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ABSTRACT

PROBABILISTIC RISK ASSESSMENT AND THE PATH PLANNING OF SAFE

TASK-AWARE AUTONOMOUS RESILIENT SYSTEMS (STAARS)

ULUHAN CEM KAYA, M.S

The University of Texas at Arlington, 2019

Supervising Professor: Dr. Atilla Dogan

Co-supervising Professor: Dr. Manfred Huber

Recent advancements on the unmanned systems manifest the potential of these

technologies to impact our daily life. In particular, the unmanned aircraft systems

(UAS) become ordinary for people in almost any area from aerial photography to

emergency responses, from agricultural services to even autonomous deliveries. In-

creased autonomy and advancements in low-cost high-computing technologies made

these compact autonomous solutions accessible to any party with ease. Easiness

and affordability to access these systems accelerated the innovations and the novel

ideas for the solution of diverse real-life problems. Despite its benefits, however, this

widespread availability also resulted in the safety and regulatory concerns in general.

In an autonomous flight task over a public space, besides the mission objectives and

the benefits, concerns regarding the public safety, privacy, and the regulations have

to be addressed systematically during the planning and considered in the decision-

making process. Therefore, there is a need for a comprehensive framework that can
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properly quantify and assess the risks incurred by the UAS operations to these con-

cerns.

This thesis presents the development of a probabilistic risk assessment frame-

work and a path planning implementation of a concept of Safe Task-Aware Au-

tonomous Resilient Systems (STAARS) to address the safety concerns. STAARS

is conceptualized to consider the safety by quantifying and assessing the risks, task-

awareness by adapting different tasks and environments, and resiliency by withstand-

ing and making decisions in adversarial conditions. As a result, a multi-objective

decision-making capability is introduced in this concept.

The thesis aims to establish a framework that could be used for the path plan-

ning of UAS operations to quantify, assess and compare the risks incurred by these

operations as well as the profits of the mission objectives such that a multi-objective

optimization can be achieved with a task-level decision-making capability. The pro-

posed framework consists of the risk assessment part where a probabilistic risk expo-

sure concept and the UAS failure mode analysis are utilized and a generic utility-based

approach for the multi-objective optimization part. In the next step, a commonly

used path planning algorithm, which is rapidly-exploring random trees (RRT), is in-

troduced. Finally, the implementation of the proposed framework for a couple of

simple UAS scenarios are demonstrated using the path planner.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Recent advancements on unmanned autonomous systems shape the way we

think in almost every area. One of the most impacting and noticeable examples of

these systems is the unmanned aircraft systems (UAS). Less than a decade, these

systems have undergone a transformation which makes them common and easily

reachable by any parties from being rare and mostly experimental. Technological

developments on the electronics, battery systems, and the low-cost high-computing

solutions had undeniable contributions to this trend. Various applications in civil-

ian, commercial, and military fields have proven the usefulness of UAS technology

and revealed its potential to impact our daily life and the future of numerous indus-

tries. However, despite the ease of access, high demand and potential, integration

of UAS into the National Airspace System (NAS) has been relatively slow due to

current restrictions on the UAS operations. Operating within NAS requires aircraft

systems to have comprehensive certifications that ensure the satisfaction of rules and

regulations set by the aviation authorities. Comparing the conventional and manned

aircraft systems, current unmanned systems are lack of such documentation, and so,

the reliability of these systems has not fully assessed yet. Therefore, UAS operations

in the national airspace, especially over the populated areas, present a risk to people

and property on the ground and the other airspace users. Certainly, this situation

raises concerns, which are outlined by the FAA in [3] as:
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Figure 1.1: Three main concerns that are listed by FAA regarding UAS operations

According to the FAA, which is charged by the Congress in 2012 for the safe

integration of UAS into NAS, these concerns are defined as the UAS collision with

people and property both in the air and on the ground for the safety concerns, inva-

sion of public privacy for the privacy concerns and a lack of rules and regulations that

could address these concerns for the UAS operations. Lack of risk assessment tools, as

we have for manned aircraft, unavailable historical data on the reliability of the used

systems, and unclear privacy definition for the use of UAS technology form the basis

for such concerns. In addition, current aviation regulations might be overly conser-

vative or might not address the concerns for UAS operation, which limits benefiting

from the full potential of UAS. Therefore, necessary tools and concepts should be

developed, and the rules and regulations should be revised considering these concerns

for the safe integration.

A recent study in [4] states that the importance of adopting the ”risk-based”

approach to the development of a regulatory framework for UAS operations has been

lately recognized by the aviation authorities such as EASA and FAA, and it recom-

mends the extension of current perspective on a quantitative risk assessment to look

more holistically at the total safety risks. The essential argument in this study is

that the application of currently used near-zero tolerance approach to the safety risk

management process for UAS prevents the safety-beneficial operations. Instead, a
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broader perspective to consider the net risk or benefit from these operations is sug-

gested. Also, the current FAA approaches to the risk management are criticized for

being based on qualitative and subjective risk analysis leading to the results that fail

to be repeatable, predictable and transparent. On the other hand, the significance

of establishing a quantitative framework to form the basis for the standards and

decisions is underlined with the emphasize on the probabilistic risk analyses (PRAs).

In this thesis, the development of a comprehensive framework that can prop-

erly address the safety concerns by quantifying and assessing the risks incurred by the

UAS operations as well as the benefits of these operations is introduced. The proposed

framework includes a probabilistic risk assessment and a utility-based multi-objective

optimization approach for the path planning of safe UAS operations using a concept

of Safe Task-Aware Autonomous Resilient Systems (STAARS). STAARS is conceptu-

alized to consider the safety by quantifying and assessing the risks, task-awareness by

adapting different tasks and environments, and resiliency by withstanding and mak-

ing decisions in adversarial conditions. As a result, a multi-objective decision-making

capability is presented in this framework.

1.2 Thesis Outline

This thesis consists of mathematical modeling and the implementation of the

concepts proposed for safe UAS operations. As the first step, components of the pro-

posed probabilistic risk assessment framework is introduced, and the mathematical

models of the components are formulated. In the second step, a path planning algo-

rithm that will be used to implement the proposed framework is explained. In the

third step, a more generic utility-based formulation is derived such that both the risks

incurred by the UAS operations and the benefits (or objectives) of these operations

can be considered within the same framework for a better decision process. Finally,
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the developed models are implemented using the selected path planning algorithm to

simulate simple UAS scenarios.

A brief overview of chapters is given below.

Ô Chapter 2 - Probabilistic Risk Assessment Framework: In this chapter,

the risk considerations in UAS operations are explained, and the risk man-

agement approaches in Literature are outlined. After that, the proposed risk

assessment approach is introduced in a framework by employing a probabilis-

tic risk exposure concept and UAS failure mode analysis with ground impact

distributions. Finally, a risk formulation for the risk assessment of the path

planning process is derived from these concepts.

Ô Chapter 3 - Path Planning Algorithms: This chapter summarizes a fam-

ily of path planning algorithms, which is the rapidly-exploring random trees

(RRTs), that is used in this thesis to implement the proposed risk assessment

concepts for simple UAS path planning scenarios. Pseudo-code of the algorithms

and the heuristic approaches for the implementations are presented.

Ô Chapter 4 - Derivation of Utility Functional for the Path Planning

of STAARS Operations: In this chapter, a multi-objective utility-based

functional is derived to be used with the path planning algorithm as a cost

function such that along with the risk considerations assessed by the proposed

framework, the benefits of UAS operations can be integrated into the decision-

making process for the path planning.

Ô Chapter 5 - Simulation of Simple STAARS Scenarios: This chapter

describes the assumptions on the simulation environment and the implementa-

tion details for two different simple UAS path planning scenarios, and presents

the results.

4



CHAPTER 2

PROBABILISTIC RISK ASSESSMENT FRAMEWORK

2.1 Risk Definition

The word ”Risk” is used in numerous distinct fields from economy to health

sector, to various social areas, to engineering disciplines, and it has a number of

definitions and interpretations. In general, the risk is associated with the possibility

of a negative event such as harm, loss, accident or disaster, where the qualitative

and/or quantitative terms are used to interpret the consequences of the associated

risk. One of the most common interpretations of the risk is made by using two terms:

the frequency (probability) of the occurrence of the negative event and the severity

(or consequence) of this negative event. To illustrate, the frequency and the severity

categories of a risk scenario is shown with qualitative measures in Figure 2.1, which

this table is also known as the risk matrix, [2].

Figure 2.1: Illustration of frequency and severity of a negative event on Risk Matrix
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where it is also common to represent these categories in measurable units such as the

occurrence frequency ranges and the cost of possible loss or the fatalities.

There are two approaches to the risk concept: deterministic and probabilistic

risks [5]. Deterministic approaches focus on the impact of a single risk event where the

inputs of the risk model are known, and the outcomes can be observed. On the other

hand, the probabilistic risk considerations include all possible events, their likelihood,

and associated impacts, and they can account for the uncertainties on the hazardous

events and incomplete knowledge of underlying phenomena. Although the number of

factors to be accounted for and the other drivers that affect the stationarity of the

risk can make the probabilistic risk assessments a challenging task, these assessments

provide more comprehensive solutions for the potential risk conditions and can guide

the decision process with a higher level of confidence. As a result, probabilistic risk

assessment approaches get more and more attention and increasingly become the

standard for risk management applications.

2.1.1 Risks in UAS Operations

Dynamics of the operating environment, complex vehicle systems, and many

other contributing factors make UAS operations inherently the subject of the risk as-

sessment. In this work, the risk is defined to be the negative condition that is resulted

from the operation of a UAS; therefore, the risks to the success of a UAS mission are

intentionally excluded. The literature search revealed that the risk considerations are

grouped under three main categories; safety, privacy, and environmental impacts as

tabulated in Figure 2.2.

Among these categories, safety concerns attract the most attention since it has a

direct impact on the society, and they should be addressed primarily before any safety

critical operation. Insufficient empirical data on the UAS reliability and outcome of

6



Figure 2.2: Risk considerations in UAS operations

the failures is the primary source of these safety concerns. In fact, to gain public trust

in these technologies, establishing strong comprehensive rules and regulations in safety

management procedures is an essential requirement. On the other hand, despite the

non-negligible significance of the other categories, due to the relatively less impact on

people’s daily life, less attention is paid on privacy and environmental risks. Moreover,

the lack of well-defined privacy terms and conditions for the UAS operations makes

addressing the privacy concerns a non-trivial task, [6]. It is also possible to assume

that minimizing the environmental impacts can be achieved by protective designs,

preventive actions and the other similar methods, and comparing the safety risks,

environmental risk considerations can be eliminated to the insignificant levels.

Safety risks posed by UAS operations are classified in two subcategories as

ground risks and air-to-air risks. UAS ground risks occur in the event of a collision

with terrain or the objects on the ground and result in damage to the people and/or

properties on the ground. Whereas, air-to-air risk condition represents the collision

with the other airspace users such as manned aircraft or another UAS, and potential

damage to the people and/or property in the air. It is worth mentioning that air-

to-air type risks also have the secondary effects on the ground in the form of falling

debris impacts. However, the majority of the work is done in the ground safety risk

considerations comparing to air-to-air risks due to the relatively highest impact on the
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people’s daily life and it is more likely to occur. The main reason for the higher occur-

rence likelihood is the current regulations that limit the UAS operations in visual line

of sight (VLOS) and under 400 feet altitude. In addition, air-to-air collisions between

most of the manned aircraft and the current commercially available UAS platforms

are predicted to be insignificant for these platforms due to their incomparable sizes.

Privacy risks can be summarized as the violation of privacy rights of individu-

als, organizations, or public domain without involving controversial discussions, [7].

These risks stem from the way that UAS missions are carried out, rather than the

operation itself. The instrumentation on the UAS platforms and the other techno-

logical capabilities used in data collection such as image, video or voice recording in

high qualities raise a public concern regarding the possible abuse of the collected data

or even the data collection itself without explicit permission.

In the last category, the environmental impacts of UAS operations are consid-

ered. These impacts are associated with the hazardous events that influence specifi-

cally the environmental condition in the form of chemical contamination, fire hazard,

disturbance of the wildlife, and the other possible outcomes, [8, 9].

Objective of the risk assessment for UAS operations is to quantify identified risk

conditions, and if possible, to keep them under an acceptable level.

2.2 Related Work

In literature, there are a number of studies on the risk analysis of UAS op-

erations, where the majority of the work is done on the safety aspect of the risk

considerations, in particular, the ground safety risks, due to the outlined reasons in

the previous section. In these works, various approaches have been made on the

estimation of ground collision risks posed by the UAS to people and properties on

the ground. Several studies focus on the identification of possible UAS mishaps and
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the estimation of the ground impacts by incorporating the detailed failure analysis,

and there are also fewer studies attempting to develop a comprehensive risk assess-

ment framework to address the ground safety concerns. The following sections will

summarize some of the works mentioned here.

2.2.1 Ground Safety Risk

Ground safety term in the scope of the risk assessment of UAS operations is

used to refer the impact of a UAS platform to the terrain or ground objects such as

people, buildings or the other properties on the ground. As a result, consideration of

the ground risks is particularly significant for the UAS operations over the populated

(urban) areas and the regulation authorities who wish to establish complementary

risk management systems.

In [1], Washington et al. partition the ground risk as to the primary and sec-

ondary hazards. The primary hazard is defined to be the direct impact of the UAS

platform or its parts with the ground, and the secondary effects of the impact are ex-

emplified as the spread of fires, vehicle accidents, the collapse of buildings, or release

of hazardous materials affecting people and properties on the ground. Their study is

based on a comprehensive review of the existing ground risk models, although none

of the secondary hazards are addressed in these models. Figure 2.3, cited from their

work, is a good representation of the general components of a ground risk model for

UAS.

As can be seen from the diagram, components are divided into two groups

according to their point of view to the ground risk. The first group investigates the

effect of the platform and its operational conditions on the contribution of ground

risk, whereas, the second group focuses on modeling the effect of exposed entities on

9



Figure 2.3: Components of UAS ground risk models [1]

the risk factors. There are valuable studies for each of these components. However,

only the subset of these studies and components will be outlined here.

UAS failure models aim to capture the underlying factors contributing to the

occurrence of failure modes and the uncertainty associated with the process. These

factors include the system configuration, environmental conditions, and any other

potential factors that can lead the UAS platform to a ground impact. One of the

most practiced techniques is Failure Mode Effect Analysis (FMEA) that is widely

used in system reliability assessments. FMEA technique first divides the system into

more manageable subsystems, then, for each subsystem, possible failure modes, their

propagation characteristics and probabilistic models to represent the occurrence of

failure modes are identified. [10] performs FMEA by conducting a series of flight test

experiments using various sUAS platforms including fixed-wing aircraft and multi-

rotor platforms under off-nominal conditions. The effects of the rotor failures, the

control surface servo failures, loss of GPS, and degraded IMU sensor readings are

tested in their flight scenarios. Another important work on the identification of

possible failure modes is carried out by Belcastro et al. in [11] over an extensive data

set about UAS mishaps with more than hundred reports collected from a variety of
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sources including government accident reports and media reports. In their research,

they accomplish a detailed categorization of the mishap precursors and individual

contributions of these identified hazards. Significance of subdividing and analyzing

individual components of a system is to be able to understand and distinguish the

behavior of each subsystem so that under off-nominal conditions, the behavior of the

whole system can be predicted. It is also important to note that even though some

of these analyses include the evaluation of multiple subsystem reactions, the effect of

chain relation between subsystems needs further attention.

The impact location models, given a failure condition, try to predict the possible

UAS impact position and the affected zone on the ground. Predictions are made using

two different approaches with deterministic and probabilistic models. Deterministic

models implement model-based designs and deterministic equations to obtain impact

locations by specifying all the initial conditions and parameters neglecting the uncer-

tainties. On the other hand, probabilistic approaches can also account for the effects

of uncertainties on the prediction of final impact locations by introducing stochastic

and random processes for the representation of the system, operational conditions

or environmental factors. Considering the dynamics of the operating conditions and

many other unknown factors that could affect the vehicle states, the latter approach

gives a more promising future to model the real-life scenarios. Furthermore, the lit-

erature has several other areas, mainly focusing on these predictions. To name a few,

safety range calculations for the launch vehicles, atmospheric re-entry and ballistic

trajectory calculations are closely related to the problem defined under UAS impact

location predictions.

In [12], flight computer failure and resulting frozen control surfaces condition

are studied to predict the potential ground impact locations of a fixed-wing UAV.

Their prediction method based on the average glide angle of the aircraft during the
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failure descent until the crash happens. Although they use a deterministic model of

the aircraft, introducing Monte Carlo simulations with randomized failure times, a

probabilistic representation of the ground impact location is obtained. It is worth

mentioning here that the characteristics of impact locations heavily depend on the

failure modes as well as the type of aircraft itself. Ball et al. in [13] formulate

various ground impact models for both rotary and fixed-wing type aircraft including

several different failure flight regimes such as diving, gliding or auto-rotation, and their

potential collision scenarios. Also, their lethal kinetic energy approach to finding the

lethal area affected by the UAS impact is particularly important to for the ground

risk assessment. Another valuable work is presented in [14] where the probability

distribution of ground impact points for small UASs at ballistic descent is obtained

in closed form. Cour-Harbo embeds the second order drag model in his probabilistic

approach, and the effect of varying wind conditions is represented in his ground impact

distribution.

The exposure models investigate the temporal and spatial dependencies of the

third-party risk exposures on the ground. Third-parties are defined in the context of

aviation risk management to be the people and properties not associated with, nor

deriving any direct benefit from the operation of UAS, and their exposures to the

risk are the primary concern by the aviation regulations. There are various models

developed to address and quantify the ground exposures. Some of the most commonly

used models utilize simple spatial distributions such as uniform exposure models to

express exposure characteristics. In these models, spatial and temporal variations of

the actual exposure are often neglected, and so, their approximations are only valid

for relatively static and simple exposure distributions. On the other hand, there are

also more comprehensive models introduced to address the dynamic and geospatially

varying exposures. For example, a model developed by Melnyk in his doctoral stud-
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ies, [15], considers the population distribution to integrate the temporal variation of

exposure according to a study, in [16], on how and where people spend their time.

There are numerous factors affecting the exposure characteristics on the ground, such

as population behavior, uncertainty on the geospatial data, and potentially many

others. Therefore, for more realistic modeling of the actual underlying exposures,

predictive and dynamic analysis should also be incorporated with the current ap-

proaches.

2.2.2 Risk Assessment Frameworks

Several studies have tackled the problem of establishing a systematic framework

for the assessment of risks incurred by the UAS operations. One of the most detailed

work has been put forward by Melnyk in [15]. In his work, he provides a framework

to address and predict UAS safety by analyzing several reliability and safety levels

and employing casualty expectation method to quantify the risk of UAS operations.

He uses event tree structure to represent the failure events with varying parameters

that affect the occurrence or outcome of the events in the quantification of the risk,

and he integrates a large number of factors impacting risk assessment such as ground

exposure characteristics, various properties of UAS platforms, operating environment

and many other contributing factors by successfully reviewing the previous works.

More importantly, he describes how the framework could be used to assist the safe

UAS integration which is proposed as utilizing the target level of safety (TLS) con-

cept in the form of failure frequency rates to compare the evaluated risks with the

acceptable limits.

Clothier has introduced another similar work in [17], which neatly summarizes

the safety risk management process in a framework for the UAS operations. Accept-

able level of safety concept has also been followed in his study with a higher level
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approach. Some of the reviews and explanations about the common risk identifica-

tion and analysis tools are particularly useful in this paper for the development of a

general risk assessment framework.

Some other studies in this very topic have been conducted in [19, 18, 2], which

also forms the starting point of the proposed risk assessment framework in this thesis.

An agent-based modeling and simulation approach for the safety evaluation frame-

work using modular construction of safety analysis metric introduced in [19], a prob-

abilistic model-based approach and an effort to develop a real-time quantitative risk

assessment framework employing casualty expectation and UAS ground impact pre-

diction models in [18] and [2] are quite valuable resources one should have definitely

reviewed before working on the development of a new risk assessment concept.

Figure 2.4 represents the general risk assessment diagram, cited from [2].

Figure 2.4: General risk assessment framework components[2]
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According to this diagram, risk assessment has three stages. In the first stage,

the hazards (negative events) and their outcomes are identified and defined. In the

second stage, considering the operational environment and the risk mitigation strate-

gies, assessment of the risk along the UAS trajectory is carried out. Finally, in the

third step, the decision is made comparing the target level of safety with the as-

sessed risk values. Generic information flow represented in this diagram will largely

be adopted during the development of a risk assessment framework proposed in this

thesis. However, the TLS approach, which is used in some of the previous works,

will not be integrated with the proposed framework since its applicability to the UAS

operations is not validated nor predicted to be feasible. In addition, the mitigation

strategies to reduce the risk conditions are intentionally left outside of this work.

2.3 Proposed Risk Assessment Framework

Considering the literature search on the risk analysis of UAS operations, find-

ings reveal that Equivalent Level of Safety (ELOS) or Target Level of Safety (TLS)

approaches in risk assessment and decision-making processes are not straightforward

for the operations related to UAS. The main reason is basically the way that the

safety considerations are done. ELOS and TLS approaches establish a systematic

way of describing required minimum safety conditions to satisfy, and they inform

the decision-making process by constructing the ground rules. However, since these

approaches are principally developed for the manned flight operations, their safety

considerations are inherently based on the safety of the first-party which directly in-

volves with the flight operations such as passengers, flight crews and ground teams.

Therefore, the applicability of such concepts to UAS operations, where the safety of

the third-parties is rather considered, is not possible in their current form. Instead,

a risk assessment framework is proposed in this thesis to assess the ground safety
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risks exposed by UAS operations. The proposed framework can also be utilized to

establish the level of safety approaches along with further detailed analysis and it can

be used as a decision support tool.

The proposed risk assessment framework has a similar structure with the general

risk assessment framework depicted in Figure 2.4. It consists of three stages; the first

stage employs the risk exposure model and UAS failure model with ground impact

analysis to identify and define the possible risks and their outcomes, the second stage

implements a path planning algorithm to find the paths for the UAS mission con-

sidering the operational environment and the risk assessment considerations over the

trajectories, and finally, the third stage is the decision-making step which compares

the found paths according to their risk conditions to find the least risky path for the

mission. Components of the proposed framework are illustrated in Figure 2.5.

Figure 2.5: Components of the proposed risk assessment framework
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Revisiting Figure 2.3, it can be seen that the proposed approach includes failure

model, impact location model, and exposure model subcategories during the ground

risk assessment. The rest of the models are currently excluded from the framework,

but, for a more comprehensive and realistic representation of the actual risk condi-

tions, these features can be added to the current framework.

In below sections, probabilistic risk exposure map (PREM) concept, modeling of

UAS ground impact location distribution and the risk function to be used in the risk

assessment of the path planning process are introduced and explained, respectively.

2.3.1 Probabilistic Risk Exposure Map (PREM)

Probabilistic risk exposure map (PREM) concept is used to model the risk of

exposure on the ground to the presence of UAS in the air with a distribution where

it is represented as a function of time and position on the ground. To illustrate a risk

exposure distribution over a populated area, considering the population scattered on

the ground, the higher the population in a specific area subjected to UAS operation is,

the higher the risk of exposure (such as being hit by UAS or privacy violation) will be

observed over that area, whereas, the areas with lower population will potentially have

less risk exposure due to operations. Basically, PREM relates the spatial and temporal

distributions of the ground objects that are considered in the safety evaluation to a

distribution map, which later on, it will be used in the risk assessment along with

UAS failure and ground impact models.

In this concept, the operation of UAS in urban/suburban areas is treated as a

risk to the safety of bystanders, properties, and the other ground objects. Moreover,

privacy and regulatory concerns regarding these operations can be addressed within

the same concept. Thus, multiple objectives can be achieved by the PREM which

consists of multiple layers corresponding to different types of risk classifications such
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as the risk of flying over people (or traffic), of flying closely over residential units,

or of violating restricted airspace. The flexibility of the concept also allows fusing

various risk layers into the same risk map. The advantage of having only one map

is that once all the risk types are fused and included in the PREM, decision-making

strategies do not need to distinguish between different types of risks since the map

already contains the required information.

The construction of PREM can be achieved by using various data sources. Fig-

ure 2.6 depicts the flowchart of PREM construction from different categories that are

used to collect data from.

Figure 2.6: Construction of PREM from the data is represented in flowchart

According to Figure 2.6, data sources are divided into three categories. In the

first category, data is received in the form of a priori data such as available geograph-
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ical information database, census or survey mapping data, etc. This type of data

source, which potentially consists of large data sets, can be accessed and efficiently

utilized in accordance with the UAS operational plan. Therefore, this step refers to

”offline planning” phase before the mission starts. The second and third categories

refer to ”online planning” phase of the UAS mission. In these categories, data re-

quired for the construction of risk exposures are obtained in the form of data updates

from the vehicle’s own sensors and through a communication link. Depending on the

capabilities and the risk assessment considerations, various sensors or communication

resources can be employed to construct, verify, and modify PREM layers. It is also

worth noting that the ”data” term used in this concept does not refer to raw data,

instead, the usable information is meant by data.

Before the formulation of PREM construction, a few assumptions are made to

simplify dealing with continuous space and distributions. First, assume that a risk

layer is formed by the contribution of the individual risk exposure sources of the same

type, {S1, S2, ..., SN}, where they are independently modeled and discretely placed

across the map. Also, assume that these individual sources and their distributions are

given by a mapping data source M with the current information e(t). Under these

assumptions, risk exposure at a particular location and time can be characterized by

two factors, namely i) the probability density of the risk exposure condition R at a

location x and time t given the mapping M and an individual exposure source Sj,

p(R(x, t)|M(e(t)), S(t) = Sj), and ii) the probability of given individual exposure

source Sj to capture total underlying risk exposure condition given M , P (S(t) =

Sj|M(e(t)). Basically, the first term represents the spatial and temporal distribution

of the risk exposure caused by the given source as a probability density function,

while the second term models how much individual source Sj contributes to total risk
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exposure. By the product of these two factors, the probability distribution of the ith

layer of the risk exposure for the given information can be constructed as

p(Ri(x, t)|M i(e(t))) =
N∑
j=1

[
p(Ri(x, t)|M i(e(t)), Si(t) = Sij)

][
P (Si(t) = Sij|M i(e(t)))

]
(2.1)

where N is the total number of discrete risk exposure sources. This formulation can

be also thought as the weighted sum of distributions or the mixture of distributions.

In addition, assuming that mapping information about the underlying risk ex-

posures is received from the discrete mapping sources, M1,2,3,..., such as satellite maps,

camera images, lidar maps or any other sources, conditioning on M(e(t)) in Equa-

tion (2.1) can be eliminated by introducing a probability term in Equation (2.2) to

quantify the reliability of the data received from the mapping source M for the cur-

rent information. This term models the uncertainty on the data collection during

the PREM construction and it can be referred to the situational-awareness of the

system. By this approach, a priori knowledge about the environment and the risk

conditions can be updated as the new information gained, or the evidence collected,

by any means.

PREM i : p(Ri(x, t)) =
∑

M∈{M1,M2,..}

[
p(Ri(x, t)|M i(e(t)))

][
P (M i(e(t)))

]
(2.2)

Note that Equations (2.1) and (2.2) are generic equations to model PREM.

However, for the simulations carried out in this thesis, the time dependency of the

underlying process, and the uncertainty on the risk exposure mapping sources are

intentionally excluded. Therefore, the underlying risk exposure is assumed to be

stationary, and uncertainty on the mapping is neglected (P (M(e) = APriori) = 1).

A new formulation of the ith layer of PREM becomes:
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PREM i : p(Ri(x)) =
N∑
j=1

p(Ri(x)|Si = Sij(lj,mj))P (Si = Sij(lj,mj)) (2.3)

where lj is the center location of the individual risk exposure source, and mj is the

modeling parameter of the risk exposure distribution for this source. Each source is

identified by these two parameters. This approach gives us the flexibility to model

the total risk exposure distribution as a mixture of distributions over the discrete set

of locations.

Furthermore, multiple PREM layers can be integrated into the same map in this

approach by assigning weight factors for each layer according to their importance.

However, it is important to note that, the accumulation of different risk types over a

trajectory might differ from each other. One clear example is that while the privacy

risks might be purely depending on the current location of the UAS and accumulated

over time, UAS platform impact related risks would require where the platform failed

and what the state of the vehicle was at the failure as well. Therefore, one should

differentiate the dissimilar risk types during fusing. Nevertheless, one risk map fusing

all the similar risk types (layers) can be formulated as below

p(R(x)) =
∑

i∈{a,b,...}

wip(Ri(x)) or PREM =
∑

i∈{a,b,...}

wiPREM i (2.4)

where wi is the weighting of the risk type i with the condition of ∀i : wi ≥ 0,
∑
i

wi = 1.

Another advantage of fusing multiple risk types in this approach is that every

UAS mission may impose a different set of weights on various risk conditions. For

instance, a weight on the privacy risk of residences would differ widely from a UAS

executing the task of pizza delivery to transferring a medicine task. By this approach,

only changing weights wi in Equation (2.4), task-awareness of the system can be

achieved, even during task execution. On the other hand, one might argue that the
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risk exposure should not differ from one mission to another mission; instead, it should

stay the same if nothing has changed on the ground. This argument might actually

have a point to some extent. Hence, the task-awareness of the system will be revisited

in Chapter 4 by a new approach using utility-based UAS mission planning.

An illustration of the PREM construction is depicted in Figure 2.7. A region

consisting of discrete rectangular areas denoted with campus, forest, park and resi-

dential areas are selected for a UAS operation shown in Figure 2.7(a).

Figure 2.7(b) illustrates how the consensus or survey data about the population

statistics for the different categories of regions are used to construct a PREM layer.

Survey data is usually given as average values such as a hundred people per square

mile, and here, it is used to lay down uniform distributions on the corresponding areas

to model the risk of exposure. Usage of this information for the illustrative purpose

is depicted for the streets, distinct areas, and building blocks. This type of PREM

construction, as mentioned before, can be obtained using a priori data sources in the

offline phase of the mission planning.

In addition, a simple scenario of PREM construction from sensor updates is

illustrated in Figure 2.7(c). In this scenario, a group of people and traffic vehicles

inside the sensor range of UAS platform are detected, and the distribution of the

risk exposures are assigned on them as well. This simple scenario basically depicts

how PREM is constructed during the online phase of the UAS mission. The similar

examples can be populated using the other data sources such as communication link

between the ground station and UAS or information from the other UASs.

2.3.2 UAS Failure Modes and Ground Impact Distribution

In this section, ground impact modeling of the UAS platform due to failure

modes are investigated briefly, and a generic formulation is derived as an impact
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(a) An illustrative map of the region for UAS oper-
ation

(b) A simple construction of PREM from a consen-
sus/survey data

(c) A simple construction of PREM from sensor up-
dates

Figure 2.7: An illustration of PREM construction by survey data and sensor update
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probability distribution on the ground. Modeling the actual behavior of an unmanned

aircraft system under critical failure conditions is not trivial due to the inherent na-

ture of the operating environment and non-linearity of vehicle dynamics. There is a

considerable amount of work done on this specific topic to identify the possible behav-

iors and to assess the reliability of these systems. As with the fault tree analysis, [20],

failure mode analysis (FMEA) is one of the common methods to model the result-

ing behavior of the system under certain failure conditions, which are called failure

modes, [10, 11]. In FMEA method, first, possible failure conditions are identified

under distinct categories according to their root cause, and a detailed investigation

is carried out to determine the occurrence rates and possible outcomes of the indi-

vidual failure modes. In this thesis, UAS impact location on the ground is modeled

using FMEA framework. Figure 2.8 shows the flowchart to obtain ground impact

distributions.

Figure 2.8: Calculation of ground impact distributions is depicted in flow chart
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In this Figure, the UAS failure modes are grouped under two main categories which

are the failure modes resulted from the dynamic vehicle health conditions and the

dynamic weather conditions. Using failure mode analyses for these categories, it is

proposed that the ground impact location distribution can be calculated under some

assumptions.

Failure occurring on an aircraft system can result in two operational conditions,

namely controllable flight and uncontrollable flight. While the normal mission can

still be maintained or mitigation strategies can be performed in a controllable flight, in

an uncontrollable flight, the mission is terminated by the loss of control on the system

with a potential crash scenario. In this thesis, all the failure modes are presumed to

result in an uncontrollable flight, and no mitigation strategies are performed. The

resulting behavior of the UAS after a failure is analyzed regarding the impact location

distribution over an area on the ground. Impact location is defined to be that in an

uncontrollable flight condition, a position on the ground that UAS can reach from its

current state where the failure occurs.

Impact domain of UAS is represented by a probability distribution over the

ground locations for a given uncontrollable flight condition UF occurred at the cur-

rent state of the vehicle X(t), and at the current environmental conditions E(t),

p(x|UF (X,E, t). Domain depends on the capabilities of the vehicle such as operating

speed and available power on-board, and environmental conditions like wind direction

and magnitude, which are investigated under the vehicle health condition category.

In case of diminished capability modes such as a sensor, actuator or system unit fail-

ures, the range or endurance will be adversely affected too. Also, it is worth to note

here that the presence of strong weather conditions can significantly alter the range

and endurance of the UAS platform. Therefore, environmental conditions should be

considered to determine the size and shape of the impact domain. This approach can
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be used to determine probability density of impact locations over the map under each

possible failure case according to their occurrence probabilities, and the mixture of

these distributions will provide the probability distribution of impact locations for all

failure modes over the map. As it is explained in Section 2.3.1, impact probability

distribution of all failure modes is formulated as a mixture distribution. Equation

(2.5) shows the formulation of mixture distribution.

p(x|UF (X,E, t)) =
k∑
j=1

[
p(x|Fj, UF (X,E, t))

][
P (Fj|UF (X,E, t))

]
(2.5)

where p(x|Fj, UF (X,E, t)) is the probability density function that represents a UAS

ground impact probability distribution over the map given that uncontrollable flight

UF is caused by the jth failure mode Fj, at the current state of UAS, X(t), and

environmental conditions E(t). P (Fj|UF (X,E, t)) is the conditional probability of

the jth failure mode to cause uncontrollable flight at given conditions among all failure

modes. Also, k is the total number of UAS failure modes.

As it is explained before, the occurrence of failure modes can depend on many

factors. Hence, the current vehicle states, environmental conditions and time are

included in conditional probabilities to address some of those factors. Using mixture

distribution, the probability of UAS impact to a particular area A given a failure

happened at a specific state and condition can be obtained by below integral.

P (A|UF (X,E, t)) =

∫
A

p(x|UF (X,E, t)) dx (2.6)

In addition, considering the density of uncontrollable flight condition to occur at

a given specific vehicle state and environmental conditions λUF (X,E, t), UF (X,E, t)

term can be eliminated from the condition in Equation (2.6).Then, UAS ground

impact density to an area A can be obtained given the current time as
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λImpact(A, t) = λUF (X,E, t) P (A|UF (X,E, t)) (2.7)

Note that, the reason why the density of uncontrollable flight condition is used

instead of probability is that for any exact X(t) and E(t), the probability of observing

UF is zero since it is a continuous random process. λUF (X,E, t) models the effect

of time-varying vehicle states and environmental conditions on uncontrollable flight

condition occurrences.

A simple sketch to illustrate the ground impact distribution of UAS platform is

shown in Figure 2.9. In this sketch, four arbitrary failure modes are considered, and

the impact distributions of the failure modes are modeled with truncated Gaussian

distributions where the boundaries of the impact domains are assumed to be within

the 3σ deviation of elliptical regions depicted in Figure 2.9(a). According to these

failure ground impact distributions, the result of the calculation given in Equation

(2.6) is plotted in Figure 2.9(b) where the occurrence rates of individual failure modes

are selected as 10−5, 10−4, 10−3, and 10−4 per hour, respectively.

2.3.3 Risk Function

In this section, quantification of the ground risk due to UAS operations will

be derived as a risk function using the risk of exposure of the ground (PREM) and

the UAS ground impact distributions which are explained from the previous sections.

Derived risk function is the crucial component of the proposed risk assessment frame-

work, and it will later be used as a cost function of the path planning algorithm while

assessing the ground risks over planned trajectories.

There are a few scenarios that a risk condition can arise due to UAS operations.

The obvious one is the crash scenarios of the platform or uncontrolled deviation of

its planned trajectory such that the platform can pose a threat to the ground. These
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(a) Impact domains of failure modes - separately

(b) Combined ground impact probability distribution

Figure 2.9: Failure mode impact domains and combined ground impact probability
distribution

scenarios are categorized as the event-based risk conditions in this thesis. However,

there are other scenarios causing risk conditions that are not event-based such as

privacy intrusions. This category has not been fully defined yet, and it is still an open
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debate. Therefore, the proposed risk assessment framework is modeled for only the

event-based risk conditions, more specifically for the events causing platform impacts

to the ground. Nonetheless, the flexibility of the previously introduced concepts and

below framework can easily allow us to cover the other scenarios as mentioned earlier.

This work utilizes the risk exposure map of the area (PREM) considering UAS failure

modes and their ground impact probability distributions to quantify the risk of UAS

platform impact risk to the ground. First, time parameterized density of the risk

condition over the ground locations is derived in Equation (2.12) along the UAS

trajectory. Then, the total risk of UAS impact along the path is formulated as the

integration of risk densities and event probabilities with respect to time in Equation

(2.14). Finally, the risk function (or cost) is formulated in Equation (2.14) for the

path planner.

Equation (2.8) describes the calculation of uncontrollable UAS flight condition

risk to a location x given that this flight condition is occurred at the current state

of the vehicle, X and environmental conditions, E at time t. Basically, given the

information where and when the UAS failed, impact risk on the ground is estimated

by using the spatial distribution of impact probabilities and the expected value of the

total risk condition at the impact location as

Risk(x | UF (X,E, t)) =

= Pr(Impact to x | UF (X,E, t))× E[Risk of impact to x]

= P (x | UF (X,E, t))
[ ∫

Aplatform

PREM(u | x) du
] (2.8)

where Aplatform is the area on the ground that is affected by the platform impact to

the location x. Impacted area, depending on the collision type, could be the size of
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the platform, a smaller or larger area. Using the above relation, risk of UAS impact

to impact domain defined for the given failure condition can be calculated.

Assuming that a UAS failure mode is modeled by a uniform impact distribution

with a circular impact domain on the ground, the integration of a sample PREM and

ground impact distribution to calculate point impact risks is shown in Figure 2.10

where the plot on the left depicts the PREM and the UAS impact distribution on

the ground. In the right plot, the spatial distribution of the impact risk is sketched.

Figure 2.10: Illustration of a failure event with PREM and impact distribution (left)
and the calculation of the risk of a point on the discritized failure area (right)

As it can be seen, risks on the grids where impact domain intersects with high-

risk regions have higher expected impact risk. Also, note that, at the outside of the

impact domains, there is no risk expected since those regions are not reachable by the

failing vehicle. Furthermore, total corresponding risk for this failure condition can be

obtained by the area integral covering whole impact domain as below

Risk(AFj
| Fj, UF (X,E, t)) =

=

∫
AFj

P (x | Fj, UF (X,E, t))
[ ∫

Aplatform

PREM(u | x) du
]
dx

(2.9)

30



where AFj
is the impact domain area of the jth failure mode Fj.

Including all the failure modes, above equation can be updated using the con-

ditional probability of individual failure modes in Equation (2.10).

Risk(AF | UF (X,E, t)) =

=
∑

Fj∈Fall

P (Fj | UF (X,E, t)) Risk(AFj
| Fj, UF (X,E, t))

(2.10)

where AF is the total impact domain area of all the failure modes.

Equation (2.10) requires the uncontrollable flight condition to be known in ad-

vance to compute the total risk for an impact scenario. On the other hand, the

occurrence rate of the UF condition can be included in the risk calculation as it is

introduced in Equation (2.7). By so, impact risk density to the ground caused by the

presence of a UAS at a specific state and environmental condition can be expressed

as follows

RiskDensity(X,E, t) = λUF (X,E, t) Risk(AF | UF (X,E, t)) (2.11)

The open form of the Equation (2.11), which calculates the total risk due to

UAS failures occurring at the current conditions and time, shown in Equation (2.12).

RiskDensity(X,E, t) =

= λUF (X,E, t)
∑

Fj∈Fall

P (Fj | UF (X,E, t))[∫
AFj

P (x | Fj, UF (X,E, t))
[ ∫

Aplatform

PREM(u | x) du
]
dx

]
(2.12)

Impact risk density due to the current state of the UAS platform and the en-

vironmental conditions is found by multiplying the occurrence rate of uncontrollable
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flight at X(t) and E(t) by the summation of the risk conditions due to individual

failure modes. Individual risk conditions are found by the integral of the conditional

impact probability distribution of UAS given a failure condition occurring at given

conditions multiplied by the nested integral of PREM defined over the platform im-

pact area given the crash location x. Then, this calculation is repeated for each failure

modes. The result of Equation (2.12) is a unit-less rate. However, if the PREM layer

has a quantitative measure for corresponding risk condition, such as the number of

people affected, then it can be used as a unit of the impact risk density. An example

can be given as the number of people hit by a UAS platform per flight hour.

Using the formula derived in Equation (2.12), the risk level of the UAS path

can be computed by integrating the impact risk densities along the trajectory. It is

important to point out that this integration implies that failures are assumed to be

occurring in every time step. Clearly, this assumption is not correct because, after the

first failure case, vehicle cannot proceed the normal operation, and so, the risk that

corresponds to the remaining part of the path, after the occurrence of failure, cannot

be included in total risk. For the correct integration of total risk, the probability of

not having any failure in a given time period should be known until reaching the goal.

The risk level of the UAS path is given in Equation (2.13).

Risk =

∫ TPath

0

P (¬UF (X,E, t))RiskDensity(X,E, t) dt (2.13)

where TPath is the total elapsed time until UAS reaches its destination. P (¬UF (X,E, t))

is the probability that no failure occurred until time t.

The probability term, P (¬UF (X,E, t)), can also be seen as the discounting

factor in future risks. It means that the risk in the near future has a higher weight

(or importance) than the risk in the distant future during the risk calculation.
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If failure modes are assumed to be following the Poisson distribution with con-

stant failure rates, Equation (2.13) can be reconstructed as

Risk =

∫ TPath

0

e−λtRiskDensity(X,E, t) dt (2.14)

where λ =
∑

j λj is the summation of individual failure mode rates following Poisson

distribution. Note that, Poisson distribution with zero event has exponential decay

(P (X(t) = 0) = e−λt((λt)0)/0!).

This assumption implies that the occurrence of failures is constant regardless of

the vehicle state and environmental conditions, which is the oversimplification of the

actual process. Nevertheless, for the practical simulation purposes, this assumption

will be employed in this thesis.

As it can be noticed, Equation (2.13) is basically in the form of performance

index, which is widely known and used in optimal control theory, as below.

J = φ(x(t0), t0) + ψ(x(tf ), tf ) +

∫ tf

0

L(t, x, u) dt

where t0 and tf are the initial and final time of the solution, and the first two terms

represent the cost of the initial and final states of the solution. L(t, x, u) function is

used to account for the cost of following a specific trajectory such as total distance

traveled or the duration. It is selected to be the total risk of following a path with

the term inside the integral in Equation (2.13) to construct the risk function for the

proposed risk assessment.
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CHAPTER 3

PATH PLANNING ALGORITHMS

In this chapter, rapidly-exploring random tree (RRT) path planning algorithms

will be reviewed and explained shortly including the simple heuristics approaches and

a path optimization method that are used during the simulations in Chapter 5.

The path planning is one of the most studied topics by many different fields

from robotics to biochemistry and plenty of other areas by various communities. It

still attracts a considerable amount of attention from researchers seeking answers to

challenging and fundamental questions in path planning. The purpose of the path

planning, in general, can be defined as finding a collision-free route that connects

the initial configuration of the agent to the desired goal configuration, which is a

purely geometric process regardless of dynamic feasibility of the found path. In the

literature, there are numerous categorizations of the path planning algorithms such

as global versus local planners, deterministic versus probabilistic planners, or conven-

tional versus advanced hybrid methods. Victerpaul et al. investigated and compared

the traditional path planning methods such as artificial potential field, graph search,

and road map techniques, and the other advanced planning methods such as genetic

algorithm, neural network and fuzzy logic techniques in their comprehensive survey

study in [21]. On the other hand, Elbanhawi in his review work, [22], scrutinized the

sampling-based probabilistic methods such as probabilistic road maps (PRMs) and

rapidly-exploring random trees (RRTs) used in the robotics field. He concludes that as

the state-of-art methods, sampling-based path planning techniques are more promis-

ing and capable of overcoming some of the challenges that conventional or the other
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algorithms suffer from. Especially for the systems with high dimensional workspace

or the clutter environment, it is shown that the randomized sampling-based algo-

rithms outperform the deterministic approaches such as cell decomposition, Voronoi

diagrams and graph search algorithms (A∗ and Dijkstra) in his work. Various other

works from distinct communities support these findings and improved variations of

these algorithms are introduced later on, [23, 24, 25].

Due to its generality, easiness, and high performance in many applications,

RRT algorithms are adopted in this thesis work to incorporate with the proposed

risk assessment framework. Although the basics of the RRT algorithms and used

heuristics will be covered in this chapter, the reader is strongly suggested to review

the reference studies and previous work to acquire deep knowledge about the path

planning algorithms.

3.1 RRT Algorithms

The rapidly-exploring random tree is a sampling-based efficient search algorithm

that incrementally grows a tree from the initial configuration to the goal configuration.

It is basically a space-filling tree, which covers the configuration space by sampling

random configurations and extending tree branches iteratively. Due to the nature of

the tree structure, RRT is a single-query planner, which means once the solution is

found, there is only one path between initial and goal configuration. The simple RRT

algorithm with a uniformly random sampling strategy is inherently biased towards

unexplored regions (largest Voronoi regions), and it rapidly explores these regions as

its name states.

These algorithms are proven to be probabilistically complete, [26], which is a

weaker notion of completeness in path planning. It means that if a solution exists,

the probability of the algorithm to find it will approach to the one as the runtime
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approaches to the infinity. Some of the advantages of these algorithms can be listed

as the easy implementation in most of the general systems, efficient search in high di-

mensional spaces, and easy representation of the obstacles and dynamical constraints.

These properties make sampling-based methods popular among many researchers for

their rapid implementations. Although having favorable properties, these algorithms

have also several drawbacks. The solution of the planning problem is highly sensitive

to the metric used in the path evaluation and tree construction. Another disadvantage

is the difficulty of predicting the convergence rate of the algorithm due to random

factors. Therefore, the time required to compute a path is generally unknown and can

be affected by the selection of the parameters. Despite such drawbacks, significant

success has been achieved in the practical applications of sampling-based algorithms,

especially with RRTs.

In below sections, starting from the simplest version, four different variations of

RRT algorithms, which are RRT, RRT∗, bi-RRT∗ and multi-RRT∗, will be summa-

rized with their pseudo-codes and sketches.

3.1.1 RRT

The simplest version of the rapidly-exploring random tree algorithms, RRT, is

first introduced by LaValle in [27]. The pseudo-code of the algorithm is given in

Algorithm 1 and Figure 3.1 illustrates how the algorithm proceeds.

RRT starts with initializing the tree at the initial configuration node, which

is often called the root node. Then, inside the main loop, the algorithm proceeds

as follows. Firstly, a random configuration is sampled from the configuration space,

depicted in Figures 3.1(a) and 3.1(c). Secondly, the nearest node on the tree to the

sampled node is found and using the EXTEND function a new tree branch (new con-

figuration) is extended considering the maximum extension step size, Figures 3.1(b)
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Algorithm 1 RRT

Input: qinit, qgoal,maxIter, stepSize, Cfree,Obst, Threshold

Output: Path, Tree

Tree.init(qinit)

1: for i = 1 to maxIter do

2: qrand ← RAND NODE(Cfree)

3: qnearest ← NEAREST NODE(qrand,Tree)

4: qnew ← EXTEND(qnearest, qrand, stepSize)

5: qnew.Parent← qnearest

6: costnew ← costnearest + c(qnearest, qnew)

7: if COLLISION CHECK(qnew,Obst) then

8: Tree.ADD NODE(qnew, costnew, [qnew.Parent, qnew])

9: if Dist(qnew, qgoal) < Threshold then

10: Path← BACKTRACK(qnew,Tree)

11: MultiPath(end+1) = Path (or break)

12: end if

13: end if

14: end for

15: return Path,Tree

and 3.1(d). In Line 5 and 6, the nearest node on the tree is appended as the parent

node of the new configuration, and the cost of this extension step is found. After that,

this newly extended node is checked whether it collides with obstacles, and if it is not

colliding, this node is officially added to the tree as the new node with its parent and

extension cost properties. This procedure repeats until either a new extension gets

inside the threshold radius of the goal configuration, Line 9 and Figure 3.1(e), or the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Illustration of simple RRT algorithm

maximum iterations are reached. If any of the extension reaches the proximity of the

destination, the backtracking function creates the path by tracking the nodes back
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using the parent information until reaching the root node, Line 10 and Figure 3.1(f).

It is important to note in Line 11 that the RRT algorithm can either be stopped

when the first path is found or be continued by saving the found multiple paths until

reaching maximum iteration limit. The difference between these two approach will

be discussed in the path optimization section.

This basic algorithm forms the backbone of the subsequent RRT algorithms.

Therefore, the below subsections regarding the other variations of RRT will only

explain the additions or modifications made on top of this algorithm.

3.1.2 RRT∗

A significant extension to the simple RRT algorithm is introduced with RRT∗ by

Karaman in [23, 28], which adds the asymptotic optimality property to the algorithm

by employing a ”Rewiring” operation. The pseudo-code of the RRT∗ can be seen in

Algorithm 2, where the only difference from the standard RRT is just the addition of

near node calculation and the REWIRE function in Line 8 and 9.

Rewiring operation is defined to be the rewiring of the existing tree branches

(modifying parent relations of the nodes) to achieve the lowest accumulative cost

along the path, and it is applied in every iteration to the specific tree nodes which

are the near nodes of the last extended node. REWIRE function is explained in

Algorithm 3, and the procedure is depicted in Figure 3.2.

Rewiring function takes the newly extended node, qnew, and the near nodes,

Qnear, that are found within the ball of radius, k, of the extended node with their

corresponding extension costs. The ball of radius is calculated according to the Equa-

tion (3.1). (Details can be found in [28, 22])

k = γ
( log(n)

n

) 1
d

(3.1)
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Algorithm 2 RRT∗

Input: qinit, qgoal,maxIter, stepSize, Cfree,Obst, Threshold, R

Output: Path, Tree

Tree.init(qinit)

1: for i = 1 to maxIter do

2: qrand ← RAND NODE(Cfree)

3: qnearest ← NEAREST NODE(qrand,Tree)

4: qnew ← EXTEND(qnearest, qrand, stepSize)

5: qnew.Parent← qnearest

6: costnew ← costnearest + c(qnearest, qnew)

7: if COLLISION CHECK(qnew,Obst) then

8: [Qnear, COSTnear]← NEAR NODES(qnew,Tree, R)

9: Tree← REWIRE(qnew, costnew, Qnear, COSTnear,Tree)

10: if Dist(qnew, qgoal) < Threshold then

11: Path← BACKTRACK(qnew,Tree)

12: MultiPath(end+1) = Path (or break)

13: end if

14: end if

15: end for

16: return Path,Tree

Where γ is a distance parameter, n is the number of current nodes in the tree, and

the d is the number of dimensions of the configuration space. This formula implies

that as the tree grows, the radius of near node search is logarithmically decreasing.

In addition, the selection of the γ is affected by the path planning environment and

the cost metric.
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Algorithm 3 REWIRE

Input: qnew, costnew, Qnear, COSTnear

Output: Tree

1: cmin ← costnew

2: for qnear ∈ Qnear do

3: cnew ← costnear + c(qnear, qnew)

4: if cnew < cmin then

5: qnew.Parent← qnear

6: cmin ← cnew

7: end if

8: end for

9: Tree.ADD NODE(qnew, cmin, [qnew.Parent, qnew])

10: for qnear ∈ Qnear do

11: cminnear ← costnear

12: cnear ← costnew + c(qnew, qnear)

13: if cnear < cminnear then

14: qnear.Parent← qnew

15: cminnear ← cnear

16: Tree.MODIFY NODE(qnear, cminnear , [qnear.Parent, qnear])

17: UpdateChildrenNodeCosts(qnear,Tree)

18: end if

19: end for

20: return Tree

Rewiring consists of two steps. In the first step, Line 1-9, the best parent among

the near nodes to connect the new node is searched according to their extension costs

41



(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Illustration of rewiring operation of RRT∗ algorithm

compared to the current parent of the new node, which was the nearest node. If there

is any node that connects to the qnew with the lower accumulated cost, the parent of
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the new node is updated to corresponding near node as depicted in Figures 3.2(d)-

3.2(e). In the second step, Line 10-20, the new node itself is considered whether

it would be a better parent or not for each one of the near nodes separately. This

basically means that if traveling along the new node to reach a near node has lower

accumulated cost than the original accumulated cost of that near node, the previous

parent of that near node is removed and the new node is assigned to be the parent for

that near node as illustrated in Figure 3.2(f), where the parent of qnear1 is modified.

The rewiring operation applied in every iteration ensures the locally optimal

connections between nodes and incremental optimization in global. As in the case

of probabilistically completeness, these incremental optimizations satisfies the global

optimality as the iterations approach to the infinity. However, it is also important to

note that the selection of the near node calculation parameters has a direct effect on

the path solution and the complexity.

3.1.3 Bi-RRT∗

Another variation of the RRT∗ algorithm with two bidirectional trees, Bi-RRT∗,

is introduced by Jordan and Perez in their work [24]. The algorithm is the same as

the RRT∗ except for having two different trees, forward and backward trees. The

forward tree is initialized at the initial configuration, whereas the backward tree

grows from the goal configuration. Each successful connection between these two

trees forms a path that connects the initial configuration to the goal configuration.

The main advantage of having two trees is the elimination of the need to reach the

proximity of the goal configuration to connect. Instead, every node on both trees

can be a candidate for the connection, which increases the efficiency of the search.

The pseudo-code of Bi-RRT∗ is given in Algorithm 4, and Figure 3.3 illustrates the

connection of bidirectional trees.
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Algorithm 4 Bi-RRT∗

Input: qinit, qgoal,maxIter, stepSize, Cfree,Obst, Threshold, R

Output: Path, ForwardTree, BackwardTree

ForwardTree.init(qinit)

BackwardTree.init(qgoal)

1: for i = 1 to maxIter do

2: qtarget ← CHOOSE TARGET(Cfree, BackwardTree)

3: qnearest ← NEAREST NODE(qtarget,ForwardTree)

4: qnew ← EXTEND FORWARD(qnearest, qtarget, stepSize)

5: qnew.Parent← qnearest

6: costnew ← costnearest + c(qnearest, qnew)

7: if COLLISION CHECK(qnew,Obst) then

8: [Qnear, COSTnear]← NEAR NODES(qnew,ForwardTree, R)

9: ForwardTree← REWIRE FORWARD(qnew, costnew, Qnear, COSTnear,ForwardTree)

10: if CONNECTION CHECK((qnew, qgoal,ForwardTree,BackwardTree, Threshold)

then

11: Path← BIDIRECTIONAL BACKTRACK(qnew,ForwardTree,BackwardTree)

12: MultiPath(end+1) = Path (or break)

13: end if

14: end if

15: Repeat the lines 2-14 for the BackwardTree using BACKWARD Functions

16: end for

17: return Path,ForwardTree,BackwardTree

In the algorithm, FORWARD and BACKWARD notations are used to identify

the functions specific to the forward and backward trees in case that the computations
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(a) (b)

Figure 3.3: Illustration of the connection between trees in Bi-RRT∗ algorithm

might differ for each one. The difference between the RRT∗ and Bi-RRT∗ algorithms,

as previously stated, is the connection between both tree branches. To construct the

path from the connection nodes, bidirectional backtracking function is used in Line

11. This function backtracks the forward and backward tree separately until reaching

the initial node and the goal node respectively, and then, creates the path using the

parent node relations along the trees and propagating the accumulated cost along the

path.

In addition, CHOOSE TARGET function, in Line 2, can be used to guide the

extension of the trees toward each other by biasing the random sampling to generate

sample nodes on the reverse tree. This procedure will be explained later in the

heuristics subsection.

3.1.4 Multi-RRT∗

Multi-RRT∗ is an extension to the Bi-RRT∗ which can employ more than two

bidirectional trees to find the path solutions, as implemented in [25, 29]. The main

difference is that Multi-RRT∗ can have multiple backward trees stem from different

goal configurations, while the Bi-RRT∗ has only one backward tree. Each one of
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the forward and backward tree pairs in Multi-RRT∗ algorithm can be considered as

separate Bi-RRT∗s which means the backward trees are allowed to connect only the

forward tree, not to each other as illustrated in Figure 3.4. The advantages of having

multiple pairs of bidirectional trees are the multiple goal selection, multi-objective

planning and fast coverage of the configuration space. However, there are a couple

of drawbacks as well such as the increased complexity in time and space, and inef-

ficient space filling in overlapping backward tree regions. Nevertheless, its practical

implementations show that these algorithms can efficiently solve multi-objective op-

timization problems in high-dimensional spaces and highly clustered environments.

The pseudo-code of the Multi-RRT∗ is given in Algorithm 5.

(a) (b)

Figure 3.4: Illustration of multi-tree RRT∗ algorithm

In this algorithm, bidirectional tree extensions occur similarly, except that in

Line 15-17, multiple backward trees are extended in a loop during each iteration.
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Algorithm 5 Multi-RRT∗

Input: qinit, Qgoal,maxIter, stepSize, Cfree,Obst, Threshold, R

Output: Path, ForwardTree, BackwardTrees

ForwardTree.init(qinit), BackwardTrees.init(Qgoal)

1: for i = 1 to maxIter do

2: qtarget ← CHOOSE TARGET(Cfree, BackwardTrees)

3: qnearest ← NEAREST NODE(qtarget,ForwardTree)

4: qnew ← EXTEND FORWARD(qnearest, qtarget, stepSize)

5: qnew.Parent← qnearest

6: costnew ← costnearest + c(qnearest, qnew)

7: if COLLISION CHECK(qnew,Obst) then

8: [Qnear, COSTnear]← NEAR NODES(qnew,ForwardTree, R)

9: ForwardTree← REWIRE FORWARD(qnew, costnew, Qnear, COSTnear,ForwardTree)

10: if CONNECTION CHECK((qnew, Qgoal,ForwardTree,BackwardTrees, Threshold)

then

11: Path← BIDIRECTIONAL BACKTRACK(qnew,ForwardTree,BackwardTrees)

12: MultiPath(end+1) = Path (or break)

13: end if

14: end if

15: for k = 1 to # of BackwardTrees do

16: Repeat the lines 2-14 for each BackwardTree using BACKWARD Functions

17: end for

18: end for

19: return Path,ForwardTree,BackwardTree
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3.2 Heuristics

In this section, three simple heuristics, which are goal biasing, transition test,

and cost guided sample generation, that are used to increase the efficiency of the RRT

algorithms are explained.

Heuristics are defined to be the basic notions that help finding solutions by

making some assumptions about the solution environment and search process itself.

However, these assumptions may not hold for any arbitrary planning process or sys-

tems, which is common in practice. Therefore, a heuristic may perform poorly if the

underlying process does not satisfy the assumptions made. A standard approach to

overcome this problem is to use the combination of different heuristics that perform

well under varying conditions. In this thesis, sampling bias and rejection sampling

heuristics will be combined and used in the path planning scenarios.

3.2.1 Goal Bias

Goal bias heuristic is one of the simplest sampling methods used in RRT al-

gorithms. The basic idea is to deliberately guide the generation of samples near or

at the goal configuration itself. This is usually achieved by employing a probabil-

ity threshold to switch between random sampling and the goal biased samples. The

sampling strategy is given in Algorithm 6.

The advantage of the goal biased samples is the generation of more samples

near the goal configuration, which can yield a path solution potentially with a higher

chance. However, this also means that this approach limits the exploration of the

whole configuration space, and so, the other potential solutions might have been

missed. This problem is defined as the exploration-exploitation trade-off. The selec-

tion of the goal bias, denoted by Pgoal, determines how greedy the search will be. In

usual practices, goal bias probability is selected around 0.1.
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Algorithm 6 GOAL BIAS

Input: qgoal, Cfree, Pgoal

Output: qrand

1: p← randomNumber([01])

2: if p < Pgoal then

3: return qrand ← qgoal

4: else

5: return qrand ← RAND NODE(Cfree)

6: end if

3.2.2 Transition Test

Transition test is a sampling rejection heuristic that is used to discard some of

the generated samples according to a measure. The idea behind the test is that if

a generated sample requires a transition from a low-cost node to a high-cost node

(uphill), a rejection test is applied, and depending on how steep the cost transition

is, test is either passed or failed which will determine whether to discard the sample

or not. If the transition occurs from a high-cost node to a low-cost (downhill), the

test is always passed. It is important to note here that the rejection measure on

the test is an adaptive parameter. The adaptation law is designed such that after

every extension trial along the uphill direction, if the test is passed, the rejection

threshold is incrementally decreased to guide the search toward lower-cost regions,

and if the test is failed, the rejection threshold is increased to relax the limits allowing

the exploration on the high-cost regions. In basic words, the transition test guides

the search toward lower cost regions first as much as possible by adaptively changing

its rejection condition. The implementation details can be seen in these reference

studies [25, 29]. The pseudo-code of the transition test is given in Algorithm 7.
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Algorithm 7 TransitionTest

Input: Tree, T, Trate, costnew, costparent

Output: TestResult

1: if costnew ≥ costparent then

2: if exp(−(costnew − costparent)/T ) > 0.5 then

3: T ← T/2(costnew−costparent)/costRange(Tree)

4: return TestResult = True

5: else

6: T ← T · 2Trate

7: return TestResult = False

8: end if

9: else

10: return TestResult = True

11: end if

In this algorithm, T is called the Temperature that is used to calculate the

rejection threshold in Line 2, and it is an adaptive parameter where the adaptation

laws are given in Line 3 and 6. Trate is a constant parameter that determines how

fast the Temperature should be restored (increased).

3.2.3 PREM Guided Sample Generation

As a last heuristic that will be used in this work, PREM guided sample genera-

tion is explained. In this method, the random sample configurations are drawn from

a specific distribution, where the risk exposure distribution (PREM) is selected in

this case. Remember that the higher density in the PREM distribution corresponds

to the higher exposures and potentially the higher cost nodes. To minimize the gen-
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eration of the high-cost nodes, which will ensure the less costly paths, the samples

with the low risk exposures should be generated. Therefore, the inverse relation of

PREM distribution will be used to generate sample nodes.

The purpose of this sampling method is to reduce the tree growth to high-

cost regions by simply not selecting any samples on them. However, one can notice

that even though the samples are not drawn from the high cost regions, during the

early extension process of the branches, nodes can be extended into the high-cost

regions. This is simply due to the fact that if the randomly sampled configuration is

far away from the nearest tree node, the simple RRT extension process can generate

intermediate configuration where may coincide with a high-cost region between the

nearest node and the sampled node. On the other hand, as the tree grows larger

and covers most of the space, the intended strategy becomes more accurate since

the distance between the nearest and sampled node are shorter. Therefore, PREM

guided sample generation heuristic will be used along with the other heuristics. The

generation of PREM guided samples is illustrated in Figure 3.5(a). The first figure

is the contour plot of the underlying PREM, and the second figure demonstrates the

sample nodes drawn from the inverse PREM distribution.

3.3 Path Optimization

Randomized path planners in general usually tend to yield non-smooth paths

with zigzags and jerky path segments due to random sampling and extension pro-

cesses since the dynamic (and sometimes kinematic) constraints of the vehicle are not

considered by the majority of these path planning algorithms, except for the kino-

dynamic planners. For this reason, after the path solution is found, it is common to

use a path optimization technique to smooth out the path further. It is important

to note here that various measures can quantify the smoothness of the path. Some
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(a) PREM contour map

(b) PREM guided samples

Figure 3.5: Illustration of PREM guided sample node generation
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of these measures are the Euclidean distance, time, or the other cost metrics. The

combination of these measures can be incorporated as well. In this thesis, the con-

sideration on the path solution is the total risk accumulated along the path. Thus,

path optimization is expected to smooth the current path segments to yield even less

risky paths if possible.

Remembering the RRT∗ algorithm, the rewiring operation itself is introduced

as an optimization method, which locally optimizes the tree branches to yield less

costly path segments, and by so an optimized path is obtained as the tree covers the

configuration space. This brings us to ask the question of whether the rewiring tech-

nique can also be used more directly to optimize the path solution before generating

enough samples to cover the whole configuration space.

In this thesis, the rewiring technique (∗ operation) is proposed to be used as

a path optimization method. This is achieved by utilizing the exploration and ex-

ploitation steps according to the predefined conditions. Algorithm 8 describes the

high-level iteration steps during the planning process.

Algorithm 8 Exploration-Exploitation Relation During Path Planning

1: StartExploitation = False, PathFound = False

2: for i to iterMax do

3: [MultiPath,PathFound, StartExploitation]← RRT∗ Exploration Step

4: if PathFound ∧ StartExploitation then

5: Path← SELECT PATH(MultiPath)

6: OptimizedPath← PATH OPTIMIZATION(Path)

7: end if

8: end for

9: return OptimizedPath
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In this algorithm, RRT∗ Exploration step propagates the tree extension in every

iteration as described in the previous sections. However, not only it yields the path

solution if any found, but it also provides the two conditions, PathFound and Start-

Exploitation, that determine whether the exploitation on the current solutions should

start. The condition of PathFound is simply a boolean parameter to indicate that

the exploration step has found a new path. On the other hand, StartExploitation

represents the maturity of the conditions for exploitation to take place for path opti-

mization. Various strategies can be followed to decide when to start the exploitation

step. The simplest strategy would be to utilize it every time a new path found, which

might not be an efficient approach, though.

If the conditions for the exploitation are met, in Line 4, two steps define the

path optimization. In the first step, from potentially the multiple solutions found so

far, a path that should be optimized has to be selected. Again, this selection can

be done according to numerous strategies. One way is always to select the best path

with the lowest cost, which may eliminate some of the candidates that can potentially

yield the best solution. Another strategy would be to develop a comparison metric

that can approximately quantify how much a path can be optimized more such that

the maximum gain from the path optimization can be achieved by the selection of

the highest rewarding path comparing the multiple solutions. In the second step,

rewiring operation of the RRT∗ algorithm is utilized for a fixed number of iteration

so that in each iteration it locally optimizes the path segments and by so at the end

of the iterations global optimization is asymptotically achieved. In this algorithm,

the local rewiring operations can follow a randomized approach by the selection of

random nodes along to path and the random configuration nodes generated near the

selected nodes to utilize the local optimizations among these nodes.
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CHAPTER 4

DERIVATION OF UTILITY (COST) FUNCTIONAL FOR THE PATH

PLANNING OF STAARS OPERATIONS

The utility approach is a common practice that is studied in various multi-

objective optimization problems. The main difference between the cost and utility

approaches, which both are common in path planning problems, is that the opti-

mization requires the minimization of strictly the negative attribute in the former

approach, whereas the latter one uses the maximization techniques on a more gen-

eral attribute set. In essence, the utility theory provides more flexible approaches in

general.

In this chapter, a generic utility functional that will be utilized by the path

planner as an inverse cost function to quantify the goodness of the path segments

and the paths found is derived. The derived functional is used during the extension

of the tree branches and the optimization of the local path segments. Basically,

anytime when a decision requires the quality of the node extension or the comparison

between different path segments or paths, the quantification is being made by this

utility functional.

The proposed utility approach is essentially the critical part where all the com-

ponents of the risk assessment framework from the previous chapters are embedded in

a generic formulation with high-level terms that will also consider the mission objec-

tives, benefits or advantages of the UAS operations along with the risks incurred by

these operations. Therefore, both positive and negative aspects of the UAS operations

are taken into account during the path planning by this approach.
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The derivation of the proposed utility functional is described in two steps. In

the first step, the derivation of the path utility function in a path integral form, which

will be used by the path planner, is explained by using point (node) utilities that is

similar to the derivation of the risk function. In the second step, the structure of the

point utilities and the mathematical formulation to construct them are explained.

4.1 Path Utility Function

Path utility is defined as the cumulative utility obtained along the trajectory of

a UAS mission and is formulated with a path integral in Equation (4.1).

U(τ0..T ) =

∫ T

0

P (Success|τ0..t)λU(τt|τ0..t) dt (4.1)

The path integral is composed of two key factors. The first one is the success

probability of the platform to reach the current point τt along its planned trajectory

τ0..t, and the other factor is the expected rate of reward/payoff, λU , at the point given

the current trajectory. In this integration, the first term plays the role of a weighting

factor for the utility contributions of the point to the cumulative path utility based

on the likelihood that this point will actually be reached along the trajectory. This

weighting also implicitly states that if the vehicle does not succeed to reach a point,

either due to a catastrophic failure or the termination of the mission, the utilities of

the rest of the trajectory should not be considered in the path utility.

The success probability of the platform depends on numerous factors in a real

UAS scenario which can be analyzed using many different approaches. In this work, a

general terminology is used as the events that can happen on or around the platform,

and once happened, can impact the success of the platform. These events are catego-

rized as catastrophic events and non-catastrophic events. In the case of a catastrophic
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event, the platform undergoes an uncontrollable regime, resulting in the termination

of the mission with a potential impact to the ground. In a non-catastrophic event, on

the other hand, the platform is assumed to be controllable and can still continue its

mission. While other events, such as partially controllable failures can occur in the

real world and can be integrated into the framework, we will here concentrate on only

these two event types, resulting in the situation where only the catastrophic events

can impact the success of the platform by causing its complete failure. Under this

assumption, the success probability of the platform to reach the current trajectory

point is equal to the probability of not having encountered any catastrophic failures,

Fc, until this point. Using this fact, (4.1) becomes (4.2)

U(τ0..T ) =

∫ T

0

P (¬Fc|τ0..t)λU(τt|τ0..t) dt (4.2)

The reward rate λU represents the expected incremental utility contribution

of the events happening at trajectory location τt, and can be defined for the two

categories of events considered here, which are events that can only happen once

or that can happen multiple times over the trajectory. For the former category,

the underlying reward from an event can be obtained only at a given point and on

following occurrences to the same point, the same event does no longer contribute to

the path utility. This type of events may model the utility of reaching an intermediate

goal location, or having a permanent component failure. The reward rate, λU , for

these one-time events can be expressed as follows:

λU(τt|τ0..t) =
∑

i∈Events

P (¬ei|τ0..t)λei(τt|τ0..t)Ui(τt|τ0..t)wi (4.3)

where τt is the trajectory node at which the event ei happens, and wi is the relative

weighting factor of the utility contribution of the ith event at the same node. It is
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important to note here that for catastrophic events, the term P (¬ei|τ0..t) moves out

of the sum and becomes part of the probability that the trajectory is still active,

P (¬Fc|τ0..t), in Equation (4.2) since occurrence of a catastrophic event terminates

any future utility of any other event.

The reward rate for events that may happen multiple times at a trajectory

location is modeled with a rate parameter of the event, defined in unit time, as below.

Non-critical, temporary platform or component failure events, as well as general costs

incurred along the trajectory, can be modeled by this approach.

λU(τt|τ0..t) =
∑

i∈Events

λei(τt|τ0..t)Ui(τt|τ0..t)wi (4.4)

where λei(τt|τ0..t) is the expected number of times per time unit that event ei is

happening at point τt given the trajectory.

In the case of events that are guaranteed to occur at a particular point along the

trajectory such as, for example, the reaching of a delivery location or events caused

directly by control actions, the event rate, λei(τt|τ0..t), can be expressed (with a slight

abuse of notation) by a Dirac delta function as λei(τt|τ0..t) = δ(τt − τtei |τ0..t). This

allows the incorporation of mission goals associated with specific actions or locations.

For a mission having a mixture of these events, the expected reward rate term

in (4.2) becomes the sum of (4.3) and (4.4) with corresponding events.

With this approach, it is proposed to facilitate a task-level decision-making ca-

pability through the maximization of a carefully constructed path utility function

that includes possible task-centric events and utility components such as reaching a

destination, accomplishing a task component, violating safety or regulatory consid-

erations, or failure of the platform. According to the objectives of an assigned task

and the other considerations like ground safety, the proposed utility approach allows
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to consider and generate solutions other than purely completing the mission. An

example for this could be a ”stay on the ground” decision of a UAS, which might

yield the highest utility, for a package delivery mission in adversarial weather condi-

tions. With its bare interpretation, in the proposed framework, the final decision is

to choose the highest utility path which can be extended to highly complex scenarios

with a detailed analysis of the events that can happen during a UAS mission.

4.2 Calculation of Point Utilities

Rewards/Utility changes obtained at a specific point are calculated according

to the events happening on the platform that affect the ground or the mission pa-

rameters. These events are defined to capture the mission objectives and the safety

concerns. For an illustration, the event of taking aerial pictures of an area at a tra-

jectory point has an effect on the mission and on the ground, which yields the utility

of that point. In this case, for example, taking pictures yields a benefit in terms of

obtaining the pictures but also incurs a cost in terms of the potential invasion of pri-

vacy of persons on the ground. Another example is that the event of a catastrophic

failure on the platform at a trajectory point has also an impact on the ground in

terms of potential injury and property damage caused by the impact on the ground

with an associated utility.

Calculation of the node utility can be divided in two stages. The first stage is

to find the available utility at a location on the ground given the previous trajectory

and the point at which the event happened. In the second stage, the utilities for

ground locations are integrated over the attainable area impacted by the event.

The first stage of the calculation is shown in Equation (4.5). This term is the

spatial map of the utility for the given event.
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Ui,τ,t(X ) =

∫
Aeff

M(x|τ0..t, τtei ,X ) dx (4.5)

Here X is the location on the ground where the utility is computed, and Aeff is the

effective area that the utility calculation at X depends on. In case of an impact sce-

nario, this area can be approximated by the lethal area affected by the UAS platform

impact at a location X . M is the spatial mapping (distribution) of the available

utility resulted from the event ei. Also, the notation for the utility of the location X

is selected as Ui,τ,t(X ) = Ui(X|τ0..t, τt = τtei ).

In the second stage of the point utility calculation, the expected point utility is

computed by the integration of the location-dependent utilities on the ground weighed

by the probability distribution of the attainability of ground locations for an event ei

happening at the current trajectory point, where the integration is carried out over

the attainable area Aei :

Ui(τt|τ0..t) =

∫
Aei

p(X|τ0..t, τtei )Ui,τ,t(X ) dX (4.6)

p(X|τ0..t, τtei ) here is the probability distribution of attainability of the locations, X ,

on the ground for an event happening at the current trajectory point, and it represents

the likelihood of obtaining the underlying utility at each location. It is important to

note here that the attainability of a ground location concept is used in a wide sense

here. For some events such as catastrophic failures, it can be defined as the impact

probability at a location, or for the event of taking aerial pictures of an area, it could

be represented as the success probability of covering a location on the ground in the

picture.

The steps for the construction of (4.5) and the integration of (4.6) is described in

more detail in [30] for the risk of exposure of the ground to the failing UAS platform.

In this previous work it was assumed that the previous trajectory does not affect
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the risk of the current point and the underlying risk exposure distribution is static.

Under this assumption, the risk associated with the trajectory point where the failure

happened is given in the equation below:

RF (τt) =

∫
AF

p(Ximp|τt = τtF )
[ ∫

AUAS

PREM(u|Ximp) du
]
dXimp (4.7)

where the first term in the integral is the UAS impact location distribution on the

ground given the trajectory node of failure and the second term computes the value

of total risk exposures given the impacted location by the integral of the distribution

of the risk of exposure on the ground, PREM , over the effected region approximated

by the vehicle area, AUAS.

Note that the formulation of proposed utility function is flexible enough to

accommodate most commonly used cost functions in path planning such as distance

traveled or total time by treating them as an event happening every instance of time

and assigning an appropriate utility. To illustrate this, time can be included using

Equation (4.4) by setting the first term (the event rate) to 1 and the utility term to

−1, which integrates to the elapsed time along the trajectory as a negative utility

component. Similarly, for the distance traveled case, one can assign the negative speed

of the vehicle as the reward rate at a point to account for total distance traveled in

the utility optimization of the path.
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CHAPTER 5

SIMULATION OF SIMPLE STAARS SCENARIOS

In this chapter, the simple UAS scenarios will be demonstrated using the pro-

posed risk assessment framework and the utility-based path planning approach intro-

duced in the previous chapters. Before getting into the scenario descriptions and the

results, the simulation environment section summarizes the assumptions made for the

scenario implementations including the PREM construction from the Geographical

Information System (GIS) database as a priori data, the utility formulations for the

path planning of UAS scenarios according to the assumptions and the path planning

algorithm to be used in the simulations.

5.1 Simulation Environment

In the simulation scenarios of this thesis, the construction of the PREM, as

formulated in Equation (2.3), is explained only for impact-related risk exposures.

Exposure of buildings to the UAS is modeled within the PREM concept using the

building footprints in a specific area, taken from geographical information system

(GIS) database. By the help of aerial and satellite imagery, building footprint data

are often uploaded to the GIS database by various efforts, [31], where the footprints

are represented by the polygonal shapes using the corner locations of each building.

Using these polygonal shapes, the distribution of the risk exposure is modeled by

the mixture of Gaussian probability density functions (PDFs) such that the mean of

each PDF represents the concentration point (center location) of the risk exposure

and the standard deviation of the PDF represents how far the exposure spreads out
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(covariance, i.e. modeling parameter). The center location of each PDF is chosen to

be the centroid of corresponding polygon and the covariance is computed from the

corner points and the center location. The construction of PREM with a weighted

sum of Gaussian PDFs is shown in Equation (5.1).

PREM =
Num. of PDF∑

j=1

π(Sj) N (µj, σj) (5.1)

where Sj is the individual buildings (PDFs), µj = [lxj lyj ]
T and N (µj, σj) is the

bivariate normal distribution. Also, π represents the relative weights of each Sj with

the condition of
∑
j

π(Sj) = 1. Relative weights of the building footprints are assumed

to be related with the individual polygonal area and the total area, and modeled as

the fractions (π(Sj) = Area(Sj)/
∑
j

Area(Sj)).

For the demonstration of the proposed risk assessment framework with the

utility-based path planning approach, the path utility function is constructed for the

simple UAS package delivery scenarios where the events that can happen during the

mission are catastrophic failure events, delivering the package to the designated loca-

tion, landing on another warehouse/station to leave the package there or to land/stay

at the take-off location. In these scenarios, the catastrophic events on the vehicle are

modeled as Poisson processes having constant failure rates using (4.4) and the other

events as the single node events using (4.3). Node utilities for the corresponding

events are presumed to depend only on the location of the current node and the un-

derlying utility rate is independent of time or the previous trajectory. With these

assumptions, the path utility function becomes as follows:

U(τ0..T ) =

∫ T

0

e−λtλU(τt) dt (5.2)
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One advantage of using Poisson process failure models is their independent and

stationary memoryless properties. Although time is known for each node on the

forward tree during extension, time of the nodes on the backward trees is relative

to the unknown end time and it runs backward in time. Using the independent

and stationary increments of the Poisson process, the relative increments of the path

utilities can be computed over the backward trajectories and the complete path utility

can be found when connecting the forward to the backward branch using a simple

operation. This also allows us to use rewiring operations efficiently on the backward

trees.

It can also be noticed from Equation (5.2) that the utilities are not simply

additive along the path. Instead, the exponential factor in the first term, (e−λt) as a

success probability of the next path segment, implies the exponential relation between

the consecutive node utilities during the integration.

Path utility propagation for the backward tree is formulated in (5.3). Trajectory

nodes on a backward tree are given as (τT , ..., τtk+1
, τtk , ...) starting from a goal node

τT in backward order.

U(τT..tk) =

∫ tk+1

tk

e−λ(t−tk)λU(τt)dt+ e−λ∆tkU(τT..tk+1
) (5.3)

where ∆tk = tk+1 − tk is the time increment while extending a backward branch.

In this function, the integral term assumes that time starts from node τtk and it

computes the incremental utility of the path segment (τtk , τtk+1
). The second term in

the function adds the cumulative incremental utilities until the previous node τtk+1

by multiplying them with the incremental success probability during this extension.
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Using the above functions, total path utility calculation when both trees are

connected is given below.

U(τ0..T ) = U(τ0..t) + e−λtU(τT..t) (5.4)

Assuming both trees are connected at node τt, the first term computes the path utility

accumulated by the forward tree extension until the connection, and the second term

propagates the time on the backward tree nodes by adding the connection time t and

the resulting utility accumulation over the backward tree, discounted by the likelihood

that the connection point is reached.

5.1.1 Implementation Details

In the proposed utility-based approach to the path and task planning problem

of UAS operations, a modified multi-tree variant of T-RRT∗ algorithms [28, 25, 29] is

used as an optimization technique to maximize the proposed path utility function over

the planned trajectories. The planning algorithm grows a forward tree and multiple

backward trees (one from each potential goal - i.e. allowed path end location) by

iteratively sampling from the configuration space as explained in Chapter 3. The

sampling uses the goal bias, transition test and PREM guided sample generation

heuristics to drive the extension of trees faster to the goal configurations and also to

efficiently explore the high utility regions first. The pseudo-code of the algorithm is

given in Algorithm 9.

Provided with initial and goal configurations, goal connection biases of the for-

ward and backward trees, and the connection threshold, the algorithm starts with

initializing the forward tree Tfw from the initial configuration xinit and the backward

trees Tbw from the goal configurations Xgoal, setting the path parameters to the empty

set. In an iterative loop, first, the forward tree extends a branch towards a random
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Algorithm 9 Multi-T-RRT∗

Input: xinit,Xgoal, Pgoal, Pconnect, C, thrs

Output: Epath,Upath, σpath, Tfwd, Tbwd

Initialize(xinit,Xgoal, Tfw, Tbw, Epath,Upath, σpath)

1: for i = 1 to iterMax do

2: qrand ← ChooseTarget(Xgoal, Pgoal, C)

3: Tfw ← Extend&Rewire Fwd(qrand, Tfw)

4: [S,NIDs, TIDs]← ConnectTrees(Tfw, Tbw, thrs)

5: if S = True then

6: [E,U , σ]← CreatePath(NIDs, TIDs, Tfw, Tbw)

7: if U > Upath then

8: [Epath,Upath, σpath]← [E,U , σ]

9: end if

10: end if

11: Qrand ← ChooseTarget([xinit, qrand], Pconnect, C)

12: Tbw ← Extend&Rewire Bwd(Qrand, Tbw)

13: [S,NIDs, TIDs]← ConnectTrees(Tfw, Tbw, thrs)

14: if S = True then

15: [E,U , σ]← CreatePath(NIDs, TIDs, Tfw, Tbw)

16: if U > Upath then

17: [Epath,Upath, σpath]← [E,U , σ]

18: end if

19: end if

20: end for

21: return Epath,Upath, σpath, Tfw, Tbw
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configuration chosen from the C space according to the goal bias and PREM guided

sampling heuristics, if the extension passes the transition test shown in Algorithm 10.

Algorithm 10 Extend&Rewire Fwd

Input: qrand, Tfw

Output: Tfwd

1: qnearest ← NearestNode(qrand, Tfw)

2: qnew ← steer(qrand, qnearest)

3: U(qnew)← NodeUtility(qnew)

4: if TransitionTest(Tfw,U(qnew),U(qnearest)) then

5: U(σnew)← PathUtility Fwd(qnew, σnearest)

6: addNode(Tfw, [qnew, qnearest],U(qnew),U(σnew))

7: Qnear ← NearNeighbors(Tfw, qnew)

8: Tfw ← Rewire Fwd(qnew, Qnear, Tfw)

9: end if

10: return Tfw

If the extension is successful, the extended node and the edge are added to the

tree with its accumulated link utility. After that, the near neighbor search function

finds the neighbor nodes around qnew within a distance as in the RRT∗ algorithm

[28]. The rewiring operation is performed between the near neighbors, Qnear, and the

extended node qnew, and the tree is maintained.

It should be noted here that some of the functions denoted with Fwd or Bwd

are designated specifically for the forward or backward trees. The reason is that since

the path utility function developed in Equation (4.2) depends on the trajectory from

root node τ0 to current node and the backward trees have no information about the
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Algorithm 11 CreatePath

Input: NIDs, TIDs, Tfw, Tbw

Output: Epath,Upath, σpath

1: Tback ← IdentifyBackwardTree(TIDs, Tbw)

2: [E,U , σ]path ← biBackTrack(Tfw, Tback, NIDs)

3: return Epath,Upath, σpath

forward trajectory until they are connected, the calculation and the accumulation of

path utilities are different for the forward and backward trees.

The ConnectTrees function checks the possible connections between the for-

ward tree and the backward trees, and if there are any, it returns with the IDs of

the connected nodes and their corresponding tree identifiers, and with a boolean in-

dicating the connection success. If the connection is successful, a path is created by

backtracking from the connection nodes on the forward tree through the connected

backward tree. According to the calculated utility of the path created, if it surpasses

the best path found so far, the best path and its utility are updated to the new one.

The extension, rewiring, and the connection check processes are repeated for

the backward trees individually in the same iteration, except with a slightly changed

path utility calculation as mentioned above. If any higher utility path is found during

the extension of the backward trees, the best path is again updated, and the whole

iteration is repeated until the termination condition (in this case a maximum iteration

count) is reached.

The scenarios include four independent catastrophic failure events, denoted with

F1, F2, F3 and F4 with the constant failure occurrence rates, λ, and elliptical impact

domains represented by the major and minor axis, listed in Table 5.1.
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Table 5.1: Failure Mode Parameters

Failure Modes Failure Rates Impact Domain Shape Orientation
F1 10−5 per hour Ellipse (50 m x 33 m) ∠ 0◦

F2 10−4 per hour Ellipse (37 m x 21 m) ∠ -30◦

F3 10−3 per hour Ellipse (33 m x 16 m) ∠ 0◦

F4 10−4 per hour Ellipse (37 m x 21 m) ∠ 30◦

Although it may not be the actual case, to demonstrate the concepts, the ground

impact location distributions of the failure events are assumed to follow the truncated

bivariate normal distributions where the covariance vectors are found to make the

effective region of the impact distributions (3σ) fits inside the corresponding elliptical

regions. In addition, the mean of the distribution is shifted along the major axis by

the quarter length to accommodate the inertial effect of the motion on the impact

locations. Figure 5.1 shows the elliptical impact regions and the weighted sum of the

impact location distributions according to the Equation (2.5).

(a) Impact domains of failure modes - sepa-
rately

(b) Combined ground impact probability dis-
tribution

Figure 5.1: Failure mode impact domains and combined ground impact probability
distribution

As mentioned before, these assumptions are arbitrarily selected. However, given

a more detailed and accurate analysis of the ground impact distributions for individual
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failure events, the proposed approach can easily be adapted to represent more realistic

scenarios.

Parameters required for the path planning algorithm are listed in Table 5.2 for

all scenarios. The maximum iteration number for the run is determined to be 15000.

However, the longer the runtime is, the more optimized solution can be obtained

due to asymptotical optimality of the RRT∗ algorithms. The speed of the vehicle

is chosen to be 40 km/h with a maximum step size of 12 meters. Goal bias of 0.01

for exploring the regions near the goal position and the connection bias of 0.02 for

connecting backward trees to the forward tree are used.

Table 5.2: RRT Parameters for Simulations

V 40 km/h Step Size 12 m Pgoal 0.01
IterMax 15000 Threshold 0.2× StepSize Pconnect 0.02

5.2 Scenarios

Two different UAS package delivery scenarios are demonstrated in this section.

In the first scenario, instead of a utility-based approach, the risk function, introduced

in Equation (2.14), is employed to find the least risky path between the initial and

goal positions considering. Therefore, the decision criteria in this scenario do not

consider any other mission objectives, except for the accumulated risk values. On

the other hand, the second scenario uses the multi-objective decision criteria, which

is introduced in Chapter 4 by the utility-based path planning approach. The sec-

ond scenario considers the profits of accomplishing mission objectives as well as the

risks incurred by the UAS operation during the path planning and decision-making

processes.
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5.2.1 Scenario 1

In this scenario, a small residential area with a rectangular dimension of 400

by 400 meters is selected as the UAS operation area in Fort Worth, TX. For this

region, PREM is constructed for the risk of flying over properties and traffic, which

is assumed to be stationary. Therefore, the risk of being hit by the UAS for the

properties and the vehicles will be considered by the risk assessment framework. Two

cases are investigated in this scenario to compare the results. In the first case, shown

in Figure 5.2(a), only the property risk exposure is present in the environment (late

night UAS operation). In Figure 5.2(b), the second case includes both property

and traffic risk exposures for the risk assessment (daytime UAS operation). The

weights that are used to construct PREM from the combination of both layers are

0.4 and 0.6 respectively. Note that, the selection of weights on different layers plays

an important role in path characteristics and task-awareness, and therefore, they

should be extensively investigated, which is outside the scope of this thesis. A higher

weight on the risk of flying over traffic might be more realistic in real-life due to the

potential cause of catastrophic secondary incidents. Nevertheless, different cases will

be demonstrated for diversity and comparison.

For the selection of start and goal positions, although they can be any two

random positions, they are selected to show the effect of various PREMs on the

generated paths. Finally, the path planner algorithm is run to find a near-optimal

path while continuously exploring the whole map and optimizing the previously found

paths simultaneously.

Results of the path planning for both cases are shown in Figures 5.3-5.4, where

the solid red lines in Figures 5.3(a)-5.4(a) are the final paths for the first and second

cases after 15000 iterations, whereas, the blue dashed lines are the paths found during

the previous iterations.
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Figure 5.2: Case maps for Scenario 1
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Figure 5.3: Results of the path planning for Scenario 1 - Case 1
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Figure 5.4: Results of the path planning for Scenario 1 - Case 2
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In the first case, since there is no traffic present on the map, reaching the goal

position by traveling over the streets gives the lowest risk path as expected. However,

in the second case, having a traffic activity on the streets changes the underlying risk

exposure map, and it drives planner algorithm to look for the alternative paths to

minimize the total risk until reaching the goal. Comparing with the first case, the

gaps between buildings, without street intersections, and the property backyards give

the lowest risk path in the second case as seen in Figure 5.4(a). This means that

flying over traffic accumulates a higher risk in total than flying near the buildings,

as it was intended in PREM construction. Moreover, it is worth noting that the

regions that potentially accumulate low risks depend on the selection of ground impact

location distributions too. Therefore, those regions can widely vary according to those

selections. For instance, a constant wind flow from one direction over the region would

shift the ground impact regions in the same direction, and it might result in having

the lowest risk path that goes above the properties. Thus, path characteristics for

the missions depend on both the underlying risk exposures (PREM) and the vehicle’s

failure mode outcomes including the environmental effects.

Plots in Figures 5.3(b)-5.4(b) show the paths found during the path planning

iterations with respect to their risk levels and the total distance traveled. Note that

these charts can be used to determine whether the mission is in acceptable risk limits

or within the vehicle’s range if the limits are known. In addition, the information

about the environment, underlying high-risk regions, and potential paths can be

inferred from these charts during the planning process. For example, the convergence

rate of the planning can be learned and used to make the decisions for concluding the

search, or even, for ruling out some of the map regions.

Finally, as it can be noticed from the path solutions that some of the very first

paths have long straight edges, which indicates that the RRT has not fully explored
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those regions yet. As the process advances, those straight lines are optimized on the

tree by the rewiring operations to minimize the total risk along the path, and they

usually turn out to be the smoother curly path segments which yield the low-risk

levels due to the selection of the risk exposure representations.

5.2.2 Scenario 2

In this scenario, another small region is selected in Dallas, TX, to demonstrate

the proposed utility-based multi-objective optimization approach considering the de-

veloped risk assessment framework and the selected mission objectives. The region is

shown in Figure 5.5.

Figure 5.5: UAS package delivery map - Scenario 2
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The mission is to deliver a package from a start location to a goal location with

a highest possible path utility. The mission objectives are to deliver the package to

the original destination with a minimum intrusion (risk) to the properties and, if

the utility of delivering to this location is lower than the expected utility of the other

(alternate) delivery locations, then, to consider delivering to the other locations, or do

not to take-off at all. In this sense, the proposed system not only plans a path but also

makes task-level decisions between different delivery locations and whether to deliver

at all. These decisions are being made according to the comparison between the utility

values of the mission objectives. The utilities are composed of the benefits obtained

by completing the mission objectives as positive utility and the risk accumulated

during the mission as a negative utility.

In this scenario, the other package drop locations are shown on the map, and the

utility of package delivery to these locations are determined according to their distance

to the original drop location, where the numbers on the scenario map indicate the

closeness of these locations to the goal. Point utility values of the mission objectives

for all possible drop locations are selected as 10 · 10−9, 4 · 10−9, 3 · 10−9 and 1 · 10−9,

respectively. In addition, 0 utility value is assigned to the ”Do-Not-Fly” action which

means no benefit is obtained. Note that in a real scenario, this might be a loss with

a negative utility.

The scenario has the same failure events as in the first scenario, except that

the failure occurrence rates, λ, are chosen for two different cases where the first case

represents the normal operating conditions with average failure rates and the second

case stands for the condition with increased failure occurrences with the same impact

regions. Table 5.3 lists the failure rates for both cases.

The aim is to show the effect of operating conditions on the task-level decision

and the path characteristics.
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(a) Paths found are shown over PREM - Case 1
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Figure 5.6: Results of the path planning for Scenario 2 - Case 1
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(a) Paths found are shown over PREM - Case 2
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Figure 5.7: Results of the path planning for Scenario 2 - Case 2
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Table 5.3: Catastrophic Failure Event Rates for Scenario 2

1/hr F1 F2 F3 F4

Case 1 0.001 0.05 0.01 0.05
Case 2 0.01 0.5 0.1 0.5

Paths that are found during the optimization of the proposed utility function

are plotted over the risk exposure map of the area in Figures 5.6(a)-5.7(a) for the

selected cases. In these plots, the solid red line is the final path maximizing the

utility, while the dashed blue lines are the other possible paths found with lower

utilities after 15000 iterations. Also, the utilities of all the paths connecting to the

possible goal locations are shown in Figures 5.6(b)-5.7(b) with respect to the total

length of the paths found.

From these figures, it is seen that the optimization of the proposed utility func-

tion leads path search to the least risky areas successfully before the mission com-

pletion. Intuitively, avoiding the narrow passages between buildings and flying over

wider roads (the traffic activity is omitted in this scenario), yields higher utilities

when the impact damage to the properties is considered. However, the behavior

of the search can be affected by the conditions in which the UAS operates such as

adverse weather conditions, varying vehicle mishap characteristics, etc.

Simulation of normal operating conditions in the first case shows that the ex-

pected utility of package delivery to the original goal location is higher. By looking

at the path characteristics, it can be inferred that although the shorter alternatives

are present, the longer path avoiding the narrow ”valleys” until the final approach

is found to be better in this case. It is also important to note that the constructed

utility function implicitly states that the longer the path is, the higher the chance

to have a failure which decreases the final utility of the objective. Therefore, the

decision here takes into account the duration of the path as well.
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For the second case, increased failure rates push the planner to look for alterna-

tives, which yielded the third location having the higher utility for package delivery

among the other locations. However, the utility of delivering the package to the third

location is still lower than the utility of the ”Do-Not-Fly” action, shown in Figure

5.7(b). This means that flying to deliver a package in the given operating condition

is actually less beneficial than staying on the ground. Hence, the decision for the

mission should be to not attempt the delivery in this case.

It should be noticed here that the selection of utilities for the mission objectives

to construct the desired scenario is not a trivial task and plays a crucial role in the path

search and the task-level decisions. For the construction of complex and extensive

mission scenarios, more detailed studies are required to establish the relations between

utility values and the real-world mission objectives.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

6.1 Thesis Contribution

In this thesis, a probabilistic risk assessment framework was developed to quan-

tify and assess the risks incurred by the operation of UAS over the populated areas by

using the risk exposure modeling of the ground objects and the ground impact model-

ing of UAS failure modes within the Safe Task-Aware Autonomous Resilient Systems

(STAARS) concept. The proposed approach establishes a quantitative method to

capture the effects of the factors on the ground safety risk assessment such as the

ground exposure characteristics, dynamical vehicle health condition, and environ-

mental inputs. Also, a generic multi-objective optimization approach was introduced

to consider both the risk concerns and potential benefits of UAS tasks during the

planning and decision-making processes with the purpose of forming a basis for a

more holistic decision criterion and task-awareness. Therefore, the proposed frame-

work can be utilized for the path planning of various UAS missions to inform the

decision-makers and the planning process as a multi-objective decision and optimiza-

tion tool by addressing the ground safety concerns and specified mission objectives

with their benefits. To illustrate the concept, the minimization of the risks or the

maximization of the utilities, which is a blend of risks (negative utility) and benefits

(positive utility), along the planned UAS path can be achieved according to the de-

sired considerations. The formulations derived in the concept are generic and flexible

enough to cover a wide range of considerations in both risk assessment and the benefit

representations, and UAS tasks. As an ultimate goal, this work was intended to be
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useful for the development of a regulatory framework for the safe integration of UAS

into national airspace by the use of aviation authorities with the complementary and

detailed analysis.

6.2 Future Works

The work presented in this thesis can be extended in four potential directions,

namely the PREM construction, UAS failure modes and ground impacts, compre-

hensive risk function and path planning. In the construction of PREM, multiple risk

exposure layers corresponding to different risk types and the uncertainty on the mod-

eling of PREM should be incorporated with the current work. Also, the construction

of dynamic PREM layers from various data sources such as sensor updates should be

demonstrated for real-time applications. In the second direction, a detailed analysis

on the UAS failure modes should be performed including the effects of vehicle states

and environmental conditions on the ground impact distributions. Another potential

extension can be done by improving the risk or cost function used in path planning.

In this part, additional factors affecting the cost considerations such as kinetic en-

ergy of the platform at the time of impact, the penetration characteristics and the

general planning costs including the range and endurance of the operation should

be considered. Furthermore, for more realistic analysis and risk considerations, the

other ground risk models depicted in Figure 2.3 can be integrated. Lastly, the im-

provements are required on the path planning algorithm and the implementations

for better demonstrations and addressing the realistic scenarios. Some of the im-

provements can be listed as the incorporation of the vehicle’s kinematic and dynamic

constraints with a Kinodynamic planner, the path planning in higher dimensions in-

cluding altitude and more efficient trajectory optimization strategies. To sum up,
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although there might be numerous other enhancements in each and every direction,

these topics can have major contributions.
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