
Multi-mesh reduced-order basis method for finite element analysis

by

ASHKAN AKBARIYEH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2017

Copyright c© by Ashkan Akbariyeh 2017

All Rights Reserved

To my wife,

Rahil Hosseini,

and my parents,

Daryoush and Soodabeh

ACKNOWLEDGEMENTS

I express my sincere gratitude to my supervising professor Dr. Brian Dennis.

iv

ABSTRACT

Multi-mesh reduced-order basis method for finite element analysis

Ashkan Akbariyeh, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Brian H. Dennis

Reduced order modeling of differential equations parametrized over a parame-

ter space can be used to accelerate optimization and parameter estimation problems.

The method of snapshots or reduced order basis is well established among researchers

as a tool to build reduced order models of ordinary differential equations. The re-

duced order basis method has been utilized for numerical solution of parametric PDE

problems by researchers in recent years and has many advantages over response sur-

face methods. The application of ROB to finite element analysis has been restricted

to using a fixed mesh for snapshots. In this work, a new method is developed for

construction of ROB from a set of snapshots defined over various meshes. Consistent

inner product is defined for the finite dimensional functional spaces and a new gen-

eral purpose geometric intersection algorithm is developed to enable the inner product

computations for all dimensions. Compatible inner products are used to construct the

multi-mesh proper orthogonal decomposition method. The newly developed multi-

mesh POD method removes the restriction of fixed mesh from ROB method and it

can also be applied outside the context of finite element analysis.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

Chapter Page

1. INTRODUCTION . 1

1.1 Brief survey of state of the art . 2

1.2 Research Objectives and Contributions 3

1.3 Background . 4

1.3.1 Reduced order modeling in heat transfer 4

1.3.2 Comparison of reduced order model and response surfaces method 5

2. REDUCED ORDER MODELING . 6

2.1 Preliminary definitions . 8

2.2 Reduced-order Basis Method . 11

3. MULTI-MESH REDUCED BASIS METHOD 14

3.1 Introduction . 14

3.2 Subspace projection . 18

3.2.1 Illustrating example . 20

3.3 Method I . 28

3.4 Method II . 34

3.5 Method III . 37

4. MESH INTERSECTION . 44

vi

4.1 Embedded convex polytope intersection algorithm 44

4.1.1 Intersection formulation . 49

4.1.2 Constraint equations . 52

4.1.3 ECPI recursive function . 54

4.1.4 ECPI example . 58

5. CONCLUTIONS & FUTURE WORKS 64

APPENDIX

A. DERIVATIONS & FORMULAE & TEST CASES 66

REFERENCES . 88

vii

LIST OF FIGURES

Figure Page

3.1 Shape functions of mesh A . 21

3.2 Shape functions of mesh B . 21

3.3 Exact projection of function v onto finite dimensional function spaces.

(a) Projection onto A. (b) projection onto B 23

3.4 Comparison of subspace projection and interpolation. The interpolation

is created by sampling vA on nodal location of B. The shaded area shows

the difference between interpolation and projection of vA onto B. . . . 23

3.5 Mesh plots. Meshes 1 to 4 are used for snapshot vectors and the target

mesh is reserved for constructing the reduced basis vectors. 26

3.6 Snapshots. On left column we have the true functions belonging to

functional space V and on the right column we have their corresponding

finite dimensional approximations on snapshots’ meshes Vh1 to Vh4 . . . 27

3.7 Sets of snapshots for method I. From top to bottom, the rows corre-

spond to sets S(1) to S(4). The columns show full decomposition of

each snapshot. 29

3.8 POD basis Φ(k) on snapshots’ meshes computed from method I. From

top to bottom, the rows correspond to sets Φ(1) to Φ(4). The columns

show the components of each basis vector on snapshots’ meshes. 31

3.9 POD basis Φ on target mesh computed from method I 32

3.10 Snapshots projected onto target mesh 35

3.11 POD basis Φ on target mesh computed from method II 36

viii

3.12 POD basis ΦSM on the super-mesh computed from method III. Each

row shows components of one basis vector over all snapshot meshes.

Each column shows contribution of one mesh to all basis vectors 41

3.13 POD basis Φ on target mesh computed from method III 42

4.1 Line. (a). Geometric diagram (b). Hasse diagram 46

4.2 Triangle. (a). Geometric diagram (b). Hasse diagram 46

4.3 Quadrilateral. (a). Geometric diagramt (b). Hasse diagram 47

4.4 Tetrahedron. (a). Geometric diagram (b). Hasse diagram 47

4.5 Hexahedron. (a). Geometric diagram (b). Hasse diagram 48

4.6 2D-line-line intersection test cases . 58

4.7 ECPI visualization for 2D-line-line intersection test cases 1. 59

4.8 ECPI visualization for 2D-line-line intersection test cases 2 and 3. . . . 59

4.9 ECPI visualization for 2D-line-line intersection test cases 4,5 and 6. . . 60

4.10 2D-line-triangle intersection test cases 61

4.11 ECPI visualization for 2D-line-triangle intersection test case 1 62

4.12 ECPI visualization for 2D-line-triangle intersection test cases 2 and 3 . 63

A.1 Line elements node numbering. (a) Linear (b) Quadratic 67

A.2 Triangle elements node numbering. (a) Linear (b) Quadratic 68

A.3 Quadrilateral elements node numbering. (a) Linear (b) Quadratic . . . 69

A.4 Tetrahedral elements node numbering. (a) Linear (b) Quadratic 70

A.5 Hexahedral elements node numbering. (a) Linear (b) Quadratic corner

nodes (c) Quadratic mid-edge nodes (d) Quadratic mid-face and mid-

cell nodes . 71

A.6 2D line-line intersection . 82

A.7 2D line-triangle intersection . 82

A.8 2D triangle-triangle intersection . 83

ix

A.9 2D triangle-Quadrilateral intersection 84

A.10 3D Tetrahedron-Tetrahedron intersection 85

A.11 3D Hexahedron-Tetrahedron intersection 86

A.12 3D Line-Triangle intersection . 87

A.13 3D Quadrilateral-Tetrahedron intersection 87

x

LIST OF TABLES

Table Page

3.1 Residual norms . 24

3.2 Mesh properties . 25

4.1 Structure of polytopes . 45

4.2 Constraint equations of polytope facets 54

A.1 Shape functions of line element . 67

A.2 Shape functions of triangle element . 68

A.3 Shape functions of quadrilateral elements 69

A.4 Shape functions of tetrahedral elements 70

A.5 Shape functions of hexahedral elements 72

A.6 Test cases guide . 81

xi

CHAPTER 1

INTRODUCTION

Numerical solution of partial differential equations has been a popular research

topic over the past decades. The continual interest of scientific community and the

ever increasing computational capacities have opened new possibilities in all fields of

engineering. Numerical simulations of physical phenomena have become essential to

modern engineering. This study focuses on the solution process of partial differen-

tial equations using finite element method. The purpose of this work is accelerating

the solution process of problems which may require repeated solves. The numeri-

cal solution begins with discretization of the differential equation over the domain.

Consequently, a system of equations arises. We call the original system of equations

the high-dimensional model (HDM). We are after reducing the size of the system of

equations to decrease computation time. The main approach in this study is applying

reduced-order modeling to Galerkin’s finite element. In this method, reduced models

are built by projecting the solution space into a lower dimensional space. The new

model effectively reduces the number of unknowns. These unknowns are coefficients

of the reduced basis and once multiplied by the corresponding base vectors, will con-

struct the solution over the original domain. Construction of such reduced models

require considerable computation time where the high-dimensional model is solved

multiple times in an offline phase. Once the offline phase is completed, the reduced-

order basis method gives us the ability to build an equivalent low-dimensional model

for the problem and accelerate solution process.

1

1.1 Brief survey of state of the art

Reduced-order basis method has been given multiple names by researchers in

different fields. The original theory stems from the probability theory and it’s appli-

cation has been expanded to other fields throughout the past decades. The proper

orthogonal decomposition (POD) or Karhunen-Loève expansion [1] is a classical tool

of probability theory and it states that a random function can be expanded as a series

of deterministic functions with random coefficients, so that it is possible to separate

the deterministic part from the random one [2]. POD method has been intended to

be used as a pattern recognition tool to search for common patterns in experimental

data. POD entered mechanical engineering with publications on it’s applications in

turbulent fluid mechanics. Given an ensemble of patterns, the technique yields an

orthogonal basis for the representation of the ensemble [3]. Truncation of the optimal

basis provides a way to find optimal lower dimensional approximations of the given

data [4]. This optimal quality of POD method has made it a good candidate for data

compression and model reduction in various fields of science and engineering. [5] [6]

[7] [8] [9] are a few samples from the vast body of research around this subject. In

the context of mechanical engineering the POD method has been traditionally used

for dynamic systems evolving in time. Combination of POD method with Galerkin’s

projection is a popular method to build reduced-order models of partial differential

equations [10] [11]. Recently the POD method has been applied to build reduced-

order models for parametrized optimization purposes [12] [13] [9] [14] [15] [16]

[17]. Most of the body of research has been focused on linear differential equations but

there are notable publication from multiple groups which have attempted to address

the nonlinear case [18] [19] [20] [21] [22] [23]. A note worthy paper by Farhat and

Amsallem [24] takes ideas from differential geometry [25] [26] and presents a solid

mathematical method for ROM interpolation.

2

1.2 Research Objectives and Contributions

The focus of this research is reduced-order modeling of finite element problems

and extending reduced basis method’s application to parametric problems. A para-

metric model may require different mesh properties for distinct design configurations.

The state of the art is that the reduced basis calculated for a specific mesh of the

domain can only be used exclusively. A key aspect which I am going to improve is

the dependence of the reduced basis vectors on the domain discretization. I focus on

providing a method for multi-mesh proper orthogonal decomposition. Reduced-order

basis is optimal in the sense that it spans an optimum subspace of certain dimension,

given a spanning set of vectors which we call the set of snapshots. In a multi-mesh

setting, the snapshot set may be given as combination of vectors defined over a range

of different meshes.

The domain of a differential equation can be discretized with arbitrary grids

and it desirable to have this freedom. Typically, a reduced-order basis model is cre-

ated on a fixed grid. At first glance, it may seem that the ROB is applicable only to

the same grid but this is not entirely true. It is possible to project each basis vec-

tor to the new vector space, i.e. new mesh, however it is no longer guaranteed that

the projected basis vectors contain all the information available in their initial form.

Having a different mesh other than the one used for creating the ROB, changes the

approximation accuracy of the function space. Interpolation methods can be used as

an easy way to project vectors between meshes. The more accurate way is to use the

inner product operator of the underlying vector space. It has been noted by many

other researchers as well that the proper way of projection makes a big difference.

I will also provide a substantial mathematical reasoning and formulation to enable

3

migration of field variables between meshes.

1.3 Background

In this section I provide brief description of my background work in the initial

phase of my study that lead to main the idea of this dissertation.

1.3.1 Reduced order modeling in heat transfer

In a collaboration with other researchers, I worked on an inverse parameter es-

timation case study. The problem involved a moving parametrized heat source acting

on a slab of material. The inverse problem was being solved using optimization algo-

rithms and the main goal of this case study was to accelerate the forward solution of

the heat transfer problem. The forward solution is required to evaluate the objective

function for the optimization algorithm. The objective function was defined to be

the norm of difference between the target and current design’s temperature distribu-

tions. The optimization algorithm would then try to minimize the objective function

and hopefully drive it to zero. The problem has been modeled in COMSOLr [27]

commercial software for analysis. The model was interfaced with MATLABr [28]

software and the resulting system of equations and load vector was transferred to

MATLAB.

My contribution was setting up MATLAB script for parameter estimation and

using a reduced order model(ROM) to accelerate the forward problem. I created the

ROM using method of snapshots and verified the accuracy of the model. We suc-

cessfully recovered the parameters characterizing our target temperature distribution

using multiple optimization routines provided in MATLAB.

4

1.3.2 Comparison of reduced order model and response surfaces method

In this work I was building on my previous experience with the reduced-order

models. The main goal was to compare ROM against response surface methods. I

investigated the cost of building the model as well as its accuracy. I compared ROM

with regular multi-variable regression as well as Kriging method. I used DACE [29]

toolbox for Kriging response surface method. The ROM was able to achieve much

lower error bounds with less model building cost.

5

CHAPTER 2

REDUCED ORDER MODELING

In scientific computing, we build mathematical model based on phenomenon

we want to study and use numerical methods to solve the model. The solution of the

model is an approximation to reality. The accuracy of the solution often improves

by increasing the level of details in the mathematical model. A mathematical model

consists of relationships between mathematical expression. Solving a model involves

finding the unknown values for variables reserved in the model.

In the context of finite element analysis, the mathematical model is our cho-

sen finite element formulation for the given problem. We call the unknowns of the

finite element model, degrees of freedom (DOF). We control the number of DOFs at

discretization step in finite element modeling process. The discretization step is the

procedure to convert the geometric representation of the domain to the finite elements

which we call their collective a mesh. A more refined mesh results in a more accurate

solution. The tendency to create high dimensional models has grown over time as the

computer technology progresses.

In the economics of scientific computing, the most important factor is the time

required to solve the problem. Increasing DOFs to achieve more reliable results in-

creases the time-cost of the computation. Although new computer technology and

better numerical algorithms continuously reduce the time-cost, the appetite for larger

models never ends.

6

In reduced order modeling we attempt to decrease the number of unknowns

while maintaining an acceptable level of accuracy. This translates to savings in high

resource requirement and long solution time. Once we achieve this goal we call our

equivalent problem a reduced-order model (ROM). There are multiple methods that

allow us to decrease the degrees of freedom of a problem. Reduced-order models may

be developed using different techniques with various accuracy. One might derive a

semi analytical solution with fewer unknowns or just simplify governing equation and

solve the problem. In this work, I will focus on reduced-order basis method which is

based on linear algebra and is suitable for numerical solutions of partial differential

equations. The reduced-order basis method digests data generated by high dimen-

sional models to construct it’s ROM. The ROM’s advantage over a low-dimensional

model is its ability to maintain accuracy of the high dimensional analysis while re-

ducing the time-cost significantly.

In reduced-order basis method, we use projector operator which will project our

solution space into a lower dimensional subspace. In linear algebra, we can construct

projector operators by fixing the basis of both source and target spaces. The chal-

lenging step in projection based reduced-order modeling is to find a subspace of the

solution space in which we may represent the solution of our problem with the highest

accuracy. The most accurate subspace is the whole solution space itself. The reduced-

order basis method restricts the solution space hence we can only solve a subset of

possible problems. As an example, consider a problem with a particular parametric

loading. We have a subset of all possible loads. We form a high dimensional model of

the problem and solve for a sampled set of loading cases. After collecting the solution

data from the high dimensional model, we apply reduced-order basis method and

construct a ROM. The ROM enables us to limit our search for the solution to the

7

space of admissible functions to the particular parametric loading scenario. Once we

build the ROM, it can be used to rapidly solve the problem for new parameter values.

2.1 Preliminary definitions

Let us define an abstract linear differential equation and boundary conditions

denoted by L and B respectively as

L ∈ L(V,W) in Ω

L (v) = f v ∈ V, f ∈ W (2.1)

B(v) = g on Γ (2.2)

with the definitions listed bellow

Ω : geometric domain of the problem

Γ : boundary of Ω

V and W : functional vector space defined over domain Ω

L(V,W) : set of all linear differential operators defined over the vector space V

L (v) : differential operator of interest

B(v) : boundary condition operator over domain boundary Γ

f : source term

g : prescribed boundary condition

v : solution

Note that Γ can be decomposed into non-overlapping parts ΓD, ΓN and ΓR for Dirich-

let, Neumann and Robin boundary conditions respectively and equation 2.2 can be

defined as a piecewise operator over domain boundary Γ to incorporate all three types

of boundary conditions.

8

Since linear differential operators are a subset of linear transformations, we have

no obstacle considering L (v) as a linear map defined in linear algebra. The vector

space V is an infinite dimensional vector space. Functional analysis is the extension of

linear algebra into infinite dimensional vector spaces. Functional analysis of Hilbert

spaces is a good starting point when dealing with differential equations. Consider a

second order linear differential equation. The most general solution space will be the

set of all functions defined in Ω which are at least twice continuously differentiable

which is the set {C2(Ω), C3(Ω), . . .}. It is important to understand that the minimum

differentiability requirement for the solution space also depends on the source term

function space W . For example, if W = C2(Ω) and the source term f ∈ W is a

twice differentiable function, then the solution space V has to be at least 4 times

differentiable.

The differential equations are usually defined over a continuous domain(Ω) and

the vector space V is a function space defined over that continuous domain. We are

after a function v ∈ V which is the solution of the differential equation. Based on

the differential equation we choose a proper function space with certain properties

to guarantee the existence of the solution. All of this preliminary analysis has to be

done in the context of infinite dimensional function spaces and functional analysis. In

numerical analysis practice we begin with a given infinite dimensional function space

and apply some form of discretization which will cast our problem in a finite dimen-

sional space and the problem becomes concrete. Once a surrogate finite dimensional

problem is formed, we can apply linear algebra and carry on numerical computations.

Recall that our linear differential equation can be interpreted as a linear map-

ping of vectors. The range of a linear map is the set of all the vectors of the form

9

L (v) which v belongs to vector space V . The nullspace of L is the set of all non-

zero vectors which are mapped to zero vector. Range and nullspace definition are the

following:

range(L) = {L (v) ∈ W : v ∈ V } (2.3)

null(L) = {v ∈ V : L (v) = 0 ∈ W} (2.4)

The existence and uniqueness of the solution of a differential equation is guar-

anteed for all source vectors f , if the linear map L (v) is invertible. Based on a

theorem in linear algebra, an invertible linear map defined over a finite dimensional

vector space is injective and surjective. Injective means there is a one-to-one mapping

between v ∈ V and f ∈ W and surjective means that for all vectors f there exists

a vector v such that L (v) = f . These properties can be defined in mathematical

terms for linear maps L as:

• Surjective: ∃v ∈ V : L (v) = f ∀f ∈ W

• Injective: L (u) = L (v) =⇒ u = v u,v ∈ V

Note that the injective property is equivalent to having null L = 0. The nullspace

of differential operator without boundary conditions does not satisfy this condition

and this is why there is no unique solution without defining boundary conditions.

A linear differential equation subjected to proper boundary conditions can be

defined as the differential operator restricted to a subspace of the original vector space

V in which the boundary conditions are satisfied. This subspace is usually called the

space of admissible functions. The admissible functions are those functions which

satisfy all the BC’s.

10

2.2 Reduced-order Basis Method

So far we have shown that the dimension of the solution vector space of a

differential equation is not restricted by nature. As mentioned earlier, in reduced-

order basis method we restrict the solution space to a lower dimensional subspace.

This reduction will limit the scope of the problem to a smaller subset and the reduced-

order model must be only be used in that subset. There are different methods to

build the sought after reduced subspace. Mode truncation based on eigenvalues is

a popular method and works well but finding eigenvalues and eigenvectors can be

difficult sometimes. The method of snapshots is another popular method to build the

reduced subspace. In snapshot method, we solve the linear differential equation for

multiple loading conditions and accumulate solution vectors in a set called snapshots.

Then we find a basis which represents the set of snapshots and use this basis to build

a projector operator. In mathematical terms we can describe the procedure as the

following:

1. Select desired subspace Wf in the vector space of source terms, Wf ∈ W

2. Find a basis Ψ = {ψ1,ψ2, . . .} for the subspace Wf such that span(Ψ) = Wf

3. Solve L (vi) = ψi for ψi ∈ Ψ and form snapshots set, S = {v1,v2, . . .}

4. Find a basis for the subspace which contains S as Φ = {φ1,φ2, . . .}, where

S ∈ span(Φ)

5. Form the reduced-order equation by projecting operator L into Φ

The first step is where we essentially design our reduced-order model. We want to

build a model to cover solutions to a range of parameter values or design points.

The usual sampling methods like full factorial and Latin hypercube can be used to

generate design points. Each design point is a vector of parameter values and we need

to solve the HDM. The solutions are expensive and we would like to avoid doing so

11

many of them. There are more responsible algorithms proposed by other researchers

to lower the computational cost. In the above, I assumed the model is being built

for a range of different source terms, i.e. loading conditions. In such scenario, each

design point corresponds to a source term vector. We can sample the design space

with many design points but only calculate the minimum requirement. Step two

emphasizes the point that it is only necessary to solve the HDM for a basis of the

subspace which contains all the designs. The reason is that in the case of linear

differential equations, we have a bijection map on vector spaces. Any subspace of

the solution space is mapped to its image in the codomain vector space which is also

a subspace. The map is injective and therefore for any source vector described as a

linear combination of vectors in codomain, the solution vector is a linear combination

of vectors in the domain vector space. All we need to do is to find which vectors in the

domain are mapped to the basis of the subspace in the codomain. The fourth step can

be done by any method of choice since the basis is arbitrary. It is customary to use

proper orthogonal decomposition or singular value decomposition due to their optimal

property. We can apply singular value decomposition to the matrix of snapshots as

following:

S = UΣV T (2.5)

which U is a matrix whose columns form a basis of column space of matrix S and the Σ

matrix contains singular values on its diagonal up to the rank of S. The singular value

decomposition is intimately connected with eigenvalues and eigenvectors.In fact, one

can find the sought after basis using an equivalent formulation by solving an eigenvalue

problem. A good understanding of SVD will reveal its optimality. The singular values

represent the stretching of the subspace spanned by the matrix S in the direction of

the basis vectors. The larger singular values correspond to more dominant basis

12

vectors. Using this interpretation one can truncate the number of basis vectors with

no significant loss in accuracy. After choosing Φ ⊆ U as our reduced-order basis, we

restrict the domain vector space of the linear system by means of projection. The

resulting system of equations will have the same size as the reduced-order basis set.

The truncated SVD is the solution to the best low-rank approximation of an m × n

matrix A in the least-squares sense [30], i.e,

arg min
X∈Rp

‖A−X‖2
F , (2.6)

where Rp denotes the set of all m × n matrices with rank p and ‖.‖2
F denotes the

Frobenius norm. This result is known as the Eckart-Young-Mirsky theorem [30]. X

is a matrix with same dimensions as A. We form X by using the first p singular values

and truncating the rest. X is the best rank p approximation of A and the basis set

of X is the reduced-basis for our modeling purposes.

where Rp denotes the set of all m × n matrices with rank p and ‖.‖2
F denotes

the Frobenius norm. This result is known as the Eckart-Young-Mirsky theorem [30].

X is a matrix with same dimensions as A. We form X by using the first p singular

values and truncating the rest. X is the best rank p approximation of A and the basis

set of X is the reduced-basis for our modeling purposes.

In the last step, we project the linear operator into the reduced basis to con-

struct the reduced model. Any source term on the right-hand side will be projected

into this subspace before solution. After solving for the unknown coefficient, the

solution of the problem can be reconstructed in high dimensional space.

13

CHAPTER 3

MULTI-MESH REDUCED BASIS METHOD

3.1 Introduction

The reduced basis method has been applied to build reduced order models for

solving a large system of equations represented by matrices. Solving differential equa-

tions involves discretizing the spatial domain using a numerical method of choice and

solving an equivalent finite dimensional system of equations. In general, the solution

of the differential equation belongs to an infinite dimensional functional vector space.

Hilbert spaces are examples of such infinite dimensional function spaces which are

suitable for differential equations.

When we discretize a spatial domain we restrict the solution space into a finite

dimensional subspace of the original infinite dimensional vector space. This finite

dimensional vector space can be defined as the span of specific basis vectors. In

the case of finite element analysis, the basis vectors are the collection of all shape

functions defined during domain discretization. Note that shape functions are defined

locally but the basis vectors of the function space are defined over the entire domain,

therefore we expand the domain of each shape function to include the entire domain.

After domain discretization, the space of solution is restricted to a subspace and the

solution is a linear combination of a basis of this subspace. The solution space admits

infinite sets of basis and for convenience, it is desired to use the basis set resulting from

discretization. The basis is simply a set of linearly independent vectors. Since we have

a basis we can represent a vector using a unique set of coefficients or coordinates. Let

14

n be the dimension of the solution subspace, we can define a map between solution

subspace and the coordinates in Euclidean space Rn:

f : V → Rn (3.1)

which is a bijection between the two vector spaces. The original function vector space

V is usually an inner product space. The inner product definition allows us to measure

angles between vectors. Since the Rn is also an inner product space, by applying a

theorem in linear algebra we can state that there exists a map between the two vector

spaces which preserves the inner product and therefore they are isomorphic. The fact

that the two spaces are isomorphic does not mean that any mapping between them

is an isomorphism. We can use the following lemma to define such an isomorphism.

Lemma 1. If V and W are two finite dimensional inner product spaces with dimen-

sion n, the mapping f that maps an orthonormal basis of V to an orthonormal basis

of W is an isomorphism.

A = {a1,a2, . . .an} : orthonormal basis of V (3.2)

B = {b1, b2, . . . bn} : orthonormal basis of W (3.3)

f : V → W : v ∈ V → f(v) ∈ W : f(ai) = bi (3.4)

Once we fix a basis set for a vector space, it is convenient to represent vectors

by their coordinates in the respected basis. The coordinates are nothing more than

the coefficients of each basis. We can define a mapping

f : V → Fn (3.5)

v ∈ V → f(v) = {v1, v2, . . . , vn} ∈ Fn (3.6)

15

which maps vectors v from our function vector space V to their coordinates in Fn

with respect to the fixed basis. It is important to emphasize that the mapping f is

not necessarily an isomorphism between inner product spaces V and Fn. Although

this mapping is an isomorphism for vector spaces, it is not an isomorphism for inner

product spaces. It is worth pointing out that in the special case where the fixed

basis of V is an orthonormal basis, the mapping f defined above is automatically an

isomorphism. If the mapping f is not an isomorphism, the inner product of V is not

preserved under the action of f . This means we cannot substitute inner product of

V with the standard inner product definition of Fn. This is a profound result which

we must pay special attention to.

〈u,v〉V 6= 〈f(u), f(v)〉Fn (3.7)

When we use finite element we essentially define a basis set for a finite subspace of

our functional space. It is important to notice that the basis set resulting from finite

element discretization is not necessarily an orthogonal set. The orthogonality of the

global basis depends on the underlying shape functions of elements. The shape func-

tions are linearly independent but not necessarily orthogonal. It would be convenient

to use the inner product 〈., .〉Fn for the purpose of projection but unfortunately we

are not allowed. This is a very important issue. All the algebraic manipulations for

solving a linear system of equations are usually done in Rn and they all take the Eu-

clidean inner product for granted, but none of these calculations are precisely valid

with respect to the inner product of the function vector space. For example, if you

solve eigenvalue problem and find an orthogonal set of eigenvectors, the eigenvectors

are orthogonal in Fn but they are not really orthogonal in V . Each eigenvector is a

function defined over the domain and it has a coordinate in Fn. Since the coordinate

is defined for a non-orthogonal basis of shape functions, the inner product is not

16

preserved. If f(u) and f(v) are two eigenvectors in Fn, we know from equation (3.1)

that u,v ∈ V are the two corresponding functions in space V . If we substitute these

vectors in equation (3.7) we observe that:

f(u)⊥f(v)⇒ 〈f(u), f(v)〉Fn = 0
3.7−→ 〈u,v〉V 6= 0 (3.8)

We have shown that the direct mapping from shape functions to standard basis of

Fn is not an isomorphism. Lemma 1 suggest that we map an orthogonal basis of

V to Fn which is theoretically possible. We can generate an orthogonal basis by

applying Gram-Schmidt procedure on the shape functions but this approach is not

computationally feasible. The following lemma gives us another approach to enforce

isomorphism.

Lemma 2. If V is a finite dimensional inner product spaces with dimension n and

basis Ψ = {ψ1, . . . ,ψn}, then there exists a modified inner product for Fn such that

V is isomorphic to Fn under the coordinate map of V to Fn.

f :V → FN : ψi → ei i = 1, . . . , n (3.9)

v → [v]Ψ

ei is the standard basis of Fn and [v]Ψ is the coordinate of v in basis Ψ. The compatible

inner product is defined as:

〈v,u〉V
∆
= 〈[v]Ψ , GV [ū]Ψ〉Fn (3.10)

(GV)ij
∆
= 〈ψi,ψj〉V ∈ F. (3.11)

It is worth pointing out that in linear algebra, the matrixGV defined in Lemma 2

is known as the Gramian of the set of vectors {ψ1, . . . ,ψn}. Lemma 2 describes a

17

method to define a special inner product for vector space Fn such that a coordinate

mapping between inner product space V and Fn becomes an isomorphism. We call

this special inner product, the consistent inner product. The isomorphism between

the inner product spaces V and Fn, allows us to correctly and consistently shift all the

computation from V to Fn. The benefit is instead of dealing directly with functions,

we deal with numbers.

3.2 Subspace projection

When we discretize a domain, we generate a mesh. Any mesh corresponds to

a finite dimensional vector space. Suppose we have multiple meshes of the same

domain. Each mesh is a finite dimensional vector space which is itself a subspace of

the infinite dimensional function space defined over the domain. The main idea of

this dissertation revolves around transferring vectors between two finite dimensional

subspaces of a function space. In order to transfer vectors from one subspace to

another, we need a proper projection transformation. The projection transformation

should be consistent with the inner product of the function space.

Theorem 1. Suppose V is an infinite dimensional function space with inner product

〈., .〉V . If A and B are finite dimensional subspaces of V with corresponding basis sets

A and B, there exist a projection transformation PBA, which projects vectors from A

to B with respect to basis sets A and B.

A,B ⊂ V, dim(A) = m, dim(B) = n

A = {a1,a2, . . . ,am} : a basis of A (3.12)

B = {b1, b2, . . . , bn} : a basis of B (3.13)

18

PBA : A→ B : vA ∈ A→ PBA[vA]A ∈ B (3.14)

PBA = G−1
BBGBA (3.15)

(GBB)ij
∆
= 〈bi, bj〉V = 〈bj, bi〉V ∈ F, bi, bj ∈ B, i, j = 1 . . . n (3.16)

(GBA)ij
∆
= 〈bi,aj〉V = 〈aj, bi〉V ∈ F, bi ∈ B, i = 1 . . . n (3.17)

aj ∈ A, j = 1 . . .m

The matrix GBA is the most challenging part of the computation in the subspace

projection algorithm. Each term of the matrix is an inner product in V which is an

infinite dimensional function space. The most common inner product in function

spaces is the integration of multiplication of two functions:

〈., .〉V : V × V → F : 〈u,v〉V =

∫
uv̄.dΩ (3.18)

(GBA)ij = 〈aj, bi〉V (3.19)

The computation of GBA, demands integrating the multiplication of all combinations

of basis functions bi ∈ B and aj ∈ A. In the general case the GBA matrix will be

dense and it’s computation is not tractable on computers beyond a certain problem

size. However, in the context of finite element analysis the basis functions are defined

locally for each element and are 0 throughout the rest of domain Ω. The matrix

GBA becomes sparse with limited bandwidth and therefore the computation will be

scalable. The first difficulty is finding the sparsity pattern of GBA.

S = {(i, j) : 〈aj, bi〉V 6= 0} (3.20)

The second difficulty is computing the integrals which need to be done on the intersec-

tion of overlapping mesh elements, containing basis functions bj and ai for (i, j) ∈ S.

Chapter 4 of this document is dedicated to this task.

19

The projection transformation defined in theorem 1 is the most accurate image

of vector vA onto subspace B with respect to inner product 〈., .〉V of vector space

V . In other words the norm ‖vA − vB‖ is minimum which is ideal. It is important

to mention that the subspace projection transformation is not necessarily invertible.

The subspace projection transformation can be considered as a change of basis be-

tween two finite dimensional subspace of an infinite dimensional function space.

Proposition 1. Suppose V is an infinite dimensional function space with inner prod-

uct 〈., .〉V , and A and B are finite dimensional subspaces of V with corresponding basis

sets A and B. If the vector vA ∈ A is the projection of v, then the true projection

of v onto B is attainable through the subspace projection defined in theorem 1 only

when v − vA has no component on B.

3.2.1 Illustrating example

In this section, I will present a simple and yet important example to demonstrate

the power and validity of the subspace projection method. Consider a simple one

dimensional domain Ω and a function v(x) defined as:

Ω = {x ∈ R : 0 ≤ x ≤ l} (3.21)

v(x) = Sin(
πx

l
) +

1

2
Sin(

5πx

2l
) v(x) ∈ V (3.22)

〈u,v〉V : V × V → R :

∫
uv.Ω ‖v‖ =

√
〈v,v〉V (3.23)

Following from theorem 1, I have generated two discretization of the domain Ω to

represent the two subspaces A and B. Each discretization is a 1D mesh with linear

elements. The two sets of basis A = {a1, . . .a6} and B = {b1, . . . b4} corresponding

to subspaces A and B are the finite element shape functions defined over Ω. The

basis sets are visualized in figure 3.1 and 3.2.

20

● ● ● ● ● ●

0 l
x

1
ℝ

a1

● ● ● ● ● ●

0 l
x

1
ℝ

a2

● ● ● ● ● ●

0 l
x

1
ℝ

a3

● ● ● ● ● ●

0 l
x

1
ℝ

a4

● ● ● ● ● ●

0 l
x

1
ℝ

a5

● ● ● ● ● ●

0 l
x

1
ℝ

a6

Figure 3.1: Shape functions of mesh A

● ● ● ●

0 l
x

1
ℝ

b1

● ● ● ●

0 l
x

1
ℝ

b2

● ● ● ●

0 l
x

1
ℝ

b3

● ● ● ●

0 l
x

1
ℝ

b4

Figure 3.2: Shape functions of mesh B

21

Proposition 1 states that although the subspace projection method presented here

is the optimum projection of vA onto B, it is not the exact projection of vector

v on subspace B. The accuracy of vB depends on relationship of A and B. The

figures 3.3(a) and 3.3(b) show exact projection of v onto the subspaces A and B.

The coordinate values of the projections vA and vB are calculated using the following

formulations:

v = vA + vA⊥ =
6∑

j=1

vAjaj + vA⊥ (3.24)

〈v,ai〉V = 〈
6∑

j=1

vAjaj,ai〉V i = 1 . . . 6 (3.25)

〈v,ai〉V =
6∑

j=1

〈aj,ai〉V vAj i = 1 . . . 6 (3.26)

the resulting system of equations is the Galerkin projection of v onto basis A.

GAA[vA]A = [fv]A ([fv]A)i
∆
= 〈v,ai〉V (3.27)

similarly for B we have

GBB[vB]B = [fv]B ([fv]B)i
∆
= 〈v, bi〉V (3.28)

After solving the two systems of equations from above and applying the subspace

projection method, the calculated coordinate values will be:

[vA]A = {0.0546868, 1.20066, 0.986571, 0.374114, 0.606328, 0.612779} (3.29)

[vB]B = {0.351773, 1.21477, 0.344242, 0.731893} (3.30)

PBA[vA]A = {0.362902, 1.20314, 0.353833, 0.724836} (3.31)

The coordinate values of the projection is close but not equal to the exact projection.

This result confirms proposition 1.

22

● ● ● ● ● ●

v

vA

0 l
x

1

ℝ

(a)

● ● ● ●

v

vB

0 l
x

1

ℝ

(b)

Figure 3.3: Exact projection of function v onto finite dimensional function spaces.
(a) Projection onto A. (b) projection onto B

● ● ● ●

v

PBAvA

interpolation

0 l
x0

1

ℝ

Figure 3.4: Comparison of subspace projection and interpolation. The interpolation is
created by sampling vA on nodal location of B. The shaded area shows the difference
between interpolation and projection of vA onto B.

Figure 3.3 shows two projections of v onto meshes A and B. A naive way to transfer

data from mesh A to B is by using interpolation. Figure 3.4 compares interpolation

with subspace projection. In this example, the projection of vA onto B is very close

to the exact projection of v onto B. Table 3.1 provides values for norm of various

quantities. From the table, we can confirm that the subspace projection is very close

to the exact projection since the norm of their differences is very small. Also, we

23

observe that the subspace projection is far better than the naive interpolation. It is

worthy to mention that the subspace projection method presented here can be used

in the geometric multigrid method for both prolongation and restriction operations.

This example was done using the Wolfram Mathematica r [31] software.

Table 3.1: Residual norms

‖v − vA‖ 0.040303 / l
‖v − vB‖ 0.122079 / l
‖v − PBAvA‖ 0.122224 / l
‖v − interpolation vA‖ 0.190257 / l
‖vB − PBAvA‖ 0.005957 / l

In the following sections of this chapter, I derive multiple methods to compute

the proper orthogonal decomposition of a set of vectors defined on multiple meshes.

The quality of the methods improve progressively and the final method is the most

important contribution. In order to simplify the mathematical notation, without loss

of generality I make the assumption that the set S contains ns snapshots each on a

different discretization of the infinite dimensional function space V .

Vhi
⊂ V, 〈., .〉Vhi

: Vhi
× Vhi

→ F (3.32)

S = {ui | ui ∈ Vhi
, 1 ≤ i ≤ ns} (3.33)

The main goal of the multi-mesh POD methods is to generate reduced basis set for

an arbitrary target mesh. I assume we are given a collection of solution snapshots de-

fined on various meshes. The multi-mesh POD methods try to build a reduced basis

model using the snapshot set. The problem is non-trivial since the snapshots do not

share a common mesh. The snapshots are ultimately functions which are members of

function space V . Each snapshot has a different vector representation which is mesh

24

dependent and it is not possible to simply collect all snapshot vectors in a matrix

and apply ordinary POD method to obtain the reduced order basis. The multi-mesh

POD methods derivations are based on linear algebra theories and the lemmas and

theories proved in this document. The inherent relationship between finite dimen-

sional function spaces Vhk
and the encompassing infinite dimensional function space

V is exploited to achieve optimal results.

To facilitate the readers understanding, I define a simple problem which is used

to make visualizations for the multi-mesh POD methods. Suppose we have four

functions defined over unit disk. The functions represent the snapshots in function

space V . The snapshots are finite dimensional approximations of the four functions

defined on separate meshes. Each mesh, is, in fact, a finite dimensional subspace of V .

We desire to obtain reduced basis set defined on an arbitrary target mesh. Figure 3.5

depicts the meshes and table 3.2 provide the mesh properties. Figure 3.6 shows the

four snapshot functions defined in functions space V and their finite approximations

on each mesh.

Element type Order Nodes Elements
Mesh 1 Triangle 1 49 76
Mesh 2 Triangle 1 181 320
Mesh 3 Triangle 1 628 1178
Mesh 4 Triangle 1 2515 4876
Target Mesh Triangle 1 1406 2698

Table 3.2: Mesh properties

25

Mesh 1 Mesh 2

Mesh 3 Mesh 4

Target Mesh

Figure 3.5: Mesh plots. Meshes 1 to 4 are used for snapshot vectors and the target
mesh is reserved for constructing the reduced basis vectors.

26

0

0.2

0.4

0.6

0.8

u1 ∈ V

0

0.2

0.4

0.6

0.8

u1 ∈ Vh1

-0.2

0

0.2

0.4

u2 ∈ V

-0.2

0

0.2

0.4

u2 ∈ Vh2

0

0.5

1.0

1.5

u3 ∈ V

0

0.5

1.0

1.5

u3 ∈ Vh3

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

u4 ∈ V

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

u4 ∈ Vh4

Figure 3.6: Snapshots. On left column we have the true functions belonging to func-
tional space V and on the right column we have their corresponding finite dimensional
approximations on snapshots’ meshes Vh1 to Vh4 .

27

3.3 Method I

The main idea of method I is to apply proper orthogonal decomposition to

separate sets of snapshots independently and combine the basis vectors to form the

multi-mesh POD basis on the target mesh.

For each pair of (ui, Vhj
), the vector ui can be uniquely decomposed to compo-

nents corresponding to projection onto Vhj
and V ⊥hj

. The symbols ΠVhj
and ΠV ⊥hj

are

used to represent these projections in abstract sense before choosing any basis for the

function spaces Vhi
and Vhj

.

ui = ΠVhj
ui + ΠV ⊥hj

ui 1 ≤ i, j ≤ ns (3.34)

I define ns snapshot sets S(k) such that the first set contains the projection of all

snapshot vectors ui onto Vh1 and the kth set contains projection of complementary

components of ui from all previous snapshot sets, onto Vhk
.

S(k)
∆
=
{

ΠVhk
◦ ΠV ⊥hk−1

◦ . . . ◦ ΠV ⊥h1
uj ∈ Vhk

: j ≥ k
}

1 ≤ k ≤ ns (3.35)

To make it more clear the first two snapshot sets are provided below.

S(1) = u1 ∪
{

ΠVh1
ui ∈ Vh1 : i > 1

}
(3.36)

S(2) = ΠV ⊥h1
u2 ∪

{
ΠVh2

◦ ΠV ⊥h1
ui ∈ Vh2 : i > 2

}
(3.37)

Every ui vector is sequentially decomposed into multiple components belonging to

snapshot sets S(k) with k ≤ i.

u1 ∈ S(1) (3.38)

u2 = ΠVh1
u2 ∈ S(1) + ΠV ⊥h1

u2 ∈ S(2) (3.39)

uk = ΠVh1
uk ∈ S(1) + ΠVh2

◦ ΠV ⊥h1
uk ∈ S(2)

+ . . .+ ΠV ⊥hk−1

◦ . . . ◦ ΠV ⊥h1
uk ∈ S(k) (3.40)

28

0

0.2

0.4

0.6

0.8

u1

-0.2

0

0.2

0.4

ΠVh1
u2

0

0.5

1.0

1.5

ΠVh1
u3

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

ΠVh1
u4

-0.050

-0.025

0

0.025

0.050

ΠV ⊥h1
u2

-0.075

-0.050

-0.025

0

0.025

0.050

ΠVh2
◦ΠV ⊥h1

u3

-0.2

-0.1

0

0.1

ΠVh2
◦ΠV ⊥h1

u4

-0.04

-0.02

0

0.02

0.04

ΠV ⊥h2
◦ΠV ⊥h1

u3

-0.10

-0.05

0

0.05

0.10

ΠVh3
◦ΠV ⊥h2

◦ΠV ⊥h1
u4

-0.075

-0.050

-0.025

0

0.025

0.050

0.075

ΠV ⊥h3
◦ΠV ⊥h2

◦ΠV ⊥h1
u4

Figure 3.7: Sets of snapshots for method I. From top to bottom, the rows correspond
to sets S(1) to S(4). The columns show full decomposition of each snapshot.

By decomposing the snapshot vectors in this manner we avoid using duplicate infor-

mation. Figures 3.7 shows the snapshots sets S(k) for the example problem. As you

can observe, the choice of sequence of processing the meshes will affect the snapshots’

decomposition. This is further discussed at the end of this section.

29

Next we need to apply the POD algorithm with respect to the inner prod-

uct definition of each function space. Once we choose a basis set such as H(k) =

{hi(k) : 1 ≤ i ≤ dim(Vhk
)} for the function spaces Vhk

, the snapshot sets S(k) be-

come matrices. The basis set is nothing but the shape functions of finite element

meshes. The consistent inner products can be defined form lemma 2.

〈u,v〉Vhk
= [uT]H(k)GVhk

[v]H(k), (GVhk
)ij

∆
= 〈hj(k),hi(k)〉V (3.41)

We define correlation matrix C(k) and use eigenvalue decomposition to solve for the

basis vectors as following:

C(k) = S(k)TGVhk
S(k) (3.42)

C(k)ψi(k) = σi(k)2ψi(k) 1 ≤ i ≤ r(k) = rank(C(k)) (3.43)

φi(k) =
1

σi(k)
S(k)ψi(k) (3.44)

N(k) = arg min
n

∑n
i=1 σi(k)2∑r(k)
i=1 σi(k)2

≥ 1− ε2POD (3.45)

Φ(k)
∆
= {φi(k) ∈ Vhk

: 1 ≤ i ≤ N(k)} (3.46)

The POD basis vectors φi(k) generated by equation 3.46 are plotted in figure 3.8 for

the example problem. These vectors can be projected onto any target mesh using the

subspace projection method of theorem 1. Take Vh as a target mesh with the basis

H. We can compute the POD vectors as following:

Vh ∈ V H = {hi : 1 ≤ i ≤ dim(Vh)} (3.47)

Φ̃
∆
=

{
φ̃i =

∑
k

σi(k)PHH(k)[φi(k)]H(k) : 1 ≤ i ≤ max(N(k))

}
(3.48)

Φ
∆
= {φi : 1 ≤ i ≤ max(N(k))} = orthonormalize(Φ̃) (3.49)

where each vector φ̃i is constructed by summation of projection of all φi(k) onto

Vh. After recollecting the basis vectors on the target mesh, we orthonormalize the

30

0

0.25

0.50

0.75

1.00

φ1(1)

-1.0

-0.5

0

0.5

1.0

φ2(1)

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

φ3(1)

-0.5

0

0.5

1.0

1.5

φ4(1)

- 3

- 2

- 1

0

1

2

φ1(2)

- 2

- 1

0

1

φ2(2)

- 2

- 1

0

1

2

3

φ3(2)

- 3

- 2

- 1

0

1

2

φ1(3)

- 2

- 1

0

1

2

φ2(3)

- 4

- 2

0

2

4

φ1(4)

Figure 3.8: POD basis Φ(k) on snapshots’ meshes computed from method I. From
top to bottom, the rows correspond to sets Φ(1) to Φ(4). The columns show the
components of each basis vector on snapshots’ meshes.

basis vectors to get the final basis set Φ. During the orthonormalization step, we can

take the magnitude of φ̃i vectors as apparent σi values. The σi values depend on the

target mesh since the projection transformations PHH(k) may alter the magnitude of

φi vectors.

31

0

0.25

0.50

0.75

1.00

1.25

φ1

-1.0

-0.5

0

0.5

1.0

φ2

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

φ3

-0.5

0

0.5

1.0

1.5

φ4

Figure 3.9: POD basis Φ on target mesh computed from method I

It is worth noting that the basis sets Φ(k) contain complementary components

of global proper orthogonal decomposition of the original snapshot set S. The ba-

sis sets are complementary because they represent non redundant components on all

function spaces Vhk
; However, span(

⋃
k Φ(k)) 6= span(S). Figure 3.9 shows projection

of φi vectors onto the target mesh Vh.

For practical computation of the φi(k) basis vectors, we need to provide a

concrete procedure of decomposition of snapshot vectors uj. The projection trans-

formation ΠVhi
can be calculated by the subspace projection method. Recalling the

subspace projection formulation, after fixing two basis sets for function spaces A = Vhi

and B = Vhj
, we have:

A : basis set of Vhi
B : basis set of Vhj

(3.50)

[uj]A = ΠVhi
uj = PAB[uj]B = G−1

AAGAB[uj]B (3.51)

From linear algebra we know that any vector can be uniquely decomposed into com-

ponents belonging to a subspace and it’s complement, and also any linear transfor-

mation L(V,W) splits the domain vector space V into Null(L) and quotient space

V/Null(L). Taking L = PAB we have:

Vhj
= Vhj

/Null(PAB)⊕Null(PAB) (3.52)

32

and we can write uj as:

uj = ΠVhi
uj + ΠV ⊥hi

uj = PAB[uj]B + [ũj]B (3.53)

ΠV ⊥hi
uj = [ũj]B = ΠNull(PAB)[uj]B ∈ Null(PAB) (3.54)

For computing the projection onto complement space ΠV ⊥hi
, we need to find the basis

for null space of ΠVhi
. LUQ matrix factorization A.2 can be used to obtain a basis for

the nullspace of a sparse matrix and it is more efficient than singular value decompo-

sition since it does not generate dense basis vectors; However, the basis vectors are

not orthogonal and projection of uj onto the complement space requires a Galerkin’s

projection which is equivalent to one linear system solve.

Null(PAB) = Null(G−1
AAGAB) (3.55)

Since GAA is an invertible matrix we have:

dim(Null(G−1
AA)) = 0 =⇒ Null(PAB) = Null(GAB) (3.56)

which greatly simplifies the task to find the nullspace basis. Suppose that Z is a

matrix whose columns form a basis of Null(PAB) computed from the LUQ matrix

factorization. The nullspace basis vectors are represented by their coordinates in basis

B of Vhj
. For the projection of uj onto V ⊥hi

using Galerkin’s projection we would have:

Z =

[zi]B : [zi]B =

dim(B)∑
j=1

zijbj , 1 ≤ i ≤ nnull

 (3.57)

[ũ]B = Z(ZTGBBZ)−1ZTGBB[uj]B (3.58)

As I mentioned earlier, method I for multi-mesh POD decomposes the snap-

shot vectors and avoids using the duplicate information; However, for arbitrary un-

structured meshes, there is no guarantee to use all the information available. This

33

shortcoming stems from the fact that projection transformations between arbitrary

non-consistent meshes are not lossless. Every projection between snapshots’ meshes

may degrade the snapshots. For this reason, the projected POD basis vectors from

equation (3.48), lose their orthogonality and we need to apply an orthogonalization

procedure such as the Gram-Schmidt. The solution quality of method I also depends

on the order we choose to process the snapshots’ meshes. Choosing a fine to coarse

sequence would yield better results, but this approach does not work all time. For

example, we may have multiple fine meshes with different spatial refinements and no

matter how we sort the meshes, there is always going to be some information loss.

In method I, I tried to compute POD basis regardless of the target mesh and

construct a global reduced order basis by decomposition of snapshots on multiple

given meshes. The basis vectors can be computed offline, and for any arbitrary target

mesh, we would still need to compute multiple mesh projections. Also, the quality of

the result was not perfect due to the abundant use of projection transformations. In

the proceeding sections, I provide better solutions to the multi-mesh POD problem.

3.4 Method II

In the second method, we compute the basis vectors after the snapshots are

projected onto the target mesh. The main purpose is to avoid losing any data from

the snapshots and improve the quality of result compared to method I. Here are the

steps required for method II:

1. Compute projection transformation from snapshots’ meshes to target mesh.

2. Project all snapshots to the target mesh.

3. Apply proper orthogonal decomposition to the resulting snapshot matrix on the

target mesh.

34

0

0.2

0.4

0.6

0.8

PHH(1)u1 ∈ Vh

-0.2

0

0.2

0.4

PHH(2)u2 ∈ Vh

0

0.5

1.0

1.5

PHH(3)u3 ∈ Vh

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

PHH(4)u4 ∈ Vh

Figure 3.10: Snapshots projected onto target mesh

For the first step we use theorem 1 to define the projection transformations. Assuming

Vh is the target mesh with basis H we have:

PHH(k) = GHH
−1GHH(k) 1 ≤ k ≤ K (3.59)

where H(k) are basis sets of Vhk
as before. Next we project all the snapshot vectors

uk onto the target mesh and form new snapshot matrix [S]H. Figure 3.10 shows

snapshots projected onto the target mesh Vh.

[S]H =
{
PHH(k)[uk]H(k) : 1 ≤ k ≤ K

}
(3.60)

In order to compute POD we also need to provide proper inner product definition for

Vh using lemma 2.

〈u,v〉Vh
= 〈[u]H, GHH[v]〉Fdim(Vh) (3.61)

35

0

0.25

0.50

0.75

1.00

φ1

-1.0

-0.5

0

0.5

φ2

-1

0

1

2

φ3

-0.5

0

0.5

1.0

1.5

φ4

Figure 3.11: POD basis Φ on target mesh computed from method II

The POD computation is the following:

C = [ST]HGHH[S]H (3.62)

Cψi = σ2
iψi 1 ≤ i ≤ r = rank(C) (3.63)

[φi]H =
1

σi
[S]Hψi (3.64)

N = arg min
n

∑n
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2POD (3.65)

Φ
∆
= {φi ∈ Vh : 1 ≤ i ≤ N} (3.66)

Figure 3.11 shows the final basis vectors computed on the target mesh. Compar-

ing to figure 3.9, the basis vectors are much smoother and the difference is due to

superiority of method II over method I in preserving all the information in snapshots.

The advantage of method II over method I is that it is optimal in conserving

all available information. The disadvantage is that we need to store all the snap-

shots. Usually, we have far more snapshots than reduced basis vectors and this will

increase computer memory requirement for method II. As far as computation cost,

we still need to compute projection transformation between the target mesh and all

the snapshot meshes and the POD computation is also differed to the last step which

may not be ideal. Although he resulting reduced order model will depend entirely on

the target mesh.

36

3.5 Method III

In the third method, we achieve a truly multi-mesh proper orthogonal decom-

position. The basis vectors are computed offline on multiple meshes. We can use

the reduced order model as is, or we can choose to project the basis vectors onto an

arbitrary target mesh. Here are the steps we take in method III:

1. Define super-mesh as the union of all snapshots meshes.

2. Transfer snapshots to the super-mesh.

3. Compute projection transformations between all snapshot meshes.

4. Form the consistent inner product of super-mesh.

5. Compute POD of snapshots on super-mesh.

6. Compute projection transformation between snapshot meshes and target mesh.

7. Form projection transformation between the super mesh and the target mesh.

8. Project basis vectors to the target mesh.

9. Apply an orthonormalization procedure such as Gram-Schmidt.

Steps 1 to 5 are computed in offline mode. Step 6 which computes the projection

transformation between the target mesh and snapshot meshes needs the most com-

putation time in the online step. The immediate advantage over previous methods

is that the model reduction is computed offline and we only store the reduced ba-

sis vectors versus the entire snapshots. The accuracy of method III is the same as

method II for the same target mesh for both methods. However, method III is supe-

rior since it works even without a target mesh. There is an opportunity to eliminate

the problem of choosing an appropriate target mesh for reduced order models. Even

more, interestingly we can devise methods to generate an optimal target mesh for a

given problem by mesh fusion.

37

In the following, I derive the formulation of method III followed by discussing

the possibility of solving the reduced order model directly on the super-mesh. Fur-

ther, I will propose one possible way to fuse the mesh data for an optimal target mesh

in the future work section of this document.

Let us begin by introducing the main instrument of method III which is the

super-mesh. Intuitively one may want to fuse all the meshes data to form a fully

compatible and conforming super-mesh which encompasses all the snapshots’ meshes;

But this approach requires a very difficult geometric problem to solve and for meshes

with mixed order of elements, it is even more difficult to automatically define finite

elements with shape functions compatible with various and sometimes customized

element definitions coming from multiple meshes. The super-mesh that I define will

have many overlapping elements and it can handle mixed and custom finite elements

without any complications.

Let the super-mesh VSM ⊂ V be a finite dimensional function space. Define

VSM as the summation of a set of finite dimensional function spaces. Suppose Vhk
are

snapshots’ meshes for k = 1, . . . K.

VSM = Vh1 + Vh2 + . . .+ VhK
(3.67)

Nsm = dim(VSM) ≤
K∑
k=1

dim(Vhk
) = Ntot (3.68)

Similar as before, we take H(k) to be basis of Vhk
. Now we define H̃SM to be the

spanning set of VSM by taking the union of all H(k)s.

H̃SM =

{
K⋃
k=1

H(k)

}
(3.69)

38

From linear algebra, we know that every spanning list in a vector space can be reduced

to a basis of the vector space. Suppose that HSM is H̃SM reduced to basis of VSM .

The true dimension of VSM is not known before finding HSM ; However, we need

neither the dimension nor the basis. We can represent any vector in VSM using the

spanning set H̃SM .

∀u ∈ VSM u =
K∑
k=1

u(k) u(k) ∈ Vhk
(3.70)

[u]H̃SM
= [u(1)]H(1)

_[u(2)]H(2)
_ . . ._ [u(K)]H(K) (3.71)

Equation (3.71) defines [u]H̃SM
to be concatenation of of coordinates of u(k)s in their

respective basis. Although this vector representation is unorthodox since we do not

use the basis of VSM , it works in our favor. All of the snapshots are automatically

transferred to the super-mesh by zero padding and no information is lost compared

to the mesh projection transformations of methods I and II.

[S]H̃SM
=
{

[uk]H̃SM
: 1 ≤ k ≤ K

}
(3.72)

After the snapshots matrix [S]H̃SM
is formed, it only remains to define an equivalent

inner product for VSM . The standard inner product of VSM can be defined in FNsm ;

However since we do not have access to basis of VSM , we define an equivalent inner

product in FNtot using the spanning set H̃SM :

〈u,v〉VSM
= 〈[u]HSM

, GSM [v]HSM
〉FNsm = 〈[u]H̃SM

, G̃SM [v]H̃SM
〉FNtot (3.73)

G̃SM
∆
=



GH(1)H(1) GH(1)H(2) . . . GH(1)H(K)

GH(2)H(1) GH(2)H(2) . . . GH(2)H(K)

...
...

. . .
...

GH(K)H(1) GH(K)H(2) . . . GH(K)H(K)


(3.74)

39

In equation (3.74), the Gramians GH(i)H(j) are defined by equations (3.16) and (3.17)

and we have:

GH(j)H(i) = GH(i)H(j)
T (3.75)

The Gramian computations are the most challenging step of method III since it

involves pair-wise mesh intersections. Now that we have the consistent inner product

definition, we can apply POD to snapshot matrix [S]H̃SM
to find the reduced order

basis ΦSM over the super-mesh.

C = [ST]HSM
GSM [S]HSM

= [ST]H̃SM
G̃SM [S]H̃SM

(3.76)

Cψi = σ2
iψi 1 ≤ i ≤ r = rank(C) (3.77)

[φi]H̃SM
=

1

σi
[S]H̃SM

ψi (3.78)

N = arg min
n

∑n
i=1 σ

2
i∑r

i=1 σ
2
i

≥ 1− ε2POD (3.79)

ΦSM
∆
= {φi ∈ VSM : 1 ≤ i ≤ N} (3.80)

In equation (3.76), we compute the correlation matrix C using the equivalent inner

product definition for vectors described in terms of sapping set H̃SM instead of basis

set HSM . You can see that we are correctly solving for the POD vectors without

sacrificing accuracy. Figure 3.12 visualizes the POD basis vectors as they are defined

on the super-mesh. As it can be observed from the figure, each basis vector on the

super-mesh may have non-zero components on all snapshot meshes.

After finding the general POD basis on the super-mesh, we need to way to

transfer the basis to an arbitrary target mesh. Suppose Vh is a target mesh with

basis H. The projection transformation from the super-mesh to the target mesh are

computed as a summation of multiple projections from each snapshot’s mesh Vhk
to

40

0

0.1

0.2

0.3

φ1 ∈ Vh1

-0.02

-0.01

0

0.01

φ1 ∈ Vh2

0

0.2

0.4

0.6

0.8

φ1 ∈ Vh3

-0.050

-0.025

0

0.025

0.050

φ1 ∈ Vh4

-0.5

-0.4

-0.3

-0.2

-0.1

0

φ2 ∈ Vh1

-0.075

-0.050

-0.025

0

0.025

0.050

φ2 ∈ Vh2

0

0.1

0.2

0.3

0.4

φ2 ∈ Vh3

-0.75

-0.50

-0.25

0

0.25

0.50

0.75

φ2 ∈ Vh4

0

0.25

0.50

0.75

1.00

1.25

φ3 ∈ Vh1

-0.2

-0.1

0

0.1

0.2

0.3

φ3 ∈ Vh2

-2.0

-1.5

-1.0

-0.5

0

φ3 ∈ Vh3

-1.0

-0.5

0

0.5

1.0

φ3 ∈ Vh4

-0.5

-0.4

-0.3

-0.2

-0.1

0

φ4 ∈ Vh1

-1.0

-0.5

0

0.5

1.0

1.5

φ4 ∈ Vh2

0

0.25

0.50

0.75

1.00

φ4 ∈ Vh3

-0.04

-0.02

0

0.02

0.04

φ4 ∈ Vh4

Figure 3.12: POD basis ΦSM on the super-mesh computed from method III. Each
row shows components of one basis vector over all snapshot meshes. Each column
shows contribution of one mesh to all basis vectors

the target mesh Vh. Figure 3.13 shows the basis vectors on the target mesh after

recollection from the super-mesh. The result perfectly matches method II which was

ideal.

Vh ∈ V H = {hi : 1 ≤ i ≤ dim(Vh)} (3.81)

uVh
= PHH̃SM

u = G−1
HH

K∑
k=1

PHH(k)[u(k)]H(k) ∀u ∈ VSM (3.82)

41

0

0.25

0.50

0.75

1.00

φ1

-1.0

-0.5

0

0.5

φ2

-1

0

1

2

φ3

-0.5

0

0.5

1.0

1.5

φ4

Figure 3.13: POD basis Φ on target mesh computed from method III

Equation (3.83) generates images of basis vectors projected onto the target

mesh and similar to method I we need to orthonormalize them. As a reminder, the

orthonormalization is required due to the fact that orthogonal projections do not

preserve angles between vectors.

Φ̃
∆
=
{

[φ̃i]H = PHH̃SM
[φi]H̃SM

: 1 ≤ i ≤ N
}

(3.83)

Φ
∆
= {[φi]H ∈ Vh : 1 ≤ i ≤ N} = orthonormalize(Φ̃) (3.84)

The super-mesh method has more of potential for application in reduced order

modeling which may be explored in future works. As I mentioned earlier, there is an

opportunity to eliminate the guess work to determine an appropriate target mesh for

a given problem. It might be possible to solve the ROM directly on the super-mesh.

To achieve this, one needs to derive formulation equivalent to equations (2.1) and

(2.2) for the super-mesh. Being able to directly solve the finite element problem on

the super-mesh is highly valuable for multi-mesh ROMs if possible.

Choosing a target mesh for a multi-mesh ROM problem needs some attention

as well. In a scenario where the snapshots’ meshes have different local refinements,

the accuracy of the ROM’s solution depends on the target mesh and the error bound

might be higher than expected. The number of elements, as well as their density

42

distribution, affect the solution. To estimate a good target mesh, we can imagine a

parametric mesh model which determines the density of ROM’s mesh by fusing the

original snapshot’s meshes. For example, multivariate regression models can be used

to correlate parameter values to mesh mixing weights. The mesh weights can then

be further processed to generate target mesh density function. The mesh adaptation

method pioneered by G. Liao [32] is capable of enforcing mesh density over a pre-

viously generated mesh and is a good candidate for the mesh fusion process. If the

ROM’s solution on the super-mesh is available, we can use the solution decomposi-

tion on the snapshots’ meshes to determine the mixing weights. The target mesh’s

density function can be computed by weight normalized linear combination of snap-

shots’ meshes. This method will directly use the solution of the problem whereas the

parametric mesh model estimates the density based on the assumption of continuity

of the parametric solution manifold and depends on the accuracy of the regression

model.

43

CHAPTER 4

MESH INTERSECTION

Finding the geometric intersection between shapes is a well known mathemat-

ical problem. For our purpose, we want to narrow our focus on convex polytopes.

Polytopes can be best described as the generalization of polygons from zero dimension

to dimensions beyond two. Many variants of shape intersection algorithms exist al-

ready but all the methods suffer from some sort of limitation. They are limited either

to the spatial dimension or to the types of shapes they can handle. For example, some

algorithms are only for finding the intersection between pairs of 2D triangles or pairs

of 3D tetrahedrons. Some more general algorithms work for pairs of convex polygons.

Although the problem of geometric intersection may not sound mathematically chal-

lenging, there is room to improve and generalize existing methods. The limitation of

current computational methods to fixed dimension or shape types motivated me to

work on a more general algorithm to handle intersection of convex polytopes.

4.1 Embedded convex polytope intersection algorithm

The majority of intersection algorithms work for shapes defined in the same di-

mension. The embedded convex polytope intersection (ECPI) algorithm is designed

to handle any combination of convex polytopes which are embedded in spatial dimen-

sion greater or equal to the dimension of the polytopes themselves. The generality

of the ECPI algorithm makes it distinguishable and unique. For the purpose of cal-

culating mesh intersections, we need to calculate the intersection between the mesh

elements which are polygons in two dimensions or polyhedrons in three dimensions.

44

Dim Name Facet Ridge Peak
0 Vertex Null − −
1 Edge Vertex Null −
2 Face Edge Vertex Null
3 Cell Face Edge Vertex
...

...
...

...
...

n n-polytope (n− 1)-face (n− 2)-face (n− 3)-face

Table 4.1: Structure of polytopes

The ECPI algorithm’s capability to compute the intersection between polytopes of

mismatching dimension is far more than what is required to solve for the intersec-

tion between meshes of the same dimension. There are more geometric applications

that one can imagine for such a general algorithm. For example, the ECPI algo-

rithm can handle the intersection of an embedded three-dimensional surface and a

three-dimensional volume. And the same code can handle intersection of lines and

two-dimensional shapes. Examples beyond three dimensions are yet to be tested.

Table 4.1 lists different polytopes and their related facets, ridges and peaks

where it applies. The table is provided to establish the terminology used through out

this document. Each polytope consists of lower dimensional members. The most im-

mediate sub-geometries are called facets. For example, vertices are facets of edges and

edges are facets of faces. From this definition, we can imagine a recursive structure

which defines an n-polytope. Each n-polytope contains facets which are (n − 1)-

polytopes and this recursion continues until we reach vertices. An abstract polytope

is the pure combinatorial definition which describes the polytope without any geomet-

ric representation. In a sense, abstract polytope describes the relationships between

various structural elements of a group of polytopes. Each geometric polytope is a

realization of its associated abstract polytope in some real N-dimensional space.

45

The geometric shape of each element type in finite element method can be

described by a unique abstract polytope. In fact, the connectivity diagram of an ele-

ment definition is equivalent to an abstract polytope definition. An abstract polytope

can be visualized by Hasse diagrams. Figures 4.1 to 4.5 depict Hasse diagrams for

conventional finite elements along their geometric diagrams.

● ●
E

V1 V2

(a)

E

V1 V2

Null

(b)

Figure 4.1: Line. (a). Geometric diagram (b). Hasse diagram

● ●

●

●

F

E1

E2E3

V1 V2

V3

(a)

F

E1 E2E3

V1 V2 V3

Null

(b)

Figure 4.2: Triangle. (a). Geometric diagram (b). Hasse diagram

46

● ●

●●

●

F

E1

E2

E3

E4

V1 V2

V3V4

(a)

F

E1 E2 E3E4

V1V2 V3 V4

Null

(b)

Figure 4.3: Quadrilateral. (a). Geometric diagramt (b). Hasse diagram

V1

V2

V3

V4

E1

E2

E3

E4
E5

E6

F1

F2
F3

F4C

(a)

C

F1 F2 F3F4

E1 E3 E2 E5E4 E6

V1 V2 V3 V4

Null

(b)

Figure 4.4: Tetrahedron. (a). Geometric diagram (b). Hasse diagram

47

V1

V2

V3

V4

V5

V6

V7

V8

E1
E2

E3
E4

E5

E6

E7

E8

E9
E10

E11E12

F1

F2
F3

F4F5

F6

C

(a)

C

Null

E1 E10 E11E12E2 E3E4 E5E6 E7 E8E9

F1 F2 F3 F4F5 F6

V1V2 V3 V4 V5V6 V7 V8

(b)

Figure 4.5: Hexahedron. (a). Geometric diagram (b). Hasse diagram

A Hasse diagram is a type of graph visualization for polytopes and it shows the

hierarchy, connectivity, and structure of a polytope. In the geometric diagrams, the

vertices are the corners where two edges meet. The vertices coincide on the nodes

of linear elements in FEM. Higher order elements have more nodes than their linear

versions but their geometry plot remains the same. I emphasized this fact to eliminate

confusion between element diagrams in FEM and the geometric diagrams introduced

here.

48

Embedded convex polytope intersection algorithm generates a recursive structure as

the result of the intersection between two polytopes. The dimension of the intersection

polytope is automatically resolved by the algorithm without prior knowledge. For

example, the expected intersection of two triangles in two-dimensional space is a

polygon, but in three-dimensional space, it might as well be a line.

4.1.1 Intersection formulation

At the heart of ECPI, there is an equation solver to find intersection points.

I formulate the intersection of two shapes directly by equating global coordinates

of the shapes. The formulation results in a system of equations and the solution

of which describes the intersection between the two shapes. The geometric shape

of elements can be described using shape-functions. The shape-functions are fixed

parametric functions defined for a reference element in a local coordinate system. Let

us formally define vector of shape-functions Ψ(X) in terms of local coordinates vector

X for an n-node element as:

Ψ(X)
∆
= [ψ1(X) ψ2(X) . . . ψn(X)]T (4.1)

ψi(X) : Rp → R : X → ψi(X) i = 1 . . . n (4.2)

Using the shape-functions of each element we construct a mapping between local and

global coordinate systems. The global coordinate system is the embedding space and

it may be of higher dimension than the elements themselves (e.g. a line embedded in

3D space). This mapping is a core concept in finite element method and is used for

creating isoparametric elements. The following formula defines global coordinates of

an element in terms of its parametric shape functions and nodal coordinates:

x =
n∑

i=1

x̂(i)ψi(X) = X̂Ψ(X) (4.3)

49

x
∆
= [x1 . . . xd]T (4.4)

x̂(i)
∆
= [x̂(i)1 . . . x̂(i)d]T i = 1 . . . n (4.5)

X̂ = [x̂(1) x̂(2) . . . x̂(n)]d×n (4.6)

x is the vector of coordinates in the d-dimensional embedding space and x̂(i) is the

nodal coordinate of node i in the global coordinate. From here forward A and B refer

to two polytopes we are trying to intersect with each other. We can start by equating

the two shapes’ coordinates in their embedding space:

xA =

nA∑
i=1

x̂A(i)ψAi(XA), xB =

nB∑
j=1

x̂B(j)ψBj(XB) (4.7)

XA =
{
XA1 , . . . ,XAp

}
XB =

{
XB1 , . . . ,XBq

}
(4.8)

f(XA,XB)
∆
=

nA∑
i=1

x̂A(i)ψAi(XA)−
nB∑
j=1

x̂B(j)ψBj(XB) (4.9)

= X̂AΨA(XA)− X̂BΨB(XB) (4.10)

f(XA,XB) defined above is the vector of coordinate differences between two paramet-

ric points on A and B in the embedding space. The l2 norm of f is the Euclidean

distance between the two points. The two shapes A and B have an intersection point

for a pair of {XA,XB} that makes the difference vector equal to zero vector. We

need to solve the d-dimensional system of equations f(XA,XB) = 0. The system has

dim(XA) + dim(XB) = p+ q unknowns. Since a number of equations and parameters

do not match in general, we have to use the least-squares method. The least-squares

formulation transforms the problem into minimizing the distance between two points

on A and B. In order to handle nonlinear equations for higher order elements, we

can set up Newton’s algorithm for the solver. First we combine all the local shape

50

parameters and then we proceed by defining the Jacobian of the system with respect

to all variables as the following:

X ∆
=

[
XA1 . . . XAp XB1 . . . XBq

]
(4.11)

f(X) = f(XA,XB) (4.12)

= X̂AΨA(XA)− X̂BΨB(XB) =

[
X̂A X̂B

]
·

 ΨA(XA)

−ΨB(XB)

 (4.13)

J(X) =

[
∂f(X)
∂X1

. . . ∂f(X)
∂Xp+q

]
d×(p+q)

∆
= X̂AB · Jgen(X) (4.14)

X̂AB
∆
=

[
X̂A X̂B

]
d×(nA+nB)

(4.15)

Jgen(X)
∆
=

 ∂ΨA(XA)
∂XA1

. . . ∂ΨA(XA)
∂XAp

0 . . . 0

0 . . . 0 −∂ΨB(XB)
∂XB1

. . . −∂ΨB(XB)
∂XBq


(nA+nB)×(p+q)

(4.16)

The Jacobian matrix is non-square and not invertible but as mentioned earlier, we

can use the least-squares method to solve the system using pseudoinverse. In the case

that there is a point intersection we are guaranteed to find the point, otherwise we find

two parametric points corresponding to a minimum distance. The iterative update

equation for Newton’s algorithm is derived below to solve the system f(X) = g. The

right-hand side vector g is assumed to be non-zero for reasons which we follow on

later.

g = f(X i+1) ≈ f(X i) + J(X 0) · (X i+1 −X i) (4.17)

J(X i) ·∆X ≈ g − f(X i) (4.18)

X i+1 = X i + ∆X , ∆X = (JT · J)−1 · JT · (g − f(X i)) (4.19)

51

After applying the least square method we need to solve a system of (p + q) equa-

tions defined by the matrix S = JT · J . If the intersection of two shapes happens

to be a point, matrix S is full ranked and has a unique solution. However, if the

intersection happens to be more than 0-dimensional, the system becomes rank defi-

cient and has infinite solutions. Each and every solution of a rank deficient matrix

still lies on the intersection of two shapes and the solutions form a subspace. A

key observation is that the rank deficiency of the matrix S equals the dimension

of expected intersection polytope. Rank deficiency(RD) and expected intersection

polytope dimension(DimX) are defined as:

DimX = RD = dim(A) + dim(B)− rank(S) (4.20)

where dim(A) and dim(B) are manifold dimensions of A and B respectively. The

ECPI algorithm adds more equations to the system f(X) = 0 until it obtains a

full rank system and solves for point intersections. In the case where the expected

intersection is of a dimension higher than zero, the intersection will be a polytope

of that dimension. For example in polytopes of dimensions one and two, the points

constitute the vertices of edges and the edges become facets of faces. ECPI algorithm

anticipates a polytope of a certain dimension and will recursively try to solve for its

constituents.

4.1.2 Constraint equations

So far we formulated a system of equations which may be rank deficient and

requires adding extra equations to become full rank. We modify our formulation to

accommodate for extra constraints c(X) = r.

c : Rp+q → Rnc : c(X) = r (4.21)

fc(X) = g (4.22)

52

fc(X)
∆
=

 f(X)

c(X)

 g
∆
=

 0

r

 (4.23)

Jc(X) =

 ∂f(X)
∂X1

. . . ∂f(X)
∂Xp+q

∂c(X)
∂X1

. . . ∂c(X)
∂Xp+q


(d+nc)×(p+q)

(4.24)

The Newton’s method formulation is the same as before once we substitute the new

Jacobian matrix Jc.

As hinted earlier the extra constraint equations are used to reduce rank defi-

ciency of the system by recursively limiting the search space of points on the poly-

topes A and B. The ECPI algorithm requires a set of predefined constraint equations

corresponding to facets of the polytopes. The combination of these constraints in

compliance with the Hasse diagram of the shape will further limit the parametric

space to ridges and peaks of the polytope.

Defining the constraint equations for the finite elements is easily done using

isoparametric formulation. The advantage of using isoparametric formulation is that

it allows us to reuse the constraint equations of linear elements for all higher or-

der versions as well. In the certain application, we may be interested to know the

local coordinate of intersection points for each element. Another advantage of the

isoparametric formulation is that since we are solving the equations in terms of local

parameters, there is no need to solve a second inverse mapping to find the local coordi-

nates and the forward map to embedding coordinate space is effortless. Table 4.2 lists

the constraint equations consistent with facet numbering of figures 4.1 to 4.5 for the

basic elements. The complete definition of local coordinates and shape functions for

all elements can be found in the appendix. The constraint equations of table 4.2 are

53

Element Facet count Facets Constraints

Line 2
V1

V2

ξ = −1
ξ = 1

Triangle 3
E1

E2

E3

L3 = 1− L1 − L2 = 0
L1 = 0
L2 = 0

Quadrilateral 4

E1

E2

E3

E4

η = −1
ξ = 1
η = 1
ξ = −1

Tetrahedron 3

F1

F2

F3

F4

L4 = 1− L1 − L2 − L3 = 0
L3 = 0
L1 = 0
L2 = 0

Hexahedron 6

F1

F2

F3

F4

F5

F6

ζ = −1
η = −1
ξ = 1
η = 1
ξ = −1
ζ = 1

Table 4.2: Constraint equations of polytope facets

defined in terms of local coordinates and are all commonly linear equations. However

being linear is not a requirement. If one decides to define the geometric equations of

shapes in terms of embedding coordinates (x,y,z), the constraint equations for high

order elements become nonlinear.

4.1.3 ECPI recursive function

The ECPI algorithm loops through the facets of A and B and adds appropriate

constraint equations to the system recursively. Using the rank deficiency number RD

in each step, the algorithm determines the type of intersection. Algorithm 1 lists a

high-level pseudocode for the ECPI algorithm.

54

Algorithm 1 ECPI high-level psuedocode

function ECPI(A,B, S)

EQs←assemble system of equations corresponding to state S

Try solving EQs for an intersection point and calculate the rank

RD ←rank deficiency of the system

if a point was found and the point is valid then

return vertex

end if

if system was rank deficient then

DimX ← dimension of expected intersection polytope

if DimX 6= RD then

return null

end if

for all available constraints of A given S do

if the constraint is not already satisfied in cHitA then

rS ← Prepare state variable and add new constraint to be considered

PTA ←ECPI(A,B, rS) . 1st recursive call

if polytope dimension of PTA = DimX − 1 then

PT ← Add PTA to facet of PT if it does not already exist

cHitA ←Update the state of satisfied constraints of A given PTA

end if

end if

end for

. . .

55

ECPI function continued . . .

for all facets in PT do

cHitB ←Update the state of satisfied constraints of B given the facet

end for

for all available constraints of B given S do

if the constraint is not already satisfied then

rS ← Prepare state variable and add new constraint to be considered

PTB ←ECPI(A,B, rS) . 2nd recursive call

if polytope dimension of PTB = DimX − 1 then

PT ← Add PTB to facets of PT if it does not already exist

cHitB ←Update the state of satisfied constraints of B given PTB

end if

end if

end for

end if

validate polytope definition of PT

return PT

end function

The pseudo-code provided in algorithm 1 describes a recursive function real-

ization of the ECPI algorithm. The ECPI function takes two polytopes A and B

and a state variable S. We control the logic through the state variable S especially

when we make the recursive calls at lines 12 and 25. The state variable S encapsulate

all the information necessary for the algorithm to make decisions. The initial ECPI

function call will start from a default state S and as the algorithm steps are executed,

56

the function may decide to make recursive calls. Before making a recursive call, the

ECPI function sets a new recursion state rS which will guide the next function call.

The state variable includes information about active constraints of A and B , cur-

rent recursive levels. The recursion level refers to the polytope dimension defined

by constrained shapes A and B. For example, if A is a triangle, recursion level of

unconstrained A is two. By adding one constraint equation to A, the shape will be

constrained to one of its facets which in this case will be an edge of the triangle and

this corresponds to recursion level one. The recursion level will stop at zero which cor-

responds to vertices of a polytope. For the initial function call, we set a default state

with no active constraint and recursion levels set to polytope’s dimensions of A and B.

The variables cHitA and cHitB stand for “constraint hits” and they are used

to track which constraints of the shapes are already satisfied. Every time we find an

intersection polytope PTA or PTB we check to see which constraints they satisfy. The

constraint satisfaction checking is also a recursive function itself. To make it more

clear, suppose an intersection polytope PTA is a one dimensional polytope. PTA will

satisfy a constraint equation, only if all of it’s points satisfy that constraint. Due to

the design of ECPI, we only need to recursively check which constraints are satisfied

by all facets of PTA. If both vertices of the PTA edge satisfy the same constraints set,

we conclude that all points of PTA also satisfy the same set. The whole procedure

of checking “constraint hits” is required to prevent generating redundant intersection

polytopes and avoid a computationally expensive cleanup process.

At the last step before the ECPI function returns the result, we verify that

output polytope PT has minimum required number of facets.

57

4.1.4 ECPI example

This section serves to demonstrate the inner workings of the recursive ECPI

function through visualizing examples. For the first example we consider the inter-

section of two lines embedded in 2D space and for the second example, we find the

intersection between a triangle element and a line element embedded in 2D space.

4.1.4.1 Example 1: line-line 2D intersection

Assume we have two arbitrary line elements A and B embedded in 2D space.

There is a total of 6 test cases to cover all possible scenarios. Figure 4.6 depicts all

test cases that will be considered. The expected output will be either a point or a

line. The ECPI algorithm steps for each test case is visualized by the intersection

A
B

Case 1

A B

Case 2

A B

Case 3

A B

Case 4

A B

Case 5

A B

Case 6

Figure 4.6: 2D-line-line intersection test cases

sub-problems it tries to solve in each recursive function call. Figure 4.7 visualizes the

first test case which is the simple line-line intersection and ECPI finds the intersection

point at line 3 of algorithm 1.

58

A
B

A
B

Case 1

Figure 4.7: ECPI visualization for 2D-line-line intersection test cases 1.

A B

A B

A B

A B A B

A B A B

A B

Case 2

A B

A B

A B A B

A B A B

A B

A B

Case 3

Figure 4.8: ECPI visualization for 2D-line-line intersection test cases 2 and 3.

Figure 4.7 visualizes the first test case which is the simple line-line intersection

and ECPI finds the intersection point at line 3 of algorithm 1. Figures 4.8 and 4.9

visualize the rest of the test cases which involve recursive calls to solve subproblems.

All test cases iterate through all vertices of A and B and if the corresponding con-

straint is not satisfied yet, they will issue a recursive call. Test cases 2 and 3 do

not encounter previously satisfied constraints but test cases 4 to 5 will and therefore

59

make fewer function calls. As mentioned earlier, this mechanism ensures avoiding re-

dundant work and prevents the future cleanup process. In each figure, at the top left

corner, we have the problem to be solved and bellow are the recursive function calls.

The plots show the constrained search space under given the current state rS. Once

all the recursive calls return their results to the main branch, the function generates

the output which is placed on the top right corner of each figure.

A B

A B

A B A B

A B

A B

Case 4

A B

A B

A B A B

A B A B

A B

Case 5

A B

A B A B

A B A B

A B

Case 6

Figure 4.9: ECPI visualization for 2D-line-line intersection test cases 4,5 and 6.

60

4.1.4.2 Example 2: line-triangle 2D intersection

In the second example I visualize three test cases depicted in figure 4.10.

A
B

Case 1

A B

Case 2

A B

Case 3

Figure 4.10: 2D-line-triangle intersection test cases

Similar to the previous example, the assumption is we have two input shapes labeled

A and B. Figures 4.11 and 4.12 visualize the steps ECPI algorithm takes for each

case. The algorithm takes a different path in the recursion execution tree for each

test case. The first test case shows all the steps that the algorithm might take in a

regular situation.

61

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

Figure 4.11: ECPI visualization for 2D-line-triangle intersection test case 1

62

A B

A B A B

A B A B

A B

A B

Case 2

A B

A B

A B

A B A B

A B A B

A B

Case 3

Figure 4.12: ECPI visualization for 2D-line-triangle intersection test cases 2 and 3

In the irregular cases, the ECPI algorithm will skip some steps by taking logical

decisions depending on the outcome of previously executed steps. For example in the

second test case, after the first recursive call returns a point, the algorithm detects

that the point is also part of the second constraint of shape A and therefore it will

skip over the second constraint when looping through constraints of A. In the same

test case, the algorithm also skips the second constraint of B when looping through

them since the first point was coinciding with that constraint.

63

CHAPTER 5

CONCLUTIONS & FUTURE WORKS

Multi-mesh proper orthogonal decomposition problem is solved and is ready for

applications which require adaptive mesh refinement for different parameter settings.

In this work we used compatible inner products in Fn for finite dimensional function

space. Rigorous mathematical theories have been developed and proved to devise a

robust method for constructing reduced order basis in a multi vector space setting.

Computation of inner product matrices in finite element analysis requires computation

of integrals over common domain of finite elements. A general purpose geometric

algorithm is developed which computes intersections of any combination of convex

polytopes embedded in any dimension. The embedded convex polytope intersection

algorithm can be used as an stand alone tool. All the computer codes are developed

in C++ with high standards for portability and extendability. Major achievements

in this work are:

• Orthogonal subspace projection theory

• Robust method for finding reduced order basis in a multi-mesh scenario for

unstructured grids in all dimensions

• Embedded convex polytope intersection algorithm

For the future works we have a few direction in mind which this research can

be extended and applied to. In this work we assumed the final ROB problem is going

to be solved on a known target mesh; However the possibility of solving the problem

directly on the super-mesh will provide a powerful analysis tool which eliminates

the guess work involved in choosing an appropriate target mesh. If the super-mesh

64

solution is known for the problem we can use it to generate optimal target meshes

which are refined in just the right places. The famous mesh adaptation method of [24]

which uses Grassman manifold theory can be extended to ROBs defined over super-

meshes. The orthogonal subspace projection method combined with ECPI algorithm

becomes a powerful tool which can be used in various fields such as multi-physics

simulations and image registration. Bellow is a list of future works we are considering

for this research:

• Solve the reduced problem directly on the super-mesh

• Use super-mesh solution to estimate optimum mesh density function for the

target mesh by fusing snapshots’ meshes

• Extend Grassman manifold mesh adaptation [24] technique for the super-mesh

reduced order basis method

• Use orthogonal subspace projections in multi-physics simulations

• Develop fast and efficient super-mesh library for structured meshes and local

refinements

65

APPENDIX A

DERIVATIONS & FORMULAE & TEST CASES

66

A.1 Element formulations

● ●

-1 0 1

-1 0 1

ξ

n1 n2

(a)

● ●●

-1 0 1

-1 0 1

ξ

n1 n2n3

(b)

Figure A.1: Line elements node numbering. (a) Linear (b) Quadratic

Element order Shape functions

Line 1
ψ1(ξ) = (1− ξ)/2
ψ2(ξ) = (1 + ξ)/2

Line 2
ψ1(ξ) = ξ(ξ − 1)/2
ψ2(ξ) = ξ(ξ + 1)/2
ψ3(ξ) = (1− ξ)(1 + ξ)/2

Table A.1: Shape functions of line element

67

● ●

●

●
n1 n2

n3

L3

L1

L2

(a)

● ● ●

●

●

●

●
n1 n2

n3

n4

n5n6

L3

L1

L2

(b)

Figure A.2: Triangle elements node numbering. (a) Linear (b) Quadratic

Element order Shape functions

Triangle 1
ψ1(L1, L2) = L1

ψ2(L1, L2) = L2

ψ3(L1, L2) = 1− L1 − L2

Triangle 2

ψ1(L1, L2) = (2L1− 1)L1

ψ2(L1, L2) = (2L2 − 1)L2

ψ3(L1, L2) = (L1 + L2 − 1)(2L1 + 2L2 − 1)
ψ4(L1, L2) = 4L1L2

ψ5(L1, L2) = 4L2(1− L1 − L2)
ψ6(L1, L2) = 4(1− L1 − L2)L1

Table A.2: Shape functions of triangle element

68

● ●

●●

●

-1 0 1

-1

0

1

-1 0 1

-1

0

1

ξ

η

n1 n2

n3n4

(a)

● ● ●

●

●●●

●

●

●●

-1 0 1

-1

0

1

-1 0 1

-1

0

1

ξ

η

n1 n2

n3n4

n5

n6

n7

n8 n9

(b)

Figure A.3: Quadrilateral elements node numbering. (a) Linear (b) Quadratic

Element order Shape functions

Quad 1

ψ1(ξ, η) = (1− ξ)(1− η)/4
ψ2(ξ, η) = (1 + ξ)(1− η)/4
ψ3(ξ, η) = (1 + ξ)(1 + η)/4
ψ4(ξ, η) = (1− ξ)(1 + η)/4

Quad 2

ψ1(ξ, η) = (−ξ + ξ2)(−η + η2)/4
ψ2(ξ, η) = (ξ + ξ2)(−η + η2)/4
ψ3(ξ, η) = (ξ + ξ2)(η + η2)/4
ψ4(ξ, η) = (−ξ + ξ2)(η + η2)/4
ψ5(ξ, η) = (2− 2ξ2)(−η + η2)/4
ψ6(ξ, η) = (ξ + ξ2)(2− 2η2)/4
ψ7(ξ, η) = (2− 2ξ2)(η + η2)/4
ψ8(ξ, η) = (−ξ + ξ2)(2− 2η2)/4
ψ9(ξ, η) = (2− 2ξ2)(2− 2η2)/4

Table A.3: Shape functions of quadrilateral elements

69

n1

n2

n3

n4

L4

L3

L1
L2

(a)

n1

n2

n3

n4

n5

n6

n7

n8
n9

n10

L4

L3

L1
L2

(b)

Figure A.4: Tetrahedral elements node numbering. (a) Linear (b) Quadratic

Element order Shape functions

Tet 1

ψ1(L1, L2, L3) = L1

ψ2(L1, L2, L3) = L2

ψ3(L1, L2, L3) = L3

ψ4(L1, L2, L3) = 1− L1 − L2 − L3

Tet 2

ψ1 (L1, L2, L3) = (2L1 − 1)L1

ψ2 (L1, L2, L3) = (2L2 − 1)L2

ψ3 (L1, L2, L3) = (2L3 − 1)L3

ψ4 (L1, L2, L3) = (1− 2L1 − 2L2 − 2L3)(1− L1 − L2 − L3)
ψ5 (L1, L2, L3) = 4L1L2

ψ6 (L1, L2, L3) = 4L2L3

ψ7 (L1, L2, L3) = 4L1L3

ψ8 (L1, L2, L3) = 4L1(1− L1 − L2 − L3)
ψ9 (L1, L2, L3) = 4L2(1− L1 − L2 − L3)
ψ10(L1, L2, L3) = 4L3(1− L1 − L2 − L3)

Table A.4: Shape functions of tetrahedral elements

70

n1

n2

n3

n4

n5

n6

n7

n8

-1

0

1ξ

-1
0

1
η

-1

0

1

ζ

(a)

n1

n2

n3

n4

n5

n6

n7

n8

-1

0

1ξ

-1
0

1
η

-1

0

1

ζ

(b)

n9
n10

n11n12

n13

n14

n15

n16

n17
n18

n19n20

-1

0

1ξ

-1
0

1
η

-1

0

1

ζ

(c)

n21

n22

n23

n24

n25

n26

n27

-1

0

1ξ

-1
0

1
η

-1

0

1

ζ

(d)

Figure A.5: Hexahedral elements node numbering. (a) Linear (b) Quadratic corner
nodes (c) Quadratic mid-edge nodes (d) Quadratic mid-face and mid-cell nodes

71

b

Element order Shape functions

Hex 1

ψ1(ξ, η, ζ) = (1− ξ)(1− η)(1− ζ)/8
ψ2(ξ, η, ζ) = (1 + ξ)(1− η)(1− ζ)/8
ψ3(ξ, η, ζ) = (1 + ξ)(1 + η)(1− ζ)/8
ψ4(ξ, η, ζ) = (1− ξ)(1 + η)(1− ζ)/8
ψ5(ξ, η, ζ) = (1− ξ)(1− η)(1 + ζ)/8
ψ6(ξ, η, ζ) = (1 + ξ)(1− η)(1 + ζ)/8
ψ7(ξ, η, ζ) = (1 + ξ)(1 + η)(1 + ζ)/8
ψ8(ξ, η, ζ) = (1− ξ)(1 + η)(1 + ζ)/8

Hex 2

ψ1 (ξ, η, ζ) = −(ζ − 1)ζ(η − 1)η(ξ − 1)ξ/8
ψ2 (ξ, η, ζ) = −(ζ − 1)ζ(η − 1)η (ξ2 − 1) /8
ψ3 (ξ, η, ζ) = −(ζ − 1)ζ (η2 − 1) (ξ2 − 1) /8
ψ4 (ξ, η, ζ) = −(ζ − 1)ζ (η2 − 1) (ξ − 1)ξ/8
ψ5 (ξ, η, ζ) = − (ζ2 − 1) (η − 1)η(ξ − 1)ξ/8
ψ6 (ξ, η, ζ) = − (ζ2 − 1) (η − 1)η (ξ2 − 1) /8
ψ7 (ξ, η, ζ) = − (ζ2 − 1) (η2 − 1) (ξ2 − 1) /8
ψ8 (ξ, η, ζ) = − (ζ2 − 1) (η2 − 1) (ξ − 1)ξ/8
ψ9 (ξ, η, ζ) = (ζ − 1)ζ(η − 1)ηξ(ξ + 1)/8
ψ10(ξ, η, ζ) = (ζ − 1)ζη(η + 1) (ξ2 − 1) /8
ψ11(ξ, η, ζ) = (ζ − 1)ζ (η2 − 1) ξ(ξ + 1)/8
ψ12(ξ, η, ζ) = (ζ − 1)ζη(η + 1)(ξ − 1)ξ/8
ψ13(ξ, η, ζ) = ζ(ζ + 1)(η − 1)η(ξ − 1)ξ/8
ψ14(ξ, η, ζ) = ζ(ζ + 1)(η − 1)η (ξ2 − 1) /8
ψ15(ξ, η, ζ) = ζ(ζ + 1) (η2 − 1) (ξ2 − 1) /8
ψ16(ξ, η, ζ) = ζ(ζ + 1) (η2 − 1) (ξ − 1)ξ/8
ψ17(ξ, η, ζ) = (ζ2 − 1) (η − 1)ηξ(ξ + 1)/8
ψ18(ξ, η, ζ) = (ζ2 − 1) η(η + 1) (ξ2 − 1) /8
ψ19(ξ, η, ζ) = (ζ2 − 1) (η2 − 1) ξ(ξ + 1)/8
ψ20(ξ, η, ζ) = (ζ2 − 1) η(η + 1)(ξ − 1)ξ/8
ψ21(ξ, η, ζ) = −(ζ − 1)ζη(η + 1)ξ(ξ + 1)/8
ψ22(ξ, η, ζ) = −ζ(ζ + 1)(η − 1)ηξ(ξ + 1)/8
ψ23(ξ, η, ζ) = −ζ(ζ + 1)η(η + 1) (ξ2 − 1) /8
ψ24(ξ, η, ζ) = −ζ(ζ + 1) (η2 − 1) ξ(ξ + 1)/8
ψ25(ξ, η, ζ) = −ζ(ζ + 1)η(η + 1)(ξ − 1)ξ/8
ψ26(ξ, η, ζ) = − (ζ2 − 1) η(η + 1)ξ(ξ + 1)/8
ψ27(ξ, η, ζ) = ζ(ζ + 1)η(η + 1)ξ(ξ + 1)/8

Table A.5: Shape functions of hexahedral elements

72

A.2 Nullspace calculation

Given an m× n matrix A, we can calculate basis of the null space using LUQ

factorization. L is an m ×m invertible matrix, Q is an n × n invertible matrix and

U is an m× n upper trapezoidal matrix.

A = LUQ r = Rank(A) (A.1)

The n− r columns of Q−1 corresponding to the pivotless columns of U are a basis for

the null space of A.

PA = L̃Ũ (A.2)

P : m×m permutation matrix

L̃ : m× n lower trapezoidal matrix with ones on the diagonal

Ũ : n× n upper triangular matrix write Ũ

Ũ =

 Ũ11 Ũ12

0 Ũ22

 (A.3)

Ũ11 : is invertible define L,U and Q as following:

L = P T

[
L̃ en+1 . . . em

]
, U =


Ũ11 0

0 Ũ22

0 0

 , Q =

 I Ũ−1
11 Ũ12

0 I

 (A.4)

73

A.3 Proofs

Lemma 1. If V and W are two finite dimensional inner product spaces with dimen-

sion n, the mapping f that maps an orthonormal basis of V to an orthonormal basis

of W is an isomorphism.

A = {a1,a2, . . .an} : orthonormal basis of V (3.2)

B = {b1, b2, . . . bn} : orthonormal basis of W (3.3)

f : V → W : v ∈ V → f(v) ∈ W : f(ai) = bi (3.4)

Proof. To prove that f is an isomorphism it is enough to show that the inner product

is preserved under f . We need to show that the inner product of images of two vectors

is the same as inner product of the original vectors.

〈., .〉V : V × V → F, 〈., .〉W : W ×W → F (A.5)

v = v1a1 + . . .+ vnan ∀v ∈ V, vi = 〈v,ai〉V ∈ F i = 1, . . . , n (A.6)

w = w1b1 + . . .+ wnbn ∀w ∈ W, wi = 〈w, bi〉W ∈ F i = 1, . . . , n (A.7)

v,u ∈ V, v =
n∑

i=1

viai, u =
n∑

i=1

uiai (A.8)

〈f(v), f(u)〉W = 〈f(
n∑

j=1

vjaj), f(
n∑

i=1

uiai)〉W (A.9)

= 〈
n∑

j=1

vjf(aj),
n∑

i=1

uif(ai)〉W = 〈
n∑

j=1

vjbj,
n∑

i=1

uibi〉W (A.10)

=
n∑

i=1

n∑
j=1

vj〈bj, bi〉W ūi =
n∑

i=1

n∑
j=1

vj〈aj,ai〉V ūi (A.11)

= 〈
n∑

j=1

vjaj,

n∑
i=1

uiai〉V = 〈v,u〉V (A.12)

74

Lemma 2. If V is a finite dimensional inner product spaces with dimension n and

basis Ψ = {ψ1, . . . ,ψn}, then there exists a modified inner product for Fn such that

V is isomorphic to Fn under the coordinate map of V to Fn.

f :V → FN : ψi → ei i = 1, . . . , n (3.9)

v → [v]Ψ

ei is the standard basis of Fn and [v]Ψ is the coordinate of v in basis Ψ. The compatible

inner product is defined as:

〈v,u〉V
∆
= 〈[v]Ψ , GV [ū]Ψ〉Fn (3.10)

(GV)ij
∆
= 〈ψi,ψj〉V ∈ F. (3.11)

Proof. ∀v,u ∈ V we have:

v =
n∑

i=1

viψi 7−→ f(v) =
n∑

i=1

viei (A.13)

u =
n∑

i=1

uiψi 7−→ f(u) =
n∑

i=1

uiei (A.14)

[v]Ψ = {vi ∈ F : i = 1 . . . n} (A.15)

[u]Ψ = {ui ∈ F : i = 1 . . . n} (A.16)

We start with the abstract definition of the inner product in vector space V . We

assume the general case for the field F where it can be replaced by C or R.

〈., .〉Fn : Fn × Fn → F 〈., .〉V : V × V → F (A.17)

〈v,u〉V = 〈
n∑

i=1

viψi,
n∑

j=1

ujψj〉V (A.18)

=
n∑

i=1

vi〈ψi,

n∑
j=1

ujψj〉V =
n∑

i=1

n∑
j=1

vi〈ψi,ψj〉V ūj =
n∑

i=1

vi

n∑
j=1

gijūj

75

Since ei’s are orthonormal we can add another summation and the term 〈ei, ek〉 to

the right hand side of the equation to get:

〈v,u〉V =
n∑

k=1

n∑
i=1

vi〈ei, ek〉
n∑

j=1

(GV)ijūj (A.19)

We can further switch the index i to k in the term (GV)ij to get:

〈v,u〉V =
n∑

k=1

n∑
i=1

vi〈ei, ek〉
n∑

j=1

(GV)kjūj (A.20)

= 〈
n∑

i=1

viei,

n∑
k=1

n∑
j=1

(GV)kjūjek〉

= 〈
n∑

i=1

viei,
n∑

k=1

(GV [ū]Ψ)kek〉

= 〈[v]Ψ , GV [ū]Ψ〉Fn (A.21)

76

Theorem 1. Suppose V is an infinite dimensional function space with inner product

〈., .〉V . If A and B are finite dimensional subspaces of V with corresponding basis sets

A and B, there exist a projection transformation PBA, which projects vectors from A

to B with respect to basis sets A and B.

A,B ⊂ V, dim(A) = m, dim(B) = n

A = {a1,a2, . . . ,am} : a basis of A (3.12)

B = {b1, b2, . . . , bn} : a basis of B (3.13)

PBA : A→ B : vA ∈ A→ PBA[vA]A ∈ B (3.14)

PBA = G−1
BBGBA (3.15)

(GBB)ij
∆
= 〈bi, bj〉V = 〈bj, bi〉V ∈ F, bi, bj ∈ B, i, j = 1 . . . n (3.16)

(GBA)ij
∆
= 〈bi,aj〉V = 〈aj, bi〉V ∈ F, bi ∈ B, i = 1 . . . n (3.17)

aj ∈ A, j = 1 . . .m

Proof. First decompose V into the direct sum of B and B⊥. Any vector v ∈ V can

be uniquely decomposed into it’s projections onto B and B⊥.

V = B ⊕B⊥ (A.22)

vA = vB + vB⊥ , vA ∈ A ⊂ V, vB ∈ B, vB⊥ ∈ B⊥ (A.23)

we can represent vB and v in terms of basis sets A and B using the following notation:

[vB]B = {vBi ∈ F : i = 1 . . . n} , vB =
n∑

i=1

vBibi (A.24)

[vA]A = {vAi ∈ F : i = 1 . . .m} , vA =
m∑
i=1

vAiai (A.25)

77

Substitute definition of vB and v into the decomposition equation to get:

n∑
j=1

vBjbj + vB⊥ =
m∑
k=1

vAkak (A.26)

apply inner product to both sides of the equation n times to get a system of equations

with coordinates vBj as the unknowns:

〈
n∑

j=1

vBjbj, bi〉V + 〈vB⊥ , bi〉V = 〈
m∑
k=1

vAkak, bk〉V , i = 1 . . . n (A.27)

〈bi,vB⊥〉V = 0, ∀bi ∈ B (A.28)

n∑
j=1

vBj〈bj, bi〉V =
m∑
k=1

vAk〈ak, bi〉V , i = 1 . . . n (A.29)

Form a system of equations using all n equations above and simply define GBB and

GBA as following and the proof will be complete:

(GBB)ij
∆
= 〈bj, bi〉V , i, j = 1 . . . n (A.30)

(GBA)ij
∆
= 〈aj, bi〉V , i = 1 . . . n, j = 1 . . .m (A.31)

n∑
j=1

(GBB)ijvBj =
m∑
k=1

(GBA)ikvAk, i = 1 . . . n (A.32)

GBB[vB]B = GBA[vA]A (A.33)

78

Proposition 1. Suppose V is an infinite dimensional function space with inner prod-

uct 〈., .〉V , and A and B are finite dimensional subspaces of V with corresponding basis

sets A and B. If the vector vA ∈ A is the projection of v, then the true projection

of v onto B is attainable through the subspace projection defined in theorem 1 only

when v − vA has no component on B.

Proof.

A,B ⊂ V, dim(A) = m, dim(B) = n

A = {a1,a2, . . . ,am} : a basis of A (A.34)

B = {b1, b2, . . . , bn} : a basis of B (A.35)

First decompose V into the direct sum of A and A⊥. Any vector v ∈ V is uniquely

decomposed into it’s projections onto A and A⊥.

V = A⊕ A⊥, v = vA + vA⊥ , vA ∈ A, vA⊥ ∈ A⊥ (A.36)

[vA]A = {vAi ∈ F : i = 1 . . .m} , vA =
m∑
i=1

vAiai (A.37)

We will do the same procedure for B as well.

V = B ⊕B⊥, v = vB + vB⊥ , vB ∈ B, vB⊥ ∈ B⊥ (A.38)

[vB]B = {vBi ∈ F : i = 1 . . . n} , vB =
n∑

i=1

vBibi (A.39)

Next we equate the two decomposition of v to get:

vB + vB⊥ = vA + vA⊥ (A.40)

Using the direct sum definition of V = B ⊕ B⊥, we can decompose the vector VA⊥

into components on B and B⊥:

vA⊥ = vA⊥B + vA⊥
B⊥

(A.41)

79

[vA⊥B]B =
{
vA⊥B i

∈ F : i = 1 . . . n
}
, vA⊥B =

n∑
i=1

vA⊥B i
bi (A.42)

Substitute decomposition of vA⊥ into equation to get:

vB + vB⊥ = vA + vA⊥B + vA⊥
B⊥

(A.43)

apply inner product with respect to basis vector of B to the both sides of the equation:

〈vB, bi〉V = 〈vA, bi〉V + 〈vA⊥B , bi〉V i = 1 . . . n (A.44)

〈
n∑

j=1

vBjbj, bi〉V = 〈
m∑
k=1

vAkak, bi〉V + 〈
n∑

l=1

vA⊥B l
bl, bi〉V i = 1 . . . n (A.45)

n∑
j=1

vBj〈bj, bi〉V =
m∑
k=1

vAk〈ak, bi〉V +
n∑

l=1

vA⊥B l
〈bl, bi〉V i = 1 . . . n (A.46)

From theorem 1 substitute the inner products above with definitions of GBB and GBA

to get:

n∑
j=1

vBj(GBB)ij =
m∑
k=1

vAk(GBA)ik +
n∑

l=1

vA⊥Bl(GBB)il i = 1 . . . n (A.47)

Next we rewrite the system of equations in matrix form with vBi as the unknowns:

GBB[vB]B = GBA[vA]A +GBB[vA⊥B]B (A.48)

The coordinate [vB]B can be found by solving the system above:

[vB]B = G−1
BBGBA[vA]A + [vA⊥B]B = PBA[vA]A + [vA⊥B]B (A.49)

We have shown that the true projection of the vector v onto subspace B equals the

subspace projection of vA only when the component of v in the complement subspace

of A does not have any component in B or in other terms:

[vB]B = PBA[vA]A ⇐⇒ [vA⊥B]B = 0 (A.50)

80

A.4 ECPI test cases

Here I present limited test cases for different combination of polytopes provided

as inputs to ECPI algorithm. Table A.6 lists available test cases. In each test cases

two shapes are given as inputs and the intersection is the output of the algorithm.

In the figures, The red and blue shapes are the inputs and the green shapes are the

intersections. Be aware that the green shape may overlay on top of other shapes and

block their visualization. I have tried to cover as many degenerate cases as possible for

lower dimensional test cases, but for higher dimensions, due to combinatorial nature

of the test cases, I only provided a few key tests cases.

Embedding dimension Shape A Shape B Figure number

2D Line Line A.6
2D Line Triangle A.7
2D Triangle Triangle A.8
2D Triangle Quadrilateral A.9
3D Tetrahedron Tetrahedron A.10
3D Hexahedron Tetrahedron A.11
3D Line Triangle A.12
3D Quadrilateral Tetrahedron A.13

Table A.6: Test cases guide

81

●●

Case 1

●●●●

Case 2

●● ●●

Case 3

●●●●

Case 4

●●●●

Case 5

●●

Case 6

Figure A.6: 2D line-line intersection

●●●●

Case 1

●● ●●

Case 2

●● ●●

Case 3

●● ●●

Case 4

●●

Case 5

●● ●●

Case 6

●●●●

Case 7

●●

●●

Case 8

●●

●●

Case 9

Figure A.7: 2D line-triangle intersection

82

●●●●

●●

●● ●●

●●

Case 1

●●

●●●●

●●

Case 2

●●

●●

●●

Case 3

●●

●●

●●

Case 4

●●

●●●●

Case 5

●●

●●

●●

Case 6

●●●●

●●

Case 7

●●

●●

●●

Case 8

●●

●●

●●

Case 9

●●

●●

●●

Case 10

●●●●

●●

Case 11

●●●●

●●●●

●●

Case 12

●●●●

Case 13

●●●●

●●

Case 14

●●

●●●●

●●

Case 15

●● ●●

●●

●●●●

Case 16

●● ●●

●●

●●

Case 17

Figure A.8: 2D triangle-triangle intersection

83

●●

●●

●●

●●●●

Case 1

●●

●●

●●

●●

●●

●●

Case 2

●● ●●

●● ●●

Case 3

●●

●●

●●

●●

Case 4

●●

●● ●●

Case 5

●●●●

Case 6

●●

●● ●●

●●

Case 7

●●

●●

●●●●

●●

Case 8

●●

●●

●●

●●

●●

Case 9

●●

●●●●

Case 10

●●

●●

●●

Case 11

●●

●●

●●

●●

Case 12

●●

●●●●

●●

Case 13

●●

●●

●●

●●

Case 14

●●●●

●●

Case 15

●●

●●●●

●●

Case 16

●●

●●

●●

●●

●●

●●

Case 17

●●

●●

●●

Case 18

●●●●

●●

●●

Case 29

●●

●●

●●

●●

Case 20

●●

●●

●●

Case 21

●●

●●

●●

●●

Case 22

●●

●●

●●

●●

●●●●

●●

Case 23

Figure A.9: 2D triangle-Quadrilateral intersection

84

Case 1 Case 2

Case 3 Case 4

Case 5 Case 6

Figure A.10: 3D Tetrahedron-Tetrahedron intersection

85

Case 1 Case 2

Case 3 Case 4

Case 5 Case 6

Figure A.11: 3D Hexahedron-Tetrahedron intersection

86

Case 1 Case 2 Case 3

Figure A.12: 3D Line-Triangle intersection

Case 1 Case 2

Figure A.13: 3D Quadrilateral-Tetrahedron intersection

87

REFERENCES

[1] M. Loève. Van Nostrand, 1955.

[2] N. Aubry, “On the Hidden Beauty of the Proper Orthogonal Decomposition,”

Theoret. Comput. Fluid Dynamics, vol. 2, no. 900265, pp. 339–352, 1991.

[3] M. D. Graham and I. G. Kevrekids, “Alternate Approaches To The Karhunen-

Loève Decomposition For Model Reduction And Data Analysis,” Computer

Chem. Engng, vol. 20, no. 5, pp. 495–506, 1996.

[4] M. Rathinam and L. R. Petzold, “A New Look at Proper Orthogonal Decom-

position,” SIAM Journal on Numerical Analysis, vol. 41, no. 5, pp. 1893–1925,

2003.

[5] R. Everson and L. Sirovich, “KarhunenLoeve procedure for gappy data,” JOSA

A, vol. 12, no. 8, pp. 1657–1664, 1995.

[6] D. J. Lucia, P. S. Beran, and W. A. Silva, “Decomposition and Volterra Theory,”

Journal of Aricraft, vol. 42, no. 2, 2005.

[7] D. J. Lucia and P. S. Beran, “Projection methods for reduced order models

of compressible flows,” Journal of Computational Physics, vol. 188, no. 1, pp.

252–280, June 2003.

[8] J. Brigham and W. Aquino, “Inverse viscoelastic material characterization us-

ing POD reduced-order modeling in acousticstructure interaction,” Computer

Methods in Applied Mechanics and . . . , vol. 198, no. 9-12, pp. 893–903, Feb.

2009.

[9] B. Raghavan, L. Xia, P. Breitkopf, A. Rassineux, and P. Villon, “Towards simul-

taneous reduction of both input and output spaces for interactive simulation-

88

based structural design,” Computer Methods in Applied Mechanics and Engi-

neering, vol. 265, pp. 174–185, Oct. 2013.

[10] I. Kalashnikova, “A stable Galerkin reduced order model for coupled fluidstruc-

ture interaction problems,” International Journal for . . . , vol. 95, no. 2, pp.

121–144, 2013.

[11] M. F. Barone, I. Kalashnikova, D. J. Segalman, and H. K. Thornquist, “Sta-

ble Galerkin reduced order models for linearized compressible flow,” Journal of

Computational Physics, vol. 228, no. 6, pp. 1932–1946, Apr. 2009.

[12] B. Freno and P. Cizmas, “A proper orthogonal decomposition method for non-

linear flows with deforming meshes,” in 51st AIAA Aerospace Sciences Meeting

including the New Horizons Forum and Aerospace Exposition, no. January, 2013,

pp. 1–21.

[13] A. Paul-Dubois-Taine and D. Amsallem, “An adaptive and efficient greedy proce-

dure for the optimal training of parametric reduced-order models,” International

Journal for Numerical Methods in Engineering, vol. 94305, pp. 1–32, 2014.

[14] M. Xiao and P. Breitkopf, “Constrained Proper Orthogonal Decomposition based

on QR-factorization for aerodynamical shape optimization,” Applied mathemat-

ics . . . , vol. 223, pp. 254–263, Oct. 2013.

[15] E. Iuliano and D. Quagliarella, “Proper Orthogonal Decomposition, surrogate

modelling and evolutionary optimization in aerodynamic design,” Computers &

Fluids, vol. 84, pp. 327–350, Sept. 2013.

[16] D. Amsallem, M. Zahr, Y. Choi, and C. Farhat, “Design Optimization Using

Hyper-Reduced-Order Models,” submitted for publication, pp. 1–16, 2013.

[17] T. Bui-Thanh, “Model-constrained optimization methods for reduction of pa-

rameterized large-scale systems,” Ph.D. dissertation, MIT, 2007.

89

[18] D. Binion and X. Chen, “A Krylov enhanced proper orthogonal decomposition

method for efficient nonlinear model reduction,” Finite Elements in Analysis and

Design, vol. 47, no. 7, pp. 728–738, July 2011.

[19] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, “Two-level discretizations

of nonlinear closure models for proper orthogonal decomposition,” Journal of

Computational Physics, vol. 230, no. 1, pp. 126–146, Jan. 2011.

[20] K. Washabaugh and D. Amsallem, “Nonlinear model reduction for CFD prob-

lems using local reduced-order bases,” 42nd AIAA Fluid Dynamics . . . , pp. 1–16,

2012.

[21] D. Amsallem, M. Zahr, and C. Farhat, “Nonlinear model order reduction based

on local reducedorder bases,” International Journal for . . . , 2012.

[22] I. Kalashnikova and M. Barone, “Efficient nonlinear proper orthogonal decompo-

sition/Galerkin reduced order models with stable penalty enforcement of bound-

ary conditions,” International Journal for Numerical . . . , no. May, pp. 1337–

1362, 2012.

[23] M. Vitse, D. Néron, and P. Boucard, “A Time-Space-Parameters Proper Gen-

eralised Decomposition Approach for Nonlinear Computational Mechanics,” in

International conference on computational structures Technology, 2014, pp. 1–20.

[24] D. Amsallem and C. Farhat, “Interpolation Method for Adapting Reduced-Order

Models and Application to Aeroelasticity,” AIAA journal, vol. 46, no. 7, pp. 1–

29, July 2008.

[25] A. Edelman, T. Arias, and S. Smith, “The geometry of algorithms with orthog-

onality constraints,” SIAM journal on Matrix Analysis and . . . , vol. 20, no. 2,

pp. 303–353, 1998.

90

[26] P. Absil, R. Mahony, and R. Sepulchre, “Riemannian geometry of Grassmann

manifolds with a view on algorithmic computation,” Acta Applicandae Mathe-

matica, vol. 80, no. 2, pp. 199–220, 2004.

[27] “COMSOL.”

[28] “MATLAB.”

[29] H. B. Nielson, S. N. Lophaven, and J. Sondergaard, “DACE A Matlab Kriging

Toolbox,” 2002. [Online]. Available: http://www.imm.dtu.dk/∼hbni/dace/

[30] P.-A. Absil, R. Mahony, and R. Sepulchre. Princeton University Press, 2008.

[31] W. R. Inc., “Mathematica, Version 11.1,” champaign, IL, 2017.

[32] X.-X. Cai, B. Jiang, and G. Liao, “Adaptive grid generation based

onthe least-squares finite-element method,” Computers & Mathematics with

Applications, vol. 48, no. 7, pp. 1077 – 1085, 2004. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0898122104003463

91

http://www.imm.dtu.dk/~hbni/dace/
http://www.sciencedirect.com/science/article/pii/S0898122104003463

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Brief survey of state of the art
	Research Objectives and Contributions
	Background
	Reduced order modeling in heat transfer
	Comparison of reduced order model and response surfaces method

	REDUCED ORDER MODELING
	Preliminary definitions
	Reduced-order Basis Method

	MULTI-MESH REDUCED BASIS METHOD
	Introduction
	Subspace projection
	Illustrating example

	Method I
	Method II
	Method III

	MESH INTERSECTION
	Embedded convex polytope intersection algorithm
	Intersection formulation
	Constraint equations
	ECPI recursive function
	ECPI example

	CONCLUTIONS & FUTURE WORKS
	DERIVATIONS & FORMULAE & TEST CASES
	REFERENCES

