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ABSTRACT 

ADAPTIVE OPTIMAL TRACKING OF UNCERTAIN DISCRETE-TIME SYSTEMS 

  

 

 

BAHARE KIUMARSI KHOMARTASH, Ph.D. 

The University of Texas at Arlington, 2017 

 

Suppervising professor: Frank L. Lewis 

Optimal feedback control design has been responsible for much of the successful 

performance of engineered systems in aerospace, manufacturing, industrial processes, vehicles, 

ships, robotics, and elsewhere.  Although most control design methods concern only about the 

stability of the controlled systems, the stability is a bare minimum requirement and it is desired to 

design a controller by optimizing some predefined performance criteria. However, the classical 

optimal control methods rely on offline solutions to complicated Hamilton-Jacobi-Bellman (HJB) 

equations which require complete knowledge about the system dynamics. Therefore, they are 

not able to cope with uncertainties and changes in dynamics. 

This research presents adaptive control structures based on reinforcement learning (RL) 

for computing online the solutions to 
2

H  optimal tracking and H control of single-agent systems 

and optimal coordination of multi-agent systems. A family of adaptive controllers is designed that 

converge in real time to optimal control and game theoretic solutions by using data measured 

along the system trajectories. First, an alternative approach for formulating the optimal tracking 

problem in a causal manner is developed that enables us to use RL to find the optimal solutions. 

On-policy RL is used to solve linear and nonlinear 
2

H  optimal control problems. In contrast to the 



vi 

existing methods, the proposed approach for nonlinear systems takes into account the input 

constraints in the optimization problem by using a nonquadratic performance function. Then, a 

new model-free method of off-policy learning is presented to find the solution to the H
 control 

problem online in real-time. The proposed method has two main advantages compared to the 

other mode-free methods. First, the disturbance input does not need to be adjusted in a specific 

manner. This makes it more practical as the disturbance cannot be specified in most real-world 

applications. Second, there is no bias as a result of adding a probing noise to the control input to 

maintain persistence of excitation (PE) condition. Finally, an optimal mode-free solution to the 

output synchronization problem of heterogeneous discrete-time systems is developed. It is shown 

that this control protocol implicitly solves the output regulator equations. The relationship between 

the solution to the output regulator equations and the proposed solution is also shown. 
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INTRODUCTION 

Optimal control of dynamical systems [1]-[6] is an important topic in control engineering. 

Although most control design methods concern only about the stability of the controlled systems, 

the stability is a bare minimum requirement and it is desired to design a controller by optimizing 

some predefined performance criteria. Optimal control problems can be divided into two major 

groups: optimal regulation and optimal tracking. The aim of the optimal regulation is to make the 

states of the system go to zero in an optimal manner and the aim of the optimal tracking is to 

make the states of the system track a reference trajectory. It is well known that finding the optimal 

regulation solution requires solving the Hamilton–Jacobi–Bellman (HJB) equation, which is a 

nonlinear partial differential equation. For linear systems with quadratic performance function, the 

HJB equation reduces to the algebraic Riccati equation (ARE). In contrast to the solution to the 

optimal regulation problem, which consists of only a feedback term obtained by solving an HJB 

equation, the solution to the optimal tracking problems consists of two terms: a feedforward term 

that guarantees perfect tracking and a feedback term that stabilizes the system dynamics. 

Existing solutions to the optimal tracking problems find the feedforward term using the dynamics 

inversion concept [7] and the feedback term by solving an HJB equation. However, the classical 

optimal control methods rely on offline solutions to complicated HJB equations which require 

complete knowledge about the system dynamics. Therefore, they are not able to cope with 

uncertainties and changes in dynamics. 

Reinforcement learning (RL) [8]-[20] has been widely used in several disciplines to find 

an optimal policy in an uncertain environment online in real time without requiring complete 

knowledge about the system dynamics. RL, inspired by learning mechanisms observed in 

mammals, is a goal-oriented learning tool wherein the agent or decision maker learns a policy to 

optimize a long-term reward by interacting with the environment. At each step, an RL agent gets 
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evaluative feedback about the performance of its action, allowing it to improve the performance 

of subsequent actions.  

There are generally two basic tasks in RL algorithms. One is called policy evaluation and 

the other is called policy improvement. Policy evaluation calculates the cost or value function 

related to the current policy, and policy improvement assesses the obtained value function and 

updates the current policy. There are three well-known types of RL algorithms: policy iteration 

(PI), value iteration (VI) and generalized policy iteration (GPI). In PI,  at each iteration, the critic 

weights are tunded until convergence while  the actor weights are holding constant. This algorithm 

involves full solution of a Lyapunov equation at each step and is called a full backup in RL terms. 

In VI,   the critic network is tuned for a single step at each iteration, then the actor network is also 

tuned for a single step. This algorithm involves only a Lyapunov recursion and is called a partial 

backup in RL. In GPI, the critic weights are tuned a few steps at each iteration and then, the actor 

wights are tuned a single step.  

The interest in RL in control society dates back to the work of [9], [21]-[23]. Watkins' Q-

Learning algorithm [24] has also made an impact by considering totally unknown environments. 

Later, considerable research was conducted for developing RL techniques to find optimal 

feedback solutions for both discrete-time and continuous-time systems [25]-[54]. Moreover, RL 

methods have been used to find the solution to zero-sum game and non-zero sum game problems 

[55]-[62].  

Among the existing RL methods, the policy iteration (PI) technique [8], [63] has been 

widely used for designing feedback controllers. In particular, PI algorithms are used to solve the 

linear quadratic regulator (LQR) problem for both discrete-time systems and continuous-time 

systems  [26], [28], [29], [64], [65]. It is well known that solving the LQR requires solving an ARE. 

To find a solution to the ARE, the PI technique starts with an admissible control policy and then 

iteratively alternates between policy evaluation and policy improvement steps until there is no 

change in the value or the policy. To avoid the requirement for knowledge of the system dynamics, 
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in [28], a PI algorithm is developed that converges to the optimal solution of the discrete-time 

LQR problem using Q-functions [8], [24]. Q-learning does not require any knowledge of the 

system dynamics.  

Although some RL-based algorithms are developed to find the solution to the optimal 

tracking problem for both nonlinear discrete-time (DT) systems and nonlinear continuous-time 

(CT) systems [66]-[71], these methods employ the dynamic inversion concept to find the 

feedforward part of the control input a priori and they only use the RL to find the optimal feedback 

part of the control input. However, the dynamic inversion technique requires the control input 

matrix be invertible and complete knowledge of the system dynamics be known or identified a 

priori.  

Moreover, the problem of optimal tracking control of DT systems with input constraints 

has not been considered yet. This is because the feedback and feedforward control terms are 

obtained separately and only the feedback term of the control input appears in the performance 

function, it is not possible to encode input constraints into the performance function, as it was 

done for the optimal regulation problem [72]–[74]. If the input constraints are not considered a 

priori, the control input may exceed its permitted bound because of the actuator saturation and 

this leads to performance degradation or even system instability. Therefore, the existing RL-

based solutions to the optimal tracking problem offer no guarantee on the remaining control inputs 

on their permitted bounds during and after learning.  

The H  control is a well-known robust control approach which is used to attenuate the 

effects of disturbances on the performance of dynamical systems [75]-[77]. It has a strong 

connection to the zero-sum game problem [78], where the controller and the disturbance are 

considered as minimizing and maximizing players, respectively. Finding the solution to the zero 

sum game problem leads to solving the game algebraic Riccati equation (GARE) for the linear 

systems. Numerical and iterative methods have been widely used to solve the GARE. However, 

they mostly require complete knowledge of the system dynamics. Q-learning algorithm has also 
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been used to find the solution to the zero-sum game arising in  H
 optimal control problem [56]. 

Although elegant, there are two main problems with this algorithm. First, Q-learning requires the 

disturbance input to be updated in a prescribed manner. However, the disturbance input cannot 

be updated in a prescribed manner in more real-world applications. Second, Q-learning algorithm 

does not cancel out the effects of probing noise (which is used to excite the system) in the Bellman 

equation while evaluating the value function. This may result in bias and can affect the 

convergence of the algorithm. 

Finally, the state synchronization of the leader-following homogeneous multi-agent 

systems, where all agents and leader have identical dynamics, has been well established for both 

DT and CT systems [79]-[83]. However, in many practical applications, the agents' dynamics may 

not be the same. Therefore, it is desired to design distributed output synchronization control 

protocols for heterogeneous systems, which may have non identical dynamics. The output 

synchronization problem for DT multi-agent systems has received considerably less attention 

[84]-[88]. Existing output synchronization methods require solution of the output regulator 

equations. However, this requires complete knowledge of all agents's and the leader's dynamics. 

Moreover, existing results only consider making the steady-state tracking errors go to zero and 

do not provide an optimal solution that not only provides a zero steady-state tracking error but 

also minimizes the transient response. The output synchronization problem for DT systems with 

unknown dynamics is not considered in the literature.  

Based on the above elaborated problems, the research objectives of this dissertation are 

to address these mentioned issues and provide efficient RL-based methods.  

The rest of the dissertation is organized as follows. 

 In Chapter 2, online model-free solution using RL algorithms to the infinite-

horizon linear quadratic tracking (LQT) for DT systems is developed. The LQT 

problem is first transformed into minimizing a discounted performance function 

subject to an augmented system composed of the original system and the 
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command generator system. An LQT ARE equation is then developed which 

gives both feedforward and feedback parts of optimal control solution 

simultaneously. In the first part, full state feedback is assumed available for 

control. Then, a Q-learning algorithm is proposed to solve the LQT without 

requiring any knowledge of the augmented system dynamics. In the second part, 

to obviate the requirement for the knowledge of the state of the system, the state 

of the augmented system is constructed from the delayed input, output, and 

reference trajectory data. A Bellman equation is then developed which only 

requires the available measured data to evaluate a policy. Finally, based on this 

Bellman equation, policy iteration algorithm is presented to learn the solution to 

the LQT without requiring the knowledge of the system dynamics and the state 

of the system. 

 In chapter 3, a partially model-free adaptive optimal control solution to the 

nonlinear DT tracking control problem in the presence of input constraints is 

presented. In contrast to the standard solution, which finds the feedforward and 

feedback terms of the control input separately, the minimization of the proposed 

discounted performance function gives both feedback and feedforward parts of 

the control input simultaneously. This enables us to encode the input constraints 

into the optimization problem by using a nonquadratic performance function. An 

actor-critic based reinforcement learning algorithm is used to learn the solution 

to the tracking HJB equation online without requiring knowledge of the system 

drift dynamics.  

 In Chapter 4, a model-free solution to the H  control of linear discrete-time 

systems is presented. The proposed approach employs off-policy RL to solve the 

game algebraic Riccati equation online using the measured data along the 

system trajectories. Like existing model-free RL algorithms, no knowledge of the 
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system dynamics is required. However, the proposed method has two main 

advantages. First, the disturbance input does not need to be adjusted in a 

specific manner. Second, there is no bias as a result of adding a probing noise 

to the control input to maintain persistence of excitation (PE) condition. 

Consequently, the convergence of the proposed algorithm is not affected by 

probing noise.  

 Chapter 5 presents an optimal model-free solution to the output synchronization 

of heterogeneous multi-agent DT systems. First, local discounted performance 

functions are defined for all agents and the optimal synchronization control 

protocols are found by solving a set of algebraic Riccati equations (AREs) and 

without requiring the explicit solution to the output regulator equations. It is shown 

that the proposed method implicitly solves the output regulator equations and 

therefore solves the output synchronization problem, provided that the discount 

factor is bigger than a lower bound. This formulation enables us to develop a Q-

learning algorithm to solve the AREs using only measured data and so find the 

optimal distributed control protocols for each agent without requiring complete 

knowledge of the agents's or leader's dynamics. It is shown that the combination 

of a distributed adaptive observer and the controller guarantees synchronization. 

The relationship between the standard solution and the proposed solution is also 

shown. 

 Chapter 6 summarizes and concludes the dissertation and recommends the 

future research works that extend the proposed materials in this dissertation. 
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OPTIMAL TRACKING CONTROL OF COMPLETELY UNKNOWN LINEAR DISCRETE-TIME 

SYSTEMS: STATE FEEDBACK AND OUTPUT FEEDBACK  

2.1. Introduction 

In this chapter, the online model-free solution using reinforcement learning (RL) 

algorithms to the infinite-horizon linear quadratic tracking (LQT) for discrete-time systems is 

developed. It is assumed that the reference trajectory is generated by a linear command 

generator. Although the value function for the LQT is not quadratic in general, it is shown that for 

the given command generator and the reward function, the LQT value function is quadratic in the 

state of the system and the reference trajectories. The quadratic nature of the value function for 

the LQT allows development of a Bellman equation which uses only knowledge of the state of the 

system and the reference trajectories to find the value related to a control policy. Then, an 

augmented system composed of the original system dynamics and the command generator 

dynamics is formed. Based on this augmented system, an augmented ARE is derived whose 

solution yields the solution to the LQT. That is, once the augmented ARE is solved, both the 

feedback and feedforward terms of the control input are obtained simultaneously. In the first part, 

full state feedback is assumed available for control. Then, a Q-learning algorithm is proposed to 

solve the LQT without requiring any knowledge of the augmented system dynamics. It is verified 

that starting from an admissible control policy, the proposed Q-learning algorithm converges to 

the optimal control solution.  

In the second part, to obviate the requirement for the knowledge of the state of the 

system, the state of the augmented system is constructed from the delayed input, output, and 

reference trajectory data. A Bellman equation is then developed which only requires the available 

measured data to evaluate a policy. Finally, based on this Bellman equation, policy iteration 

algorithm is presented to learn the solution to the LQT without requiring the knowledge of the 

system dynamics and the state of the system. 
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The rest of this chapter is organized as follows. The review of the standard solution for 

the LQT problem is given in section 2.2. An alternative approach for formulating the infinite-

horizon LQT in a causal manner is presented in Section 2.3. In Section 2.4, a novel Q-learning 

algorithm is proposed to solve LQT without any knowledge of the augmented system dynamics 

using state feedback. In Section 2.5, a novel Bellman equation is presented which uses only 

measured data along the system trajectories to evaluate a fixed control policy. The proposed 

online model-free policy iteration method and its convergence proof are developed in Section 2.6 

which finds the solution to the LQT using only measured data along the system trajectories. 

Finally, Sections 2.7 and 2.8 present the simulation results and the conclusion, respectively. 

2.2. LQT Problem and its Standard Solution 

In this section, we review the standard solution for the linear quadratic tracker (LQT) 

problem. It is assumed that the reference trajectory approaches zero as time goes to infinity.  

Consider the linear discrete-time (DT) system 

    
1k k k

k k

x Ax B u

y C x
    (2.1)                     

where 
n

k
x  is the measured state, 

m
k
u  is the control input, 

p
k
y  is the output and A , 

B  and C  are constant matrices with compatible dimensions. 

For the infinite-horizon LQT problem, the goal is to design an optimal controller for the 

system (2.1) which ensures that the output 
k
y  tracks a reference trajectory 

k
r  and guarantees 

stability. This can be achieved by minimizing the following infinite-horizon performance index 

                   
1 1

( ) ( )
2 2

T T
k i i i i i i i

i k i k

J U C x r Q C x r u Ru                            (2.2) 

where 1
{ , ,...}

k k k
r r r , 

i
U  is the utility function at time step i , and 0Q  and 0R  are 

symmetric matrices.  
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The standard solution using the calculus of variation is provided as follows. Considering 

the system (2.1) with the performance index (2.2), the costate equation is given by [2] 

1
T T T

k k k k
A C QC x C Qr         (2.3) 

where 
k

 is the costate variable. The stationarity condition for finding the optimal control  

        
1

0 T
k k

B Ru  (2.4) 

Therefore, the optimal control is 

        1
1

T
k k
u R B  (2.5) 

It is clear that the optimal control is a linear costate feedback, but because of the last 

term in the costate equation, it is no longer possible to express it as a linear state feedback as for 

the LQ regulator. However, 
k
u  can be expressed as a combination of a linear state variable 

feedback plus a term depending on 
k
r  [2]. Thus, 

        
SS

k x k
Sx v  (2.6) 

for some as yet unknown auxiliary sequence 
SS
k
v  and gain S . This will turn out to be a valid 

assumption if a consistent equation can be found for 
SS
k
v . Using (2.1), (2.3), (2.5) and (2.6), and 

some manipulations yields 

            SS
k x k v k
u K x K v                                               (2.7) 

where limSS
k T k
v v  with 

1
( ) , ( ) 0T T

k x k k
v A BK v C Q r v T     (2.8) 

and 

1( )T T
x
K B S B R B S A  (2.9) 

1( )T T
v
K B S B R B  (2.10) 

where S  is obtained from solving the following algebraic Riccati equation (ARE) 
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1( ) 0T T T T TC QC S A S A A S B B S B R B S A                     (2.11) 

Sufficient conditions for existence of a solution 0TS S  to the ARE are ( , )A B  stabilizable and 

( , )A QC  observable. 

Remark 2.1. From (2.7) it is observed that the control input consists of a feedback term linear in 

k
x

 
plus a feedforward term independent of 

k
x . The gain 

x
K

 
of the first term depends on the 

solution of the ARE (2.11)  and the second term depends on the difference equation (2.8). A 

drawback of this formulation of the LQT problem is the need to solve for 
k
v  backwards in time. 

That is, the standard LQT solution is noncausal.  

Remark 2.2. Note that the assumption that the reference trajectory approaches zero as time goes 

to infinity is essential for minimizing the performance index (2.2). This is because the control input 

contains a part depending on the reference trajectory which makes (2.2) unbounded if the 

reference trajectory does not approach zero. Therefore, the meaning of minimality is lost. In the 

subsequent sections it is shown that we can relax this restrictive assumption by using a discount 

factor in the performance index. 

Remark 2.3. A disadvantage to the standard LQT solution in Section 2.2 is that it can only be 

used for a class of reference trajectories that are generated by an asymptotically stable command 

generator. Another disadvantage of this solution is the need to compute the noncausal signal 
k
v  

using backward recursion (2.8). Therefore, the infinite-horizon LQT problem has not received 

much attention in the literature. 

2.3. Causal Solution to the LQT Problem and Quadratic Form of the LQT Value Function 

In this section, we propose an alternative approach for formulating the infinite-horizon 

LQT problem in a causal manner. First, it is assumed that the reference trajectory is generated 

by a linear command generator and it is shown that in this case the value function of the LQT 
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problem can be expressed as a quadratic form in terms of 
k
x  and 

k
r . Then, a Bellman equation 

is developed for the LQT, and an augmented LQT ARE is given. This allows us to use 

reinforcement learning (RL) to solve the LQT problem online in Section 2.4. 

2.3.1 Quadratic form for the LQT value function 

Before proceeding, the following assumption is made. 

Assumption 2.1. The reference trajectory for the LQT problem is produced by the command 

generator model 

            
1k kr F r     (2.12) 

This command generator model does not assume that F is Hurwitz. As such, it can generate a 

large class of useful command trajectories, including unit step (useful, e.g., in position command), 

sinusoidal waveforms (useful, e.g., in hard disk drive control), the ramp (useful in velocity tracking 

systems, e.g., satellite antenna pointing), and more.  

Based on the system dynamics (2.1) and the reference trajectory dynamics (2.12), 

construct the augmented system 

1

1 1
1

k k

k k k k
k k

x A x B
X u T X B u

r F r

0

0 0
                  (2.13) 

where the augmented state is 

           
k

k
k

x
X

r
 (2.14) 

The performance index (2.2) can be only used if F is Hurwitz. In practice this is not true, 

for instance, tracking of unit step and sinusoidal commands. In the following, it is shown that by 

introducing a discount factor in the performance index one can implement the infinite-horizon LQT 

even for the cases that the command generator dynamics F  is not Hurwitz. Consider the 

following discounted performance index or value function 
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1 1
( , ) ( ) ( )

2 2
i k i k T T

k k i i i i i i i
i k i k

V x r U C x r Q C x r u Ru                 (2.15) 

where 0 1  is the discount factor. Note that 1  can be only used if one knows a priori 

that the reference trajectory is generated by an asymptotically stable command generator system. 

That is, if F  in (2.12) is Hurwitz.  

Note that the value function (2.15) can be written in terms of the augmented state as 

 1

1
( , )

2
i k T T

k k i i i i
i k

V x r X Q X u Ru                                  (2.16) 

where 

              
1 1 1

TQ C QC  (2.17) 

with 
1

[ ]C C I . 

The next Lemma shows that the value function is quadratic in the state of the augmented 

system. 

Lemma 2.1. Quadratic form for the value function 

For the infinite-horizon LQT problem, under Assumption 2.1, for any fixed stabilizing 

policy 

          
i x i r i
u K x K r  (2.18) 

the value function (2.15) can be written as 

   
1

( , ) ( , ) ( )
2

T
k k k k k k k

V x r V x r V X X P X                           (2.19) 

for some matrix 0TP P . 

Proof. Using (2.18) in (2.15) yields  
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0

1
( , ) ( ) ( ) ( ) ( )

2

1
( ) ( )

2

( ) ( )

i k T T
k k i i i i x i r i x i r i

i k

i T T T T T T
i k x x i k i k x r i k

i

T T T T
i k r x i k i k r r i k

V x r Cx r Q Cx r K x K r R K x K r

x C QC K RK x x C Q K RK r

r QC K RK x r Q K RK r

    (2.20) 

Note that using (2.18), the solution of system dynamics (2.1) and reference trajectory 

(2.12) for specific initial condition 
k
x  and 

k
r  are 

         
i

i k k
r F r  (2.21) 

       
i

i k k k
x G x M r  (2.22) 

where 
x

G A BK  and 
1

1

0

i
i n n

r
n

M G BK F . 

Putting (2.21) and (2.22) in (2.20), results in 

11 12 21 22

1 1 1 1
( , )

2 2 2 2
T T T T

k k k k k k k k k k
V x r x P x x P r r P x r P r                     (2.23) 

where   

11
0

( ) ( )i i T T T i
x x

i

P G C QC K RK G                                (2.24) 

         
12

0

( ) ( ) ( ) ( )i i T T T i i T T T
x r x x

i

P G C Q K RK F G C QC K RK M               (2.25) 

21
0

( ) ( ) ( )i i T T i T T T i
r x x x

i

P F QC K RK G M C QC K RK G             (2.26)

22
0

( ) ( )

( ) ( ) ( ) ( )

i T T T i T T T
x r x x

i

i T T i T T i
r x r r

P M C Q K RK F M C QC K RK M

F QC K RK M F Q K RK F

            (2.27) 

Therefore (2.19) holds with 

       
11 12

21 22

P P
P

P P
                                                      (2.28) 
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This completes the proof.                                           

2.3.2  Bellman equation and ARE for the LQT problem  

In this subsection, we derive a LQT Bellman equation and an augmented LQT ARE in 

terms of P in (2.19). 

On the basis of (2.15) and (2.19), one has  

( 1)

1

1 1
( , ) ( ) ( ) ( ) ( )

2 2 2
T T i k T T

k k k k k k k k i i i i i i
i k

V x r Cx r Q Cx r u Ru Cx r Q Cx r u Ru    

(2.29) 

which yields the LQT Bellman equation 

1 1

1 1
( , ) ( ) ( ) ( , )

2 2
T T

k k k k k k k k k k
V x r Cx r Q Cx r u Ru V x r                  (2.30)  

Using (2.19) in (2.30), we obtain the LQT Bellman equation in terms of value function kernel matrix 

P as  

1 1 1

T T T T

k k k k k k k k
X P X X Q X u Ru X P X                          (2.31) 

where 
1
Q  is defined (2.17).  

Define the LQT Hamiltonian 

1 1 1
( , ) T T T T

k k k k k k k k k k
H X u X Q X u Ru X P X X P X                      (2.32) 

or equivalently  

                                      
1 1

( , ) ( ) ( )T T

k k k k k k k k
H X u X Q X u Ru V X V X                           (2.33)  

The next theorem shows how the LQT problem can be solved in a causal manner using an 

augmented ARE. 

Theorem 2.1. ARE for causal solution of the LQT problem. Under Assumption 2.1 and using 

(2.19), any optimal policy for the LQT problem has the form  
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1k k
u K X                                                      (2.34)                                                                          

where  

1 1

1

1 1
( )T TK R B P B B PT                               (2.35) 

and P  satisfies the augmented LQT ARE 

2 1

1 1 1 1 1
( ) 0T T T TQ P T PT T PB R B PB B PT                     (2.36)   

Proof. A necessary condition for optimality [30] is the stationary condition 

1 1

1 1

1

( , ) ( )
2 2 2 0

T

k k k k T

k k k

k k k

H X u X V X
Ru Ru B P X

u u X
 

Then                                      

1

1 1 1
( )T T

k k
u R B P B B PT X                                       (2.37) 

Substituting (2.13) and (2.37) in the Bellman equation (2.31) results in the LQT ARE (2.36).                                             

In the following theorem, the stability of tracking error for the optimal control input, given 

by solving the LQT ARE  (2.36), is discussed. It is shown that the convergence of the tracking 

error to zero cannot be guaranteed because of using the discount factor in the value function. 

However, it is discussed that by choosing a proper discount factor and a weighting matrix Q in 

the value function, one can make the tracking error as small as desired.    

Theorem 2.2. Stability and optimality of the LQT ARE solution 

Consider the LQT problem for the systems (2.1) with the command generator (2.12) and the 

value function (2.15). Define 
2k

k k
e e , where 

k k k
e C x r  is the tracking error at sample time 

k . Then, the optimal control input obtained by solving the LQT ARE  (2.36) asymptotically 

stabilizes 
k
e . Moreover, it minimizes the value function (2.15) over all stabilizing controls. 

Proof. We first show k
e  is asymptotically stable. Consider the augmented systems (2.13) with 

the state 
k
X . Define the new state 

2k

k k
X X . Since [ ]

k k
e C I X  and [ ] 0C I , if 

k
X  
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goes to zero, then 
k
e  goes to zero. In the following, it is shown that 

k
X  and consequently 

k
e  

converges to zero as k  goes to infinity.  

Consider the following Lyapunov function 

1
( )

2
T

k k k
V X X P X                                                      (2.38) 

where P  is the solution of the LQT ARE  (2.36). Then we have 

1 1 1

1 1
( ) ( )

2 2
T T

k k k k k k
V X V X X P X X P X                                (2.39) 

Using 
2k

k k
X X  and the control input (2.34) in (2.13), one has 

      1 1

1 2 1 2 1 2 1

1 1 1 1
( ( ) )T T

k k k k
X T X B u T B R B PB B PT X           (2.40) 

where 
1k k

u K X . Putting (2.40) in (2.39) and adding and subtracting 
1 1

TK RK  and some 

manipulations yields 

2 1

1 1 1 1 1 1 1

1
( ) ( ) ( )

2
T T T T T T

k k k k
V X V X X P T PT T PB R B PB B PT K RK X   

(2.41) 

where 
1
K  is defined in (2.35). From  (2.36) one has 

2 1
1 1 1 1 1
( )T T T TP T PT T PB R B PB B PT Q                    (2.42)                                                                          

Putting (2.42) in (2.41) yields 

1 1 1 1

1
( ) ( ) ( ) 0

2
T T

k k k k
V X V X X Q K RK X                          (2.43) 

This completes the proof of the stability.   

To show the optimality, note that 
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1 1

1 1 1

1 1 1

1 1
( ) [ ]

2 2

1 1
[ ( ) ( ) ] [ ( )

2 2

]

T T T T

k k i i i i
i k

T T T T T T

i i i i i i i i i i
i k i k

T T T T

i i i i

X P X X P X X P X X P X

TX B u P TX B u X P X X T PT P X X T B u

u B PT X u B P B u

   

(2.44) 

Using the LQT ARE  (2.36) in (2.44) and since 0X , one has 

2 1
1 1 1 1 1

1 1 1 1

1 1
[ ( )

2 2

] 0

( )T T T T T
k k i i

i k

T T T T T T
i i i i i i

X P X X Q T P B R B P B B PT X

X T PB u u B PT X u B P B u

                  (2.45)

 

On the other hand, the value function (2.15) in terms of 
k
X and 

k
u can be written as 

1

1
( , ) [ ]

2
k T T

k k i i i i
i k

V X u X Q X u Ru                                   (2.46)                                                            

 

In fact, minimizing the value function (2.15) with respect to the system (2.13) is equivalent to 

minimizing the value function (2.46) with respect to (2.40).  

Multiplying the right-hand side of (2.45) by 
k
 and adding its result to (2.46) yields 

2 1
1 1 1 1

1 1 1 1

1
( , ) [ ( )

2 2

( ) ]

( )
k

T T T T T
k k k k i i

i k

T T T T T T
i i i i i i

V X u X P X X T P B R B P B B PT X

X T PB u u B PT X u R B P B u

        (2.47)                                                            

 

Completing the square gives 

1

1 1 1 1 1

1

1 1 1

1
( , ) [ ( ) ] ( )

2 2

[ ( ) ]

k
T T T T T

k k k k i i
i k

T T

i i

V X u X P X u R B P B B PT X R B P B

u R B P B B PT X

(2.48) 

Since 0R , the (2.46) achieves its minimum when 
1k k

u K X , where 
1
K  is given in (2.35). 

Consequently,  
1k k

u K X  minimizes the value function (2.15) and this completes the proof of 

the optimality.     
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Remark 2.4. Theorem 2.2 shows that the tracking error is bounded when the optimal control input 

obtained by the LQT ARE is applied to the system. Moreover, Eq. (2.43) shows that the larger 

the Q in the value function is the faster the tracking error decreases (see (2.17)). Therefore, by 

choosing a smaller discount factor and/or larger Q one can make the tracking error as small as 

desired before the value of 
i
 becomes very small. 

2.4. Reinforcement Learning to Solve LQT Online 

In this section, we use the causal LQT formulation of Section 2.3 to develop RL algorithms 

for the LQT, where the value function and control law are updated by recursive iterations online 

using data measured along the system trajectories. 

For an arbitrary stabilizing gain 
1
K  in (2.34), the augmented LQT Bellman equation (2.31) 

becomes the LQT Lyapunov equation 

1 1 1 1 1 1 1
( ) ( ) 0T TQ P K RK T B K P T B K                        (2.49)                 

Instead of directly solving the LQT ARE (2.36), the following policy iteration (PI) algorithm based 

on repeated solutions of (2.49) can be employed.  

Algorithm 2.1. Offline policy iteration for LQT solution  

Initialization: Start with a stabilizing control policy 
1
K . 

1. Policy evaluation, solve for 
1jP using the LQT Lyapunov equation 

      1 1

1 1 1 1 1 1 1
( ) ( ) ( )j j T j j T j jP Q K RK T B K P T B K                      (2.50)                                                                      

2. Policy improvement 

1 1 1 1

1 1 1 1
( )j T j T jK R B P B B P T                                    (2.51) 

This algorithm is an extension of Hewer’s method [89] to the LQT problem. The proof shows that 

jP  in Algorithm 2.1 converges to the solution to the LQT ARE (2.36) and that 
1
K  is stabilizing at 

each step.  
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The Lyapunov equation (2.50) in Algorithm 2.1 evaluates a fixed control policy in an 

offline manner and it requires complete knowledge of the system dynamics. However, one can 

use the Bellman equation (2.31), instead of the Lyapunov equation (2.50), to evaluate a control 

policy in an online manner and without requiring knowledge of the system dynamics. The next 

algorithm uses the LQT Bellman equation (2.31) to solve the LQT online. 

Algorithm 2.2.  Online policy iteration for LQT solution 

Initialization: Start with a stabilizing control policy 
1
K . 

1.  Policy evaluation, solve for 
1jP  using the LQT Bellman equation  

1 1

1 1 1 1 1
( ( ) )T j T j T j T j

k k k k k k
X P X X Q K RK X X P X                     (2.52) 

2.  Policy improvement 

1 1 1 1

1 1 1 1
( )j T j T jK R B P B B P T                                       (2.53) 

Policy iteration Algorithm 2.2 can be implemented online using Least-squares (LS) using the data 

tuple 
k
X , 

1k
X  and 

k
 measured along the system trajectories with 

1 1 1
( )T j T j

k k k
X Q K RK X

. In fact (2.52) is a scalar equation and P is a symmetric ( ) ( )n p n p  matrix with 

( ) ( 1) 2n p n p  independent element. Therefore at least ( ) ( 1) 2n p n p  data 

tuples are required before (2.52) can be solved using  LS. Both batch LS and recursive LS 

methods can be used to perform policy evaluation step (2.52). The system dynamics 1
( , )T B  is 

not needed to solve Bellman equation (2.52), but must be known to update the control policy 

using (2.53).   

To obviate the requirement for complete knowledge of the system dynamics, a Q-learning 

algorithm in the Section 2.5 and a policy iteration algorithm in Section 2.6 are developed which 

use the states and outputs information of the system to find the optimal solution, respectively.   
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2.5. Q-learning to Solve the LQT Online 

The online LQT policy iteration Algorithm 2.2 requires knowledge of the system dynamics 

1
( , )T B . In this section a Q-learning algorithm [24], [90] is developed that solves the LQT ARE  

(2.36) online without requiring any knowledge of the system dynamics ( , )A B  or command 

generator dynamics ( )F .  

2.5.1. Q-function  for the LQT  

Based on the LQT Bellman equation  (2.31), the discrete-time LQT Q-function is defined as 

1 1 1

1 1 1
( , , )

2 2 2
T T T

k k k k k k k k k
Q x r u X Q X u Ru X P X                      (2.54)                                                                        

where 
1
Q  is defined in (2.17). 

By using augmented system dynamics (2.13), (2.54) becomes 

1 1

1 1 1

1 1

1

1 1 1
( , ) ( ) ( )

2 2 2

1

2

T T T
k k k k k k k k k k

T T T
k k

T T
k k

Q X u X Q X u Ru T X B u P T X B u

Q T PT T PBX X

u uB PT R B PB

              (2.55)    

Therefore, Define 

1 1
( , )

2 2

T T

k k k XX Xu k
k k

k k k uX uu k

X X X H H X
Q X u H

u u u H H u
                    (2.56) 

for kernel matrix 
TH H . 

Applying 
( , )

0k k

k

Q X u

u
 to (2.56) yields 

1
k uu uX k
u H H X                                         (2.57) 
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and to (2.55) yields 

1

1 1 1
( )T T

k k
u R B P B B PT X                                (2.58) 

as in equation (2.34). 

Eq. (2.58) requires knowledge of the augmented system dynamics 1
( , )T B  to compute 

the LQT control. On the other hand, (2.57) requires knowledge only of the Q-function matrix kernel 

H. RL is used in the next subsection to determine the kernel matrix H online without knowing the 

augmented system dynamics using data measured along the system trajectories.  

2.5.2. Q-learning for the LQT 

Based on the definition of Q-function (2.54), one can introduce a Q-learning algorithm to 

solve the LQT ARE (2.36) online without knowing the augmented system dynamics 1
( , )T B . 

 

The infinite-horizon Q-function is given by (2.54). Hence the Q-function satisfies the 

Bellman equation 

       1 1 1

1 1
( , ) ( , )

2 2
T T

k k k k k k k k
Q X u X Q X u Ru Q X u                        (2.59)                                    

where the policy  
1 1 1k k

u K X  is followed after time k. 

Define  

k
k

k

X
Z

u
                                                       (2.60)    

to write (2.56) as  

1
( , )

2
T

k k k k
Q X u Z H Z                                                  (2.61)     

By substituting (2.61) into (2.59), the Q-function Bellman equation (2.59) becomes 

1 1 1
T T T T
k k k k k k k k
Z H Z X Q X u Ru Z H Z                       (2.62) 

Policy iteration is especially easy to implement in terms of the Q-function, as follows. 
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Algorithm 2.3. LQT Policy Iteration solution using the LQT Q-function 

1. Policy evaluation 

1 1
1 1 1

( ) ( )T j T j T j T j
k k k k k k k k
Z H Z X Q X u R u Z H Z                    (2.63)                               

2. Policy improvement 

1 1 1 1( )
uu uX

j j j
k k
u H H X                                (2.64)   

Note that in contrast to the Bellman equation (2.52) in Algorithm 2.2, the control input 

appears in quadratic form of the Q-function Bellman equation (2.63). Therefore, in contrast to 

Algorithm 2.2, the policy improvement step (2.64) in Algorithm 2.3, which is given by minimizing 

the Q-function (2.63) with respect to the control input, can be carried out in terms of the learned 

kernel matrix 
1jH  without resorting to the system dynamics. 

The convergence of Algorithm 2.3 can be proven as in [56]. Note that, policy iteration 

using Q-function is performed online and can be implemented without requiring any knowledge 

of the augmented system dynamics based on Least-squares (LS) using the data tuple 
k
Z , 

1k
Z  

and k  measured along the system trajectories with 
1

( )T j T j

k k k k k
X Q X u Ru . In fact (2.63) is a 

scalar equation and H is a symmetric ( ) ( )n p m n p m  matrix with 

( ) ( 1) 2n p m n p m  independent elements. Therefore at least 

( ) ( 1) 2n p m n p m  data tuples are required before (2.63) can be solved using LS. 

Both batch LS and recursive LS methods can be used to perform policy evaluation step (2.63).  

Remark 2.5. Policy iteration based adaptive optimal control schemes require a persistent 

excitation condition (PE) [28], [53], [54], [56] to ensure sufficient exploration of the state space. If 

the state almost converges to the desired position and becomes stationary, the PE is no longer 

satisfied. An exploratory signal consisting of sinusoids of varying frequencies can be added to the 

control input to ensure PE qualitatively. 
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2.6. Policy Iteration Using Input-output Measured Data to Solve the LQT Online 

In this section, first it is shown how to construct the state of the augmented system and 

the value function in terms of the past input, output and reference trajectory sequences. Then, a 

Bellman equation is defined that allows us to use PI to solve the LQT problem online, without 

requiring knowledge of the system dynamics and the reference trajectory dynamics, only by 

measuring past input, output, and reference trajectory data.   

2.6.1 Constructing the State of the Augmented System and Value  Function in Terms of 
Available Measured Data 

The augmented system (2.13) can be written on a time horizon ,k N k as the expanded 

state equation [31] 

1

2
2 1

31 1 1 1
...

k

k
N N

kk k N

k N

u

u

uX T X B TB T B T B

u

                    (2.65) 

or equivalently 

1

2 1 2

3

0

0 0 0 00

k

N N k
k k N

kN
k k N

k N

u

u
x A x B AB A B A B

u
r rF

u

              (2.66) 

Define 2 1N
N
U B AB A B A B  and 

1, 1 2 3

T
T T T T

k k N k k k k N
u u u u u , 

where 
1,k k N

u  is input signals over the time interval , 1k N k . Using these definitions and 

(2.1),  the output can be written as follows 

1,

N

k k k N N k k N
y C x C A x CU u          (2.67) 

Then, the sequence of the output vector over the time interval , 1k N k  is 
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1 2

1 1
2 3

2 2

3 31,

0

0 0

0 0 0

0 0 0 0 0

N N

k k
N N

k k

k kk k N k N

k N k N

y CA CB CAB CA B u

y uCA CB CA B

y uy x

CA CB

y uC

  (2.68)    

or equivalently 

1, 1,k k N N k N N k k N
y W x D u   (2.69) 

with N
W  being the observability matrix 

 

        

1

2

N

N

N

CA

CA

W

CA

C

  (2.70) 

Since ( , )AC  is observable, there exists a K, the observability index, such that rank ( )
N
W n   for 

N K  and that rank ( )
N
W n   for N K . Note that K  satisfiesK p n . 

Substituting  k N
x  from (2.69)  into (2.66)  yields 

1, 1,
1,

0

00

N

k NN k k N N k k N
N k k N

k k N

x A UW y D u
u

r F r
                (2.71) 

where 1( )T T

N N N N
W W W W . Then, (2.71) becomes  

1,

1,

1,

1,

0

00

0

0 0

N N
k N k k N N N N

N k k N
k k N

N N k k N
N N N N

N k k N

k N

x A W y U A W D
u

r rF

u
U A W D A W

y
F

r

                (2.72) 

Define 
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0

0 0

N N

N N N N
N

U A W D A W
M

F
           (2.73) 

and 

1,

1,

k k N

k k k N

k N

u

Z y

r

                                                     (2.74) 

Then, using the definition of the augmented state in (2.14) and definitions (2.73) and 

(2.74), (2.72) becomes 

k

k k
k

x
X M Z

r
                                                (2.75) 

Substituting  (2.75) into (2.19), yields 

1 1 1
( , )

2 2 2k

T T T T

k k k k k k k
V x r X P X Z M PM Z Z PZ              (2.76) 

Eq. (2.76) expresses that the value function at time k has a quadratic form in terms of the 

past inputs, outputs and reference trajectory. Note that the inner kernel matrix P   depends on 

the system dynamics ( , , )A B C  and the reference trajectory dynamics ( )F .  

2.6.2. Bellman Equation in Terms of Available Measured Data 

In this subsection, a LQT Bellman equation in terms of measured data is derived to 

evaluate a fixed control policy. 

Using (2.76) in the LQT Bellman  (2.30) yields 

1 1
( ) ( )

k

T T T T

k k k k k k k k k
Z PZ y r Q y r u Ru Z PZ              (2.77) 

where (2.77) is the LQT Bellman equation in terms of measured data. Using this LQT Bellman 

equation for evaluation of the value of the current policy is the first key concept in developing our 

model-free RL algorithms.  

Based on (2.77), define the LQT Hamiltonian function in terms of observed data as 
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1 1
( , ) ( ) ( )

k

T T T T

k k k k k k k k k k k
H Z u y r Q y r u Ru Z PZ Z PZ                (2.78) 

1 1

T

k k
Z P Z  can be rewritten as a following form 

22 23 241, 1 1, 1

1 1
, 1 , 132 33 34

1 142 43 44

T

o u y rk k
T

uk k N k k NT
Tk k

k k N k k Ny
T

k N k Nr

p p p pu u

p P P Pu u
Z P Z

y yp P P P

r rp P P P

                    (2.79) 

Then, putting (2.79) in (2.78) and using the stationarity condition 0dH
du

, one has 

1

0 1, 1 , 1 1

1, 1 , 1 1

( ) ( )

( ) ( ) ( )

k u k k N y k k N r k N
T

T T T

k k N k k N k N

u R p p u p y p r

K u y r
                (2.80) 

This gives the control input k
u  in terms of previous controls, outputs, and reference 

trajectory values. It is a dynamic regulator in terms of current and previous observed data that is 

equivalent to the state feedback control (2.35).  

Note that for any vector ana  , bnb  , and matrix a bn nW , one has  

( ) ( )T T Ta W b b a vecW    (2.81) 

where   is Kronecker product and  ( )vecW  is  the vector formed by stacking the columns of 

matrix W .   

Using  (2.81), the LQT Bellman equation (2.77) can be written as   

1
( ( )) ( ) ( ) ( ( ))

k

T T

k k k k k k k
vec P y r Q y r u Ru vec P                  (2.82) 

where  

T T

k k k
Z Z                                                      (2.83) 

In the next section, it is shown how to use ADP to learn the solution to the LQT problem 

by learning online the kernel matrix P  in the Bellman equation (2.82) for a control policy and  

finding an improved control policy using the update law (2.80), without knowing A, B, C and F. 
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The state of the system is not needed and only the measured input, output and reference data 

are required. 

2.6.3. RL to solve the LQT problem using measured data 

In this section, we develop PI algorithm to solve the LQT problem online in real time using 

only available measured data. They use the Bellman equation in form of (2.82) in the policy 

evaluation step and a policy update law in form of (2.80) in the policy improvement step. This is 

online iterative algorithm that converge to the solution to the LQT problem using only measured 

data along the system trajectories. The PI algorithm is as follows. 

Algorithm 2.4. Policy iteration using measured data 

Initialization: Start with an admissible control policy 
0

k
u . 

1. Policy evaluation: Solve for 
1jP  such that  

1 1

1
( ( ) ) ( ) ( ) ( ) ( ) ( ( ) )

k

j T j T j j

k k k k k k k
vec P y r Q y r u R u vec P   (2.84) 

2. Policy improvement: 

1 1 1 1 1 1

0 1, 1 , 1 1
( ) ( )j j j j j

k u k k N y k k N r k N
u R p p u p y p r              (2.85) 

The Bellman equation (2.84) can be solved online using LS using the measured data sets 

k
Z  , 

1k
Z  and k  at each step which ( ) ( ) ( )

k

T j T j

k k k k k k
y r Q y r u Ru . In fact (2.84) is a scalar 

equation and P  is a symmetric  ( ) ( )Nm Np p Nm Np p  matrix with

( ) ( 1)/ 2Nm Np p Nm Np p   independent element. Therefore at least  

( ) ( 1)/ 2L Nm Np p Nm Np p  data sets are required before (2.84) can be solved 

using LS. Assume that we collect s L  number of samples and form the matrices 
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1

1

k

k

k

k s

H                                                         (2.86) 

and  

1 1 1 1 1 1

1 1 1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T j T j

k k k k k k
T j T j

k k k k k k
k

T j T j

k s k s k s k s k s k s

y r Q y r u R u

y r Q y r u R u

y r Q y r u R u

                 (2.87) 

Then based on (2.84), we have  

1( ( ) )j

k k
H vec P   (2.88) 

where 1k k k
H H H . The least-squares solution for 1( )jP  in (2.84) becomes 

1 1( ) ( )j T T

k k k k
vec P H H H                  (2.89) 

The following Lemma is required to prove the convergence of Algorithm 2.4. 

Lemma 2.2. Consider a fixed control policy 

1 1k k k
u K X K Z   (2.90) 

where 
1 1
K K M . Assume that the value function for the policy 1k k

u K X  is 
1

2
T

k k k
V X P X  

and is found by solving the Lyapunov equation (2.49) for P . Also, assume that the value function 

for the policy 1k k
u K Z  is 

1

2
T

k k k
V Z P Z  and is found by solving the least squares equation 

(2.89) for P . Then, k k
V V  provided that the matrix k

H  in (2.86) is full rank.  

Proof. By using (2.75), one has 
1 1

2 2k

T T T

k k k k
V X P X Z M PM Z . Therefore, k k

V V  if and only 

if 

TP M PM                                                      (2.91) 
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Thus, in order to prove that the Lyapunov function (2.49) and the least squares equation (2.89) 

give the same value function for the given policy in (2.90), we need to show that P  found by 

solving the least squares equation (2.89) is equal to 
TM PM  where P  is the solution to the 

Lyapunov equation (2.49).  

Assume that there exists a matrix 1
P  such that 

1

TP M PM                                                  (2.92) 

To prove that k k
V V  it remains to show that 

1
P  satisfies the Lyapunov equation (2.49), provided 

that 
k
H  in (2.86) is full rank. That is, to show that 

1
P  in (2.92) is equal to P  in (2.91). To this 

end, using (2.13), (2.75) and (2.90), one has 

1 1 1 1 1 1
( ) ( )

k k k k
X T B K X T B K MZ MZ                   (2.93) 

Therefore,  

1 1 1
( )

k k
Z M T B K M Z   (2.94) 

where 
1( )T TM M MM   is the generalized right inverse of M  with M M I . 

Using (2.75), (2.90), (2.92) and (2.94) in (2.77), we get  

1 1 1 1 1 1 1 1 1
[ ( ) ( )] 0T T T T

k k
Z M Q P K RK T B K P T B K MZ                (2.95)                                                                          

where 
1
Q  is defined in (2.17). After collecting s  equations to perform the least squares and using 

(2.81) ,we end up with 

1 1 1 1 1 1 1 1 1
( [ ( ) ( )] ) 0T T T

k
H vec M Q P K RK T B K P T B K M             (2.96) 

Equation (2.96) is equivalent to the least squares equation (2.89). Since M  and 
k
H   are full rank, 

equation (2.96) is satisfied if and only if 1 1 1 1 1 1 1 1 1
( ) ( ) 0T TQ P K RK T B K P T B K . That 

is, if 
1
P   satisfies the Lyapunov equation (2.49). This completes the proof.     
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Theorem 2.3. Convergence proof for Algorithm 2.4.  

Consider the sequence 
jP  and 

ju  in (2.84) and (2.85). Then, if the rank condition of Lemma 2.2 

is satisfied, as j , 
*jP P  and 

*ju u . 

Proof. It was shown in Lemma 2.2 that for a fixed control policy, the value function found by the 

Bellman equation (2.84) in Algorithm 2.4 is equal to the value function found by the Lyapunov 

equation (2.49). Therefore, the policy evaluation steps of Algorithms 2.1 and 2.4 give the same 

solution for the value function. Moreover, the policy improvement steps (2.50) and (2.85) in 

Algorithms 2.1 and 2.4 are found by minimizing the value function and since the value functions 

for both algorithms are the same, both policy improvement steps (2.50) and (2.85) in Algorithms 

2.1 and 2.4 lead to the same results and thus Algorithms 2.1 and 2.4 have the same convergence 

properties. Convergence of Algorithm 2.1 is shown in [89]. This completes the proof.    

Remark 2.6. PI Algorithms 2.4 is implemented online in real time using the past input, output and 

reference data measured along the system trajectories without requiring any knowledge of the 

augmented system dynamics. 

Remark 2.7. In the policy evaluation step of the policy iteration algorithm, it is required to solve 

the Lyapunov equation (2.84) at each step. This requires a stabilizing gain 
ju  at each step. This 

is called a full back up in reinforcement learning terms [8], [13]. On the other hand, in the policy 

evaluation step of value iteration algorithm it is required to solve the Lyapunov recursion (2.97) at 

each step, which is very easy to compute, and does not require a stabilizing gain. This is called 

a partial backup in reinforcement learning. 

Remark 2.8. An initial admissible policy is required in the proposed policy iteration Algorithms 2.1 

and 2.4. In many cases the system is itself stable and the initial policy can be chosen as  0u   

Therefore, the admissibility of the initial policy is guaranteed without requiring any knowledge of

T . If the system itself is not stable, one can obtain the initial admissible policy by using some 
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knowledge of T . Suppose the system (2.13) has a nominal model  
N
T   satisfying  

N
T T T

, where T  is unknown part of T . In this case, an admissible initial policy can be obtained by 

using robust control methods such as H  control with the nominal model 
N
T . Note that the 

learning process does not require any knowledge of T .  

2.7. Simulation Results 

In this section, simulation examples are carried out to illustrate the design procedures 

and verify the effectiveness of the proposed schemes.  

A linear system is considered as 

                                                              
1

1 2 2

2.2 1.7 1.6

1 2

k k k

k k

x x u

y x

                           (2.97)                                   

The open-loop poles are 1
2.1445z  and 2

2.8445z , so the system is unstable. The 

performance index is considered as (2.15) with 6Q , 1R and 0.8 . It is supposed that 

the sinusoid reference trajectory is generated by the command generator dynamics given by 

                                                                          1k k
r r                                                      (2.98)                                                                                      

2.7.1.  Policy iteration using value function 

In this subsection Algorithms 2.1 and 2.2, which use value function structure (2.19) to 

evaluate the performance of a policy, are applied for the system (2.97) and the reference 

trajectory (2.98). 

The optimal matrix P satisfying the ARE (2.36) for this problem is                                                            

                                            

133.3840 16.0531 31.1402

16.0531 25.1604 10.8271

31.1402 10.8271 18.4825

P                             (2.99)                                                          
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First, offline policy iteration Algorithm 2.1 is implemented as in (2.50) and (2.51). Fig. 2.1 

shows that the P matrix parameters converge to their optimal values. After 12 iterations the P 

matrix parameters converge to  

                                             

133.3840 16.0531 31.1402

16.0531 25.1604 10.8271

31.1402 10.8271 18.4825

P                                      (2.100) 

The results of applying the optimal control given by substituting the P matrix (2.100) in 

(2.34), (2.35) to the system (2.97) are now presented. Fig. 2.2 shows that the output k
y  tracks 

the reference trajectory k
r  and guarantees the stability for the offline policy iteration Algorithm 2.1 

is presented. The optimal control signal input is shown in Fig. 2.3.  

 

 

Fig. 2.1. Convergence of the P matrix parameters to their optimal values for offline PI Algorithm 2.1 
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Fig. 2.2. Evaluation of the output and the reference trajectory for offline PI Algorithm 2.1  

 

Fig. 2.3. The control input during learning 
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133.3840 16.0531 31.1402

16.0531 25.1604 10.8271

31.1402 10.8271 18.4825

P  

Comparing this P matrix with the P  matrix, it is seen that the online Algorithm 2.2 converges 

very close to the optimal controller. 

 

     Fig. 2.4. Convergence of the P matrix parameters to their optimal values for online PI Algorithm 2.2 
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Consequently, using (2.58) for the optimal control k k
u K X , the control gain K is given as  

0.1898 1.0085 0.0640K  

Now, Algorithm 2.3 is used to solve the problem. It is assumed the dynamics T and 
1B  

are completely unknown. For the purpose of demonstrating the algorithm, the initial state of the 

augmented system is chosen as 
0 [5 5 5]TX    and initial control input is chosen as 

0 [0.3 1.3 0.75]K   . In each iteration, 21 data samples are collected to perform the LS. PE was 

ensured by adding a probing noise to the control input. Fig. 2.5 and Fig. 2.6. show norm of the 

difference of the optimal and the computed H matrices as well as norm of the difference between 

the optimal control gain and the computed gain, respectively. After 6 iterations the H matrix 

parameters and the control gain converge to  

153.6214 91.4595 37.9681 106.6935

91.4595 596.3286 47.1000 566.3383

37.9681 47.1000 19.0389 35.9662

106.6935 566.3383 35.9662 561.5493

H  

and 

0.1898 1.0085 0.0640K  

Fig. 2.7. shows the output of the system and the reference trajectory during learning  

process. Fig. 2.8. shows the probing noise injected to the control input during learning process. It 

is clear that after 300 time step the PE condition is no longer needed. Therefore, probing noise is 

turned off. Thereafter, the output of the system is very close to the reference trajectory as it is 

required.  
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Fig. 2.5. Convergence of H matrix to its optimal values H 
 during the learning  process 

 

      Fig. 2.6. Convergence of K matrix to its optimal values K 
 during the learning  process 
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 Fig. 2.7. Evaluation of the output and the reference trajectory during the learning process 

 
 

 

Fig. 2.8. Probing noise during the learning process 
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2.7.3. Policy iteration using input-output measured data 

In this subsection policy iteration Algorithm 2.4 is used to solve the problem. It is assumed 

the dynamics T  and 
1
B  are completely unknown. The value of N should be bigger than 2 to 

make sure 
N
W  is a full rank matrix. Here, we select 2N , then 

5 5P . In each iteration, 25 

data samples are collected to perform the LS. PE was ensured by adding a probing noise to the 

control input. By using 
TP M PM  and (2.99), the optimal P  matrix is   

700 8210 1750 4250 40

8210 140010 27840 72380 1300

1750 27840 5590 14390 240

4250 72380 14390 37420 670

40 1300 240 670 20

P  

and the optimal control gain is 

11.7006 2.4874 6.0486 0.0640K  

Fig. 2.9. and Fig. 2.10 show norm of the difference of the optimal and the computed  P   

matrices as well as norm of the difference between the optimal control gain and the computed 

gain, respectively. After 13 iterations the P  matrix parameters and the control gain converge to  

680 7810 1660 4150 45

7810 136610 27160 70530 1370

1660 27160 5450 14020 260

4150 70530 14020 36420 710

45 1370 260 710 30

P  

and 

11.4642 2.4367 6.0917 0.0661K  

Fig. 2.11. shows the output of the system and the reference trajectory. It is clear that the 

output of the system is very close to the reference trajectory as it is required.  
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Fig. 2.9. Convergence of P  matrix to its optimal values P   during the learning process of policy iteration 

Algorithm 2.4 

 

 

Fig. 2.10. Convergence of  K  matrix to its optimal values K  during the learning process of policy 

iteration Algorithm 2.4 
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Fig. 2.11 Output and Reference trajectory  

 

2.8. Conclusion 

An alternative solution to the LQT problem using RL was presented. It was shown that 

the value function has a quadratic form in terms of the state of the augmented system. On the 

basis of this value function, a LQT ARE was obtained and Q-learning and policy iteration 

algorithms were developed to solve the LQT ARE online without requiring knowledge of the 

system dynamics and using only the measured states, input, output, and  reference trajectory 

data. The simulation results showed that the proposed formulation for the LQT problem gave 

good tracking performance.   
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ACTOR-CRITIC-BASED OPTIMAL TRACKING CONTROL FOR PARTIALLY-UNKNOWN 

NONLINEAR CONSTRAINED-INPUT SYSTEMS 

3.1. Introduction 

This chapter presents a partially model-free adaptive optimal control solution to the 

nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The 

tracking error dynamics and reference trajectory dynamics are first combined to form an 

augmented system. Then, a new discounted performance function based on the augmented 

system is presented for the optimal nonlinear tracking problem. In contrast to the standard 

solution, which finds the feedforward and feedback terms of the control input separately, the 

minimization of the proposed discounted performance function gives both feedback and 

feedforward parts of the control input simultaneously. This enables us to encode the input 

constraints into the optimization problem by using a nonquadratic performance function. The DT 

tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-

critic based reinforcement learning algorithm is used to learn the solution to the tracking HJB 

equation online without requiring knowledge of the system drift dynamics. That is, two neural 

networks (NNs), namely actor NN and critic NN, are tuned online and simultaneously to generate 

the optimal bounded control policy.  

The rest of the paper is organized as follows. The next section formulates the optimal 

tracking control problem and discusses its standard solution and its shortcomings. In the Section 

3.3, the new formulation to the optimal tracking problem of deterministic nonlinear DT 

constrained-input systems is presented. Also, a DT tracking HJB equation is obtained which gives 

both feedback and feedforward parts of the control input simultaneously. An actor-critic based 

controller is given in Section 3.4 which learns the solution to the DT tracking HJB online and 

without requiring knowledge of the drift system dynamics or the reference trajectory dynamics. 

Finally, the simulation results are presented in Section 3.5 to confirm the suitability of the 
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proposed method.  

3.2. Optimal Tracking Control for Nonlinear Systems 

In this section, we formulate the nonlinear optimal tracking problem and give the standard 

solution. The standard solution has several deficiencies. We fix these in the next sections where 

we give our results. 

Consider the deterministic nonlinear affine discrete-time system given by 

( 1) ( ( )) ( ( )) ( )x k f x k g x k u k  (3.1) 

where 0k , ( ) nx k  represents the state vector of the system, ( ) mu k  represents the 

control vector, ( ( )) nf x k  is the drift dynamics of the system and ( ( )) n mg x k  is the input 

dynamics of the system. Assume that (0) 0f  and ( ) ( )f x g x u  is Lipschitz continuous on a 

compact set  which contains the origin and the system (3.1) is controllable in the sense that 

there exists a continuous control on  which stabilizes the system. 

For the infinite-horizon tracking problem, the goal is to design an optimal controller for 

the system (3.1) which ensures that the state ( )x k  tracks the reference trajectory ( )r k  in an 

optimal manner.  Define the tracking error as  

        ( ) ( ) ( )e k x k r k  (3.2) 

For the standard solution to the tracking problem, the control input consists of two parts, 

including a feedforward part and a feedback part [2]. In the following, it is discussed how each of 

these parts are obtained using the standard method. 

The feedforward or steady-state part of the control input is used to assure perfect 

tracking. The perfect tracking is achieved if ( ) ( )x k r k . In order for this to happen, a feedforward 

control input ( ) ( )
d

u k u k  must exist to make ( )x k  equal to ( )r k . By substituting ( ) ( )x k r k  and 

( ) ( )
d

u k u k  in the system dynamics (3.1), one has   
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 ( 1) ( ( )) ( ( )) ( )
d

r k f r k g r k u k  (3.3) 

If the system dynamics is known, ( )
d
u k  is obtained by  

( ) ( ( )) ( ( 1) ( ( )))
d
u k g r k r k f r k  (3.4) 

where 1( ( )) ( ( ( )) ( ( ))) ( ( ))T Tg r k g r k g r k g r k  is the generalized invers of  ( ( ))g r k  with 

( ( )) ( ( ))g r k g r k I . 

Remark 3.1. Note that equation (3.4) cannot be solved for ( )
d
u k  unless the reference trajectory 

is given a priori. Moreover, finding ( )
d
u k  requires the inverse of the input dynamics ( ( ))g r k and 

the function ( ( ))f r k  be known. We shall propose a new method in Section 3.3 that does not need 

the reference trajectory to be given or the input dynamics to be invertible.  

 The feedback control input is computed as follows. By using (3.1) and (3.3), the tracking 

error dynamics can be expressed in terms of the tracking error ( )e k  and the reference trajectory 

( )r k  as  

1

( 1) ( 1) ( 1) ( ( ) ( )) ( ( ) ( )) ( )

( ( ) ( )) ( ( ))( ( 1) ( ( ))) ( 1)
e

e k x k r k f e k r k g e k r k u k

g e k r k g r k r k f r k r k
            (3.5) 

By defining  

1

( ) ( ( ) ( ))

( ) ( ( ) ( )) ( ( ) ( )) ( ( ))( ( 1) ( ( ))) ( 1)

e

e

g k g e k r k

f k f e k r k g e k r k g r k r k f r k r k

         (3.6) 

Eq. (3.5) can be rewritten as  

( 1) ( ) ( ) ( )
e e e

e k f k g k u k   (3.7) 

where ( )
e
u k  is the feedback control input that is designed to stabilize the tracking error dynamics 

in an optimal manner by minimizing the following performance function 
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( ( ), ( )) ( ) ( ) ( ) ( )T T
e e e e e

i k

J e k u k e i Q e i u i R u i                       (3.8) 

where 
n n

e
Q  and 

m m

e
R  are symmetric positive definite. The feedback input that minimizes 

(3.8) is found by solving the stationary condition ( , ) 0
e e

J e u u [2].  The result is  

                                              1 ( ( 1))1
( ) ( )

2 ( 1)
T

e e e

J e k
u k R g k

e k
                                               (3.9) 

 

Then the standard control input is given by 

 

( ) ( ) ( )
d e

u k u k u k                                                 (3.10) 

 

where du  is given by (3.4) and e
u  is given by (3.9). 

Remark 3.2. The feedback part of the control input (3.9) is designed to stabilize the tracking error 

dynamics. The RL algorithm for finding the feedback part could be implemented by measuring 

the state ( )x k  and the reference trajectory ( )r k  to obtain ( )e k  and without requiring the system 

dynamics [2]. In contrast, obtaining the feedforward part of the control input needs complete 

knowledge of the system dynamics and the reference trajectory dynamics.   

Remark 3.3. Since the feedforward part of the control input (3.4) is found separately and does 

not involve in the optimization of the performance (3.8), it is not possible to encode the constraints 

of the control input u  into the optimization problem.  In the following, a new formulation of the 

problem is given that gives both feedback and feedforward parts of the control input 

simultaneously by minimizing a predefined performance function.  

3.3. New Formulation for the Nonlinear Input Constraints Tracking Problem 

A disadvantage to the standard tracking problem solution in Section II is that it needs 

complete knowledge of the system dynamics, and also the reference trajectory should satisfy 

(3.3) to compute the feedforward control input (3.4). Moreover, the standard solution does not 
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take into account the input constraints caused by physical limitations of the actuator. In this 

section, we propose an alternative approach for formulating the nonlinear tracking problem that 

gives both parts of the control input simultaneously and also takes into account the input 

constraints. First, an augmented system composed of the original system and the reference 

trajectory is constructed. Based on this augmented system a new performance function is 

presented that consists of both feedback and feedforward parts of the control input. Then, the 

Bellman and HJB equations for the nonlinear tracking problem are obtained.      

3.3.1. Augmented system dynamics and discounted performance function 

Before proceeding, the following assumption is made for the reference trajectory.  

Assumption 3.1. The reference trajectory dynamics for the nonlinear tracking problem is 

generated by the command generator model  

    ( 1) ( ( ))r k r k  (3.11) 

where ( ( ))r k  is a C  function with (0) 0  and ( ) nr k [37]. 

Definition 3.1. A equilibrium point is said to be Lyapunov stable if for every 0 , there exists 

a ( ) 0   such that, if (0)
e

x x  , then for every 0t  we have ( )
e

x t x  . 

Remark 3.4. Note that Assumption 3.1 is a standard assumption made in accordance with other 

work on tracking control in the literature [91]. This command generator dynamics can generate a 

large class of command trajectories, including unit step, sinusoidal waveforms, damped 

sinusoids, and more. Human factor studies show that after learning a task, the skilled human 

operator behaves predictably like a command generator dynamics. Assume, the model (3.11) 

covers this case from human robot interaction.   

The tracking error dynamics (3.5) in terms of the control input ( )u k  is given by 

( 1) ( 1) ( 1) ( ( ) ( )) ( ( )) ( ( ) ( )) ( )e k x k r k f e k r k r k g e k r k u k        (3.12) 
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Based on (3.11) and (3.12), the augmented system is constructed in terms of the tracking error 

( )e k  and the reference trajectory ( )r k  as  

( 1) ( ( ) ( )) ( ( )) ( ( ) ( ))
( ) ( ( )) ( ( )) ( )

( 1) ( ( )) 0

e k f e k r k r k g e k r k
u k F X k G X k u k

r k r k
             (3.13) 

where the augmented state is 

      
2

( )
( )

( )
n

e k
X k

r k
  (3.14) 

 

and  

( ) | ( ) | , 1, ,m

j j
u k u k u j m  (3.15) 

where j
u  is the saturating bound for the j-th actuator. 

Based on the augmented system (3.13), define the value function for the tracking problem 

as 

1
( ( )) ( ) ( ) ( ( ))i k i k T

i
i k i k

V X k U X i Q X i W u i       (3.16) 

where 

1

0

0 0

Q
Q   (3.17) 

Here 0 1  is the discount factor and ( ( ))W u i  is used to penalize the control input. Q  

and ( ( ))W u i  are positive definite.  

For the unconstrained control problem, ( )W u  may have the quadratic form

( ( )) ( ) ( )TW u i u i Ru i . However, to deal with the constrained control input  [72]-[74], [92] [93], we 

employ a nonquadratic functional defined as 

( )
1

0
( ( )) 2 ( )

u i
TW u i U s U Rds   (3.18) 
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where m mU  is the constant diagonal matrix given by 1 2
{ , ,..., }

m
U diag u u u  and R  is 

positive definite and assumed to be diagonal.  (.)  is a bounded one-to-one function satisfying 

(.) 1 . Moreover, it is a monotonic increasing odd function with its first derivative bounded by 

a constant M. It is clear that ( ( ))W u i  in (3.18) is a scalar for ( ) mu i . ( )W u  is ensured to be 

positive definite because  is monotonic odd function and R  is positive definite. This function is 

written in terms of scalar components as follows, 

1 1 1 1 11 2

1 2

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

T

m

m

u i u i u i
U s

u i u i u i
                 (3.19)  

where ms . Denote
1

1 1
( ) ( ) ( ) ( )T

m m
s U s UR s s . Then, the integral in (3.18) is 

defined in terms of the components of ( )u i as [41] 

(i) ( )

0 0
1

( ( )) 2 ( ) 2 ( )
j

mu u i

j j j
j

W u i s ds s ds                        (3.20) 

 

Note that by defining the nonquadratic function ( ( ))W u i  (3.18), the control input resulting 

by minimizing the value function (3.16) is bounded (see equation (3.29)). The function (3.16) has 

been used to generate bounded control for continuous-time systems in [72]-[74]. 

Remark 3.5. Note that it is essential to use a discounted performance function for the proposed 

formulation. This is because if the reference trajectory does not go to zero, which is the case of 

most real applications, then the performance function (3.16) becomes infinite without the discount 

factor as the control input contains a feedforward part which depends on the reference trajectory 

and thus ( )W u  does not go to zero as time goes to infinity.  

3.3.2 Bellman and HJB equations for the nonlinear tracking problem 

In this subsection, based on the augmented system and the value function presented in 

the previous subsection, the Bellman and HJB equations for the nonlinear tracking problem are 
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given.   

By using (3.16) and (3.18), we have 

( )
1

1 0

( )
1

1 0
1

( ( )) ( ) ( ) 2 ( )

( ) ( ) 2 ( )

u k
T T

u i
i k T T

i k

V X k X k Q X k U s U Rds

X i Q X i U s U Rds
  (3.21) 

which yields the nonlinear tracking Bellman equation 

                                
( )

1

1 0
( ( )) ( ) ( ) 2 ( ) ( ( 1))

u k
T TV X k X k Q X k U s U Rds V X k          (3.22)  

Based on (3.22), define the Hamiltonian function 

          
( )

1

1 0
( ( ), ( ), ) ( ) ( ) 2 ( ) ( ( 1)) ( ( ))

u k
T TH X k u k V X k Q X k U sURds V X k V X k    (3.23) 

From Bellman’s optimality principle, it is well known that, for the infinite-horizon optimization case, 

the value function ( ( ))V X k   is time-invariant and satisfies the DT HJB equation 

( )
1

1( ) 0
( ( )) min ( ) ( ) 2 ( ) ( ( 1))

u k
T T

u k
V X k X k Q X k U s U Rds V X k      (3.24) 

 

Or equivalently, 

( )
1

1 0
( ( ), ( ), ) ( ) ( ) 2 ( ) ( ( 1)) ( ( ))

u k
T TH X k u k V X k Q X k U s U Rds V X k V X k  

                                                                                                                                               (3.25) 
Necessary condition for optimality is stationarity condition [2] 

( )
1

1 0
( ) ( ) 2 ( )

( ( ), ( ), )

( ) ( )

( 1) ( ( 1))
0

( ) ( 1)

u k
T T

T

X k Q X k U s U Rds
H X k u k V

u k u k

X k V X k

u k X k

            (3.26) 

By using (3.13), we have 

( 1)
( )

( )

X k
G X

u k
  (3.27) 

 

also,  
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( )
1

1 0 1

( ) ( ) 2 ( )
2 ( ( ))

( )

u k
T T

T

X k Q X k U s U Rds
U u k U R

u k
              (3.28) 

By substituting (2.27) and (2.28) into (2.26), yields the optimal control input, 

( ( 1))
( ) ( ) ( )

2 ( 1)
T T V X k

u k U UR G X
X k

                      (3.29) 

 
By substituting (2.29) in the Bellman equation, the DT tracking HJB equation (2.24) becomes 

1
( ( )) ( ) ( ) ( ( )) ( ( 1))TV X k X k Q X k W u k V X k          (3.30) 

where the ( ( ))V X k  is the value function corresponding to the optimal control input.  

In order to find the optimal control solution, first the DT tracking HJB equation (3.30) is 

solved and then the optimal control solution is given by (3.29) using the solution of the DT tracking 

HJB equation. However, in general, the DT tracking HJB equation cannot be solved analytically. 

In the subsequent sections, it is shown how to solve the DT tracking HJB equation online in real 

time without complete knowledge of the augmented system dynamics.   

Remark 3.6. Note that in (3.29) both feedback and feedforward parts of the control input are 

obtained simultaneously by minimizing the performance function (3.16) subject to the augmented 

system (3.13). This enables us to extend reinforcement learning techniques for solving the 

nonlinear optimal tracking problem without using complete knowledge of the system dynamics. 

Also, it enables us to encode the input constraints into the optimization problem using the 

nonquadratic function (3.18). 

Remark 3.7. It is clear from (3.29) that the optimal control input never exceeds its permitted 

bounds. This is a result of reformulation of the nonlinear tracking problem to minimize of the 

nonquadratic performance function (3.16) subject to the augmented system (3.13). In this 

formulation, both feedback and feedforward parts of the control input are obtained simultaneously 

by minimizing the performance function (3.16) and the control input stays in its permitted bounds 

because of using the nonquadratic function (3.18) for penalizing the control input. 
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3.3.3 Optimal tracking problem with input constraints  

The following Theorem 3.1 shows that the solution obtained by the DT tracking HJB 

equation gives the optimal solution and locally asymptotically stabilizes the error dynamics (3.12) 

in the limit as the discount factor goes to one.  

Lemma 3.1. For any admissible control policy ( )u k , Suppose 1( ( )) : nV X k C  is a smooth 

positive definite solution to the Bellman equation (3.22). Define ( ( ))u uV X  by (3.29) in terms 

of ( )V X . Then 

( )
1

( )
( ( ), ( ), ) ( ( ), ( ), ) 2 ( ) ( ( ( )) ( ( )) )

( ( ( )) ( ( )) )

u k
T

u k
H X k u k V H X k u k V U s U Rds V F X k G X k u

V F X k G X k u
    (3.31)                                                                                                                                             

 

Proof . The Hamiltonian function is  

( )
1

1 0
( ( ), ( ), ) ( ) ( ) 2 ( ) ( ( 1)) ( ( ))

u k
T TH X k u k V X k Q X k U s U Rds V X k V X k  (3.32) 

By adding and subtracting the terms 
( )

1

0
2 ( )

u k
T U s U Rds and ( ( ( )) ( ( )) )V F X k G X k u  to (3.32) 

yields 

( )
1

1 0

( )
1

( )

( ( ), ( ), ) ( ) ( ) 2 ( )

( ( ( )) ( ( )) ) ( ( ))

2 ( ) ( ( ( )) ( ( )) ) ( ( ( )) ( ( )) )

u k
T T

u k
T

u k

H X k u k V X k Q X k U s U Rds

V F X k G X k u V X k

U s U Rds V F X k G X k u V F X k G X k u

      (3.33) 

The proof is complete.             

Theorem 3.1. Solution to the Optimal Control Problem. Consider the augmented system 

(3.13) with performance function (3.16). Suppose 1( ( )) : nV X k C  is a smooth positive 

definite solution to the DT HJB equation (3.30). Define control ( ( ))u uV k  as given by (3.29). 

Then, the closed-loop system 
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( ( 1))
( 1) ( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )

2 ( ( 1))
T T V X k

X k F X k G X k u F X k G X k U UR G X
X k

 

                                                     (3.34) 

 
is locally asymptotically stable in the limit, as the discount factor goes to one. Moreover, 

( ( ))u uV k is bounded and minimizes the value function (3.16) over all bounded controls, and 

the optimal value on [0, )  is given by ( ( ))V X k .  

Proof. Clearly, (3.29) is bounded.  The proof of the stability and optimality of the DT tracking HJB 

equation is given separately as follows. 

1. Stability. Suppose that the value function *( ( ))V X k  satisfies the DT tracking HJB equation. 

Then, using (3.30) one has 

1
( ( )) ( ( 1)) ( ) ( ) ( ( ))TV X k V X k X k Q X k W u k                (3.35)                                                              

 

Multiplying both sides of  (3.35) by k  gives 

* 1 *

1
( ( )) ( ( 1)) ( ( ) ( ) ( ( )))k k k TV X k V X k X k Q X k W u k                 (3.36) 

 
Defining the difference of the Lyapunov function as 

* ( 1) * *( ( ( ))) ( ( 1)) ( ( ))k k kV X k V X k V X k  and using (3.36) yields 

*

1
( ( ( ))) ( ( ) ( ) ( ( )))k k TV X k X k Q X k W u k                           (3.37) 

 

Eq. (3.37) shows that the tracking error is bounded for the optimal solution, but its asymptotic 

stability cannot be concluded. However, if 1   (which can be chosen only if the reference 

trajectory goes to zero), LaSalle’s extension can be used to show that the tracking error is locally 

asymptotically stable. In fact, the LaSalle’s extension says that the states of the system converge 

to a region wherein 0V   .  By using equation (3.37), we have 0V   if ( ) 0e k   and 

( ( )) 0W u k . Since ( ( )) 0W u k  if ( ) 0e k  , therefore  for 1  , the tracking error is locally 

asymptotically stable. This confirms that in the limit as the discount factor goes to one, the optimal 
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control input resulted from solving the DT tracing HJB equation makes the error dynamics 

asymptotically stable.  

If the discount factor is chosen as a nonzero value, one can make the tracking error as 

small as desired by choosing a discount factor close to one in the performance function (3.16). 

2. Optimality. We now prove that the HJB equation provides the sufficient condition for optimality. 

Note that for any admissible control input ( )u k  and initial condition (0)X , one can write the value 

function (3.16) as 

1 1
0 0

0

( (0), ) [ ( ) ( ) ( ( ))] [ ( ) ( ) ( ( ))]

[ ( ( 1)) ( ( ))] ( (0))

i T i T

i i

i

i

V X u X i Q X i W u i X i Q X i W u i

V X k V X k V X
      (3.38) 

Then  

0

( (0), ) ( , , ) ( (0))i

i

V X u H X u V V X                              (3.39) 

Substituting (3.31) into (3.39) and considering ( , , ) 0H X u V  and (3.38) yields 

( )
1

( )
0

( (0), ) 2 ( ) ( ( ( ))

( ( )) ) ( ( ( )) ( ( )) ) ( (0))

u k
i T

u k
i

V X u U s U Rds V F X k

G X k u V F X k G X k u V X
            (3.40) 

Or equivalent  

( (0), ) ( (0))V X u M V X   (3.41) 

where  

( )
1

( )
0

2 ( ) ( ( ( )) ( ( )) ) ( ( ( )) ( ( )) )
u k

i T

u k
i

M U s U Rds V F X k G X k u V F X k G X k u       

(3.42) 
 

To show that u  is an optimal control and the optimal value function is ( (0))V X , it is needed to 

show that the term M  is bigger than zero when u u  and it is zero when u u . 

Taking 1(.)  from two sides of (3.29), yields 
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1 1 ( ( 1))
2( ) ( ) ( )

( 1)
T T V X k

UR U u G X
X k

                   (3.43) 

Also, we have 

( ( 1)) ( ( 1)) ( 1) ( ( 1))
( ) ( ) ( )

( ) ( 1) ( ) ( 1)
T TdV X k V X k X k V X k

G X
du k X k u k X k

       (3.44) 

Using (3.44) in (3.43) yields 

 1 1 ( ( 1))
2( ) ( ) ( )

( )
T TdV X k

UR U u
du k

             (3.45) 

By integrating (3.45) one has 

1

1

( ( 1))
2 ( )

( )
2( ) ( ) [ ( ( ( )) ( ( )) )

( ( ( )) ( ( )) )

u u
T

u u

T

dV X k
U u UR ds ds

ds k
u u U u UR V F X k G X k u

V F X k G X k u

                (3.46) 

By using (3.46) and considering
1( ) ( )Ts U s U R , M  becomes 

( )

( )
0

2 ( ) 2( ) ( )
u k

i

u k
i

M s ds u u u                         (3.47) 

We consider  

( )

( )
( ) ( ) ( )

u k

u k
l s ds u u u   (3.48) 

By using (3.20), we rewrite (3.48) as  

 
( )

( )
1

( ) ( ) ( )
j

j

m u k

j j j j j j ju k
j

l s ds u u u                          (3.49) 

By defining 
( )

( )
( ) ( ) ( )

j

j

u k

j j j j j j j ju k
l s ds u u u  , (3.49) is 

1

m

j
j

l l                                                  (3.50) 
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To complete the proof, it is needed to show that  ,    1,..,
j
l j m  is bigger than zero for j j

u u  

and they are zero for j j
u u . It is clear that 0jl   for j j

u u . Now it should be shown that 

0jl   for j j
u u . First it is assumed j j

u u . Then using mean value theorem for the integrals, 

there exists a [ , ]
j j j
u u u   such that  

( )

( )
( ) ( ) ( ) ( ) ( )

j

j

u k

j j j j j j j j j ju k
s ds u u u u u u                     (3.51) 

Therefore, 0
j
l  for j j

u u . Then, it is assumed j j
u u . Using mean value theorem, there 

exists a [ , ]
j j j
u u u   such that  

( )

( )
( ) ( ) ( ) ( ) ( )

j

j

u k

j j j j j j j j j ju k
s ds u u u u u u                      (3.52) 

 

Therefore, 0
j
l  for j j

u u .  Then the proof is completed.  

3.4. RL for Solving the Nonlinear Tracking Problem 

The DT HJB equation (3.30) cannot be solved exactly and it also requires complete 

knowledge of the system dynamics. In this section, an online policy iteration algorithm is given to 

find the solution to the DT tracking HJB equation. This algorithm still requires complete knowledge 

of the system dynamics. To obviate the requirement of complete knowledge of the system 

dynamics, an actor-critic algorithm is presented in the next subsection to solve the nonlinear 

tracking problem.  

Note that instead of the solving the DT HJB equation directly, one can use the following 

iterative policy iteration algorithm which uses the tracking Bellman equation (3.22) to evaluate a 

fixed control policy and the update policy in form of (3.29) to find an improved control policy.  
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3.4.1. Algorithm 3.1. Online Policy Iteration Algorithm 

Initialize the control input 0( )u k . 

1. Policy evaluation: Find the value function related to the policy ( )iu k  by solving the Bellman 

equation (3.22) 

 1
( ( )) ( ) ( ) ( ( )) ( ( 1))i T i iV X k X k Q X k W u k V X k          (3.53) 

2. Policy improvement: Update the policy using   

     
1 ( ( 1))
( ) ( ) ( ( ))

2 ( 1)

i
i T T V X k
u X U UR G X k

X k
                  (3.54) 

Remark 3.8. This policy iteration algorithm can be implemented online using the least squares 

method by standard technique [13]. This requires a persistent excitation (PE) condition to allow 

solution of repeated Bellman equation (3.53) at successive time instants in a batch fashion.  

 
The augmented system dynamics is not needed to solve the Bellman equation (3.53) but 

must be known for updating the control input using (3.54). To obviate the requirement complete 

knowledge of the system dynamics or reference trajectory dynamics, an actor-critic algorithm [13] 

is developed in the next subsection to solve the nonlinear tracking problem. 

3.4.2. actor-critic structure for solving the nonlinear tracking problem  

In this section, the solution to the DT tracking HJB equation is learned using an actor-

critic structure which does not require knowledge of drift system dynamics or reference trajectory 

dynamics. In contrast to the sequential online Algorithm 3.1, the proposed algorithm is an online 

synchronized algorithm. That is, instead of sequentially updating the value function and the policy, 

as in Algorithm 3.1, the value function and the policy are updated simultaneously. This method 

has been developed for continuous-time systems in [44] and for discrete-time systems with one-

layer NN in [43]. The value function and the control input are approximated with two separate 

two-layer perceptron neural networks (NNs) [21]-[23]. The critic NN estimates the value function 
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and is a function of the tracking error and the reference trajectory. The actor NN represents a 

control policy and is a function of the tracking error and the reference trajectory. The critic NN is 

updated to minimize the tracking Bellman error and the actor NN is to minimize the value function. 

 Actor NN 

A two-layer NN with one hidden layer is used as the actor NN to approximate the control 

input for the nonlinear tracking problem. Fig. 3.1 shows the actor NN. The input for the actor NN 

is ( )X k  defined in (3.14).  

The output of the actor NN are given as 

(1) (2)

1

2
(2) (1) (2) (1)

1 1

ˆ ˆ ˆ( ( ), ( ), ( )) [ ,..., ],

ˆ ˆˆ ( ( ) ( ( ) ( ))) ( ( ) ( ( ) ( )))
a

i il l lj

a a m
N n

i i a a a i a a a j
l j

u X k W k W k u u

u W k W k X k w k w k X k
           (3.55) 

where 
1

1
( ) [ ( ),..., ( )] a

a

NT
N

k k k  is the vector of hidden-layer activation functions with 

(.) tanh(.) , and (.) tanh(.)
i i

u , 1,...,i m  is the i-th output-layer activation function.  

The weight matrix between the neurons in the input and the hidden layers is defined as 

 

11 1(2 )

1 (2 )

(1) (1)

2(1)

(1) (1)

...

...

n

a

N N na a

a a
N n

a

a a

w w

W

w w

 

where a
N is number of the hidden-layer neurons and each element 

(1)

ija
w  denotes the weight from 

j-th input to i-th hidden neurons. Also, define the matrix of the weights between the neurons in the 

hidden and the output layers as 

11 1

1

(2) (2)

(2)

(2) (2)

...

...

Na

a

m mNa

a a

m N

a

a a

w w

W

w w

 

where 
(2)ˆ ( )
ija
w k  is the weight between j-th hidden layer and i-th output layer.  
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Note that the output of the actor NN satisfies the input bounds defined in (3.15). 

Critic NN 

A two-layer NN with one hidden layer is used as critic NN to approximate the value 

function. Fig. 3.2 shows the critic NN. The input for critic NN is ( )X k .  

The output of the critic NN is given as 

2
(2) (1) (2) (1)

1 1

ˆ ˆ ˆ( ( )) ( ) ( ( ) ( )) ( ) ( ( ) ( ))
c

i i ij

N n

c c c c c c j
i j

V X k W k W k X k w k w k X k   (3.56) 

where 
1

1
( ) [ ( ),..., ( )] c

c

NT
N

k k k is the vector of hidden layer activation functions, with 

(.) tanh(.)and the matrix of the weights between the neurons in the input and the hidden layers 

is defined as 

11 1(2 )

1 (2 )

(1) (1)

2(1)

(1) (1)

...

...

n

c

N N nc c

c c
N n

c

c c

w w

W

w w

, 

 

where c
N is number of the hidden layer neurons and each element 

(1)

ijc
w  denotes the weight from 

j-th input to i-th hidden neurons. Also, define the vector of the weights between the neurons in the 

hidden and the output layer as 

1 2

1(2) (2) (2) (2)[ , ,..., ] c

Nc

N

c c c c
W w w w  

where 
(2)ˆ ( )
ic
w k  is the weight between i-th hidden layer and output layer. 

3.5. Learning Rules for Actor and Critic NNs 

In this section the approximate gradient descent rules for updating the critic and actor 

networks are developed. The objective of tuning the critic weights is to minimize the Bellman 

equation error and the objective of tuning the actor weights is to minimize the approximate value 

function. In order to obviate the need for (X( 1))V k , which requires the system model to predict 
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( 1)X k , the previous values of the system state ( )X k and the state value ( ( ))V X k  are stored and 

used for updating the actor and critic NNs weights. 

Updating rule for the critic network  

The prediction error of the tracking Bellman equation is defined as 

 

                                            ˆ ˆ( ) ( ( )) ( ( 1))
c k
e k V X k U V X k                                        (3.57) 

where   

( )
1

1 0
( ) ( ) 2 ( )

u k
T T

k
U X k Q X k U s U Rds  

is the reinforcement signal or the temporal difference signal. It is desired to select the weights of 

the critic network to minimize the square Bellman error 

                                                          
21

( ) ( )
2c c

E k e k                                                              (3.58) 

The tuning laws for the critic weights are selected as the normalized approximation to gradient 

descent algorithm, that is,  

                                           (1) (1)
(1)

( )

ˆ ( )
( 1) ( )ˆ ˆ

ij ij

ij

c
c c c

c

E k
l
w k

w k w k                                      (3.59)

                                          (2) (2)
(2)

( )

ˆ ( )
( 1) ( )ˆ ˆ

i i

i

c
c c c

c

E k
l
w k

w k w k                                               (3.60) 

where 0
c
l  is learning rate. 

Using the chain rule one has 

                                      
(1) (1)

(2) 2

( )ˆ( ) ( ) ( ) ( )
ˆ( ) ( )ˆ ˆ( )( ) ( )

ˆ( ) ( )(1 ( )) ( )

i

iij ij

i i

cc c c

c cc c

c c c j

kE k E k e k V k

e k kV kw k w k

e k w k k X k

                             (3.61) 

                                     
(2) (2)

ˆ( ) ( ) ( )
( ) ( )

ˆˆ ˆ( )( ) ( ) i

i i

c c
c c

c c

E k E k V k
e k k

V kw k w k
                                         (3.62) 
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Updating rule for the actor network 

The actor (3.55) is updated to minimize the approximated value function. This is done by 

minimizing the error between a target control input which is obtained by minimizing the value 

function and the actual control input which is applied to the system. Let the current estimation of 

the value function be V̂ . Then, based on the policy update law (3.54), the target control input at 

time k  is 

                                              1
ˆ( ( 1))

( ) ( ) ( ( ))
2 ( 1)

T V X ku X U UR G X k
X k

                    (3.63) 

However, to obtain the value at time 1k , the states are required to be predicted by using a 

model network. But, we do not use a model network to predict the future value. Rather, we store 

the previous value of the system state and the state value and try to minimize the error between 

the target control input and the actual control input given current actor and critic estimate weights 

while the previous stored state ( 1)X k  is used as the input to the actor and critic.  That is to 

minimize 

                                                   ˆ( ) ( ( 1)) ( , 1)
a
e k u X k u k k                                          (3.64) 

 

where 
(1) (2)

,ˆ ˆ( , 1) ( ( 1), ( ) ( ))
a a

u k k u X k W k W k is the output of the actor NN at time ( 1)k  if the 

current NN weights are used. It is desired to select the weights of the actor network to minimize 

the square actor NN error 

                                                                     
21

( ) ( )
2a a

E k e k                                                   (3.65) 

The tuning laws for the actor weights are selected as the normalized gradient descent 

algorithm, that is,  

                                                   (1) (1)

(1)

( )
ˆ ˆ( 1) ( )

ˆ ( )lj ilj

lj

a
a a a

a

E k
w k w k l

w k
                                         (3.66) 
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                                                   (2) (2)

(2)

( )
ˆ ˆ( 1) ( )

ˆ ( )ij ij

ij

a
a a a

a

E k
w k w k l

w k
                                         (3.67) 

where 0
a
l  is learning rate. The chain rule for the weights between the input layer and the 

hidden layer yields  

2 (1) (2)

(1) (1) 2
1

2
(2) 2

1 1

( ) ( ) ( ) (̂ , 1) 1
( ) [ (1 ( ( 1), ( ), ( )))

ˆ( ) ( , 1)ˆ ˆ( ) ( )

ˆ ( )(1 ( ) ) ] ( 1)

ij ij

a

li l

m
a a a

a l l a a
laa a l

N n

a a j
i j

E k E k e k u k k
e k u X k W k W k

e k u k kw k w k u

w k k X k

                         

                                                                                                                                  
(3.68) 

 

and for the weights between the hidden layers and the output layers is 

                    
(2) (2)

2 (1) (2)

2

( ) ( ) ( ) (̂ , 1)
( )

ˆ( ) ( , 1)ˆ ˆ( ) ( )

1
(1 ( ( 1), ( ), ( )) ( )

ij ij

a a a
a

aa a

i i a a j

i

E k E k e k u k k
e k

e k u k kw k w k

u X k W k W k k
u

                                  (3.69) 

Note that the stability proof and convergence of the actor-critic network during learning 

are provided in [43], [94]. 

Fig 3.3 depicts the schematic of the proposed update law for the actor-critic structure. As 

can be seen from this figure, the previous values of the state of the system and the state of the 

system are required to be stored and used in updating the actor and critic NNs weights. 

 
Fig 3.1. The actor network 
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Fig 3.2. The critic network 

 

 

 

Fig 3.3. Schematic of the proposed actor and critic learning 

 
Remark 3.9. Note that in the proposed algorithm both the actor and critic NNs are updated 

simultaneously. In fact, the control input given by (3.55) is applied to system continually while 

converging to the optimal solution. Since the weight update laws for actor and critic are coupled, 
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the critic NN is also required to be updated continually and simultaneously with the control input. 

This simultaneous update rule for actor and critic makes convergence guarantees more difficult 

to prove. 

Remark 3.10. Note that for solving the optimal tracking problem using reinforcement learning, the 

control input should be persistently exciting (PE). This ensures sufficient exploration of the state 

of the systems. An exploratory signal consisting of sinusoids of varying frequencies can be added 

to the control input to insure PE qualitatively. 

Remark 3.10. A challenge of the proposed RL methods based on value function approximation 

is to find an accurate structure for the value function. If the structure of the network for 

approximator (eg., the number of neural network layers or neurons) is not selected appropriately, 

the learning algorithm may never converge and this can consequently lead to instability of  the 

feedback control systems. Due to the difficulty to find an appropriate structure for the value 

function approximators for the high-dimensional problems, these methods have typically been 

restricted to simple demonstration problems. 

3.6. Simulation Results 

In this section, a simulation example is provided to illustrate the design procedures and 

verify the effectiveness of the proposed scheme. 

A nonlinear system dynamics is considered as 

                                  
1 2

2 1 2 2

( 1) 0.8 ( )

( 1) 0.45 ( ) sin( ( )) 0.2 ( ) ( )

x k x k

x k x k x k x k u k
                       (3.70) 

It is assumed that the control input is bounded by ( ) 0.4u k  . 

 The sinusoid reference trajectory dynamics is generated by the command generator 

given by 

                                                                    1 1

2 2

( 1) ( )

( 1) ( )

r k r k

r k r k

  

  
                                         (3.71) 
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The performance index is consider as (3.16) with 20Q I , 1R   and 0.3  that I is the 

identity matrix with appropriate dimension.   

The proposed actor-critic algorithm is applied to the system (3.70). The weights of neural 

network (NN) for both actor and critic networks are initialized randomly between -1 and 1. A small 

probing noise is added to the control input to excite the system during learning. 

The critic is a two-layer NN with 5 activation functions in the hidden layer and one 

activation function in the output layer. The type of activation functions in the hidden layer is tanh(.) 

and in the output layer is the identity function.  

At the end of learning, the weight matrix between input layer and hidden layer converges 

to   

                                              
(1)

0.9910 1.6093 5.5495 3.8788

1.1450 3.6761 2.4605 1.9193

3.0482 1.5314 1.0640 0.2953

2.1615 1.7524 2.9390 3.2034

0.8530 5.7600 1.4361 1.8192

cW

 
 
 
   
 
 
    

               (3.72) 

and the weight vector between the hidden layer and output layer converges to    

                                             (2) 2.7743 1.3367 5.2477 1.1616 0.0228cW                   (3.73) 

Fig. 3.4. shows that the convergence of the weight vector between the hidden layer and 

the output layer in the critic network. 

The actor is also a two-layer NN with 5 activation functions in the hidden layer and one 

tanh(.)u  activation function in the output layer that u  is the bound for control input. The type of 

the activation functions in the hidden layer is tanh(.).  

At the end of learning, the weight matrix between input layer and hidden layer converges 

to  
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(1)

3.0711 6.5380 1.8147 0.9523

2.9429 3.7955 5.5219 1.2470

1.4521 1.9017 2.1629 0.8028

2.2684 0.2858 3.8524 4.7390

1.6565 2.6921 3.8270 4.9242

aW

 
 

 
   
 
 
 
 

               (3.74) 

and the weight vector between the hidden layer and output layer converges to   

                                            (2) 4.9707 3.5331 3.5613 7.4699 2.1780aW                  (3.75) 

 
Fig. 3.5. shows that the convergence of the weight vector between the hidden layer and 

the output layer in the actor network. Fig. 3.6. and Fig. 3.7. show that the states of the system 

( )x k track the reference trajectory ( )r k and guarantee the stability for the proposed method after 

the learning is finished and the probing noise is removed. This confirms that our proposed method 

successfully finds an optimal tracking controller for system (3.70). 

 

Fig 3.4. The weights of output layer of critic network 
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Fig. 3.5. The weights of output layer of actor network 

 
Fig. 3.6. Evaluation of 1x  and 1r  during the learning process 
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Fig. 3.7. Evaluation of 2x   and 2r  during the learning process  

 
 

3.7. Conclusion 

A new formulation of the nonlinear DT tracking control problem in the presence of input 

constraints was presented in this chapter. A novel discounted performance function was 

presented and it was shown that the minimization of this performance function gives both 

feedback and feedforward parts of the bounded optimal control input simultaneously. An actor-

critic structure was used to learn the solution of the tracking problem online without requiring 

knowledge of the system drift dynamics. The actor and critic NNs were updated simultaneously 

and used previous stored state of the system and value function, instead of their current values, 

to avoid the requirement of the system model dynamics. 
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Chapter 4 

H  CONTROL OF LINEAR DISCRETE-TIME SYSTEMS: OFF-POLICY REINFORECMENT 

LEARNING 

4.1. Introduction 

The H
 control is a well-known robust control approach which is used to attenuate the 

effects of disturbances on the performance of dynamical systems [75]-[77]. It has a strong 

connection to the zero-sum game problem [78], where the controller and the disturbance are 

considered as minimizing and maximizing players, respectively. Finding the solution to the zero-

sum game problem leads to solving the game algebraic Riccati equation (GARE) for the linear 

systems. Numerical and iterative methods have been widely used to solve the GARE. However, 

they mostly require complete knowledge of the system dynamics. 

 Q-learning algorithm has also been used to find the solution to the optimal control 

problem for systems with disturbances by solving the GARE (Al-Tamimi, Lewis, & Abu-Khalaf, 

2007). Although elegant, there are two main problems with this algorithm. First, Q-learning 

requires the disturbance input to be updated in a prescribed manner. However, the disturbance 

input cannot be updated in a prescribed manner in more real-world applications. Second, Q-

learning algorithm does not cancel out the effects of probing noise (which is used to excite the 

system) in the Bellman equation while evaluating the value function. This may result in bias and 

can affect the convergence of the algorithm.  

To avoid these mentioned problems, in this paper, an off-policy RL algorithm [8] is 

developed. In off-policy methods, two separate policies are used. The policy used to generate 

data, called the behavior policy, may in fact be unrelated to the policy that is evaluated and 

improved, called the estimation policy or target policy. Off-policy RL is  presented for solving the 
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optimal control problem of continuous-time (CT) systems with partially-unknown or completely-

unknown dynamics [64], [94]-[100].. 

To our knowledge, off-policy RL for DT systems has not been developed yet. Although 

Q-learning is originally off-policy, what is called Q-learning in control society is actually SARSA 

[8], which is on-policy. Developing off-policy RL algorithms for DT systems is not straightforward 

because of the appearance of both system matrix A and control matrix B in the policy update 

equation. 

In this chapter, a model-free solution to the H
 control of linear discrete-time systems is 

presented. The proposed approach employs off-policy RL to solve the game algebraic Riccati 

equation online using the measured data along the system trajectories. Like existing model-free 

RL algorithms, no knowledge of the system dynamics is required. However, the proposed method 

has two main advantages. First, the disturbance input does not need to be adjusted in a specific 

manner. This makes it more practical as the disturbance cannot be specified in most real-world 

applications. Second, there is no bias as a result of adding a probing noise to the control input to 

maintain persistence of excitation (PE) condition. Consequently, the convergence of the proposed 

algorithm is not affected by probing noise.  

The chapter is organized as follows.  In Section 4.2, H
 control problem, and the effect 

of adding probing noise are given. The proposed off-policy RL algorithm is presented in Section 

4.3. The effectiveness of this method is shown by performing an H
control autopilot design for 

an F-16 aircraft in Section 4.4. 

4.2. Background and Problem Formulation   

4.2.1. Discrete-time H
 control problem 
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Consider the following linear discrete-time system 

                                                        1k k k kx A x Bu D w                                                         (4.1) 

where n

kx   is the system state, 1m

ku   is the control input, and 2m

kw   is the external 

disturbance input. 

Definition 4.1. The system (1) has 
2L  -gain less than or equal to   if  

                                                         T T 2 T

0 0

 

 

    k k k k k k

k k

x Q x u Ru w w                                     (4.2) 

for all 2[0, ) kw L , where Q  and R are symmetric positive definite matrices, and 0   is a 

prescribed constant discturbance attenuation level. 

Note that functions in 2[0, )L represent the signals having finite energy over infinite 

interval [0, ) . That is, 

T

0





  k k

k

w w . 

The H
control is to develop a control input such that the system (4.1) with 0kw   is 

asymptotically stable and it satisfies the disturbance attenuation condition (4.2). Based on (4.2), 

define the infinite horizon performance function as 

                                      T T 2 T( , , )k k k i i i i i i i

i k i k

J x u w U x Q x u Ru w w
 

 

                                       (4.3) 

Moreover, using (4.3), for an admissible control policy ku and a disturbance policy kw , the value 

function is defined as 

                                              
T T 2 T( ) [ ]k i i i i i i

i k

V x x Q x u Ru w w




                                              (4.4) 

Assumption 4.1. The pair( , )A B is stabilizable and the pair ( , )A Q is observable. 
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4.2.2. Formulation of the H
control as a zero-sum game 

The H
 control problem can be expressed as a two-player zero-sum differential game in 

which the control policy player ku seeks to minimize the value function, while the disturbance policy 

player 
kw  desires to maximize it. The goal is to find the feedback saddle point ( , )k ku w   such that 

                        T T 2 T( ) min max ( , , ) min max
k kk k

k k k k i i i i i i
u uw w

i k

V x J x u w x Q x u Ru w w






                      (4.5) 

By using the value function (4.4), one has 

                          T T 2 T T T 2 T

1

( )k k k k k k k i i i i i i

i k

V x x Q x u Ru w w x Q x u Ru w w 


 

                          (4.6) 

which yields the Bellman equation  

                                                 T T 2 T

1( ) ( )k k k k k k k kV x x Q x u Ru w w V x                                    (4.7) 

It is known that for the linear system (4.1) with the quadratic value function (4.4), the value 

function is given as 

                                                                  T( )k k kV x x P x                                                        (4.8) 

By using (4.8) in (4.7), the Bellman equation (4.7) becomes 

                                                   T T T 2 T T

1 1k k k k k k k k k kx P x x Q x u Ru w w x P x                              (4.9)                                      

The Hamiltonian function is defined as  

                                T T 2 T

1( , , ) ( ) ( )k k k k k k k k k k kH x u w x Q x u Ru w w V x V x                               (4.10) 

The optimal control policy 

ku  and the worst-case disturbance 

kw   should satisfy 

( , , ) 0k k k kH x u w u    and ( , , ) 0k k k kH x u w w   , respectively. Therefore, one has 

                                                                     
1

  k ku K x                                                         (4.11) 

                                                                     
2

  k kw K x                                                         (4.12) 

where 

          T T 2 T 1 T 1 T T 2 T 1 T

1 ( ( ) ) ( ( ) )K R B PB B PD I D PD D PB B PA B PD I D PD D PA                 (4.13) 
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           T 2 T T 1 T 1 T T T 1 T

2 ( ( ) ) ( ( ) )K D PD I D PB R B PB B PD D PA D PB R B PB B PA                   (4.14) 

and P satisfies the game algebraic Riccati equation  (GARE)  

               

1
T T T

T T T

T T 2 T

R B PB B PD B PA
P A PA Q A PB A PD

D PB D PD I D PA



   
            

                           (4.15) 

It is shown in [78], on one hand, that (4.13)-(4.15) solve the zero-sum game problem defined in 

(4.5), and, on the other hand, that solving zero-sum game problem defined in (4.5) is equivalent 

to finding a control policy that satisfies the disturbance attenuation condition (4.2). Therefore, the 

solution of (4.13)-(4.15) guarantees that the disturbance attenuation condition (4.2) is satisfied. 

Remark 4.1. It is shown in [75] that there exists a  such that for , the H
 control 

problem has no solution. In [101], an explicit expression for the infimum of  , i.e.,    ,  is found. It 

is shown that if 0    , the GARE (4.15) has a unique positive semi-definite solution, the 

closed-loop system is asymptotically stable, and the disturbance attenuation condition is satisfied. 

4.2.3. Online H
 PI algorithm 

Various algorithms have been developed to solve the GARE (4.15). Policy iteration (PI) 

algorithm is one of the most used algorithms for solving the GARE (4.15) online which is as 

follows. 

Algorithm 4.1. Online PI algorithm  

Initialization: Set the iteration number 0j   and start with a stabilizing control policy 0

ku  and 

disturbance 0

kw . 

1. Solve for 
1jP 
 using the Bellman equation 

                                   T 1 T T 2 T T 1

1 1( ) ( )j j j j j j

k k k k k k k k k kx P x x Q x u Ru w w x P x 

                            (4.16) 

2. Update the control and disturbance gains as 

                      
1 1 T 1 T 1 2 T 1 1 T 1 1

1

T 1 T 1 2 T 1 1 T 1

( ( ) )

( ( ) )

j j j j j j

k k

j j j j

k

u K x R B P B B P D I D P D D P B

B P A B P D I D P D D P A x





       

    

      

  
                 (4.17) 
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1 1 T 1 2 T 1 T 1 1 T 1 1

2

T 1 T 1 T 1 1 T 1

( ( ) )

( ( ) )

j j j j j j

k k

j j j j

k

w K x D P D I D P B R B P B B P D

D P A D P B R B P B B P A x

       

    

      

  
                (4.18)                                                      

3. Stop if  

                                                    
1 1

1 1 2 2andj j j jK K K K                                          (4.19) 

for a small positive value of  , otherwise set 1j j   and go to 1.   

To implement Algorithm 4.1, the Bellman equation (4.16) can be written as 

                    T T T T 1 T T 2 T

1 1( ) ( ) ( ) ( )j j j j j

k k k k k k k k k kx x x x vec P x Q x u Ru w w

                               (4.20) 

Here, (4.20) is a scalar equation and 1j n nP    is a symmetric matrix with ( 1) 2 n n  

independent elements. Therefore, at least ( 1) 2 n n  data sets are required to solve (4.20) using 

least squares (LS). To solve (4.20), one has 1( )jvec P    where 
1

T T T

1[ ] q   with

T T T T

1 1        i k i k i k i k ix x x x , 
1

T T T

1[ ]q    with

T T 2 T

1 1 1 1 1 1( ) ( )             j j j j

i k i k i k i k i k i k ix Q x u Ru w w   and 
1q  is the number of unknown elements of 

1jP 
.  Matrix    must have independent rows.  

The requirement of independent rows of these matrices is equivalent to the following 

condition.  

Definition 4.2. A q-vector sequence 
T

1
   qh h h is said to be persistently exciting over an 

interval [ 1, ]k k l   if for some constant 0    

                                                                        
T

1



 


k l

i i

i k

h h I                                                   (4.21) 

Note that if l q  , (4.21) cannot be satisfied.   

To satisfy the persistence of excitation (PE) condition (4.21) in Algorithm 4.1, probing 

noise is added to the system dynamics (4.1). To this end, the actual control input which is applied 

to the system to collect data is considered as 
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                                                                             ˆ  j j

k k ku u e                                                 (4.22) 

with 
ke  being a probing noise or dither and j

ku  given by (4.17). The following Lemma shows that 

probing noise may lead to incorrect solutions when solving the Bellman equation. 

Lemma 4.1. Effect of adding probing noise on PI Algorithm. 

Let 
1jP  be the solution to (4.16) with 0ke in (4.22) and 

1ˆ jP  be the solution to (4.16) with 

0ke  in (4.22). Then, 
1 1ˆj jP P .     

Proof. Let (4.16) be the undithered Bellman equation with 0ke in (4.22), i.e. ˆ j j

k ku u . On the 

other hand, using (4.22) with 0ke  in (4.16), the dithered Bellman equation yields 

                                     

T 1 T T 2 T T 1

1 1

T T 2 T

T 1

ˆ ˆˆ ˆ ˆ ˆ( ) ( )

( ) ( ) ( )

ˆ( ) ( )

j j j j j j

k k k k k k k k k k

j j j j

k k k k k k k k

j j j j j

k k k k k k k k

x P x x Q x u Ru w w x P x

x Q x u e R u e w w

Ax Bu B e D w P Ax Bu B e D w





 

 



    

    

     

                       (4.23)                                                                                          

By considering (4.1) in (4.23), one has  

                                       

T 1 T T 2 T T 1

1 1

T T 1 T T 1

1

ˆ ˆ( ) ( )

ˆ ˆ( ) 2 2

j j j j j j

k k k k k k k k k k

j j T j

k k k k k k

x P x x Q x u Ru w w x P x

e R B P B e e Ru e B P x

 

 

 



   

  
                  (4.24) 

which is the undithered Bellman equation (4.16) plus three terms depending on probing noise. 

Then,  
1jP 
 is not the same as 

1ˆ jP 
.       

Remark 4.2. It is seen that on-policy PI Algorithm 4.1 actually solves (4.24) online and hence 

obtains an incorrect solution 
1ˆ jP   that is not the desired solution

1jP 
 to the Bellman equation 

(4.16). Since 
1 1ˆ j jP P , this result shows that the control update (4.17)  may not be correct if 

probing noise is added to Algorithm 4.1. 

Remark 4.3. The online PI Algorithm 4.1 needs complete knowledge of the system dynamics to 

obtain the optimal control input and the worst-case disturbance input. In [55], a Q-learning 

algorithm was presented to solve the H
 control problem online without any knowledge of the 

system dynamics.  
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Remark 4.4. In Algorithm 4.1, the disturbance input must be updated in the prescribed optimal 

fashion (4.18) and applied to system dynamics to collect data. However, in practical applications, 

the disturbance is independent and cannot be specified. This issue is fixed in Section 4.3. 

Remark 4.5. Algorithm 4.1 is the standard method for solving the discrete-time H
 optimal control 

problem online using RL. Note that if disturbance 0kw  , for example, Algorithm 4.1 is the basis 

for the Heuristic Dynamic Programming (HDP) algorithm in Approximate Dynamic Programming 

(ADP). Lemma 4.1 shows that all standard approaches based on Algorithm 4.1 are vulnerable to 

bias caused by probing noise.  

4.3. Off-policy RL algorithm for solving zero-sum game problem 

In this section, an off-policy RL algorithm is presented to solve the zero-sum game 

problem arising in the H
control. It is shown furture that this off-policy algorithm does not suffer 

bias if probing noise is used. 

4.3.1. Off-policy RL algorithm  

To derive off-policy RL algorithm, the original system (4.1) is rewritten as  

                                                 
1 1 2( ) ( )j j

k k k k k k kx A x B K x u D K x w                                     (4.25) 

where 
1 2

j j

kA A BK DK    .  

In (4.25), the target policies are 
1

j j

k ku K x   and 
2

j j

k kw K x  . They are the policies that 

are being learned and updated by the PI algorithm. By contrast, ku   and kw  are the behavior 

policies that are actually applied to the system dynamics (4.1) to generate data for learning.  

For fixed policies j

ku  and j

kw ,  the Bellman equation (4.7) yields 

                 1 1 T T 2 T

1( , , ) ( , , ) ( ) ( )j j j j j j

k k k k k k k k k k k kV x u w V x u w x Q x u Ru w w 

                          (4.26)   

The Taylor expansion of the value function ( )kV x  at point 1kx   is  

                  
T T 2

1 1 1 1 1 1

1
( ) ( ) ( ) ( )( ) ( ) ( )( )

2
k k k k k k k k k kV x V x V x x x x x V x x x                            (4.27) 
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By using (4.8) and (4.27), the left-hand side of (4.26)  becomes 

                           1 1 T 1 T 1

1 1 1 1 1( ) ( ) 2 ( ) ( ) ( )j j j j

k k k k k k k k kV x V x x P x x x x P x x   

                        (4.28) 

By substituting (4.25) in (4.28) and performing some manipulations, one has 

                                          

1 1 T T 1 T 1

1

T T 1 T T 1

1 1 1

T T 1 T T 1

2 1 2

( ) ( )

( ) ( )

( ) ( )

j j j j

k k k k k k k k

j j j j

k k k k k k k

j j j j

k k k k k k k

V x V x x A P A x x P x

u K x B P x u K x B P A x

K x w D P x K x w D P A x

   



 



 



   

   

   

                         (4.29) 

On the other hand, the Bellman equation (4.9) can be written as the Lyapunov equation   

                                          1 T 2 T T 1

1 1 2 2( ) - ( ) 0j j j j j j

k kQ P K R K K K A P A                               (4.30) 

Using (4.8) and (4.30) in (4.29) yields the following off-policy H
 Bellman equation (4.31). We 

now show that this equation can be iteratively solved to find the solution to the GARE (4.15) which 

gives the following off-policy RL algorithm.  

Algorithm 4.2. Model-based off-policy RL  

Initialization: Set the iteration number 0j    and start with a stabilizing control policy ku . 

1.  Solve the following off-policy Bellman equation for  1 1 1

1 2( , , )j j jP K K    simultaneously 

                               

T 1 T 1 T T T 2 T T

1 1 1 1 2 2

T T 1 T T 1

1 1 1

T T 1 T T 1

2 1 2

( ) ( )

( ) ( )

( ) ( )

j j j j j j

k k k k k k k k k k

j j j j

k k k k k k k

j j j j

k k k k k k k

x P x x P x x Qx x K RK x x K K x

u K x B P x u K x B P A x

K x w D P x K x w D P A x

 

 

 



 



   

   

   

              (4.31) 

2.  Stop if  

                                                         
1 1

1 1 2 2andj j j jK K K K                                     (4.32) 

for a small positive value of , otherwise set 1j j   and go to 1.  

Note that (4.31) does not explicitly depend on 1

1

jK   and 1

2

jK  . Also, the complete 

knowledge of the system dynamics is required for solving (4.31). In Subsection 4.3.2, it is shown 

in Algorithm 4.3 how to find 1 1 1

1 2( , , )j j jP K K    simultaneously by (4.31) without requiring any 

knowledge of the system dynamics.  
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The function of the on-policy Algorithm 4.1 is to solve the GARE (4.15) online in real-

time. The next results show that Algorithm 4.2 also solves the GARE (4.15).  

Theorem 4.1. On-policy Algorithm 4.1 and off-policy Algorithm 4.2 are equivalent in the sense 

that (4.16) and (4.31) are equivalent. 

Proof. Substituting 
1 2

j j

kA A BK DK    and system dynamics (4.1) in the off-policy Bellman 

equation (4.31), yields 

T 1 T 1 T T T 2 T T

1 1 2 2

T T 1 T T 1

1 1 1 2

T T 1 T T 1

2 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (

j j j j j j

k k k k k k k k k k k k k k

j j j j j j

k k k k k k k k

j j j j

k k k k k k k

x P x Ax Bu Dw P Ax Bu Dw x Q x x K R K x x K K x

u K x B P Ax Bu Dw u K x B P A BK DK x

w K x D P Ax Bu Dw w K x D P A BK

 

 

 

       

       

       2 )j j

kDK x

     (4.33)                                                                                                                                              

By eliminating the common terms in the left hand and right hand side of (4.33), one has 

                        

T 1 T T 1 T T T T 2 T T

1 1 2 2

T T T 1 T T T 1

1 1 1 2

T T T 1 T T T 1

2 2 1

T T T 1 T T T 1

1 2 2

( ) ( )

( ) ( )

2 ( ) ( )

2 ( ) ( )

j j j j j j

k k k k k k k k k k

j j j j j j

k k k k

j j j j j

k k k k

j j j j j

k k k k

x P x x A P A x x Q x x K R K x x K K x

x K B P B K x x K B P D K x

x K D P A x x K D P B K x

x K B P A x x K D P D K x

 

 

 

 

   

 

 

 

               (4.34) 

Eq. (4.34) can be rewritten as  

                                         

T T T 2 T T T 1

1 1 2 2

T T 1

1 2 1 2

( ) ( )

( ) ( ) 0

j j j j j

k k k k k k k k

j j j j j

k k

x Q x x K R K x x K K x x P x

x A B K D K P A B K D K x

 



  

     
                        (4.35)   

which is equal to (4.16). Therefore, the on-policy Bellman equation (4.16) in Algorithm 4.1 and 

the off-policy Bellman equation (4.31) in Algorithm 4.2 are equivalent and the proof is completed.  

  

Remark 4.6. In off-policy RL Algorithm 4.2, behavior policies applied to the system do not need 

to be the same as target policies which are improved and updated. In fact, in the proposed 

Algorithm 4.2, the policies 
ku  and 

kw are behavior policies applied to the system dynamics (4.1) 

to collect  data, while  the policies 
1

j j

k ku K x  and 
2

j j

k kw K x   are the target policies and updated 

using measured data generated from the policies ku  and kw . In Algorithm (4.2), ku  is assumed to 

be a stabilizing exploratory control policy and 
kw  is the xternal disturbance which is applied to 
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the system. Therefore, the actual disturbance
kw applied to the system is not required to be 

updated in a prescribed manner according to
2

j j

k kw K x  . This makes the proposed algorithm 

more practical than standard methods based on Algorithm 4.1.    

Theorem 4.2. Convergence of the off-policy RL Algorithm 4.2. 

The off-policy RL Algorithm 4.2 converges to the optimal control solution given by (4.13) and 

(4.14) where the matrix P satisfies the GARE (4.15). 

Proof. The convergence is shown in two steps: 

Step 1. In Theorem 4.1, it is shown that the off-policy Algorithm 4.2 is equivalent to Algorithm 4.1 

at every iteration j .   

Step  2. Substituting updated policies (4.17) and (4.18) into (4.35) yields 

               

1
T T T

1 T 1 T T

T T 2 T

j j j

j j j j

j j j

R B P B B P D B P A
P A P A Q A P B A P D

D P B D P D I D P A



 
   

            
           (4.36) 

By using the result of Theorem 4.1, it can be concluded that iterating on (4.31) is equivalent to 

iterating on (4.36). In [102], it is shown that iterating on (4.36) converges to the solution of GARE 

(4.15). Therefore, Algorithm 4.2 converges to the optimal solution.   

To satisfy the PE condition, probing noise must be added to solve (4.16) in Algorithm 4.1 

and (4.31) in Algorithm 4.2. Lemma 4.1 shows that this may result in incorrect solutions in 

Algorithm 4.1. The next result shows that adding probing noise does not lead to incorrect solutions 

while solving the Bellman equation (4.31) in the proposed Algorithm 4.2. 

Theorem 4.3. Effect of adding probing noise on off-policy RL Algorithm 4.2. 

Let 
1ˆ jP  be the solution to (4.31) with ˆ  k k ku u e  where 0

k
e  is the probing noise and 

1jP  

be the solution to (4.31) with k ku u . Then 
1 1ˆ j jP P . 

Proof.  
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1. The off-policy Bellman equation (4.31) for control input ˆ
ku  is  

T 1 T 1

1 2 1 2

T T T 2 T T T T 1

1 1 2 2 1 1 2

T T 1

1 2

ˆ ˆˆ ˆ( ( ) ( )) ( ( ) ( ))

ˆˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆˆ( ) (

j j j j j j

k k k k k k k k k k k k k k

j j j j j j j j

k k k k k k k k k k k k k k

j j j

k k k k

x P x A x B K x u D K x w P A x B K x u D K x w

x Q x x K RK x x K K x u K x B P A x B K x u D K x w

u K x B P A x K



 





          

       

   T T 1 T T 1

2

1 2

ˆ ˆ) ( )

ˆ( ( ) ( ))

j j j

k k k k k k

j j

k k k k k k

x w D P A x K x w D P

A x B K x u D K x w

    

   

  

                                                                                                                                               (4.37) 

Substituting ˆ  k k ku u e  into (4.37) yields 

                 

T 1 T 1

1 2

1 2

T T T 2 T T T

1 1 2 2 1

T 1

1 2

T T

1

ˆ ˆ( ( ) ( ))

( ( ) ( ))

( ) ( ) ( )

ˆ ( ( ) ( ))

ˆ( )

j j j j

k k k k k k k k k

j j

k k k k k k k

j j j j j

k k k k k k k k k

j j j

k k k k k k k

j j

k k k

x P x A x B K x u e D K x w P

A x B K x u e D K x w

x Q x x K RK x x K K x u e K x

B P A x B K x u e D K x w

u e K x B P



 



     

      

    

     

   1 T T 1

2

T T 1

2 1 2

ˆ( )

ˆ( ) ( ( ) ( ))

j j

k k k k k k

j j j j

k k k k k k k k k

A x K x w D P A x

K x w D P A x B K x u e D K x w

 



 

      

                              (4.38) 

Substituting (4.25) into (4.38) yields 

    

T 1 T 1 T T T 2 T T

1 1 1 1 2 2

T T 1

1 1

T T 1 T T 1

1 2

T T 1

2 1

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ( ) ( )

j j j j j j

k k k k k k k k k k k k

j j

k k k k k

j j j j

k k k k k k k k k

j j

k k k k

x P x x B e P x B e x Q x x K RK x x K K x

u e K x B P x B e

u e K x B P A x K x w D P A x

K x w D P x B e

 

 





 





     

   

    

  

              (4.39) 

Expanding terms in both sides of (4.39) yields 

T 1 T 1 T 1 T T 1 T T T 2 T T

1 1 1 1 1 2 2

T T 1 T T 1 T 1 T T 1 T T 1

1 1 1 1 1

T T

ˆ ˆ ˆ ˆ2 ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ

j j j j j j j j

k k k k k k k k k k k k k k

j j j j j j j j

k k k k k k k k k k k k k k

j

k

x P x x P x x P B e e B P B e x Qx x K RK x x K K x

u K x B P x u K x B P B e x P B e e B P B e u K x B P A x

e B P

   

  

    

 



     

       

 1 T T 1 T T 1 T T 1

2 2 1 2
ˆ ˆ ˆ( ) ( ) ( )j j j j j j

k k k k k k k k k k k kA x K x w D P A x K x w D P x K x w D P B e  

     

     

                                                                                                                                               (4.40) 

Eliminating the common terms and considering  

                    T 1 T T 1 T T 1 T T 1

1 1 2
ˆ ˆ ˆ ˆ( ) ( )j j j j j j

k k k k k k k k k k kx P B e x A P Be u K x B P B e K x w D P B e   

             4.41) 

in (4.40) yield 

                        

T 1 T 1 T T T 2 T T

1 1 1 1 2 2

T T 1 T T 1

1 1 1

T T 1 T T 1

2 1 2

ˆ ˆ ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

j j j j j j

k k k k k k k k k k

j j j j

k k k k k k k

j j j j

k k k k k k k

x P x x P x x Qx x K RK x x K K x

u K x B P x u K x B P A x

K x w D P x K x w D P A x

 

 

 



 



   

   

   

                       (4.42)                                                                                          
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1ˆ jP 
 is obtained by solving (4.42). 

2. Substituting 
k ku u  into the off-policy Bellman equation (4.31) yields 

                          

T 1 T 1 T T T 2 T T

1 1 1 1 2 2

T T 1 T T 1

1 1 1

T T 1 T T 1

2 1 2

( ) ( )

( ) ( )

( ) ( )

j j j j j j

k k k k k k k k k k

j j j j

k k k k k k k

j j j j

k k k k k k k

x P x x P x x Qx x K RK x x K K x

u K x B P x u K x B P A x

K x w D P x K x w D P A x

 

 

 



 



   

   

   

                   (4.43) 

1jP 
is obtained by solving (4.43).  

By comparing (4.42) and (4.43), it can be concluded that is the same as 
1jP 
.  Therefore, 

the off-policy Bellman equation (4.31) is insensitive to probing noise.       

Remark 4.7. It was discussed in Section 4.2 that Algorithm 4.1 may result in a bias. This is 

because the control policy 
1

ˆ j j

k k ku K x e    is applied to the system dynamics to generate data 

while the value function is estimated for the control policy 
1

j j

k ku K x  . Therefore, the measured 

state and input data used for learning are generated by a slightly different policy than the one 

under evaluation (while they are supposed to  be the same in on-policy), which may cause a bias. 

On the other hand,  Algorithm 4.2 is an off-policy RL algorithm, which allows us to separate the 

behavior policies ( ku , kw ) and target policies (
1

j j

k ku K x  , 
2

j j

k kw K x  ). Since the behavior policy 

is an arbitrary policy and unrelated to the estimated policy, as shown in Theorem 4.3, probing 

noise does not affect the estimation of the value for the policy under evaluation. In fact, the probing 

noise added to the behavior policy is explicitly incorporated when solving the Bellman equation 

which leads to eliminating the bias.  

4.3.2. Obtaining the optimal control input and the disturbance without system dynamics 

Algorithm 4.2 requires the system dynamics to solve (4.31).  In this section, the solution 

of Bellman equation (4.31) for 1 1 1

1 2( , , )j j jP K K    is presented in Algorithm 4.3. This solution does 

not require any knowledge of the system dynamics. 

Based on Kronecker product, one has 
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                                                           T T T( ) ( )a W b b a vec W                                               (4.44) 

with vectors ,va vba b  , and matrix va vbW  . Then, by using (4.1), (4.44), and 

1 2

j j

kA A BK DK   , the off-policy Bellman equation (4.31) can be rewritten as  

T T 1 T T 1 T T T 1

1 1 1

T T T 1 T T T 1

1 1 2

T T T 1 T

1 2 2 1

( ) ( ) ( ) ( ) 2( ( ) ) ( )

(( ) ( ) ) ( ) 2( ( ) ) ( )

(( ) ( ) ) ( ) (( ) (

j j j j

k k k k k k k

j j j j j

k k k k k k k

j j j j j

k k k k k k k

x x vec P x x vec P x u K x vec B P A

K x u u K x vec B P B x w K x vec D P A

K x u w K x vec D P B w K x u K

  

 

 



     

      

        T T 1

T T T 1 T T T 2 T T

2 2 1 1 2 2

) ) ( )

(( ) ( ) ) ( ) ( ) ( )

j

k

j j j j j j j

k k k k k k k k k k

x vec B P D

w K x w K x vec D P D x Qx x K RK x x K K x



      

        (4.45)                                                                                                                                                     

Using LS method, the unique solution 1 1 1

1 2( , , )j j jP K K    can be obtained simultaneously 

and without any knowledge of the system dynamics. The Bellman equation (4.45) has 

2 2 2

1 2 1 2 1 22 ( )n m m m m n m m      unknown parameters. Therefore, at least 

2 2 2

1 2 1 2 1 22 ( )n m m m m n m m      data sets are required before (4.45) can be solved using LS at 

each iteration. For the positive integer 2 2 2

1 2 1 2 1 22 ( )s n m m m m n m m      , one defines 

                                

T T T 2 T T

1 1 2 2

T T T 2 T T

1 1 1 1 1 1 1 2 2 1

T T T 2 T T

1 1 1 1 1 1 1 2 2 1

( ) - ( )

( ) - ( )

( ) - ( )

j j j j

k k k k k k

j j j j

j k k k k k k

j j j j

k s k s k s k s k s k s

x Q x x K RK x x K K x

x Q x x K RK x x K K x

x Q x x K RK x x K K x








     

           

 
 

 
 
 

  

                    (4.46) 

                               

( )1 ( )1 ( )1 ( )1 ( )1 ( )1 ( )1

( )2 ( )2 ( )2 ( )2 ( )2 ( )2 ( )2

( ) ( ) ( ) ( ) ( ) ( ) ( )

xx xu uu xw uw wu ww

xx xu uu xw uw wu wwj

xx s xu s uu s xw s uw s wu s ww s



       
 
      
 
 
 
        

                    (4.47) 

                                                                                                   
where  

T T T T

( ) i 1 1 i i

T T

( ) i 1 1 1 1

T T

( ) i 1 1 1 1 1 1

T T

( ) i 1 1 2 1

T

( ) i 1 1 1 1 2 1

2( ( ) )

( ) ( )

2( ( ) )

( ) (

xx k i k i k k

j

xu k i k i k i

j j

uu k i k i k i k i

j

xw k i k i k i

j j

uw k i k i k i k i

x x x x

x u K x

K x u u K x

x w K x

K x u w K x

     

     

       

     

       

    

   

     

   

      T

T T

( ) i 1 2 1 1 1 1

T T

( ) i 1 2 1 1 2 1

)

( ) ( )

( ) ( )

j j

wu k i k i k i k i

j j

ww k i k i k i k i

w K x u K x

w K x w K x

       

       

    

    
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Define the unknown variables in the Bellman equation (4.45), which the control input and 

disturbance input gains depend on, as 

                      1 1

1

j jL P   , 1 1

2

j T jL B P A  , 1 1

3

j T jL B P B  , 1 1

4

j T jL D P A   

                      1 1

5

j T jL D P B  , 1 1

6

j T jL B P D  , 1 1

7

j T jL D P D   

Then, using (4.45)-(4.47), one has  

                                         

1 T 1 T 1 T 1 T

1 2 3 4

T
1 T 1 T 1 T

5 6 7

( ) ( ) ( ) ( )

( ) ( ) ( )

j j j j j

j j j j

vec L vec L vec L vec L

vec L vec L vec L





   

  



 

                              (4.48) 

The equation (4.48) can be solved by LS method as  

                               

1 T 1 T 1 T 1 T

1 2 3 4

T
1 T 1 T 1 T T 1 T

5 6 7

( ) ( ) ( ) ( )

( ) ( ) ( ) (( ) ) ( )

j j j j

j j j j j j j

vec L vec L vec L vec L

vec L vec L vec L    

   

   



 

                          (4.49)                                                                              

Note that in (4.49), j  and j  are known matrices and 1

1

jL   through 1

7

jL   are unknown 

values. This solution requires full rank of (4.47) which amounts to the PE condition and requires 

at least s time steps. s is a positive integer which is at least equal to the number of unknown 

parameters of the off-policy Bellman equation (4.45). That is, 2 2 2

1 2 1 2 1 22 ( )s n m m m m n m m     

. 

Using the solution of (4.49) for 1

1

jL   through 1

7

jL  , (4.17),  and (4.18), the gains 

1 1

1 2andj jK K   can be obtained as 

               
1 1 1 2 1 1 1 1 1 1 2 1 1 1

1 3 6 7 5 2 6 7 4( ( ) ) ( )j j j j j j j j jK R L L I L L L L I L L                                  (4.50) 

                  
1 1 2 1 1 1 1 1 1 1 1 1 1

2 7 5 3 6 4 5 3 2( ( ) ) ( )j j j j j j j j jK L I L R L L L L R L L                                   (4.51) 

The following off-policy algorithm uses LS (4.49) and update laws (4.50) and (4.51) to 

find the solution to the H  control problem of linear discrete-time systems. 

Algorithm 4.3. Model-free off-policy RL  
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Initialization: Set the iteration number  j=0 and start with a stabilizing control policy 
1k ku K x e    

where 
ke  is probing noise. 

1. For j=0,1,2, …., solve (4.52) to obtain 1j

iL , i=1,…, 7 using LS 

       
T

1 T 1 T 1 T 1 T 1 T 1 T 1 T

1 2 3 4 5 6 7( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j j j j j jvec L vec L vec L vec L vec L vec L vec L                 

                                                                                                                                               (4.52)                              

2. Update the control and disturbance gains using learned gains 1

1

jL   through 1

7

jL   

               
1 1 1 2 1 1 1 1 1 1 2 1 1 1

1 3 6 7 5 2 6 7 4( ( ) ) ( )j j j j j j j j jK R L L I L L L L I L L                                  (4.53) 

                  
1 1 2 1 1 1 1 1 1 1 1 1 1

2 7 5 3 6 4 5 3 2( ( ) ) ( )j j j j j j j j jK L I L R L L L L R L L                                   (4.54) 

3.  Stop if  

                                                        
1 1

1 1 2 2andj j j jK K K K                                      (4.55) 

for a small positive value of  , otherwise set 1j j   and go to 1.  

Remark 4.8. The proposed off-policy RL Algorithm 4.3 iteratively solves (4.49). This iterative 

algorithm does not require any knowledge of the system dynamics. The cost of control and 

disturbance policies are evaluated using measured data along the system trajectories. In fact, the 

algorithm has two steps. In the first step, in (4.52), the gains 1

1

jL   through 1

7

jL   are found using 

measured data j  and j (see (4.46) and (4.47)). In the second step, the control and 

disturbance policies are updated using the gains learned in the first step. Therefore, no knowledge 

of the system dynamics is required. Moreover, the disturbance policy which is specified and 

updated in (4.54) does not need to be applied to the system. This is in contrast to the existing RL 

and Q-learning methods that require this specified disturbance policy be applied to the system, 

which is not practical as the disturbance applied to the system cannot be specified.  



84 

4.4. Simulation Results 

In this section, the proposed scheme is used for control of an F-16 aircraft autopilot. Four 

cases are considered to show the effect of probing noise. In cases 1 through 3, different 

magnitudes of probing noise are considered with fix frequencies. In case 4, the frequencies of 

probing noise are changed. It is seen that the new off-policy H  algorithm is insensitive to both 

magnitude and frequency of probing noise and always converges.   

The F-16 short period dynamics has three states given as  
T

ex q   where    is the 

angle of attack, q is the pitch rate, and e  is the elevator deflection angle. The discrete-time plant 

model of this aircraft dynamics is 

                                                   1k k k kx Ax Bu Dw                                                      (4.56) 

where  

0.906488 0.0816012 0.0005

0.074349 0.90121 0.000708383

0 0 0.132655

 
 

 
 
  

A  

0.00150808 0.00951892

0.0096 0.00038373

0.867345 0

B D

   
   

  
   
      

 

The performance index is considered as (4.4) with (1,1,1)Q diag , R I , and the 

disturbance attenuation  1  . Using (4.13) for the optimal control 
1k ku K x    and for the worst-

case disturbance 
2k kw K x   , the gains 

1K   and 
2K    are given as 

1

2

[ 0.0842 0.0961 0.0661]

[ 0.1477 0.1244 0]

K

K





  

  
 

Now the results of the proposed off-policy RL Algorithm 4.3 are given. The model-free 

off-policy RL Algorithm 4.3 is implemented as in (4.52)-(4.55). It is assumed that the dynamics 
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A, B, and D are completely unknown. The initial state and the initial gains are chosen as 

 

 

 

T

0

1

2

10 10 3

3 2.5 1.1

0 0 0

x

K

K

  





 

In each iteration, 25 data samples are collected to perform the LS solution of the Bellman 

equations. 

Case 1: The probing noise is considered as  

20.2sin(1.009 ) cos (0.538 ) sin(0.9 ) cos(100 )   ke k k k k  

After 5 iterations, the control and disturbance gains converge to  

1

2

[ 0.0844 0.096 0.066]

[ 0.1477 0.1244 0]

K

K

  

  
 

Fig. 4.1 shows norm of the difference of the optimal control 
1K   gain and disturbance 

gain 
2K   and the computed their values during the learning process. Fig. 4.2 shows the states of 

the system during and after learning with probing noise added up to time step 400. The probing 

noise is turned off after 400 time steps and the optimal control solution found by learning makes 

all states go to zeto.  

Case 2: The probing noise is increased as  

2sin(1.009 ) cos (0.538 ) sin(0.9 ) cos(100 )   ke k k k k  

After 5 iterations, the control gain and the disturbance gain converge to 

1 2[ 0.0841 0.096 0.066], [ 0.1477 0.1244 0]     K K  

Fig. 4.3 shows norm of the difference of the optimal control and disturbance gains 
1K   

and 
2K   and the computed their values during the learning process. Fig. 4.4 shows the states of 

the system during and after learning with probing noise added up to time step 400. The probing 

noise is turned off after 400 time steps and the optimal control solution found by learning makes 

all states go to zeto. 
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Case 3: The probing noise is increased as  

24sin(1.009 ) cos (0.538 ) sin(0.9 ) cos(100 )   ke k k k k  

After 4 iterations, the control gain and the disturbance gain converge to 

1

2

[ 0.0841 0.096 0.066]

[ 0.1476 0.1245 0]

K

K

  

  
 

Fig. 4.5 shows norm of the difference of the optimal control and disturbance gains 
1K   

and
2K   and the computed their values during the learning process. In Fig. 4.6, the states of the 

system are shown during and after learning. The algorithm converges. 

Case 4: The frequencies of probing noise is changed as  

21sin(9.7 ) cos (10.2 ) sin(10 ) cos(10 )   ke k k k k  

The control gain and the disturbance gain converge to 

1

2

[ 0.0841 0.096 0.066]

[ 0.1477 0.1244 0]

K

K

  

  
 

Fig. 4.7 shows norm of the difference of the optimal control and disturbance gains 
1K   

and
2K   and the computed their values during the learning process. In Fig. 4.8, the states of the 

system is shown during and after learning.  

Fig. 4.9 shows the attenuation  

T T T

0 0

k k k k k k

k k

x Q x u Ru w w
 

 

     

for the optimal control input and 0.01*sin( ) k

kw k e  . It can be seen that the disturbance attenuation 

condition (4.2) is satisfied. 

Remark 4.9. From the results of cases 1 to 4, it can be concluded the proposed off-policy 

algorithm converges to the optimal solution regardless of the level and frequency of the probing 

noise. This is in contrast to other model-free but on-policy RL approaches. This is because, if the 

magnitude of the probing noise is too small, the PE condition may not be satisfied and if the 
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magnitude of the probing noise is too large, its covariance is increased and then based on Lemma 

4.1, deleterious effect of the probing noise can be increased.  

 

 
 

Fig 4.1. Case 1: Convergence 1K and 2K in off-policy RL 

 

 
 

Fig 4.2. Case 1: The system states in off-policy RL  
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Fig 4.3. Case 2: Convergence 1K  and 2K  in off-policy RL 

 
 

Fig 4.4. Case 2: The system states in off-policy RL 
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Fig 4.5. Case 3: Convergence 1K  and 2K in off-policy RL 

 
 

Fig 4.6. Case 3: The system states in off-policy RL 
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Fig. 4.7. Case 4: Convergence 1K  and 2K  in off-policy RL 

 

 
 

Fig 4.8. Case 4: The system states in off-policy RL 

 

2 4 6 8 10 12 14
0

1

2

||K
1
-K

1*
||

2 4 6 8 10 12 14
0

2

4

||K
2
-K

2*
||

I teration

0 100 200 300 400 500
-5

0

5

10

x 1

0 100 200 300 400 500
-10

-5

0

x 2

0 100 200 300 400 500
-5

0

5

10

Time step

x 3



91 

 

Fig 4.9. Disturbance Attenuation 

 

 

 

4.5. Conclusion 

An off-policy RL algorithm was presented to solve the H  control problem of completely unknown 

linear discrete-time systems. The proposed method was inspired by [64], which was presented 

for continuous-time systems, and it had two main advantages over other model-free RL 

algorithms exist in the literature for discrete-time. First, the proposed model-free RL algorithm did 

not require an adjustable disturbance input and so it is more practical. Second, there was no bias 

in the Bellman equation as a result of probing noise and thus the probing noise did not affect the 

convergence of the algorithm.  
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Chapter 5 

OUTPUT SYNCHRONIZATION OF HETEROGENEOUS DISCRETE-TME SYSTEMS:A 

MODEL-FREE OPTIMAL APPROACH 

5.1. Introduction 

Distributed control of multi-agent systems has received considerable attention in the 

control community motivated by its variety of applications in physics, social sciences, biology and 

engineering in recent years [103]-[107].  A large class of these results are for consensus and 

synchronization problems where a local control protocol is designed for each agent, based on its 

local and its neighbor’s information, so that all agents reach an agreement on their outputs or 

states. These problems are divided into two categories: leaderless consensus and leader-

following synchronization. In the leaderless consensus problem, all agents reach agreement on 

some common values of interest and in the leader-following problem, all follower agents track the 

trajectories of an agent called leader. 

The state synchronization of the leader-following  homogeneous multi-agent systems, 

where all agents and leader have identical dynamics, has been well established for both discrete-

time (DT) and continuous-time (CT) systems [79]-[83]. However, in many practical applications, 

the agents' dynamics may not be the same. Therefore, it is desired to design distributed output 

synchronization control protocols for heterogeneous systems, which may have non identical 

dynamics. 

The output synchronization problem has been studied for CT systems [108]-[119]. On the 

other hand, the output synchronization problem for DT multi-agent systems has received 

considerably less attention. In [87] and [88], the output synchronization problem of DT systems is 

solved for general set of networks such as those with unknown topology, partial state infromation 

and delay.[120] considered the leaderless consensus problem and [121] used an observer which 

requires continuous exchange of information among agents. In [86], an adaptive observer is 

designed to solve the leader-following synchronization problem of DT systems. Existing output 
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synchronization methods require solution of the output regulator equations. However, this 

requires complete knowledge of all agents's and the leader's dynamics. Moreover, existing results 

only consider making the steady-state tracking errors go to zero and do not provide an optimal 

solution that not only provides a zero steady-state tracking error but also minimizes the transient 

response. The output synchronization problem for DT systems with unknown dynamics is not 

considered in the literature.  

In this chapter, for the first time, an optimal model-free solution to the output 

synchronization problem of heterogeneous DT multi-agent systems is provided. First, local 

discounted performance functions are defined for all agents and the optimal synchronization 

control protocols are found by solving a set of algebraic Riccati equations (AREs) and without 

requiring the explicit solution to the output regulator equations. It is shown that the proposed 

method implicitly solves the output regulator equations and therefore solves the output 

synchronization problem, provided that the discount factor is bigger than a lower bound. This 

formulation enables us to develop a Q-learning algorithm to solve the AREs using only measured 

data and so find the optimal distributed control protocols for each agent without requiring complete 

knowledge of the agents's or leader's dynamics. It is shown that the combination of a distributed 

adaptive observer and the controller guarantees synchronization. The relationship between the 

standard solution and the proposed solution is also shown. A simulation example is given to show 

the effectiveness of the proposed method. 

5.2. Background: Graph communication and output synchronization 

This section introduces some basic concepts of graph theory and the output 

synchronization problem.   

5.2.1. Graph and Communication topology 

A graph is a pair ( , )   with  
1 2{ , ,..., }Nv v v   a set of N  nodes and  a set of 

edges. Elements of  are denoted as ( , )i jv v  which is termed an edge from iv  to 
jv . The 



94 

adjacency matrix is [ ]ijA a   with weights 0ija   if  ( , )j iv v  , 0ija  if  ( , )j iv v   and 0iia   

for all 1,2,...,i N . The in-degree of node 
iv   is  

1
( )

N

i i ijj
d v a


 . The diagonal in-degree matrix D  

is defined as { ( )}i iD diag d v . The graph Laplacian matrix is defined as L D A  . Graph  is 

strongly connected if 
iv   and 

jv  are connected for all distinct nodes ,i jv v  . A directed tree is a 

connected digraph where every node except one, called the root, has in-degree equal to one. A 

spanning tree of a digraph is a directed tree formed by graph edges that connects all the nodes 

of the graph. The pinning gain ig  is one if the leader is pined to agent i  and zero otherwise. The 

pinning matrix G  is defined as ( ) , 1,...,iG diag g i N  .  

5.2.2 Output synchronization of multi-agent discrete-time systems 

Consider linear heterogeneous multi-agent systems as 

                                                       
( 1) ( ) ( )

( ) ( ) 1,...,

i i i i i

i i i

x k A x k B u k

y k C x k i N

  

 
                                       (5.1) 

where ,in p

i ix y   , and im

iu   are the state, measurement output, and control input of the 

i -th agent.   

The leader dynamics is assumed to be given by 

                                                                 0 0

0 0

( 1) ( )

( ) ( )

r k F r k

y k H r k

 


                                                       (5.2) 

with 
0 0,l pr y  . 

Assumption 5.1. The graph has a spanning tree and the leader is pinned to at least one root 

node.  

Assumption 5.2. The leader has all poles on the unit circle and non-repeated. 

Under Assumption 5.2, the state variables of the leader dynamics can generate any 

periodic or constant signals for the tracking trajectory [114], [118]. 
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Remark 5.1. Assumption 5.2 is a standard assumption. The stable modes in the leader dynamics 

do not have an impact in the steady state response of the system as they asymptotically go to 

zero.  

Problem 5.1. The output synchronization problem is to design a distributed control input ( )iu k  for 

all agents in (5.1) such that  their outputs synchronize to the output of the leader. That is,  

                                                 0lim ( ) lim ( ) ( ) 0, 1,...,( )i i
k k

e k y k y k i N
 

                                 (5.3) 

Problem 1 can be solved using the solution to the output regulator equations given by 

                                                              i i i i i

i i

A B F

C H

    

 
                                                     (5.4) 

Based on the solution of (5.4), a standard control input that solves Problem 5.1 is given by  

                                                      ( ) ( ) ( ) ( )( )i i i i i i iu k K x k r k r k                                          (5.5) 

 Here, ( )ir k  is the estimation of leader's state 
0 ( )r k  for the node i  and is designed by the 

distributed observer  

   1

0

1

( 1) ( ) (1 ) ( ) ( ) ( ) ( )[ ( ) ( )]
N

i i i i ij j i i i

j

r k F r k c d g K a r k r k g r k r k



                                               (5.6) 

 where  0ig   is the pinning gain, 0c   is a coupling gain, and K  is a designed matrix.  

Define the observer estimation error ( )i k   and state tracking error ( )i k   as  

                                                                   0( ) ( ) ( )i ik r k r k                                                     (5.7) 

                                                                  ( ) ( ) ( )i i i ik x k r k                                                     (5.8) 

By using (5.2), (5.6) and (5.7), the observer estimation error dynamics is defined as 

                    1

1

( 1) ( ) (1 ) ( ) ( ) ( )[ ( ) ]
N

i i i i ij j i i i

j

k F k c d g K a k k g k    



                                        (5.9) 

Then, the global observer estimation error dynamics is 

                        
1( 1) ( ) ( ) ( ) ( )[ ]N Nk I F c I D G L G K k A k                                         (5.10) 
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 where 
T

T T T

1 2( ) ( ) ( ) ... ( )Nk k k k       .  

The dynamics of the state tracking errors are 

    

1

0

1

( 1) ( 1) ( 1) ( ) ( ) ( ) (1 )

( ) ( ) ( ) ( )

(

[ ( ) ( )])

i i i i i i i i i i i i

N

ij j i i i

j

k x k r k A x k B u k F r k c d g K

a r k r k g r k r k

 



           

  
                      (5.11) 

Substituting the distributed control (5.5) into (4.11) and considering (5.4) and (5.7) yields   

                 1

1

( 1) ( ) ( ) (1 ) ( ) ( ) ( )[ ( ) ]
N

i i i i i i i i ij i j i i

j

k A B K k c d g K a k k g k    



                    (5.12) 

The next results verify the performance of (5.4)-(5.6). 

Theorem 5.1. Consider the heterogeneous multi-agent systems (5.1) with the distributed control 

protocol (5.4)-(5.6). Then, Problem 5.1 is solved if and only if 
i i iA B K  is stable for 1,...,i N   

and 1( ) ( )N NA I F c I D G L G K

         is Schur.  

Proof. It is shown in [82] how to design c  and K  to assure the convergence of the observer, i.e., 

A  has all eigenvalues inside the unit circle if the leader dynamics F  is known. Moreover, if 

( , )i iA B   be stabilizable, one can find iK  to stabilize 
i i iA B K  for 1,...,i N . Then, by using (5.4), 

lim ( ) 0i
k

k


   and lim ( ) 0i
k

k


 , one has 

                                                         
0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i i i i

i i

y k C x k C r k H r k

y k H r k H r k y k

   

  
                                 (5.13)                                   

Therefore, Problem 5.1 is solved and the proof is completed.  

Remark 5.2. Designing the control input in the output synchronization problem for each agent 

using (5.4)-(5.6) requires complete knowledge of the its own dynamics and the leader's dynamics.  

5.3. Optimal output synchronization for heterogeneous systems 

 In this section, the output synchronization problem is formulated as a set of local optimal 

tracking problems. This leads to solving a set of algebraic Riccati equations (AREs). This 

formulation enables us to provide a model-free solution in Section 5.5. Moreover, it is shown that 
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the solutions of these AREs satisfy the output regulator equations (5.4) and make the output 

tracking errors (5.3) go to zero. It is assumed the leader's state 
0 ( )r k  is available to all agents. 

This assumption is relaxed in Section 5.4.  

5.3.1. Optimal Design 

The goal is to find a control policy ( )iu k  for all agents to make the output of the all agents 

( )iy k  in (5.1) follow the output of the leader 
0 ( )y k  in (5.2) while minimizing a predefined 

performance function. Define the discounted performance function  

                  T T

0 0( ( ), ( )) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )j k

i i i i i i i i i

j k

V x k u k y j y j Q y j y j u j W u j






    
                  (5.14) 

where 0 1  is a discount factor, 0iQ  and T 0i iW W .  

Assumption 5.3. For 1,...., , ( , )i ii N A B  are stabilizable and ( , )i i iA Q C  are observable.  

The control input is given as 

                                                
0 0( ) ( ) ( ) ( )

ii x i r i iu k K x k K r k K X k                                            (5.15) 

where 
T

T T

0( ) ( ) ( )i iX k x k r k      is the augmented system state and 
0ii x rK K K    . Then, the 

augmented system dynamics is defined as 

                                                       1( 1) ( ) ( )i i i i iX k T X k B u k                                                  (5.16) 

where 

                                                      
0

0

i

i

A
T

F

 
  
 

    and    
1

0

i

i

B
B

 
  
 

  

The value function (5.14) can be rewritten as  

                             T T T T

1 1( ( )) ( )( ) ( ) ( ) ( )j k

i i i i i i i i i i i i i

j k

V X k X j C Q C K W K X j X k P X k






                    (5.17) 

where  1 .i iC C H  The Bellman equation is then,  

                                    T T T

1 1( ( )) ( ) ( ) ( ) ( ) ( ( 1))i i i i i i i i i i i iV X k X k C Q C X k u k W u k V X k                   (5.18) 
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and the Hmaitonian is defined as 

                  T T T

1 1( ( ), ( )) ( ) ( ) ( ) ( ) ( ( 1)) ( ( ))i i i i i i i i i i i i i iH X k u k X k C Q C X k u k W u k V X k V X k            

By following the procedures in Chapter 2, the optimal control input ( )iu k  is given as 

                          
0

T 1 T

1 1 1( ) ( ) ( ) ( ) ( )
ii i i x r i i i i i i i i iu k K X k K K X k W B PB B PT X k                      (5.19) 

where  

                                                                       

11 12

21 22

i i

i

i i

P P
P

P P

 
  
 

                                                   (5.20) 

is found by solving the ARE 

                                            T T 2 T T 1 T

1 1 1 1 1 1( ) 0i i i i i i i i i i i i i i i i iC Q C P T PT T PB W B PB B PT                   (5.21) 

Lemma 5.1. Existence of the solution to the ARE. 

Let Assumption 5.3 is satisfied. The ARE (5.21) has a unique positive semi-definite solution if 

1/ 2 F  has all its eigenvalues inside the unit circle.  

Proof. Note that the ARE (5.21) can be written as  

                                        T T T T 1 T

1 1 1 1 1 1( ) 0i i i i i i i i i i i i i i i i iC Q C P T PT T PB W B PB B PT                          (5.22) 

where 1/2

i iT T   and 1/2

1 1i iB B . Equation (5.22) is the standard ARE without discount factor 

for a system with dynamics 1/2 1/2

1( , )i iT B  . The necessary and sufficient condition for the 

standard ARE (5.22) to have a unique solution is stabilizability of the dynamics 1/2 1/2

1( , )i iT B   

and observability of the 
1/2

1( , )i i iT Q C . This requires that 1/2 1/2( , )i iA B   be stabilizable, 1/ 2 F  be 

stable and 
1/2( , )i i iA Q C  be observable. By considering Assumption 5.3, then 1/2 1/2( , )i iA B   

are also stablizable and 
1/2( , )i i iA Q C  are observable for any 0 1 . Therefore, the ARE 

(5.21) has a unique positive semi-definite solution if conditions of Lemma 5.1 are satisfied.  

Remark 5.3. Note that the control input (5.19) depends on the leader's states and the leader's 

state does not generally go to zero. Therefore, if the discount factor in the performance function 
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(5.14) is chosen as one, it becomes infinity for any control input and therefore the meaning of 

optimality is lost. 1   can be only use if one knows a priori that the leader is generated by an 

asymptotically stable command generator system, which is the trivial case. That is, F  has all its 

eigenvalues inside the unit circle. These results are consistent with the results of Lemma 5.1 

which requires 1/ 2 F  be stable. Based on Assumption 5.2, which excludes the trivial case that the 

leader states converge to zero, 1/ 2 F  is stable if 0 1  . However, as shown in the following 

example, the existence of the solution does not guarantee stability of the tracking error. An extra 

condition on the discount factor will be found in the sequel to guarantee stability as well as 

existence of the solution.   

Example 5.1. Consider the first order system dynamics 

                                                            
( 1) 3 ( ) ( )

( ) ( )

i i i

i i

x k x k u k

y k x k

  


                                                 (5.23) 

The performance function is defined as 

                                                   2 2 2( )( ) [ ( ) ( )] ( )j k

i i i i i i i i

j k

V x k q x j w u j p x k






                           (5.24) 

The Hamiltonian function is defined as 

                                               2 2( ) ( ) ( ) ( ( 1)) ( ( ))i i i i i i i i iH k q x j w u j V x k V x k                          (5.25) 

Considering 1i iw q   and applying the stationarity condition yields the following optimal control 

input  

                                                              1( ) (1 ) 3 ( )i i i iu k p p x k                                           (5.26) 

 where 
ip  is found by solving the ARE  

                                                          2 1 21 9 9 (1 ) 0i i i ip p p p                                           (5.27) 

Substituting the solution of (5.27) into (5.26) yields, 

                                          
2 1( ) 3(1 2(1 10 100 16 1) ) ( )i iu k x k                                      (5.28) 
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However, this optimal solution found by solving ARE does not make the system stable for all 

values of 0 1  . In fact, if 0.286   , then the system is unstable. The next theorem shows 

how to find an lower bound   for the discount factor to assure the stability of the system.  

Remark 5.4. In (5.19), the feedback gain is computed from the ARE solution (5.21). In Section 

5.5, it is shown how to compute the ARE solution without solving (5.21) by using only measured 

data. 

5.3.2. Convergence of Output Tracking Error 

The following Theorem 5.3 shows that the control protocol (5.19) solves the output 

synchronization problem provided that the discount factor is close enough to one. To show this, 

the results of the following theorem are required.  

Theorem 5.2. Lower bound for the discount factor. 

Let Assumptions 5.2 and 5.3 are satisfied. Then, 
ixK  given by (5.19) and (5.20) makes 

ii i xA B K  

Schur if the discount factor satisfies  

                                                        T 11 10 ( ( ) )i i i iI C Q C P I I                                             (5.29) 

Proof. Considering the optimal control input (5.19) in the ARE (5.21) yields the Lyapunov 

equation 

                                 T T T

1 1 1 1( ) ( ) ( ) 0i i i i i i i i i i i i i iC Q C P K W K T B K P T B K                             (5.30) 

The Lyapunov equation is used to show the stability of the ARE solution. Using iP  in (5.20), the 

upper left-hand side of the Lyapunov equation (5.30) is   

                                
T 11 T 11 T 11( ) ( ) ( ) 0

i i i ii i i i x i x i i x i i i xC Q C P K W K A B K P A B K                        (5.31)  

By considering T 11 T

i i i i i iQ M M and W D D   , (5.31) can be rewritten as  

                             
11 T 11 T T T T( ) ( ) ( )

i i i

i

i i

i i i x i i i x i i x i

i x

M C
P A B K P A B K C M K D

D K


 
      

 
                (5.32) 
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Eq. (5.32) has a unique positive definite solution if 
1/2 ( )

ii i xA B K   is stable and the following 

system is observable  

                                                       
1/2 ( , )( )

i

i

i i

i i x

i x

M C
A B K

D K


 
  

 
                                                  (5.33)  

In Chapter 1, it is proved that 
1/2 ( )

ii i xA B K   is stable for every value of 0 1 . Now, the 

observability of (5.33) should be shown. The observability matrix is defined as 

                                                             

1/2 ( )
i

i

i i x

i i

i x

Z I A B K

O M C

D K

  
 

  
 
 

                                            (5.34) 

 The system (5.33) is observable if the observability matrix (5.34) be full rank. On the other hand,  

                                  

1/2

1/2
( )

( )
rank( ) rank( )

i

i

i

i i x

i i x

i i

i i
i x

Z I A B K
Z I A B K

M C
M C

D K




  
    

   
    

 

                      (5.35) 

The state feedback preserves observability. Then, 

                                      

1/2 1/2( )
rank( ) rank( )ii i x i

i ii i

Z I A B K Z I A

M CM C

     
   

    
                                (5.36) 

Then, the observability of (5.33) is equivalent to observability of 
1/2 1/2( , ) ( , )i i i i i iA M C A Q C  . By 

considering Assumption 5.3, it can be concluded that the Lyapunov equation makes the system 

stable and observable. Therefore, the solution of  (5.31) is unique positive definite.  

 

Now, it is desired to show that 
ii i xA B K  is stable. By considering 

i ic i i xA A B K   in 

(5.31), one has 

                                                  
T 11 11 T T 11( )
i i i ic i c i i i i x i xA P A P C Q C K W K                                       (5.37)      

Multiplying the left-hand and right-hand sides of (5.37) by T ( )iz k  and ( )iz k , respectively yields, 
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T T 11 T 11 T T T 11( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

i i i i

T

i c i c i i i i i i i i i i x i x iz k A P A z k z k P z k z k C Q C z k z k K W K z k              (5.38) 

Also, let 
i  be an eigenvalue of ( )

ic iA and z k  its corresponding eigenvector. Then,  

                                                                      ( ) ( )
ic i i iA z k z k                                                    (5.39) 

By substituting (5.39) into (5.38), one has 

          
T 11 T 11 T T T T 11( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

i ii i i i i i i i i i i i i i x i x iz k P z k z k P z k z k C Q C z k z k K W K z k                       (5.40) 

Eq. (5.40) can be written as 

   
2 11 T 2 T 11 11 T 11 1 11 11 T 11 1 T 11( 1) ( ) ( )i i i i i i i i i i i i i i i i i i i iP C Q C A P B W B P B W W B P B B P A                       (5.41) 

This gives 

                                                                    
2 11 T( 1)i i i i iP C Q C                                              (5.42) 

Then, 

                                                                  
2 T 11 11

( )( )i i i i iI I C Q C P


                                    (5.43)                                                       

For the stability of the system, the eigenvalues of the closed-loop system 
i ic i i xA A B K   should 

be in the unit circle, that is,  

                                                                
2 T 11 11

( )( )i i i i iI I C Q C P I


                                (5.44)                                  

Then, for 
T 11 1( )( )i i i iI C Q C P I I   , the closed-loop system is stable and the proof is 

completed.   

Remark 5.5. Note that Theorem 5.2 shows that the discount factor affects the stability and there 

is a minimum value for it to make the system stable which depends on the system dynamics. 

However, we do not need to calculate this value as one can always choose the discount factor 

close enough to 1 to assure that the ARE solution is stabilizing. 
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 Theorem 5.3. Consider the system dynamics (5.1) and the leader dynamics (5.2). Assume the 

discount factor satisfies (5.29). Then, the control input (5.19) makes the output tracking errors 

0( ) ( ) ( )i ie k y k y k   go to zero. 

Proof. First, it is shown that null space of iP  is a zero-error and invariant subspace. The proof is 

then completed by showing that this subspace is also attractive.  

Multiply both sides of Lyapunov equation (5.30) by iX  and T

iX , respectively. Then, 

            T T T T T T T

1 1 1 1( ) ( ) ( ) 0i i i i i i i i i i i i i i i i i i i i i iX C Q C X X P X X K W K X X T B K P T B K X              (5.45)                                  

If ( )i iX null P  in (5.45), then T 0i i iX P X  . Therefore, null space of 
iP  yields 

                    T T T T T T

1 1 1 1( ) ( ) ( ) 0i i i i i i i i i i i i i i i i i i iX C Q C X X K W K X X T B K P T B K X                     (5.46) 

Eq. (5.46) is summation of three quadratic terms and is equal to zero if and only if all quadratic 

terms are zero. That means, T T

1 1 0i i i i iX C Q C X  , T T( ) 0i i i i iX K W K X  , 

T T

1 1( ) ( ) 0i i i i i i i i iX T B K P T B K X   . Since iQ , iW , and 
i
P   are positive definite matrices, (5.46) 

is satisfied if and only if 
1 0i iC X  , 0i iK X  , and 

1( ) 0i i i iT B K X  . Since 

1( ) 0 0
cli i i i i i i iT B K X T X if P X    , one concludes that the null space of 

i
P  is  

cliT  -invariant. 

On the other hand, 
1 0i iC X   gives 0( ( ) ( )) 0iy k y k   which yields 

0( ) ( ) ( ) 0i ie k y k y k   . 

Therefore, null space of  is a zero error and invariant subspace. To complete the proof, it remains 

to show that the null space of 
iP is attractive. To this end, consider the following Lyapunov function 

                                                           T( ( )) ( ) ( ) 0i i i i iV X k X k P X k                                              (5.47)    

which yields 

             
T T T 2 T

1 1

( ) ( ( 1)) ( ( ))

( )( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )

i i i i i i

i i i i i i i i i i i i i i i i

V X V X k V X k

X k T B K P T B K X k X k P X k X k P X k

    

    
             (5.48) 

where 
i  is the eigenvalue of the augmented system (5.16) with the optimal control input (5.19). 

Theorem 5.2 results in 1i  . Then, one has 2 1 0i    and ( ) 0i iV X . By La Salle's extension, 

( )iX k  converges to an invariant set contained in null space of iP .    
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5.3.3 Relationship between output regulator equations and ARE 

The solution to the output regulator equations (5.4) can be expressed in terms of the solution to 

the ARE (5.21).   

Define the null space of 
iP  as 

  { ( ) 0 ( ) 0}  |i i i iX k P X k     

where 
T

T T

0( ) ( ) ( )i iX k x k r k     and 
iP  is defined as (5.20).  

Lemma 5.2. Given the solution (5.20) to the optimal tracking problem ARE (5.21) for any 

( )i iX k  ,  one has 

Proof. for any ( )i iX k   one has 

                                                            

11 12

21 22
0

( )
( ) 0

( )

ii i

i i

i i

x kP P
P X k

r kP P

   
    

  
                                     (5.50) 

which results in 

                                                               11 1 12

0( ) ( ) ( )i i ix k P P r k                                                    (5.51) 

                                                                 22 21 11 1 12( )i i i iP P P P                                                  (5.52) 

 

Theorem 5.4. Let iP  be the solution to (5.21) and 
0ii x rK K K     be given as (5.19). Then, the 

output regulator equations (5.4) are satisfied with      

                                                                 

0

11 1 12

11 1 12

( )

( )
i

i i i

i r x i i

P P

K K P P





  

  
                                            (5.53)           

Proof. The proof has two parts. In part a, it is shown that the first equation of the output regulator 

equations is satisfied and in part b, it is shown that its second equation is satisfied. 

a. By using (5.16) and (5.19), the closed-loop system can be written as 

                                                   
0( 1) ( )

0

( )

i

cl cl

cl cl

i i x i r

i i

i i

A B K B K
X k X k

F

T X k

 
   

  



                                (5.54) 
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Using (5.51) and the fact that the null space of 
iP  is closed-loop invariant, which was shown in 

Theorem 5.3, yields 

                                                           11 1 12

0( 1) ( ) ( 1)i i ix k P P r k                                               (5.55) 

By substituting (5.1), (5.2), and (5.19) into (5.55), one has 

                                        
0

11 1 12

0 0( ) ( ) ( ) ( ) ( )
ii i i x i i r i iA x k B K x k B K r k P P F r k                              (5.56) 

In Theorem 5.1, it is proved that 
0( ) ( )ir k r k . Therefore, using the results of Theorem 5.1 in 

(5.19) yields  

                                                               ( ) ( ) ( )
i ii x i r iu k K x k K r k                                                 (5.57) 

Now, comparing the control inputs (5.5) and (5.57) results in  

                                                           and
i ix i r i i iK K K K                                                (5.58) 

Substituting (5.51) and (5.58) into (5.56) and performing some manipulation yields 

                                     11 1 12 11 1 12 11 1 12( ) (( ) ) ( )i i i i i i i i i i i iA P P B K P P B P P F                              (5.59) 

Eq.(5.59) is equal to (5.4) with 11 1 12( )i i iP P   . Then, by using (5.58), 

11 1 12( )
i i ii r i i r x i iK K K K P P      . That is, the optimal tracking solution (5.19) solves the output 

regulator equations implicitly. 

b. In Theorem 5.3, it is shown that the null space of iP  is a subspace of the null space of T

1 1i i iC Q C

. Thus, if T 0i i iX P X  , then T T

1 1 0i i i i iX C Q C X   which is equivalent to, 

                                                        T

0 0( ) ( ) 0i i i i iC x H r Q C x H r                                             (5.60)                  

On the other hand, Lemma 5.2 and part a give  

                                                                        0i ix r                                                              (5.61)                                       

Substituting (5.61) into (5.60), yields 

                                                           T T

0 0( ) ( ) 0i i i i ir C H Q C H r                                         (5.62)                  



106 

since 
iQ  is a positive definite matrix and 

ir  is not always zero, then (5.62) is zero if and only if 

( ) 0i iC H   . In fact, the null space of 
iP  is the space that ( ) 0i iC H   . Therefore, as it was 

shown in Theorem 5.3, starting from anywhere in the space, the system trajectories converge to 

the space in which ( ) 0i iC H   . Then, the proof is completed.  

As it is shown in Theorem 5.4, the solution to the ARE (5.21) gives the solution to the 

output regulator equations and therefore, solving the ARE equation is a sufficient condition for 

solving the output regulator problem. In Section 5.5 we show how to compute the solution to the 

ARE (5.21) online using measured data without knowing the dynamics of the leader or agents. 

5.4. Adaptive distributed observer design 

In Section 5.3, it is assumed that all agents have the state of the leader 
0r . This 

assumption can be relaxed by the distributed observer (5.6). But, the distributed observer (5.6) 

needs the leader dynamics F . In this section, an adaptive distributed observer is designed to 

estimate the state of the leader for all agents without requiring complete knowledge of the leader's 

dynamics ( , )F H .  

To accomplish this, the following distributed observer is used, 

                   1

0

1

ˆ( 1) ( ) ( ) (1 ) [ ( ( ) ( )) ( ( ) ( ))]
N

i i i i i ij j i i i

j

r k F k r k c d g K a r k r k g r k r k



                       (5.63) 

where ˆ ( )iF k  is an estimation of F , and K   and    are designed in the following Lemma 5.3. 

Lemma 5.3. Let Assumptions 5.1 and 5.2 be satisfied and 0F F F   where the nominal 
0F  

has all its poles on the unit circle and || ||F    for some known bound  . Then, for a general 

graph, 1( ) ( )N NA I F c I D G L G K

        is Schur if 0K F  and 

                                                                    
max 0

1
|1 |

( )
ic

F



                                                 (5.64) 

where 1,...,i i N   are the eigenvalues of 1( ) ( )NI D G L G   .  
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Proof. Showing A  is Schur is equivalent to show (5.10) is stable. By considering 
0F F F  , 

(5.10) can be rewritten as 

           1

0 0( 1) [ ( ) ( ) ] ( ) ( ) ( ) ( )N N N C sk I F c I D G L G K k I F k F k w                     (5.65) 

The system (5.65) can be considered as a feedback connection of two systems given by 

                                                                   
1

1 0

2

( ) ( )

( )

C

s

H Z ZI F

H Z w

 


                                               (5.66) 

Based on the small-gain theorem, if 
0CF  is Schur and the gain of 

1H is less than or equal to the 

inverse of the gain of 
2H , i.e., 

1


 , then the system (5.66) is locally asymptotically stable. 

By choosing 
0K F , one has 

1

0 0 0( ) ( )C N NF I F c I D G L G F        

It is shown in [83] that 
0CF  is Schur if and only if all matrices 

0 0N i NI F c I F    have their 

eigenvalues inside the unit circle. 1,...,i i N   are locates inside a circle with center 1 and radius 

one. Then, for the set of eigenvalues of 
0CF , i.e.

0( )CF , one has  

0 0 0 0( ) ( ) (1 ) = ( )C N i N i NF I F c I F c I F           

on the other hand, one has 

1

1 0( ) ( (1 ))k

ih k F c    

1 1 0|| || sup | ( ) | || (1 ) ||i
k

H h k F c    

Then, based on the small-gain theorem, the system (5.65) is stable if and only if  

                                                         
0 0

1 0

| ( ) | | (1 ) ( ) | 1

1
|| || || (1 ) ||

C i N

i

F c I F

H F c

  






   

  
                                        (5.67) 

This results in  

                                                                 
max 0

1
|1 |

( )
ic

F



                                                    (5.68) 
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Lemma 5.4 (Young's inequality). Let 
nX   and 

nY   be arbitrary vectors. Then, 

                                                               
2

T T
T X X Y Y

X Y


                                                     (5.69) 

 

Given any matrix n mM  . 1

vec

nmM   is transpose of a vector formed by stacking the 

rows of matrix M .  

The next result provides an update law for ˆ ( )iF k  in (5.63). 

Theorem 5.5. Consider the distributed observer (5.63) with K and c  designed using the results 

of Lemma 5.3. The observer estimation error (5.7) by considering(5.63) is  

                       1

0 0

1

ˆ( 1) ( ) ( ) (1 ) [ ( ) ( )] ( )
N

i i i i i ij j i i i

j

k F k r k c d g K a r r g r r Fr k 



                         (5.70) 

Then, the observer estimation error (5.70) converges to zero for all 1,...,i N  by selecting the 

update law for 
2 1

vec
ˆ ( ) l

iF k   as 

                                            
vec vec

ˆ ˆ( 1) ( ) ( 1) ( 1),i i i iF k F k k k i N                                     (5.71) 

with 

T T 1( 1) ( ) , 0i i i i l lk R R R I  

      

T ( )i l iR I r k   

1
0

2
   

Proof. The global observer estimation error dynamics is, 

1

vec vec
ˆ( 1) [ ( ) ( ) ] ( ) ( ( ) ) ( ) ( )Nk I F c I D G L G K k R F k F A k RF k                             (5.72) 

with 

T T T T

1 2( , ,..., )NR diag R R R  

The Lyapunov stability theorem is used to prove that the observer estimation error  converges to 

zero. Consider the Lyapunov function as 
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                                                      T T 1

vec vec( ) ( ) ( ) ( ) ( )V k k P k F k F k                                         (5.73) 

Then, 

T T T T T T

vec vec vec

T 1 T 1

vec vec vec vec

( ) ( 1) ( ) ( )( ) ( ) 2 ( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( )

V k V k V k k P A P A k k A PRF k F k R PRF k

F k F k F k F k

    

 

        

     
                    

(5.74) 

Substituting update law (5.71) into(5.74) yields, 

T T T T T T

vec vec vec

T 1 T 1

vec ve

2 2

c vec

T T T 1 T 1

ve

2

T T

c

( ) ( )( ) ( ) 2 ( ) ( ) ( ) ( )

( ) ( 1) ( ) ( ) ( 1) ( )

( ) ( 1) ( 1) ( ) 2 ( ) ( 1) ( 1) ( )

2 2

V k k P A P A k k A PRF k F k R PRF k

F k k A k F k k RF k

k A k k A k k A k k RF k

F

  



  



  

  

 



     



 

 

     

    

    



  

 T T 1T

vec vec( ) ( 1) ( 1) ( )k k k RF kR    

        (5.75) 

Select 

                                                            

1

T T 1

T 1

( 1) ( ( 1),..., ( 1))

( )

( )

Nk diag k k

R RR I

P RR I

  









   

  

 

                             (5.76) 

Then, 

                                                T 1 1( 1) ( 1)L k k P                                                       (5.77) 

By using (5.76) and (5.77), the gradient of the value function  (5.75) can be rewritten as  

T T 2 T T T 2 T 1 T

vec vec

T 2 T T 1 T

vec

( )( ) ( ) ( ) ( 2 ) ( )

2 ( )( ) ( )

V k P A P A A L A k F k R PR R LR R PR F k

k A LR A PR A PR F k

   

  

    

  





        

   
       (5.78) 

By considering Lemma 5.3, one has 

                         

T T T T 2 1

T T 2 1

vec vec

( )( ) ( ) ( )( (2 (1 ) ) ) ( )

( ) ( (2 2 3 ) ) ( )

V k P A PA k k A L P A k

F k R P L P R F k

        

 





       

  
            (5.79) 

The observer estimation error converges to zero if 0V  in (5.79). In Lemma 5.3, it is proved 

that A  is Schur for desired K  and c . Therefore, T( ) 0P A PA   . By using the results of 

Lemma 5.3, 0V  if the following inequalities are satisfied, 
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1 2

2 1

2 3 2 0

2 0

P P L

P L P

 

 





   

   
                                               (5.80)      

by considering (5.77), these conditions yield  

                                                               

1 2 1

1 2 1

2 3 2 0

2 0

P P P

P P P

 

 

 

 

    

    
                                         (5.81) 

Conditions to (5.80) are guaranteed if  

                                                                  1

2

1 1
and 0

22


 

   


                                 (5.82) 

Therefore, the observer estimation error (5.70) converges to zero for all 1,...,i N  and the proof 

is completed.  

Remark 5.6. The optimality is not considered in the observer design but the overall control 

strategy found in the steady-state,i.e., after the observer is converged, is optimal. 

5.5. Model-free solution of optimal output synchronization problem 

In this section, it is shown how to use reinforcement Q-learning algorithm to compute the 

solution to the ARE (5.21) online using measured data without knowing the dynamics of the leader 

or agents. 

5.5.1 Combining the optimal tracking control and adaptive observer design 

Theorems 5.3 and 5.4 require the use of protocol (5.19), so that every agent must know the 

leader's state 
0 ( )r k .  In Section 5.4, it is shown that by using the local adaptive observer (5.63) 

and the update law (5.71), every agent can get a local estimation of the leader's state. By using 

the local estimation of ( )ir k  in (5.19), the optimal tracking control input for each agent is obtained 

using  

                                                     ˆ( ) ( ) ( ) ( )
i ii x i r i i iu k K x k K r k K X k                                     (5.83) 

where 
i ii x rK K K     and  

T
T Tˆ ( ) ( ) ( )i i iX k x k r k    .  
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Theorem 6. Consider the system dynamics (5.1) and the leader dynamics (5.2) with observer 

(5.63) and (5.71) and control input (5.83). Then, the output tracking error 
0( ) ( ) ( )i ie k y k y k   

goes to zero. 

Proof. The augmented system (5.16) using the control input (5.83) and ( )ie k  are, 

                                               
0 0

( 1) ( )

( 1) ( )0

( )
0

i i

i

i i x i ri i

i r

i

A B K B Kx k x k

r k r kF

B K
k

    
     

      

 
  
  

                                    (5.84) 

                                                               0( ) ( ) ( )i ie k Cx k Hr k                                                  (5.85) 

In Theorem 5.2, it is shown that 
ii i xA B K  has all its eigenvalues inside the unit circle. Then, 

based on Assumption 5.2 and since in Theorem 5.1, it is proved that ( ) 0 ,i k i N    , the 

augmented system (5.84) is BIBO stable. Therefore, there exists a constant M  such that,   

                                                                   || ( ) || || ( ) ||i ie k M k                                                  (5.86) 

Then, ( ) 0 ,ie k i N   . 

5.5.2 Q-learning 

Based on the Bellman equation (5.18), the Q-function is defined as 

                  T T T T

1 1( ( ), ( )) ( )( ) ( ) ( ) ( ) ( 1) ( 1)i i i i i i i i i i i i i iQ X k u k X k C Q C X k u k W u k X k P X k               (5.87) 

By considering (5.16), the Q-function (5.87) becomes 

                                                           T( ( ), ( )) ( ) ( )i i i i i iQ X k u k Z k H Z k                                       (5.88) 

where 

                                        

T
T T

T T T

1 1 1

T T

1 1 1

( )

i i i i

i i i i

i i i

X X X u i i i i i i i i i

i

u X u u i i i i i i i

Z k X u

h h C Q C T PT T PB
H

h h B PT W B PB

 

 

   

   
    

    

                    (5.89) 

Then, the Bellman equation(5.18) in terms of Q-function (5.88) becomes 
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                       T T T T T

1 1( ) ( ) ( )( ) ( ) ( ) ( ) ( 1) ( 1)i i i i i i i i i i i i i iZ k H Z k X k C Q C X k u k W u k Z k H Z k          (5.90) 

with 

                                           
1

1

0

0( ) ( )
ˆ( ) ( ) ( )

( ) ( ) ( )

ini i

i i i

i i

x k x k
X k X k k

r k r k k




    
        
     

                         (5.91) 

Considering (5.91) in the Bellman equation (5.90) yields 

T
T T T T T T T T T

1 1 1 1 1 1 1

T T T T T T

1 1 1 1 1 1 1

T
T T T

1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 0 ( ) 0 ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( 1)

( 1) 0 ( 1

i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

i i i

Z k H Z k k H k X k C Q C X k k C Q C X k

X k C Q C k k C Q C k u k W u k Z k H Z k

k H k

  

   

  

        

      

   
T) 0  

        5.92) 

with 
T

T Tˆ ˆ( ) ( ) ( )i i iZ k X k u k 
 

. By considering the result of Lemma 5.3 in (5.92), one has  

                     T T T T T

1 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( 1)i i i i i i i i i i i i i iZ k H Z k X k C Q C X k u k W u k Z k H Z k               (5.93) 

Applying the optimality condition gives 

                                                              
1

ˆ
ˆ( ) ( ) ( )

i i i i
i u u iu X

u k h h X k                                                  (5.94) 

Algorithm 5.1. Model-free Q-learning Algorithm 

Initialization: Set the iteration number 0j   and start with a stabilizing control policy 0 ( )iu k . 

1. For 0,1,2,...j   solve using LS 

            T T T T T T

1 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( 1)j j j j j j j j j j

i i i i i i i i i i i i i iZ k H Z k X k C Q C X k u k W u k Z k H Z k          (5.95) 

2. Update the control input as 

                                                         
( 1) 1 ˆ( ) (( ) ) ( )

i i i i

j j j j

i u u u X iu k h h X k                                           (5.96) 

Remark 5.7. To implement Q-learning, (5.95) must be solved at each step. This equation can be 

solved online using least-squares method. This requires a persistence of excitation (PE) condition 

to allow solution of repeated Bellman equation (5.95) at successive time instants in a batch 

fashion. 

Remark 5.8. The ARE (5.21) and the optimal control input (5.19) solve the output synchronization 

problem 5.1 but they require the dynamics of the leader and agents from (5.16). However, Q-
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learning finds the solution to the ARE and the optimal control input without requiring these 

dynamics and using only measured data along the system trajectories. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Schematic of the proposed approach 

5.4. Simulation Results 

In this section, a numerical example is provided to verify the effectiveness of the proposed 

method. Consider a heterogeneous discrete-time multi-agent system with six agents. The first 

agent is considered as a leader and its dynamics is given by 

                                                      0 0

0 0

0 1
( 1) ( )

1 0

( ) 1 2 ( )

r k r k

y k r k

                                           (5.97) 

All five other agents are considered as followers and their dynamics are given by (5.1) 

with 
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1 1 1

2 2 2

3 3 3

4 4 4

5 5

2, 3, 1

2 0 1
, , 2 1

0 3 1

1 1 3
, , 1 1

10 3 2

2 1 4 5

1 3 5 , 5 , 1 2 3

0 0 4 5

2 1 3 1 1 1

1 2 4 , 5 5

0 0 4

A B C

A B C

A B C

A B C

A B
5

5 , 1 2 3

5 5 5

C

                               (5.98) 

The directed communication graph for this example is shown in Fig. 5.2.  

First, the distributed adaptive observer is implemented to estimate the leader's state for 

all agents. The gains are chosen as 0.11c   and 0.35   in (5.63) and (5.71). The weighting 

matrices and discount factor are given as 1 2 3 4 5
10, 10, 10, 8, 10, 0.9Q Q Q Q Q . Fig. 

5.3 shows the error between the observer and the leader state for all agents. The solution of the 

output regulator equation (5.4) for the given heterogeneous systems (5.98) are 

                                      

1 1

2 2

3 3

4 4

0.5 1 0 0.5

0.418 0.781
0.054 1.145

0.163 0.436

0.081 0.543
0.514 0.639

0.918 2.543

0.057 0.057

1.485 1.514 0.743 1.05

1.342 1.657

5 5

7

1.370 1.629 0.049 0.049

1.407 1.592 0.049 0.049

0.148 0.148 0.049 0.049

                      (5.99) 

The solution of ARE (5.21) for all agents are 
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1

2

3

40.8840 20.4348 40.2209

20.4348 34.4260 20.6295

40.2209 20.6295 64.0252

2398.2 3536.3 402.1 328.8

3536.3 5390.9 563.9 414.6

402.1 563.9 189.4 88.4

328.8 414.6 88.4 191.5

3

P

P

P

4

54.3886 96.6323 114.7498 50.5744

96.6323 31.9168 36.2106 27.6901

114.7498 36.2106 106.8674 92.5375

50.5744 27.6901 92.5375 107.4225

14526 6187 5359 1063 1212

6187 2825 2406 562 593

5359 2406 2P

5

093 418 441

1063 562 418 350 347

1212 593 441 347 373

146.533 167.326 122.279 16.617 45.762

167.326 250.469 121.810 105.215 144.213

122.279 121.810 180.276 22.774 21.367

16.617 105.215 22.774 129.

P

414 136.380

45.762 144.213 21.367 136.380 158.973

                (5.100) 

By using (5.99) and (5.100), it is obvious that (5.53) is satisfied. It can be concluded that the 

following simulation results are consistent with the results of Theorem 5.4. 

Now, the Q-learning Algorithm 5.1 is used to solve the problem. It is assumed that the 

dynamics of all agents and leader are completely unknown. The control gains converge to 

                             

1

2

3

4

5

0.6630 0.3261 0.1657

3.1679 7.7434 0.1194 0.2251

1.0703 0.5175 0.0462 0.0930

0.8601 0.0194 0.6357 0.0306 0.0142

0.0874 0.0947 0.3254 0.0146 0.0072

0.0874 0.0947 0.3254 0.

K

K

K

K

K 0146 0.0072

0.0874 0.0947 0.3254 0.0146 0.0072

                            (5.101) 
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The optimal gains are computed from the above i
P   using (5.19). Fig. 5.4 shows the norm 

of the difference between the optimal control gain (5.19) and the computed gain (5.96) for all 

agents. The outputs of the leader and all agents when the control protocol (5.19) with the optimal 

gains is applied is given in Fig. 5.5. 

 

 
 

Fig. 5.2. Communication network for the agents and leader 

 

 

Fig. 5.3. The error between leader state and observer for all agents 
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Fig. 5.4. Convergence  of  the  control  gains  to  their  optimal values during the learning process for all 
agents 

 

 
 

Fig 5.5. The outputs of the leader and all agents 

 

5.5. Conclusion 

In thischapter, the optimal model-free output synchronization problem for discrete-time 

systems is studied. An adaptive distributed observer is designed to provide the estimation of the 
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leader state to all agents. Q-learning is employed to find the optimal solutions online using only 

measured data and without requiring complete knowledge of the leader or agents dynamics.  
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Chapter 6 

CONCLUSION AND FUTURE WORK 
 

 

In this dissertation, reinforcement learning (RL) algorithms are developed to find the 

optimal solutions to optimal tracking control problems of both linear and nonlinear discrete-time 

systems. The proposed approaches are online, and do not require complete knowledge of the 

systems dynamics. Hamilton-Jacobi-Bellman (HJB) equation arising in the 
2

H  optimal control 

problem and Hamilton-Jacobi-Isaacs (HJI) equation arising in the H  optimal control problem 

are solved online in real time and using measured data along the system trajectory. Both on-

policy and off-policy RL algorithms are developed. On-policy RL is used to solve linear and 

nonlinear 
2

H  optimal control problems. In contrast to the existing methods, the proposed 

approach for nonlinear systems takes into account the input constraints in the optimization 

problem by using a nonquadratic performance function. Off-policy RL is employed to solve the 

game algebraic Riccati equation (GARE) online using the measured data along the system 

trajectories. The proposed method has two main advantages compared to the other model-free 

methods. First, the disturbance input does not need to be adjusted in a specific manner. Second, 

there is no bias as a result of adding a probing noise to the control input to maintain persistence 

of excitation (PE) condition. Extension to multi-agent systems is also considered. Optimal model-

free solution is presented to the output synchronization of heterogeneous multi-agent discrete-

time systems. It is shown that the proposed method implicitly solves the output regulator 

equations and therefore solves the output synchronization problem.  

The following are some of the directions for continuation of this work. 

1. Design of an online model-free solution to the optimal tracking control of nonlinear affine 

systems.  

2. Propose a deep neural network to approximate a more accurate structure of the value 

function for nonlinear systems and avoid divergence of the RL algorithm and consequently 
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instability  of  the  feedback  control  system in the presence of high-dimensional inputs and 

unstructured input data such as images. 

3. Extend the proposed results to output synchronization of multi-agent discrete-time systems 

with nonlinear dynamics.  

4. Apply the proposed methods to practical systems such as autonomous robots, and power 

and energy systems.   
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