in the middle region of the field of 

view). With the MB acquisition, the scatter signal can be effectively removed from the projection 

data, which results in greatly improved image quality as shown in Figure 4-4c using 3D TV and 

Figure 4-4d using 4D SMEIR, in addition to the benefit of 1/3 reduction of the radiation dose. 
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Similar to the findings in the simulations without scatter, images reconstructed by 4D SMEIR 

show improved tumor contrast and preserve more structural details than that reconstructed by 

independent phase-by-phase 3D TV reconstruction. 

 

(a) Conventional 30 views/phase – 3D TV (no SC) 

 

(b) Conventional 30 views/phase – 4D SMEIR (no SC) 

 

(c) MB 30 views/phase – 3D TV (with SC) 

 

(d) MB 30 views/phase – 4D SMEIR (with SC) 

Figure 4-4 Reconstruction results comparison with scatter 

Figure 4-4 is showing the reconstructed NCAT images using different 4D CBCT 

acquisition methods (conventional acquisition and MB acquisition) and reconstruction methods 

(3D TV and 4D SMEIR) with scatter included in the simulation (SC: scatter correction). Note that 

the radiation dose in (c) and (d) is 1/3 lower than that in (a) and (b) because of use of the 

moving blocker. 

The line profiles (the red dashed line in Figure 4-3a) across the tumor in the transverse 

slice in Figure 4-4 are shown in Figure 4-5 to compare the different acquisition and 

reconstruction methods. Both 3D TV and 4D SMEIR with scatter correction recover the 

attenuation coefficient profile much better than those without scatter correction, even though the 
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radiation dose with the MB acquisition is just 2/3 of the conventional one. Although 4D SMEIR 

without scatter correction outperforms 3D TV without scatter correction, it is inferior to 3D TV 

with scatter correction in general (except at the tumor location indicated by the arrow). The 

proposed 4D MB with motion-compensated reconstruction (MB-SMEIR) yields the closest 

profile to the phantom as it takes the advantages of both spatiotemporal 4D reconstruction and 

moving-blocker based scatter correction. It is important to note that this substantial 

reconstruction accuracy improvement of MB-SMEIR is accompanied with the dose reduction 

benefit of 1/3, compared to SMEIR with the conventional acquisition.   

 

Figure 4-5 Line profiles comparison 

Figure 4-5 is showing the line profiles across the tumor in a transverse slice (denoted 

by a red dashed line in Figure 4-3a) for different methods shown in Figure 4-4. The arrow 

indicates the tumor location. Table 4-2 is showing the SSIM and RMSE values for different 

acquisition methods (conventional acquisition and MB acquisition) and reconstruction methods 
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(3D TV and 4D SMEIR) with/without scatter correction (SC). Note that the radiation dose of the 

MB acquisition is only two thirds of the conventional acquisition. 

The quantitative measures are listed in Table 4-2. It can be seen that 4D SMEIR 

outperforms their counterpart using phase-by-phase 3D TV reconstruction under the same 

condition of data acquisition and scatter treatment. Although SMEIR without scatter correction 

improved the SSIM metric to the similar level of 3D TV with the moving-blocker based scatter 

correction, it suffers a much large absolute reconstruction error (131 HU vs. 89 HU). With 1/3 

dose reduction, the proposed 4D MB method with SEMIR improves the SSIM measure by 37% 

and the RMSE measure by 55% compared to the conventional SMEIR without the moving 

blocker based scatter correction. At the same dose level, SMEIR with the MB acquisition and 

scatter correction outperforms 3D TV under the same condition by 28% on SSIM and 34% on 

RMSE. 

Table 4-2 The SSIM and RMSE values for different acquisition methods 

 Without MB and SC With MB and SC 

 3D TV 4D SMEIR 3D TV  4D SMEIR 

SSIM 0.58 0.63 0.67 0.86 

RMSE (HU) 136 131 89 59 

 
 

C. Tumor motion recovery 

The tumor motion trajectories of all respiratory phases are calculated for each method 

and compared with the tumor motion trajectory of the 4D NCAT phantom (serving as the true 

tumor motion). Specifically, the deformation vectors in a small volume (2 × 2 × 2 voxels) at the 

tumor center are averaged to get the motion from the reference phase (i.e. phase 1) to the 

target phases (i.e. phase 2~10). The deviations from the true tumor motion for different methods 

are plotted in Figure 4-6. The tumor motion recovered by 4D SMEIR with MB and SC (“MB-

SMEIR with SC”, green lines) matches well with the true motion with deviations generally less 
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than 2 mm, except for phases 8 and 9. TV with SC (blue lines) also achieves good motion 

recovery performance with deviations more than 2 mm only for three phases (3, 4, and 8). 

Although SMEIR without SC (magenta lines) recovers the tumor motion much better than TV 

without SC (red lines), their deviations are worse than the methods with SC. The maximum and 

mean deviations over all phases are listed in Table 4-3. The maximum and mean deviations 

from the true tumor motion (from the phantom) for different acquisition methods (conventional 

acquisition and moving-blocker (MB) acquisition) and reconstruction methods (3D TV and 4D 

SMEIR) with/without scatter correction (SC). The proposed MB-SMEIR method outperforms 

other methods in both criteria, with a maximum deviation of 3.01 mm and a mean deviation of 

1.48 mm. 

 

Figure 4-6 The deviations of reconstructed tumor motion  
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Table 4-3 The maximum and mean deviations  

 Without MB and SC With MB and SC 

 3D TV 4D SMEIR 3D TV  4D SMEIR 

Max (mm) 6.15 mm 3.50 mm 3.19 mm 3.01 mm 

Mean (mm) 3.14 mm 1.94 mm 1.58 mm 1.48 mm 

 
 

D. Reconstruction convergence 

The objective function to be minimized for 1 kd   at phase 5 (k=5 in the first objective 

function in Eq 4.8) is used to show the convergence of 4D-MB reconstruction. As shown in 

Figure 4-7, 4D-MB reconstruction indeed converges with continuous decreasing of the objective 

function values. It can be seen that the first 50 iterations, there is a slight jump of the objective 

function value because the SART and TV minimization used for image reconstruction update 

the images after every 10 DVF estimation. This jump diminishes as the iteration goes on 

beyond 100. It is worth noting that different view angle and projection ray undersampling 

patterns, which result in different system matrices, may influence the convergence. This topic is 

out of the scope of the current work and will be investigated in future work.  
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Figure 4-7 Convergence of 4D MB reconstruction (objective function in Eq 4.8) 

4.3.2 Results of the lung cancer patient 

In Figure 4-8, we show the images reconstructed from the real patient data and the 

pseudo-real moving blocker patient data for two respiratory phases. The first two columns are 

the coronal view and the last two columns are the sagittal view. It can be seen that 4D SMEIR 

effectively suppresses the noise compared to 3D TV. In both cases of with and without moving 

blocker, 4D SMEIR achieves less noisy and higher contrast images, thus leading to better-

defined structures. Comparing 4D SMEIR at the regular dose and at 2/3 of the regular dose with 

the moving-blocker, the reconstructed images look similar except that the latter suffers slight 

more noise due to the reduced imaging dose. This is consistent with the findings in the NCAT 

simulation study without scatter (Section 3.A.1. and Figure 4-3). This preliminary patient study 

indicates that the substantial dose reduction without compromising the image quality may be 
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achievable. The proposed 4D MB method provides a promising way to achieve the dose 

reduction goal through random sparse sampling in each projection view and advanced 4D 

reconstruction. 

There is generally no ground truth in real patient images, which is why the phantom 

study was conducted in the first place. To quantify the performance of different methods in 

patient study, we use SMEIR without MB as the ground truth and calculate the SSIM and RMSE 

of the VOIs (shown in red dashed boxes in Figure 4-8) for other methods. The results using 

phase 1 as the reference phase for SMEIR are shown in Table 4-4. It can be seen that 4D 

SMEIR can produce better quantitative results than 3D TV. It is interesting to note that 3D TV 

without MB and with MB have the similar performance, which may implicate the data 

redundancy. Also, the results for phase 3 seem to deteriorate a bit, particularly for 3D TV 

methods. It is likely due to the fact that the ground truth of phase 3 was deformed from phase 1 

using the estimated DVF in 4D SMEIR, which may not be perfect. To further characterize the 

motion influence, 4D SMEIR without MB using phase 3 as the reference is used as the ground 

truth and the corresponding results are shown in Table 4-5. The phase 3 results using phase 3 

as the reference are in the similar range as the phase 1 results using phase 1 as the reference. 

The improvement of the current SMEIR method will be investigated in future studies as detailed 

in Discussion. 
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(a) 3D TV for real patient data 

 

(b) 4D SMEIR for real patient data 

 

(c) 3D TV for pseudo-real moving-blocker data 

 

(d) 4D SMEIR for pseudo-real moving-blocker data 

 Figure 4-8 Reconstruction  results of patient 

Figure 4-8 is showing the reconstructed images (from left to right: coronal phase 1, 

coronal phase 3, sagittal phase 1, and sagittal phase 3) from different reconstruction methods 

for real patient data at the regular dose and pseudo-real moving blocker data at 2/3 of the 

regular dose. The red dashed boxes are for quantitative measures in Table 4-4 and 4-5. 
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Table 4-4 SSIM and RMSE (Phase 1 as the reference phase for SMIER)  

 Without MB With MB 

 3D TV 3D TV  4D SMEIR 

 Phase 1 Phase 3 Phase 1 Phase 3 Phase 1 Phase 3 

SSIM 0.949 0.900 0.940 0.900 0.978 0.967 

RMSE (HU) 38 62 42 59 34 44 

 

Table 4-5 SSIM and RMSE (Phase 3 as the reference phase for SMEIR)  

 Without MB With MB 

 3D TV 3D TV  4D SMEIR 

SSIM 0.947 0.938 0.981 

RMSE (HU) 34 41 31 

 

 

4.4 Discussion  

In this work, we demonstrated the working principle of a novel 4D moving blocker 

method, which is the first time, to our best knowledge, to combine a moving blocker with 4D 

CBCT to achieve simultaneous dose reduction and scatter correction. Although there were a 

few studies using blockers/modulators for scatter correction in 3D CBCT [7, 10, 11, 122] or 

using moving multi-slit collimator (MSC) for dose reduction in MDCT [123, 124], all of them are 

limited to 2D or 3D reconstruction. The current study is the first study that utilizes the random 

under-sampling in each projection view for imaging and reconstruction of a moving object (lung 

here), which can be modeled as a 4D signal in nature. With advanced compressed sensing (i.e. 

image gradient sparsity enforced by TV constraints) and motion-compensated 4D (SMEIR) 

reconstruction, the satisfactory reconstruction images with 1/3 dose reduction were obtained for 
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both simulation and pseudo-real patient data. In addition, the proposed 4D MB method can 

provide a simple observation based scatter correction for CBCT, which is demonstrated by a 

simulation study with large improvement in reconstruction accuracy (31% on SSIM and 58% on 

RMSE). Note that this type of scatter correction requires only interpolation and subtraction in the 

projection domain, and thus is less computational demanding than computational SC methods.  

Furthermore, the dose reduction can also be achieved by reducing the projection views. 

In this regard, we compared the equivalent dose scheme: 1) 200 views of 4D CBCT without MB; 

and 2) 300 views of 4D MB CBCT. The simulation results showed that 4D MB CBCT achieved 

the similar reconstruction performance, if not better, to 200-view 4D CBCT without MB. 

Considering the capability of simple SC rendered by MB and the constant switch on-and-off of 

the X-ray tube current required by the fewer view acquisition, 4D MB CBCT may holds a great 

potential for both dose reduction and scatter correction purposes. On the other hand, adding a 

moving blocker to the CBCT system may pose some challenges. Nevertheless, a motor-

controlled moving blocker has been demonstrated to be feasible in our previous study [11] due 

to its lightweight for kilovoltage CBCT. Some optimal conditions for SC have been investigated 

in our previous work [90] and most results are satisfactory (with CT number error < 50 HU). 

Thus, there is no strict requirement on the blocker moving speed or style as long as the blocker 

position is evenly distributed for each phase. For example, another possible blocker motion for 

the step-and-shoot mode is shown in Figure 4-9, which led the similar satisfactory results to that 

used in Figure 4-2. In reality, due to the irregularity of patient breath, the blocker motion needs 

to be controlled to make the distribution of the blocker position for each phase roughly even. 

Nonetheless, the study of the optimal blocker design, e.g. ratio of blockers, gaps, moving 

speed, and moving style (continuous or step-and-shoot) and the minimal number of projection 

views will be important future work to discover their impact on 4D CBCT reconstruction and 

clinically relevant tasks using more realistic physics modeling or real physical phantom/patient 

experiments. The effect of sparse sampling due to different view angles and blocker positions 
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on reconstruction convergence and parameter selection will be investigated and provide the 

practical guidance for the adaption of such a system. 

In this proof-of-concept study, the CT imaging physics is not fully modeled, such as the 

omission of penumbra effects due to either blocker penetration or limited size of the X-ray 

source, and the lag effects [125]. These factors may need further investigation to answer 

whether they will significantly impact the reconstruction performance. However, based on our 

studies on MB based scatter correction for 3D CBCT using physical phantoms [10, 11, 90, 97], 

it is reasonable to expect the similar effectiveness for 4D MB CBCT. The current simulation 

study is sufficient to demonstrate the feasibility of 4D MB CBCT in principle. In addition, the 

blocker could generate scatter photons that would contribute extra radiation dose to the patient. 

As a preliminary investigation of this problem, two air scans were performed: one with the 

moving blocker (blocked region : unblocked region = 1:1) and the other without it using the 

Varian TrueBeam OBI system (678 projections). The ratio of the intensity (as a surrogate of 

irradiation dose) of all the projections between that with the blocker and that without the blocker 

is about 48%, which is slightly less than the expected value of 50%. As the lead strips are 

embedded on a 5 mm thick acrylic board, the 48% ratio (<50%) can be attributed to that the 

attenuation of the acrylic board outweighs the contribution of the scatter photons from the 

blocker.  

Furthermore, the radiation dose was measured on an Elekta Versa HD system. The 

scan was a standard lung protocol with the following scanning parameters: 120 kVp, 2 min 

nominal rotation time, 264 mAs and the beam collimation of 26.5 cm × 26.5 cm. A 32 cm 

diameter PMMA CTDI phantom was aligned in the center of the scanning field of view. A 10 cm 

long pencil chamber was placed in the center or 12 o’clock position. The CTDI was calculated 

using the CBDI method [15].  

𝐶𝑇𝐷𝐼𝑤 =  
1

3
𝐷𝑐 +

2

3
𝐷𝑝  
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Where Dc and Dp denote the measured dose in the center and peripheral locations. 

This de nition is an approximation of average dose along the 10 cm range in the middle of the 

phantom. CTDI measurements were performed without a blocker and with a blocker (1:3 pitch 

matching the simulation setting). Three repeated measurements were performed at each 

position and the averaged value was used. The calculated CTDIw was 5.7 mGy without the 

blocker and 3.5 mGy with the blocker, which is consistent with the pitch of the blocker for 1/3 

dose reduction.  

 On the other hand, the scatter photons generated by the blocker can reach the 

detector, which could possibly degrade the projection data. However, the scatter photon from 

the blocker is of lower energy compared to the incident photons. After passing through patients, 

the probability of the blocker generated scatter reaching the detector would be very small. 

Although we are not able to separate the blocker generated scatter photons and patient induced 

photons in our experiments, satisfying scatter correction performance was achieved in our 

previous studies using physical phantoms [10, 11, 90, 97]. A detailed Monte Carlo simulation 

study can potentially separate scatter photons from different sources at the detector, which will 

be investigated in a future study. 
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 Figure 4-9 The blocker position versus the projection view angle.  

Finally, there are several potential improvements of the current study worth mentioning. 

First, the TV was used to enforce spatial sparsity of image gradient. It works well for images 

with piece-wise constant features, like NCAT images, but may not be suitable for the real 

patient data with subtle textures. In future studies, more advanced spatial priors will be 

investigated, such as normal-dose image induced TV [126], total generalized variation [127], 

TV-stokes [128], l0 gradient [129], Haralick texture measures [130]. Second, SMEIR seemed to 

achieve a large improvement on NCAT phantom data over 3D reconstruction, but only a 

moderate one on the pseudo real patient data (see Figure 4-8.). One reason is that the 

complication of the real clinical data deteriorates the image quality of 3D reconstruction, which 

results in larger errors in the initial DVF estimation. These errors may cause SMEIR to trap into 

a local optimal, instead of the global optimal. Either better initial DVF estimation by a better 

initial 3D reconstruction or constrained DVF estimation with a reliable prior model can mitigate 
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this problem and will be investigated in future. It is also worth looking into the way of estimating 

motion for two phases far away. In this study, the direct motion estimation for any pair of phases 

was used. Instead, the motion can be estimated for neighboring phases and that for far-away 

phases can be derived from the neighboring motion since the motion estimation can deteriorate 

quickly when the motion is too big. Meanwhile, patient respiration irregularity and hysteresis 

may cause additional difficulties in 4D MB CBCT and will need to be addressed in future 

studies. Last, in the future studies of improving the proposed 4D MB CBCT, a task-based 

performance evaluation, such as tumor motion tracking and organ segmentation for dose 

calculation, will need to be employed and compared with clinically adapted low-dose CT 

methods, such as lowering tube current, and other scatter correction methods for its real clinical 

impact. 

4.5 Conclusions 

In this work, we proposed a moving blocker based 4D CBCT acquisition (4D MB) and 

combined motion-compensated image reconstruction method with the moving blocker based 

scatter correction. In the NCAT simulation study, 4D MB with motion-compensated 

reconstruction at 2/3 of the regular dose can achieve much higher reconstruction accuracy 

reflected by image appearance and quantitative measurements, compared with the 

conventional SMEIR without scatter correction at the regular dose. A synthetic patient study 

also shows the potential of the proposed method to reduce the radiation dose by 1/3 without 

compromising the image quality. These promising results encourage more comprehensive 

studies to use realistic physical phantoms and patient data to interrogate the dose reduction 

limitation of the proposed 4D MB method using the clinical relevant metrics, e.g. tumor and 

organ segmentation and CT number for dose calculation. More sophisticated motion estimation 

methods and advanced spatial priors other than TV are also worth exploring to further improve 

the performance of this novel method. 
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Chapter 5 Conclusions and Future Work 

The goal of this dissertation work is to develop novel methods to improve the image 

quality of CBCT. The methods proposed in this dissertation include: 1) using different 

deconvolution methods to recover true scatter signal in blocked regions; 2) enhancing the 

scatter estimation accuracy and robustness by using adjacent multiple-view projection images; 

3) applying the moving blocker method for 4D CBCT for simultaneous radiation dose reduction 

and scatter correction purposes. These techniques are demonstrated either by simulations of 

digital phantoms or real phantom and clinical CBCT data. 

First, we proposed several deconvolution methods to improve the accuracy of the 

scatter correction. The slanted-edge method was used to derive the LSF and PSF using a 

parametric model. The results of the simulation study showed that with a good PSF estimation, 

the deconvolution method can significantly alleviate the detector response effect. Therefore, the 

moving blocker system with deconvolution method can generate high quality CBCT image. The 

high quality image can improve anatomical visualization and dose calculation accuracy in the 

treatment position, which are essential for the adaptive radiation therapy. 

Second, we investigated the scatter estimation errors caused by single-view SC 

(SVSC) used in the moving-blocker SC method for the regions with fast scatter signal changes 

or lack of scatter samples and the blocker detection errors. To address these problems, we 

proposed a multi-view SC (MVSC) method using several neighboring views. In the regions with 

fast scatter signal changes or missing scatter samples at the margin, the scatter signal is hard 

to be recovered accurately with limited sampling points by using just one projection view in 

SVSC. The MVSC method uses the adjacent projection views, which can provide more 

information of the scatter signal in different locations along the blocker moving direction 

because of the blocker movement during the gantry rotation. The scatter estimation and 

corresponding reconstruction results show that the MVSC method can eliminate the scatter 

estimation errors in the regions with fast scatter signal changes (Figure 3-6) or lack of scatter 
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samples (Figure 3-10) and maintain the superior scatter correction performance for other 

regions (Table 3-1). The scatter signal is recovered more accurately with the MVSC method and 

result in a reconstructed image with reduced artifacts and more accurate quantitative results 

(CT numbers). 

Finally, we demonstrated the working principle of a novel 4D moving blocker method, 

which is the first time, to our best knowledge, to combine a moving blocker with 4D CBCT to 

achieve simultaneous dose reduction and scatter correction. In the NCAT simulation study, 4D 

MB with motion-compensated reconstruction at 2/3 of the regular dose can achieve much 

higher reconstruction accuracy reflected by image appearance and quantitative measurements, 

compared with the conventional SMEIR without scatter correction at the regular dose. A 

synthetic patient study also shows the potential of the proposed method to reduce the radiation 

dose by 1/3 without compromising the image quality. These promising results encourage more 

comprehensive studies to use realistic physical phantoms and patient data to interrogate the 

dose reduction limitation of the proposed 4D MB method using the clinical relevant metrics, e.g. 

tumor and organ segmentation and CT number for dose calculation.  

The further investigation is planned to test the MVSC method on the phantoms, such as 

the chest and the head, where the bone/lung and body/air interfaces may manifest its benefit. 

More sophisticated motion estimation methods and advanced spatial priors other than TV are 

also worth exploring to further improve the performance of 4D moving-blocker based CBCT. 
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