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ABSTRACT 

 

Machine Learning is at the forefront of every field today. The subfields of Machine 

Learning called Reinforcement Learning and Deep Learning, when combined have given 

rise to advanced algorithms which have been successful at reaching or surpassing the 

human-level performance at playing Atari games to defeating multiple times champion at 

Go. These successes of Machine Learning have attracted the interest of the financial 

community and have raised the question if these techniques could also be applied in 

detecting patterns in the financial markets. 

Until recently, mathematical formulations of dynamical systems in the context of Signal 

Processing and Control Theory have attributed to the success of Financial Engineering. But 

because of Reinforcement Learning, there has been improved sequential decision making 

leading to the development of multistage stochastic optimization, a key component in 

sequential portfolio optimization (asset allocation) strategies. 

In this thesis, we explore how to optimally distribute a fixed set of stock assets from a 

given set of stocks in a portfolio to maximize the long term wealth of the Deep Learning 

trading agent using Reinforcement Learning. We treat the problem as context-independent, 

meaning the learning agent directly interacts with the environment, thus allowing us to 

apply model free Reinforcement Learning algorithms to get optimized results. In particular, 

we focus on Policy Gradient and Actor Critic Methods, a class of state-of-the-art 

techniques which constructs an estimate of the optimal policy for the control problem by 

iteratively improving a parametric policy. 

We perform a comparative analysis of the Reinforcement Learning based portfolio 

optimization strategy vs the more traditional “Follow the Winner”, “Follow the Loser”, and 

"Uniformly Balanced" strategies, and find that Reinforcement Learning based agents either 

far out perform all the other strategies, or behave as good as the best of them. 

The analysis provides conclusive support for the ability of model-free Policy Gradient 

based Reinforcement Learning methods to act as universal trading agents. 

 

 

 

 

 

 

 

 
 

 

 



 

Chapter 1 

 

INTRODUCTION 
 

Financial market applications routinely make use of engineering methods and systems like 

signal processing, control theory, and advanced statistical methods. Markets have been 

highly computerized and its advantages have been well understood and studied by the 

engineering communities.  

More recently, Machine Learning (ML) has proven its mettle in different fields, which has 

made the finance community look in this direction. Many quantitative researchers have 

asked themselves if the techniques that have proven so successful in classifying images or 

beating Go world champions, could perform equally well on financial markets.  

 

In this thesis, we explore how to optimally distribute stocks in a portfolio over a certain 

time interval via Reinforcement Learning (RL), a branch of ML that allows finding an 

optimal strategy for a sequential decision-making problem by directly interacting with the 

environment in an episodic manner. 

 

In this introductory chapter, we briefly describe the objective of the thesis and highlight the 

research and application domains from which we draw motivation. This chapter thus 

prepares the stage on which we will move during the entire exposition. 

 

1.1. Problem Definition 

 

The aim of this report is to investigate the effectiveness of RL agents on the process of 

portfolio management. We will be working with a finite set of financial instruments mostly 

in the form of stocks. Our agent will learn how to optimally allocate funds to the 

aforementioned assets starting with a finite budget and try to maximize its overall wealth. 

The agent is trained and tested on real market data. Then its performance is compared with 

the existing standard portfolio management approaches including “Follow the Winner”, 

“Follow the Loser” and “Uniformly Rebalanced”. 

 

1.2 Motivations 

 

RL can be applied to a gamut of domains including Robotics, Medicine and Finance. There 

have been many successful applications of RL to the above domains. Inspired by these 

successes, we wanted to experiment with the idea of creating an agent which will be smart 

enough to understand the dynamics of the stock market and help traders to maximize their 

profits with minimal supervision and inputs.  

 

We select stock market to test our hypothesis because it lends itself perfectly to the RL 

problem setting of agent-environment setup. Our portfolio management agent interacts with 

the stock market environment, taking actions as new states are presented to it. And with 

each action take, the environment sends the feedback to the agent in terms of the amount of 

wealth made or lost.  

 



We were motivated to use RL machine learning paradigm because the stock market price 

dynamics are difficult to predict using Supervised and Unsupervised Learning paradigms. 

But, RL has the ability to capture the temporal difference in the signals and learn the 

market dynamics over time. We also think that RL agents would be the perfect candidates 

for portfolio management tasks because of their ability to focus on long term goals instead 

of getting stuck in a greedy short term approach.  

 

We have also learned about the abilities of Deep Learning networks as function 

approximators to learn highly complex features in a high dimensional space. Thus, we 

would be using Deep Learning networks as our portfolio management agents which would 

be allowed to play around in the stock market environment to learn the dynamics and invest 

in the best stocks to increase the overall portfolio wealth. 

 

1.3 Report Structure 

The report is divided into 2 parts: Background (Part I) and Portfolio Management as Deep 

RL Problem (Part II). A brief outline of the project structure and chapters is provided 

below: 

 

Chapter 2: Financial Engineering The objective of this chapter is to introduce the 

essential financial terms and concepts for understanding the methods developed later in this 

thesis. 

 

Chapter 3: Deep Learning The chapter introduces the reader to the deep learning 

concepts that helps get a clear understanding of the different methodologies available and 

leveraged during this thesis work. 

 

Chapter 4: Reinforcement Learning The objective of this chapter is to introduce the key 

concepts and terminology behind the field of Reinforcement Learning. This chapter is 

quintessential in the understanding the inner working of the RL agents. 

 

Chapter 5: Deep Reinforcement Learning This chapter gives an understanding of the 

latest field of Deep Reinforcement Learning and various algorithms that we intend to use. 

 

Chapter 6: Reinforcement Learning Applied to Finance This chapter illustrates on the 

previous work done in this field and acts as a motivation for the work in this thesis. 

 

Chapter 7: Setup This chapter gives the details of how we have setup the portfolio 

management problem in the deep RL framework. 

 

Chapter 8: Results We talk about the various experiments we performed and the results 

we received. 

 

Chapter 9: Conclusion We come to a certain set of conclusions from our results and we 

discuss those 

 

Chapter 10: Future Work We talk about the improvements and future work we can do. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART I 
 

Background 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



      
Chapter 2 

 

FINANCIAL ENGINEERING 

 

Financial engineering is the application of mathematical methods to the solution of 

problems in finance. It is also known as financial mathematics, mathematical finance, and 

computational finance. 

Financial engineering draws on tools from applied mathematics, computer science, 

statistics, and economic theory.  

Investment banks, commercial banks, hedge funds, insurance companies, corporate 

treasuries, and regulatory agencies apply the methods of financial engineering to such 

problems as new product development, derivative securities valuation, portfolio structuring 

and management, risk management, and scenario simulation. 

Quantitative analysis has brought innovation, efficiency and rigor to financial markets and 

to the investment process. 

 

2.1. Financial Terms and Concepts 

 

2.1.1. Asset 

An asset is an item of economic value. Examples of assets are cash (in hand 

or in a bank), stocks, loans and advances, accrued incomes etc. Our main 

focus on this report is on cash and stocks, but general principles apply to all 

kinds of assets. 

 

2.1.2. Stocks 

A stock (also known as "shares" or "equity) is a type of security that signifies 

proportionate ownership in the issuing company. This entitles the stockholder to 

that proportion of the corporation's assets and earnings. 

 

Stocks are bought and sold predominantly on stock exchanges, though there can be 

private sales as well, and are the foundation of nearly every portfolio. These 

transactions have to conform to government regulations which are meant to protect 

investors from fraudulent practices. Historically, they have outperformed most other 

investments over the long run. These investments can be purchased from most on-

line stock brokers. 

 

2.1.3. Portfolio 

A portfolio is a grouping of financial assets such as stocks, bonds, commodities, 

currencies and cash equivalents, as well as their fund counterparts, including 

mutual, exchange-traded and closed funds.  

 



A portfolio can also consist of non-publicly tradable securities, like real estate, art, 

and private investments. Portfolios are held directly by investors and/or managed by 

financial professionals and money managers. Investors should construct an 

investment portfolio in accordance with their risk tolerance and their investing 

objectives. Investors can also have multiple portfolios for various purposes. It all 

depends on one's objectives as an investor.  

 

Portfolio can be represented as a collection of multiple financial assets, and it can be 

represented in a vector form: 

 

 Constituents: M assets of which it contains 

 

 Portfolio Vector 𝑤t: its i-th component represents the ratio of the total 

budget invested vs the investment in the i-th asset, such that: 

 

𝑤𝑡 = [𝑤1,𝑡, 𝑤2,𝑡, … , 𝑤𝑀,𝑡]𝑇 ∈ ℝ𝑀 and ∑ 𝑤𝑖,𝑡
𝑀

𝑖=1
= 1                               (2.1) 

 

2.1.4. Portfolio Optimization 

Portfolio optimization is the process of selecting the best portfolio (asset 

distribution), out of the set of all portfolios being considered, according to some 

objective. The objective typically maximizes factors such as expected return, and 

minimizes costs like financial risk. Factors being considered may range from 

tangible (such as assets, liabilities, earnings or other fundamentals) to intangible 

(such as selective divestment).  

 

2.2. Financial Time Series 

 

The dynamic nature of the economy, as a result of the non-static supply and 

demand balance, causes prices to evolve over time. This encourages to treat 

market dynamics as time-series and employ technical methods and tools for 

analysis and modeling. 

 

2.2.1. Prices 

Let 𝑝t belongs to ℝ be the price of an asset at discrete time index t, then the 

sequence 𝑝1, 𝑝2, …., 𝑝𝑇 is  a univariate time-series. We can use 𝑝𝑖,𝑡 to represent the 

price of an asset i at time t. We can use 𝑝 asset 𝑖,𝑡 to represent the prices of different 

assets. Prices can thus can be represented by price vectors of length T, where T is 

the time to which we want to explore.  

 

The price time series of an asset i, is the column vector 𝑝
→

𝑖,1:𝑇, such that: 

                                                          

https://en.wikipedia.org/wiki/Asset
https://en.wikipedia.org/wiki/Multi-objective_optimization
https://en.wikipedia.org/wiki/Expected_return
https://en.wikipedia.org/wiki/Financial_risk
https://en.wikipedia.org/wiki/Asset
https://en.wikipedia.org/wiki/Liability_(financial_accounting)
https://en.wikipedia.org/wiki/Earnings
https://en.wikipedia.org/wiki/Fundamental_analysis
https://en.wikipedia.org/wiki/Divestment


                                                                                        (2.2) 

where the arrow highlights the fact that it is a time-series. For convenience 

of portfolio analysis, we define the price vector 𝑝𝑇, such that: 

                                                                      (2.3) 

     

where the i-th element is the asset price of the i-th asset in the portfolio at 

time t. Extending the single-asset time-series notation to the multivariate 

case, we form the asset price matrix 𝑃
→

1:𝑇,  by stacking column-wise the T – samples 

price time-series of the M assets of the portfolio, then: 

 

(2.4) 

 

2.2.2. Types of Prices 

 

2.2.2.1. High Price 

This price represents the security’s intraday highest traded price.  

 

2.2.2.2. Low Price 

This price represents the security’s intraday lowest traded price. 

 

2.2.2.3. Closing Price 

This price represents the security’s price at the end of the day’s business. 

 

2.2.2.4. Opening Price 

This price represents the security’s price at the start of the day’s business. 

 

2.2.3. Volume 

Volume is the number of shares or contracts traded in a security or an entire market 

during a given period of time. For every buyer, there is a seller, and each transaction 

contributes to the count of total volume. That is, when buyers and sellers agree to 

make a transaction at a certain price, it is considered one transaction. If only five 

transactions occur in a day, the volume for the day is five. 

 

2.2.4. Returns 

Absolute asset prices are not directly useful for an investor. On the other 



hand, prices changes over time are of great importance, since they reflect 

the investment profit and loss, or more compactly, its return. 

 

2.2.4.1. Simple Return 

The percentage change in asset price from time (t-1) to time t is called the 

simple return of the asset. The formula to calculate Simple Return is: 

𝑟𝑡 ≜
𝑝𝑡−𝑝𝑡−1

𝑝𝑡−1
=

𝑝𝑡

𝑝𝑡−1
− 1 = 𝑅𝑡 − 1 ∈ ℝ            (2.5) 

  

 

2.2.4.2. Gross Return 

The gross return Rt represents the scaling factor of an investment in the asset at 

time (t-1). For example, a B dollar investment in an asset at time (t - 1) will 

worth BRt dollars at time t. It is given by the ratio of an assets prices at times t 

and (t - 1), such that: 

                  Rt ≜
pt

pt−1
∈ ℝ   (2.6) 

 

2.2.4.3. Log Return 

The log return is the log of the gross return. Even though Simple Return is a 

simpler way to calculate returns, it is asymmetric. Log returns provide a 

symmetric way to calculate the future value of the asset.  

 

                                      𝜌𝑡 ≜ ln (
𝑝𝑡

𝑝𝑡−1
) ln (𝑅𝑡) ∈ ℝ   (2.7) 

 

2.2.5. Transaction Cost 

Transaction costs are expenses incurred when buying or selling a good or service. 

Transaction costs represent the labor required to bring a good or service to market, 

giving rise to entire industries dedicated to facilitating exchanges. In a financial 

sense, transaction costs include brokers' commissions and spreads, which are the 

differences between the price the dealer paid for a security and the price the buyer 

pays. 

 

2.2.6. Portfolio Value 

The total monetary value of the portfolio obtained by multiplying the weights of the 

assets with the daily prices.  

 

2.2.7. Portfolio Management Strategies  

Portfolio management strategies are set of rules that are followed by portfolio 

managers for optimal allocation of assets in a portfolio. 

 

2.2.7.1. Follow the Winner 

Follow the Winner approach is characterized by transferring portfolio weights 

from the under-performing assets (experts) to the outperforming ones. 

2.2.7.2. Follow the Loser 

The Follow the Loser approach assumes that the under-performing assets will 

revert and outperform others in the subsequent periods. Thus, their common 



behavior is to move portfolio weights from the outperforming assets to the 

under-performing assets. 

 

2.2.7.3. Uniform Constant Rebalanced Portfolios 

The UCRP approach suggests that the wealth be equally distributed between the 

chosen assets in a portfolio without making any kind of changes throughout the 

trading period. This helps avoid the transaction costs incurred by the trading 

agent.  

 

2.3. Technical Indicators 

Technical indicators are used by financial analysts and portfolio managers to gauge 

the performance of the assets that they are interested in. A multitude of indicators 

exist in the financial domain but we are only going to talk about the ones’ mentioned 

below. 

 

2.3.1. Average Daily Return 

The average return is the simple mathematical average of a series of returns 

generated over a period of time. An average return is calculated the same way a 

simple average is calculated for any set of numbers. The numbers are added 

together into a single sum, and then the sum is divided by the count of the numbers 

in the set. The formula to calculate Average Daily Return is as: 

                                (2.8)         

2.3.2. Sharpe Ratio 
The Sharpe Ratio [1] is calculated by subtracting the risk-free rate from the return 

of the portfolio and dividing that result by the standard deviation of the portfolio’s 

excess return.  

The ratio describes how much excess return you receive for the extra volatility you 

endure for holding a riskier asset.  

 

As per Wikipedia, the Sharpe Ratio can be calculated as follows:  

 

                                                    𝑆𝑎 =
𝐸[𝑅𝑎−𝑅𝑏]

𝜎𝑎
=

𝐸[𝑅𝑎−𝑅𝑏]

√var [𝑅𝑎−𝑅𝑏]
                                 (2.9) 

 

where 𝑅𝑎 is the asset return, 𝑅𝑏 is the risk free rate, 𝐸[𝑅𝑎 − 𝑅𝑏] is the expected 

value of the excess of the asset return over the benchmark return, and 

√var [𝑅𝑎 − 𝑅𝑏] is the standard deviation of the asset excess return. 

 

 
 

 

 

 

 



Chapter 3 

 

DEEP LEARNING 

 

Deep Learning is a machine learning method that takes in an input X, and uses it to predict 

an output Y. Before we understand what deep learning is, we need to understand the basic 

building blocks of deep learning. 

 

3.1. Perceptron  

[2] Given a finite set of m inputs, we multiply each input by a weight then we sum up the 

weighted combination of inputs, add a bias and finally pass them through a non-linear 

activation function to get the output 𝑦
^
.  

 

The bias 𝜃0 allows to add another dimension to the input space. Thus, the activation 

function still provides an output in case of an input vector of all zeros. It is somehow the 

part of the output that is independent of the input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

3.2. Neural Network  

Neural networks [3] are a set of algorithms, modeled loosely after the human brain, that are 

designed to recognize patterns. They interpret sensory data through a kind of machine 

perception, labeling or clustering raw input. The patterns they recognize are numerical, 

contained in vectors, into which all real-world data, be it images, sound, text or time series, 

must be translated. 

 

Structurally, neural network is just a stacking of multiple perceptrons connected to the 

inputs and the outputs in different formations. A neural network with a hidden layer is 

often called a Multilayer Perceptron.  

 

3.3. Activation Function 

The purpose of the activation function [4] is to introduce non-linearities in the network. 

Linear activation functions produce linear decisions no matter the input distribution. Non-

Figure 1: Architecture of Perceptron 



Figure 2: Different Activation Functions 

linearities allow us to better approximate arbitrarily complex functions. Some activation 

functions are as below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Objective Function / Loss Function / Error Function / Cost Function 

The Loss function (P.S also called Objective/Error/Cost function) [5] is a method of 

evaluating how well an algorithm models a dataset. If the predictions are totally off the 

target, the loss function will output a high number. If the predictions are good, the loss 

function will output a lower number. The loss function is the best indicator whether the 

algorithm is going in the right direction as changes are made to the model.  

 

The loss function varies from measuring the absolute difference between a prediction and 

an actual value, to finding out the mean squared error, to calculating the cross entropy. 

 

3.4.1. Different loss functions 

 

3.4.1.1. Mean Absolute Error 

Absolute Error calculates the absolute difference between the predicted value and 

the target value for each data point in a dataset.  

 

                                                ℒ =
1

𝑛
∑ |𝑦(𝑖) − 𝑦

^ (𝑖)|
𝑛

𝑖=1
                                  (3.1) 

 

3.4.1.2. Mean Squared Error  

Mean Squared Error (MSE) is one of the most used basic loss functions. To 

calculate MSE, we take the difference between the predictions and the ground truth, 

square it and average it out across the whole dataset. 

 

                                                        ℒ =
1

n
∑  n

i=1 (y(i) − y
^ (i))2                       (3.2) 

 

 

 

 

3.4.1.3. Log Loss / Cross Entropy Loss 



Log Loss is one of the most used loss functions for classification problems. It is a 

modification of the likelihood function with logarithms. 

 

                             ℒ = −(𝑦𝑖log (𝑦
^

𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦
^

𝑖))   (3.3) 

 

3.5. Backpropagation 

Backpropagation [6] is the method of propagating the information related to the error 

produced by the neural network in making a guess about the result, back through the 

network.  

The parameters of the neural network have a relationship with the error the net produces, 

and when the parameters change, the error does, too. We change the parameters using an 

optimization algorithm.  

 

3.6. Optimization Algorithms 

Optimization algorithms [7] help minimize or maximize an Objective/Loss/Error/Cost 

function which is simply a mathematical function dependent on the model’s internal 

learnable parameters which are used in computing the target values from the set of 

predictors used in the model. In the neural network models, the weights and bias are called 

the learnable parameters.  

 

3.6.1. Different Optimization Algorithms 

 

3.6.1.1. First Order Optimization Algorithms 

These algorithms minimize or maximize a Loss function using its gradient values 

with respect to the model parameters. The First Order derivative tells us whether the 

function is decreasing or increasing at a particular point. First Order derivative 

basically gives us a line which is tangential to a point on the Loss function surface. 

 

3.6.1.2. Second Order Optimization Algorithms 
These algorithms use the second order derivative, also called the Hessian to 

minimize of maximize the Loss function. The Hessian is a matrix of the second 

order partial derivatives.  Second Order derivative provides us with a quadratic 

surface which touches the curvature of the Loss function surface. 

 

3.7. Gradient Descent Optimization Algorithms 

3.7.1. Gradient Descent  

Gradient Descent [8] is an algorithm used to calculate the gradient of an Error 

function with respect to the learnable parameters and then propagate this error back 

through the network updating the learnable parameters in the direction of the 

gradient to improve the overall learning of the model.  

 

3.7.2. Variants of Gradient Descent 

3.7.2.1. Batch Gradient Descent 

This is a type of gradient descent which processes all the training examples 

for each iteration of gradient descent. But if the number of training examples 

is large, then batch gradient descent is computationally very expensive. Hence 



if the number of training examples is large, then batch gradient descent is not 

preferred. Instead, we prefer to use stochastic gradient descent or mini-batch 

gradient descent. 

3.7.2.2. Stochastic Gradient Descent 

This is a type of gradient descent which processes 1 training example per 

iteration. Hence, the parameters are being updated even after one iteration in 

which only a single example has been processed. Hence this is quite faster 

than batch gradient descent. But again, when the number of training examples 

is large, even then it processes only one example which can be additional 

overhead for the system as the number of iterations will be quite large. 

3.7.2.3. Mini Batch Gradient Descent 

This is a type of gradient descent which works faster than both batch gradient 

descent and stochastic gradient descent. Here b examples where b<m are 

processed per iteration. So even if the number of training examples is large, it 

is processed in batches of b training examples in one go. Thus, it works for 

larger training examples and that too with lesser number of iterations. 

 

3.7.3. Momentum 
Momentum is a method that helps accelerate SGD in the relevant direction and 

dampens oscillations. It does this by adding a fraction γ of the update vector of the 

past time step to the current update vector. 

                                                                         (3.4) 

Essentially, when using momentum, we push a ball down a hill. The ball 

accumulates momentum as it rolls downhill, becoming faster and faster on the way 

(until it reaches its terminal velocity if there is air resistance, i.e. γ < 1). The same 

thing happens to our parameter updates: The momentum term increases for 

dimensions whose gradients point in the same directions and reduces updates for 

dimensions whose gradients change directions. As a result, we gain faster 

convergence and reduced oscillation. 

3.7.4. Adam 

Adaptive Moment Estimation (Adam) is another method that computes adaptive 

learning rates for each parameter. In addition to storing an exponentially decaying 

average of past squared gradients 𝑣𝑡, Adam also keeps an exponentially decaying 

average of past gradients 𝑚𝑡, similar to momentum. Whereas momentum can be 

seen as a ball running down a slope, Adam behaves like a heavy ball with friction, 

which thus prefers flat minima in the error surface. We compute the decaying 

averages of past and past squared gradients 𝑚𝑡 and 𝑣𝑡respectively as follows: 



 

                                            
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                               (3.5) 

 

 

𝑚𝑡  and 𝑣𝑡  are estimates of the first moment (the mean) and the second moment (the 

uncentered variance) of the gradients respectively, hence the name of the method. 

As 𝑚𝑡 and 𝑣𝑡 are initialized as vectors of 0's, the authors of Adam observe that they 

are biased towards zero, especially during the initial time steps, and especially when 

the decay rates are small (i.e. β1 and β2 are close to 1). 

They counteract these biases by computing bias-corrected first and second moment 

estimates: 

                                                                                             (3.6) 

They then use these to update the parameters which yields the Adam update rule: 

                                               (3.7) 

The authors propose default values of 0.9 for β1, 0.999 for β2, and 10
8
 for ϵ. They 

show empirically that Adam works well in practice and compares favorably to other 

adaptive learning-method algorithms. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3.8. Deep Learning Architecture 

A neural network architecture which has more than one hidden layer is called Deep 

Learning Architecture [9]. The addition of layers is what reflects the “Deep” in Deep 

Learning.  

 

Figure 3: Multilayer Perceptron Architecture 

 

 

3.9. Training 

The outputs generated by Deep Neural Networks may not be the ones we expected. This 

means that the neural network has not learned the features which would help it to predict 

the correct results. In order to help the neural network, learn and get better at predicting 

results which are more close to the actual expected results, we need to train it with multiple 

samples of data.  

 

In the training process, we will send inputs to the neural network and wait for it to predict 

an output. Once the neural network has generated an output, we will provide the correct 

target value to the network and calculate the amount of divergence in the results. The 

divergence is called Error.  

 

This divergence is calculated by setting up an Objective Function or Loss Function. The 

motive of the neural network is to reduce the error in its predicted results. In terms of the 

Loss Function, it is said to find the global minimum.  

During the training process, the weights of the neural networks adjust themselves in a way 

to improve the mapping generated to be very close to the outputs of the training data. 

Learning of neural network can be supervised in which correct choice of output is provided 

in training data or, unsupervised in which no output is provided.   

 

The overall goal behind training the neural network on training data is to make sure that the 

network learns the features and is able to generalize it to testing samples. If the network 

performs well then this mean the neural network has achieved optimum learning. But, there 

are times when the network learns really well on the training dataset by reducing the error 

in its predictions to the minimum, but fails to generalize on the testing dataset. This 

situation is termed as Overfitting to the training dataset.   



 

There are a multitude of ways to avoid overfitting. Some of them are below: 

 

3.9.1. Regularization 

Regularization [10] involves adding an extra element to the loss function, which 

punishes our model for being too complex or, in simple words, for using too high 

values in the weight matrix. This way we try to limit its flexibility, but also 

encourage it to build solutions based on multiple features.  

                    

 Cost Function = Loss Function + Regularization Term 

       

Two popular versions of this method are: 

 L1 - Least Absolute Deviations (LAD) 

           

                                 (3.8) 

 

 L2 - Least Square Errors (LS). 

                             𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠 +
𝜆

2𝑚
∗ ∑‖𝑤‖2                 (3.9) 

 
3.9.2. Regularization Rate  

Regularization Rate 𝜆, is the regularization parameter. It is the hyper-parameter 

whose value is optimized for better results. 

 

3.9.3. Dropout 

Dropout [11] is another widely used regularization technique used in Deep Learning 

to avoid overfitting. At every iteration, it randomly selects some nodes and removes 

them along with all of their incoming and outgoing connection.                  

 

                                                

Figure 4:Dropout Regularization 

  

As we can see in the figure, dropout randomly drops nodes and removes their 

incoming and outgoing connections. This way, the neural network doesn’t over-fit 

to a certain set of features and weights. The dropout rate is a hyper-parameter that 

needs to be passed to the neural network. 

 



Chapter 4 

 

REINFORCEMENT LEARNING 

 

Reinforcement learning (RL) [12] refers to both a learning problem and a sub- 

field of machine learning [13]. As a learning problem 

[14], it refers to learning to control a system (environment) so 

as to maximize some numerical value, which represents a long-term objective (discounted 

cumulative reward signal). 

 

4.1. Key concepts and terminology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main characters of RL are the agent and the environment. The environment is the 

world that the agent lives in and interacts with. At every step of interaction, the agent sees a 

(possibly partial) observation of the state of the world, and then decides on an action to 

take. The environment changes when the agent acts on it, but may also change on its own. 

 

The agent also perceives a reward signal from the environment, a number that tells it how 

good or bad the current world state is. The goal of the agent is to maximize its cumulative 

reward, called return. Reinforcement learning methods are ways that the agent can learn 

behaviors to achieve its goal. 

 

4.1.1. States and Observations 

A state s is a complete description of the state of the world. There is no information 

about the world which is hidden from the state. An observation o is a partial description 

of a state, which may omit information. 

 

When the agent is able to observe the complete state of the environment, we say that the 

environment is fully observed. When the agent can only see a partial observation, we 

say that the environment is partially observed. 

 

4.1.2. Action Spaces 

Figure 5: Reinforcement Learning Process 



Different environments allow different kinds of actions. The set of all valid actions in a 

given environment is often called the action space. Some environments, like Atari and 

Go, have discrete action spaces, where only a finite number of moves are available to 

the agent. Other environments, like where the agent controls a robot in a physical world, 

have continuous action spaces. In continuous spaces, actions are real-valued vectors. 

 

4.1.3. Policies 

A policy is a rule used by an agent to decide what actions to take. It can be 

deterministic, in which case it is usually denoted by 𝝁: 

                                                        𝑎𝑡 = 𝜇(𝑠𝑡)    (4.1) 

or it may be stochastic, in which case it is usually denoted by 𝜋: 

                                                        𝑎𝑡 ∼ 𝜋(⋅ |𝑠𝑡)    (4.2) 

Because the policy is essentially the agent’s brain, it’s not uncommon to substitute the 

word “policy” for “agent”, e.g. saying “The policy is trying to maximize reward.” 

4.1.4. Trajectory / Episodes / Rollouts 

A trajectory 𝝉 is a sequence of states and actions in the world,  

 

                                                𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, … )   (4.3) 

 

The very first state of the world, 𝑠0, is randomly sampled from the start-state 

distribution, sometimes denoted by 𝜌0: 

    𝑠0 ∼ 𝜌0(⋅)     (4.4) 

State transitions (what happens to the world between the state at time t, st, and the state 

at t + 1, st+1, are governed by the natural laws of the environment, and depend on only 

the most recent action, at. They can be either deterministic, 

                          𝑠𝑡+1 = 𝑓(𝑠𝑡, 𝑎𝑡)   (4.5) 

or stochastic, 

    𝑠𝑡+1 ∼ 𝑃(⋅ |𝑠𝑡, 𝑎𝑡)    (4.6) 

Actions come from an agent according to its policy. 

4.1.5. Reward and Return 

The reward function R is critically important in reinforcement learning. It depends on 

the current state of the world, the action just taken, and the next state of the world: 

                                                      𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)   (4.7) 

although frequently this is simplified to just a dependence on the current state,  

𝑟𝑡 = 𝑅(𝑠𝑡), or state-action pair 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ). 



The goal of the agent is to maximize some notion of cumulative reward over a 

trajectory, but this actually can mean a few things. We’ll notate all of these cases with 

R(𝜏), and it will either be clear from context which case we mean, or it won’t matter 

(because the same equations will apply to all cases). 

One kind of return is the finite-horizon undiscounted return, which is just the sum of 

rewards obtained in a fixed window of steps: 

                                                                            𝑅(𝜏) = ∑  𝑇
𝑡=0 𝑟𝑡   (4.8) 

Another kind of return is the infinite-horizon discounted return, which is the sum of 

all rewards ever obtained by the agent, but discounted by how far off in the future 

they’re obtained. This formulation of reward includes a discount factor 𝛾 𝜖 (0, 1): 

                                                                      𝑅(𝜏) = ∑  𝛾𝑡∞

𝑡=0
𝑟𝑡   (4.9) 

4.1.6. The RL Problem 

Whatever the choice of return measure (whether infinite-horizon discounted, or 

finite-horizon undiscounted), and whatever the choice of policy, the goal in RL 

is to select a policy which maximizes expected return when the agent acts 

according to it. 

To talk about expected return, we first have to talk about probability 

distributions over trajectories. 

Let’s suppose that both the environment transitions and the policy are stochastic. 

In this case, the probability of a T -step trajectory is: 

   𝑃(𝜏|𝜋) = 𝜌0(𝑠0) ∏  𝑇−1
𝑡=0 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)           (4.10) 

The expected return (for whichever measure), denoted by J(𝜋), is then: 

   𝐽(𝜋) = ∫  
𝜏

𝑃(𝜏|𝜋)𝑅(𝜏) = E
𝜏∼𝜋

[𝑅(𝜏)]                  (4.11) 

The central optimization problem in RL can then be expressed by 

   𝜋∗ = arg 𝑚𝑎𝑥
𝜋

𝐽(𝜋)         (4.12) 

with 𝜋∗ being the optimal policy.

4.1.7. Value Functions 

It’s often useful to know the value of a state, or state-action pair. By value, we 

mean the expected return if you start in that state or state-action pair, and then 

act according to a particular policy forever after. Value functions are used, one 

way or another, in almost every RL algorithm. 

There are four main functions of note here. 



1. The On-Policy Value Function, 𝑉𝜋(𝑠), which gives the expected return 

if you start in state s and always act according to policy 𝜋: 

                                      𝑉𝜋(𝑠) = E
𝜏∼𝜋

[𝑅(𝜏)|𝑠0 = 𝑠]    (4.13) 

2. The On-Policy Action-Value Function, 𝑄𝜋(𝑠, 𝑎), which gives the 

expected return if you start in state s, take an arbitrary action a (which 

may not have come from the policy), and then forever after act according 

to policy 𝜋: 

                                  𝑄𝜋(𝑠, 𝑎) = E
𝜏∼𝜋

[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎]                        (4.14) 

3. The Optimal Value Function, 𝑉∗(𝑠), which gives the expected return if 

you start in state s and always act according to the optimal policy in the 

environment: 

                                  𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋

E𝜏∼𝜋 [𝑅(𝜏)|𝑠0 = 𝑠]                              (4.15) 

4. The Optimal Action-Value Function, 𝑄∗(𝑠, 𝑎), which gives the 

expected return if you start in state s, take an arbitrary action a, and then 

forever after act according to the optimal policy in the environment: 

                                      𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋

E
𝜏∼𝜋

[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎]             (4.16) 

There are two key connections between the value function and the action-value 

function that come up pretty often: 

   𝑉𝜋(𝑠) = 𝐸
𝑎∼𝜋

[𝑄𝜋(𝑠, 𝑎)]    (4.17) 

and 

   𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)    (4.18) 

 

4.1.8. The Optimal Q-Function and the Optimal Action 

There is an important connection between the optimal action-value function 

𝑄∗(𝑠, 𝑎) and the action selected by the optimal policy. By definition, 𝑄∗(𝑠, 𝑎) 

gives the expected return for starting in state s, taking (arbitrary) action a, and 

then acting according to the optimal policy forever after. 

The optimal policy in s will select whichever action maximizes the expected 

return from starting in s. As a result, if we have 𝑄∗, we can directly obtain the 

optimal action, 𝑎∗(𝑠), via 

                                  𝑎∗(𝑠) = arg 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)                        (4.19) 



4.1.9. Bellman Equations 

All four of the value functions obey special self-consistency equations called 

Bellman equations [15]. The basic idea behind the Bellman equations is this: 

The value of your starting point is the reward you expect to get from being there, 

plus the value of wherever you land next. 

The Bellman equations for the on-policy value functions are 

                                         𝑉𝜋(𝑠) = E𝑎∼𝜋
𝑠′∼𝑃

[𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)]                  (4.20) 

                           𝑄𝜋(𝑠, 𝑎) = E
𝑠′∼𝑃

[𝑟(𝑠, 𝑎) + 𝛾 E
𝑎′∼𝜋

[𝑄𝜋(𝑠′, 𝑎′)]]          (4.21) 

where 𝑠′ ∼ 𝑃 is shorthand for 𝑠′ ∼ 𝑃(. |𝑠, 𝑎), indicating that the next state 𝑠′ is 

sampled from the environment’s transition rules; 𝑎 ∼ 𝜋 is shorthand for 𝑎 ∼

𝜋(. | 𝑠); and 𝑎′ ∼ 𝜋 is shorthand for 𝑎′ ∼ 𝜋(. | 𝑠′). 

The Bellman equations for the optimal value functions are 

   𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

E
𝑠′∼𝑃

[𝑟(𝑠, 𝑎) + 𝛾𝑉∗(𝑠′)]                  (4.22) 

                        𝑄∗(𝑠, 𝑎) = E
𝑠′∼𝑃

[𝑟(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′)]                   (4.23) 

The crucial difference between the Bellman equations for the on-policy value 

functions and the optimal value functions, is the absence or presence of the max 

over actions. Its inclusion reflects the fact that whenever the agent gets to choose 

its action, in order to act optimally, it has to pick whichever action leads to the 

highest value. 

The term “Bellman backup” comes up quite frequently in the RL literature. The 

Bellman backup for a state, or state-action pair, is the right-hand side of the 

Bellman equation: the reward-plus-next-value. 

 

4.1.10. Advantage Functions 

The advantage function  corresponding to a policy 𝜋 describes how much better 

it is to take a specific action a in state s, over randomly selecting an action 

according to 𝜋(. | s), assuming you act according to 𝜋 forever after. 

Mathematically, the advantage function is defined by 

                                           𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)                                (4.24) 

4.1.11. Markov Decision Processes (MDPs) 

An MDP is a 5-tuple, ⟨𝑆, 𝐴, 𝑅, 𝑃, 𝜌0⟩, where 

 S is the set of all valid states,  

 A is the set of all valid actions,  



 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward function, with 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1),  

 𝑃: 𝑆 × 𝐴 → 𝒫(𝑆) is the transition probability function, with 𝑃(𝑠′|𝑠, 𝑎) 

being the probability of transitioning into state 𝑠′ if you start in state s 

and take action a,  

 and 𝜌0 is the starting state distribution.  

The name Markov Decision Process [16] refers to the fact that the system obeys 

the Markov property: transitions only depend on the most recent state and 

action, and no prior history. 

4.1.12. Actor Critic Methods 

The Actor-Critic learning algorithm is used to represent the policy function 

independently of the value function. The policy function structure is known as 

the actor, and the value function structure is referred to as the critic. The actor 

produces an action given the current state of the environment, and the critic 

produces a TD (Temporal-Difference) error signal given the state and resultant 

reward. If the critic is estimating the action-value function Q (s, a), it will also 

need the output of the actor. The output of the critic drives learning in both the 

actor and the critic. In Deep Reinforcement Learning, neural networks can be 

used to represent the actor and critic structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Actor Critic RL Architecture 



4.2. Taxonomy of RL Algorithms 

 

 

4.2.1. Model Free Vs Model Based RL 

RL algorithms are broadly divided based on the concept whether the agent has 

access to a model of the environment. By a model of the environment, we mean 

a function which predicts state transitions and rewards. 

4.2.1.1. Model Based RL Algorithms 

Model based algorithms allow the agent to plan by thinking ahead, seeing 

what would happen for a range of possible choices, and explicitly deciding 

between its options. Agents can then distill the results from planning ahead 

into a learned policy. A particularly famous example of this approach is 

AlphaZero.  

The main downside is that a ground-truth model of the environment is 

usually not available to the agent. If an agent wants to use a model in this 

case, it has to learn the model purely from experience, which creates several 

challenges. The biggest challenge is that bias in the model can be exploited 

by the agent, resulting in an agent which performs well with respect to the 

learned model, but behaves sub-optimally in the real environment. 

4.2.1.2. Model Free RL Algorithms 

Algorithms which don’t use a model of the environment are called Model 

Free RL methods. These algorithms do not make an effort to learn the 

underlying dynamics that govern how an agent interacts with the 

environment. Model Free methods forego the potential gains in sample 

Figure 7: Taxonomy of RL Algorithms 



efficiency from using a model in order to be easier to implement and tune. 

Model-free algorithms directly estimate the optimal policy or value function 

through algorithms such as policy iteration or value iteration. This is much 

more computationally efficient. Model Free algorithms   are explored much 

more widely compared to Model Based RL Algorithms. 

There are two main approaches to representing and training agents with 

Model Free RL: 

 Policy Optimization 

 Q Learning 

4.2.1.2.1. Policy Optimization 

Methods in this family represent a policy explicitly as 𝜋𝜃(𝑎|𝑠). They 

optimize the parameters 𝜃 either directly by gradient ascent on the 

performance objective 𝐽(𝜋𝜃), or indirectly, by maximizing local 

approximations of 𝐽(𝜋𝜃). This optimization is almost always 

performed on-policy, which means that each update only uses data 

collected while acting according to the most recent version of the 

policy. Policy optimization also usually involves learning an 

approximator 𝑉𝜙(𝑠) for the on-policy value function 𝑉𝜋(𝑠), which 

gets used in figuring out how to update the policy. 

A couple of examples of policy optimization methods are: 

 Actor Critic Methods (A2C/A3C), which performs gradient 

ascent to directly maximize performance.  

 Proximal Policy Optimization, whose updates indirectly 

maximize performance, by instead maximizing a surrogate 

objective function which gives a conservative estimate for 

how much 𝐽(𝜋𝜃) will change as a result of the update.  

4.2.1.2.2. Q-Learning  

Methods in this family learn an approximator 𝑄𝜃(𝑠, 𝑎) for the 

optimal action-value function, 𝑄∗(𝑠, 𝑎). Typically, they use an 

objective function based on the Bellman equation. This optimization 

is almost always performed off-policy, which means that each update 

can use data collected at any point during training, regardless of how 

the agent was choosing to explore the environment when the data 

was obtained. The corresponding policy is obtained via the 

connection between  𝑄∗ and 𝜋∗: the actions taken by the Q-learning 

agent are given by 



                           𝑎(𝑠) = arg 𝑚𝑎𝑥
𝑎

𝑄𝜃(𝑠, 𝑎)                                   (4.25) 

Example of Q-learning methods include 

 Deep Q Network, a classic which substantially launched the 

field of deep RL. 

4.2.1.3. Trade-offs Between Policy Optimization and Q-Learning 

The primary strength of policy optimization methods is that they are 

principled, in the sense that you directly optimize for the thing you want. 

This tends to make them stable and reliable. By contrast, Q-learning 

methods only indirectly optimize for agent performance, by training 𝑄𝜃 to 

satisfy a self-consistency equation. There are many failure modes for this 

kind of learning, so it tends to be less stable. But, Q-learning methods gain 

the advantage of being substantially more sample efficient when they do 

work, because they can reuse data more effectively than policy optimization 

techniques. 

 

4.2.1.4. Interpolating Between Policy Optimization and Q-Learning 

Policy optimization and Q-learning are not the only two available 

algorithms, there exist a range of algorithms that live in between the two 

extremes. Algorithms that live on this spectrum are able to carefully trade-

off between the strengths and weaknesses of either side. Examples include 

 Deep Deterministic Policy Gradient, an algorithm which 

concurrently learns a deterministic policy and a Q-function by using 

each to improve the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf


Chapter 5 

 

DEEP REINFORCEMENT LEARNING 

 

5.1. Vanilla Policy-Gradient (VPG) 

 

Policy-Gradient (PG) [17] algorithms optimize a policy end-to-end by computing 

noisy estimates of the gradient of the expected reward of the policy and then 

updating the policy in the gradient direction. Traditionally, PG methods have 

assumed a stochastic policy μ (a | s), which gives a probability distribution over 

actions. Ideally, the algorithm sees lots of training examples of high rewards from 

good actions and negative rewards from bad actions. Then, it can increase the 

probability of the good actions. In practice, you tend to run into plenty of problems 

with vanilla-PG; for example, getting one reward signal at the end of a long episode 

of interaction with the environment makes it difficult to ascertain exactly which 

action was the good one. This is known as the credit assignment problem. For RL 

problems with continuous action spaces, VPG is all but useless. You can, however, 

get VPG to work with some RL domains that take in visual inputs and have discrete 

action spaces with a convolutional neural network representing your policy.  

The key idea underlying policy gradients is to push up the probabilities of actions 

that lead to higher return, and push down the probabilities of actions that lead to 

lower return, until you arrive at the optimal policy. Key features to remember about 

VPG: 

 VPG is an on-policy algorithm.  

 VPG can be used for environments with either discrete or continuous action 

spaces. 

Let 𝜋𝜃  denote a policy with parameters 𝜃, and 𝐽(𝜋𝜃) denote the expected finite-

horizon undiscounted return of the policy. The gradient of 𝐽(𝜋𝜃) is 

 

                            ∇𝜃𝐽(𝜋𝜃) = E
𝜏∼𝜋𝜃

[∑  𝑇
𝑡=0 ∇𝜃log 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜋𝜃(𝑠𝑡, 𝑎𝑡)]               (5.1) 

 

where 𝜏 is a trajectory and 𝐴𝜋𝜃 is the advantage function for the current policy. 

The policy gradient algorithm works by updating policy parameters via stochastic 

gradient ascent on policy performance: 

                                                𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇𝜃𝐽(𝜋𝜃𝑘
)                                         (5.2) 



Policy gradient implementations typically compute advantage function estimates 

based on the infinite-horizon discounted return, despite otherwise using the finite-

horizon undiscounted policy gradient formula.

5.1.1. Exploration vs. Exploitation 

VPG trains a stochastic policy in an on-policy way. This means that it 

explores by sampling actions according to the latest version of its stochastic 

policy. The amount of randomness in action selection depends on both 

initial conditions and the training procedure. Over the course of training, the 

policy typically becomes progressively less random, as the update rule 

encourages it to exploit rewards that it has already found. This may cause 

the policy to get trapped in local optima. 

5.1.2. Vanilla Policy Gradient Algorithm Pseudocode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:Vanilla Policy Gradient Pseudocode 

https://spinningup.openai.com/en/latest/algorithms/vpg.html#id5


5.2. Deep Deterministic Policy Gradient (DDPG) 

 

Google DeepMind devised a solid algorithm to tackle the continuous action space problem. They 

built off the work of David Silver et al. on Deterministic Policy Gradients [18] to come up with an 

off policy and model free policy gradient actor-critic algorithm called Deep Deterministic Policy 

Gradient (DDPG) [19].   

 

DDPG is a policy gradient algorithm that uses a stochastic behavior policy for good exploration 

but estimates a deterministic target policy, which is much easier to learn. It is an algorithm which 

concurrently learns a Q-function and a policy. It uses off-policy data and the Bellman equation to 

learn the Q-function, and uses the Q-function to learn the policy. 

 

This approach is closely connected to Q-learning, and is motivated the same way: if you know the 

optimal action-value function 𝑄∗(𝑠, 𝑎), then in any given state, the optimal action 𝑎∗(𝑠) can be 

found by solving 

                                            𝑎∗(𝑠) = arg 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)                                 (5.3) 

DDPG interleaves learning an approximator to 𝑄∗(𝑠, 𝑎), with learning an approximator to 𝑎∗(𝑠), 

and it does so in a way which is specifically adapted for environments with continuous action 

spaces. But what does it mean that DDPG is adapted specifically for environments with 

continuous action spaces? It relates to how we compute the max over actions in 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎). 

When there are a finite number of discrete actions, the max poses no problem, because we can 

just compute the Q-values for each action separately and directly compare them. But when the 

action space is continuous, we can’t exhaustively evaluate the space, and solving the optimization 

problem is highly non-trivial. Using a normal optimization algorithm would make calculating 

𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) a painfully expensive subroutine. And since it would need to be run every time the 

agent wants to take an action in the environment, this is unacceptable. 

Because the action space is continuous, the function 𝑄∗(𝑠, 𝑎) is presumed to be differentiable with 

respect to the action argument. This allows us to set up an efficient, gradient-based learning rule 

for a policy μ (s) which exploits that fact. Then, instead of running an expensive optimization 

subroutine each time we wish to compute 𝑚𝑎𝑥
𝑎

𝑄 (𝑠, 𝑎), we can approximate it with 

𝑚𝑎𝑥
𝑎

𝑄(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝜇(𝑠)).  

 

5.2.1. The Q-Learning Side of DDPG 

 

The Bellman equation describing the optimal action-value function 𝑄∗(𝑠, 𝑎) is given by,  

                      𝑄∗(𝑠, 𝑎) = E
𝑠′∼𝑃

[𝑟(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′)]              (5.4) 



where 𝑠′ ∼ 𝑃 is shorthand for saying that the next state, 𝑠′, is sampled by the environment 

from a distribution P(. | s, a). This Bellman equation is the starting point for learning an 

approximator to 𝑄∗(𝑠, 𝑎) . Suppose the approximator is a neural network 𝑄𝜙(𝑠, 𝑎), with 

parameters 𝜙, and that we have collected a set 𝒟 of transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) (where d 

indicates whether state 𝑠′is terminal). We can set up a mean-squared Bellman error 

(MSBE) function, which tells us roughly how closely 𝑄𝜙 comes to satisfying the Bellman 

equation: 

                               𝐿(𝜙, 𝒟) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)∼𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑚𝑎𝑥
𝑎′

𝑄𝜙(𝑠′, 𝑎′)))2]   (5.5) 

Here, in evaluating (1 – d), we’ve used a Python convention of evaluating True to 1 and 

False to zero. Thus, when d == True, which is to say, when 𝑠′ is a terminal state, the Q-

function should show that the agent gets no additional rewards after the current state.  

Q-learning algorithms for function approximators, such as DQN (and all its variants) and 

DDPG, are largely based on minimizing this MSBE loss function. There are two main 

tricks employed by all of them which are worth describing, and then a specific detail for 

DDPG. 

5.2.1.1. Replay Buffers 

All standard algorithms for training a deep neural network to approximate 𝑄∗(𝑠, 𝑎)  

make use of an experience replay buffer. This is the set 𝒟 of previous experiences. In 

order for the algorithm to have stable behavior, the replay buffer should be large 

enough to contain a wide range of experiences, but it may not always be good to keep 

everything. If you only use the very-most recent data, you will over-fit to that and 

things will break; if you use too much experience, you may slow down your learning. 

This may take some tuning to get right. 

 

 

5.2.1.2. Target Networks 

Q-learning algorithms make use of target networks. The term 

 

                                           𝑟 + 𝛾(1 − 𝑑)𝑚𝑎𝑥
𝑎′

𝑄𝜙(𝑠′, 𝑎′)                      (5.6) 

is called the target, because when we minimize the MSBE loss, we are trying to make 

the Q-function be more like this target. Problematically, the target depends on the 

same parameters we are trying to train: 𝜙. This makes MSBE minimization unstable. 

The solution is to use a set of parameters which comes close to 𝜙, but with a time 

delay—that is to say, a second network, called the target network, which lags the first. 

The parameters of the target network are denoted 𝜙 targ . 



In DQN-based algorithms, the target network is just copied over from the main 

network every some-fixed-number of steps. In DDPG-style algorithms, the target 

network is updated once per main network update by polyak averaging: 

                                                𝜙 targ ← 𝜌𝜙 targ + (1 − 𝜌)𝜙                        (5.7) 

where 𝜌 is a hyperparameter between 0 and 1 (usually close to 1). 

5.2.1.3. Calculating the Max Over Actions in the Target 

As mentioned earlier: computing the maximum over actions in the target is a challenge 

in continuous action spaces. DDPG deals with this by using a target policy network 

to compute an action which approximately maximizes 𝑄𝜙targ
. The target policy 

network is found the same way as the target Q-function: by polyak averaging the 

policy parameters over the course of training. 

Putting it all together, Q-learning in DDPG is performed by minimizing the following 

MSBE loss with stochastic gradient descent: 

                           𝐿(𝜙, 𝒟) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)∼𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑄𝜙targ
(𝑠′, 𝜇𝜃targ

(𝑠′))))2]  (5.8)    

where 𝜇𝜃targ
 is the target policy. 

 

5.2.2. The Policy Learning Side of DDPG 

Policy learning in DDPG is fairly simple. We want to learn a deterministic policy 𝜇𝜃(𝑠) 

which gives the action that maximizes 𝑄𝜙(𝑠, 𝑎) Because the action space is continuous, 

and we assume the Q-function is differentiable with respect to action, we can just perform 

gradient ascent (with respect to policy parameters only) to solve 

                                              𝑚𝑎𝑥
𝜃

E
𝑠∼𝒟

[𝑄𝜙(𝑠, 𝜇𝜃(𝑠))]         (5.9) 

Note that the Q-function parameters are treated as constants here. 

5.2.2.1. Exploration vs. Exploitation 
DDPG trains a deterministic policy in an off-policy way. Because the policy is 

deterministic, if the agent were to explore on-policy, in the beginning it would 

probably not try a wide enough variety of actions to find useful learning signals. To 

make DDPG policies explore better, we add noise to their actions at training time. The 

authors of the original DDPG paper recommended time-correlated OU noise, but more 

recent results suggest that uncorrelated, mean-zero Gaussian noise works perfectly 

well. Since the latter is simpler, it is preferred. 

 

 



5.2.2.2. Deep Deterministic Policy Gradient Pseudocode 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Deep Deterministic Policy Gradient Pseudocode 



Chapter 6 

 

REINFORCEMENT LEARNING APPLIED TO FINANCE 
 

There are a multitude of papers which have already used Reinforcement Learning in trading 

stock, portfolio management and portfolio optimization.  

 

Moody et al. were the pioneers in applying the RL paradigm to the problem of stock trading and 

portfolio optimization. In [20], [21] and [22] they proposed the idea of Recurrent Reinforcement 

Learning (RRL) for Direct Reinforcement. RRL is an adaptive policy search algorithm that can 

learn an investment strategy on-line. Direct Reinforcement was a term coined to show algorithms 

that don’t need to learn a value function in order to derive a policy. In other words, policy 

gradient algorithms in a Markov Decision Process framework are generally referred to as Direct 

Reinforcement. In [23] Moody et al. showed that a differential form of the Sharpe Ratio and 

Downside Deviation Ratio can be formulated to enable efficient on-line learning with Direct 

Reinforcement.  

 

In [24] David W. Lu used the idea of Direct Reinforcement with an LSTM learning agent to learn 

how to trade in a Forex and commodity futures market. Du et al. in [25] use value function based 

algorithm Q Learning for algorithmic trading. They use different forms of value functions like 

interval profit, Sharp Ratio and derivative Sharp Ratio to evaluate the performance of the 

approach.  

 

In [26] Tang et al. used an actor-critic based portfolio investment method taking into 

consideration the risks involved in asset investment. The paper uses approximate dynamic 

programming to setup a Markov Decision model for the multi-time segment portfolio with 

transaction cost. 

 

Jiang et al. in [27] is one of the first papers which provides a detailed Deep Reinforcement 

Learning framework which can be used in the task of Portfolio Management in a cryptocurrency 

market exchange. They used the concept of a Portfolio Vector Memory to help train the network, 

which they call the Ensemble of Identical Independent Evaluators (EIIE). They take into 

consideration market risks and the transaction costs associated with buying and selling assets in a 

stock exchange.  

 

We use the work by Jiang et al. [27] as a reference while modeling the replay buffer and neural 

network architectures. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART II 
 

Portfolio Management as Deep RL Problem 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter 7  

 

SETUP 

 

7.1. Data Preparation 
We have used American Stocks data from Yahoo Finance. We have the stocks data for the 

following 10 companies: Boeing, Coca Cola, Ford, IBM, GE, JP Morgan, Microsoft, Nike, 

Walmart, and Exxon Mobil. Out of these ten, we decide to work with M stocks which are chosen 

randomly.  

 

We have downloaded the data from March 24
th

, 1986 till March 22
nd

, 2019. This means we have 

12054 days’ worth of data for each stock. The downloaded data contains the Date, Open Price, 

High Price, Low Price, Close Price, Adjusted Close Price, Volume and Stock Ticker. All the 

prices are in Dollars, while the volume is defined in the number of shares traded for that ticker on 

that day.  

 

We divide the data as per the following: 

Total Days = 12,054 days 

Train Days = 8030 days 

Validate Days = 868 days 

Test Days = 3152 days 

 

For days, where we don’t have the stock data available, we maintain the time series by filling the 

empty price data with the close price of the previous day and we also set the volume to 0 to 

indicate that the market is closed on that day. 

 

In order to come up with a general agent which is robust with different stocks, we will normalize 

the price data. We will divide the opening price, closing price, high price, and low price by the 

highest closing price of the total period.  

 

The network works on an input tensor of shape [(M+1) x L x N], where M is the number of stocks 

we select, L is the length of the window and N is the number of features. We add a 1 to M to 

represent liquid cash that we initially start with.  

 

The assets under consideration are liquid, hence they can be converted into cash quickly, with 

little or no loss in value. Moreover, the selected assets have available historical data in order to 

enable analysis. 

 



 

Figure 10: Daily Stock Closing Prices for 10 stocks 

 

7.2. Action 

The action represents the weights of the stocks in a portfolio at any given time (t-1). It is 

represented as 𝒂𝑡−1= (𝑎0,𝑡, 1, 𝑎1,𝑡, 1, … , 𝑎𝑚,𝑡, 1)𝑇. It is subject to the constraint that the sum of all 

the portfolio weights should be 1.  

 

7.3. Reward Function 

The immediate reward 𝑟𝑡, at time (t -1) is given by: 

                                𝑟𝑡(𝑠𝑡−1, 𝑎𝑡−1) = log (𝐚𝐭−𝟏 ⋅ 𝐲𝐭−𝟏 − 𝜇 ∑ |𝑎𝑖,𝑡−1 − 𝑤𝑖,𝑡−1|
𝑚

𝑖=1
)                       (7.1) 

 

where,  

𝑠𝑡−1 is the state of the environment which means it reflects the price tensor for the M assets of 

window length L and N features. 

𝑎𝑡−1 is the action taken by the agent at time (t-1), it reflects the portfolio weights vector. 

yt−1, is the closing price change vector represented by  

yt =  
𝐯𝑡

𝐯t−1
= (1,

𝑣1,𝑡

𝑣1,𝑡−1
, … ,

𝑣𝑚,𝑡

𝑣𝑚,𝑡−1
)𝑇. It represents the fluctuation in the closing price of the selected 

stocks. 

𝜇, represents the transaction cost which we have set to 0.0025. 

𝜇 ∑ |𝑎𝑖,𝑡−1 − 𝑤𝑖,𝑡−1|
𝑚

𝑖=1
 represents the transaction cost involved in changing the portfolio 

weights.  

 

7.4. Objective Function 

The objective function is an accumulative portfolio value given by, 

                                                                          𝑃𝑇 = ∏  𝑇
𝑡=1 𝑃0𝑟𝑡                              (7.2) 

 

where, the reward 𝑟𝑡, is given above and the 𝑃0 is the initial investment value which we take as 

$10,000. Our agent wants to maximize this objective function.  



7.5. Network Structure 

Our network structure is motivated by Jiang et. al., where they use the concept of Identical 

Independent Evaluators (IIE). IIE means that the networks flow independently for the assets while 

network parameters are shared among these streams. The network evaluates one stock at a time 

and evaluates its preference to invest in this stock. The total (M+1) stocks are then normalized by 

the Softmax function and compressed into a weight vector as the next periods action.  

 

We will be working with Deep Feed Forward Neural Networks and Convolutional Neural 

Networks, which will act as our portfolio management agents.  

 

7.5.1. Deep Feed Forward Neural Network 

 

The Deep Feed Forward Neural Network (DFNN) agent comprises of the input layer, 2 

hidden layers and the output layer. The input layer flattens the input tensor into the shape 

of M * L * N.  

 

The first hidden layer has the weights in the shape of (M * L * N, 784) and uses RELU as 

an activation function.  

 

The second hidden layer has the weights in the shape of (784, 500) and uses RELU as the 

activation function. The second hidden layer feeds the results into an output layer which 

has the shape of (500, M) and uses Softmax activation to output the action.  

We us the output of the last layer to calculate the portfolio value. We take the log of the 

portfolio value and try to maximize the value which also becomes the loss function to 

continue stochastic gradient descent. We use Adam as the algorithm for calculating 

gradient descent. 

 

Input  [-1 * (M+1) x L x N]  

Hidden Layer 1 [-1 * 784 ] Weights = [(M+1) x L x N, 784] 
bias  = [784] 

Activation Function ReLU  

Hidden Layer 2 [-1 * 500] Weights = [784, 500] 
bias  = [500] 

Activation Function 
(Conv1) 

ReLU  

Dense [-1 * (M+1)] Weights = [500, (M+1)] 
bias  = [(M+1)] 

Activation Function 
(Conv2) 

Softmax  

 

Table 1: Deep Feed Forward Neural Network Architecture 



 

Figure 11: Deep Feed Forward Neural Network 

 

 

7.5.2. Deep Convolutional Neural Network 

The Deep Convolutional Neural Network (DCNN) agent comprises of the input layer, 3 

convolution layers, and a dense layer which generates the output. The input layer works 

with an input of shape [M, L, N]. The first convolution layer works with 2 convolution 

filters of shape [1, 2] and a stride of size 1. We do not use any padding and use the RELU 

activation function.  

 

The next convolution layer takes the output of the first layer and uses it as input. We use 

48 convolution filters. The width of the output of the previous layer is used to define the 

shape of the convolution filter which is [1, width]. We take a stride of size 1. We do not 

use any padding and use the RELU activation function. We also perform L2 regularization 

in this layer.  

 

Before the third convolution, we concatenate previous portfolio weights with the output of 

the second convolution layer and use it as our input.  We use 1 convolution filter in this 

layer with the shape [1, width]. We do not use any padding and use RELU activation 

function. We also perform L2 regularization in this layer as well.  



 

The output the previous convolution layer is flattened and sent to a dense layer which use 

softmax activation to produce M probabilities as the final output.  

 

We us the output of the last layer to calculate the portfolio value. We take the log of the 

portfolio value and try to maximize the value which also becomes the loss function to 

continue stochastic gradient descent. We use Adam as the algorithm for calculating 

gradient descent. 

 

 
Input  [-1 * (M+1) * L * N]  

Conv1 [-1 * (M+1) * (L-1) * 2 ] Filter = 2, Kernel =[1,2], stride=1, padding='valid' 

Batch 
Normalization 

  

Activation Function 
(Conv1) 

ReLU  

Conv2 [-1 * (M+1) * 1 * 48] Filter = 48, Kernel =[1, L-1], Stride=1, Padding='valid', 
Regularizer = L2 

Activation Function 
(Conv2) 

ReLU  

Concatenation [-1 * (M+1) * 1 * 49] [-1 * M * 1 * 1] 
 

Conv3 [-1 * (M+1) * 1 * 1 ] Filter = 1, Kernel =[1, 1], Stride=1, Padding='valid', 
Regularizer = L2 

Activation Function 
(Conv3) 

ReLU  

Flatten [-1* (M+1)]  
 

Dense [-1* (M+1)]  

Activation 
Function  
(Dense) 

Softmax  

Table 2: Deep Convolutional Neural Network Architecture 

 

 

Figure 12:Deep Convolutional Neural Network 

 

 
 



Chapter 8  
 

RESULTS 
 

We performed a number of experiments involving different set of network architectures, learning 

rates and features of data.  

 

8.1. Learning Rate 

Learning Rate plays an important role in neural network training. However, learning rate changes 

can have a big impact on the training speed of the network. A high learning rate will make 

training loss decrease fast but may drop the learning into local minimum instead of finding the 

global minimum, or it may cause the gradient to fluctuate around the global minimum instead of 

letting it reach the actual global minimum. A low learning rate on the other hand will make the 

training loss decrease very slowly even after a large number of epochs. Only an optimum learning 

rate will help the network achieve the satisfactory results.  

 

In order to make sure our networks learn the optimum way, we play around with different 

learning rates and notice the results.  

 

Algorithm PG DDPG 

 

Network 

Architecture 

 

Feed Forward 

Neural Network 

 

Convolutional 

Neural Network 

Feed Forward Neural 

Network 

Convolutional Neural 

Network 

Actor Critic Actor Critic 

Optimizer Adam Adam Adam Adam Adam Adam 

Learning 

Rates 

0.1 0.1 0.01 0.001 0.01 0.001 

0.01 0.01 0.01 0.0001 0.01 0.0001 

0.001 0.001 0.01 1e-5 0.01 1e-5 

0.0001 0.0001 0.001 0.001 0.001 0.001 

- - 0.001 0.0001 0.001 0.0001 

- - 0.001 1e-5 0.001 1e-5 

Table 3: Different Learning Rates applied to networks 

 

 

 

 

 

 

 

 

 



 

 

8.1.1. Feed Forward Neural Network for Policy Gradients 
Loss and Reward values in training with respect to different learning rates for 100 epochs 

 

Figure 13: Loss vs Epochs for Policy Gradient Feed Forward Neural Network 

  

 

 

        Figure 14: Reward vs Epochs for Policy Gradient Feed Forward Neural Network 



8.1.2. Convolutional Neural Network for Policy Gradients 
Loss and Reward values in training with respect to different learning rates for 100 epochs 

 

            Figure 15: Loss vs Epochs for Policy Gradient Convolutional Neural Network 

 

            Figure 16: Reward vs Epochs for Policy Gradient Convolutional Neural Network 

 



8.1.3. Wealth created by FFN agent trained over 100 epochs using different learning 

rates on test data 

 

8.1.3.1. Learning Rate = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.303 -2.35 

Follow the Loser -0.283 -2.2 

Uniform Rebalanced 0.059 0.488 

Policy Gradient - FFN 0.089 0.651 

Table 4: Technical Indicators for FFN PG LR = 0.1 

 

 

 

 

 

 

Figure 17: Wealth created by FFN for PG LR = 0.1 



8.1.3.2. Learning Rate = 0.01  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Table 5: Technical Indicators for FFN PG LR = 0.01 

 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.276 -2.128 

Follow the Loser -0.295 -2.33 

Uniform Rebalanced 0.071 0.584 

Policy Gradient - FFN 0.089 0.654 

Figure 18: Wealth created by FFN for PG LR = 0.01 



8.1.3.3. Learning Rate = 0.001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 6: Technical Indicators for FFN PG LR = 0.001 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.274 -2.009 

Follow the Loser -0.302 -2.314 

Uniform Rebalanced 0.074 0.609 

Policy Gradient - FFN 0.042 0.321 

Figure 19: Wealth created by FFN for PG LR = 0.001 



8.1.3.4. Learning Rate = 0.0001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 7: Technical Indicators for FFN PG LR = 0.0001 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.317 -2.438 

Follow the Loser -0.28 -2.171 

Uniform Rebalanced 0.048 0.395 

Policy Gradient - FFN 0.052 0.424 

Figure 20: Wealth created by FFN for PG LR = 0.0001 



8.1.4. Wealth created by CNN agent trained over 100 epochs using different 

learning rates on test data 

 

8.1.4.1. Learning Rate = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 8: Technical Indicators for CNN PG LR = 0.1 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.298 -2.291 

Follow the Loser -0.284 -2.196 

Uniform Rebalanced 0.056 0.463 

Policy Gradient - CNN 0.089 0.651 

Figure 20: Wealth created by CNN for PG LR = 0.1 



 

8.1.4.2. Learning Rate = 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 9: Technical Indicators for CNN PG LR = 0.01 

 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.305 -2.36 

Follow the Loser -0.271 -2.13 

Uniform Rebalanced 0.049 0.41 

Policy Gradient - CNN 0.045 0.345 

Figure 21: Wealth created by CNN for PG LR = 0.01 



8.1.4.3. Learning Rate = 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 10: Technical Indicators for CNN PG LR = 0.001 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.295 -2.236 

Follow the Loser -0.278 -2.166 

Uniform Rebalanced 0.055 0.452 

Policy Gradient - CNN 0.087 0.668 

Figure 21: Wealth created by CNN for PG LR = 0.001 



8.1.4.4. Learning Rate = 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 11: Technical Indicators for CNN PG LR = 0.0001 

 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.305 -2.36 

Follow the Loser -0.271 -2.13 

Uniform Rebalanced 0.0549 0.41 

Policy Gradient - CNN 0.05 0.422 

Figure 21: Wealth created by CNN for PG LR = 0.0001 



8.1.5. Feed Forward Neural Network for Deep Deterministic Policy Gradients 
Loss vs Reward values in training with respect to different learning rates for 100 epochs 

 

Figure 21: Loss vs Epochs for Deep Deterministic Policy Gradient Feed Forward Neural Network 

 

 

Figure 22: Reward vs Epochs for Deep Deterministic Policy Gradient Feed Forward Neural Network 

 



 

 

 

 

 

8.1.6. Convolutional Neural Network for Deep Deterministic Policy Gradients 
Loss and Reward values in training with respect to different learning rates for 100 epochs 

 

Figure 23: Loss vs Epochs for Deep Deterministic Policy Gradient Convolutional Neural Network 

 

 

Figure 24: Reward vs Epochs for Deep Deterministic Policy Gradient Convolutional Neural Network 



8.1.7. Wealth created by FFN agent trained over 100 epochs using different learning 

rates on test data 
 

8.1.7.1. Actor Learning Rate=0.01 

Critic Learning Rate= 0.001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Wealth created by FFN for DDPG ALR = 0.01, CLR = 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: Technical Indicators FFN for DDPG ALR = 0.01, CLR = 0.001 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.286 -2.118 

Follow the Loser -0.304 -2.318 

Uniform Rebalanced 0.071 0.582 

DDPG - FFN 0.032 0.284 



8.1.7.2. Actor Learning Rate = 0.01  

       Critic Learning Rate = 0.0001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Wealth created by FFN for DDPG ALR = 0.01, CLR = 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13: Technical Indicators FFN for DDPG ALR = 0.01, CLR = 0.001 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.3 -2.207 

Follow the Loser -0.287 -2.188 

Uniform Rebalanced 0.058 0.484 

DDPG - FFN 0.029 0.205 



8.1.7.3. Actor Learning Rate = 0.01, 

Critic Learning Rate = 1e-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 27: Wealth created by FFN for DDPG ALR = 0.01, CLR = 1e-5 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14: Technical Indicators FFN for DDPG ALR = 0.01, CLR = 1e-5 

 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.288 -2.192 

Follow the Loser -0.284 -2.195 

Uniform Rebalanced 0.063 0.52 

DDPG - FFN 0.089 0.654 



8.1.7.4. Actor Learning Rate = 0.001 

Critic Learning Rate = 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: Wealth created by FFN for DDPG ALR = 0.001, CLR = 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 15: Technical Indicators FFN for DDPG ALR = 0.001, CLR = 0.001 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.297 -2.156 

Follow the Loser -0.286 -2.145 

Uniform Rebalanced 0.062 0.507 

DDPG - FFN 0.096 0.697 



8.1.7.5. Actor Learning Rate = 0.001 

Critic Learning Rate = 0.0001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 29: Wealth created by FFN for DDPG ALR = 0.001, CLR = 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 16: Technical Indicators FFN for DDPG ALR = 0.001, CLR = 0.0001 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.295 -2.268 

Follow the Loser -0.31 -2.456 

Uniform Rebalanced 0.062 0.51 

DDPG - FFN 0.046 0.356 



8.1.7.6. Actor Learning Rate = 0.001 

Critic Learning Rate = 1e-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

           Figure 30: Wealth created by FFN for DDPG ALR = 0.001, CLR = 1e-5 

 

 

 

 

 

 

 

 

 

 

 

 
Table 17: Technical Indicators FFN for DDPG ALR = 0.001, CLR = 1e-5 

 

 

 

 

 

 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.31 -2.359 

Follow the Loser -0.286 -2.196 

Uniform Rebalanced 0.053 0.435 

DDPG - FFN 0.029 0.205 



8.1.8. Wealth created by CNN agent trained over 100 epochs    using different 

learning rates on test data 

 

8.1.8.1. Actor Learning Rate = 0.01 

Critic Learning Rate = 0.001 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.311 -2.363 

Follow the Loser -0.299 -2.32 

Uniform Rebalanced 0.044 0.36 

DDPG - CNN 0.044 0.36 

 

 

 

 

 

 

 

 

 

 



 

 

8.1.8.2. Actor Learning Rate = 0.01 

Critic Learning Rate = 0.0001 

  

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.288 -2.192 

Follow the Loser -0.284 -2.2 

Uniform Rebalanced 0.063 0.52 

DDPG - CNN 0.031 0.218 

 

 

 

 

 

 

 

 

 

 



 

8.1.8.3. Actor Learning Rate = 0.01 

Critic Learning Rate = 1e-05 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.286 -2.242 

Follow the Loser -0.293 -2.29 

Uniform Rebalanced 0.064 0.534 

DDPG - CNN 0.06 0.497 

 

 

 

 

 

 

 

 

 

 

 

 



8.1.8.4. Actor Learning Rate = 0.001 

Critic Learning Rate = 0.001 

 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.311 -2.401 

Follow the Loser -0.307 -2.39 

Uniform Rebalanced 0.046 0.386 

DDPG - CNN 0.046 0.385 

 

 

 

 

 

 

 

 

 

 

 

 

8.1.8.5. Actor Learning Rate = 0.001 



Critic Learning Rate = 0.0001 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.283 -2.181 

Follow the Loser -0.282 -2.18 

Uniform Rebalanced 0.066 0.546 

DDPG - CNN 0.037 0.276 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.1.8.6. Actor Learning Rate = 0.001 

Critic Learning Rate = 1e-05 

 

Strategy Average Daily Return Sharp Ratio 

Follow the Winner -0.257 -1.908 

Follow the Loser -0.294 -2.28 

Uniform Rebalanced 0.076 0.635 

DDPG - CNN 0.062 0.486 

 

 

 

 

 

8.2. Number of Features 
We experiment with different combinations of features to understand which ones work the best 

for the agent to make informed decisions. We test the following set of combinations: 

 Only Closing Price 

 Closing and High Price 

 Closing and Open Price 

 Closing and Low Price 

 All Prices 



 All Prices and Volume 

 

We find that the Closing and High Price combination gives us the best results. 

 

8.3. Number of Epochs 

Experiments were run for different number of epochs. We found the best results for 100 epochs. 

For more number of epochs, the algorithms did well on the training data but on the actual test 

scenarios they performed poorly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Chapter 9 

 

CONCLUSION 
 

This thesis applies Deep Reinforcement Learning (DRL) algorithms in a continuous action space 

for asset allocation in a portfolio. We compare the performances of model free algorithms namely 

VPG and DDPG using different Deep Neural Network architectures. Compared with other works 

of portfolio management using RL, we test our agents with accumulative portfolio value as the 

objective function with different learning rates and different set of feature combinations as inputs. 

We notice that VPG algorithms outperform the DDPG algorithms, which is a surprise because the 

DDPG algorithm is a more advanced algorithm. We also notice that VPG algorithm in 



combination with Feed Forward Neural Networks as the learning agent works more consistently 

when compared to other portfolio management strategies. We hypothesize that this may be 

because of the complexity of the CNN, causing the vanishing gradient problem. We need to 

perform more experiments to understand this.  

 

We find that DRL can somehow capture the patterns of market movement in a limited set of data 

and features, while also improving its performance as it keeps on training from experience.  

 

In spite of all the things said above, however, we do not see a stable performance across the board 

when it comes to the stock market. In some cases, the agents perform very well, they learn the 

market dynamics and increase the overall wealth but in some cases they perform very poor. They 

sometimes work worse than uniform distribution of stocks in the portfolio.  

 

We have also found that DRL can perform very well on the gaming environments but its 

performance is relatively unstable when compared to highly dynamic stock market. One 

hypothesis that we put forward is the complexity of the reward functions. Gaming environments 

have simple reward functions when compared to Financial reward functions like the one we have 

used in this thesis. With a better and simplified reward function, we believe the DRL agents can 

achieve far greater results. We hope of proving this hypothesis by experimenting further.  

 

 

 

 

 

 

 

 

 

 
Chapter 10 

 

FUTURE WORK 
 

This thesis is in no way a complete or thorough analysis of the different research directions which 

we can go with, based on the applications of deep reinforcement learning in the portfolio 

management domain.  

 

In this research, we have not considered the inherent risk associated with the portfolio 

management process. For future research, we can try to use indicators that measure the risk 

involved with the way the agent performs asset allocation. Based on the risk appetite of the 

investing agent, there could be a multitude of changes in the results of the agent.  

 

In this thesis, we have focused on the model free reinforcement learning paradigm while 

considering the portfolio management problem. The next area of research could be the using 

model based reinforcement learning algorithms to help the agent learn the optimal way to invest 

in a set of stocks to increase the overall final reward.  In model based reinforcement learning, a 

model of the dynamics of the environment is used to make predictions.  



 

One more direction could be to adapt a different objective function. We could work with risk 

adjusted return. We could also try and simplify the objective function to something which is more 

intuitive like the scoring system in games. With a simplified objective, would make it easier for 

the agent to achieve better performance compared to a complex one.  

 

This thesis focused on the act of portfolio management solely based on the stock price 

movements, without trying to understanding the various market factors that help human portfolio 

managers judge the direction of the market. Factors like economic fluctuations in the market, 

federal laws, natural and man-made disasters, past history of the company, ethical practices of the 

executive team and human emotions play a key role when decisions about investment in a 

company are made. In order to take these into consideration, we can enhance this thesis to add the 

ability of natural language processing in order to take into account the various social media and 

news media platforms. The agent will theoretically have the ability to choose the assets to invest 

in based on the various multitude of factors just mentioned above after analyzing the information 

it gathers by churning through the news and social media outlets. 
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