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Abstract 

 
WHO NEEDS MODELS WHEN YOU HAVE GENOMES? 

 

Richard H. Adams, PhD 
 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Todd A. Castoe, PhD 

 

There is no question about it: genomic data are revolutionizing biology. This is certainly evident 

in the fields of population genetics and phylogenetics for which genome-scale analyses have 

been used to study a myriad of evolutionary processes and organismal relationships across the 

Tree of Life. While genomic data have unquestionably advanced our understanding of biology 

by incredible leaps and bounds, the ease and affordability of generating such large and complex 

data has unfortunately, in some circumstances, led to the idea that simply “throwing more data” 

at a particular evolutionary question is likely to be sufficient. This notion has led to an emphasis 

on obtaining larger datasets with the hope that one can overcome most any obstacle by simply 

increasing the sample size without considering the fit of these large, complex datasets to the 

highly oversimplified models that we often use to analyze these types of data. The title of my 

dissertation represents a rhetorical sarcastic question that my research has addressed. 
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Chapter 1  

Introduction 

Much of evolutionary research is inferential in nature, as we seldom – if ever – know the “true” 

evolutionary history of organisms or molecules. On a fundamental level, genomic data offer 

unprecedented opportunity to increase the accuracy and resolution of evolutionary inferences by 

reducing sampling error that results simply from insufficient sample size. For example, one of 

the primary goals of population genetics is to understand how different evolutionary processes 

shape patterns of genetic variation in nature, and studies now routinely leverage population 

genomic data to scan along entire chromosomes and dissect locus-specific evidence of selection, 

migration, recombination, and other processes (Folla & Gaggiotti, 2008; Narum & Hess, 2011; 

O’Reilly, Birney, & Balding, 2008; Oleksyk, Smith, & O’Brien, 2010; Vitti, Grossman, & 

Sabeti, 2013). Additionally, the field of phylogenetics has largely transitioned into 

phylogenomics, whereby species-level relationships are commonly reconstructed with high 

resolution from thousands to millions of base pairs (Edwards et al. 2007; Degnan and Rosenberg 

2009a; Edwards 2009a; Fujita et al. 2012). Indeed, genome-scale data are well-poised to solve 

many longstanding questions in evolutionary biology with high precision.  

However, there is another source of statistical error that is not a result of small sample size and 

may not be alleviated by even genome-scale data: systematic error. Systematic error arises from 

the failure of a model to adequately describe the important statistical properties of a dataset, 

which in turn may mislead inferences towards incorrect conclusions with high confidence – even 

with infinite data (Felsenstein 1978; Bollback 2002; Huang et al. 2010; Warnow 2015). In the 

context of population genomic inference, systematic error may mislead researchers to incorrectly 
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conclude that certain loci are important for adaptation that may have – in fact – evolved via drift 

(Teshima et al. 2006; O’Reilly et al. 2008; Narum and Hess 2011; Pavlidis et al. 2012). 

Phylogenomic analyses can be biased by systematic error towards incorrect estimates of 

evolutionary history with high statistical support when the model of molecular evolution is 

inadequate (Sullivan and Swofford 1997; Buckley 2002; Brown and Lemmon 2007; Huang et al. 

2010; Brown 2014; Leache et al. 2014; Roch and Warnow 2015). For example, recent studies 

have demonstrated that poor model fit at even a small handful of sites can overwhelm genome-

scale inferences (Castoe et al. 2009a; Shen et al. 2017a). Thus, simply “throwing more data” at a 

particular evolutionary question does not guarantee that conclusions will be any more accurate.  

The overarching goal uniting the five chapters of my dissertation is to illuminate both strengths 

and weaknesses of contemporary models and statistical methods for evolutionary inference from 

molecular data. Although it is well-acknowledged that poor model fit and its accompanied 

systematic error can mislead evolutionary inferences, we seldom understand how well current 

models describe our data, and even cursory examinations of model adequacy are rare in the 

literature (Goldman 1993; Sullivan and Swofford 1997; Bollback 2002; Lemmon and Moriarty 

2004; Kelchner and Thomas 2007; Waddell et al. 2009; Reid et al. 2014). As an effort to more 

fully understand evolutionary model adequacy, my dissertation is designed to address questions 

of model-based inference and selection in four different areas of evolutionary research: 

population genomics (Chapter 2), species tree estimation and delimitation (Chapter 2), heuristic 

phylogenomic approaches (Chapter 3), and model-based measures of tree distance (Chapter 4). 
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Chapter 2 

Bayesian inference of natural selection and demography from population 

genomic data 

Richard H. Adamsa, Drew R. Schielda, Daren C. Carda, and Todd A. Castoea 

aDepartment of Biology & Amphibian and Reptile Diversity Research Center, 501 S. Nedderman 

Drive, University of Texas at Arlington, Arlington, TX 76019 USA 
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Abstract 

Genome scans of population differentiation can provide powerful insight into the evolutionary 

processes at work across the genome. Perhaps the most popular application for these approaches 

is to infer natural selection based on patterns of genetic variation at different genomic loci. 

Signatures of selection can manifest as extreme measures of population differentiation at specific 

genomic regions, which are often referred to as “outlier” loci when evaluating population 

genomic data. In practice, ad-hoc techniques and heuristic thresholds are typically used to 

determine if these outlier loci represent targets of selection (or not). Lacking from most of these 

methods is an explicit, statistical framework that accounts for the demographic history of 

organisms (and uncertainty in demographic history) when determining if putative selected loci 

are under selection. Importantly, neutral processes alone can occasionally yield “outlier” loci due 

solely to random change, and it is likely that – particularly when sampling large genome-scale 

datasets – some small fraction of loci may exhibit “outlier” patterns of divergence, even when 

these loci evolve under drift alone. Here we have developed two Bayesian approaches for 

inferring selection from genome scans while explicitly considering the particular demographic 

history of the populations under study. These two methods present theoretical improvements to 

the rigor of genome scans of selection and highlight the importance of specifying appropriate 

null models when inferring specific evolutionary processes.  
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Introduction  

Genomic distributions of genetic differentiation provide a powerful framework for inferring 

evolutionary processes that have impacted regions of the genome. Two commonly used 

measures of genetic differentiation are FST  (Wright 1949), and dXY (Takahata and Nei 1985). 

These metrics have been applied extensively to characterize genome-wide patterns of genetic 

variation and differentiation across a wide range of populations and species (Jensen et al. 2016).  

In nature, most genomic variation is thought to derive from genetic drift occurring within 

structured populations. This expectation serves as a null model for identifying loci with patterns 

of genetic variation that differ significantly from the rest of the genome (so-called ‘outlier’ loci). 

Numerous studies have applied this principle to identify loci with extreme patterns of genetic 

differentiation that are poorly-explained by neutral processes alone, and thus may indicate 

selection (Jensen et al. 2016). Genetic differentiation can, however, be influenced by multiple 

factors; for example, small population sizes and deep divergence may shift neutral genomic 

distributions towards larger values of FST and dXY, which can confound inferences of selection. 

Furthermore, most FST-based models assume equal rates of drift within the populations under 

study (Weir and Cockerham 1984). Currently, no methods use an explicit probabilistic 

population model that incorporates demographic parameters to predict the distribution of neutral 

variation in FST and dXY. For example, pFst employs a likelihood ratio test of allele frequency 

differences between populations (Shapiro et al. 2013), while BayeScan, uses logistic regression 

to determine locus-specific departure from neutrality (Foll and Gaggiotti 2008).  

Here we describe a posterior predictive simulation (PPS) framework to generate theoretical 

distributions of FST and dXY under the neutral coalescent model for two populations that accounts 
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for demographic parameters in a probabilistic framework. Importantly, our method allows users 

to explicitly test the null hypothesis of genetic drift when conducting genomic scans. PPS is a 

popular method for evaluating model fit within a Bayesian framework that has been used to test a 

variety of evolutionary models (Gelman et al. 2004; Reid et al. 2014). Unlike other FST outlier 

tests, our PPS approach explicitly accounts for the demographic history of two genetically-

isolated species, including multiple demographic and experimental parameters (and uncertainty 

in those parameters), such as sample sizes, demographic parameters (𝜃 = 4𝑁%𝜇), unequal rates 

of genetic drift within populations (unequal 𝜃s), and divergence time (𝜏). Additionally, other 

genomic FST outlier tests assume free recombination among SNPs. Our method allows users to 

simulate theoretical distributions that are conditioned on sampling multiple linked SNPs per 

locus – allowing users to take full advantage of large genomic datasets. We provide our PPS 

model in the package GppFst (Genomic Posterior Predictive distributions of FST), which offers a 

user-friendly, open-source framework to generate theoretical distributions of FST and dXY under 

the neutral coalescent model. 

Implementation 

The R package GppFst was written in R 3.2.2 (R Core Team, 2013), and requires two other R 

packages, phybase (Liu and Yu 2010) and Geneland (Guillot et al. 2005) for simulating 

genealogies and computing Weir and Cockerham’s FST (Weir and Cockerham, 1984). The 

functions GppFst and GppDxy require a posterior distribution of coalescent parameters (𝜃, 𝜏) for 

a two-population model inferred via Markov Chain Monte Carlo (MCMC) sampling. This 

posterior distribution can be obtained using any program that implements a two-population 

coalescent model (see tutorial for examples). For each step in the MCMC, GppFst simulates 
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coalescent genealogies and sequence alignments using a modified version of the function 

simSeqfromSp provided from phybase. FST and dXY values are then computed for each simulated 

alignment, with the number of alignments to simulate per step specified by the user. Users can 

account for several experimental parameters, including variation in missing data per population 

and locus, locus lengths, and particular SNP-subsampling schemes (SNPs sampled per linked 

genomic region). Both locus length and number of individuals per population are sampled from 

their empirical distributions, and users specify the number of SNPs to retain per simulated locus, 

which can be fixed at empirical values (i.e., 1 SNP per locus) or set to use all SNPs per locus. 

After generating a theoretical distribution of FST or dXY, users can compare empirical and 

simulated distributions to assign significance to outlier loci poorly explained by the neutral 

coalescent model.  

Biological Application 

As a demonstration, we applied our GppFst model to a published RADseq SNP dataset (NCBI 

SRP051070) from two rattlesnake populations (Schield et al. 2015). We inferred demographic 

parameters from 7,031 unlinked nuclear SNPs with SNAPP (Bryant et al. 2012). Using GppFst, 

we generated a PPS distribution of FST to identify loci that are poorly explained by neutral 

processes alone. Comparisons of the relative frequencies of simulated and empirical loci within 

FST intervals highlight extreme FST intervals that exhibit an excess of empirical loci when 

compared to the PPS distribution (Fig. 1). To calculate the empirical P-value, we use the PPS 

distribution to determine the probability of observing a given proportion of empirical loci within 

a specified FST interval. For example, the proportion of loci with FST = 1 in the empirical 

distribution (0.0014) is more than ~10-fold greater than the proportion observed in the PPS 
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distribution (0.00012). Thus, observing 10 loci with FST = 1 is extremely unlikely under the 

neutral model (P < 0.0001). Comparisons between our method and others that do not incorporate 

probabilistic model-based approaches suggest that GppFst provides more conservative estimates 

of outlier FST loci. For example, GppFst incorrectly identified a significant excess of SNPs with 

FST = 1 in 4 of 100 simulated datasets (1,000 neutral SNPs each), while the program Arlequin 

(Excoffier et al., 2005) incorrectly assigned significance to every locus with an FST = 1 in all 100 

datasets (see tutorial). GppFst allows users to identify FST intervals with an excess of loci than 

expected under a neutral model. Our PPS framework employs the coalescent model of allopatric 

divergence between populations, which assumes free recombination between loci, no 

recombination within loci, and no gene flow. Because gene flow, recombination, and other 

factors may influence genomic variation, we recommend that users test all assumptions prior to 

using GppFst. 
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Figure 1. Empirical and posterior predictive simulated (PPS) distributions of FST for example data, with 
standard deviations. The mean proportion of loci from the 100 replicate PPS runs (gray) and proportion of 
loci in the empirical data (black) are shown. Inset (top-right) shows upper limit of the FST distribution, 
highlighting the difference between simulated and empirical distributions at extreme FST values. 
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Appendix 

Genomic distributions of population genetic differentiation 

FST and dXY are two commonly used measures of genetic differentiation between two (or more) 

populations. When population genomic data are available, empirical distributions of these two 

measurements can be leveraged to identify loci with observed values that differ significantly 

from the rest of the genome. Under the assumptions of neutral theory, the majority of genomic 

loci are thought to evolve by genetic drift, such that these so-called ‘outlier’ loci are inferred to 

be targets of various forms of natural selection. For example, population genetic processes that 

homogenize genetic variation between populations (i.e., gene flow, convergent selection) will 

lead to lower FST and dXY values, while divergent selection will yield stronger genetic 

differentiation and higher FST/dXY values. 

However, a number of population genetic processes can influence FST distributions , and 

discerning among these processes can be challenging when classifying outlier loci. For example, 

low FST values could result from gene flow and various forms of selection (i.e., balancing, 

convergent). Small population sizes and deep divergence may shift genomic distributions of FST 

and dXY towards larger values, which can hinder or confound inferences concerning the 

importance of particular loci in divergent selection. Furthermore, most FST models of genetic 

differentiation assume equal population sizes, such that the rate of genetic drift is approximately 

equivalent within each population. 
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The R package GppFst (Genomic Posterior Predictive Fst distributions) provides a robust 

framework to account for multiple evolutionary processes when conducting outlier tests for both 

FST and dXY distributions. When population parameters are inferred from genomic data, the 

functions GppFst and GppDxy provided in this package will simulated theoretical distributions 

of FST and dXY that can be used classify putative targets of selection. In short, our model accounts 

for the following sources of uncertainty that may influence FST and dXY distributions: divergence 

time estimates, population size parameter estimates, different population size parameters 

between populations, unequal population sampling, and SNP sampling. 

In our package FST is calculated as 

𝐹*+ =
𝑠-

𝑝(1 − 𝑝) 

Where 𝑝 is the allele frequency of allele A across populations and 𝑠- is the sample variance of 

allele A frequencies over populations calculated as: 

𝑠- =3
𝑛5(𝑝5̃ − 𝑝)-

(𝑟 − 1)𝑛
5

 

Where 𝑝5̃ is allele frequency of allele A in population 𝑖 calculated with a sample size of 𝑛. 

Finally 𝑟 is the number of populations. 

While dXY is calculated as 𝐷:; = ∑ 𝑥55> 𝑦>𝑑5> where 𝑑5> measures the number of nucleotide 

differences between haplotype 𝑖 from 𝑋 and haplotype 𝑗 from 𝑌. 
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Introduction  

The population size parameter 𝜃 = 4𝑁%𝜇 (2𝑁%𝜇 for haploid organisms) reflects the mutation-

drift balance occurring within a population with an effective size of 𝑁%	individuals and a 

mutation rate of 𝜇 per site per generation. As a measure of genetic diversity, 𝜃 represents the 

expected number of segregating sites observed between a pair of homologous sequences sampled 

from a given population (Wakeley 2008). Given an estimate of mutation rate, information about 

𝜃 can be leveraged to obtain an estimate of the effective population size 𝑁%. 𝜃 is a therefore a 

fundamental parameter of population genetics and is useful for understanding the degree to 

which neutral processes shape patterns of genetic variation in nature. Quantifying genetic 

diversity is also important to conservation biology, and thus estimates of 𝜃 provide critical 

insight into the genetic health of endangered species for informed conservation practices 

(Crandall et al. 1999).  

Numerous methods and genetic models have been developed to estimate 𝜃 from genetic data (see 

Wang, 2005 for examples). As any estimate obtained from a single locus or a small set of loci 

entails substantial uncertainty, large genome-scale datasets offer opportunity to estimate 𝜃	with 

high accuracy and precision. However, few likelihood-based methods are currently scalable to 

such massive datasets (>106 loci, >10kb/locus), are often restricted to using a single or small set 

of diploid genomes, are restricted to a specific type of sequence data (i.e., whole genomes vs. 

reduced representation), or require users to make assumptions about generation time and 

mutation rates. For example, most implementations of the popular pairwise-sequential Markov 

coalescent model (PSMC) require whole-genome data and that users provide a mutation rate 

assumed to be identical across all loci (Li and Durbin 2011), while other methods are restricted 
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to using individual diploid genomes (Haubold, B. et al. 2010). There are many genealogy-based 

methods for estimating demographic parameters (Felsenstein 1992; Kuhner et al. 1995), but 

these are intractable for genomic datasets that include many individuals. Furthermore, no current 

methods provide a statistical framework for leveraging estimates of 𝜃 to filter potentially 

spurious loci from datasets (i.e., paralogs). Accordingly, there is major need for efficient and 

scalable likelihood-based methods for estimating 𝜃 from diverse genomic datasets.  

Implementation 

The R package ThetaMater was written in R and C++, and requires the R package MCMCpack 

(Martin et al. 2011) to simulate posterior probability distributions of 𝜃. At the core of 

ThetaMater is the infinite-sites likelihood function (Watterson, 1975), which describes the 

probability distribution of observing k segregating sites in a sample size of n sequences obtained 

from a locus of size l. The likelihood of a genomic dataset under a given value of 𝜃 is then 

computed as a product of the individual-locus specific likelihoods (or summation of log-

likelihoods), each with an associated number of segregating sites k, sample size n and length l 

(see manual for model description). We have further expanded this approach to incorporate a 

discretized-gamma model of among-locus rate variation to accommodate rate variation and to 

characterize the genomic landscape of among-locus rate variation by estimating the gamma 

shape parameter (Yang 1997). Importantly, our method provides a user-friendly framework for 

efficient estimation of 𝜃 and substitution rate variation that is scalable to diverse genome-scale 

datasets (>106 loci) with larger samples sizes (>10 genomes), while accounting for uncertainty 

within a likelihood-based framework. Our method collapses datasets into sets of unique patterns, 

such that under many conditions, there is almost no limit to the number of loci that can be used 
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to estimate 𝜃 within minutes on a desktop computer. Unlike other methods restricted to a 

particular format, ThetaMater includes functions for converting a variety of widely-used 

alignment formats into usable input, including whole-genome sequences, reduced-representation 

data (i.e., RADseq, sequence capture), and single or multilocus Sanger sequenced datasets. 

Finally, ThetaMater includes a posterior predictive simulator (PPS) that allows users to leverage 

estimates of 𝜃 to identify loci with evidence of model violations, such as selection (Adams et al. 

2016) or paralogy. 

ThetaMater includes three Bayesian Markov Chain Monte Carlo (MCMC) simulation models for 

estimating posterior distributions of 𝜃: M1 (ThetaMater.M1) assumes no among-locus rate 

variation, M2 (ThetaMater.M2) estimates 𝜃 using a fixed 𝛼 parameter, and M3 (ThetaMater.M3) 

estimates the joint posterior distribution of 𝜃 and 𝛼. We implement a gamma prior distribution 

for both 𝜃 and 𝛼 with user-specified shape and scale parameters, and users can specify the 

number of rate classes used to approximate the distribution. The posterior predictive simulator 

function (ThetaMater.PPS) is directly integrated with the results from the three Bayesian models. 

Biological Application 

As a demonstration, we applied ThetaMater on a previously published RADseq dataset (2051 

loci; Schield et al., 2017). We conducted Bayesian estimation of  using ThetaMater.M1 for the 

empirical dataset before and after filtering loci with ThetaMater.PPS (Fig. 1A). We also 

simulated a large genomic dataset comprised of 106 loci (2kb each), sampling 20 genomes from a 

population with  𝜃 = 0.002 and among-locus rate variation = 0.5 (Fig. 1B). We specified the 

shape and scale parameters of the prior distribution at 10 and 0.0001 for the empirical example, 

and set prior parameters to 20 and 0.0001 for 𝜃 and 5 and 0.01 for 𝛼 in the simulated analysis. 
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We ran the MCMC chain for a total of  generations and discarded 10% as burn in. PPS were run 

using the unfiltered posterior distribution, simulating a single locus for all 104 generations 

present in the post-burn in MCMC samples using ThetaMaterPPS.  

ThetaMater analysis of the unfiltered RADseq dataset suggested a mean 𝜃 estimate of 0.0019, 

corresponding to Ne = 47,500 assuming a mutation rate of 10-8 (Fig. 1A, red). PPS based on this 

posterior distribution identified 3 loci with a significant excess of mutations, and these loci were 

filtered prior to reanalysis with ThetaMater. The posterior distribution of Ne inferred was 

centered around 45,000 individuals after removing these potentially spurious loci (Fig. 1A, blue). 

ThetaMater analysis of the simulated data returned the simulated parameter values with high 

probability (Fig. 1B).  

ThetaMater is optimized for diverse datasets, including single diploid genome analyses, multi-

genome data, reduced-representation data, and single or multilocus alignments. ThetaMater 

assumes free recombination between loci, no recombination within loci, error-free SNP calls, 

and neutral evolution. We encourage all users to carefully consider these assumptions prior to 

analysis with ThetaMater (see manual). Given the user-friendly framework and tractability of 

ThetaMater, we expect ThetaMater to be useful for a variety of applications, including 

population biology, comparative genomics, and conservation biology. 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (A) Empirical posterior estimates of 𝜃 before (red) and after (blue) filtering with 
Thetamater.PPS, and (B) the joint posterior distribution of 𝜃 and 𝛼 for the simulated dataset showing 
highest densities (warm colors) at the true simulated values (𝜃 = 0.002,  𝛼 = 0.5).   
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Appendix 

  The effective population size parameter 𝜃 

The population size parameter 𝜃 reflects the effects of genetic drift and mutation on patterns of 

genetic variation within a diploid population (for a haploid population) with an effective size of  

individuals and a mutation rate of  per site per generation. If two homologous sequences are 

sampled at random from a population,  describes the expected number of segregating sites 

observed between these two sequences. 𝜃 is a fundamental measure of genetic diversity in 

populations and is thus an informative parameter used in many population genetic models. The R 

package ThetaMater provides a Bayesian framework to estimate both  𝜃 and  (shape of among-

locus rate variation) parameters from a variety of genetic datasets, including haploid or diploid 

genomic data from single or multiple individuals, reduced-representation genomic data (e.g., 

RADseq, sequence capture), and single or multilocus Sanger sequence data (and variations of 

these datasets). ThetaMater implements three different functions that can be used to estimate 

these parameters within a Bayesian framework: 

• ThetaMater.M1: estimate  without among-locus variation 

• ThetaMater.M2: estimate  with a fixed  parameter of rate variation and a user-defined 

number of locus rate classes 

• ThetaMater.M3: estimate both  and the shape parameter  given a user-defined number of 

rate classes 
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  The likelihood function implemented by ThetaMater 

The three functions (ThetaMater.M1, ThetaMater.M2, ThetaMater.M3) simulate posterior 

probability distributions of effective population size parameters for a given dataset. These 

functions employ the likelihood function 𝑃(𝑆 = 𝑘|𝑙, 𝑛; 𝜃) to compute the probability of 

observing k segregating sites in a sample size of n from a locus with length l for a given value of 

𝜃. These methods compute the likelihood of a given dataset as a summation of the log-

transformed likelihoods across all loci. See the following publications for more information 

about this model, its derivation, applications, and similar models: 

• Tavaré, Simon. “Line-of-descent and genealogical processes, and their applications in 

population genetics models.” Theoretical population biology 26.2 (1984): 119-164. 

• Watterson, G.A. On the number of segregating sites in genetical models without 

recombination. Theoretical population biology 1975. 

• Wakeley, John. “Coalescent theory.” Roberts & Company (2009). 

• Hein, Jotun, Mikkel Schierup, and Carsten Wiuf. Gene genealogies, variation and 

evolution: a primer in coalescent theory. Oxford University Press, USA, 2004. 

• Takahata, Naoyuki, and Yoko Satta. “Evolution of the primate lineage leading to modern 

humans: phylogenetic and demographic inferences from DNA sequences.” Proceedings 

of the National Academy of Sciences 94.9 (1997): 4811-4815. 
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• Takahata, Naoyuki, Yoko Satta, and Jan Klein. “Divergence time and population size in 
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Below is the formula for the likelihood function described in these papers that is central to the 

three ThetaMater functions: 
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For a dataset consisting of 𝑥 loci, each an observed number of segregating sites 𝑘5, number of 

bases 𝑙5, and number of sequences sampled 𝑛5, we can sum the likelihoods of the individual loci 

to get the likelihood of the entire dataset under a given value of 𝜃: 

𝐿(𝐷|𝜃) =3𝑙
:

5V^

𝑜𝑔(𝑃(𝑆 = 𝑘5|𝑙5, 𝑛5; 𝜃) 
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  Applications, Assumptions, and Limitations of ThetaMater 

Understanding the assumptions of ThetaMater and the underlying coalescent model are critical 

to the appropriate use of ThetaMater. Importantly, ThetaMater assumes that there is no 

recombination within individual loci and free recombination between loci (i.e., no linkage). 

Furthermore, all loci are assumed to have evolved under strictly neutral evolution. These are 

fundamental assumptions of the coalescent model and the likelihood function implemented in 

ThetaMater. This can been seen in the form of the likelihood equation provided above: the 

likelihood of an entire dataset is a summation of the log-likelihoods across loci that are assumed 

to be genetically unlinked. In other words, the genealogy and number of segregating sites 

observed at each locus is assumed to be independently and identically distributed (i.i.d). 

To explore the potential effects of one such model violation (unrecognized recombination) in 

datasets, we simulated loci using the software msprime under 6 different recombination rates: 

(2e-9, 2e-8, 2e-7, 2e-6, 2e-5, 2e-4), using a sample size of 5 gene copies per 10kb locus, and with 

each dataset consisting of 10k loci. See Step 8: “Recombination & ThetaMater” for a plot of 

these analyses for each recombination rate and a dataset without recombination. In general, 

ThetaMater appears largely unaffected by recombination, as the posterior distribution of each 

analysis is largely centered around the true simulation value (𝜃 = 0.008). ThetaMater assumes 

that all loci are genetically unlinked, and at the request of a reviewer, we conducted a simulation 

of human chromosome 1 to evaluate the effects of linkage on ThetaMater estimates (See Step 9: 

“Linkage & ThetaMater”). Under extreme scenarios of linkage, ThetaMater appeared to be 

biased towards larger values, but for more realistic conditions, ThetaMater appears to be robust 
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to linkage. Nonetheless, these are complex subjects, and we recommend users to explore all 

potential violations of the model (including selection and recombination/linkage) prior to using 

ThetaMater. 

As estimates from any one locus entail significant uncertainty, ThetaMater allows researchers to 

take full advantage of large, genomic datasets when estimating  and provides a distribution of 

plausible values for parameter estimates while accounting for uncertainty. Users can also use an 

estimate of the shape of among-locus rate variation (ThetaMater.M1) or estimate the shape of 

among-locus rate variation (ThetaMater.M2) to account for among-locus rate variation when 

estimating , as well as characterize the genomic landscape of rate variation. The posterior 

predictive simulator included in ThetaMater allows users to identify potential outlier loci from 

the genomic distribution of genetic variation, whether due to issues of orthology (see Step 7), or 

other violations of model assumptions, such as selection (see GppFst R package, Adams 2017). 

ThetaMater also includes several functions for simulating datasets under the neutral coalescent 

model. Briefly, datasets are simulated under the infinite-sites model of mutation according to the 

protocol described in Wakeley 2008 (pg. 255). 

Users can estimate locus-specific s for each locus within a dataset to characterize among-locus 

estimates of 𝜃, or leverage all loci to estimate a single, population-wide estimate. For single 

locus-based estimates,  reflects the time to the most common ancestor among a sample of 

sequences. This is because the average time for 2 copies to reach a common ancestor is equal to 

2N generations (~4N generations for larger sample sizes). Thus, users can characterize 

differences in TRMCA (locus-specific ) among loci for a number of different applications, such 

as understanding what evolutionary processes may be at work across the genome. For example, a 
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short TMRCA (i.e., small effective population size) may indicate the effects of positive 

selection, while an older TMRCA (i.e., large effective population size) may indicate balancing 

selection (or other processes). 

Linkage & ThetaMater 

ThetaMater assumes that all loci are genetically unlinked (i.e., free recombination between loci). 

At the request of a reviewer, we conducted a simulation analysis to evaluate the effects of 

linkage on posterior estimates derived via ThetaMater. We simulated a sample of human 

chromosome 1 (length = 248,956,000bp) with three different recombination rates (2e-8, 2e-9, 2e-

10) and a sample size of 10 individuals. We also simulated a single dataset without 

recombination at all (i.e., 𝜌 = 0, such that the entire chromosome was linked). We randomly 

sampled 1000bp loci every 100kb, with resembles “reduced-representation” sampling, such as 

RADseq and sequence capture data. We used the following command in msprime: 

msprime.simulate(sample_size=10, Ne=10000, length=248956000, 

recombination_rate=	𝜌, mutation_rate=2e-8) The results of these analyses are plotted 

below for each recombination rate. We included a python script (SimulateChr1.v2.py) to 

generate these results. As you can see, in all cases with recombination (𝜌 = 2e-8, 2e-9, 2e-10), 

the posterior distribution of  was centered near the true simulated value (𝜃𝜃 = 0.0008), 

suggesting that ThetaMater is likely robust to linkage in these conditions. However, in the most 

extreme simulation in which 𝜌 = 0 (no recombination at all), we did find that ThetaMater was 

biased towards a larger value than the true simulated value. Under extreme scenarios of 

recombination (all loci are genetically linked), ThetaMater may be biased, but under realistic 

conditions, ThetaMater appears robust to linkage. These simulations are not necessarily 
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conclusive for all scenarios, and we encourage users to explore all potential violations of the 

coalescent model prior to using ThetaMater (i.e., recombination, linkage, selection). If there is 

some concern for model violations, one can simulate datasets (as we have done with msprime) to 

explore other potential violations, including linkage and selection using similar approaches to 

those presented here. 
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Abstract 

The assumption of strictly neutral evolution is fundamental to the multispecies coalescent model 

and permits the derivation of gene tree distributions and coalescent times conditioned on a given 

species tree. In this study, we conduct computer simulations to explore the effects of violating 

this assumption in the form of species-specific positive selection when estimating species trees, 

species delimitations, and coalescent parameters under the model. We simulated datasets under 

an array of evolutionary scenarios that differ in both speciation parameters (i.e., divergence 

times, strength of selection) and experimental design (i.e., number of loci sampled) and 

incorporated species-specific positive selection occurring within branches of a species tree to 

identify the effects of selection on multispecies coalescent inferences. Our results highlight 

particular evolutionary scenarios and parameter combinations in which inferences may be more, 

or less, susceptible to the effects of positive selection. In some extreme cases, selection can 

decrease error in species delimitation and increase error in species tree estimation, yet these 

inferences appear to be largely robust to the effects of positive selection under many conditions 

likely to be encountered in empirical datasets. 
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Introduction 

Multispecies coalescent models provide a valuable parameterization of the evolutionary 

processes that underlie neutral divergence between reproductively isolated lineages (Rannala and 

Yang 2003a; Liu et al. 2009; Fujita et al. 2012; Edwards et al. 2016). Coalescent processes 

occurring within ancestral species can often yield genealogical discordance among loci as a 

result of incomplete lineage sorting (ILS). ILS is responsible for wide-spread phylogenetic 

heterogeneity observed across the Tree of Life, and when unaccounted for, ILS can have 

significant impacts on both species tree estimation and species delimitation (Heled and 

Drummond 2010; Huang et al. 2010; Camargo et al. 2012). Multispecies coalescent models 

account for ILS by parameterizing the width (population sizes) and depth (divergence times) of a 

given species tree, thereby providing a statistical framework for inferring evolutionary 

relationships despite genealogical conflicts (Degnan and Rosenberg 2009a; Edwards 2009a; 

Yang and Rannala 2010).  

Genetic variation, however, may be subject to a variety of evolutionary processes (in addition to 

neutral coalescence) occurring along branches of a species tree, several of which may violate 

assumptions of the multispecies coalescent model. For example, recent studies have documented 

the impacts of gene flow on coalescent species tree estimation and species delimitation in both 

simulated and empirical datasets (Zhang et al. 2011; Leaché et al. 2014; Burbrink and Guiher 

2015). Under certain conditions (> 0.1 migrant per generation), admixture occurring between 

lineages will bias species tree estimation and lead to false clustering of distantly related taxa, 

whereas species delimitation appears to be misled by the effects of gene flow only when 

migration rates are on the order of ~1 migrant per generation (Eckert and Carstens 2008; Zhang 
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et al. 2011; Leaché et al. 2014). In contrast to the effects gene flow, simulation studies suggest 

that coalescent species tree estimation may be relatively robust to the effects of unrecognized 

recombination within loci (Lanier and Knowles 2012). The impacts of natural selection on 

species tree estimates and delimitation, however, are far less understood and have never been 

formally evaluated.  

The multispecies coalescent model provides the probability distribution of coalescent times and 

gene tree topologies expected under neutral evolution on a given species tree. This assumption of 

neutrality is fundamental to all coalescent models used to infer population parameters and 

permits the mathematical treatment of the genealogical and mutational processes as 

independently modeled phenomena (Wakeley 2008). Natural selection, however, will favor the 

population trajectory of particular alleles such that the coalescent process of a selected locus will 

depend on its allelic state – this in turn may manipulate genealogical histories in complex and 

often unpredictable ways (Kaplan et al. 1989; Barton et al. 2004). Simulating coalescent 

genealogies with selection is often challenging, and only a single existing program allows the 

simulation of genetic data under evolutionary scenarios that incorporate both selection and 

complex demographic histories (Ewing and Hermisson 2010). Given the difficulties of modeling 

natural selection within a coalescent framework, no species tree estimation or species 

delimitation framework currently accounts for selection. Additionally, selection may further 

complicate phylogenetic inference by interacting with other aspects of the speciation, such as 

population sizes, divergence times, mutation rates, gene flow, and recombination (Kaplan et al. 

1989; Barton et al. 2004; Lanier and Knowles 2012).  
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The impacts of natural selection on species tree estimation and species delimitation have 

received little attention, and when discussed, opinions on the subject have varied widely among 

authors. Recent studies have disagreed over the relative importance of accounting for selection 

when conducting species tree estimation (Edwards et al. 2016; Springer and Gatesy 2016). At the 

gene tree level, particular patterns of selection are thought to have profound effects on 

phylogenetic inference when present (Edwards 2009b), and systematic errors have been 

documented in gene tree reconstruction in the presence of strong convergent selection (Stewart et 

al. 1987; Castoe et al. 2009b). Given that selection is thought to occur in nature at a relatively 

small proportion of the nuclear genome, species tree estimation methods that analyze multiple 

unlinked loci are assumed to be relatively robust to the presence of selected loci –‘misleading’ 

signal generated by selected loci are assumed to be overwhelmed by the majority of neutral loci 

sampled (Edwards 2009b; Edwards et al. 2016). However, recent studies have suggested that 

both the direct and indirect effects of selection could be more pervasive across the genome than 

previously thought (Hahn 2008; McVicker et al. 2009; Scally et al. 2012; Corbett-Detig et al. 

2015), and other studies have demonstrated that positive selection at even a small number of sites 

can indeed overwhelm gene tree inference (Castoe et al. 2009) and bias demographic estimates, 

such as reduced population sizes (Schrider et al. 2016).  

Particular types or patterns of selection are thought to be less problematic for multispecies 

coalescent inferences (i.e., purifying selection), which may manifest primarily as reduced 

substitution rates and suppressed ILS at selected loci (Rannala and Yang 2003a; Edwards 2009b; 

Zhu and Yang 2012; Edwards et al. 2016). Genes involved in speciation and adaptation are 

thought to provide better resolution of species histories (i.e., increased probability of 

monophyly), although it is unclear how this may directly translate to inferences under the 
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multispecies coalescent model (Hey 1994; Ting et al. 2000; Rosenberg 2003). Recent studies 

have also shown that traits experiencing positive selection may provide better resolution of 

closely-related taxa when compared to neutral loci that exhibit minimal signal of reproductive 

isolation when species diverged recently (Solís-Lemus et al. 2015). Conversely, multiple studies 

have suggested that loci experiencing species-specific positive selection are not appropriate for 

coalescent species tree estimation and species delimitation analyses (Rannala and Yang 2003a; 

Yang and Rannala 2010; Zhang et al. 2011a; Springer and Gatesy 2016), primarily because they 

violate the core assumption of the model. Regardless, it is likely that large, multilocus datasets 

may include some proportion of loci that have evolved under selection, and while it may be 

logical to filter away such loci from empirical datasets, the task of identifying targets of selection 

is not trivial. Accordingly, we see it as an urgent need to understand the potential consequences 

of positive selection on phylogenetic inference under models that assume strictly neutral 

evolution.  

The question therefore remains: can species-specific positive selection influence coalescent 

species tree estimation and/or species delimitation? Here we address this question using 

coalescent simulations to evaluate the impacts of positive selection on multispecies coalescent 

inferences under a range of evolutionary scenarios and experimental conditions. We simulated 

genealogies and associated alignments both with and without selection occurring within a single 

taxon, and quantified differences between the simulated and inferred species models with respect 

to species tree topology, species delimitation, and demographic parameter estimates. Because 

these inferences are based on the assumption that gene trees are strictly a function of neutral 

coalescence occurring within species trees, we also characterized the effects of selection on gene 

tree distributions across our simulations. Our intentions were not to exhaustively explore all 
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potential scenarios of selection and diversification histories, nor to evaluate the performance of 

different methods (Leaché and Rannala 2011; Sukumaran and Knowles 2017), but rather to 

provide a critical ‘first-step’ perspective on the potential impacts of selection on coalescent 

inferences of evolutionary history. We evaluated the impacts of selection using the program BPP 

(Yang and Rannala 2010) because it offers a general framework for both species tree estimation 

and species delimitation. Our analyses and interpretations were thus guided by three primary 

questions: (1) To what degree and in what direction can positive selection influence species tree 

estimation and delimitation? (2) What particular evolutionary scenarios and experimental 

conditions are most susceptible to the effects of selection? (3) What practical concerns do 

positively-selected loci pose to analyses of empirical datasets?   

 

Materials and methods 

Three-species simulation model  

We designed a multifactorial simulation experiment in which data were simulated under different 

evolutionary and experimental conditions that varied with respect to species divergence times, 

dataset size (i.e., total number of loci), proportion of selected loci, selection strength, and sample 

size (i.e., number of haplotypes sampled per species). Our approach follows previous simulation-

based studies of Bayesian species tree estimation and species delimitation methods, with several 

key differences (McCormack et al. 2009; Huang et al. 2010; Zhang et al. 2011; Lanier and 

Knowles 2012; Leaché et al. 2014). Briefly, our simulation framework consisted of (i) simulating 

genealogies (with and without selection) using the program MSMS (Ewing and Hermisson 2010) 
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(ii) simulating 1,000 base DNA sequence alignments under the JC69 model (Jukes and Cantor 

1969) on simulated genealogies, (iii) conducting Bayesian species tree estimation and species 

delimitation using BPP (Yang and Rannala 2010) for each simulated dataset, and (iv) quantifying 

differences between the true species model (upon which simulations were made) and posterior 

models inferred via Markov Chain Monte Carlo (MCMC) sampling. We evaluated the effects of 

selection on multispecies coalescent inferences of a three-species model with parameters 

described by the multispecies coalescent: population size parameters (𝜃c, 𝜃d, 𝜃e, 𝜃cd, 𝜃cde),  

divergence times (𝜏cd, 𝜏cde), and topology ((Species-A, Species-B), Species-C) (Fig. 1). We 

choose a three-species model so that we could tractably test a wide-range of experimental 

conditions, parameter values and combinations, and for comparative purposes with recent similar 

studies using a three-species model to study the effects of gene flow (Zhang et al. 2011). 

We hypothesized that the impacts of positive selection would be most relevant when species are 

relatively closely related and population sizes are large, and thus we tailored our simulations to 

variations of these scenarios, which also represent more challenging problems for species 

delimitation and species tree estimation (Maddison and Knowles 2006; Leaché and Rannala 

2011; Zhang et al. 2011a). For all simulation experiments, we set a constant value of 𝜃 = 0.01 for 

all ancestral and extant species in the model (𝜃c = 𝜃d = 𝜃e = 𝜃cd = 𝜃cde = 4𝑁𝜇 = 0.01) and 

a diploid population size 𝑁%= 100,000 individuals, which corresponds to a mutation rate 𝜇	= 2.5 

x 10-8 substitutions per site per generation. We chose this value of 𝜃 because it falls within the 

range of empirical estimates of 𝜃 (0.0005-0.02) for many animal and plant species (Zhang and 

Hewitt 2003), and the mutation rate of 2.5 x 10-8 has been suggested for a number of taxa, 

including humans (Nachman and Crowell 2000). This 𝜃 value is therefore likely representative 
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of many species and has also been used in previous simulation-based studies (Zhang et al. 

2011a). For our simulations, we tested a total of 9 different 3-taxon models that differ in relative 

divergence times (𝜏cd, 𝜏cde ; Fig. 1). We used three different simulation models that differed by 

three orders of magnitude for the root node depth of the species tree (𝜏cde): shallow (𝜏cde  = 

0.0001), moderate-depth (𝜏cde  = 0.001), and deep species tree models (𝜏cde  = 0.01; Fig. 1). For 

each of these three different models of species tree depth, we also tested three values for the time 

at which Species-A and Species-B diverged from one another (𝜏cd): recent (𝜏cd =	𝜏cde  x 0.1), 

medium (𝜏cd =	𝜏cde  x 0.5), and ancient divergence (𝜏cd =	𝜏cde  x 0.9; Fig. 1). This has the effect 

of shortening or elongating the internode distance (i.e., length of the ancestral Species-AB 

branch) in relation to the species tree height (𝜏cd); parameters that have been shown to 

significantly impact both species tree estimation and delimitation (Maddison and Knowles 2006; 

Leaché and Rannala 2011; Zhang et al. 2011a). 

Simulating selection on multispecies coalescent models.  

We used the program MSMS (Ewing and Hermisson 2010) to simulate both neutral and selected 

genealogies under each three-species model. Selection coefficients are specified in units of 2Nes 

and , where Ne is the diploid population size, waa is the Malthusian fitness for the aa genotype, 

and saa is the selection coefficient against the homozygous aa genotype. For example, with a 

diploid population size of Ne = 100,000 and waa = 0.90 (aa homozygotes produce 10% fewer 

offspring), we would specify saa = -20,000 to simulate data in which strong positive selection is 

driving the A allele towards fixation with complete dominance. Our goal was to tractably 

evaluate the effects of selection across a variety of conditions using three different selection 

strengths for each species model and parameter combination: weak (saa = -2000), strong (saa = -
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20000), and very strong (saa = -100000) selection pressure against the recessive genotype within 

a single species (Species-A). For brevity, we refer to these three selection strengths in terms of 

the absolute difference in fitness between the homozygous AA and aa genotypes  : “weak” (“W”, 

s = 0.01), “strong” (“S”, s = 0.10) and “very strong” (“VS”, s = 0.50) selection. We also 

specified the forward and backward mutation rate at the selected site equal to 2.5 x 10-8. We set 

the starting time of selection to occur immediately after the divergence of Species-A and 

Species-B (), and set the starting allele frequency to 0.000005; these scenarios effectively 

represent a novel, beneficial mutation within a single individual within Species-A that arises 

immediately after its ancestral divergence from Species-B. We tested different sampling schemes 

(number of total loci, number of selected loci, and number of haplotypes sampled per species) to 

evaluate how different experimental designs may be more or less susceptible to the effects of 

selection (Fig. 1). We used three different dataset sizes (1-locus, 2-loci, and 10-loci) and varied 

the proportion of selected loci within these datasets: 0% (neutral), 10%, 20%, 50%, and 100% 

(Fig. 1). We also explored how two different sample sizes interacted with the amount of 

selection present in the datasets (5 or 20 haplotypes sampled per species; Fig. 1).  

In addition to our BPP analyses, we simulated 104 genealogies and alignments for each species 

tree model (9 total divergence models) and experimental condition (neutral and 3 selection 

coefficients, 2 sample sizes: 104 × 9 × 4 × 2 = 720,000) that were used to quantify the effects of 

selection on gene tree distributions and to provide a population genetic perspective to our 

findings (Fig. 2-3). Based on these data, we quantified the percentage of gene trees that exhibit 

complete monophyly for all Species-A lineages (i.e., the example genealogy shown in Fig. 1) for 

each set of simulated genealogies. Next, we simulated alignments and calculated FST by 

sampling a single SNP from each of simulated locus to obtain a distribution of FST for each 
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simulation condition. We also conducted two pairwise lineage comparisons: Species-A versus 

Species-B and Species-B versus Species-C using scripts provided in the R package GppFst 

(Adams et al. 2016).  

Simulation of Sequence Alignments 

DNA sequence data were simulated using the program Seq-Gen (Rambaut and Grassly 1997) for 

each genealogy simulated by MSMS. We evolved 1,000bp alignments under the JC69 model 

(Jukes and Cantor 1969) for all simulated datasets. For the genealogies that experience positive 

selection, our approach effectively models a 1,000bp sequence that is genetically linked to a 

single positively-selected site (i.e., the selected site is not included in the alignment).  

Running the rjMCMC Algorithms  

We simulated 200 replicate datasets for each parameter and sampling combination. We 

conducted Bayesian species tree estimation (algorithm 01), unguided species delimitation 

(algorithm 11), and parameter estimation (algorithm 00) using the program BPP (Yang and 

Rannala 2010). For all BPP analyses, we used gamma prior distributions with expectations at the 

true simulated value for the root node depth (𝜏cde) and population parameters 𝜃 (Fig. 1), and we 

set the species model prior to the default “Prior 1” setting, which assigns equal probabilities on 

the three rooted topologies.; similar prior settings have been used in other recent simulation 

studies (Yang and Rannala 2010; Zhang et al. 2011a). We used the true simulated species 

topology ((A, B), C) as the starting topology for all analyses. We ran the MCMC algorithms 

implemented in BPP for a total of 110,000 iterations (sampling every 10) and designated the first 

10,000 iterations to be discarded as burn-in. We calculated the mean and standard deviation of 
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posterior probabilities of the three possible rooted topologies and of species delimitation 

hypotheses across all 200 replicates. We used the mean value of the posterior distribution for 

each of the 200 replicates for 𝜃 and 𝜏	parameters and plotted the total mean and standard 

deviation for these estimates under each set of experimental parameters. Our entire simulation 

study comprised 86,400 uniquely simulated datasets, which were analyzed independently for 

species tree estimation, species delimitation and parameter estimation for a total of 86,400 × 3 = 

259,200 BPP analyses (Fig. 1). 

  

Results 

The effect of positive selection on gene tree distributions and population genetic statistics  

We find that species-specific positive selection can bias gene trees towards topologies in which 

all Species-A lineages coalesce before coalescing with Species-B or Species-C lineages (Fig. 2). 

In other words, genealogies simulated under selection show an increased propensity for Species-

A monophyly when compared to neutral loci (i.e., the example genealogy shown in Fig. 1). As 

would be predicted, our simulations demonstrate that the degree to which selection influences 

lineage sorting is a function of the selection coefficient and divergence times (both 𝜏cde  and 

𝜏cd). This effect scales with the strength of selection, and in all cases we found that >85% of 

genealogies exhibited monophyly of Species-A lineages even when species diverged very 

recently. We also observed a strong inverse relationship between tree depth (𝜏cde)	and the 

strength of selection required to influence genealogical distributions. For example, even weak 

selection can result in major shifts in gene tree distributions in our deep species tree models, 
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whereas only stronger selection coefficients are able to substantially influence the sorting of 

Species-A lineages in our shallow species simulations (Fig. 2). For the shallow species 

simulations (𝜏cde = 	0.0001, 𝜏cd = 0.00001) with 5 samples per species, 0% of genealogies are 

completely sorted within Species-A under both neutral evolution and weak selection (s = 0.01), 

while 29.54% and 93.20% are completely sorted with strong (s = 0.10) and very strong selection 

(s = 0.50), respectively (Fig. 2a). We observed a similar trend between weaker selection and the 

relative divergence time between Species-A and Species-B (𝜏cd).  

We find that selection increases estimates of FST compared to neutral loci, yielding patterns of 

differentiation that are incorrectly interpreted as greater lineage divergence when compared to 

neutral loci (Fig. 3). Importantly, FST between Species-A and Species-B often exceeded that 

between Species-B and the more distantly related outgroup Species-C, when loci are under 

selection in Species-A (Fig. 3a vs. 3b). For example, although the divergence time between 

Species-A and -B (𝜏cd = 0.00001) was two orders of magnitude lower than the divergence with 

Species-C (𝜏cde  = 0.001), average FST between Species-A and Species-B under very strong 

selection is over twice (0.227) that measured between Species-B and Species-C (0.093; Fig. 3a 

vs. Fig. 3b).  

The effects of selection on estimates of species divergence time and population size parameters 

Evaluation of the effects of selection on four parameters (𝜏cde , 𝜏cd, 𝜃c, 𝜃d) confirm that 

selection can bias parameter estimates towards larger estimates of species divergence times 

(𝜏cde , 𝜏cd) and smaller estimates of population size parameters for the species under selection 

(𝜃c) compared to the true simulated values and neutral estimates (Fig. 4 and Fig. S1-S2). We 

also observe a slight increase in population size parameter estimates of the sister taxon, Species-
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B (𝜃d) in some analyses (Fig. S1). Biases in parameter estimates appear to be largely a function 

of the proportion of loci under selection, and the strength of selection, and in many scenarios, 

increasing the number of individuals sampled per taxa also increases the severity of bias. 

Because the relative severity of the impacts of selection on these parameter estimates depends 

largely on the species tree depth (𝜏cde) and Species-AB divergence time (𝜏cd), we discuss our 

results separately in the context of each of the three species depth models below.  

Shallow species trees – Our simulation analyses indicate that selection can bias estimates of 

divergence times (𝜏cde , 𝜏cd) and population size parameters (𝜃c, 𝜃d) on shallow species trees 

(𝜏cde = 0.0001;	Fig. 4 and Fig. S1). Selection can bias estimates of 𝜏cde  and 𝜏cd towards larger 

values, meaning that datasets including loci under selection lead to incorrectly older estimates of 

speciation times when compared to neutral datasets. While strong selection at multiple loci can 

substantially bias parameters inferred from 2- and 10-locus datasets, 𝜃 and 	𝜏	estimates appear 

robust to the presence of weak selection in many cases (Fig. 4). We also find that selection can 

bias estimates of the population size parameters 𝜃c	and 	𝜃d under certain conditions (Fig. 4a-c, 

Fig. S1 d-f). Under the most extreme conditions explored in which 100% of loci in 10-locus 

datasets evolved under very strong selection, 𝜃c is decreased by 97.9% (0.00021; Fig. 4c). Using 

the simulated mutation rate (𝜇	= 2.5 x 10-8), this corresponds to an Ne estimate of only 2,100 

individuals, while the true population size simulated was 100,000. These biases are substantially 

reduced under more realistic conditions, as when only 10% of loci are under selection (Fig. 4c, 

light gray).  

Moderate-depth species trees – Positive selection can also bias parameter estimates under our 

models of moderate species trees (𝜏cde = 0.001 Fig. 4), but these biases are less pronounced 
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compared to our shallow species tree analyses. Estimates of 𝜏cde , 𝜏cd, and 𝜃d are often inflated 

as the number and strength of selection increases, while 𝜃c estimates are biased towards smaller 

values (Fig. 4 and Fig. S1). These effects are most prominent when Species-A and Species-B 

diverged recently under this moderate-depth species tree model (i.e., 𝜏cd =	0.0001; Fig 4, blue 

lines) and are less pronounced with greater relative divergence. Parameter estimates appear 

relatively robust to larger datasets that include only a small proportion of loci (10-20%) that have 

evolved under even strong selection, as well as weak selection even at 100% of loci (Figs. 4 and 

S1; light gray shading).  

Deep species trees – Our results suggest that selection has little influence over parameter 

estimates for deep species tree models (𝜏cde =	0.01 Fig. S2), except when 𝜏cd = 0.001 and only 

𝜃c appears to be susceptible to strong selection (Fig. S2a-c, blue lines). In all other scenarios, 

estimates of 𝜏cde , 𝜏cd, 𝜃c, and 𝜃d under scenarios of selection are nearly equivalent to neutral 

inferences, regardless of the strength or prevalence of selection (i.e., proportion of selected loci), 

and regardless of sample sizes (5 vs. 20). Even under the most extreme scenarios of positive 

selection in 10-locus datasets (100% of loci under very strong selection), the parameter estimates 

are nearly identical to neutral inferences when 𝜏cd ≥ 0.005 (Fig. S2, black and red lines).  

The effects of selection on species delimitation 

We evaluated the effects of positive selection on Bayesian coalescent species delimitation by 

comparing the average posterior probability (across the 200 replicates) of a species model 

consisting of three species (P3), the posterior probabilities of Species-A (PA) and Species-B (PB), 

and the posterior support for an incorrect inference of Species-B and Species-C being a single 

species (Species-BC; PBC). Here, increasing P3, PA, and PB due to the presence of selection in the 
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data represents increased confidence in the true simulation model. Conversely, an increase in PBC 

due to selection represents a statistical bias towards an incorrect inference, because Species-B 

and Species-C were simulated as true, genetically isolated species. In general, we find that the 

effects of selection on posterior probabilities of species hypotheses are strongest in our shallow 

simulation models and when Species-AB diverged relatively recently (i.e., shorter 𝜏cd). 

Additionally, our simulation analyses indicate that the effects of selection on posterior 

probabilities increase with larger sample sizes (i.e., 5 vs. 20). In most cases, weak selection 

appears to have minimal influence over posterior probabilities (Fig. 5, light gray) and we often 

find little difference between estimates obtained from strictly neutral datasets and those inferred 

from datasets comprising fewer loci under selection (i.e., 10-20%), but not always. 

Shallow species trees – We find that positive selection can influence Bayesian coalescent species 

delimitation on shallow species trees (𝜏cde = 0.0001), particularly when multiple loci have 

evolved under strong selection (s = 0.10, 0.50; Fig. 5 and Fig. S3). The effects of selection on 

posterior probabilities of species hypotheses increases with the strength of selection and the 

number of selected loci included in the analyses. For example, selection inflates estimates of P3, 

PA, PB, to varying degrees depending on the percentage of loci under selection and the particular 

selection coefficient. We also find that the relative divergence times between Species-A and 

Species-B (𝜏cd), and larger sample sizes, have substantial synergistic effects that determine the 

degree that selection influences posterior probabilities, which appear most susceptible to the 

effects of selection when Species-A and Species-B are more closely-related (Fig. 5, blue lines) 

and 20 individuals are sampled (Fig. 5c, f). 
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We find that selection increased posterior probabilities of single-locus based species delimitation 

when a single neutral locus did not appear to provide strong resolution of species (Fig. 5 a, d). 

We also identified similar trends in species probabilities as the proportion of loci under strong 

selection increased for the 2- and 10-locus analyses. When 10% of loci are under selection in 10-

locus datasets (i.e., a single selected locus) the effects of selection on P3, PA, and PB are relatively 

weak, but are greater when selection is strong, 20 haplotypes are sampled per species, and 

Species-A and Species-B diverged recently (𝜏cd = 0.00001 Fig. 5c, f, and Fig. S3a-c). We also 

find a small, but measurable increase in PBC in several analyses (Fig. S3 d-f). In the most extreme 

scenarios where all 10 loci evolved under strong selection and 5 haplotypes were sampled per 

species,	PBC (0.314) is over four times that of 10 neutral loci (PBC = 0.077). However, this bias 

appears largely restricted to scenarios of strong selection, and is reduced under even slightly 

more realistic conditions (Fig. S3, light gray vs. dark gray).  

Moderate-depth species trees – Our results indicate that selection can also influence species 

delimitation on moderate-depth species trees under some conditions (𝜏cde = 0.001; Fig. 5), but 

far less than we observed with shallow species model. In other words, selection has less 

influence over estimates of more distantly related taxa when compared to more recently-diverged 

species (Fig. 5, top vs. bottom panels). Similar to our analyses of the shallow simulation models, 

selection yields higher P3, PA, PB, and PBC estimates compared to neutral locus datasets. These 

effects are largely limited to scenarios in which Species-A and Species-B are recently diverged 

(𝜏cd =	0.0001; Fig. 5, blue line), and are far less pronounced or unobserved when 𝜏cd is older 

(Fig. 5, black and red lines). In general, moderate-depth species tree simulations have far less 
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sensitivity to the varying strengths of selection and reduced sensitivity to the number of 

haplotypes sampled.  

Deep species trees – As with our moderate-depth simulation analyses, we find that selection only 

impacts species delimitation on the deep species model (𝜏cde = 0.01) when Species-A and 

Species-B diverge relatively recently, and only in single and 2-locus analyses (𝜏cd = 0.001, blue 

line; Fig. S4). In these scenarios, we find that even weak selection can increase P3, PA, and PB 

when compared to neutral loci. Outside of these special conditions, we otherwise find that the 

posterior probabilities of the true simulation model (P3, PA, and PB) approach 1.0 and PBC = 0.0 

under nearly all other simulated scenarios, regardless of the selection strength, the proportion of 

selected loci, and the number of individuals sampled (Fig. S4).  

The effects of selection on species tree estimation 

We quantified the effects of species-specific positive selection on coalescent species tree 

estimation by measuring the posterior probability of two competing rooted topologies: the true 

species topology ((Species-A, Species-B), Species-C) indicated by PABC, and an incorrect 

topology ((Species-B, Species-C), Species-A) indicated by PBCA. We find that decreases in PABC 

always coincide with increases in PBCA, and that the probability of the third possible rooted 

topology ((Species-A, Species-C), Species-B) is largely unaffected by selection and remains 

consistently low (results not shown). If selection increases PABC compared to neutral conditions, 

then selection reduces error in species tree estimation. Conversely, if selection increases PBCA, 

selection increases error in species tree estimation and biases inferences towards the incorrect 

rooted topology (i.e., selection is positively misleading). In general, we find that positive 

selection can influence species tree estimation particularly when species are more closely related, 
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the ancestral Species-AB branch is shorter, more individuals are sampled per taxa, and strong 

selection is present at multiple loci.  

Shallow species trees – Our simulations suggest that species-specific positive selection can 

influence species topology estimates in the context of our shallow species model (𝜏cde = 

0.0001), particularly when selection is strong, the proportion of selected loci is high, and more 

than a single selected locus is sampled (Fig. 6a and S5a). Additionally, the effects of selection on 

posterior probabilities of species topologies increase with larger sample sizes (i.e., 5 vs. 20) and 

when Species-A and Species-B diverged more anciently (i.e., larger 𝜏cd). Under specific 

scenarios of selection, our simulations demonstrate that selection can mislead species tree 

estimation by increasing PBCA and simultaneously decreasing PABC to varying degrees as a 

function of experimental parameters (i.e., sample sizes) and evolutionary conditions (i.e., 

selection coefficient). For example, positive selection at a single locus slightly increases the 

probability of the wrong species topology from PBCA = 0.324 under neutral conditions to 0.358, 

and 0.447 for strong and very strong selection, respectively, when five haplotypes are sampled 

and 𝜏cd = 0.00001	(Fig. S5a). When sampling is increased to 20, PBCA is further increased to 

over 2.5x (0.608) that of neutral inferences (0.242) for datasets consisting of a single locus under 

very strong selection. Tracking increases in PBCA in the presence of selection, the posterior 

probability of the true tree (PABC) decreases from 0.523 under neutral estimates to 0.493, 0.395, 

and 0.207 under weak, strong, and very strong selection coefficients, respectively (𝜏cd =

0.00001; Fig.  S5a).  

We observed similar effects of selection for species trees inferred from 2-locus datasets (Fig.  

S5a). As expected, the statistical bias introduced by selection increases as the number of selected 
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loci, the strength of selection, number of individuals sampled, and 𝜏cd increases. For example, 

when 𝜏cd = 	0.00009, PBCA (0.752) is over twice that inferred from strictly neutral loci and PABC 

is less than half that of neutral inferences (0.128) when both loci are under strong selection 

(neutral PBCA = 0.332, PABC = 0.351). Similarly, species trees estimated from 10-locus datasets 

may also be biased towards the wrong topology as the number of loci under selection, strength of 

selection, number of individuals, and 𝜏cd increase. In the most extreme conditions in which all 

10 loci are under very strong selection, 20 haplotypes are sampled per species, and 𝜏cd =

0.00001, PBCA increases to over 60-fold (0.629) that inferred from 10 neutral loci (0.020) and 

PABC decreases to 0.224 (neutral PABC = 0.960; Fig. 6a). When 𝜏cd = 0.00009, PBCA increases to 

0.472, 0.906 and 0.962, while PABC decreases to 0.273, 0.048 and 0.019 under weak, strong, and 

very strong selection, respectively (neutral PBCA = 0.308 and PABC = 0.4000). However, these 

biases are substantially reduced under even slightly more realistic conditions, as observed when 

10% of loci experienced positive selection (i.e., a single locus; Fig. 6a).   

Moderate-depth Species Trees – Selected loci can also bias species tree estimation towards the 

incorrect topology for moderate-depth species trees (𝜏cde = 0.001; Fig. 6b and S5b). As with 

shallow species models, the effects of selection on PBCA and PABC increase with the strength of 

selection, number of selected loci, number of individuals sampled per taxa, and 𝜏cd. Generally, 

we find that biases introduced by selection are less pronounced on moderate-depth species trees 

when compared to shallow species trees (Fig. 6a vs. 6b). We find that in all cases, reducing the 

number of individuals sampled also reduces the statistical biases observed in the analysis of 

selected loci.  



 

53 

In our single-locus estimates of species topologies, PBCA increases to 0.533, 0.557, and 0.583, 

while PABC decreases to 0.236, 0.239, and 0.212 under weak, strong, and very strong selection 

coefficients, respectively, when 𝜏cd = 0.0009 and 20 haplotypes are sampled per taxa (neutral 

PBCA = 0.299 and PABC = 0.404). Analyses of the more recently diverged simulations (𝜏cd =

0.0001,0.0005) show similar trends and the overall effects of selection on PBCA and PABC are 

reduced when only 5 haplotypes are sampled per species (Fig. S5b). We observed similar trends 

for 2-locus datasets, as biases introduced by selection are also most prominent when 𝜏cd =

0.0009 and 20 haplotypes are sampled per taxa. However, when only one of the two loci are 

under selection, PBCA and PABC are closer to those based on neutral inferences (i.e., inferences are 

less biased with the addition of even a single neutral locus). For 10-locus datasets, our results 

suggest that species tree estimates can be strongly biased towards the wrong topology in the 

presence of weak selection at all 10 loci: PBCA increases to 0.856, 0.934, and 0.932, while PABC 

decreases to 0.096, 0.042, 0.049, for weak, strong, and very strong selection coefficients, 

respectively, when 𝜏cd = 0.0009 and 20 haplotypes are sampled per species (neutral PBCA = 

0.189, PABC = 0.628, Fig. 6b). Similar biases are observed in our simulated datasets when 𝜏cd =

0.0005, but are less pronounced. We find that species tree probabilities are largely unaffected by 

selection when 𝜏cd = 0.0001, even when all 10 loci evolved under very strong selection (Fig. 

6b). 

Deep Trees – Our simulation analyses indicate that selection does not appear to measurably 

influence species tree estimation on deep species trees (Fig. S6). Regardless of the number of 

selected loci, selection strength, sample sizes (5 vs. 20), and Species-AB divergence time (𝜏cd), 
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PBCA and PABC are equivalent between results for neutral and selected loci (0 and 1.0, 

respectively). 

Discussion 

The multispecies coalescent model has become a cornerstone of molecular systematics, yet 

major questions remain about the impacts of model violations, such as selection. Previous studies 

have relied on intuition to formulate arguments for the robustness (or lack of) of coalescent 

inferences to the presence of selection. Our study thus represents a ‘first-step’ perspective into 

the effects of model violations in the form of species-specific positive selection, which we have 

shown to bias gene tree distributions and influence downstream estimates of evolutionary history 

under certain conditions explored in our simulations. Importantly, our simulations suggest that 

the efficacy of natural selection to influence species tree and species delimitation estimates is 

highly dependent on particular evolutionary scenarios and experimental conditions, and these 

factors are relevant when considering the practical implications of our study. In general, we find 

that selection often acts synergistically with other parameters, such that the effects of selection 

are greatest when sample sizes are large, strong selection is present at multiple loci, and species 

are recently diverged. In agreement with opinions discussed in previous studies (Edwards et al. 

2009a, 2016a), we find that species tree estimates and delimitations are relatively robust to the 

effects of selection under more realistic conditions explored in our simulations that are most 

likely to be encountered in empirical studies. Nonetheless, we documented both expected and 

unexpected trends in the presence and absence of selection, which should serve as an initial 

benchmark for understanding the effects of positive selection on coalescent inferences of 

phylogeny.  
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Selection can bias estimates of population size and divergence time 

We find that loci under positive selection tend to provide misleading evidence of smaller 

effective population sizes and deeper divergence times for the taxa experiencing positive 

selection (Fig. 4). These biases are most exaggerated when species are relatively closely related 

(i.e., shallow- and moderate-depth simulations) and are minor when lineages are deeply 

diverged. Selection increases the rate of coalescence (O’Fallon et al. 2010), thus resembling a 

decrease in 𝜃	that yields genealogies characterized by short coalescent times and monophyletic 

topologies for taxa under selection (Charlesworth 2009). Interestingly, we also identified a slight 

increase in the effective population size estimates for the sister taxon not experiencing selection 

(𝜃d) when selection is present in a closely-related, yet genetically-distinct species (here, Species-

A). The number of individuals sampled per species also increases these biases, particularly when 

species are recently-diverged. In many scenarios, we find that relatively weak selection had little 

effect on parameter estimates, and that increasing the proportion of neutral loci substantially 

reduced (i.e., diluted) biases introduced by selection.  

Selected loci increase posterior probabilities of species hypotheses 

Selected loci may have substantial effects on coalescent species delimitation under some 

scenarios. In our simulations, the inclusion of selected loci tended to increase the statistical 

resolution of species because selected genealogies exhibit an increased propensity for 

monophyly. Loci under selection also bias estimates of 𝜃	and 𝜏, providing stronger evidence of 

genetic isolation of lineages when compared to neutral loci. These findings are intuitive from a 

population genetic perspective: positive selection will drive more rapid changes in allele 
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frequency, providing stronger signal of population differentiation, compared to loci evolving 

under neutral processes (i.e., Fig. 3).  

As observed in previous studies (e.g., Zhang et al. 2011; Yang and Rannala 2010b), we find that 

statistical resolution of species increases with the number of loci, number of individuals sampled 

per taxa, and divergence times. Our simulations demonstrate that selected loci can further 

increase posterior probabilities of species hypotheses (P3, PA, and PB) when compared to 

inferences based solely on neutral loci. We also observed a slight increase in PBC in some cases; 

this effect was relatively weak compared to increases in P3, PA, and PB, and was largely restricted 

to specific scenarios. Our findings therefore imply that the type of selection we simulated 

(directional selection within single species) primarily acts to decrease error in species 

delimitation inferences. However, these effects are substantially reduced as the proportion of 

neutral loci is increased. Indeed, inferences from neutral datasets and datasets containing 10-20% 

selected loci were often comparable. Selection also had little influence over estimates of deeply-

diverged taxa because neutral loci alone exhibit sufficient evidence of evolutionary 

independence when species are distantly related (i.e., P3 = PA = PB = 1.0).  

Phylogenetic resolution of closely-related species complexes is notoriously challenging, and thus 

we based our simulations on recently diverged taxa to understand the effects of selection in such 

scenarios (Maddison and Knowles 2006; Shaffer and Thomson 2007; Leavitt et al. 2011; Zhang 

et al. 2011; LIU et al. 2012; Pepper et al. 2013). Inferences based on a single locus or on few loci 

often suffer from considerable uncertainty due to ILS and gene tree estimation error (i.e., lack of 

phylogenetic signal) that may be prevalent when species are recently-diverged. In many cases, 

we find that posterior inferences derived from neutral datasets were the same or nearly the same 
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as the prior probabilities (i.e., P3 = 1/3), generally highlighting the need for larger datasets and 

sample sizes to resolve species limits using neutral loci alone. Conversely, we find increased 

statistical support for the true species model even for single-locus inferences in the presence of 

relatively weak selection. Non-model based approaches, such as reciprocal monophyly, will also 

likely ‘benefit’ from increased resolution afforded by selected genealogies that are more likely to 

exhibit monophyly (i.e., Fig. 2).  

Species tree inferences can be biased under some conditions of positive selection 

While selection largely reduced error in species delimitation, our simulations revealed an 

opposite effect on species topology estimates under some conditions. Our analyses of population 

differentiation under selection provide insight into these behaviors, where we find FST estimates 

are often higher between sister taxa Species-A and Species-B than between Species-B and the 

outgroup (Species-C; Fig. 3a vs. 3b). Simulated genealogies with selection tended to have an 

overrepresentation of coalescent events between neutrally evolving, non-sister lineages (Species-

B and Species-C), and an under-representation of coalescent events between the closely-related 

sister lineages (Species-A and Species-B, see example genealogy in Fig. 1). Therefore, selection 

can bias species tree inferences towards an incorrect topology because gene tree distributions 

simulated under some scenarios of selection do represent those expected under the multispecies 

coalescent model (i.e., coalescent events between more distantly-related taxa are more probable; 

Fig. 2) and because selection tends to inflate divergence time estimates that are used to root the 

topology at the longest branch length with BPP (Fig. 4).  

 The effects of selection on species tree estimation are also highly sensitive to the particular 

simulation conditions – we observe the strongest biases when selection is strong and present at 
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multiple loci, when sample sizes are large, and when lineages diverged recently. Under the most 

extreme conditions in which 100% of loci were under strong selection, we find that the true 

rooted species topology is nearly absent from the posterior distribution, such that the incorrect 

topology is inferred with nearly 100% probability (Fig. 6 and S5). This misleading effect of 

selection was largely limited to extreme scenarios of strong selection occurring at multiple loci in 

our shallow and moderate-depth species models, although we also observed increases in PBCA 

and decreases in PABC for single and 2-locus datasets in some cases. Importantly, increasing the 

number of neutral loci appears to effectively overcome this bias, such that topology estimates are 

relatively robust in many scenarios. For example, species tree estimates are largely unaffected by 

even strong selection present at 100% of loci for our deep species models (Fig. S6).  

Does species-specific positive selection pose risks for empirical studies? 

The relevance of selection-driven biases in empirical studies is largely contingent on the loci 

sampled for analyses, and the probability that such loci are under selection. Accommodating ILS 

as a source of gene tree conflict is imperative for species tree estimation and species delimitation 

because ILS is inherently linked to the process of speciation and acts on a genome-wide scale 

(Edwards 2009a). Unlike ILS, the ‘genomic footprint’ of positive selection is thought to 

comprise only a small proportion of the genome containing alleles that increase the fitness of 

certain individuals, and surrounding regions that are genetically linked to such loci. It is unclear 

whether speciation is commonly accompanied by positive selection or not. Debates on this 

subject have continued over the past century, with some authors suggesting speciation-with-

selection is widespread in nature (Mayr 1949; Panhuis et al. 2001; Rundle and Nosil 2005; 

Schluter 2009), and others arguing the opposite (Nei 1976; Nei et al. 1983; Orr and Orr 1996). 
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Thus, the persistent question of how pervasive the genomic effects of selection are in nature has 

major bearing on how relevant biases due to selection are for empirical analyses.  

Our simulations demonstrate that the impacts of selection can be quite severe, yet the effects of 

selection were largely limited to specific scenarios of strong selection occurring at multiple loci 

in the analysis of closely-related species. Importantly, we found that both species tree estimation 

and delimitation were fairly robust to the presence of even strong selection when as much as 10-

20% loci were under selection in 10-locus datasets. Although our simulations revealed strong 

biases in gene tree distributions simulated under some scenarios of selection, the impacts of 

selection on downstream inferences appear to behave in a ‘dosage-dependent’ manner, such that 

any effects are diminished by increasing the proportion of neutral loci. Empirical datasets 

commonly include hundreds to thousands of loci, such that the presence of a small number of 

positively-selected loci is likely of little consequence for genome-scale analyses, based on our 

simulations. The proportion of loci that have experienced positive selection likely differs greatly 

from species to species, but most empirical studies support the idea that only a relatively small 

fraction of the genome is likely under direct positive selection (i.e., <10% of genomic loci; 

Voight et al. 2006; Hohenlohe et al. 2010). For example, comparison of human and chimp 

genomes revealed that ~1.7% and ~1.1% of loci have undergone direct positive selection in each 

lineage, respectively (Bakewell et al. 2007). However, some empirical studies have documented 

evidence of widespread positive selection in nature: >90% of genomic loci are thought to have 

undergone species-specific positive selection in Campylobacter (Lefébure and Stanhope 2009), 

30-94% of loci in Drosophilia (Fay et al. 2002), and 60% of amino acid substitutions in 

Orychtolagus (Carneiro et al. 2012). In light of these findings, several authors have proposed a 

shift towards a selection model of molecular evolution that may better explain these patterns 
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(Hahn 2008; Corbett-Detig et al. 2015). These topics have remained a subject of intense debate 

among evolutionary biologists and are beyond the scope of this study. Until more examples of 

widespread positive selection emerges, we expect that coalescent inferences of phylogenetic 

relationships are relatively robust to the effects of positive selection under most conditions likely 

to be found in nature (Edwards et al. 2009, 2016b).  

Our study represents a ‘first-step’ analysis of scenarios of speciation-with-selection in the 

context of the multispecies coalescent model, and although we have explored a variety of 

scenarios and conditions, there are many other factors that we were not able to evaluate. 

Specifically, we restricted our simulations to the study of 3-species models to explore the effects 

of selection across a range of conditions in a tractable manner. Given the relatively short 

divergence times used in our simulations, our species models may be interpreted as closely-

related populations or incipient species in which a single taxon has experienced positive 

selection following speciation. Because both selection and ILS act in relation to population sizes 

and divergence times, we expect the impacts of selection will vary with different population 

sizes and trajectories (i.e., bottlenecks), as well as divergence times. Balancing selection, unlike 

positive selection simulated in our study, is predicted to have substantially different effects on 

gene trees (i.e., deeper coalescent times, which may be important considerations for future 

studies (Takahata and Nei 1990). We also restricted analyses to a single program (BPP) for 

computational feasibility and for direct comparisons across simulations. While we expect similar 

results with other programs, it is notable that there are now a variety of coalescent frameworks 

that differ in key model assumptions, such as gene tree estimation error, among-locus rate 

variation, and heterotachy (i.e., substitution rates differ among branches), as well as statistical 

approaches (i.e., Bayesian vs. maximum likelihood). For example, methods that only use minima 
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of gene tree parameters (i.e., minimized coalescent times) to reconstruct species trees, such as 

BEST (Liu 2008), would be predicted to be more heavily influenced by locus-specific effects of 

selection. Further evaluation of the impacts of selection in such expanded contexts would be 

valuable because results may differ from what we have found using BPP.  

Important avenues for future research include evaluating potential interactions of selection with 

other evolutionary processes, such as recombination, gene flow, and impacts of other types of 

selection (i.e., disruptive, convergent, and balancing selection). For example, adaptive 

convergent evolution at even a small proportion of sites has been shown to mislead gene tree 

inference (Castoe et al. 2009b), yet we do not know how biases introduced by these sites may 

percolate from gene tree to species tree inferences. Although our simulations suggest that neutral 

loci are largely capable of overcoming signal from positive selection, empirical evidence 

suggests that information provided by a small number of sites or genes may dominate 

phylogenomic inferences (Shen et al. 2017a); these and other concerns are important for 

understanding how genomic-scale inferences may be influenced by model violations at both site-

specific and genealogical levels.  

We focused our study on the analyses of sequences linked to a single, positively-selected site 

whereby the selective pressure is applied immediately after speciation and occurs continuously 

until the present within a single taxa. Selection, however, often acts to increase genetic linkage 

among sites and may also involve distant, coevolving loci via epistasis, which could entail 

further model violations to the assumption of independence among loci required by coalescent 

methods such as BPP. Genetic linkage and epistasis may therefore lead to a more substantial 

portion of the genome being effected by selection, and thus increase the effects of selection 
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beyond that observed in our study. Recent analyses of primate genomes illustrate this point, as 

they suggest that most regions of the hominid genome have been influenced by selection either 

directly or indirectly (i.e., because of genetic linkage) throughout primate evolution (McVicker 

et al. 2009; Hobolth et al. 2011; Scally et al. 2012). Finally, while gene flow can mislead species 

tree estimation and delimitation (Leaché et al. 2014; Burbrink and Guiher 2015; Solís-Lemus et 

al. 2016), we expect that selected loci will provide increased resolution of species histories under 

scenarios of migration when neutral loci may fail to provide accurate inferences. Although 

computationally expensive, realistic whole-genome simulations that incorporate selection, 

recombination, gene flow, and other processes will be necessary to fully evaluate whether 

species tree estimates and delimitations are robust to more complex – yet perhaps more realistic 

– scenarios of speciation.   

Conclusion 

Questions remain about how pervasive positive selection is in nature, and how many loci it may 

impact throughout the genome – addressing these questions are of broad relevance for 

understanding speciation and the evolutionary process, and are also of central importance for 

predicting the practical relevance of selection-driven effects observed in our study. Our results 

suggest that coalescent species tree estimation and delimitation can be susceptible to selection-

driven biases under certain circumstances, including when lineages are recently diverged, and 

when selection is more pervasive.  However, if selection and its effects are relatively rare on the 

scale of genomes, empirical inferences are likely to be fairly robust to these violations of the 

multispecies coalescent model. While larger genomic sampling should overcome biases in 

species tree estimation due to selection, it would also be feasible to identify and remove loci with 
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evidence of species-specific positive selection prior to analyses – although identifying selected 

loci can be difficult in practice. Although filtering of data to avoid model violations is one 

logical approach, counter-arguments to include neutral and selected loci are also logical, at least 

for species delimitation. For example, it is notable that recent selection tended to reduce error in 

species delineation in closely-related lineages, leading to higher probabilities of delimiting 

recently-diverged (presumably locally-adapted) species when selection is occurring. Further, an 

indirect observation arising from our study is that coalescent species delimitation approaches 

might be useful for identifying positive selection in multilocus datasets: one might conduct 

species delimitation independently for each locus, and loci that provide higher posterior 

probabilities of species hypotheses may represent targets of selection (as demonstrated in Fig. 5). 

Such an approach would be attractive because it would effectively account for ILS while 

conducting genomic scans of selection, which is important because measures of population 

differentiation between lineages are inherently a function of these processes. 
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Figures 

 
 

 
Figure 1. Species tree and experimental parameters used for simulating genealogies under the 
multispecies coalescent model both with and without selection. Dotted lines within the species tree 
represent an example genealogy in which a selective sweep has occurred in Species-A lineages 
immediately after speciation, such that all Species-B and Species-C lineages coalesce in the root Species-
ABC before reaching a common ancestor with any Species-A lineages. 
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Figure 2. The impact of species-specific positive selection on gene tree distributions and the probability 
of monophyly. Barplots indicate the percentage of simulated genealogies with monophyletic relationships 
for all Species-A lineages (i.e., all Species-A lineages reach a common ancestor before coalescing with 
any outgroup lineages, see example genealogy shown in Fig. 1). Results are shown from left to right for 
the shallow ( = 0.0001), moderate-depth ( = 0.001), and deep ( = 0.01) species tree models and for each 
respective Species-AB divergence:  ×0.10,  ×0.50, and  ×0.90. For each simulation model and associated 
parameters, we simulated 104 genealogies under neutral evolution (“N”), as well as weak (“W”, s = 0.01), 
strong (“S”, s = 0.10), and very strong (“VS”, s = 0.50) selection coefficients, represented by a gradient 
from light to dark red for increasing selection strength. Results are shown for the simulations with 5 (a) 
and 10 (b) haplotypes sampled per species. 
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Figure 3. The effects of species-specific positive selection on measures of population differentiation. 
Boxplots represent the distribution of FST estimates between Species-A and Species-B (a) and Species-B 
and Species-C (b) across 104 simulated alignments with 20 haplotypes sampled per species. Results are 
shown from left to right for the shallow ( = 0.0001), moderate-depth ( = 0.001), and deep ( = 0.01) species 
tree models and for each respective Species-AB divergence (): ×0.10, ×0.50, and ×0.90. For each 
simulation model and associated parameters, we simulated 104 genealogies under neutral evolution (“N”), 
as well as weak (“W”, s = 0.01), strong (“S”, s = 0.10), and very strong (“VS”, s = 0.50) selection 
coefficients, represented by a gradient from light to dark red for increasing selection strength. 
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Figure 4. Selection can decrease estimates of  and inflate divergence time estimates () for both the 
shallow (top) and moderate depth (bottom) species model. Results are shown for  (a–c and g–i) and  (d–f 
and j–l) for simulated data sets consisting of 1-locus (a, d, g, j), 2-loci (b, e, h, k), and 10-loci (c, f, i, l). 
The mean (points) and standard deviation (error bars) of parameter estimates based on 200 replicates are 
shown for three different Species-AB divergence times:  = 0.00001, 0.00005, and 0.00009 for the shallow 
species model (top) and = 0.0001, 0.0005, and 0.0009 for the moderate-depth species model (bottom). 
Each panel is split into two subpanels representing 5 (left of dotted line) or 20 (right of dotted line) 
haplotypes sampled per species. A color gradient ranging from white to dark gray is used to indicate the 
different percentages of loci under selection: 0% (neutral, white), 10%, 20%, 50%, and 100% (dark gray). 
For simulations with selection, we varied the strength of selection: weak (“W”, s = 0.01), strong (“S”, s = 
0.10), and very strong (“VS”, s = 0.5) selection coefficients. 
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Figure 5. Selection can increase posterior probabilities of species hypotheses for the shallow (top) and 
moderate-depth (bottom) species tree model. Results are shown for the probability of three species (; a–c 
and g–i) and the probability of Species-A (; d–f and j–l). 
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Figure 6. Species-specific positive selection can bias species tree estimates of shallow(a) and moderate-
depth (b) species models. Violin plots show the distribution of posterior probabilities of the correct rooted 
species topology () and incorrect topology () across 200 replicates (mean shown in black) for data sets 
consisting of 1-locus (bottom), 2-loci (middle), and 10-loci (top) that were simulated with either 5 (left) or 
20 samples per species (right) under three different Species-AB divergence times (from left to right): 
=0.00001, 0.00005, and 0.00009. A gradient ranging from white to dark gray shading indicates the 
different percentages of loci under selection: 0% (neutral, white), 10%, 20%, 50%, and 100% (dark gray). 
For simulations with selection, we varied the strength of selection: weak (“W”, s = 0.01), strong (“S”, s = 
0.10), and very strong (“VS”, s = 0.5) selection coefficients. 
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Supplementary Figures 

 
 

Supplementary Figure 1. The effects of species-specific positive selection on effective population size 
and divergence time estimates of the shallow (top) and moderate-depth (bottom) species tree models. 
Results are shown for (a-c), (d-f), (g-i), and (j-l) for simulated datasets consisting of 1-locus (a, d, g, j), 2-
loci (b, e, h, k), and 10-loci (c, f, i, l). The mean (points) and standard deviation (error bars) of parameter 
estimates based on 200 replicates are shown for three different Species-AB divergence times: recent 
(blue), medium (black), and ancient (red). Each panel is split into two subpanels representing 5 (left of 
dotted line) or 20 (right of dotted line) haplotypes sampled per species. A color gradient ranging from 
white to dark gray is used to indicate the different percentages of loci under selection: 0% (neutral, 
white), 10%, 20%, 50% and 100% (dark gray). For simulations with selection, we varied the strength of 
selection: weak (“W”, s = 0.01), strong (“S”, s = 0.10), and very strong (“VS”, s = 0.5) selection 
coefficients. 
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Supplementary Figure 2. The effects of species-specific positive selection on effective population size 
and divergence time estimates of the deep species tree model. Results are shown for (a-c), (d-f), (g-i), and 
(j-l) for simulated datasets consisting of 1-locus (a, d, g, j), 2-loci (b, e, h, k), and 10-loci (c, f, i, l). The 
mean (points) and standard deviation (error bars) of parameter estimates based on 200 replicates are 
shown for three different Species-AB divergence times: 0.001 (blue), 0.005 (black), and 0.009 (red). Each 
panel is split into two subpanels representing 5 (left of dotted line) or 20 (right of dotted line) haplotypes 
sampled per species. A color gradient ranging from white to dark gray is used to indicate the different 
percentages of loci under selection: 0% (neutral, white), 10%, 20%, 50% and 100% (dark gray). For 
simulations with selection, we varied the strength of selection: weak (“W”, s = 0.01), strong (“S”, s = 
0.10), and very strong (“VS”, s = 0.5) selection coefficients. 
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Supplementary Figure 3. The effects of species-specific positive selection on posterior probabilities of 
species hypotheses of the shallow and moderate-depth species tree models. Results are shown for 
simulated datasets consisting of 1-locus (a, d, g, j), 2-loci (b, e, h, k), and 10-loci (c, f, i, l). The mean 
(points) and standard deviation (error bars) of parameter estimates based on 200 replicates are shown for 
three different Species-AB divergence times: recent (blue), medium (black), and ancient (red). Each panel 
is split into two subpanels representing 5 (left of dotted line) or 20 (right of dotted line) haplotypes 
sampled per species. A color gradient ranging from white to dark gray is used to indicate the different 
percentages of loci under selection: 0% (neutral, white), 10%, 20%, 50% and 100% (dark gray). For 
simulations with selection, we varied the strength of selection: weak (“W”, s = 0.01), strong (“S”, s = 
0.10), and very strong (“VS”, s = 0.5) selection coefficients. 
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Supplementary Figure 4. The effects of species-specific positive selection on posterior probabilities of 
species hypotheses of the deep species tree model. Results are shown for simulated datasets consisting of 
1-locus (a, d, g, j), 2-loci (b, e, h, k), and 10-loci (c, f, i, l). The mean (points) and standard deviation 
(error bars) of parameter estimates based on 200 replicates are shown for three different Species-AB 
divergence times: 0.001 (blue), 0.005 (black), and 0.009 (red). Each panel is split into two subpanels 
representing 5 (left of dotted line) or 20 (right of dotted line) haplotypes sampled per species. A color 
gradient ranging from white to dark gray is used to indicate the different percentages of loci under 
selection: 0% (neutral, white), 10%, 20%, 50% and 100% (dark gray). For simulations with selection, we 
varied the strength of selection: weak (“W”, s = 0.01), strong (“S”, s = 0.10), and very strong (“VS”, s = 
0.5) selection coefficients. 
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Supplementary Figure 5. The effects of selection on species tree estimates for the moderate species tree 
simulations. Violin plots show the distribution of posterior probabilities of the correct rooted species 
topology (PABC, blue) and incorrect topology (PBCA, yellow) across 200 replicates (mean shown in black) 
for datasets consisting of 1-locus (bottom), 2-loci (middle), and 10-loci (top) that were simulated with 
either 5 (left) or 20 samples per species (right) under three different Species-AB divergence times (from 
left to right): 0.0001 (blue), 0.0005 (black), and 0.0009 (red). A color gradient ranging from white to dark 
gray is used to indicate the different percentages of loci under selection: 0% (neutral, white), 10%, 20%, 
50% and 100% (dark gray). For simulations with selection, we varied the strength of selection: weak 
(“W”, s = 0.01, light red), strong (“S”, s = 0.10, medium red), and very strong (“VS”, s = 0.5, dark red) 
selection coefficients. 
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Supplementary Figure 6. The effects of selection on species tree estimates for the deep species tree 
simulations. Violin plots show the distribution of posterior probabilities of the correct rooted species 
topology (PABC, blue) and incorrect topology (PBCA, yellow) across 200 replicates (mean shown in black) 
for datasets consisting of 1-locus (bottom), 2-loci (middle), and 10-loci (top) that were simulated with 
either 5 (left) or 20 samples per species (right) under three different Species-AB divergence times (from 
left to right): 0.001 (blue), 0.005 (black), and 0.009 (red). A color gradient ranging from white to dark 
gray is used to indicate the different percentages of loci under selection: 0% (neutral, white), 10%, 20%, 
50% and 100% (dark gray). For simulations with selection, we varied the strength of selection: weak 
(“W”, s = 0.01, light red), strong (“S”, s = 0.10, medium red), and very strong (“VS”, s = 0.5, dark red) 
selection coefficients. 
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Abstract 

Fundamental to all phylogenomic studies is the notion that increasing the amount of data – to 

entire genomes when possible – will increase the accuracy of phylogenetic inference. Simply 

adding more data does not, however, guarantee phylogenomic inferences will be more accurate. 

Even genome-scale reconstructions of species histories can suffer the effects of both incomplete 

lineage sorting (ILS) and gene tree estimation error (GTEE). Weighted statistical binning was 

originally proposed as a technique to assist the avian phylogenomics project in solving the bird 

tree of life, which has long eluded resolution as a result of both ILS and GTEE. These so-called 

“statistical binning procedures” seek to overcome GTEE by concatenating loci into longer multi-

locus “supergenes” that are used to reconstruct a species tree under the assumption that the 

supergene tree set is an accurate estimate of the true underlying gene tree distribution. Here we 

evaluate the performance of the method using the original avian phylogenomics dataset. Our 

results suggest that statistical binning constructs false supergenes that concatenate loci with 

different coalescent histories more often than not: >92% of supergenes comprise discordant loci. 

Our results underscore a major logical inconsistency: GTEE – the sole justification for using 

statistical binning instead of standard concatenation – also makes these methods unreliable. 

These findings underscore the need for developing new robust frameworks for phylogenomic 

inference that more appropriately accommodate GTEE and ILS at a genome-wide scale.   
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1. Introduction 

Much of our understanding and practice of evolutionary biology relies on knowledge of the 

species-level relationships of organisms (i.e., species trees). Two major sources of phylogenetic 

conflict can pose serious challenges for species tree reconstruction: incomplete lineage sorting 

(ILS) and gene tree estimation error (GTEE). Standard phylogenetic analysis of concatenated 

loci, for example, will be statistically inconsistent in the presence of ILS and yield highly-

supported but incorrect species trees (Edwards et al. 2007; Kubatko and Degnan 2007). To 

address this, coalescent-based methods have been developed that are statistically consistent 

under ILS and will return the true species-level phylogeny with high confidence given sufficient 

information (Liu 2008; Degnan and Rosenberg 2009a; Knowles 2009; Heled and Drummond 

2010; Liu et al. 2010b, 2015b). While ILS is an inherent property of the demographic processes 

of speciation and divergence, GTEE is a fundamentally different source of conflict that 

represents statistical sampling error and variation between the true tree and one estimated from a 

dataset of finite size and information content. Although modern phylogenomic datasets often 

consist of millions to billions of base pairs (bp), any one aligned locus is often limited to <3kbp 

of aligned orthologous sequence data, and thus individual gene trees may entail substantial error 

that can permeate to the level of species tree inference (Jarvis et al. 2014; Mirarab et al. 2014). 

Researchers thus face a gauntlet of challenges when analyzing phylogenomic data: concatenate 

loci and suffer the consequences of ILS, or do not concatenate loci and suffer the consequences 

of GTEE. Both sources of conflict can have major debilitating effects on the accuracy of species 

tree estimates, and it is not immediately clear whether one should prioritize either. 
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The avian Tree of Life is a prime example of an important vertebrate phylogeny that has long 

eluded resolution because of both ILS and GTEE (Mirarab et al. 2014; Jarvis et al. 2015; Prum et 

al. 2015a). In light of the challenges facing phylogenomic analyses, a new method (“weighted 

statistical binning”; referred to as “statistical binning” hereafter) was originally developed to 

enable the avian phylogenomics project in resolving the relationships of modern birds (Mirarab 

et al. 2014; Bayzid et al. 2015; Jarvis et al. 2015). The method has since been used to infer the 

evolutionary relationships of placental mammals (Tarver et al. 2016), teleost fishes (Malmstrøm 

et al. 2016), and many other major radiations (i.e.., Blaimer et al. 2016; Branstetter et al. 2017; 

JeŠovnik et al. 2017; Platt et al. 2018). The core justification behind this approach is to infer a 

set of “supergenes” that attempt to overcome GTEE by concatenating smaller sets of individual 

loci into longer supergene alignments comprising multiple loci that contain more information for 

inferring supergene trees. In practice, supergenes inferred via statistical binning are often used to 

obtain a set of supergene trees for downstream species tree estimation under the assumption that 

that they are 100% accurate. Importantly, gene tree estimates and associated bootstrap support 

values are used as input data for the statistical binning pipeline as the sole criteria for deciding 

whether the respective loci within a putative supergene evolved under the same tree (Bayzid et 

al. 2015). Using a compatibility graph based on these estimates, the pipeline effectively conducts 

a hypothesis test to decide whether several individual loci can be concatenated to form a 

supergene (i.e., they share a common topology) or not (i.e., do not share a topology; Mirarab et 

al. 2014; Bayzid et al. 2015). Accordingly, the fundamental purpose of statistical binning is to 

infer which phylogenetic conflicts among estimated gene trees are simply a result of GTEE 

(result: concatenate to form a supergene), and which conflicts represent true differences in 

coalescent history due to ILS (result: do not concatenate and estimate distinct trees).  
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Following publication of the avian phylogenomics project, substantial debate and contention has 

arisen over the use of statistical binning and similar methods (Bayzid et al. 2015; Jarvis et al. 

2015; Liu and Edwards 2015; Mirarab et al. 2015; Roch and Warnow 2015; Warnow 2015). 

Authors have continued to argue both for and against these methods, and disagree over the 

statistical consistency (or lack of) of these approaches in the context of species tree estimation 

(Liu and Edwards 2015; Mirarab et al. 2015; Roch and Warnow 2015; Warnow 2015). A follow-

up study revealed that statistical binning distorted supergene tree distributions and likely biased 

species tree estimates (Liu and Edwards 2015). Further studies corroborated this assertion: 

species trees reconstructed using supergenes obtained via statistical binning were likely to be 

highly inaccurate yet highly supported (Streicher et al. 2018). Subsequent response papers 

rejected the assertion that the method was statistically inconsistent, and instead argued for 

statistically consistency when the number of loci and the length of loci are both infinite (Bayzid 

et al. 2015; Mirarab et al. 2015). However, recent theoretical work has demonstrated the 

inconsistency of species tree methods that use supergenes inferred via statistical binning when 

the number of loci is unbounded but the length of each locus is bounded to a constant (Roch et 

al. 2018). These findings raise important questions about the nature of species tree inference 

under best-case scenarios (i.e., when the number and/or length of loci is infinite), and yet, we 

currently have relatively little understanding of the empirical performance of the statistical 

binning pipeline itself when both the number and length of loci are bounded.  

When considering the properties of the method, it is imperative to acknowledge that the 

statistical binning pipeline itself only infers a set of supergene alignments, not a species tree. 

Statistical binning is therefore not a species tree estimation method per se, it is a supergene 
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estimation method that uses gene tree estimates to infer topology congruency among loci. 

Distinguishing between species tree estimation and supergene estimation is critical, because both 

are fundamentally different statistical problems: species tree estimation seeks a single species-

level topology and set of parameters (i.e., divergence times, effective population sizes), while 

supergene inference involves deciding whether individual loci share the same gene tree or not. In 

this sense, statistical binning represents the first “cog in the wheel” of the phylogenomic analysis 

pipeline, which is followed by supergene tree estimation using standard phylogenetic techniques, 

such as maximum likelihood (ML) analysis, and species tree estimation using coalescent-based 

summary methods. Understanding whether the statistical binning pipeline provides reliable 

supergene alignments is therefore paramount to assessing the performance of the method. At the 

end of a statistical binning analysis, ML-analysis of each supergene is conducted under the 

assumptions of the standard phylogenetic model. While different supergenes can have different 

topologies, ML-analysis of the individual supergene alignments assumes that each gene placed 

within a supergene shares the same coalescent history. Under these conditions (i.e., a “true 

supergene” containing only congruent genes), standard ML-analysis – which assumes all sites 

share the same tree (Felsenstein 1981) – will converge with increasing probability to the single, 

true gene tree as the length of each congruent locus in the supergene increase (Fig. 1, left).  

In contrast, if a supergene incorrectly concatenates genes from multiple distinct topologies, 

standard ML-analysis of this “false supergene” will not converge to the true gene tree set (i.e., 

one tree for each distinct gene) as the length of each discordant gene increases, because it is 

restricted to inferring a single best-fit tree. In the right example shown in Figure 1, a false 

supergene has been constructed by concatenating three genes with conflicting genealogies (red, 
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purple, green). Even if the length of each of the three genes is infinite, standard ML-analysis will 

infer only a single supergene tree – instead of the “true” gene tree set comprised of three distinct 

topologies. Violation of this fundamental assumption of the phylogenetic model (i.e., all sites 

share the same tree) is of major consequence because it is the underlying cause of the failure of 

ML-analysis in the presence of ILS (Mendes and Hahn 2017), and can also cause other modeling 

pathologies and biases, such as SPILS (“substitutions produced by ILS”; Mendes and Hahn 

2016). False supergene trees inferred using standard ML-analysis are likely to reflect an 

amalgamation of phylogenetic signal, such that the gene tree with the most support (i.e., highest 

number of informative sites) may have disproportionate influence. The overall supergene tree 

distribution will also likely be distorted as distinct gene trees are effectively “hidden” within 

false supergenes and may be poorly represented or absent in the set of supergene trees. False 

supergenes therefore represent profound phylogenetic model misspecification, and the hope is 

that methods such as statistical binning are able to avoid such sources of systematic bias by 

inferring accurate supergenes (i.e., Fig. 1 left vs. right).  

A critical question therefore remains: how well does statistical binning infer topological 

congruency (or lack of) from gene tree estimates when attempting to construct true supergenes? 

Here we evaluate the performance of the method at this core function, and while previous studies 

have primarily focused on the theoretical properties of the method for species tree inference 

when aspects of the data are infinite (i.e., number of genes and/or gene lengths are unbounded), 

we take a decidedly different, model-based approach to understand whether statistical binning 

provides accurate supergenes or not. We conducted a post-hoc likelihood-based model 

assessment of statistical binning accuracy using the 14,446 alignments (8,251 exons, 2,516 
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introns, and 3,679 UCEs) and the corresponding set of 2,021 supergenes inferred for the original 

avian phylogenomic analyses (Jarvis et al. 2014, 2015). We specifically applied two different 

likelihood-based tests to characterize the accuracy of supergenes inferred via statistical binning: 

likelihood ratio tests (LRTs implemented in ConcatePillar; Leigh et al. 2008) and SH tests 

(Shimodaira and Hasegawa 1999). The first approach conducts a series of likelihood-based 

model tests to evaluate whether the data (i.e., site patterns) of each respective supergene support 

a single topology or multiple, discordant topologies (Fig. 2, top box). The second method applies 

Shimodaira-Hasegawa tests (SH test; Shimodaira & Hasegawa 1999) to evaluate whether 

individual loci placed within a supergene reject the overall supergene tree in favor of a distinct, 

locus-specific topology (Fig. 2, bottom box). We used the results of the SH-tests to quantify the 

number of genes with evidence of significant topological congruency within each supergene 

alignment (i.e., genes that reject the supergene tree likely support a distinct topology). Unlike the 

statistical binning pipeline, which uses gene tree estimates to infer topological congruency, these 

two model-based approaches make direct use of the phylogenetic likelihood function by 

summing over site likelihoods for alternative tree models to validate supergene inferences by 

testing whether a single tree (i.e., “true positive”, Fig. 1, left path) or multiple, distinct trees (i.e., 

“false positive”) are a better explanation of the data (Fig. 1, right path).  

2. Methods 

2.1 Avian phylogenomic data 

We downloaded the 14,446 alignments (8,251 exons, 2,516 introns, and 3,679 UCEs), the 

inferred supergene assignments for the 14,446 loci (i.e.,  assignment of each locus to a respective 
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supergene), and the 2,021 ML supergene trees inferred via statistical binning for the avian 

phylogenomic analyses (Jarvis et al. 2014, 2015). For our simulation-based assessments of 

statistical binning accuracy, we downloaded the simulated gene tree sets and their associated 

inferred supergene assignments that were used in the original avian phylogenomic studies and 

were based on the estimated avian species tree (Jarvis et al. 2014; Mirarab et al. 2014).  

2.2 Likelihood-based tests of statistical binning accuracy 

We evaluated the accuracy of each inferred supergene using likelihood ratio tests (LRTs) 

implemented in ConcatePillar (Leigh et al. 2008) and SH-tests (Shimodaira and Hasegawa 1999) 

implemented in RAxML v8.0.0 (Stamatakis 2014). First, we used Concatepillar to conduct LRTs 

to test whether a model consisting of a single topology or a model of multiple distinct topologies 

was better supported by the sequence data of each supergene based on the difference in log-

likelihood scores between models (Fig. 2, top box). This approach effectively tests how many 

distinct topologies are supported by the data of each supergene and corrects for multiple 

comparisons throughout the process. If only a single topology best fits the data, this provides 

evidence that the supergene is likely to be accurate (i.e., Fig. 1, left). Conversely, if the data 

support multiple topologies, then the supergene likely violates the phylogenetic model because it 

exhibits evidence of incorrectly concatenated loci originating from distinct topologies (i.e., Fig. 

1, right).  

We used SH-tests in a similar fashion to test whether the difference in log-likelihood scores 

between the ML topology of each individual gene placed within a supergene and the overall ML 

supergene tree was statistically significant (Fig. 2, lower box). In other words, for each gene 
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placed within an inferred supergene, we used SH-tests to compare the likelihood of the 

individual gene-specific ML topology with the overall supergene ML topology (Fig. 2, colored 

vs. gray trees in lower box). If the individual gene-specific ML tree was a statistically significant 

better fit than the supergene topology (i.e., P < 0.05), then that supergene was likely falsely 

constructed by statistical binning (i.e., concatenated loci with different phylogenetic histories, 

i.e., Fig. 1 right). The number of genes that reject the overall supergene tree in favor of a locus-

specific tree provide an indication of the number of discordant genealogies present within a 

supergene alignment. SH-tests were conducted in RAxML 8.0.0 (Stamatakis 2014) using the 

default GTR+I+𝚪 nucleotide substitution model independently for each locus.  

In light of widespread evidence of supergene error (i.e., Fig 3), we were interested in 

characterizing the degree to which supergene trees reflected the topologies of their constituent 

genes. A critical concern of concatenating genes into a single supergene is that, if genes do not 

share the same tree, the gene with the most informative sites will dominate and overwhelm gene 

tree signals from shorter or less informative genes. In such cases, the supergene tree may only 

reflect the relationships supported by the dominant genealogy, while conflicting topologies of 

shorter loci will be effectively “hidden” and likely absent from the supergene tree distribution. 

To examine whether supergenes tend to be biased towards their longest constituent gene (and 

therefore capable of masking hidden gene trees from shorter gene constituents), we computed 

normalized Robinson-Foulds distance between each of the 14,446 gene trees and their associated 

supergene topology using the R package phangorn (Schliep 2011).  

2.3 Simulation-based assessment of statistical binning accuracy 
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We also evaluated the accuracy of statistical binning on the simulated gene tree sets provided in 

the original study (Mirarab et al. 2014; Jarvis et al. 2015), by testing whether supergenes inferred 

via the method included only simulated genes that share a common gene tree. For each inferred 

supergene, we computed pairwise Robinson-Foulds distances (Robinson and Foulds 1979) 

between each simulated gene tree that statistical binning inferred to share a single supergene tree; 

all of the individual gene trees should be identical if statistical binning provided a correct 

supergene. An RF-distance of 0 between two trees means that the topologies are identical and an 

RF-distance >0 means the topologies are different. If all gene trees placed within a supergene 

have an RF-distance of 0, then the supergene was accurately inferred (i.e., Fig. 1, left). If there is 

at least one RF-distance that is greater than 0, the supergene was inaccurate because it incorrectly 

concatenated loci that evolved along distinct, conflicting gene trees (i.e., Fig. 1, right). We 

computed unrooted RF-distances using the “multiRF” function provided in the phytools (Revell 

2012) package in R, and used these values to compute the mean RF-distance among gene trees 

across all inferred supergenes in each replicate simulation analysis (rightmost column of 

Supplementary Table 1). For reference, these supergenes were inferred in the original study 

using a bootstrap threshold of 75% (Jarvis et al. 2014). 

2.4 Quantifying the impacts of statistical binning on gene tree distributions and species tree 

support 

Considering evidence for spurious supergenes, we explored the impacts of statistical binning on 

both gene tree distributions and species tree support. To visualize differences in the underlying 

topological distributions due to statistical binning, we generated Densitree (Bouckaert 2010) 

plots and summary consensus trees using TreeAnnotator (Rambaut and Drummond 2016) of the 
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unbinned gene tree and binned supergene tree distributions. We also quantified shifts in species 

tree support by measuring the difference in multispecies coalescent likelihoods of the unbinned 

gene trees and binned supergene trees using (1) the “unbinned” species tree (UST) estimated 

using the unbinned gene trees and (2) the “binned” species tree that was estimated using the 

binned supergene trees. For each of the 14,667 unbinned gene trees for the avian dataset, we 

measured the difference between the multispecies coalescent likelihood given the “binned” 

species tree and separately, the likelihood of the gene tree given the “unbinned” species tree: 

GeneTreeLnL = LnL(GeneTree|Binned Species Tree) = LnL(GeneTree|Unbinned Species Tree). 

We also conducted this same analysis for the 2,021 supergenes inferred via statistical binning: 

SupergeneTreeLnL = LnL(SupergeneTree|Binned Species Tree) = 

LnL(SupergeneTree|Unbinned Species Tree). To visualize the impacts of statistical binning on 

species tree support, we compared the distributions of the 14,667 GeneTreeLnLs and the 2,021 

SupergeneTreeLnLs.  

3. Results and Discussion 

3.1 Evidence of widespread model misspecification due to statistical binning  

Model-based evaluation of the performance of statistical binning on the avian phylogenomic data 

indicate that it does not provide reliable supergenes because it is highly prone to constructing 

“false supergenes” from loci with different coalescent histories – leading to profound and 

widespread phylogenetic model violation (Fig. 4). Both likelihood-based methods we employed 

indicate widespread error: 96.0% (1,940/2,021) and 92.3% (1,866/2,021) of supergenes 

concatenated multiple, conflicting topologies using the LRTs and SH-tests, respectively (Fig. 3a 



 

88 

and 3b). Our results therefore indicate that the vast majority (>92%) of inferred supergenes 

represent false positives. We further evaluated the accuracy of statistical binning on the 

simulated datasets provided in the original avian study (Jarvis et al. 2015). Surprisingly, we 

found that 100% of multilocus supergenes (i.e., supergenes with at least 2 loci) across all 

simulation models and replicates were falsely constructed by statistical binning (Supplementary 

Table 1) and represent the right example shown in Figure 2. In other words, we found that the 

false positive rate of these methods for the avian dataset is ~92.3% at best.  

Our analyses collectively suggest that statistical binning fails to overcome GTEE because it, like 

the methods it was designed to outperform, is based on unreliable gene tree and bootstrap 

support estimates that themselves suffer from high error, leading to false inferences of 

topological congruency. In other words, the core hypothesis test implemented in statistical 

binning, which uses bootstrap thresholds to determine gene tree congruence, does not appear to 

provide accurate supergene based upon our likelihood-based evaluations. Instead, our results 

indicate that genes incorrectly placed within these false supergenes exhibit surprisingly high 

gene tree incongruence, as indicated by mean Robinson-Foulds distances (RF-distance) within 

supergenes ranging from ~25-49 (Supplementary Table 1). ML-analysis of concatenated data 

predicts that supergene tree inference should be dominated by the gene with the most informative 

sites, which was observed in our analysis (Fig. 4). Considering our evidence of widespread 

supergene error (Fig. 3), evidence of the dominance of the longest gene driving supergene tree 

estimates suggests that alternative topologies of other, shorter genes within supergenes are likely 

under-represented or even absent from false supergene trees. At best, this scenario would result 

in the massive loss of genealogical information due to binning genes into supergenes (i.e., only 
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the topology from the longest gene is represented). A potential and worse scenario would be that 

this amalgamation of signal from genes with different genealogies may instead led to totally 

spurious supergene estimates that do not overlap with any of the true gene trees underlying the 

data (i.e., unnatural products of signal averaging). These findings also further clarify the 

underlying reason for the reported distortion of supergene tree distributions resulting from 

statistical binning (Liu and Edwards 2015), and corroborate recent theoretical work that has 

shown the inconsistency of statistical binning when the length of each locus is finite (Roch et al. 

2018).  

To characterize the impacts of statistical binning and potential biases it introduces in gene tree 

distributions, we compared the distribution of supergene trees with the distribution of locus-

specific gene trees. Overlays of gene trees using Densitree illustrate that binning leads to major 

shifts in the gene tree distributions, including several major decreases in conflict (and increases 

in gene tree resolution), particularly for more ancient nodes (Figs. 5a-b), consistent with previous 

evidence that binning ‘flattens’ gene tree distributions (Liu et al. 2015a). Similarly, comparison 

of consensus trees between binned and unbinned gene tree sets highlight major differences in 

gene tree topology and broad increases in bipartition agreement based on binned supergene trees 

(Figs. 5c-d). Comparisons of likelihood support for alternative species trees indicates that 

statistical binning introduces major changes in the shape and magnitude of variation of species 

tree likelihoods (Figs. 5e-f). For example, the number of supergene trees that strongly support 

one species tree over another increases compared to the unbinned gene trees. Considering 

evidence that a large proportion of supergenes may be false (e.g., Fig. 3), our results collectively 
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suggest that statistical binning strongly biases gene tree distributions that do not reflect the true 

gene tree variation, and thereby provide high support for an incorrect species tree.  

Although we have primarily presented the problem of “false supergenes” as a dichotomous 

phenomenon (i.e., ether all genes are congruent or not), their impacts on species tree estimation 

may be more complex depending on the particular evolutionary parameters (i.e., species tree 

shape, divergence times, population sizes), and/or experimental conditions (i.e., number and 

length of loci). For example, “false supergenes” comprised of only two distinct trees may be less 

problematic then if they contain loci from three distinct trees. It also seems possible that 

particular branches and subclades may be more or less accurately estimated than others. This 

could occur, for example, if most genes within a false supergene agree on the placement of a 

particular clade. Deeper nodes may be more accurately estimated than more recent species splits 

– perhaps because individual genes may exhibit little conflict in the placement of more ancient 

lineages (i.e., most ancient lineages are completely sorted). Nonetheless, ML-analysis of false 

supergenes will be a forced comprise of the conflicting signal exhibited across incongruent loci 

and thus, will likely suffer large-scale systematic error in topology, branch length estimates, and 

other parameters.  

4. Conclusions 

Perhaps surprisingly, genome-scale datasets do not yet equate to straight-forward and robust 

resolution of phylogeny. Instead, both biology and methodology continue to pose serious 

challenges for phylogenomic analyses. There is certainly logical merit in approaches that are 

designed – at least in theory – to tractably address these issues, such as statistical binning. Our 
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results, however, suggest that nearly every supergene tree inferred via this approach and used to 

reconstruct the avian species tree is likely to suffer extensive systematic error at the hands of 

pervasive phylogenetic model misspecification, such that statistical binning is more likely to 

suffer the effects of GTEE and ILS than overcome them. Instead, the effects of ILS will be 

rampant in the set of ML supergenes trees used to estimate a species tree when statistical binning 

is applied. Because these methods only infer topological congruency and do not estimate a 

species tree, we also argue that model-based supergene validation of statistical binning 

inferences (i.e., LRT tests) provides a far more direct assessment of the method at its core 

function and brings clarity to previous arguments, which primarily evaluated the performance of 

downstream species tree estimation methods that use supergenes as input data. 

These findings raise the question of what alternative strategies would be useful for avoiding 

these issues? One solution is to simply collect more genetically linked data per locus (i.e., longer 

orthologus loci) to obtain higher quality gene trees without the need for concatenation. In 

practice, however, “simply collecting more data” is not always a simple or even viable option, 

particularly given that the original avian analyses sampled whole-genomes and still faced these 

issues, in part due to the difficulties in aligning long orthologous regions across deep 

evolutionary time. Increasing the length of individual loci also has the downside of increasing 

the probability of intra-locus recombination, which may pose additional complications and 

violations of the phylogenetic model analogous to those introduced by erroneous supergenes. 

Indeed, false supergenes exemplify the most “extreme” form of this violation whereby 

recombination occurs freely between genes with non-congruent histories incorrectly placed 

within a supergene. Unlike binning approaches that “agnostically” infer supergenes using only 
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gene tree estimates without taking into account genome structure, it may prove fruitful to make 

effective use of known genetic linkage among loci to propose the combinability of nearby 

putatively linked loci and test this inference using model-based approaches. Above all, our 

findings highlight the critical need for the continued development of more accurate 

phylogenomic methods that can tractably and reliably deliver more reliable gene trees, and 

ultimately, better species tree estimates 
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Figures 
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Figure 1. Statistical binning is a supergene estimation method, not a species tree estimation method. Based on similarities (or lack of) among gene tree 

estimates and bootstrap support values, the core function of the method is to infer whether individual genes share a common genealogy, and if so, concatenate 

congruent genes to construct longer supergenes. Example indicating loci sampled from two different chromosomes and three distinct gene trees (red, blue, and 

purple). If statistical binning is accurate, inferred supergenes will only concatenate loci that share the same topology (i.e., left example showing a “true 

supergene” comprised entirely of red loci). ML-analyses of “true supergenes” (MLE indicated as gray tree) will converge to the true topology as the length of 

each congruent locus increases, because all sites in the alignment evolved under the same red topology. However, if statistical binning is not accurate, 

incongruent loci that do not share a common topology may be incorrectly concatenated to form “false supergenes”. In the right example, a false supergene has 

been constructed from three genes with three different topologies (blue, red, and purple). False supergenes represent profound phylogenetic model 

misspecification, because standard ML-analysis assumes that all sites within an alignment evolved under the same tree, and thus, only one tree will be estimated 

when there should be three (right example). Regardless of whether this ML topology is the blue, red, purple, or some other topology, the answer is the same: 

ML-analysis cannot be statistically consistent because it cannot estimate three unique trees. False supergene trees are likely to reflect an amalgamation of 

conflicting phylogenetic signal (here three distinct trees), such that the gene tree with the most support (i.e., highest number of informative sites) may have 

disproportionate influence (see Fig. 4). The relevant questions is thus whether statistical binning tends to infer true supergenes (left) or false supergenes (right), 

and although the method does not directly estimate a species tree, clearly supergene accuracy is likely to influence downstream species tree accuracy.  
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Figure 2. Model-based assessment of statistical binning accuracy. We tested the accuracy of each of the 2,021 supergenes inferred from the Avian 

phylogenomics project using Likelihood Ratio Tests (LRTs, implemented in Concatepillar, top box) and Shimodaira-Hasegawa (SH-tests, bottom box). The 

LRTs approach tests how many distinct topologies are present in a supergene inferred via statistical binning. For example, the likelihood of a model consisting 

of three distinct trees (red, blue and purple in top box) is compared to single-tree model (gray alignment and tree in top box). Similarly, the SH-tests approach 

evaluates whether individual loci placed within a supergene reject the overall supergene topology in favor of a locus-specific topology (i.e., red vs. gray 

supergene topology shown in lower box). A “true supergene” and its associated supergene tree are considered accurate if only a single topology is supported by 

the data (i.e., Fig. 1 left), while a “false supergene” occurs when multiple trees are supported by the data (i.e., Fig. 1 right). For both methods, we quantified the 

number and fraction of “true supergenes” (blue bar in right histogram) and “false supergenes” that incorrectly concatenate multiple trees (2-8 in this case, black 

bars and red area). 
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Figure 3. More than 92% of supergenes inferred via statistical binning appear to be false positives. Histograms showing the number of distinct topologies 

inferred with (a) likelihood ratio tests (LRTs with Concatepillar) and (b) Shimodaira-Hasegawa (SH-tests) across the 2,021 supergenes inferred for the Avian 

phylogenomic analyses. LRTs (a) and SH-tests (b) indicate that over 96% (1,934/2,021) and 92% (1,866/2,021) of supergenes are false positives, respectively 

(black bars and red area). In other words, only 4% (81/2,021) of supergenes appear to be “true supergenes” based on LRTs (blue bar), and only 7.7% (155/2, 

021) based on SH-tests (blue bar). 
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Figure 4. Robinson-Foulds (RF) distances between an individual gene topology and its associated supergene topology decrease with relative gene length, 

such that supergenes inferred via statistical binning tend to be biased towards the topology of its longest gene. Boxplots indicate the distribution of RF 

distances between each gene-specific ML topology and its respective supergene ML topology ranked from shortest to longest relative gene length. Results 

shown for supergenes comprised of 7 genes (a) and 8 genes (b), respectively. 
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Figure 5. The impacts of statistical binning on gene tree distributions and species tree support. Densitree plots showing the gene tree topology distribution 

for (a) the individual gene trees (“unbinned”) and (b) the supergene trees. Plot of consensus trees with bipartition frequencies estimated using the individual, 

unbinned gene trees (c) and (d) the supergene trees constructed with statistical binning (d). Node circles are labeled and colored by the bipartition 

frequencies observed in their respective gene tree distributions. Histograms showing the distributions of multispecies coalescent likelihoods for the unbinned 

gene trees (ΔGeneTreeLnLs; e) and binned supergene trees (ΔSupergeneTreeLnLs; 	f). 
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SUPPLEMENTARY TABLES 

ILS-
level Replicates 

#genes per 
replicate Length 

#inferred 
supergenes 

#multilocus 
supergenes 

% false multilocus 
supergenes 

Total % false 
supergenes Mean RF-distance 

1X 20 1000 1000 10,822 
 8,948 

(82.68%)  100% 82.68% 25.18 

1X 20 1000 1500 17,028 
2,970 

(17.44%) 100% 17.44% 24.16 

1X 20 1000 250 1,326 
1,325 

(99.92%) 100% 99.92% 47.51 

1X 20 1000 500 3,451 
3,405 

(98.67%) 100% 98.67% 40.6 

1X 1 14350 mixed 1,645 1,645 (100%) 100% 100% 41.96 

1X 20 2000 1000 10,162 
9,196 

(90.47%) 100% 90.47% 25.55 

1X 20 500 1000 5,810 
4,103 

(70.62%) 100% 70.62% 25.15 

0.5X 20 1000 500 7,539 
7,149 

(94.83%) 100% 94.83% 37.56 

2X 20 1000 500 2,203 
2,180 

(98.96%) 100% 98.96% 35.85 

Supplementary Table 1. 100% of supergenes inferred via statistical binning are false positives as indicated by 
simulation analyses. Results summarized across all replicate datasets for each of the 9 simulation conditions 
that varied in the degree of incomplete sorting (0.5X, 1X, 2X), number of simulated genes, and sequence 
lengths. For each simulated dataset, we quantified the number and percentage of false multilocus supergenes 
(i.e., contain  >2 loci) that incorrectly concatenated loci from distinct, conflicting gene topologies. In all cases, 
no two simulated genes placed within any supergene shared the same topology. In other words, we found that 
that false positive rate of statistical binning was 100% in all cases for multilocus supergene datasets. Genes 
incorrectly placed within supergene bins exhibited a high level of conflict as a result of ILS (leftmost column 
showing average Robinson-Foulds distance across supergenes). 
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Probabilistic species tree distances: implementing the multispecies 

coalescent to compare species trees within the same model-based 

framework used to estimate them  
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Abstract 

Despite the ubiquitous use of statistical models for phylogenomic and population genomic 

inferences, this model-based rigor is rarely applied to post-hoc comparison of trees. In a recent 

study, Garba and colleagues derived new methods for measuring the distance between two gene 

trees computed as the difference in their site pattern probability distributions. Unlike traditional 

metrics that compare trees solely in terms of geometry, these measures consider gene trees and 

associated parameters as probabilistic models that can be compared using standard information 

theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be 

far more informative than simply comparisons of topology and/or branch lengths alone. 

However, in their current form, these distance measures are not suitable for the comparison of 

species tree models in the presence of gene tree heterogeneity. Here we demonstrate an approach 

for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended 

naturally to the comparison of species tree models. Multispecies coalescent models (MSC) 

parameterize the discrete probability distribution of gene trees conditioned upon a species tree 

with a particular topology and set of divergence times (in coalescent units), and thus provide a 

framework for measuring distances between species tree models in terms of their corresponding 

gene tree probabilities. We describe the computation of probabilistic species tree distances in the 

context of standard MSC models, which assume complete genetic isolation post-speciation, as 

well as recent theoretical extensions to the MSC in the form of network-based MSC models that 

relax this assumption and permit hybridization among taxa. We demonstrate these metrics using 

simulations and empirical species tree estimates and discuss both the benefits and limitations of 
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these approaches. We make our species-tree distance approach available as an R package called 

pSTDistanceR, for open use by the community.   
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Introduction 

Quantifying the degree of dissimilarity between phylogenetic tree structures has long been of 

interest to both mathematicians and evolutionary biologists alike. In particular, considerable 

attention has been directed towards characterizing the geometry of phylogenetic tree space and 

developing theoretical and empirical frameworks for measuring the distance between two trees 

(Estabrook et al. 1985; Kim 2000; Moulton and Steel 2004; Owen 2011; Shi et al. 2013; Kuhner 

and Yamato 2015). Molecular systematic studies now routinely employ distance measures to 

quantify variation within sets of trees and assess statistical confidence (or lack of) when 

summarizing and comparing analyses. For example, phylogeneticists often want to compare trees 

estimated using different datasets and/or analytical approaches, which can potentially provide 

insight into underlying sources of phylogenetic conflict (e.g., Castoe et al. 2009; Reddy et al. 

2017). This is important because, despite the increase in accuracy predicted to coincide with the 

ever-increasing size of phylogenomic datasets, phylogenetic estimates often vary greatly from 

study-to-study, and many species-level relationships remain as contentious as ever (Reddy et al. 

2017; Shen et al. 2017b; Walker et al. 2018). Robust methods for measuring phylogenetic 

distance can be used to dissect the causes and consequences such variation, and thus, their utility 

is increasingly evident in the face of widespread phylogenetic conflict that has persisted – and 

sometimes amplified – in the age of genome-scale datasets.  

A number of tree distance measures have been proposed, including the Robinson-Foulds metric 

(Robinson and Foulds 1979, 1981), quartet distance (Estabrook et al. 1985), the geodesic or 

Billera-Holmes-Vogtmann (BHV) metric (Billera et al. 2001; Owen and Provan 2011), and many 
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others. Traditionally, these approaches view phylogenetic trees strictly in terms of their 

geometric properties– that is, only the branching structure (i.e., topology) and/or branch lengths 

are considered when comparing two trees. Although these measures are usually rapid to compute 

and benefit from relatively straightforward interpretations (e.g., the Robinson-Foulds metric 

measures the number of shared splits between a pair of trees), many are also paradoxically 

restricted by their own dependence on a strictly geometric perspective of trees. Ironically, in 

contrast to the relative simplicity of tree comparison approaches, tremendous effort has been 

directed towards understanding phylogenetic trees as probability generating models over the past 

decades – particularly in the analysis of genetic sequence data. From this model-based 

viewpoint, we consider the molecular evolutionary processes occurring along branches of a 

phylogeny that ultimately determine the probability of observing a particular pattern of 

nucleotides (or amino acids) at a single site. In other words, a phylogenetic tree model 

parameterizes the probability distribution of site patterns as a function of the topology, branch 

lengths, and other parameters relevant to the nucleotide substitution process (i.e., relative 

substitution rates, equilibrium base frequencies). Accordingly, rather than a depiction of tree 

space solely in terms of topology and/or branch lengths, a probabilistic phylogenetic model is 

most appropriately identified by a set of points in the space of site patterns, which has been 

referred to as “phylogenetic oranges” or “hyperdimensional oranges” (Kim 2000; Moulton and 

Steel 2004).  

Viewing phylogenies as probabilistic models instead of solely geometric structures suggests that 

potentially far greater information can be incorporated for the comparison of trees. For these 

reasons, Garba et al. (2018) proposed the use of probabilistic model-based distances to compare 
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two trees by measuring the distance between their site pattern probability distributions. Unlike 

traditional measures based solely on topology and/or branch lengths, these measures effectively 

incorporate information encoded by parameters of the nucleotide substitution process. As 

predicted, probabilistic measures can be more informative than traditional topology or branch-

length based distances (i.e., Fig. 2 of Garba et al. 2018). For example, two trees with exactly the 

same topology and branch lengths can yield very different site pattern probabilities if the 

nucleotide substitution parameters differ substantially, and conversely, trees with different 

topologies can exhibit similar site pattern distributions depending on these parameters. In either 

case, measuring the distance between two trees in terms of their site pattern probability 

distributions is likely to illuminate important differences that may be overlooked or obscured 

when only conducting simple comparisons of topologies. Importantly, this model-based 

perspective of trees also forms the foundation of likelihood-based methods, such as maximum 

likelihood estimation (MLE) and Bayesian inference (BI), that have become cornerstones of 

contemporary molecular phylogenetics. Thus, there is an intuitive link between probabilistic 

phylogenetic inference and the probabilistic phylogenetic distance measures of Garba et al. 

(2018), such that trees can be directly compared within the same model-based framework used to 

estimate them. 

Although the distance measures of Garba et al. (2018) mark a significant advancement towards 

more informative distance metrics, they are inherently limited in one fundamental aspect: they 

only measure distance between gene trees, not species trees per se. Species trees, rather than 

gene trees, depict the evolutionary relationships among organisms, and thus, reconstructing 

species-level relationships is the primary goal of most phylogenetic studies (Maddison 1997; 
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Nichols 2001; Rannala and Yang 2003b). The distinction between gene trees and species trees is 

critical when computing phylogenetic distances because individual gene trees may bear little 

resemblance to one another and with the species tree (Nichols 2001; Degnan and Rosenberg 

2009b). Incomplete lineage sorting (ILS) is perhaps the most pervasive and well-studied source 

of gene tree heterogeneity that is notorious for its ability to challenge species tree accuracy 

(Maddison 1997; Nichols 2001; Degnan and Salter 2005; Edwards 2009c; Edwards et al. 2016). 

The multispecies coalescent (MSC) model was developed to accommodate ILS by merging 

phylogenetics and coalescent theory into a unified framework that models the evolution of gene 

trees imbedded within a species tree (Maddison 1997; Nichols 2001; Rannala and Yang 2003b). 

A species tree model parameterizes the probability distribution of gene trees conditioned upon 

the species-level topology and set of divergence times in coalescent units (with one coalescent 

time unit to be 2𝑁% generations where 𝑁% is the effective population size). Under the MSC, gene 

trees are therefore permitted to vary from locus-to-locus as a result of the coalescent process 

occurring within branches of a species tree, and accordingly, site pattern probability distributions 

may also vary. The probabilistic metrics proposed by Garba et al. (2018) effectively ignore such 

variation because trees are constrained to a single topology when computing and comparing site 

pattern probabilities and thus, they cannot be used in their current form to measure the distance 

between two species tree models. These measures can be used to quantify the distance between 

any two gene trees, however, this provides only indirect (if inefficient) information about 

species-level distances. Only when all gene trees share the same topology, branch lengths, and 

substitution parameters will these measures directly translate to species tree comparisons. 

Fundamentally, the probabilistic phylogenetic distances proposed by Garba et al. (2018) 
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therefore represent gene tree distances that are largely invalid for the comparison of species tree 

models in the presence of gene tree heterogeneity. 

Another unique challenge arises when biological processes yield phylogenetic tree structures that 

are not strictly bifurcating. In particular, substantial effort has been directed towards developing 

models that incorporate hybridization events among species in the form of phylogenetic 

networks (Huson and Bryant 2006; Nakhleh 2010; Degnan and Ane 2017; Zhu and Degnan 

2017). To model both ILS and hybridization, theoretical work has extended the MSC to derive 

network-based species models that depict hybridization events as interconnecting edges in the 

species tree (Degnan and Ane 2017; Zhu and Degnan 2017). In addition to a species topology 

and set of divergence times (in coalescent units), the presence of hybridization events in the 

species tree may also modulate gene tree probabilities. Much remains unknown about the space 

of phylogenetic networks, and it is not always clear how network distances should be computed 

because many existing metrics, including the probabilistic gene tree distances of Garba et al. 

(2018), as well as topology-based metrics (i.e., Robinson-Foulds distances), are typically 

designed to measure strictly bifurcating trees and therefore must be modified to be relevant for 

reticulating species trees  (Cardona et al. 2009; Nakhleh 2010; Degnan and Ane 2017). One 

particularly relevant concern for network model selection and inference involves the issue of 

identifiability: two networks can be mathematically or even practically indistinguishable because 

they induce identical (or nearly so) probability distributions on gene tree topologies (Zhu and 

Degnan 2017). Although many have been generalized to networks, existing distance metrics 

often assume a distance of zero when comparing two networks that display the same topology 

when removing a subset of hybridization edges, even if their gene tree distributions differ 
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(Cardona et al. 2009; Degnan and Ane 2017). Collectively, these findings suggest that a model-

based approach may prove particularly relevant and useful for measuring species network 

distances because such an approach should, in theory, be able to detect differences (or a lack of 

differences) in the underlying gene tree probabilities.  

In this study, we discuss how the principles and theory of the probabilistic gene tree distance 

measures proposed by Garba et al. (2018) can be generalized for the computation of species tree 

distances. To derive analogous measures for computing species tree distances, we employ the 

MSC to parametrize the probability distribution of gene trees conditioned upon a specific 

topology and set of species divergence times (in coalescent units). Just as Garba et al. (2018) 

viewed gene trees as parametric models that can be compared in terms their site pattern 

probability distributions, here we measure the distance between two gene tree probability 

distributions induced by their respective species tree models under the MSC. We first briefly 

describe the gene tree distances of Garba et al. (2018) followed by a modification of these 

measures to species tree distances. We then demonstrate the utility of this approach using several 

examples of the MSC. Finally, we apply these measures to more complex network-based species 

models that present particularly challenging problems for phylogenetic model selection and 

inference.   
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Methods 

 

Probabilistic Species Tree Distances  

The probabilistic Gene Tree Distance (pGTD) measures proposed by Garba et al. (2018) 

compare two gene trees in terms of the difference in their site pattern probability distributions. 

Importantly, site patterns are considered independently and identically distributed (i.i.d.) in the 

computation of pGTD – meaning that gene tree topologies and/or branch lengths do not vary for 

a given tree. In the presence of gene tree heterogeneity, pGTD measures will not equate to 

species tree distances because they constrain gene trees to a single topology, branch lengths, and 

other parameters. We can, however, leverage the same principles of Garba et al. (2018) to derive 

probabilistic species tree distances by substituting species-level parameters into these same 

equations. See the Supplementary Materials and the original study (Garba et al. 2018) for a 

detailed treatment of probabilistic gene tree distances, which provides a basis for computing 

species tree distances in a similar manner.  

Here we describe how these principles can be used to derive probabilistic Species Tree Distances 

(pSTD) whereby the goal is to compare species-level relationships, rather than individual gene 

trees. Just as Garba et al. (2018) viewed gene trees as probability generating models, here we 

leverage the multispecies coalescent (MSC) model to measure the distance between two species 

trees in terms of their probability distributions on genealogies.  

Under the standard MSC (i.e., lineages remain genetically-isolated), a species tree model ϕ =

{𝑇,			𝜆} with 𝑛 extant species defines a discrete probability distribution of all possible gene trees 
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𝐺U as a function of the species topology (𝑇) and set of divergence times (𝜆) in coalescent units. If 

only a single lineage is sampled per species, the total number of possible rooted gene trees is 

|𝐺U| = 	
(-Uqr)!

-stu	(Uq-)!
, and the probability of a particular gene tree 𝑔 in 𝐺U is computed as a function 

of the species tree model: 𝑃(𝑔|ϕ = 	 {𝑇,			𝜆}). To derive species tree distances, we replace terms 

in the equations of Garba et al. (2018) to reflect species models ϕ and their associated gene tree 

probability distributions (Equations provided in the Supplementary Materials). The distance 

between two species tree models ϕ^ = {𝑇 ,			𝜆^} and ϕ- = {𝑇-,			𝜆-} is computed as: 

 𝑑(ϕ^, ϕ-) = 	𝑑(𝑃(𝐺U|𝑇 ,			𝜆^)	, 𝑃(𝐺U|𝑇-,			𝜆-))			(1) 

where 𝑃(𝐺U|𝑇 ,			𝜆^)	is the probability distribution of gene trees given the model parameters 

ϕ^(likewise for ϕ-) and 𝑑(ϕ^, ϕ-)	can represent the Hellinger distance (𝑑v), the Kullback-

Leibler distance (𝑑wx), or the Jensen-Shannon distance (𝑑y*- ), shown below in Equations 2-4: 

 𝑑v(ϕ^, ϕ-)- =
^
-
∑ z{𝑃(𝑔|ϕ^) − {𝑃(𝑔|ϕ-)|}~�s

-
	(2) 

 𝑑wx(ϕ^, ϕ-)	 = ∑ 𝑃(𝑔|ϕ^) × logW
�z𝑔�ϕ^|
�z𝑔�ϕ-|

X	}~�s 	(3) 

 𝑑y*- (ϕ^, ϕ-) =
^
-
𝑑wx W𝑃(𝑔|ϕ^);

�z𝑔�ϕ^|]�z𝑔�ϕ-|
-

X +

^
-
𝑑wx W𝑃(𝑔|ϕ-);

�z𝑔�ϕ^|]�z𝑔�ϕ-|
-

X (4) 

We have implemented these equations in an R software package (pSTDistancesR) that uses 

HYBRID-COAL (Zhu and Degnan 2017) to generate gene tree probability distributions (see 

Software Availability section below). These equations are effectively the same equations 
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proposed by Garba et al. (2018) except that gene-tree and substitution parameters have been 

replaced by species-level parameters. For each possible genealogy in 𝐺U, we record the 

difference in the probability of that genealogy between two species tree models and sum these 

differences across gene tree space using Equations 1-4. For example, consider two 4-species tree 

models ϕ^and ϕ-. In this case, there is a total of |𝐺�| = 	
(�qr)!

-�tu	(�q-)!
= 15 possible genealogies, 

and for each genealogy in this set 𝐺�, we measure the difference between its probabilities under 

ϕ^ and ϕ- using Equations 2-4. By implementing the MSC in such a manner, we are effectively 

incorporating information about the coalescent process running along branches of the species 

tree model when computing distances. For example, two species trees can have the exact same 

topology (i.e., 𝑇 = 𝑇-= Robinson-Foulds distance of zero) but very different gene tree 

distributions depending on the branch lengths, which determine the probability that a pair of 

lineages coalesce within a particular species branch. We also note that the Kullback-Leibler 

distance is not a true metric because it is not symmetric (i.e., 𝑑wx(ϕ^, ϕ-)	 ≠ 	𝑑wx(ϕ-, ϕ^)	) 

and does not satisfy the triangle equality (see Supplementary Materials for more information) – 

this is a fundamental property of the Kullback-Leibler distance that is relevant to any of its 

applications, including the original gene tree distances of Garba et al. (2018). Despite this 

limitation, we include the Kullback-Leibler distance here because of its wide use for model 

comparison, particularly in the field of systematics.  

For the purposes of this study, we primarily discuss the computation of pSTD on species trees 

with relatively fewer tips (<10), for which probabilistic distances can be computed analytically 

using Equations 2-4. However, the total number of possible gene trees |𝐺U| can be tremendous 

for larger species trees, and these distances can be estimated using simulations in a manner 
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similar to Garba et al. (2018). For example, we can obtain a sample of 𝑚 gene tree topologies 

from each species tree and approximate the Hellinger and Kullback-Leibler distance between ϕ^ 

and ϕ- as: 

 𝑑v∗ (ϕ^, ϕ-)- ≃ 1 − � ^
-�
�∑ ��

��𝒈5,�� �ϕ-�
��𝒈5,���ϕ^�

+ �
��𝒈5,�u�ϕ^�
��𝒈�,�u �ϕ-�

��
5V^ 	(5) 

 𝑑wx∗ (ϕ^, ϕ-) ≃
^
�
∑ log�

��𝒈5,�� �ϕ^�
��𝒈5,���ϕ-�

��
5V^ 		(6)  

To explore potential advantages and disadvantages of pSTD in relation to other metrics, we 

computed pSTD in two scenarios: a pair of bifurcating species trees with the same topology and 

branch lengths that only differ by a scaling factor 𝛾 (Fig. 1a vs. Fig. 1b), and a pair of species 

trees with the same topology and branch lengths that are identical except for one internal branch 

that is scaled by 𝛾 (Fig. 1a vs. Fig. 1c). These scenarios represent similar examples to those 

shown in Figure 2 and Figure 3a of Garba et al. (2018) in which either a single branch or all 

branches of gene trees were scaled by a factor when comparing pGTD and BHV metrics. For the 

first scenario, we consider two bifurcating species tree models ϕ^ = {𝑇 ,			𝜆^} and ϕ- =

{𝑇-,			𝜆-} that share the same topology (i.e., 𝑇 = 𝑇-), but the branch lengths of the second model 

ϕ-	are obtained by scaling the branch lengths of  ϕ^ by a factor 𝛾, such that 𝜆- = 𝛾𝜆^ (Figure 1a 

vs. Figure 1b). Similarly, in the second scenario, only the length of the internal branch for the 

second species tree is scaled by 𝛾 (Fig. 1c). To explore the properties of pSTD under varying 

degrees of ILS, we specify ϕ^ to the following (in newick format): "(((A:1,B:1):1,C:2):1,D:3)" 

and we allow 𝛾 to vary from 0	– 10.  
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Probabilistic Distances as a Framework for Comparing Increasingly Complex Species Tree 

Models  

While comparing gene tree distributions under multispecies coalescent models is the primary 

focus of this study, we argue that this approach could be extended to incorporate and compare 

species tree models that include other evolutionary processes, such as migration, hybridization, 

recombination, and selection, among others. Here we demonstrate two of potential extensions of 

our pSTD approach: (1) reticulating species tree models and (2) nucleotide site pattern 

probabilities. In the previous section, we have applied a simplistic and commonly used 

interpretation of the MSC whereby species are assumed to diverge in genetic isolation from one 

another in the absence of gene flow, natural selection, migration, hybridization, or any other 

evolutionary process. That is, the probability of a gene tree (used to compute the distances of 

Equations 2-6) is only a function of the species tree topology and branch lengths in coalescent 

units, such that all gene tree heterogeneity is assumed to arise from ILS. Recent work has 

expanded the MSC to accommodate hybridization with the development of Network 

Multispecies Coalescent (NMSC) models (Degnan and Ane 2017; Zhu and Degnan 2017). The 

NMSC can be incorporated into our pSTD equations to compute the distances between network 

species models that include hybridization edges. For example, the species model ϕ can include a 

network topology (instead of a strict bifurcating tree) and other parameters associated with the 

timing and duration of hybridization. Species models with different network topologies can 

therefore be compared with one another, and with models that do not include hybridization. To 

explore the utility of pSTD for comparing complex phylogenetic structures, we computed 

probabilistic distances between two species tree networks (Fig. 2a vs. 2b), and separately 
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between a network and a bifurcating tree (Fig. 2a vs. 2c). These networks (Fig. 2a-b) were 

chosen because they present particularly challenging problems for network-inference and 

distance computation, and were used in recent studies of network models (Degnan and Ane 

2017; Zhu and Degnan 2017). In the first scenario, the two different species networks display the 

same tree after removal of hybridization edges that differentiate the two networks. As before, we 

let the edge lengths of ϕ- scale by a factor 𝛾 that ranges from 0	– 10. In a second example, we 

use pSTD to compute the distance between a network (Fig. 2a) and a bifurcating species tree 

model (Fig. 2c).  

Another example extension of these distances is the incorporation of mutational processes that 

give rise to molecular sequence data. For example, probabilistic distances may also incorporate 

site pattern probabilities that are contingent upon the gene tree distributions, thereby providing a 

natural comparison to the gene tree distances of Garba et al. (2018). We demonstrate the utility 

of incorporating mutation into the probabilistic species tree distances by computing pSTD 

between two species tree models (Fig. 3a vs. 3b) across a range of branch scaling values to 

obtain the second tree (Fig. 3b). For these examples we use a mutation rate of 𝜇 = 10q� under 

the 4-state JC69 model (Jukes and Cantor 1969) using the site pattern probability equations and 

example species trees provided in Chifman and Kubatko (2015), and a scaled population size 

parameter 𝜃 = 2𝑁%𝜇 = 0.10 for all branches in the model (Fig. 3).   

Four Empirical Demonstrations of Probabilistic Species Tree Distances 

We applied our probabilistic species tree distance measures to four different empirical examples 

that included: (1) quantifying variation within a set of species tree estimates obtained using 
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resampling procedures (i.e., bootstrapping) across different genomic regions, (2) comparing 

species trees estimated using different methods and/or datasets, (3) dissecting contentious 

estimates of phylogenetic relationships, and (4) characterizing a Bayesian posterior probability 

distribution of species tree model estimates obtain via Markov Chain Monte Carlo (MCMC) 

sampling. For the first and second demonstrations, we used the avian phylogenomic analyses 

(Jarvis et al. 2014) as an example dataset because this dataset has been used as a case-study for 

understanding the performance of species tree estimation methods on genome-scale datasets 

(Mirarab et al. 2014; Liu and Edwards 2015) and for dissecting causes of phylogenetic conflict 

(Reddy et al., 2017). We downloaded a set of 14,446 estimated gene trees and a set of 32 species 

tree topologies that were estimated in the original study (i.e., Jarvis et al., 2014) or estimated in 

previous studies (i.e., Prum et al. 2015), which allowed us to compare species tree estimates 

across different datasets and approaches. We pruned these trees down to 8 focal taxa that 

represent challenging and contentious problems for resolution of the avian phylogeny: bald eagle 

(Haliaeetus_leucocephalus), barn owl (Tyto alba), speckled mousebird (Colius striatus), cuckoo 

roller (Leptosomus discolor), downy woodpecker (Picoides pubescens), carmine bee-eater 

(Merops nubicus), rhinoceros hornbill (Buceros rhinoceros), and bar-tailed trogon (Apaloderma 

vittatum). For all analyses, probabilistic distances between species trees were computed 

analytically using Equations 1-4.  

For the first demonstration, we quantified variation among sets of bootstrapped species trees that 

were estimated from different chromosomes. For each of the five first chromosomes of the 

chicken genome (Gallus_gallus-5.0; GCA_000002315.3; Warren et al., 2017), we obtained a set 

containing all available gene trees that were estimated in Jarvis et al. (2014) for that 
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chromosome, and we used these gene tree sets to conduct nonparametric bootstrap resampling 

(with 10 replicates) independently for each chromosome using MP-EST (Liu et al. 2010a). In 

other words, we obtained 10 bootstrapped species tree estimates for chromosome one, and so on, 

for each of the five largest autosomes using their respective gene tree sets. We used 

multidimensional scaling of the Hellinger distance (computed analytically using Eq. 4), and the 

R package TREESPACE (Jombart et al. 2017) to characterize variability among chromosome-

scale species tree estimates in the phylogenetic placement of avian lineages. In the second 

demonstration, we computed pairwise species tree distances between 32 different estimates of 

the avian phylogeny. These 32 different estimates were obtained using different datasets, models, 

methods, and studies, and were analyzed in the context of the original genome-scale inferences 

of Jarvis et al., (2014) or subsequent critical reanalysis of these data (Prum et al. 2015b; Reddy et 

al. 2017). We used the program MP-EST (Liu et al. 2010a) to estimate the branch lengths of 

these species trees in coalescent units following the general protocol of Jarvis et al., (2014). We 

computed pairwise distances between all 32 species trees, and used these to construct a cluster-

based NJ tree using the R package PHANGORN (Schliep 2011) to quantify similarities among 

estimates.  

For the third demonstration, we used three case-studies of contentious relationships 

(Amphibians, Neoaves, and Reptiles) that were highlighted in a recent study focused on the 

causes and consequences of phylogenetic conflict (Table 1 in Shen et al. 2017). We downloaded 

six species trees (shown in Fig. 6) and the set of 9,363 gene trees from the original study (Shen et 

al. 2017b), which we used to estimate the branch lengths of species trees in coalescent units 

using MPEST. We computed probabilistic distances between each of the three species tree pairs, 
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as well as both the rooted and unrooted Robinson-Fould distances, and the BHV metric. For the 

fourth application, we used an example dataset for estimating species-level relationships of 

Canids using Bayesian species tree estimation with the program StarBEAST2 (Ogilvie et al. 

2017). We downloaded the CanisPhylogeny-example.xml file from the ‘example files’ that are 

provided with StarBEAST2, and ran the MCMC chain for a total of 6,000 generations using this 

example file. We sequentially sampled 10 species tree estimates every 1,000 generations (total of 

60), and computed the pairwise Hellinger distances between all 60 species tree estimates using 

Equation 2.  

Results 

Scaling Species Divergence Times  

Comparing species tree distances across an array of branch scaling factors highlights the benefits 

of incorporating gene tree probability distributions for comparing and contrasting species tree 

distance measures (Fig. 1). In the comparison of two bifurcating species trees with the same 

topology and branch lengths that only differ by a scaling factor 𝛾 (Fig. 1a vs. Fig. 1b), 

probabilistic distance measures show little resemblance to the BHV metric across an array of 

values for 𝛾 (Fig. 1d). Scaling branch lengths by 𝛾 results in complex differences in the 

underlying gene tree probability distributions that are reflected by differences in the probabilistic 

measures shown in Figure 1, while the Robinson-Foulds distance is zero in all cases for trees 

shown in Figures 1 and 2. In contrast, the BHV metric simply scales linearly with 𝛾, while the 

Hellinger, Kullback-Leibler, and Jensen-Shannon distances exhibit more complex relationships. 

In the second scenario for which only a single branch of ϕ- is scaled by 𝛾 (i.e., all other branches 
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remain unchanged; Fig. 1a vs. Fig. 1c), we observe similar trends with pSTD that provide more 

informative comparisons between two trees (Fig. 1e). The Hellinger and Kullback-Leibler 

distance metrics exhibit asymptotic trends toward their respective limits (Fig. 1d-e), suggesting 

diminishing impacts of branch length scaling on gene tree probability distributions with larger 

values of 𝛾.  

Comparing More Complex Species Tree Models Using pSTD  

Probabilistic network distances are able to compare complex species tree structures, and we 

demonstrate that here across two examples: between two species tree networks that display the 

same tree (after removal of hybridization edges that differentiate the two networks; Fig. 2a vs. 

2b), and between a network and a bifurcating tree (Fig. 2a vs. 2c). pSTD computed in both 

scenarios reveal the effects of branch scaling on network distances (Fig. 2d), and the potential 

utility of pSTD for comparing a network with a bifurcating tree. (Fig. 2e). As with the examples 

shown in Figure 1, we see that the Hellinger and Jensen-Shannon distances appear to exhibit 

asymptotic behavior as the edge length differences increase between species models. However, 

the Kullback-Leibler distance, which is not a metric (i.e., it is asymmetric and does not satisfy 

the triangle inequality), increases far more rapidly, particularly when comparing a network and a 

bifurcating topology (Fig. 2e).  

Although we have primarily focused on comparing gene tree distributions, we also show how 

nucleotide site pattern probabilities can be incorporated into the distance computations to 

demonstrate an additional extension of the species tree distance approach. Comparing two 

species tree models (Fig. 3a vs. 3b) in terms of their site pattern probability distributions under 
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the multispecies coalescent model + 4-state JC69 model highlight the ability for pSTD 

approaches to effectively incorporate mutational processes when comparing phylogenetic models 

(Fig. 3c). As before, we see that the BHV metric simply scales linearly as species trees 

differentiate. For example, the probabilistic distances shown in Figure 3 exhibit complex shifts in 

slope as the internal branch lengths of the species tree become more distant. As before, the 

Robinson-Foulds distance is zero in all cases.  

Four Empirical Applications Of pSTD  

In our first example application of pSTD, variation in key nodes of the avian phylogeny was 

quantified by comparing distances between bootstrap replicates estimated from different 

chromosomes (Fig. 4). This was visualized using multidimensional scaling (MDS; Hillis et al. 

2005) of the Hellinger distance (Eq. 2), providing a detailed depiction of the bootstrap sampling 

space of species trees across chromosomes, highlighting both differences and similarities among 

chromosomes in species tree estimates (Fig. 4). For example, species tree estimates derived from 

chicken chromosome 3 show greater variation that those derived from chromosome 2, while 

estimates from chromosome 4 and 5 show substantial overlap with one another.  

Our second empirical application demonstrated pSTD by applying these distances to quantify 

variation in avian species tree estimates inferred from different data subsets, models, and 

inferential approaches (Jarvis et al. 2014;  Reddy et al., 2017; Prum et al. 2015). Clustering of 

species tree estimates based on pSTD (i.e., Hellinger distance, Eq. 2) are markedly different than 

those based on Robinson-Foulds distances alone (Fig. 5a vs. Fig. 5b), and more informative (i.e., 

the collapsed nodes in Fig. 5b provide no additional information). Our clustering of species trees 
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based on pSTD differs notably from the results shown in Reddy et al. (2017) previously used to 

characterize and understand conflict among species trees estimated using different datasets (i.e., 

Fig. 6 of Reddy et al. 2017). Perhaps the most apparent contradiction between our clustering 

results based on pSTD and other metrics is the disparate clustering of species trees obtained 

using the so-called heuristic “statistical binning” approaches, which attempt to build longer 

supergenes prior to gene tree estimation (Mirarab et al. 2014), and all other metrics (Fig. 5a). For 

example, the “unbinned” intron and total evidence (“TENT”) species trees formed a cluster 

distant from “binned” analyses of these same datasets based on pSTD (Fig. 5a), and conversely, 

the “binned” and “unbinned” analyses of these two datasets cluster together when compared 

using the Robinson-Foulds metric (Fig. 5b). pSTD-based clustering also highlights major 

discrepancies in the placement of the “PRUM 2015” tree, suggesting very different gene tree 

probability distributions between this tree and the “binning” trees estimated in Jarvis et al. 

(2014). For example, the Hellinger distance (Eq. 2) suggests that the “PRUM 2015” tree and the 

unbinned analyses are more similar to one another (Fig. 5a), yet the Robinson-Fould metric 

indicates that the topology of this tree is identical to the tree obtained in Jarvis et al. (2014) using 

the “binned” analysis of introns (Fig. 5b).  

We used pSTD to explore species tree distances for several vertebrate clades that included 

contentious relationships based on previous studies as a third empirical application of pSTD. 

These analyses demonstrate that probabilistic measures of species tree distance can be 

particularly useful for enabling more complete dissection of differences in topology and branch 

lengths that differentiate contentious species tree inferences (Fig. 6). In all three test-case 

examples taken from Shen et al. (2017), the unrooted Robinson-Foulds distance is zero, while 
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the various probabilistic measures effectively compare these contentious estimates in terms of 

their gene tree probability distributions. Finally, in our four demonstration, we used pSTD to 

characterize a posterior distribution of species tree estimates sampled at different times along a 

single MCMC chain from a StarBEAST2 run. This example demonstrates well that pSTD can be 

particularly useful for dissecting variation among estimates, and even for testing for convergence 

of MCMC chains (Fig. 7). MDS of the pairwise Hellinger distance indicates that samples taken 

earlier in MCMC show greater variation (e.g., MCMC Set 1, Fig. 7) compared to samples taken 

later in the MCMC consistent with convergence of the MCMC towards the posterior.  

Discussion  

Over the past few decades, tremendous effort has been directed towards understanding 

phylogenetic trees as probability generating models on character data. Indeed, phylogenetic 

inference is now predominantly a model-based endeavor whereby evidence in support of 

alternative hypotheses can be assessed and quantitatively leveraged to estimate parameters and 

significance. While the application of model-based frameworks to statistical inference has 

become a cornerstone of contemporary molecular phylogenetics, model-based approaches for 

comparing phylogenetic trees are still in their relative infancy. Given the ubiquitous use of 

statistical models for the purpose of evolutionary inference, it seems ironic that studies rarely (if 

ever) conduct a model-based comparison of trees that were estimated within a model-based 

framework. The probabilistic measures proposed by Garba et al. (2018) improve substantially 

upon the shortcomings of previous approaches, but their application is largely restricted to gene 

tree comparisons and are not directly applicable to models of species trees and networks. Here 

we have generalized these approaches to derive probabilistic species tree distance measures.  
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Understanding the species-level relationships among organisms is the primary focus of the 

majority of phylogenetic studies, such that gene trees are typically viewed as “nuisance 

parameters” because they often conflict strongly with one another and may individually provide 

little insight into the true, species-level relationships. Gene tree heterogeneity is widespread in 

nature and often poses significant challenges for phylogenetic inference as a result of different 

evolutionary processes, including incomplete lineage sorting (Heled and Drummond 2010; 

Camargo et al. 2012), migration (Zhang et al. 2011b; Qu et al. 2012; Leaché et al. 2014), 

hybridization (Meng and Kubatko 2009; Zhu and Degnan 2017), recombination (Lanier and 

Knowles 2012), and selection (Castoe et al. 2009c, 2010; Adams et al. 2018). The impacts of 

gene tree variation on species tree estimation have been a central topic of interest for the past few 

decades, resulting in the development of multispecies coalescent models for accommodating ILS 

and its associated gene tree conflicts (Nichols 2001; Rannala and Yang 2003b; Heled and 

Drummond 2010; Edwards et al. 2016). By implementing the multispecies coalescent model, 

pSTD provide a means for comparing species trees in terms of their induced gene tree 

probabilities, which can provide more information than simple measures of topology and/or 

branch lengths of species trees. Species trees are now commonly estimated within the MSC 

framework, and thus, pSTD measures allow species trees to be compared within the same 

framework used to estimate them. Furthermore, we have shown that these probabilistic measures 

represent a general framework that is easily extended for comparing increasingly complex 

species tree models that consider other evolutionary processes in addition to ILS (i.e., Fig. 2-3).  

Here we have demonstrated several applications for pSTD, although many more diverse 

applications likely exist, particularly considering that the method itself can be readily modified to 
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incorporate more complex versions of the standard MSC model. Importantly, we demonstrate the 

utility of pSTD for illuminating differences in species tree estimates likely driven by biological, 

methodological and statistical factors. For example, in the limited number of applications 

included in this study we were able to demonstrate how using pSTD can illuminate distinct 

biologically-relevant phylogenetic signal from different chromosomes (Fig. 3), and also be used 

to diagnose statistical properties and variation among species tree estimates sampled by 

bootstrapping or from Bayesian MCMC chains (Figs. 4 and 7). We also demonstrated how pSTD 

may be extended to incorporate additional processes, such as hybridization and mutation which 

further increase the flexibility and thus the utility of pSTD. In one of these demonstrations we 

use an extended form of pSTD to test among speciation network hypotheses, and between 

network-based and bifurcating species trees (Fig. 2) – both of which represent key challenges to 

other methods and priorities for modern speciation research (Degnan and Ane 2017; Zhu and 

Degnan 2017).  

Our example applications of pSTD also highlight the utility of these distances for dissecting the 

basis of variation in species tree inferences derived from different analytical approaches, 

datasets, or phylogenetic models (Fig. 5). In these comparisons that utilize species tree inferences 

based on avian phylogenomic data (Jarvis et al. 2014;  Reddy et al., 2017; Prum et al. 2015),  

pSTD measures suggest that a model-based comparison of species trees can be far more 

informative than simple topology and/or branch length comparisons. Intriguingly, pSTD-based 

clustering indicated that avian phylogenomic species tree estimates tend to cluster together based 

on the specific method used (i.e., the “unbinned” MP-EST analyses clustered separately from the 

“binned” analyses in Fig. 5a), rather than the particular dataset used. This result contradicts 
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clustering based simply on topology alone, which indicates the species tree estimates obtained 

using the same data-type are more similar (Fig. 5b). For example, the TENT (total nucleotide 

evidence trees) inferred in Jarvis et al. (2014) exhibited the same topology regardless of whether 

the “binned” or “unbinned” approach was used (Fig. 5b), and yet, these two species trees induce 

very different gene tree probability distributions, which is reflected when computing pSTD (Fig. 

5a). These findings also agree with recent studies that suggest heuristic species tree approaches 

may have particularly strong and misleading influence on species tree estimation (Liu and 

Edwards 2015; Roch et al. 2018). Therefore, pSTD comparisons of species tree distributions may 

provide insight into the potential effects that species tree methods may impose on species tree 

inference that is not otherwise identified by other measures.  

Our example applications of pSTD also highlight the broad utility of the approach for 

investigating model identifiability (or lack of) in several contexts – a topic that represents a 

major concern for species tree estimation (Chifman and Kubatko 2015; Degnan and Ane 2017; 

Zhu and Degnan 2017). In the context of the MSC, this means that the number of gene trees 

required to distinguish between competing species tree models may exceed the limits of 

reasonably-sized empirical datasets for two models that are practically indistinguishable. The 

practical ramifications of model identifiability are critical considerations for empirical studies 

because gene trees themselves are always estimated (rather than known), which introduces 

another source of potential error into the problem. The problem of identifiability has been 

particularly relevant in the context of reticulating phylogenetic networks (Degnan and Ane 2017; 

Zhu and Degnan 2017), and our analyses highlight the utility of pSTD as a tool for 

understanding model identifiability of complex species tree models. Indeed, modeling species 
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hybridization entails numerous challenges for phylogenetic model selection and inference. If the 

number of hybridization events is unbounded, for example, the space of phylogenetic networks is 

infinitely large, suggesting that the size of network space can be much larger than that of 

bifurcating trees (Degnan and Ane 2017; Zhu and Degnan 2017). The inherent difficulties of 

computing network distances has been noted by previous authors (Degnan and Ane 2017), and 

several traditional geometric-based measures, such as the Robinson-Foulds distance, have been 

augmented for the comparison of network topologies (Cardona et al. 2009; Nakhleh 2010), but 

make several limiting assumptions. Here we have shown that pSTD can be readily extended for 

comparing reticulating species trees because it can determine whether networks are 

distinguishable (i.e., pSTD = 0) or indistinguishable (i.e., pSTD > 0) in terms of their gene tree 

probabilities. For example, our distance metrics are able to quantify and confirm previous studies 

demonstrating the indistinguishability of networks that display the same topologies when only a 

single allele is sampled per species because their probabilistic distance is zero (Fig. 2d). 

Additionally, we have shown that pSTD can be used to measure the distance between a species 

network and a strictly bifurcating model (Fig. 2e). Collectively, these results suggest that pSTD 

may provide a particularly valuable framework for enabling meaningful comparisons of complex 

phylogenetic tree structures and a means for understanding the identifiability of these complex 

models – areas of great importance for the continued development and implementation of more 

realistic phylogenetic models.  

Although the species tree distance measures discussed in this study entail several advantages and 

useful applications, they also are limited in several key ways. One key limitation is the higher 

computational cost of measuring model-based distances for species trees, compared to simple 
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topology or related measures, which would scale with the number of taxa in the tree. For this 

study, we have demonstrated these measures using trees with fewer taxa (i.e., <10) to improve 

computational tractability, and for the purpose of understanding the relationships of specific 

contentious subclades (i.e., Fig. 6). The time taken to compute the 6000 pSTD shown in Figure 1 

was ~1.5 minutes, while the 6000 computations shown in Figure 2 were completed in ~4 

minutes, both using an Intel(R) Core i5 3.8GHz processor. To measure the distance between 

different estimates of the avian phylogeny (Fig. 4-5) and for the examples of contentious 

phylogenetic estimates (Fig. 6), we increased computational feasibility by subsampling the 

phylogeny and computing distances between subtrees extracted from a larger tree. This approach 

is similar to the pruning strategy employed by Reddey et al. (2017) that compared the 

phylogenetic placement of specific “indicator clades”. Another limitation is the number of 

lineages sampled per species. Currently, the software we used to compute gene tree probabilities 

under the MSC and NMSC (i.e., HYBRID-COAL; Zhu and Degnan 2017) provides gene tree 

probability distributions conditioned upon a single individual (i.e., single haploid sequence) 

sampled per species, although more complex sampling schemes should be relatively 

straightforward to incorporate. One popular application of the MSC is for conducting species 

delimitation to evaluate alternative models of speciation (i.e., different schemes for lumping or 

splitting of individuals into species; Fujita et al., 2012; Yang and Rannala, 2010), and pSTD 

permit the comparison of species delimitation models in precise terms of their gene tree 

probabilities. Theoretically, internal branch lengths in the species tree could be set to zero to 

compare models that split or lump individuals into a single species or population. Currently, the 

pSTD measures discussed in this study only consider ILS and hybridization, yet many other 

evolutionary processes may generate gene tree heterogeneity. Despite its limitations, the broad 
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applicability and extendibility  of the pSTD approach argues for its broad value and utility for 

addressing biological, methodological, and statistical questions in the context of the MSC – 

many of which were not readily addressed with previous measures.  

Conclusions 

Phylogenetic distance measures have become an integral part of phylogenetic analyses with 

broad applications across the field of evolutionary biology. Probabilistic measures of tree 

distances provide an intuitive framework for comparing model-based estimates of phylogeny and 

incorporate inherent advantages over traditional measures that compare only topology and 

branch lengths. Here we have generalized the same theory and statistical framework used for 

computing gene tree distances to the context of probabilistic species tree model comparison. This 

logical extension of gene tree distances to species tree models enables a broad spectrum of 

enhanced model comparisons that fill an important gap for comparing species tree models, 

including non-bifurcating network models. Indeed, computing network distances has historically 

proved difficult, and our demonstrations here show how probabilistic-based distances can be 

leveraged to compare species networks in the precise terms of their gene tree probabilities. As 

further extensions and advancements improve the complexity of species tree models, we 

envision that these distance measures can provide an increasingly valuable foundation for 

comparing models that incorporate a wide-range of evolutionary processes, such as migration, 

recombination, and natural selection.  
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Software Availability 

We developed an open source software package pSTDistanceR written in R 3.4.1 (R Core Team 

2017) and C++ that computes the Hellinger, Kullback-Leibler, and Jensen-Shannon pSTD using 

Equations 1-6 and the program HYBRID-COAL (Zhu and Degnan 2017), which is used to 

extract gene tree probabilities under both the standard MSC (without hybridization) and the 

NMSC. pSTDistanceR is freely available on github: 

https://github.com/radamsRHA/pSTDistanceR/. All scripts used to generate the figures in the 

study are provided in the Supplementary Materials.  
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Figures 

 
 
 
 

 
 
 
 

Figure 1. Species tree models and phylogenetic distances for two scenarios of branch scaling. The first 
species tree model is shown in (a), which was used to obtain the second species model (b) by scaling all 
branch lengths by a factor 𝛾. The Hellinger (𝑑v), BHV (𝑑dv�), Jensen-Shannon (𝑑y*), and Kullback-
Leibler (𝑑wx) distances between (a) and (b) are shown in plot (d). Similarity, the length of a single 
internal branch in species tree (a) was scaled by 𝛾 to obtain the species tree shown in (c). Plot (d) shows 
the distances across a range of 𝛾 when comparing (a) and (c). Note that in all cases, the Robinson-Foulds 
distance is zero (i.e., topologies are identical). 
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Figure 2. Species models and probabilistic distances for two scenarios of branch scaling. The first 
network model is shown in (a), which was used to obtain the second species model (b) by scaling all 
branch lengths by a factor 𝛾. Probabilistic species tree distances computed between (a) and (b) are shown 
in plot (d). Plot (e) shows the same probabilistic distances computed across a range of 𝛾 when comparing 
(a) and the bifurcating species tree model shown in (c). 
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Figure 3. Probabilistic distances that incorporate site pattern probabilities using the 4-state JC69 model 
under the multispecies coalescent. Species tree distances measured between (a) and (b) are shown in plot 
(c) across a range of branch length scaling for species tree (b). 
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Figure 4. Multidimensional scaling of the pairwise Hellinger distances (Eq. 2) between bootstrap 
estimates of species trees obtained for the first five chromosomes (10 bootstrap replicates per 
chromosome) of the chicken genome. Bootstrapping was conducted using all available gene trees for each 
respective chromosome. Tree symbols and groups coloring based on chromosome. 
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Figure 5. Clustering of species tree distances computed between 32 estimates of the avian phylogeny 
using the Hellinger pSTD (a) and Robinson-Foulds metric (b). Dendrograms were generated using the NJ 
algorithm with midpoint rooting, and tree names were obtained from the original study and reflect the 
particular dataset used (i.e., exons, introns, total nucleotide evidence “TENT”) and approach (i.e., 
“unbinned” vs. “binned” MP-EST analyses). The tree inferred in Prum et al. (2015) is highlighted as 
“PRUM 2015”. Clades were collapsed if the distance was zero. 

 
 
  

Exon.AminoAcid.ExaML.partitioned

Exon.RAxML.Heterogenous.c12

Exon.RAxML.Heterogenous.c123

Exon.RAxML.Homogenous.c12
Exon.RAxML.Homogenous.c123

Intron.MP−EST.binned

Intron.MP−EST.unbinned

Intron.RAxML.Heterogenous

Intron.RAxML.Homogenous

Intron.RAxML.partitioned

Intron.RAxML.unpartitioned

Exon.c1.ExaML.unpartitioned

Exon.c12.ExaML.partitioned

Exon.c12.ExaML.unpartitioned

Exon.c123−RY.ExaML.unpartitioned

Exon.c123.ExaML.partitioned

Exon.c123.ExaML.unpartitioned

Exon.c2.ExaML.unpartitioned

Exon.c3.ExaML.unpartitioned

Literature.Nuclear genes.Hackett
UCE.RAxML.unpartitioned

TEIT.RAxML

TENT.ExaML.25%

TENT.ExaML.50%
TENT.ExaML.75%

TENT.ExaML

TENT.MP−EST.binned

TENT.MP−EST.unbinned

TENT+c3.ExaML

Literature.DNAxDNA.SibleyAhlquist
Literature.Mitochondrial.Pacheco

PRUM 2015

Lorem ipsumLorem ipsum
MP-EST (binned)

MP-EST (binned)

MP-EST (unbinned)

Exon.AminoAcid.ExaML.partitioned

 Exon.RAxML.Heterogenous.c12

Exon.RAxML.Heterogenous.c123

Exon.RAxML.Homogenous.c12
Exon.RAxML.Homogenous.c123

Intron.MP−EST.binned

Intron.MP−EST.unbinned
Intron.RAxML.Heterogenous

Intron.RAxML.Homogenous

Intron.RAxML.partitioned
Intron.RAxML.unpartitioned

Exon.c1.ExaML.unpartitioned
Exon.c12.ExaML.partitioned

Exon.c12.ExaML.unpartitioned
Exon.c123−RY.ExaML.unpartitioned

Exon.c123.ExaML.partitioned
Exon.c123.ExaML.unpartitioned

Exon.c2.ExaML.unpartitioned

Exon.c3.ExaML.unpartitioned

Literature.Nuclear genes.Hackett
UCE.RAxML.unpartitioned

TEIT.RAxML

TENT.ExaML.25%
TENT.ExaML.50%
TENT.ExaML.75%

TENT.ExaML

TENT.MP−EST.binned
TENT.MP−EST.unbinned

TENT+c3.ExaML

Literature.DNAxDNA.SibleyAhlquist

Literature.Mitochondrial.Pacheco

PRUM 2015
MP-EST (binned)

MP-EST (binned)
MP-EST (unbinned)

MP-EST (unbinned)

a) b)



 

133 

 
 
 
 
Figure 6. Measuring probabilistic distances between estimates of contentious species tree relationships 
for three case-studies of animals from Shen et al. (2017). Cophylo plots show two alternative species tree 
hypotheses (T1 and T2) for Amphibians (top), Neoaves (middle), and Reptiles (bottom). Barplots show the 
Hellinger distance (𝑑v),), Kullback-Leibler (𝑑wx) distance measured from T1 to T2 (𝑑wx(𝑇 , 𝑇-)), the 
Kullback-Leibler (𝑑wx) measured from T2 to T1 (𝑑wx(𝑇-, 𝑇 )), the Jensen-Shannon (𝑑y*), the rooted 
Robinson-Foulds distance (RFrooted), the unrooteed Robinson-Foulds distance (RFunrooted), and the BHV 
distance (𝑑dv�). 
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Figure 7. MDS of the pairwise Hellinger distances (Eq. 2) between 6 sets of species tree sampled from a 
Bayesian posterior distribution of species trees obtained via MCMC. Each of the 6 sets consists of 10 
species tree sampled sequentially from the posterior MCMC samples (see text for further details). 
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Supplementary Methods 

Probabilistic Gene Tree Distances 

To provide a theoretical background to species tree distance measures, here we discuss the 

computation of probabilistic gene tree distances established in Garba et al. (2018). A gene tree ψ 

with 𝑛 leaves represents a parametric model ψ = {𝑔, 𝑣,			𝜋} that specifies a discrete probability 

distribution 𝑃(𝑆U|ψ = {𝑔, 𝑣,			𝜋})	of all possible site patterns 𝑆U conditioned upon the gene 

topology (𝑔), set of 2𝑛 − 3 branch lengths (𝑣), and a vector (𝜋) containing all relevant 

parameters of the substitution process (i.e., relative substitution rates, equilibrium base 

frequencies). There are 4U = |S¤| possible nucleotide site patterns for a gene tree with 𝑛 leaves, 

and the probability of each pattern s in the set S¤ is determined by the parameters in ψ. The 

probabilistic gene tree distance (PGTD) between two gene trees ψ^ 	= {𝑔^, 𝑣^,			𝜋^} and ψ- 	=

{𝑔-, 𝑣-,			𝜋-} can be computed as the difference between their respective site pattern probability 

distributions: 

 𝑑(ψ^, ψ-) = 	𝑑(𝑃(𝑆U|𝑔^, 𝑣^,			𝜋^)	, 𝑃(𝑆U|𝑔-, 𝑣-,			𝜋-))	(1) 

As discussed in Garba et al. (2018), the distance metric function 𝑑(ψ^, ψ-) can represent the 

Hellinger distance (𝑑v), the Kullback-Leibler divergence (𝑑wx), or the Jensen-Shannon distance 

(𝑑y*- ), which are shown below in Equations (2), (3), and (4), respectively: 

 𝑑v(ψ^, ψ-)- =
^
-
∑ z{𝑃(𝑠|ψ^) − {𝑃(𝑠|ψ-)|¦~*s

-
	(2) 
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 𝑑wx(ψ^, ψ-)	 = ∑ 𝑃(𝑠|ψ^) × logW
�z𝑠�ψ^|
�z𝑠�ψ-|

X	¦~*s 		(3) 

 𝑑y*- (ψ^, ψ-) =
^
-
𝑑wx �𝑃(𝑠|ψ^);

�z𝑠�ψ^|]�z𝑠�ψ-|
-

� +

^
-
𝑑wx �𝑃(𝑠|ψ-);

�z𝑠�ψ^|]�z𝑠�ψ-|
-

� (4) 

For comparisons of gene trees with relatively few tips, these distances can be computed 

analytically. However, the total number of possible site patterns (4U) can exert high 

computational cost for larger gene trees, and thus Garba et al. (2018) propose simulations to 

approximate these distances, which can be expressed in terms of their expectations. If 𝒔�,¨�	, 𝑖 =

1,2,… ,𝑚 are a set of 𝑚 site patterns simulated from ψ^ and similarly, 𝒔�,¨u	, 𝑖 = 1,2,… ,𝑚 are a 

set of 𝑚 site patterns drawn from ψ-, the Hellinger and Kullback-Leibler distances can be 

approximated using Equations (5) and (6) below, and further, the Jensen-Shannon distance can 

be estimated using Equation (6) and the same formula of Equation (4): 

 𝑑v∗ (ψ^, ψ-)- ≃ 1 − � ^
-�
�∑ ��

��𝒔�,¨��ψ-�
��𝒔�,¨� �ψ^�

+ �
��𝒔�,¨u�ψ^�
��𝒔�,¨u�ψ-�

��
5V^ 	(5) 

 𝑑wx∗ (ψ^, ψ-) ≃
^
�
∑ log �

��𝒔�,¨��ψ^�
��𝒔�,¨��ψ-�

��
5V^ 		(6)  

These equations measure the distance between two gene trees 𝑑(ψ^, ψ-) in terms of their 

differences in the probability of site patterns in 𝑆U, such that larger distances indicate greater 

differences in site pattern probabilities. By incorporating parameters involved in the substitution 
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processes, these measures inherently provide more information that distances based solely on 

gene topologies and/or branch lengths. For example, two gene trees ψ^	and ψ-	could have the 

exact same topology (𝑔^ = 𝑔-) and branch lengths (𝑣^ = 𝑣-), and yet exhibit drastically different 

probability distributions of genetic sequence data, depending on the parameters of the 

substitution process (i.e., 𝜋^ ≠ 	𝜋-). These equations form the basis for computing probabilistic 

species tree distances discussed in the text and shown in Equations 1–6.  

The Kullback-Leibler Distance is not a true metric 

The Kullback-Leibler distance was one the first measure proposed for measuring the distance 

between two models in terms of their probability distributions (Kullback and Leibler 1951). 

Importantly, while the other two distance measures (Hellinger and Jensen-Shannon distances) are 

true metrics, the Kullback-Leibler distance is not a true metric because it does not satisfy the 

triangle inequality such that, in the context of species tree model comparisons, the distance from 

one species tree model ϕ^ to another ϕ- is not necessarily the same distance as that from ϕ- to 

ϕ^. In other words, Kullback-Leibler distance is not symmetric: 𝑑wx(ϕ^, ϕ-)	 ≠ 	𝑑wx(ϕ-, ϕ^)	. 

It is important to acknowledge this property of the Kullback-Leibler distance, and we have 

conducted an analysis to demonstrate this nonsymmetric nature (SFig. 1). Using the same species 

tree models (a) and (b) shown in Figure 1, we have computed the Kullback-Leibler distances 

𝑑wx(ϕ^, ϕ-)	 and 𝑑wx(ϕ-, ϕ^)	, which exhibits that these distances are not necessarily equal to 

one another (i.e., 𝑑wx(ϕ^, ϕ-)	 ≠ 	𝑑wx(ϕ-, ϕ^)	). When the two models are more similar, such 

that the distance approaches zero, 𝑑wx(ϕ^, ϕ-)	 and 𝑑wx(ϕ-, ϕ^)	also become more similar. 

Conversely, as the models become more dissimilar due to the larger branch length scaling on the 
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tree model shown in Supplementary Figure 01b, the disparately between 𝑑wx(ϕ^, ϕ-)	 and 

𝑑wx(ϕ-, ϕ^)	becomes more apparent (i.e., right side of SFig.1). This is nonsymmetrical nature is 

fundamental property of the Kullback-Leibler distance that applies not only to our species tree 

model distances, but also any other implementation of the Kullback-Leibler distance, including 

the original gene tree distances proposed by Garba et al. (2018). Nonetheless, despite this 

nonsymmetrical property, the Kullback-Leibler distance remains an important and useful tool 

that has been applied in the field of systematics, as well as biological research in general, and it 

has been used extensively across a broad range of fields, including mathematics, statistics, 

computation science, and engineering, to name a few.  

  



 

139 

SUPPLEMENTARY FIGURES 

 
 
 
 

 
 
 
 
 
Supplementary Figure 1. Species tree models and phylogenetic distances for two scenarios (a and b) of 
branch scaling that demonstrate that the KL distance is not symmetric.  
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