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Abstract 

 
A DECISION SUPPORT SYSTEM FOR TRAFFIC DIVERSION AROUND 

CONSTRUCTION CLOSURES 

 

Arezoo Memarian, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Jams C. Williams and Siamak A. Ardekani 

As highway infrastructure ages and road congestion increases, roads need to be 

expanded and reconstructed. It results in creating many construction sites and work zones 

on highways, which leads to an unavoidable interruption in normal traffic flows and have 

resulted in traffic congestion, more vehicle emissions, and traffic safety problems. During 

roadway construction, when lanes or entire highway sections must be temporarily closed, 

traffic managers would like to inform motorists of alternative routes around the construction 

site well in advance of the project location. This would help reduce traffic demand through 

the construction site, enhance the safety of the workers and motorists, reduce traffic 

delays, and minimize fuel wastage and emissions. The objective of this study is to develop 

a decision support system to identify the optimum alternate routes around highway 

construction sites. The developed system, which is named TDS (Traffic Diversion System), 

helps traffic network managers divert traffic from the disrupted area and reduce the traffic 

demand through the congested region. TDS’s modules, models, and algorithms allow 

assessment of alternate routes that optimize network performance.  

An optimization model (a traffic diversion model) is developed and implemented in 

TDS to determine the optimum alternate routes around construction activities. To simplify 

computations, a subnetwork is extracted from the complete network to use in the diversion 
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model instead of the entire network. The size of the subnetwork is estimated based on the 

modeling framework proposed in this research. Linear regression models, which are 

functions of the closed link demand and network topology, are developed to estimate the 

size of the subnetwork around the disruption. The closed link’s area type, traffic volume on 

the closed link, and travel time on the first and second alternative paths with lowest travel 

times are significant variables that influence the size of the subnetwork. The proposed 

traffic diversion model is developed to find the optimum alternate routes around the 

construction activities, while minimizing the total travel time of the system. Travelers are 

assumed to follow their historical user equilibrium routes before and after the closure while 

a certain percentage of them is assumed to divert to the proposed alternate routes. The 

developed system has an easy to use graphical user interface that allows users to work 

easily with the system. This system is of interest to construction agencies and traffic 

network managers to help them divert traffic from the congested area and reduce traffic 

demand through the construction sites. 
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Chapter 1. Introduction 

1.1. Background 

Traffic congestion poses serious problems in most urban areas and especially on 

urban highways. In the last three decades, vehicle miles traveled (VMT) have doubled on 

U.S. highways. However, the total number of highway lane miles has increased by only 5% 

during the same period (1). In 2014, road congestion caused a total delay of 6.9 billion 

hours for urban Americans, and the use of an extra 3.1 billion gallons of fuel, which resulted 

in a total congestion cost of $160 billion (2). Traffic congestion is categorized as either 

recurrent or non-recurrent. Recurrent congestion is caused by routine traffic volumes such 

as morning and evening peak periods and are mostly predictable and expected. Non-

recurrent congestion is triggered by non-recurrent causes such as traffic incidents, work 

zones, weather conditions, and special events and are unexpected and unusual 

congestion. About 50% of all highway congestion is caused by non-recurrent conditions 

(3).  

Moreover, as highway infrastructure ages and road congestion increases, roads 

still need to be expanded and reconstructed. Therefore, the federal and state government 

agencies have considered the maintenance, rehabilitation, expansion, and upgrading of 

the existing highway networks, which results in creating many construction sites and work 

zones on highways. Furthermore, work zones have led to an unavoidable interruption in 

normal traffic flows and have resulted in traffic congestion, more vehicle emissions, and 

traffic safety problems (4). About 24% of non-recurrent congestion and 10% of overall 

congestion resulted from work zones on freeways, which led to an annual fuel loss of over 

$700 million (5). Moreover, in 2010, there were 87,606 crashes and 576 auto-related 

fatalities occurred in work zones in the United States. These crashes included 26,282 injury 

crashes and 60,448 property damage only crashes (6). In addition to delay and safety 
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problems, work zone activities have an adverse impact on the environment. Work zones 

cause additional vehicle emissions which results from reduced speed and queueing.  

During roadway construction, when lanes or entire highway sections must be 

temporarily closed, it would be desirable to inform motorists of alternative routes around 

the construction site well in advance of the project location. This would help reduce traffic 

demand through the construction site, enhance the safety of the workers and motorists, 

reduce traffic delays, and minimize fuel wastage and emissions. However, inappropriate 

traffic diversion plans will degrade the alternative routes and increase the travel time of the 

entire network (7). The purpose of designing route guidance and information systems are 

improving the system efficiency and assisting drivers in making their route decisions. There 

are different approaches to propose routes to road users. Examples include shortest path 

which assigns users to the shortest path or the path with smallest travel time, user 

equilibrium (UE) that assigns users to the paths of smallest individual travel time, and 

system optimal (SO) which is minimizing total travel time of the system (8). Moreover, the 

routing of traffic, which is a core component in traffic management to mitigate traffic 

congestion, faces a well-known dilemma. Traffic managers want the network to reach to 

reach system optimal, which may discriminate against some users in favor of others. Also, 

the users want to use their shortest path to minimize their cost, which may result in lower 

system performance (9). Thus, inefficient or unfair traffic assignments cause users to travel 

on long paths or discourage them from accepting the route guidance which could reduce 

the potential impact of the route guidance system (10). To solve this dilemma, some 

researchers implemented both UE and SO in their proposed road guidance system by 

adding an additional constraint to the system optimal model to guarantee that drivers are 

assigned to acceptable paths (8, 11).  
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In addition, the routes proposed by route guidance systems should be 

disseminated to travelers to enable them to make more informed route switching decisions 

(12). Advanced Traveler Information Systems (ATIS) have been widely used in recent 

years to influence driver decisions and enable them to use the existing transportation 

system more efficiently and improve overall traffic flow. Understanding these influences 

and driver behaviors are important to improve route guidance systems. However, most 

traffic assignment models assume a rigid behavioral tendency for drivers and categorize 

them into classes such as UE, SO, or a combination of both (13). When a non-recurrent 

incident such as construction activities causes unexpected congestion, drivers may have 

to revise their travel choices. They should explore the new traffic condition and adjust their 

travel pattern accordingly (14). While some drivers may not change their travel choices, 

others may be more willing to adapt to the new traffic condition by following the information 

provided by ATIS on alternative travel choices. Therefore, considering driver behavior can 

improve the effectiveness of traffic assignment models for realistically representing traffic 

operations.  

1.2. Study Objective 

The advent of personal computers with high computing power as well as readily 

available maps and network algorithms allow for a more systematic and optimal approach 

to developing diversion routes around major construction sites. The objective of this study 

is to develop a decision support tool with a user-friendly graphical interface that 

investigates optimal alternative routes around highway construction sites. The resulting 

tool is named TDS (Traffic Diversion System). A traffic diversion methodology is applied in 

TDS to investigate the optimum alternative route, which minimizes the impact of the closed 

link in the whole system while considering drivers’ behavior in following the recommended 
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alternate route. TDS is capable of recommending a diversion path and displaying the 

results in an easy-to-view graphical user interface.  

This dissertation consists of five chapters. Chapter 2 presents a modeling 

framework to estimate the size of the affected area around the closed link due to non-

recurrent incidents. A subnetwork extracted from the original network that includes all 

affected links can help reduce the complexity of the prediction models and obtain the 

results in a timely manner. For this purpose, linear regression models are presented to 

predict the maximum distance from the closed link to the link with an expected increase in 

travel time based on network topology and the closed links traffic volume. In doing so, 

travelers are assumed to follow user equilibrium routes before and after the closure.  

Therefore, the proposed models in this chapter are used to estimate the size of the 

subnetwork. 

Chapter 3 describes the traffic diversion methodology. The algorithm of the traffic 

diversion model is presented in this chapter to propose optimum alternative routes to divert 

drivers and mitigate traffic congestion around work zones. To identify the alternative routes, 

the traffic diversion model aims to minimize the total impact of the closure on the network. 

Models and algorithms developed in this chapter allow investigation of diversion routes that 

optimize network performance while considering drivers’ behavior in finding their alternate 

route during a closure. In addition, TDS and its features are presented in Chapter 4. TDS 

is a decision support system with a user friendly graphical interface to identify optimum 

alternative routes around highway construction sites. TDS is capable of identifying 

alternative routes upstream of single or multiple lane closures. TDS modules, models, and 

algorithms as well as a user’s manual for the system are also discussed in this chapter. 

Finally, the conclusion and discussion of the results are presented in Chapter 5. 
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Chapter 2.  A Modeling Framework to Identify an Affected Area for Developing Traffic 

Management Strategies   

2.1 Introduction 

The road network system is one of the important elements of the modern society. 

In the last three decades, vehicle miles traveled (VMT) have doubled on U.S. highways, 

while the total number of highway lane miles have increased by only 5% during the same 

period (1). In 2014, road congestion caused a total delay of 6.9 billion hours for urban 

Americans, and use of an extra 3.1 billion gallons of fuel, which resulted in a total 

congestion cost of $160 billion (2). Traffic congestion is generally divided into recurrent and 

non-recurrent congestion. Recurrent congestion is caused by routine traffic volumes such 

as morning and evening peak periods and are mostly predictable and expected. Non-

recurrent congestion is triggered by non-recurrent causes such as traffic incidents, work 

zones, weather conditions, and special events and are unexpected and unusual 

congestion. A significant part of the delay time and cost related to urban congestion is 

caused by non-recurrent incidents (3). According to the Federal Highway Administration 

(FHWA) (4) about 50% of all highway congestion is caused by non-recurrent conditions.  

With the limited ability to expand the physical capacity of the roadway system to 

meet the growing travel demand, traffic network managers seek to develop efficient traffic 

management schemes to mitigate the congestion in the traffic network (5). Nonetheless, 

developing efficient traffic management schemes requires modeling the traffic network with 

high reliability which is capable to estimate and predict the traffic congestion. With a traffic 

network performance model, the traffic network managers are able to develop and evaluate 

different traffic management schemes, and eventually propose an efficient one for 

deployment in the network. In the past two decades, many researchers have developed 

traffic network congestion models (6-13). However, providing accurate traffic network 
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prediction remains a challenge. It requires an accurate prediction of the travel demand, 

network supply and their interactions. The traffic demand could be affected by factors such 

as adverse weather conditions, information received on non-recurrent congestion, and 

traffic and demand management strategies implemented in the network. Similarly, traffic 

networks are continuously subject to disruptions such as severe traffic incidents, work 

zones, and road closures due to flooding/snow that affect their capacities.  In addition, the 

traffic network prediction is computationally cumbersome, which limits the opportunity to 

develop and evaluate a wide range of traffic management strategies in a limited time (8). 

Thus, the evaluation of management strategies requires developing accurate and reliable 

traffic network models with prediction results that are obtained in a timely manner. 

When an incident causes a non-recurrent traffic congestion, the traffic congestion 

starts to disseminate around the incident location. The travelers who use a part of the 

network close to the congestion source are more vulnerable to the congestion and their 

behaviors are more likely to change in response to the incident. In this case, developing 

traffic management schemes may assist in mitigating the traffic congestion for these 

travelers, which will result in an overall performance improvement for the network. 

However, the travelers who are at a further distance from the incident location may not be 

affected by the congestion. While traffic management strategies are developed for the 

entire traffic network, these travelers have a very minor contribution in the congestion. 

Consequently, the traffic network performance impact is negligible for them. Therefore, 

considering a suitable area to assess the impact of incidents and develop traffic network 

prediction models for evaluating traffic management schemes remains a challenging 

question.  Only a limited number of studies in the literature have addressed this topic. This 

study aims at developing a modeling framework to investigate the expansion of the 

congestion in the network around the source of the non-recurrent congestion, and 
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examines the effect of major variables in defining a suitable area around the source of the 

congestion for developing efficient traffic network management schemes. This paper is 

organized as follows. The next section presents the overall modeling framework of the 

problem. Computational experiments are then described including experimental design 

and data statistic. Next, the resulted models are presented and analyzed. Finally, 

conclusions and research extensions are discussed. 

2.1.1 Literature Review 

An extensive effort to study the effects of the link disruption in the traffic network 

currently exists. For example, modeling disaster spreading, identifying critical links and 

analyzing subnetwork performance during link closures are related studies that investigate 

the consequence of a link disruption in the network. Some events such as accidents and 

work zones typically cause a single link closure in the network (14). However, other events 

such as floods, wildfires, and earthquakes may affect a larger area and disrupt several 

links in the network. Buzna, et al. modeled the congestion in the network due to a link 

closure in directed networks (15). They simulated various network topologies to examine 

the robustness of the model. Their results show that network topology plays an important 

role in defining the threshold for disaster spreading, damage radius and network 

robustness. They observed a threshold for node recovery below which the traffic 

congestion disseminates only through a small fraction of the network. A nonlinear and 

monotonically increasing function of node inputs is modeled for this threshold. Then, a 

dynamic model of the nodes is suggested to investigate the topology dependence, 

robustness, and reliability of the network structures and to demonstrate the time dependent 

spreading of the disaster. This model includes three parts; the ability of system recovery, 

disturbance threshold, and internal noise or failure. Ouyang et al. used this model to 

evaluate the effect of redundant systems on controlling the disaster spreading in different 
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types of the networks (16). In another study, Poorzahedi and Bushehri proposed a heuristic 

method to measure the importance of the links in the network (17). This measure is then 

used to define and solve a network improvement problem to reduce the vulnerability of 

links in the network under events with long-term effects. A selection of alternative actions 

is proposed in a resource constrained optimization for this purpose.    

Several methodologies have been used to identify critical links in the network. 

Jenelius and Mattsson (18) proposed a grid-based analysis methodology to assess the 

vulnerability of the road networks under a large area disturbance. The results showed the 

significant factors to be considered for a network disruption covering extensive areas is 

different from a single link disruption. The flow on the link and the availability of alternate 

routes determined the impacts of the single link closure in the network. However, for a large 

area disruption, the level of outbound and inbound travel demand of the affected area 

impacts the area covering disruption. In another study, Murray and Mahmassani (19) 

developed a bi-level formulation to identify vulnerable transportation network links. In their 

model, at the lower level, the traffic management agency routes vehicles based on the 

system optimal traffic assignment. At the upper level, the evil entity maximizes network 

disruption. To identify important links, a vulnerability index is defined to measure the 

importance of the links in a network. Alternate paths, extra capacity, and travel time are 

the factors that are considered in defining the vulnerability index. In addition, Knoop et al. 

(20) proposed a macroscopic model to evaluate the road network robustness and identify 

vulnerable links while considering both spillback and non-spillback cases. The influence of 

dynamic road information to evaluate critical links was also investigated in their study. 

While most studies have investigated the link’s role in the network when they themselves 

are disrupted, Jenelius (21) studied the importance of road links as backup alternatives 

when other links in the network are disrupted. Traffic flow and disruption impacts are 
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considered to identify the importance of alternate links. However, the size of the affected 

area around the disruption has not been discussed in their studies.  

Moreover, Scott et al. (22) presented a new approach to identify critical links and 

evaluate network performance. They compared Network Robustness Index (NRI) 

methodology and traditional volume-to-capacity (V/C) ratio and showed the NRI solution 

results in greater benefits for the system in terms of the total travel time savings. 

Furthermore, Sullivan et al. (23) applied a modified NRI and Network Trip Robustness 

(NTR) to evaluate the impact of the network disruption and to identify the most critical links 

in the network. Three test networks with different connectivity levels measured by the 

gamma index were used to investigate the effect of the capacity disruption level on the 

NRI. In addition, the effect of the coverage area around the disrupted link on the proposed 

real time traffic management system performance is studied by Hashemi and Abdelghany 

(8). They examined the effect of subnetwork extension on developing proactive traffic 

management schemes. The results demonstrate that considering a larger area leads to 

more effective traffic management schemes, and consequently reduces the total travel time 

in the traffic network system. Also, Erath et al. (24) proposed a methodology to assess link 

failure consequences across the Swiss national network. To reduce computational 

intensity and time, subnetworks are used to calculate failure consequences instead of the 

whole network and subnetworks are generated based on constant grid layers. Although 

their results show that subnetwork methodology is an accurate and reliable assessment 

approach for most of the links, some links required the use of the full network since the 

limited network does not cover all relevant detours. Therefore, a methodology is needed to 

define a subnetwork which considers an accurate affected area around the disrupted link. 

The previous research indicates that link volume, alternate routes, network 

topology and total network travel time represent important factors in studying the effect of 
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the link disruption and identifying the critical links in the network. In addition, most research 

efforts consider a constant subnetwork around the disruption to assess the link closure 

effects on the network performance; efforts to identify an accurate affected area around 

the disruption are limited. Therefore, the main purpose of this study is to investigate the 

effects of network topology and link demand on the size of the affected area around the 

disruption based on the expected increase in travel time and traffic flow. 

2.1.2 Contributions  

The objective of this study is to illustrate the potential network impacts resulting 

from a link disruption. This impact is investigated based on the expected increase in travel 

time and traffic flow for links located at a distance from the disruption. The disruption could 

cause a full or partial reduction of the link capacity. Travelers on those links will be diverted 

to alternate links. Disruptions may have been caused by any non-recurrent event such as 

accidents, work zone activities, or special events. Although several studies investigate the 

effect of the disrupted links, limited discussions about the effect of the network topology 

and demand on the size of the affected area around the disruption currently exist. For this 

purpose, linear regression models are presented to predict the maximum distance from the 

closed link to a link with a specified expected increase in travel time and traffic flow. 

Travelers are assumed to follow user equilibrium routes before and after the disruption. 

This study is of interest to traffic network managers to help them reduce the complexity of 

their traffic prediction models. They can improve model performance by using a subnetwork 

instead of the entire network for their congestion mitigation schemes. They may also define 

different sizes for the subnetwork based on models requirements. Different levels of 

increase in travel time are considered to identify the affected links to define subnetworks 

with different levels of sensitivity. Also, the outcomes of this study are valuable for 

developing incident response plans and managing work zones.  
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2.2 Methodology 

2.2.1 Prediction Problem 

Linear regression models are developed to assess the effects of the link disruption 

in the network. Linear regression is a commonly used predictive analysis model. 

Regression models describe the relationship between a response variable and one or more 

predictor variables (25). In this study, the response variable is the straight-line distance 

from the closed link and the farthest link with a significant increase in travel time and traffic 

flow.  

2.2.2 Variables 

The response variables focus on describing potential network impacts on system 

operations and the predictor variables cover two dimensions, which include network 

topology and demand. The demand variable is volume on the closed link and network 

topology variables measure connectivity and density of links in the network. Also, 

alternative routes and available exit and entry ramps around the closed link are considered 

to be network topology variables. Response and predictor variables are defined as follows:  

2.2.2.1 Response variable 

The response variable is the straight-line distance between the closed link and the 

farthest significant affected link in the network. Nine response variables are defined in this 

study. Nine levels of “significantly” affected links are considered to define affected areas 

with different levels of sensitivity. To estimate these variables, a traffic assignment model 

must be applied to the normal and affected network independently. The normal network is 

a network with no disruptions and the affected network is one with a link or links fully or 

partially closed. All links that experience an increase in travel time due to the closure are 

then identified by comparing the normal and affected networks after traffic assignment. 

However, some of the small increases in traffic flow can be due to the convergence level 
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used in the traffic assignment and could result in high increases in travel time. To solve 

this problem, links with less than a 5% increase in traffic flow over capacity (∆Traffic 

Flow/Capacity) are removed from the set of impacted links. Therefore, for each of these 

nine response variables, links with at least a 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 

and 45% increase, respectively, in travel time are considered as the affected links in the 

network. Next, the straight-line distance between the closed link and the farthest affected 

link is investigated. For example, for the 5% increase in travel time, response variable is 

the distance between the middle of the closed links to the farthest link with a 5% increase 

in travel time. 

2.2.2.2 Predictor variables 

Two sets of predictor variables are considered in this study to build the model. 

Network topology and demand are considered to evaluate the disrupted network 

performance. The network variables include area type, network density, network 

connectivity, Network Robustness Index (NRI), existence of alternative routes, travel time 

on alternative routes, and exit and entry ramps around the closed link. The link’s traffic 

volume is defined as the demand variable. The set of predictor variables consists of 

continuous and categorical variables of two or more levels (for those variables of more than 

two levels, dummy variables are used).   

2.2.2.2.1 Network topology variables 

1- Area Type is defined by the Activity Density (AD) at the Regional Area Analysis (RAA) 

level (26). Based on the report of North Central Texas Council of Governments 

(NCTCOG), the activity density is defined as follows:  

𝐴𝐷𝑖 = (𝑃𝑂𝑃𝑖 + 𝐵 ∗ 𝐸𝑀𝑃𝑖)/𝐴𝑅𝐸𝐴𝑖                     (2.1) 

where 𝐴𝐷𝑖 is the activity density; 𝑃𝑂𝑃𝑖  is the population; 𝐸𝑀𝑃𝑖  is the total employment; 

𝐴𝑅𝐸𝐴𝑖 is the total area, all for RAA 𝑖; and B is the regional population to employment 
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(P/E) ratio. In this study “area type” is categorized into five groups; 1- central business 

district (AD >125), 2- outer business district (30<AD <125), 3- urban residential 

(7.5<AD <30), 4- suburban residential (1.8<AD <7.5), and 5- rural area (AD <1.8) (26). 

As shown in Table 2-2, four binary variables are defined to consider area type effects. 

Area type 1 is selected as the base case for all groups.  

2- Network Density is defined as the total length of the network links per area. A 

subnetwork within a one-mile radius around the closed link is considered for this 

purpose. A one-mile radius is defined to show the network characteristics close to the 

selected link.  Thus, the total length of links in the subnetwork divided by the area of 

the subnetwork is defined as network density and it is a continuous variable.  

3- Network Connectivity is identified with the gamma index. The gamma index is defined 

as the ratio of the actual number of links and the maximum number of possible links in 

the network (22).  The value of the index is between 0 and 1. A value of 1 represents 

a completely connected network, which is not likely in a real network. The gamma 

index (𝛾) is computed with the following formula: 

𝛾 = 𝑙 𝑙𝑚𝑎𝑥⁄ = 𝑙 3(𝑛 − 2)⁄                                     (2.2) 

where 𝑙 is the number of observed links and 𝑙𝑚𝑎𝑥  is the maximum number of links in 

the network and is computed as 𝑙𝑚𝑎𝑥 = 3(𝑛 − 2)  where n is the number of nodes in 

the network (22). In this study only one network with different characteristics spreading 

all around the network is used. Therefore, to estimate the connectivity around the 

disruption, a subnetwork (same as network density assumption) within a one mile 

radius from the closed link is considered. The gamma index as a measure of network 

connectivity is used as a continuous variable.  

4- Network Robustness Index (NRI) identifies the critical links in a traffic network (22). 

It measures the importance of a link in a road network by estimating the effect of closing 
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that link on the network’s performance (27). The NRI represents the differences in time 

between the total travel time of the normal and affected network as shown in equation 

2.3.  

 𝑁𝑅𝐼𝑘 = ∑ (𝑡𝑖
𝑎 ∗ 𝑣𝑖

𝑎)𝑖 − ∑ (𝑡𝑖
𝑛 ∗ 𝑣𝑖

𝑛
𝑖 )                              (2.3) 

where 𝑁𝑅𝐼𝑘 is the network robustness index for link 𝑘, 𝑡𝑖
𝑎 and 𝑣𝑖

𝑎 are the travel time 

and traffic volume, respectively, of link 𝑖 in the affected network with closed link 𝑘, and 

𝑡𝑖
𝑛 and 𝑣𝑖

𝑛 are the travel time and traffic volume, respectively, of link 𝑖 in the normal 

network without no closed links (22). 

5- Nearest Alternative Routes around the Closure are captured by four variables as 

follows: 

1. Frontage Road: This is a binary variable (0 or 1), which shows the existence of an 

alternative route near the closed link. In this study, authors assume that only links 

located on freeways will be closed due to a disruption. Thus, this variable is one 

when there is a continuous frontage road for the closed link and zero otherwise.  

2. Travel Time of First Alternate Path: The total travel time of the mutually exclusive 

alternate path with smallest travel time around the closed link. 

3. Travel Time of Second Alternate Path: The total travel time of the mutually 

exclusive alternate path with the second smallest travel time around the closed link 

4. Travel Time of Third Alternate Path: The total travel time of the mutually exclusive 

alternate path with the third smallest travel time around the closed link. 

6- Exit Ramp at the Start Node is a binary variable (0, 1) with the value being 1 when 

there is an exit ramp at the beginning of the closed link and zero otherwise. 

7- Entry Ramp at the End Node is a binary variable (0, 1) with the value being 1 when 

there is an entry ramp at the end of the closed link and zero otherwise. 
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2.2.2.2.2 Demand variables 

Traffic Volume of the Closed Link: Any disruptions on freeways cause heavier 

congestion compared to disruptions on arterial roads due to the higher traffic volume 

that exists on freeways. Since freeways are more sensitive to disruptions (i.e. arterials 

are regularly disrupted by traffic signals), only freeway links are considered for closure 

in this study. Link volume is considered as a continuous variable in the model.  For the 

experimental design study, 10 volume groups are defined based on both the volume 

distribution in the network and the importance of the links with higher volumes. The 

traffic volume for the PM peak period for one typical day in the Dallas/Fort-Worth area 

is used for this study. Table 2-1 shows the 10 volume categories. 

Table 2-2 summarizes all predictor variables descriptions, names, and associated 

codes as applied in the model.  

 
Table 2-1. Volume Categories 

Volume group Volume Range (veh/hr) 

1 <1000 

2 1000-2000 

3 2000-3000 

4 3000-4000 

5 4000-5000 

6 5000-6000 

7 6000-7000 

8 7000-8000 

9 8000-9000 

10 >9000 
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Table 2-2. Predictor Variables Descriptions, Names, and Codes 

Description Variable Name Code 

Area Type  

AT2 
AT3 
AT4 
AT5 

Yes=1 No=0 
Yes=1 No=0 
Yes=1 No=0 
Yes=1 No=0 

Network Density  Density Continuous 

Network Connectivity Gamma Continuous 

Network Robustness 
Index  

NRI Continuous 

Nearest Alternative 
Routes around the 

Closure 
FrontageRoad Yes=1 No=0 

Travel Time of First 
Alternate Path 

SPT1 Continuous 

Travel Time of Second 
Alternate Path 

SPT2 Continuous 

Travel Time of Third 
Alternate Path 

SPT3 Continues 

Exit Ramp at the start 
node  

Start_Ramp_Exit Yes=1 No=0 

Entry Ramp at the end 
node 

End_Ramp_Entry Yes=1 No=0 

Closed Link Volume Volume Continuous 

 

 
 
2.2.3 Simulation-Based User Equilibrium Traffic Assignment   

TransCAD is used for simulating the network response in this study, and the User 

Equilibrium (UE) model first proposed by Wardrop (28) is considered for the traffic 

assignment. The volume delay function (VDF) that estimates travel time is an important 

component in a UE traffic assignment model and must be continuous, monotone, 

increasing, and differentiable, and must be defined for oversaturated conditions (29). One 

of the well-known travel time equations was proposed by the Bureau of Public Roads (BPR) 

in 1964 (30). In this equation, the travel time on any link is estimated as a function of the 

link free-flow travel time and the volume to capacity ratio. According to Skabardonis and 
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Dowling (14), the BPR function is based on data that does not reflect today’s operating 

conditions and does not consider signalization conditions on arterials. Therefore, a 

customized VDF that also considers traffic control delay is used (26). This VDF followed a 

conical form and consists of two main components: congestion delay and traffic control 

delay. The congested travel time is a function of the free-flow travel time and delays due 

to traffic volume on the link and delays due to traffic control devices (signals, stop signs, 

etc.) (26). 

The study first simulates a baseline performance for the network with no 

disruptions. Next, for each of the experimental scenarios, the scenario performance when 

a link is closed is simulated. Therefore, the link volumes and travel times are estimated 

from the UE traffic assignment for the normal network and then for the other experimental 

scenarios. The simulation assumes that no change in the overall demand occurs and all 

trips from the base case must still occur. This assumption simplifies the analysis and 

represents a worst-case assumption of the potential operational impact. 

2.3 Computational Experiments  

 Study Area 

The North Central Texas Council of Governments (NCTCOG) maintains a 

TransCAD network database of the North Central Texas region.  This network is utilized 

as a test network. The network area includes the entire counties of Collin, Dallas, Denton, 

Ellis, Hill, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise. This area 

consists of 5,386 travel survey zones (TSZ). The TSZs are aggregated into 720 regional 

area analysis (RAA) zones based on the distribution of the households among income 

groups and sizes. Figure 2-1 shows the study area within the North Central Texas region 

with defined TSZs and RAAs. This region consists of various area types ranging from 

central business districts to rural areas. Therefore, it should be a suitable region with 
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various network topologies and demand levels for studying the effect of these factors on 

the network performance during a disruption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. The Study Area within the North Central Texas Region (26) 
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 Experimental Design 

A factorial experiment is designed across the selected dimensions. Similar 

variables are not included in the experimental design even though they are included in the 

analyses. The experiment is designed based on two predictor variables from two different 

dimensions; network and demand. Area types (network dimension) and link volumes 

(demand dimension) are used for the factorial design. These predictors are selected 

because of the simplicity of identification and correlation that exists between similar 

variables. As mentioned in section 2.2.2.2, there are five groups for area type and ten 

groups for link volume. Therefore, based on the experimental design, 50 sites should be 

selected (5*10).  However, only 42 links can be matched to the sample sites in the test 

network. Some combinations do not exist, e.g., no links in the network with area type equal 

to 5 and link volume group equal to 6, 7, 8, 9 or10 exist. This means in a rural area (area 

type 5) no links with volumes more than 5000 vehicles per hour occur. Therefore, 42 links 

are selected within the test network for the simulation as shown in Figure 2-2. In Figure 

2-2, each sample site is identified by a number.  The first number indicates the area type 

and the second number represents the volume category. For example, site 43 shows a link 

in area type 4 with a volume in the third category (between 2000 and 3000 vehicles per 

hour).  
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Figure 2-2. Sample Sites 

 
 
 
 

 Data Statistics 

As mentioned in section 2.3.2, 42 sample sites are selected and response and 

predictor variables are estimated for each of these samples. Table 2-3 shows the data 

statistics for the predictor variables. 

 

 

 

22 

13 



 

23 

 

Table 2-3. Data statistics 

Simple Statistics 

Variable N Mean Std. Dev Median Minimum Maximum 

AT2 42 0.21 0.41 0.00 0.00 1.00 

AT3 42 0.23 0.43 0.00 0.00 1.00 

AT4 42 0.23 0.43 0.00 0.00 1.00 

AT5 42 0.11 0.32 0.00 0.00 1.00 

Volume 42 4827 2681 4441 747 9781 

Density 42 11.08 8.70 6.81 0.99 32.23 

FrontageRd 42 0.57 0.50 1.00 0.00 1.00 

Start_Ramp_Exit 42 0.33 0.47 0.00 0.00 1.00 

End_Ramp_Entr
y 

42 0.21 0.41 0.00 0.00 1.00 

Gamma 42 0.46 0.06 0.44 0.37 0.57 

T_SPT1 42 6.92 3.94 6.12 1.75 24.04 

T_SPT2 42 12.74 7.59 11.75 4.31 46.30 

T_SPT3 42 17.79 9.63 16.31 5.60 56.61 

 
 
From the data set, the frequencies between the different area types are 19%, 21%, 

24%, 24%, and 12% for area types 1 to 5, respectively. The closed link volume, density, 

and gamma index are continuous variables that range from 747 to 9781 vehicles per hour, 

0.99 to 32.23 miles per area, and 0.38 to 0.58 in index values, respectively. Also, the total 

travel time on alternate paths 1, 2 and 3 range from 1.75 to 24.04, 3.31 to 46.30, and 5.60 

to 56.62, respectively. In addition, 57%, 33%, and 21% of the sample sites have frontage 

roads, exit ramps at the start nodes of the closed links, and entry ramps at the end of the 

exit ramps. These statistics show that the incident links used in this study contain a wide 

range of data and can yield a suitable data set for use in calibrating the prediction model. 

2.4 Results and Analysis 

Linear regression models are developed to predict the effects of the link disruption 

on the network performance based on the network topology and link demand. The 
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response variable for each model is the distance between the closed link and the farthest 

link with a significant increase in travel time and traffic flow. The significant level of travel 

time increase can be defined based on the expected sensitivity for the affected area in the 

study. All of the predictor variables, which are defined above, are used to generate the 

model except NRI. The NRI is removed from the set of predictor variables for two reasons. 

First, the traffic pattern is needed for both networks before and after closure to calculate 

the NRI. Therefore, to simplify the use of the models that are being proposed in this section, 

only predictor variables that can be estimated from the normal network (before closure) are 

considered. Second, when NRI is considered in the set of predictor variables, it appeared 

to be a significant predictor in the final model. However, the model, which contains NRI, 

has a high Mallow’s 𝐶𝑝 value, which indicates important predictors are missing in the model. 

Mallow’s 𝐶𝑝 estimates the size of the bias in estimating the true regression coefficients and 

predicting responses and should be small and close to the number of predictors in the 

model. Therefore, when NRI is in the set of predictor variables, other variables cannot be 

significant in the final model, thus, the value of 𝐶𝑝 is high in the model.  

Therefore, the statistical software SAS is used to generate linear regression model 

with the PROC REG function using a stepwise selection. In the stepwise selection 

procedure, a significance level of 0.05 is required to allow a variable into the model and a 

significance level of 0.05 is required for a variable to stay in the model. Table 2-4 shows 

nine linear regression models that are estimated based on nine different levels of increase 

in travel time (5% to 45%).  
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Table 2-4. Regression Models for 5% to 45% Increase in Travel Time 

Variables 
Percent Increase in Travel Time 

5% 10% 15% 20% 25% 30% 35% 40% 45% 

Intercept -5.177 -3.664 -5.007 -6.009 -6.255 -6.138 -5.594 -5.004 -4.821 

AT4 3.911 4.683 3.461 3.324 3.593 2.565  - -  -  

Volume 0.0011 0.0008 0.0009 0.0009 0.0008 0.0008 0.0006 0.0006 0.0005 

T_SPT1 - - - 0.918 0.889 0.883 - - - 

T_SPT2 0.510 0.464 0.477 - - - 0.510 0.453 0.456 

Adj R2 0.804 0.717 0.746 0.774 0.787 0.744 0.754 0.743 0.741 

 

The results show that the area types, volumes, and travel times on the first and 

second alternate paths with the lowest travel time are the significant predictors in the 

models to estimate the radius of the affected area. The adjusted 𝑅2 is relatively high for all 

the models, indicating that the models fit the data well. Moreover, in general, the results 

show that the affected area has a larger radius around the closed link when a lower level 

of increase in travel time is considered to define the farthest affected link in the network. In 

models for which the affected links experienced 20%, 25%, and 30% increases in travel 

times, the alternate path with the smallest travel time is a significant variable instead of the 

alternate path with the second smallest travel time. In addition, in the last three models 

(35%, 40%, and 45%), area type is not a significant variable.  This indicates that the area 

type may not have a significant impact on the affected area around the closure when a 

high level of increase in travel time is considered to define the farthest affected link in the 

network. The first model is explained in more detail below. 
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The regression model generated by the use of stepwise regression based on a 5% 

increase in travel time is as follows: 

              𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −5.18 + 3.91 ∗ 𝐴𝑇4 + 0.001 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒 + 0.51 ∗ 𝑇_𝑆𝑃𝑇2                (2.4) 

The above model indicates that a greater traffic volume on the closed link, an 

incident location in area type 4, and a larger travel time on the shortest path with the second 

lowest travel time all increase the distance of the closed link’s impact on the network. A 

large volume on the closed link causes more changes in the network because more 

vehicles need to divert. In addition, area type 4 is suburban residential area with links that 

contain all volume categories compared to area type 5 that only contains links in five 

volume categories (less than 5000 vehicles per hour). Also, area type 4 is less dense 

compared to area types 1, 2, and 3 and vehicles on the closed links should use farther 

links as alternates since link spacings are generally larger for this area type. However, this 

variable is not significant when only links with a high increase in travel time are considered 

as affected links. This shows network topology may not have a significant effect on the 

subnetwork size in those cases. Moreover, data shows that the first shortest alternate path 

is usually close to the normal path and the third one is usually far from that, but the second 

shortest alternate path has a different pattern.  This in turn indicates that a higher travel 

time on the alternate path results in a larger radius for the affected area. However, to define 

the affected area with medium sensitivity (20%, 25%, and 30% increases in travel time) 

the shortest path with the smallest travel time can be a better fit in related models.  

Table 2-5 is the summary of the stepwise selection from SAS, which shows more 

details about the first model.  All of the parameters that stay in the model have small p-

values (less than 5%), which indicate they are all significant parameters. The coefficient of 

determination (𝑅2) of this model is 0.82 and the adjusted 𝑅2 is 0.80, which shows the model 

fits the data fairly well. Also, the Mallow’s 𝐶𝑝 value is 0.23 for this model, which is small and 
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indicates that the model is relatively precise and unbiased in estimating the true regression 

coefficients and predicting future responses. 

Table 2-5. Summary of Stepwise Selection 

Summary of Stepwise Selection 

Step 
Variable 
Entered 

Variable 
Removed 

Number 
Variable in 

Partial R2 Model R2 C(p) F Value Pr > F 

1 T_SPT2 - 1 0.50 0.50 55.51 40.71 <.0001 

2 Volume - 2 0.24 0.75 10.56 39.31 <.0001 

3 AT4 - 3 0.06 0.81 0.22 13.70 0.0007 

 

 
2.5 Conclusions 

This paper presents nine different models to investigate the effects of network 

topology and demand on the size of the affected area around the disruption based on the 

expected increase in travel time and traffic flow. A set of simulation experiments is 

designed based on area type and link demand to define the response and predictor 

variables using the North Central Texas network. TransCAD is used to simulate the 

network and the User Equilibrium (UE) model is applied for traffic assignment. The models 

demonstrate that traffic volume on the closed link, a link’s area type, and the travel time on 

the first and second alternative paths with lowest travel times significantly impact the radius 

of the affected area around the disruption. This study can be used by traffic network 

managers to reduce the complexity of their models and improve model performance by 

using a subnetwork instead of the entire network for their congestion mitigation plans. They 

may also define different sizes for the subnetwork based on the study’s sensitivity. To 

extend this study, more experiments can be used to develop these models more generally. 

For example, volumes in other peak periods (AM peak and off peak) can also be 

considered to select the sample sites. Future research enhancements may also explore 

the use of a dynamic traffic assignment models. Additional exploration into the potential for 
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an overall decrease in localized demand in response to an incident may yield further 

improvements in the models presented in this study. 
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Chapter 3. An Optimization-Based Traffic Diversion Model during the Network Disruption 

3.1 Introduction 

In the last three decades, vehicle miles traveled (VMT) have doubled on U.S. 

highways. However, the total number of highway lane-miles has increased by only 5% 

during the same period (1). In 2014, road congestion caused a total delay of 6.9 billion 

hours for urban Americans, and the use of an extra 3.1 billion gallons of fuel, which resulted 

in a total congestion cost of $160 billion (2). Traffic congestion is generally categorized into 

recurrent and non-recurrent conditions. Recurrent congestion is caused by routine traffic 

volumes such as morning and evening peak periods and is mostly predictable and 

expected. Non-recurrent congestion is triggered by non-recurrent causes such as traffic 

incidents, work zones, weather conditions, and special events. They are unexpected, and 

they remain very difficult to predict. According to the Federal Highway Administration 

(FHWA) (3) about 50% of all highway congestion is caused by non-recurrent conditions. 

During a non-recurrent incident, when lanes or entire highway sections must be temporarily 

closed, traffic managers would prefer to inform motorists of alternative routes around the 

congestion well in advance of the incident location. However, inappropriate traffic diversion 

plans will degrade the alternative routes and increase the travel time of the entire network 

(4).  

The purpose of designing route guidance and information systems is to improve 

system efficiency and assist drivers in making their route decisions. Multiple approaches 

exist to propose alternate routes to road users. Examples include shortest path, which 

assigns users to the shortest path or path with the lowest travel time, User Equilibrium 

(UE), which assigns users to the paths of lowest individual travel time, and System Optimal 

(SO), which finds paths to minimize the total travel time of the system (5). The routing of 

traffic, which is a core component in traffic management, entails a well-known dilemma. 
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Traffic managers seek to reach system optimal, which may discriminate against some 

users in favor of others, while the users want to use their shortest path to minimize their 

cost, which may result in a lower system performance (6). Thus, inefficient or unfair traffic 

assignments cause users to travel on long paths or discourage them from accepting the 

route guidance, which could reduce the potential impact of the route guidance system (7). 

To solve this dilemma, some researchers implemented both user equilibrium and system 

optimal in their proposed road guidance systems (5, 8).  

In addition, the routes proposed by route guidance systems should be 

disseminated to travelers to enable them to make more informed route switching decisions 

(9). Advanced Traveler Information Systems (ATIS) have been widely used in recent years 

to assist drivers’ decisions and enable them to use the existing traffic road capacities more 

efficiently and improve overall traffic flow in the congested network. Understanding these 

influences and driver behaviors are important to improve route guidance systems. 

However, most traffic assignment models assume a rigid behavioral tendency for drivers 

and categorize them into classes such as UE, SO, or a combination of both (10). When a 

non-recurrent incident causes an unexpected congestion, drivers might revise their travel 

choices. The drivers explore the new traffic conditions and adjust their travel patterns 

accordingly (11). They may either divert to the new routes based on their congestion 

perception, or use the information provided by ATIS. Therefore, considering driver behavior 

can improve the effectiveness of the traffic assignment models in the operational context. 

In this study, a traffic diversion model is developed to propose the optimum alternate routes 

to drivers during non-recurrent traffic congestion events such as accidents or work zones. 

The developed model minimizes the total travel time in the entire network considering the 

link closure and the proposed alternate routes for the travelers. While some travelers utilize 

the new alternate routes to reach their destination, other travelers follow the UE traffic 
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assignment in the network. This paper is organized as follows. The next section presents 

the methodology of the problem including a description of the problem, model, and solution 

algorithms. The efficiency of the proposed approach is then evaluated, and the 

computational results are analyzed. Finally, conclusions and research extensions are 

discussed. 

3.1.1 Literature Review 

Several studies have been conducted to improve the network congestion caused 

by non-recurrent incidents. These studies examined the impacts of alternate routes on the 

network performance, evaluated driver behavior, and investigated route guidance systems 

and traffic assignment methodologies used in traffic diversion schemes. 

Some studies evaluate drivers’ behaviors during unexpected congestion. For 

example, Khattak et al. examined short-term commuter response to unexpected 

congestion (12). Discrete choice models were used to model drivers’ diversion and return 

behavior to study factors that influence their decisions. The results showed the delay 

information received from radio traffic reports, longer delays and longer travel times, and 

number of alternate routes used in the past increase the probability of diversion. Moreover, 

Horowitz et al. determined the degree of alternative route selection from a rural freeway 

due to implementation of a traffic-responsive variable message signage system in a work 

zone (13). The message signs gave real-time estimated travel time to the end of the work 

zone without any information related to the alternative routes. The field study results 

indicated that a large percentage of drivers did not divert; a behavior that might be related 

to the lack of travel time information for alternative routes. Therefore, a traffic variable 

message sign system, which provides the travel times through the work zone and 

alternative routes, could encourage more drivers to divert. In addition, Khattak et al. 

assessed the effects of ATIS on the travel behavior based on the alternatives and 
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information provided to travelers (14). Their results indicated that travelers are most likely 

to respond and overcome their behavioral inertia when faced with unexpected congestion 

with specific quantitative delay information. In another study, Kattan et al. investigated 

drivers’ behavioral response to the real-time information providing traffic updates and 

advisory detours (11). The results show the drivers’ response to Variable Message Signs 

(VMS) can be useful for ATIS in response to network disruptions. 

Traffic diversion schemes are one of the traffic network management strategies for 

recurrent and non-recurrent traffic congestion. Relevant studies have investigated the 

effectiveness of traffic diversion on the performance of the transportation network. Bhavsar 

et al. developed a generic decision support system that could predict the effects of a traffic 

diversion on a transportation network (15). A support vector regression (SVR), which is a 

set of regression algorithms based on the underlying theory of support vector machines 

(SVM), was used for this purpose. To train the SVR model, two highway networks in 

southern California were used, and then the model was tested on a third new network in 

Vermont. The results indicated that based on the size of the training data set and the 

number of transportation networks used in training, the SVR was capable of predicting the 

traffic diversion impacts with a reasonable degree of accuracy. In another study, Hu et al. 

proposed a systematic framework to investigate the potential diversion points and evaluate 

the value of traffic information provided to drivers by variable message signs (16). They 

applied Dynasmart-P to conduct relevant simulation experiments. Their framework was 

based on traffic assignment under the UE principle. Moreover, Aved et al. presented the 

Real-Time Route Diversion System (RTRDS) (17). The Dynasmart-P traffic simulator was 

used by RTRDS to generate optimal route diversions based on available real-time and 

historical traffic information with the goal of optimizing the overall system performance. In 
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these two studies, the framework was based on traffic assignment under UE or SO and did 

not consider both user and system in the same time.  

In addition, some researchers implemented both UE and SO in their proposed road 

guidance systems. Jahn et al. proposed a Constrained System Optimum (CSO) approach 

that guarantees fairness comparable to that of the ordinary SO traffic assignment (5). They 

proposed a model which implements a SO approach, but considers the individual needs 

by adding constraints to ensure that users are assigned to the acceptable routes. They 

considered an upper bound (φ) on the normal unfairness, which is a ratio of the length of 

the experienced path to the shortest path for the same OD pair. Therefore, only paths with 

normal unfairness less than φ are feasible in their constrained system optimal model. They 

used a column generation method to solve the CSO problem. In another study, Schulz and 

Moses (18) presented a theoretical analysis of the route guidance system proposed by 

Jahn et al. They analyzed the efficiency and fairness of the normal unfairness factor to 

ensure that routes suggested to users are not much longer than shortest paths for the 

prevailing network condition. In another study, game theory was used to solve the conflict 

between UE and SO (19). They defined a concept of satisfactory degree for system and 

user to achieve a more optimum traffic routing and proposed an integrated-equilibrium 

model based on double–objective optimization. In their study, the objective functions are 

minimizing the total travel time in the network and the drivers’ travel time, respectively. 

However, the application of their models in a network with a disruption has not been 

discussed. A network with a closed link due to an unexpected incident has a different traffic 

pattern. Therefore, minimizing the total effects of the disruption on the network 

performance is the purpose of this study. 

3.1.2 Contribution 

The purpose of this study is to develop a traffic diversion model, which proposes 
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optimum alternate routes to the travelers during a network disruption. The objective of the 

developed model is to minimize the total travel time in the entire network considering the 

link closure and the proposed alternate routes for the travelers. Based on previous 

research, the authors assume that some travelers utilize the proposed alternate routes to 

reach their respective destinations, while others follow UE traffic assignment in the network 

(11). Models and algorithms developed in this study allow assessment of diversion routes 

that optimize network performance while considering drivers’ behaviors in following the 

proposed alternate routes during a closure. This system is of interest to traffic network 

managers to help them divert traffic from the disrupted area and improve throughput 

through the congested region. 

3.2 Methodology  

3.2.1 Definition of Variables and Notation 

Data sets, parameters, and variables used for this model are given as follows.  

𝐴 is a set of links in the network 

𝑁 is a set of nodes in the network 

𝑍 is a set of zones in the network 

𝑅 is a set of origin nodes where  𝑅 ⊂ 𝑍 

𝑆 is a set of destination nodes where  𝑆 ⊂ 𝑍 

𝐾𝑟𝑠 is a set of routes between origin destination pair 𝑟𝑠 

𝑎 is a link in the network, 𝑎 𝜖 𝐴 

𝑛 is a node in the network, 𝑛 𝜖 𝑁 

𝑟 is a origin node, 𝑟 𝜖 𝑅 

𝑠 is a destination node, 𝑠 𝜖𝑆 

𝑘 is a route in the network, 𝑘 𝜖 𝐾𝑟𝑠 

𝑐 is closure identification index;  

𝑁𝑐 is a subnetwork around the closed links 𝐴𝑐 with a disrupted link 

𝐴𝑐 is a set of closed links 

𝑎𝑐 is a closed link, 𝑎𝑐 ∈ 𝐴𝑐 

𝐼  is a set of origin nodes in the subnetwork 𝑁𝑐 and 𝑖 is a origin node where  𝐼 ⊂ 𝑍𝑁𝑐  
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𝐽  is a set of destination nodes in the subnetwork 𝑁𝑐 and 𝑗 is a destination node where 

 𝐽 ⊂ 𝑍𝑁𝑐 

𝑥𝑎 is number of travelers on the link 𝑎 

𝑥𝑎
𝑁𝑐 is number of travelers on the link 𝑎 in the subnetwork  𝑁𝑐 

𝑡𝑎 is travel time on the link 𝑎 

𝑡𝑎
𝑁𝑐 is travel time on the link 𝑎 in the subnetwork 𝑁𝑐 

𝑓𝑟𝑠 is number of travelers between OD pair 𝑟𝑠 

𝑓𝑟𝑠𝑘 is number of travelers on route 𝑘 connecting OD pair 𝑟𝑠 

𝑡𝑟𝑠𝑘(𝑓𝑟𝑠𝑘) is travel time on route 𝑘 between OD pair 𝑟𝑠  

𝑓𝑖𝑗 is number of travelers between OD pair 𝑖𝑗 on the subnetwork 𝑁𝑐 

𝑓𝑖𝑗𝑘
𝑁𝑐 is number of travelers on route 𝑘 connecting OD pair 𝑖𝑗 in the subnetwork 𝑁𝑐 

𝑡𝑖𝑗𝑘
𝑁𝑐 (𝑓𝑖𝑗) is the travel time on route 𝑘 between OD pair 𝑖𝑗 in the subnetwork 𝑁𝑐 

𝐼𝐴𝑐 is a set of origin nodes for the closed links 𝐴𝑐 in the subnetwork 𝑁𝑐 where  𝐼𝑐 ∈ 𝐼 

𝐽𝐴𝑐 is a set of destination nodes for the closed link 𝐴𝑐 in the subnetwork 𝑁𝑐 where  𝐽𝑐 ∈  𝐽 

𝑑𝑎𝑐  is the total volume using the closed links 𝑎𝑐 

𝑑𝑖𝑗
𝑎𝑐  is the proportion of 𝑑𝑎𝑐 attributed to the trips between OD pair 𝑖𝑗 ∈  𝐼𝑐  𝐽𝑐  

𝑑𝑖𝑗
𝐴𝑐  is an overall OD matrix for the traffic on closed links 𝐴𝑐  

𝑓𝑖𝑗𝑘
𝑁𝑐∝ is number of travelers on route 𝑘 connecting OD pair 𝑖𝑗 with only ∝ percentage of 

the closed link OD demand 

𝑓
𝑖𝑗𝑘

𝑁𝑐𝛽
 is number of travelers on route 𝑘 connecting OD pair 𝑖𝑗 with only 𝛽 percentage of 

the closed link OD demand 

𝑁𝑠 is a set of nodes upstream of the closed link (start nodes) 

𝑁𝑒 is a set of nodes downstream of the closed link (end nodes) 

𝑛𝑠 is a start node upstream of the closed link where 𝑛𝑠 ∈ 𝑁𝑠 

𝑛𝑒 is an end node downstream of the closed link where 𝑛𝑒 ∈ 𝑁𝑒 

𝑃𝑠𝑒 is the set of available paths between a start node 𝑛𝑠 and an end node 𝑛𝑒 

𝜌𝑠𝑒 is a path between a start node 𝑛𝑠 and an end node 𝑛𝑒 where 𝜌𝑠𝑒 ∈ 𝑃𝑠𝑒 

𝐴𝜌𝑠𝑒
 is a set of links on path 𝜌𝑠𝑒 
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3.2.2 Problem Definition  

Given G (N, A) is a traffic network where A is a set of links and N is a set of nodes. 

A node can represent an origin node (𝑟), a destination node (𝑠), and/or a junction of 

links (𝑛). A network with multiple origins 𝑟 𝜖 𝑅 and destinations  𝑠 𝜖 𝑆 is considered. Also, a 

set of OD vehicle trips, expressed as the number of travelers 𝑓𝑟𝑠  going from origin 𝑟, to 

destination 𝑠 is given. Thus, 𝑓𝑟𝑠𝑘 is the number of travelers on route 𝑘 between origin 𝑟 and 

destination 𝑠 and 𝑡𝑟𝑠𝑘 is the travel time for traveling between 𝑟𝑠 along route 𝑘, which is a 

function of 𝑓𝑟𝑠𝑘. 

3.2.3 Subnetwork  

When a closure 𝑐 occurs on a link 𝑎𝑐 or a set of links 𝐴𝑐 due to an incident, it results 

in either capacity reduction or a full closure along that link. The closure or reduction in the 

link capacity could cause a significant congestion upstream of the closure and the traffic 

congestion could extend over a large area. To reduce the complexity of the model and to 

ensure that the results are obtained in a timely manner, a subnetwork needs to be defined 

around the closure, which covers the significantly affected areas (20). Therefore, a linear 

regression model, which is a function of the closed link’s demand and network topology 

can be used to estimate the radius of the affected area and define the subnetwork (chapter 

2). Nine models have been presented in chapter 2 for nine different level increases in travel 

time to find the radius of the affected area around the closure. The general form of the 

model to define a subnetwork is as follows:  

𝑅 =  𝐴 + 𝐵 ∗ 𝐴𝑇4 + 𝐶 ∗ 𝑑𝐴𝑐 + 𝐷 ∗ 𝑆𝑃𝑇1 + 𝐸 ∗ 𝑆𝑃𝑇2           (3.1) 

where 𝑅 is the radius of the subnetwork from the middle of the closed link, 𝐴𝑇4 is one when 

the closed link is in area type 4, which is suburban residential area and zero otherwise, 𝑑𝐴𝑐 

is the closed link volume, and 𝑆𝑃𝑇1 and 𝑆𝑃𝑇2 are the travel times on the mutually exclusive 

alternate routes with the first and second lowest travel time around the closure. Parameters 
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A, B, C, D, and E are the model’s coefficients, which have different values based on the 

significant level increase in link travel time used to define the affected links in the network. 

To define a subnetwork with high sensitivity, when the subnetwork radius is a distance from 

the closed link to the farthest link with 5%, 10%, and 15% increase in travel time, 𝐴𝑇4, 𝑑𝐴𝑐, 

and 𝑆𝑃𝑇2 are significant variables in the model. Moreover, to define a subnetwork with 

medium sensitivity 𝐴𝑇4, 𝑑𝐴𝑐 and 𝑆𝑃𝑇1 are significant variables in the model to extract a 

subnetwork with affected links that experience a 20%, 25%, and 30% increase in travel 

time. However, 𝑑𝐴𝑐and 𝑆𝑃𝑇2 are the only significant variables for the model to define a low 

sensitivity subnetwork when a 35%, 40%, and 45% increase in travel time are considered 

for the affected links.  

3.2.3.1 Subnetwork OD demand estimation 

As a subset of the complete network, the subnetwork zonal structure is defined as 

a set of origin zones with origin nodes 𝐼 and a set of destination zones with destination 

nodes 𝐽. Therefore, the OD trips in the subnetwork are the number of vehicle trips traveling 

from origin node 𝑖 to destination node 𝑗 where ∀𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽. Inspired by the work of Zhou, 

Erdogan, and Mahmassani (21), to estimate the origin-destination matrix for the 

subnetwork, the first step is generating path flow patterns in the complete network ( 𝑓𝑟𝑠𝑘). 

In this study, the user equilibrium model is used to generate these patterns. Once the 

subnetwork is defined and its boundary is specified, all origin and destination nodes that 

have traffic passing through this region are named as external nodes, while those lying 

within this region are labeled internal nodes. Also, all the OD pairs in the network are 

categorized into four groups: 1- Internal-Internal (I-I), 2-External-External (E-E), 3-Internal-

External (I-E) and 4- External-Internal (E-I), as shown in Figure 3-1. 
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Figure 3-1. Four Types of OD Pairs with Respect to Sub Network (21) 

 
For I-I OD pairs, the initial vehicle trips from 𝑖 to 𝑗 (𝑓𝑖𝑗

𝐼 ) are assumed to be same as 

the complete network OD matrix (Initially, set 𝑓𝑖𝑗 = 𝑓𝑟𝑠 for I-I OD pairs). For E-E, E-I and I-

E pairs, the following equation is used to estimate the number of vehicle trips between 

each OD pair: 

𝑓𝑖𝑗 = ∑ 𝑓𝑟𝑠𝑘𝜎𝑟𝑠𝑘
𝑖𝑗

𝑅,𝑆,𝐾

                 (3.2) 

where 𝜎𝑟𝑠𝑘
𝑖𝑗

 is the path flow indicator for path flow 𝑓𝑟𝑠𝑘  passing, or traveling into or from the 

subnetwork. 𝜎𝑟𝑠𝑘
𝑖𝑗

 is 1 if zone 𝑖 is the first entering zone into the subnetwork and zone 𝑗 is 

the last exit zone form the subnetwork, or zone 𝑖 is the first entering zone into the 

subnetwork and zone 𝑗 is in the subnetwork, or zone 𝑖 is in the subnetwork and zone 𝑗 is 

the last exit zone form the subnetwork. The algorithmic steps to solve Equation (3.2) are 

described as follows;  

 Initialize 𝑓𝑖𝑗 = 𝑓𝑖𝑗
𝐼  for ∀𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽, 

 For all paths (𝑘) from origin 𝑟 to destination 𝑠 on the complete network, scan the 

path node sequence, 

 Identify the first entering zone and the last exit zone in the subnetwork as origin 

node 𝑖 and destination node 𝑗 for all E-E OD pairs, identify the first entering zone 

Sub-network 

Complete network 

I-I 

E-I 
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in the subnetwork as origin node 𝑖 for all E-I OD pairs, and identify the last exit 

zone in the subnetwork as destination node 𝑗 for all I-E OD pairs, 

 If path 𝑘𝑡ℎ ∈ 𝑘𝑟𝑠 is traveling in the subnetwork and origin 𝑖 and destination 𝑗 can 

be found for the path, then  𝑓𝑖𝑗 = 𝑓𝑖𝑗 + 𝑓𝑟𝑠𝑘 . 

Therefore,   𝑓𝑖𝑗, which is the total number of vehicle trips traveling from origin node 

𝑖 to destination node 𝑗 in the subnetwork 𝑁𝑐, is estimated. 

3.2.3.2 Closed link OD demand estimation 

In addition, the OD matrix for the traffic on the closed link must be estimated. To 

do so, 𝑑𝑖𝑗
𝑎𝑐 is defined as the proportion of 𝑑𝑎𝑐  attributed to the trips between OD pair 𝑖𝑗 and 

estimated as follows: 

𝑑𝑖𝑗
𝑎𝑐 = ∑  𝛿𝑖𝑗𝑘

𝑎𝑐 × 𝑓𝑖𝑗𝑘

𝑘∈𝐾𝑖𝑗

               𝑖 𝜖 𝐼 , 𝑗 𝜖 𝐽       (3.3) 

where 𝛿𝑖𝑗𝑘
𝑎𝑐  is the path flow indicator which is one if link 𝑎𝑐  is on the path 𝑘 between 𝑖 and 𝑗 

and zero otherwise. 

Note that, 

𝑑𝑎𝑐 = ∑ ∑ 𝑑𝑖𝑗
𝑎𝑐

𝑗∈𝐽𝑎𝑐𝑖∈𝐼𝑎𝑐

                                                 (3.4) 

If more than one link is closed, an overall OD matrix for the traffic on the closed 

links is estimated by the following equation,  

𝑑𝑖𝑗
𝐴𝑐 = ∑  𝛾𝑖𝑗𝑘

𝐴𝑐 × 𝑓𝑖𝑗𝑘

𝑘∈𝐾𝑖𝑗

                    𝑖 𝜖 𝐼′, 𝑗 𝜖 𝐽′      (3.5) 

where 𝛾𝑖𝑗𝑘
𝐴𝑐  is one if  ∑ 𝛿𝑖𝑗𝑘

𝑎𝑐
𝑎𝑐∈𝐴𝑐

 ≥ 1, which means at least one of the closed links is on the 

path 𝑘 between 𝑖 and 𝑗 and zero otherwise. Furthermore, origin and destination nodes for 

the traffic on the closed links are obtained as follows: 

𝐼𝐴𝑐 , 𝐽𝐴𝑐 = { 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 | ∑ 𝛿𝑖𝑗𝑘
𝑎𝑐

𝑎𝑐∈𝐴𝑐
 ≥ 1}               (3.6) 
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3.2.4 Traffic Diversion Model and Algorithms 

The goal of this model is to provide alternate routes around the network disruption 

to divert traffic and mitigate traffic congestion. The problem aims at determining the most 

efficient alternate routes that minimize the total impact of the closed link on network 

performance. The total travel time of the affected area (subnetwork) is considered to 

measure the impact of the closed link on the system. Moreover, a travelers’ route choice 

decision is modeled based on the UE traffic assignment. While user equilibrium satisfies 

the drivers’ goals, it does not necessarily minimize the total travel time of the system (5). 

In this study, the total travel time of the system is considered to show the impacts of the 

closure. The study assumes that traffic information such as an alternate route and its travel 

time is provided for drivers upstream of the closure and disseminated via ATIS. Also, a 

certain percentage of drivers are assumed to divert to the recommended alternate routes, 

while others are assumed to divert based on the UE assignment. To estimate this 

percentage, many studies have been conducted on drivers’ behavioral response to the 

traveler information systems (9-14). The following shows the algorithmic steps to find the 

optimum alternate route: 

Step 1. Pre-algorithmic step 

Apply the User Equilibrium (UE) model to load the OD demand onto the network 

in the normal condition (network without any closed link) to generate the traffic pattern 

(𝑓𝑟𝑠𝑘) in the network between each OD pair 𝑟𝑠 and estimate travel time on the links (𝑡𝑎). 

Identify closed links 𝐴𝑐 and define the subnetwork 𝑁𝑐 around the closure based on the 

closed link demand and network topology (discussed in section 3.2.3) and determine OD 

demand for the subnetwork (𝑓𝑖𝑗) and for the closed links volume (𝑑𝑖𝑗
𝐴𝑐). 

Close the specified links and apply the UE model to the subnetwork (affected 

subnetwork, which is a subnetwork with a closed link) to generate the traffic pattern (𝑓𝑖𝑗𝑘
𝑁𝑐) 
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on the affected network and estimate the link volume (𝑥𝑎
𝑁𝑐). Define a set of start (𝑛𝑠  𝜖 𝑁𝑠) 

and end (𝑛𝑒  𝜖 𝑁𝑒) nodes upstream and downstream of the closed link in the subnetwork. 

Find all possible paths 𝜌𝑠𝑒  between these nodes (𝜌𝑠𝑒  𝜖 𝑃𝑠𝑒  ) and identify all links on each 

path (𝐴𝜌𝑠𝑒
). 

Compare the links volume on the normal subnetwork (without any closed link) to 

the affected subnetwork and rank all available paths (𝑃𝑠𝑒) based on the total changes in 

the links volume. Use Equation 3.7 to rank the paths from high value changes in the links 

volume to low values.  

∑ (𝑥𝑎
𝑁𝑐 − 𝑥𝑎)

𝑎∈𝐴𝜌𝑠𝑒

     ∀𝜌𝑠𝑒  𝜖 𝑃𝑠𝑒                       (3.7) 

Step 2. Initial Path 

Set 𝑖 = 0 and identify a path (𝜌𝑠𝑒̅̅ ̅̅ ) which contains links with most changes among 

all the paths between each start and end nodes as an initial alternate route. 

𝜌0 = 𝜌𝑠𝑒̅̅ ̅̅ = max { ∑ (𝑥𝑎
𝑁𝑐 − 𝑥𝑎)

𝑎∈𝐴𝜌𝑠𝑒

 }       𝜌𝑠𝑒  𝜖 𝑃𝑠𝑒       (3.8) 

Step 3. Alternate Route Evaluation 

1. Identify 𝜌𝑖  as alternate route and set 𝑥𝑎
𝑁𝑐 = 0 for all links in the subnetwork. 

2. Assign only ∝ percentage of the closed link demand 𝑑𝑖𝑗
𝐴𝑐 to the alternate route, which 

results in 𝑓𝑖𝑗𝑘
𝑁𝑐∝ =∝∗ 𝑑𝑖𝑗

𝐴𝑐   ∀𝑖 ∈ 𝐼𝑐 , ∀𝑗 ∈  𝐽𝑐, 𝑘 = 𝑓 (𝐾𝑖𝑗 , 𝜌𝑖) and update these links’ volume 

(𝑥𝑎
𝑁𝑐𝛼) and travel time (𝑡𝑎

𝑁𝑐𝛼) in the network. 

3. Apply the UE traffic assignment to the updated network with the remaining of the 

closed link’s OD demand  (𝛽 = 1−∝) ∗ 𝑑𝑖𝑗
𝐴𝑐and with the all demand of the other ODs 

which resulted in (𝑓
𝑖𝑗𝑘

𝑁𝑐𝛽
) and (𝑥𝑎

𝑁𝑐𝛽
). 
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4. Add volumes for each link from the UE assignment and alternate route assignment 

as follows: 𝑥𝑎
𝑁𝑐 = 𝑥𝑎

𝑁𝑐𝛼 + 𝑥𝑎

𝑁𝑐𝛽
 and updated link’s travel time (𝑡𝑎

𝑁𝑐). 

5. Estimate the total travel time of the updated subnetwork considering the link closure 

and the proposed alternate route:  

𝑇𝑁𝑐𝑖 =  ∑ 𝑥𝑎
𝑁𝑐 ∗ 𝑡𝑎

𝑁𝑐

𝑎

                                    (3.9) 

Step 4. Best Known Solution 

1. Remove 𝜌𝑖 from the set of paths (𝑃𝑠𝑒), set 𝑖 = 𝑖 + 1, identify the next alternate path 

with the most changes in the links volume among all the paths, and repeat all sub-

steps related to step 3.  

2. If 𝑇𝑁𝑐𝑖(𝜌𝑖) < 𝑇𝑁𝑐𝑖(𝜌̅), set 𝜌𝑖= 𝜌̅ as the alternative route. 

Step 5. Stop Criteria 

Repeat steps 3 and 4 for all ranked paths identified in step 1. If CPU time is more 

than ∆, stop and set 𝜌̅ as alternative route, otherwise go to step 4.1. 

3.3 Experiments, Results, and Analysis  

A set of simulation experiments are conducted to examine the performance of the 

traffic diversion model described above. In these experiments, the traffic diversion model 

is applied for the Tarrant County network in north Texas. As illustrated in Figure 3-2, the 

network consists of about 7500 nodes and 20000 links, which contain several freeways 

and arterials that extend over multiple cities. A demand pattern that indicates a typical 

evening peak period is considered. The model is used to recommend alternate routes in 

non-recurrent congestion scenarios due to an incident on the freeway facilities.  Under 

normal conditions (without any incident in the network), travelers are assumed to follow 

their historic user equilibrium routes. In the case of a freeway incident (accident, work zone, 

etc.), when a lane or entire freeway section must be temporarily closed, variable message 
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signs are assumed to show the selected alternate route along the freeway before the 

closure. The study assumes that a certain percentage of travelers follow the recommended 

route and others decide to divert based on their congestion perception. To estimate this 

percentage, many studies have been conducted on drivers’ behavioral response to the 

traveler information systems (9-14). The drivers’ response is a function of various factors 

such as trip characteristics, the number of available alternate routes, delay information and 

duration (12). Based on the literature (11), in this study, 40% of drivers are considered to 

follow the suggested alternate route and the other 60% are assumed to follow UE traffic 

assignment routes. To present a none-recurrent congestion scenario, a hypothetical 

incident is assumed to close just a number of lanes or the entire freeway section. 
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Figure 3-2. Tarrant County Network 
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The first set of experiments examines the effect of the subnetwork size on the 

traffic diversion model. A link with a 4800 vehicles per hour volume on state highway 121 

is closed and five subnetworks with different sizes are considered around the closure as 

illustrated in Figure 3-3. As shown in the figure, the subnetworks vary in radius, which are 

estimated from five models that were explained in section 3.2.3. These models were 

developed based on the distance between the closed link and the farthest link with 5%, 

15%, 25%, 30%, and 40% increases in travel time, which resulted in different radii of 5, 4, 

3.5, 3, and 2.5 miles, respectively. For each experiment, the percentage savings in the total 

travel time is estimated by comparing the total network travel time before (do-nothing 

scenario) and after deploying the traffic diversion model. To have a fair comparison 

between the results, a subnetwork with a radius of five miles is considered as a test 

network. The alternate routes, which are proposed for each experiment, are considered for 

the traffic assignment in the test network. Finally, the total network travel times are 

estimated for each experiment and compared to the do-nothing scenario. 

Figure 3-3 illustrates the travel time savings and CPU execution times for the five 

subnetworks. The results show that bigger subnetworks result in more efficient alternate 

routes as indicated by an increase in the total travel time savings. However, as shown in 

the figure, the CPU execution times are increased with the size of the subnetworks. A 

practical choice might be the subnetworks with medium size (e.g. 3.5 or 4 miles), which 

provide moderate travel time savings and have acceptable CPU execution times, to use in 

the traffic diversion model. 
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Figure 3-3. The Effect of Subnetwork Size 

 
The second set of experiments examined the performance of the traffic diversion 

model considering the closure on the links with different levels of traffic volume. For this 

purpose, three experiments are conducted for the low, medium and high levels of traffic 

volume. In three different experiments, links with 2300, 5400, and 8500 vehicles per hour 

are considered to be closed for this purpose. Figure 3-4 presents the results of these 

experiments. As shown in Figure 3-4, when comparing to the do nothing scenario in which 

the traffic diversion model is not applied, the best network performance is achieved in the 

case when a closure occurs on a link with a high level of traffic volume (6.3% travel time 

savings). The results show the importance of applying the traffic diversion model in a 
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disrupted network to improve network performance especially when an incident occurs on 

links with a high traffic volume. 

Figure 3-4. The Effect of Link Traffic Volume 

 
The third set of experiments assesses the accuracy of the model by limiting the 

availability of links that are utilized in the alternate routes.  For this purpose, only high-level 

links are assumed to be available for alternate paths and the two experiments are 

compared. In the first experiment, alternate paths can be selected from any available links 

in the network. For the second experiment, alternate paths can be only selected from 

freeways and major arterials. In each experiment, the thirteen best alternate paths are 

considered in each case, and the total travel time of the network is estimated and compared 

to the do nothing scenario. As shown in Figure 3-5, limiting the routes by using only 

freeways and arterials has a small effect on the total travel time of the network. Therefore, 

considering freeways and major arterials for alternate paths could be a suitable approach 

as it does not have a big effect on the network performance and also avoids diverting traffic 

to minor arterials.  
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Figure 3-5. The Effect of the Links Availability in Selecting Alternate Routes 

 

3.4 Conclusions  

This paper has presented a traffic diversion model to divert travelers to optimum 

alternate routes around a disruption. The model estimates the current network conditions 

with a disruption in the network, compares the current conditions to the normal conditions, 

and proposes optimum alternate routes to improve the overall network performance. The 

travelers’ route choice behavior is also considered in this model. A certain percentage of 

travelers is assumed to divert to the proposed alternate routes and others follow the 

alternate route of their choice based on UE traffic assignment. A set of simulation 

experiments is conducted using the Tarrant county network in north Texas. The results 

show the ability of the model to improve the overall network performance during a 

hypothetical disruption scenario.  

Traffic networks are highly dynamic with numerous sources of uncertainties on the 

demand and supply sides. Determining traffic flow patterns and deploying efficient traffic 

management schemes could be challenging especially if no adequate historical traffic data 
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is available. A major extension of the current study is to model the traffic network at high 

reliability by capturing the temporal and spatial demand-supply interactions and associated 

congestion. This requires utilizing Dynamic Traffic Assignment (DTA), which models the 

interaction between travelers' behavior and congestion dynamics. The proposed traffic 

diversion methodology would adopt a DTA model, which is relatively consistent with 

travelers' behavior and incorporates the tempo-spatial changes in the demand and supply 

in the traffic network.  
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Chapter 4. A Decision Support System for Traffic Diversion around Construction Closures 

4.1 Introduction 

Traffic congestion has become one of the serious problems in most urban areas.  

In the last three decades, vehicle miles traveled (VMT) have doubled on U.S. highways. 

However, the total number of highway lane miles has increased by only 5% during the 

same period (1). As highway infrastructure ages and road congestion increases, roads 

need to be expanded and reconstructed. Therefore, the federal and state government 

agencies have considered the maintenance, rehabilitation, and upgrading of the existing 

highway networks as well as constructing new ones, which results in creating many 

construction sites and work zones on highways. Furthermore, work zones have led to an 

unavoidable interruption in normal traffic flows and have resulted in traffic congestion, more 

vehicle emissions, and traffic safety problems (2). About 50% of all highway congestion is 

caused by non-recurrent conditions, such as traffic incidents, work zones, weather 

conditions, and special events. Also, about 24% of non-recurrent congestion and 10% of 

overall congestion resulted from work zones on freeways which led to an annual fuel loss 

of over $700 million (3). In 2010, there were 87,606 crashes and 576 auto-related fatalities 

occurred in work zones in the United States. These crashes included 26,282 injury crashes 

and 60,448 property damage only crashes (4). In addition to delay and safety problems, 

work zone activities have an adverse impact on the environment. Work zones cause 

additional vehicle emissions, which result from reduced speeds and queueing.  

During roadway construction, when lanes or entire highway sections must be 

temporarily closed, it would be desirable to inform motorists of alternative routes around 

the construction site well in advance of the project location. This would help reduce traffic 

demand through the construction site, enhance the safety of the workers and motorists, 

reduce traffic delays, and minimize fuel wastage and emissions. However, inappropriate 
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traffic diversion plans will degrade the alternate routes and increase travel time of the entire 

network (5). The advent of personal computers with high computing power as well as 

readily available maps and network algorithms allow for a more systematic and optimal 

approach to developing diversion routes around major construction sites. The objective of 

the proposed study is to develop a decision support tool with a user-friendly graphical 

interface to allow development of optimal alternate routes around highway construction 

sites. This paper is organized as follows. The next section presents the overall 

methodology of the problem. The structure of the proposed system is then described. Next, 

modules, models, and algorithms of the system is presented. Finally, a summary and some 

conclusions are provided, along with a discussion of promising areas of future work. 

4.1.1 Literature Review 

Significant research efforts have been devoted to improving traffic conditions in 

work zone corridors. Related studies could be classified as follows: work zone traffic delay 

estimation, users and agencies cost optimization, and analysis of the impacts of traffic 

information systems on the network performance. In addition, some other studies 

investigated the impacts of alternative routes on the performance of the transportation 

network related to recurrent and non-recurrent traffic congestion.  

Major highway construction projects result in traffic congestion, which causes 

driver dissatisfaction, road user delay, and traffic crashes. Relevant studies such as (6) 

and (7) investigated the issue of work zone traffic delay and used their results to develop 

an intelligent decision support system. Jiang and Adeli used neural network and 

optimization techniques to present a macroscopic computational model for estimating 

traffic delays in freeway work zones based on traffic flow theory (6). The model can be 

used as an intelligent decision support system to investigate the impact of various factors, 

such as number of lane closures and darkness, and find the optimum work zone segment 
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length and optimum starting time. In another study, they developed an object-oriented (OO) 

model for freeway work zone capacity, queue delay and length estimation (8). This model 

also was applied to an advanced intelligent decision support system, called IntelliZone 

(intelligent support system for work zone traffic management). In addition, Karim and Adeli 

presented an adaptive computational model for work zone capacity and delay estimation 

(7). Their model considered several parameters such as the number of open lanes and 

truck percentage. A radial-basis function neural network model was used to estimate the 

work zone capacity, and a deterministic traffic flow model based on the estimated work 

zone capacity was used to compute queue delays and lengths. However, they did not 

discuss about the alternative routes or diversion plans in their models.  

Some other studies investigated simulation and optimization cost methods to 

optimize various controllable aspects of work zones. Lee proposed a scheduling model 

based on the route-changing behavior of road users (9). Their model was capable of 

computing the traffic delay of vehicles via microscopic simulation, and applying team ant 

colony optimization to find a near-optimal schedule. Moreover, Chen and Schonfeld 

developed a methodology to optimize work zone length for four alternative zone 

configurations with and without alternate route while considering the characteristics of the 

detour route bypassing the work zone (10). Their objective was to minimize the total cost, 

including agency cost, user cost, and crash cost. A total cost objective function was 

formulated and used to optimize work zone length for four alternatives. Moreover, Gallo et 

al. evaluated the effectiveness of a forced detour strategy and compared it to other traffic 

control strategies (11). Different strategies such as no suggested detour (all vehicles merge 

to one lane), a suggested detour (a choice was given to drivers to divert), and a full detour 

(all vehicle diverted) were considered. VISSIM microscopic simulation models were 

developed based on the traffic data collected from the work zone and parallel detour route. 
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The models estimated the impact of different strategies on drivers in terms of delay through 

the work zone. Their results suggested that the forced detour strategy decreased travel 

times and queue lengths in comparison to other strategies.  

With the development of Intelligent Transportation Systems (ITS), Automated 

Work Zone Information Systems (AWIS) have been employed along the construction sites 

to provide traffic information to the travelers and improve work zone conditions. Lee and 

Kim investigated the design, performance, and validation of AWIS, which provided road 

users real time travel information to avoid traffic delays in the construction corridor (12). 

Travel times were estimated from speed data and disseminated through portable and 

permanent changeable message signs on site and through the project website. Their 

results showed that implementation of the AWIS caused a 17.5% reduction in the peak 

hour traffic demand through the work zone with a significant volume increase on the detour 

freeways. Chu et al. also evaluated the effectiveness of an AWIS system, called CHIPS 

(Computerized Highway Information Processing System) (13). Traffic diversion, safety 

effects, and driver’s responses were studied to evaluate the effectiveness of the system. 

The driver survey indicated that most drivers liked the system. Also, the results showed the 

effectiveness of diverting traffic and promoting smoother traffic flow during congested 

periods. These systems only provide travel time information along the work zone corridors 

and do not inform motorists about alternate routes and related travel times around the 

construction sites. However, a system that provides both information would be more 

effective.  

Traffic diversion and offering alternate routes is one of the traffic network 

management strategies for recurrent and non-recurrent traffic congestion. Relevant studies 

have investigated the effectiveness of traffic diversion on the performance of the 

transportation network. Bhavsar et al. developed a generic decision support system that 
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could predict the effects of the traffic diversion on transportation networks (14). A support 

vector regression (SVR), which is a set of regression algorithms based on the underlying 

theory of support vector machines, was used for this purpose. To train the SVR model, two 

highway networks in southern California were used, and then the model was tested on a 

third new network in Vermont. The results indicated that based on the size of the training 

data set and the number of transportation networks used in training, the SVR was capable 

of predicting the traffic diversion impacts with a reasonable degree of accuracy. In addition, 

Govind et al. developed a PC tool known as TEMPO (Transportation Emergency 

Management Post-Incident Operations) (15). TEMPO was capable of identifying traffic 

diversion strategies around the disruption in an urban area network. TEMPO used heuristic 

approach to estimate the origin-destinations (OD) of the traffic on the closed links and then 

reassigned the estimated ODs to the remainder of the network based on an incremental 

assignment procedure. In another study, Hu et al. proposed a systematic framework to 

investigate the potential diversion points and evaluate the value of traffic information 

provided to drivers by variable message signs (VMS) (16). They applied Dynasmart-P to 

conduct relevant simulation experiments. Their framework was based on traffic assignment 

under the user equilibrium principle. Moreover, Aved et al. presented the Real-Time Route 

Diversion System (RTRDS) (17). Dynasmart-P traffic simulator was used by RTRDS to 

generate optimal route diversions based on available real-time and historical traffic 

information with the goal of optimizing the overall system performance. In these studies, 

the framework is based on the traffic assignment under user equilibrium or system optimal 

and do not consider both at the same time. In addition, some researchers implemented 

both user equilibrium and system optimal in their proposed road guidance systems. Jahn 

et al. proposed a Constrained System Optimum (CSO) approach that guarantees fairness 

comparable to that of the ordinary system optimum traffic assignment (18). They proposed 
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a model, which implements a system optimum approach, but considers the individual 

needs by adding additional constraints to ensure that users are assigned to the acceptable 

routes. However, the application of their models on the network with a disruption have not 

been discussed. A network with a closed link due to an unexpected incident has a different 

traffic pattern and minimizing the total effects of the disruption is investigated in the 

proposed system in this study.  

4.1.2 Contribution  

The objective of this study is to develop a decision support system with a user-

friendly graphical interface to identify optimum alternate routes around highway 

construction sites. The resulting tool is named TDS (Traffic Diversion System). TDS is 

capable of identifying alternate routes upstream of single or multiple lane closures. Models 

and algorithms applied in this system allow assessment of alternate routes that optimize 

network performance. While some travelers utilize the new alternate routes proposed by 

TDS to reach their destination, other travelers follow the UE traffic assignment in the 

network. This system is of interest to construction agencies and traffic network managers 

to help them divert traffic from the congested area and reduce traffic demand through the 

construction sites. An easy to use Graphical User Interface (GUI) that allows users to work 

easily with the system and a graphical representation of the roadway network around the 

construction sites are the advantages of using this system. While the developed system 

has application in diverting traffic around work zones, its proposed models, algorithms and 

features could be useful in other areas related to the intelligent transportation systems. 

4.2 Methodology 

The TDS package has many modules to help traffic network managers reduce 

congestion around construction closures and improve network performance. The software 

requires input data for a number of network variables to make recommendations about 
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traffic diversions due to construction activities on any links in the network (The input data 

is discussed in the next section). The traffic diversion module of TDS is based on an 

optimization model (Chapter 3). Initially, the entire network and its data are loaded. The 

user equilibrium assignment is applied in the next step to generate the path flow pattern in 

the normal network (network without any closure). The user then specifies and reduces the 

capacity of the links that are disrupted by construction activities. This capacity reduction 

could be by closing the entire link or just one or more lanes on that link. A subnetwork that 

includes all the affected links around the closed links is defined to reduce the complexity 

of the prediction model by considering only the affected links and not the entire network 

(Subnetwork is discussed in section 4.4.3). Next, the user equilibrium assignment is 

applied again on the affected network (with a closed link) to show the significant traffic 

volume changes on the links and identify possible alternate routes. Therefore, the traffic 

diversion model evaluates these alternate routes to minimize the total travel time of the 

network and recommends the optimum alternate routes.  

4.3 TDS Structure 

TDS is a decision support system, which is implemented in Java. TDS requires 

information about the roadway network around the construction site including nodes and 

links. In addition, Origin-Destination (OD) zones and the OD demand information is 

required for use in TDS. The input data are set up in four DAT files, a node file, a link file, 

a demand file, and a zone file. In the node file, each line represents a node in the network 

that could be an intersection or a centroid, and it has four fields, as follows: 

1- Node ID, an integer number assigned to the node by user.  

2- X coordinate, a number that represents node longitude. 

3- Y coordinate, a number that represents node latitude. 

4- Centroid indicator, is one if the node is a centroid and zero otherwise. 
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In the link file, each line represents a segment of the road between two nodes. 

Two-way streets are considered as two separate links. Each line has 12 fields, as follows: 

1- Link ID, an integer number assigned to the link by user. 

2- Start node, the node ID from which the link is started.  

3- End node, the node ID at which the link is ended. 

4- Length, a number that indicates the length of the link (miles or kilometers). 

5- Direction, is one if the link is a one-way street and two if the link is a two-way street. 

6- Functional classification, is a number between one to eight that indicates the type 

of the link (1= Freeway, 2= Principal Arterial, 3= Minor Arterial, 4= Collectors, 6= 

Freeway Ramp, 7= Frontage Road, and 8= HOV) 

7- Number of lanes, an integer number that indicates the total number of lanes 

available in one direction of the link. 

8- Free-flow Speed, the estimated speed under free-flow conditions (mph or kph). 

9- Link Capacity, capacity of the street (vehicles per hour per lane) 

10- Free-flow travel time, the estimated travel time under free-flow condition (minutes). 

11- Link Volume, a number that indicates the total peak hour traffic volume on the link 

(vehicles per hour). 

12- Area Type, is a number between one to five, which is a function of population and 

employment (1= Central Business District, 2= Outer Business District, 3= Urban 

Residential, 4= Suburban Residential, and 5= Rural). 

In the zone file, each line represents a zone in the network. Each zone contains a 

centroid node. The zone file includes two fields, as follows: 

1- Zone ID, an integer number assigned to the zone by user. 

2- Centroid node, the node ID of the centroid node in the zone. 
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In the demand file, each line represents an OD demand between an origin and a 

destination, and it contains three fields, as follows: 

1- Origin node, the node ID of the origin node. 

2- Destination node, the node ID of the destination node. 

3- Demand, a number that indicates the total demand between an origin and 

destination (vehicles). 

The data described above is used for a graphical representation of the network as 

well as in models and algorithms. In this study, the Tarrant County network in north Texas 

is used as a test network with 7500 nodes, 2000 links, and 400 zones. 

4.4 TDS’s Modules, Models and Algorithms 

TDS is a user-friendly graphical interface software developed in Java to be used 

by construction firms and traffic network managers. TDS is designed to improve traffic 

conditions in the disrupted network, especially around the construction activities. The 

system includes, graphical user interface, subnetwork extraction, vehicle routing, and a 

traffic diversion model. Once the system is open in Java, a graphical representation of the 

network, which is a map of links and nodes is displayed.  

4.4.1 Graphical User Interface  

The TDS tool has an easy-to-use GUI including a graphical representation of the 

roadway network around the construction site.  The network representation is similar to a 

Google or Yahoo map (Figure 4-1), with one notable difference. Each link of the network 

is a dynamic link. A dynamic link has two properties. First, when a cursor is clicked on the 

link (after selecting the “Select Link” button), detailed information about the link is 

displayed, including link ID, link length, number of lanes, link capacity, etc. Second, the 

above information can be edited as illustrated in Figure 4-2. For example, the number of 

links could be reduced from the existing three lanes to two, one or even zero, i.e. full 
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closure. This would allow rapid editing of link properties and the network in general. Once 

the network is edited, various modules of TDS such as vehicle routing and traffic diversion 

could be performed based on the latest roadway conditions. The GUI of TDS is capable of 

zooming and displaying the set of nodes, links, and node and link IDs by clicking on the 

related buttons. The system is also capable of displaying an affected area (subnetwork) 

and optimum alternate routes around the closed link, as well as the shortest paths with 

lowest travel time between two selected nodes. 

 

 

Figure 4-1. Loading the Network in TDS 
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Figure 4-2. Displaying and Editing Link information 

 

4.4.2 Vehicle Routing  

The vehicle routing module is the k-shortest path approach implemented in TDS. 

The routing module identifies k-number of shortest paths with the lowest travel time 

connecting any pair of nodes in the network. The first step is to specify the closed links in 

the network by clicking on links. To perform vehicle routing, “Find Shortest Path” button 

and then the origin and destination nodes are to be selected by the user. Origin and 

destination nodes can be selected on the map, by selecting the “Select Node” button and 

then selecting nodes in the network. Nodes also can be selected by entering the node IDs 

in the “From” and “To” boxes. In the next step, the user specifies the desired number of 

shortest paths (k). Once the node selection is made and number of shortest paths (k) is 

specified, the shortest paths are promptly highlighted on the screen. Any changes made in 

the network, such as closure of certain links or reduction in link capacities are considered 

in finding the shortest paths. Steps to perform vehicle routing are shown in Figure 4-3. The 

resulting links along the shortest path and the travel time of the path also display in a 

tabulated format for printing or saving as an Excel file.  

(3) Edit the link 

(1) Select the link 

button 

(2) Select the link in the map 
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Figure 4-3. Steps to perfume Vehicle Routing module 

 
4.4.3 Subnetwork 

The subnetwork, which is defined as the affected area around the closure, is used in 

the traffic diversion model in TDS instead of the entire network. Defining a subnetwork 

around the closed links, which covers all the affected areas, helps reduce the complexity 

of the model and ensures that the results are achieved in a timely manner (19). Once the 

closed link is specified by the user, a subnetwork is displayed and extracted from the 

complete network by clicking on the “Draw Affected Area” button available on the link 

information box as illustrated in Figure 4-4. Closed links are identified and highlighted in 

the network by clicking on the links by the user. Therefore, a modeling framework, which 

was proposed in chapter 2, is used to define the subnetwork radius. The general form of 

the model to estimate the subnetwork radius is as follows: 

𝑅 =  𝐴 + 𝐵 ∗ 𝐴𝑇4 + 𝐶 ∗ 𝑑𝐴𝑐 + 𝐷 ∗ 𝑆𝑃𝑇1 + 𝐸 ∗ 𝑆𝑃𝑇2           (4.1) 

where 𝑅 is the radius of the subnetwork from the middle of the closed link, 𝐴𝑇4 is one if the 

closed link is in area type 4 which is a suburban residential area and zero otherwise, 𝑑𝐴𝑐  is 

Step 3- Select Origin 

and Destination nodes 

or enter nodes ID 
Step 4- Specify the number 

of desired shortest paths 

Step 2- Click on the “Find 

Shortest Path” button 

Step 1- Close the link 

3-1 

3-2 

3-2 
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the closed links traffic volume, and 𝑆𝑃𝑇1 and 𝑆𝑃𝑇2 are travel times on the alternate routes 

with the first and second lowest travel time around the closure. Parameters A, B, C, D, and 

E are model’s coefficients with different values based on a selected significant level 

increase in link travel times to define the affected links in the network. Once a subnetwork 

is extracted, the origin-destination (OD) matrix of the subnetwork and OD matrix for the 

traffic on the closed links are then estimated. The process of estimating these OD matrices 

is explained in chapter3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4. Subnetwork Extraction 

4.4.4 Traffic Diversion Model 

The traffic diversion model in TDS provides optimum alternate routes for the user 

around the closed links to divert traffic and mitigate traffic congestion. Travelers are 

assumed to follow their historical user equilibrium routes before the closure. Closed links 

are identified in the network and a subnetwork, which contains all significant affected links 

around the closure, is extracted from the complete network. OD matrices for the 
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subnetwork and for the traffic on the closed links are then estimated (section 4.3). Next, 

the user equilibrium model assigns travelers to the routes in the subnetwork with a closed 

link. Links with significant increases in traffic volume after the closure are then identified. 

Possible alternate routes between a set of start and end nodes upstream and downstream 

of the closed links are considered. The alternate routes are then ranked based on the total 

traffic volume increases after the closure. Traffic diversion model evaluates these routes 

and the optimum alternate routes are proposed, which minimize the total travel time of the 

subnetwork. During roadway construction, when a lane or an entire freeway section must 

be temporarily closed, variable message signs are assumed to inform travelers of alternate 

routes before the closure location. A certain percentage of travelers is assumed to divert 

to the proposed alternate routes and others decide to divert to the alternate route of their 

choice based on their congestion perception (UE assignment). Traffic diversion algorithms 

are explained in more detail in chapter3.  

To perform the traffic diversion model, first, the “Find Alternate Routes” button is 

to be selected by the user. On activating the diversion module, the user is asked to identify 

the closed links. Closed links can be selected by clicking on the links in the map or by 

entering link IDs in the “Impacted Link” box. The number of desired alternate routes is then 

specified by the user. This can be done by adding a number in the “# of Routes” box. Once 

these selections are made, alternate routes are promptly highlighted in the map. Traffic 

diversion module evaluates and recommends optimum start and end nodes for the 

alternate paths. However, the user can also specify the start and end nodes in the “Origin” 

and “Destination” boxes after activating the module. Figure 4-5 shows the steps to find the 

optimum alternate routes. The results are also displayed in a tabulated format and can be 

saved as an Excel file (Figure 4-6). 
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Figure 4-5. Traffic Diversion Model 

Figure 4-6. The TDS Results in the Tabulated Format 
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4.5 Discussion and Conclusions  

The TDS package is developed in this study to generate optimum alternate routes 

around a disruption in the network. TDS is capable of network editing, vehicle routing (find 

the shortest paths between two specified nodes), defining and extracting a subnetwork 

around a disrupted link, and finally identifying optimum alternate routes to improve network 

performance (based on traffic diversion model). TDS has a high speed of execution over 

real size networks. This capability can be attributed to its programming language (Java), 

an efficient management structure, and the heuristic traffic diversion algorithms employed. 

Several assumptions are made in the traffic diversion methodology to simplify the model 

and obtain the results with a shorter computing time. For example, the deterministic user 

equilibrium assignment is applied for the OD demand traffic assignment before and after 

the closure, except for the traffic assignment on the alternate routes. In the deterministic 

user equilibrium assignment, it is assumed that drivers have a perfect knowledge of travel 

cost on each link. This assumption can be relaxed by using stochastic user equilibrium 

assignment. Stochastic user equilibrium considers more realistic drivers’ behavior by 

introducing a random perception error term for the travel cost on each link. However, the 

use of stochastic user equilibrium will make the calculations too time consuming. To 

investigate the degree of accuracy of the deterministic approach, TDS results can be 

evaluated with results from the stochastic assignment procedure used in a planning 

software such as TransCAD. This evaluation can be an extension for this study.   

In addition, various parameters are used in the traffic diversion methodology to 

identify the alternate routes. These include the size of the subnetwork, percentage of 

driver’s diversion to alternate routes, number of start and end nodes upstream and 

downstream of the closed link, and the number of paths between start and end nodes. 

Users are allowed to change these TDS parameters in the system to try to improve the 
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results. Therefore, another extension to this study is a sensitivity analysis on the above 

parameters. Sensitivity analysis allows users to identify the optimum value for these 

parameters to use in the model.  
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Chapter 5. Conclusion 

A decision support system is developed in this research to identify the optimum 

alternate routes around highway construction sites. The developed system, TDS (Traffic 

Diversion System), helps traffic network managers divert traffic from the disrupted area 

and reduce the traffic demand through the congested region. TDS’s modules, models, and 

algorithms allow assessment of alternate routes that optimize network performance. The 

network editing module of TDS provides a user-friendly graphical interface for users to 

work easily with the system. Displaying network information, editing this information, 

searching for nodes or links, displaying the results in a map, and displaying and saving the 

results in a tabulated format are among key capabilities of this module of TDS.  

Moreover, a traffic diversion model is implemented in TDS to determine the 

optimum alternate routes around construction activities. To simplify computations, a 

subnetwork is extracted from the complete network to use in the diversion model instead 

of the entire network. The size of the subnetwork, which covers all the significant affected 

links around the disrupted link, is estimated based on the modeling framework proposed in 

this research. Linear regression models, which are functions of the closed link demand and 

network topology, are developed to estimate the size of the subnetwork around the 

disruption. This size is defined based on the distance between the closed link and the 

farthest link with significant increase in travel time after the closure. The closed link’s area 

type, traffic volume on the closed link, and travel time on the first and second alternative 

paths with lowest travel times are significant variables that influence the size of the 

subnetwork.  

An optimization traffic diversion model, deployed in TDS, assesses the optimum 

alternate routes to improve network performance. Available alternate routes around the 

disrupted links are evaluated and ranked to minimize the total travel time of the network. 
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Travelers are assumed to follow their historical user equilibrium routes before and after the 

closure while a certain percentage of them is assumed to divert to the proposed alternate 

routes. The performance of the model is examined using a case study based on the Tarrant 

County network in north Texas. The application of the traffic diversion model is compared 

to a do-nothing scenario by a set of simulation experiments. The results show the 

effectiveness of the model in mitigating the traffic congestion and improving the total travel 

time of the network.  

 Several possible extensions for this study exist. A major extension is to improve 

the developed traffic diversion model by incorporating dynamic traffic assignment (DTA). 

A dynamic model interacts between network congestion and travel behavior. Traffic 

networks are highly dynamic with numerous sources of uncertainties on both the demand 

and supply sides. Travel behavior depends on the congestion conditions on the current 

time and it changes periodically. Therefore, travel behavior changes frequently in a traffic 

network due to current and non-recurrent circumstances. The proposed traffic diversion 

methodology would adopt a DTA model, which is relatively consistent with travelers' 

behavior and incorporates temporal changes in the demand and supply in the traffic 

network. 

Another extension to this study is to evaluate the TDS results with the results from 

a planning software such as TransCAD. The degree of accuracy of the results can be 

estimated with comparing the deterministic approach that is used in TDS with a stochastic 

assignment procedure in TransCAD. Stochastic user equilibrium considers more realistic 

drivers behavior by introducing a random perception error term for the travel cost on each 

link, however, it makes the calculations too time consuming. Sensitivity analysis on the 

model’s parameters could be another extension to this study. The size of the subnetwork, 

percentage of drivers diverting to alternate routes, number of start and end nodes upstream 
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and downstream of a closed link, and number of paths between start and end nodes are 

parameters that TDS does allow the user to change to improve the results. Finally, more 

experiments can be used to improve the proposed regression models to estimate the size 

of the subnetwork. Volumes in other peak periods such as AM peak and off peak can also 

be considered to select the closed link samples to develop these models more generally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


