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ABSTRACT

ULTRA-CONTEXT: MAXIMIZING THE CONTEXT FOR BETTER IMAGE

CAPTION GENERATION

ANKIT KHARE, M.S. Computer Science

The University of Texas at Arlington, 2019

Supervising Professor: Dr. Manfred Huber

Several combinations of visual and semantic attention have been geared towards

developing better image captioning architectures.

In this work we introduce a novel combination of word-level semantic context

with image feature-level visual context, which provides a more holistic overall context

for image caption generation. This approach does not require training any explicit

network structure, using any external resource for training semantic attributes, or

supervision during any training step.

The proposed architecture addresses the significance of learning to find context

at three levels to achieve a better trade-off as well as a balance between the two lines

of attentiveness (word- level and image feature-level).

The structure of the visual information is very different from the structure of

the captions to be generated. Encoded visual information is unlikely to contain the

maximum level of structural information needed for correctly generating the textual

description in the subsequent decoding phase. Attention mechanisms aim at stream-

lining the two modalities of language and vision but often fail to find a balance be-
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tween them. Our novel approach to establish this balance where the encoder-decoder

pipeline learns to pay balanced attention to the two modalities leads to the captions

not drifting towards the language model irrespective of the visual content of the im-

age or towards the image objects regardless of the saliency observed in the generated

sentence history.

We demonstrate how the encoder’s convolutional feature space attended in a

top-down fashion and in parallel conditioned over the entire n-gram word space, can

provide maximum context for sophisticated language generation.

Effective architectural variations to produce hybrid attention mechanisms stream-

line a model towards better utilization of rich image features while generating final

captions. The impact of this mechanism is demonstrated through extensive analysis

using the MS-COCO dataset.

The proposed system outperforms state-of-the-art results, illustrating how this

context-based architectural design opens up new ways of addressing context and the

overall task of image captioning.
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CHAPTER 1

INTRODUCTION

Image captioning [1] requires deep scene understanding and subsequent gen-

eration of grammatically correct sentences, reflecting abstraction of the understood

concepts. It is challenging not only due to the very nature of the process itself but

also because it is so far not possible to make machines go through the same experi-

ence and context that allows humans to understand the underlying complex concepts

which might sometimes not even be visually obvious. Deep neural network based

encoder-decoder architectures [2, 3, 4, 5, 6] have been quite successful in producing

good captioning results and represent the current state-of-the-art. This is mainly

due to their ability to form complex representations using large datasets [7, 8, 9] and

to learn long-range sequences [10] which together make it possible to summarize an

image. Broadly, during the process of describing an image, humans extract informa-

tion from an image because of: (i) their ability to form meaningful representations of

what they see, and (ii) intelligent utilization of their knowledge of language to ver-

bally describe its essence. The second part which comes from language skills is equally

important here. Even in the learning mechanism in Homo Sapiens [11], knowledge of

language and its association with learned visual representations is very significant to

allow it to express the meaning of observed or virtual scenarios. The same has to be

the case in image captioning architectures where training the model to understand

semantic language concepts and making it learn how to associate them with visual

features is of high importance. The inspiration for our approach to produce quality

captions comes from the same consideration. Coupling of visual representations with
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word vectors is an extremely critical part of the entire process and the context pro-

vided to the network to aid in this process has a definitive influence on theoverall

automatic image captioning task. Ground truths provided in the training dataset

reflect the context in which annotators caption the image. Neural networks learn to

understand that context and their inference is evaluated on the basis of the extent of

their success in the process. Therefore, it is obvious that the better the network gets

at understanding this context, the better it can describe an image (Fig. 1.1).
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Soft Attention [6]: A baseball player throwing a ball on a field.
CaptionBot [12]: I think it’s a group of baseball players standing on top of a grass
covered field.
Ground Truth [8]: A poster has many photos of players for the Nationals baseball
team.
Ultra-Context (ours): A series of photos showing a baseball game.

Figure 1.1: Better context leads to better associations between visual and semantic
elements, and hence fewer “hallucinations” of commonly seen concepts
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CHAPTER 2

Related Work

Although our approach aimed at maximizing the context can be applied while

using any CNN encoder [13, 14, 15], we primarily use bottom-up features [16] in

the current work (our baseline model is similar to the Up-Down Captioner [16] in

terms of the architecture and is an open source implementation [17]). The reason

behind adopting them comes from the observation that objects form a natural ba-

sis [18, 19] for visual attention. These encoded features provide salient attention

regions (grounded in objects) and a visual representation of each region with ad-

ditional attribute features to aid the image captioning process, thereby providing

the first level of attention context. The basis of selection of region boundaries is

well established, hence it becomes imperative that the further process would have a

strong initiation context. Conventionally, attention models [2, 6, 20] learn to refine

encoded features from different image regions to the most salient ones on the basis of

a mechanism which can be spatial attention [6], text-based semantic attention [20],

or a combination of both [21]. Although these attention mechanisms provide useful

direction towards caption generation, they are still unable to utilize the full extent of

the richness of image features received from object recognition architectures [13, 14].

Moreover, many of them fit to frequently observed concepts and fail to generalize well

when given a new scenario. It is of even higher importance to address this, since real

world images are very diverse.

Realizing the aforementioned deficits and the unprecedented progress observed

in object recognition, we propose the CTX initemb and Ultra CTX models, where
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task specific attentiveness (or ‘top-down’ attention) of encoded visual features is fur-

ther combined with n-gram word-specific attentiveness [22] to form a more complete

contextual input for the language model to learn further. These models attain con-

text from various angles ((i) initiation context from bottom-up features, (ii) task

specific context and (iii) semantic context from coupling of visual and textual fea-

tures) without incurring the overhead of infusing attributes created from external

resources, training additional network structure to fit in existing methods, or exter-

nally supervising the training process. In only one pass with a single model (without

an ensemble), these context-based models jointly learn where to focus their atten-

tion on the basis of the holistic context available to them. They learn to channelize

their internal representations, leveraging the visual evidences in the test-time image

to form meaningful captions in terms of grammar, saliency, and generalization. As a

result, the best model (Ultra CTX) achieves a score of 28.3 in METEOR [23], 124.2

in CIDEr [24], 58.1 in ROUGE-L [25] and 21.7 in SPICE [26] on the widely used MS-

COCO Karpathy split [27] when trained with cross entropy loss and a subsequent Self

Critical Sequence Training (SCST) [5] reward function. Fig. 2.1 shows an example

illustrating the improved captions that the models generate when compared to the

baseline architecture.

The background for our approach comes from a diverse line of works. One of

those early works is [6] which suffers from poor region proposals where objects at the

boundaries of the grid are not considered sufficiently. Without a strong basis [18] of

dividing the regions, critical initiation-point context is lost. They also lack context

from semantic word-level attention and might fail to generalize in a lot of scenarios

where words form an important basis of saliency. Another shortcoming in such spatial

models is that they generally resort to weighted pooling on the feature map, thus

leading to spatial information being lost inevitably. However, weighted pooling leads
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Baseline: A clock tower with a clock on the top.
CTX initemb: A clock tower in the middle of a park.
Ultra CTX: A very tall clock tower with a clock on each of its sides.

Figure 2.1: Evolution from baseline to our first variation, CTX initemb, and to the
full context model, Ultra CTX

to better generalization to some extent. Thus, more context is required to compensate

for the negative aspect of weighted pooling.

Another line of work [21] incorporates semantic concepts, where image features

are vectors of confidences of attribute classifiers. Jia et al. [28] exploit the relation

between images and their captions as the global semantic information to guide the

language LSTM. They require external resources to train these semantic attributes

and still lack in maximizing context. Jia et al. introduce guidance for the LSTM

but their approach uses pre-specified guidance that is linear and fixed over time. In

contrast, [20] systematically incorporates time-dependent text-conditional attention,

from 1-gram to n-gram. Theirs was the first model which illustrated the importance
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of n-gram text-conditional attention. Still, their model lacks region-based initiation

context and is therefore prone to “hallucinating” previously seen concepts based on

guidance from the partially generated caption. Better context mechanisms would

have enabled it to balance between saliency in regions and words. Such a balanced

mechanism is necessary to learn new concepts from the features at hand (the image’s

visual features and word vectors) rather than fitting itself to seen ones. Additionally, it

aids in proper utilization of rich visual features and their attributes while summarizing

the image.

SCA-CNN [2] takes advantage of the CNN’s natural ability to obtain channel-

wise and spatial attention. They consider channel-wise attention to be similar to

semantic attention. However, the context of their architecture still limits it to task

specific attention and facilitates only limited associations of visual and verbal con-

cepts.

Another area of related work is Text-Attention [29] which relies on the ground

truth captions to be used as a basis of selecting visual features. Following this ap-

proach, a model would definitely suffer from the error prone test time sampling where

error would build up during captioning and propagate further during re-reference of

the caption.

Knowing When to Look [4] utilizes the impact of visually attending to an image

only when a salient word is encountered. Again, visual features conditioned on n-

gram text features [20] enhances a model with strong textual saliency. Besides, words

like ‘of’, ‘the’, and ‘with’ provide useful context for associating visual and verbal

concepts. Many times they are necessary to be attended to for more context. Real

world images are diverse and no model should rely exclusively on language or visual

elements for context to predict the next word. In other words, a balanced learning
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approach, coupling language and visual elements strongly at different levels within

an architecture, is needed to attend to diverse concepts and to generalize well.

Lastly, the Up-Down Captioner [16], focuses primarily on the generation of

bottom-up features. However, the overall context achieved from addressing multiple

lines of attentiveness could certainly provide better captions.
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CHAPTER 3

Method

Addressing the aforementioned shortcomings, a basis of coupling visual and

language features is developed by experimenting with: (i) the behavior of word em-

beddings when added to visual features at different levels of training, and (ii) the

correspondence of attention weights, produced by the coupled features, with the out-

put of the caption model.

Figure 3.1: Architecture of baseline model taken from Up-Down captioner [16]
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In practice, the first context for attention is achieved using bottom-up fea-

tures [16] relying on RCNN [30] which provides salient region proposals and Resnet-

101 [13] that provides visual representations corresponding to each proposed region.

We use parallel coupling via (i) visual features coupled with the partially generated

caption (which is the encoded representation of the last generated word) and (ii)

semantically oriented coupling that distributes and weighs feature representation(s)

(mean-pooled image features/spatial image features) over n-gram word vectors (all

word vectors corresponding to previously generated words during caption generation).

Lastly, we concatenate the coupled outputs to feed to the language LSTM which will

have maximum context to produce captions systematically. The architectural consid-

erations we have made for our baseline model are inspired by LRCN [3].

For each image, the number of proposed regions vary up to a maximum of 100.

Let Vs denote spatial features, and define mean-pooled spatial features as:

V̄ =
1

k

k∑
i=1

Vi (3.1)

where 1 ≤ k ≤ 100. Broadly, the model consists of two LSTM layers: LSTM1 and

LSTM2 [10]. The factored case from [3], where the first LSTM layer is shielded from

image features and is given the responsibility of representing only the partial caption

independent of the visual input, is not used. Rather, our innovation is in the ways to

couple the image features with word representations.

3.0.1 Baseline Model

We describe the architecture of our models starting from baseline to our final

Ultra CTX model. Figures 3.2, 3.3, and 3.4 show the architecture of our three models.

In all three figures, violet boxes represent learnable components of the model, red

10



Figure 3.2: Architecture of baseline model redrawn for easy comparison with our
improved architectures

boxes show features from the encoder, ⊚ represents a convex combination, and ⊙

represents element-wise multiplication.

To introduce the novel couplings that enhance the context, we develop a math-

ematical basis to it. At each time-step, LSTM1 receives input xt
1 containing mean-

pooled image features (V̄ from Eq. 3.1), an encoded representation We1 of the last

generated word, and LSTM2’s hidden state, ht−1
2 , from the last time-step. For ht

i and

xt
i subscripts denote LSTM layer number and superscripts denote time-step.

xt
1 = [ht−1

2 , V̄ ,W t
e1
St] (3.2)
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We1 ∈ Re×|Σ| is the word embedding for our vocabulary Σ, e is the word embedding

size and St is the one-hot encoding of the word generated by LSTM2 in the previous

time-step t−1. Word embeddingWe1 is learned from scratch and randomly initialized.

The hidden state ht
1 of LSTM1 fuses with spatial features Vs as follows:

f t
s = wT

f tanh(WvfVs +Whfh
t
1) (3.3)

Wvf ∈ Rd×v, Whf ∈ Rd×m, and Wf ∈ Rd are linear layers where d is the number

of hidden units in the attention layer and m is the n umber of hidden units in the

two LSTMs. These are learned through back-propagation. We use batch normaliza-

tion for the Wvf layer which we have observed leads to faster convergence. Softmax

distribution taken at every time-step creates an attention weight for each feature Vs:

α = softmax(f t) (3.4)

v̂t =
k∑

s=1

αt
sVs (3.5)

This is how optimized attention models [16, 3] frequently define their attention

layer, where at any given time-step t, αt acts as a weight mask for spatial features

Vs, and LSTM2 is fed with the current state of LSTM1 concatenated with attended

features as follows:

xt
2 = [v̂t, ht

1] (3.6)

Suppose the maximum length of any sequence of words is L. Our aim is to

calculate the conditional probability distribution P of the entire sequence of words

(y1, y2...yL) over the vocabulary. At any time-step t we take the hidden state of

LSTM2, ht
2, apply a linear layer, and calculate the softmax distribution to find the

conditional probability as:

p(yt|y1:t−1) = softmax(Wph
t
2 + bp) (3.7)
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where Wp ∈ R|Σ|×m and bp ∈ R|Σ|. The joint probability distribution can be computed

using the chain rule as:

P =
L∏

t=1

p(yt|y1:t−1) (3.8)

Given a sequence of words y∗1:L as ground truth we compute cross-entropy loss as:

L(θ) = −
L∑

t=1

log(Pθ(y
∗t | y∗1:t−1

)) (3.9)

where y∗
1:L

is the ground truth sequence and θ is the parameter set of the model.

3.0.2 CTX latemb Model

This is the first variation of the baseline which uses a 2-step training process

where the model is pre-trained as the baseline model before an additional component

based on the sentence history is added to increase semantic context.

At any time-step t we have t − 1 previously generated word(s) (where t starts

from 1 and at the first time-step there is no generated word but we just provide a

‘START’ token). Inputs and outputs for LSTM1 remain the same. For LSTM2, the

modification to the input (Eq. 3.6) is as follows:

M t = tanh(V̄ ⊙We2

t∑
i=1

Si−1

t
) (3.10)

xt
2 = [(v̂t +M t), ht

1] (3.11)

where ⊙ stands for element-wise multiplication, V̄ is from Eq. 3.1, v̂ from Eq. 3.5,

We2 is a second embedding initialized with all ones, Si is the one-hot encoding of the

ith word, and M t is the result of coupling mean-pooled spatial features with respect

to the sequence of t− 1 words generated so far.

Intuitively, training further with a new time-dependent mask of word represen-

tations should either enhance the context for LSTM2 by allowing focus of attention

13



Figure 3.3: Architecture of CTX initemb model

to be based on the entire history rather than only the most recent word, or lead to

some (potentially temporary) performance degradation due to the increased complex-

ity in the architecture. In practice, we found that the model degrades for some time

due to the addition of a new untrained embedding and then starts to improve again

till a point where it surpasses its initial scores (detailed comparative performance

results are shown in Table 5.2). This demonstrates that spatial features should be

coupled with word vectors at this specific point since most of the reference LSTM2

has for word representations has to propagate through LSTM1 and is lost or at least

14



strongly “faded” by this point. Furthermore, providing a convex combination of all

word representations generated so far with region features contributes significantly to

increased semantic context.

3.0.3 CTX initemb Model

This variant of the baseline utilizes the word sequence to spatial feature cou-

pling, M t from the very beginning of the training process. In contrast to CTX latemb,

however, it uses it explicitly as an additional input to LSTM2 rather than first com-

bining it with v̂:

xt
2 = [(v̂t,M t, ht

1] (3.12)

This change stems from the observation that the addition operation in Eq. 3.11 be-

tween v̂ and M from Eq. 3.10, leads to a loss of information. The advantage of this

operation in the previous model was that it kept the input dimensions of LSTM2

constant while adding Mt, which is essential for the 2-step training. Here, this need

is eliminated since no pre-training using the baseline model is used and we thus con-

catenate the three entities (Eq. 3.12) to better preserve the contextual information.

Results shows that this leads to further improved performance (Table. 5.2).

3.0.4 Ultra CTX Model

Our final model, Ultra CTX, streamlines the architecture further to achieve

maximum context geared towards better utilization of visual features.

An even stronger coupling is formed by coupling the previously generated word

history, St
1..t−1, directly to the spatial features, Vs (rather than the mean-pooled fea-
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Figure 3.4: Architecture of Ultra CTX model

tures, V̄ ) through a second weighted mask, β (Eq. 3.4 represents the first weighted

mask):

Ct
s = W T

c tanh(Vs ⊙We2

t∑
i=1

Si−1

t
) (3.13)

βt = softmax(Ct) (3.14)

where Wc ∈ Rd×1 and β is the weighted mask on spatial features Vs conditioned on

word vectors (encoded representation of words from time-step 1 to t − 1). Similar

16



to the previous variants, this model also uses a trainable embedding, We2 , initialized

with all ones. Applying the weighted mask on Vs to form the input of LSTM2 yields:

v̂tc =
k∑

s=1

βt
sVs (3.15)

xt
2 = [v̂t, ht

1, v̂
t
c] (3.16)

Intuitively, each salient region has a set of features which should be coupled with

word representations to receive more context. In other words, the model should

learn to attend to the visual features, balancing between the three different levels

of context (initiation context from bottom-up features, task specific context, and

semantic context).
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CHAPTER 4

Analysis

4.0.1 Qualitative Analysis

To illustrate the findings and evaluate the two carefully crafted couplings qual-

itatively, we look specifically: (i) at the learned embeddings, We1 and We2 ; (ii) at our

final model’s ability to attend to correct regions by analyzing the weighting maps,

α and β (Eq. 3.4 and Eq. 3.14) produced by coupling the features; and (iii) at the

semantic construct of captions.

4.0.1.1 Embedding Analysis

Dense word embeddings can be successful in capturing semantic relations among

words. However, in many cases, their semantic structure is heterogeneously dis-

tributed across the embedding dimensions which makes it hard to interpret them [31,

32]. We aim to bring light to the semantic concepts implicitly represented by various

dimensions of a word embedding in order to establish an intuitive insight into how

they could be meaningfully coupled with image visual features to provide more con-

text. In our exploration, we refer to the category theory [33] and construct a KNN

adjacency matrix, Am, such that Am is a Σ×Σ matrix (Σ is our vocabulary size) con-

taining the pair-wise similarities among representations within the word embedding.

The euclidean distance between two points in the matrix Am, representing distances

between words, is used to calculate the closest distances to each word in the vocabu-

lary. We find that the associations seen in the generated captions are reflected in the

nearest words. An interesting observation is that both embeddings learned different
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associations. The first embedding, We1 , seems to learn to associate words with their

prepositions and relatively few related verbs/nouns, while the second, We2 , seems to

learn to associate mostly nouns, adjectives, and verbs (Table 4.1).

Word N1 N2 N3 N4 N5

cat
a of on with in

cats several hat sitting black

car
a with in to building

cars power traffic parked bikers

frisbee
a next to on flying

umbrella park fire next hydrant

bananas
of UNK to a stairway

pizza eating yellow surrounded table

Table 4.1: Five nearest words (N1-N5) in the two embeddings of the Ultra CTX
model for randomly selected words. For each word, row 1 and 2 represent We1 and
We2 , respectively

The CTX latemb model, even with the introduction of the second embedding

at a later stage of training (Sec. 3.0.2) manages to form meaningful associations

within the new embedding. We found that even in this case the commonly seen

words had dense representations and relatively large deviations from the initial value

whereas words found rarely within captions stayed closer to their initialization. As the

models moved progressively to a more tightly integrated second embedding, advancing

through CTX initemb to Ultra CTX, we observed an increased structuring of the

representation space, indicated by increasing deviations from the initialization values.

To further examine the embedding, we tried different embedding sizes (512, 1000, and

1024) for the two embeddings. We found that a ratio of 1:1 between the LSTM size

and the embedding size generally works best in terms of the model’s convergence and

the quality of the representations inside the embedding.
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Besides improvement in word relations, a slight enhancement in grammar was

also observed. We have not performed any extensive analysis to examine this and it

is thus currently purely anecdotal based on qualitatively observing captions.

4.0.1.2 Attention Weight Analysis

Analyzing focus of attention mechanisms in deep neural network architectures

is a complex task, however, it also provides crucial information for the understand-

ing of the operation of the architecture. To perform this analysis we analyzed the

Ultra CTX model with respect to the α and β attention weight masks leveraging

box coordinates [16] corresponding to the weight masks. The resulting sum of α

and β gave the final weight of the region where the model focuses. Here β has a

supplementary effect by shifting the α weights and its value alone is not analyzable.

a bench on a hill

overlooking a body of water

Figure 4.1: Example analysis of the Ultra CTX model during caption generation.
Red boxes show the dominant region proposals at the corresponding time step as
identified from the α and β weights, illustrating the spatial focus of the network
during the generation of the word indicated below the corresponding image frame
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Using this analysis method, we found that the network focused on relevant re-

gions that closely resemble the closer context of the word being generated at each

time-step. Fig. 4.1 shows an example image and generated word sequence with the

corresponding attention region highlighted. It is critical that a model learns to ground

the generated caption in objects and other salient image features it considers. Oth-

erwise it might be fitting to the data without learning to generalize to new unseen

images. Our model is successful at finding meaningful associations between words,

objects, object’s attributes and surroundings, and at weighing them properly while

describing images.

4.0.1.3 Novel Semantic Constructs

In the example (COCO val2014 000000005820.jpg) in Fig. 4.1, the caption gen-

erated by our Ultra CTX model trained using cross-entropy loss generalizes the image

quite well and produces novel semantic constellations. There are 1,843 instances in

the 2014 Train/Val annotations from MS-COCO where the phrase, “a body of wa-

ter” is used, out of which only two cases are similar to the one shown in Fig. 4.1.

Our model learns from these examples how to associate words, objects, and object’s

attributes and surroundings. Furthermore, it is also capable of generalizing the deci-

phered associations quite well (also evident from the ability to attend to the correct

regions). Fig. 2.1 shows another example where the architecture produces a semantic

relationship of the same form and context not present in the dataset.

In another example in Fig. 4.2 our model produces the caption, “a man riding

a skateboard down a street with cones”. The image (COCO test2014 000000194910)

is taken from the MS-COCO [8] 2014 test images. In this case, there is not a single

image in the entire training-set where a caption combines the skateboarding, street,

and cone context. There is only a single instance where the phrase, “street with
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Figure 4.2: Novel semantic construct: “A man riding a skateboard down a street with
cones”

cones” is used in the entire dataset. This highlights our architecture’s strength to be

able to learn from a variety of instances and produce novel semantic constructs. We

observed many such instances before coming to the inference.

4.0.2 Implementation Details

Our CTX initemb model has two LSTMs each with the number of hidden units,

m, set to 1,000 units. The two word embeddings have a hidden size e of 1,000 units.

Hidden size d of 512 units is used for the attention layer. We perform minimal text

pre-processing by tokenizing on white spaces, converting every word into lower case,

and filtering out words that occur less than 5 times. Finally, a vocabulary of 9,487

words is formed. Captions are trimmed to a maximum of 16 words for computational

efficiency.

ADAM with amsgrad [34] optimizer is used. Batch size was chosen to be 100

with an initial learning rate of 0.0005 which is lowered at a rate of 0.8 after every
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3 epochs starting from epoch 10. Scheduled sampling [35] is used while training

with cross-entropy loss, starting from the beginning of the training process. We start

with 0 and increase the sampling probability by 0.05 every epoch until it reaches a

maximum of 0.25. We trained on cross-entropy loss for 33 epochs and subsequently

used the SCST approach for 20 additional epochs. While training with SCST, our

learning rate was set to 0.00005 with a decay rate of 0.5 after every 3 epochs starting

from epoch 43. Training the model fully takes one whole day on a NVIDIA Tesla

P100 GPU. During optimization, beam size was set to 5.

For our Ultra CTX model the only changes are: LSTM size of 2,048 units (for

both LSTMs), input encoding size of 1,024 units (for the two word embeddings),

and hidden attention size of 1,000 units. Due to the large size of the network, we

used 2 NVIDIA Tesla P100 GPUs in parallel to train the model. We noticed that

the model converges relatively fast and reaches its plateau in 25 epochs. Similarly,

during CIDEr optimization it converges in just 15 additional epochs. We found that

the architecture of the Ultra CTX model was robust to the increase of the size of

the LSTMs from 1,000 to 2,048 without over-fitting the data, which is due to the

architectural strength due to carefully crafted couplings.

4.0.3 Automatic Evaluation Metrics

While analyzing the captions generated by our different models during local

evaluation (https://github.com/tylin/coco-caption), the shortcomings of eval-

uation metrics becomes noticeable. During CIDEr optimization, the metric is directly

optimized with an objective of minimizing the loss:

LFR(θ) = −Ey1:L∼pθ [r(y
1:L)] (4.1)

23



where the parameters of the network are given by θ, and r is the score function

(CIDEr). From the method described in SCST [5], the gradient for this loss function

LF can be approximated as:

∇θLFR(θ) ≈ −(r(y1:Ls )− r(ŷ1:L))∇θlogpθ(y
1:L
s ) (4.2)

where y1:Ls is a sampled sequence of words and r(ŷ1:L) is a greedily decoded score from

the current model.

While producing captions, the margin of mistakes made by a model trained

with Reinforcement Learning (RL) is significantly reduced. However, the model gets

trained to predict captions that score high (on CIDEr) without any regards to the

actual content of the image. In other words, SCST relies on the assumption that

metrics are efficient at mimicking human behavior of evaluation while it can be safely

said that they are inadequate to an extent [36]. Apart from that, RL-based approaches

are language oriented and thus fail to ground words in visual composition of an image.

Figure 4.3 shows the caption generated by 3 models: 1. Ultra CTX model

at CIDEr 114.2, 2. Baseline model at CIDEr 110.2, and 3. Resnet101 baseline

model at CIDEr 107.6, all trained on cross-entropy loss. The image is taken from

MS-COCO val2014 dataset (COCO val2014 000000104392.jpg) and has one of its

ground truth caption as, “a modern kitchen with an oven, stove, and a fridge” [8].

The Caption generated by our model covers three items correctly while conventional

attention models describe only two, out of which one may even be wrong (there is

no sink in the image). Even then, the caption from the Ultra CTX model scores the

lowest in every metric. There are many similar images in the dataset where kitchen

appliances/furniture is shown, or a bathroom is shown with fixtures. Our model

captions tend to include more than two items in many cases and gets penalized
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similar to the case shown in Figure 4.3. This results in overall low scores (especially

on CIDEr and SPICE) even when the caption quality is actually high.

Figure 4.3: Analysis of captioning evaluations by automatic evaluation metrics. C
stands for CIDEr, M for METEOR, R for ROUGE-L and S for SPICE

Ultra CTX: a kitchen with a stove a microwave and a counter
Scores: C: 68 M: 22 R: 60 S: 17
Baseline RL: a kitchen with a stove and a table
Scores: C: 106 M: 25 R: 65 S: 19
Resnet101 baseline: a kitchen with a stove and a sink
Scores: C: 96 M: 25 R: 65 S: 19

Similar deficiencies have been pointed out by others:

“CIDEr is designed as a specialized metric for image captioning evaluation,

however, it works in a purely linguistic manner, and only extends existing metrics

with tf-idf weighting over n-grams. This sometimes causes unimportant details of

a sentence to be weighted more, resulting in a relatively ineffective caption evalua-
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tion” [37] and “First, we observe that all the scores decrease when some words are

replaced with their synonyms. The change is especially significant for SPICE and

CIDEr” [37].

We observe the same phenomenon where our model produces a lot of synonyms

and sometimes slightly different semantic constructs (Sec. 4.0.1.3) while preparing

the captions (due to the novel coupling between spatial features and words repre-

sentations) and is penalized by the metric in many such cases. Our sole purpose of

specifying the limitations and drawbacks of automatic captioning metrics (even after

achieving state-of-the-art results on the same) is to suggest that there is a dire need

to attend to the way we evaluate the caption quality and also to emphasize that our

future work will be towards the same.
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CHAPTER 5

Results

5.0.0.1 Resnet-101 Features

To demonstrate the wide applicability of our approach we use Resnet-101 fea-

tures and verify the performance of our model on the Karpathy split [27]. Similar

to the method we followed for bottom-up features, the mean-pooled image features

are substituted with the ones from the final convolutional layer of Resnet-101 pre-

trained on ImageNet [7]. To obtain spatial features we follow the approach used in

SCST [5] and use bilinear interpolation to form fixed size spatial representations of

10× 10 which is equal to the maximum number of spatial regions we could use with

bottom-up features. The results are shown in Table 5.1.

Model B-1 B-4 M R C S B-1 B-4 M R C S

Up-Down R101 [16] 74.5 33.4 26.1 54.4 105.4 19.2 76.6 34.0 26.5 54.9 111.1 20.2
Ultra CAP101 77.8 34.8 27.3 56.5 111.3 20.1 79.2 35.3 27.7 57.2 116.8 21.2

Cross-Entropy Loss CIDEr Optimization

Table 5.1: Comparison of results between our final architecture labeled as Ul-
tra CAP101, and Up-Down Captioner’s Resnet baseline labeled as Up-Down R101,
when Resnet-101 features are used. B-1 stands for BLEU 1, B-4 for BLEU 4, M for
METEOR, C for CIDER, R for ROUGE-L and S for SPICE

5.0.0.2 Bottom-Up Features

In Tables 5.2 and 5.3 we compare the performance of our four models on the

Karpathy split [27] which distributes validation and training images from the MS-
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COCO training-set into a split of 5,000 images for validation, 5,000 for testing, and

113,287 for training. Table 5.2 shows the performance after cross-entropy training

while Table 5.3 shows the performance after further CIDER optimization.

Model B1 B4 M R C S

Baseline 76.5 34.3 26.8 56.1 110.4 19.9
CTX latemb 76.7 34.5 26.9 56.3 111.2 20.0
CTX initemb 76.9 35.3 27.0 56.5 112.0 20.1
Ultra CTX 77.7 35.5 27.1 56.9 114.2 20.5

Table 5.2: Results of training our models on the Karpathy split using the cross-
entropy loss function. B1 stands for Bleu-1, B4 for Bleu-4, M for METEOR, R for
ROUGE-L, and S for SPICE

Model B1 B4 M R C S

Baseline 78.4 36.1 27.5 57.1 117.8 20.8
Late emb 78.8 36.5 27.9 57.6 119.2 21.1
Init emb 79.2 37.3 28.1 58.0 122.7 21.5
Ultra CAP 81.1 39.3 28.8 58.9 126.3 22.0

Table 5.3: Results on Karpathy split after CIDER optimization. B1 stands for Bleu-1,
B4 for Bleu-4, M for METEOR, R for ROUGE-L, and S for SPICE

Here the CTX latemb model is mainly used as a means to signify the impor-

tance of providing context through tightly coupled features since it allows to directly

see the improvement due to the added second, increased context training phase when

compared to the baseline model that was used for pre-training in the first phase.

The improvement observed is suggestive of the fact that dense embeddings can learn

semantically meaningful representations when properly coupled with spatial features.

In general, however, it is not recommended to couple the features with the additional

embedding when it is already trained, as illustrated by the better results achieved
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using the CTX initemb model which does not use any pre-training. In Tables 5.1,

5.2, and 5.3, abbreviation B1 stands for Bleu-1 [41], B4 for Bleu-4 [41], M for ME-

TEOR [23], R for ROUGE-L [25], and S for SPICE [26]. In all of our experiments,

we do not form ensembles of our models but instead use only single network systems

to achieve state-of-the-art results. Table 5.4 shows a comparison between our final

model and a range of state-of-the-art models on the Karpathy split. Our final model

here outperforms all other models.

Model Bleu1 Bleu2 Bleu3 Bleu4 METEOR ROUGE-L CIDER-D SPICE

Soft Att [6] 71.8 50.4 35.7 25.0 23.0 - - -
TextATTResnet [29] 74.9 58.1 43.7 32.6 25.7 - 102.4 -
Jia-glstm [28] 67.0 49.1 35.8 26.4 22.74 81.25
E2Eglstm [20] 71.6 54.5 40.5 30.1 24.7 - 97.0 -
Adaptive [4] 74.2 58.0 43.9 33.2 26.6 - 108.5 -
SCST: Att2in [5] - - - 34.8 26.9 56.3 115.2 -
Semantic-ATTFCN [21] 70.9 53.7 40.2 30.4 24.3 - - -
Up-down [16] 79.8 - - 36.3 27.7 56.9 120.1 21.4
MLAIC [38] 80.7 63.9 49.0 36.9 27.7 57.5 119.1 -
STACK-CAP [39] 78.6 62.5 47.9 36.1 27.4 56.9 120.4 20.9

Ultra CAP 81.1 65.6 51.1 39.3 28.8 58.9 126.3 22.0

Table 5.4: Performance of our final model on MSCOCO Karpathy split. Bold figures
represent the scores of our models. † is used to denote the use of ensembles of several
differently initialized models. Our single models (without ensemble) outperform other
state-of-the-art models by a significant margin

5.0.1 Microsoft-COCO Leaderboard

CTX initemb and Ultra CTX models are tested on the MS-COCO competition

leaderboard (Table 5.5).

Both of our models outperform Up-Down Captioner and SCST-Att2all ensemble

models in terms of METEOR, ROUGE-L, and CIDEr scores using only a single model.

We used MS-COCO 2014 training and validation set (123,287 images) to train our
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Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEORROUGE-L CIDER-D

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

LSTM-A3† [40] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0
Stack-Cap† [39] 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3
Up-Down† [16] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
SCST-Att2all† [5] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

CTX initemb 79.5 94.3 63.7 87.9 49.1 78.6 37.2 67.8 28.0 37.0 57.7 72.6 119.8 121.3
Ultra CTX 79.8 94.4 64.0 88.0 49.3 78.6 37.3 67.6 28.1 37.0 57.8 72.5 121.8 124.1

Table 5.5: MS-COCO test server results. Bold figures represent the highest scores
within the table. † is used to denote the use of ensembles of several differently
initialized models

two models for the MS-COCO test server [1]. The Ultra CTX model achieves a

margin of ≈ 1% on ROUGE-L, ≈ 3% on CIDEr-D and ≈ 2% on METEOR over the

state-of-the-art Up-Down captioner (an ensemble of 4 models) [16] with just a single

model. Note that Bleu [41] initially proposed for machine translation, is based on

explicit word matching (n-gram matching). It fails to spot semantic similarity when

common words are scarce and is affected by word vocabularies [37].

5.0.2 Qualitative Results

We utilize the open source implementation [17] of the Up-Down Captioner to

compare and contrast the improvements in our final Ultra CTX model. We demon-

strate unique features of our model in terms of the quality of captions it produces.

More specifically, we present cases where the model describes: (i) more than two items

present in an image (Fig. 5.1), (ii) the presence of black and white photos (Fig. 5.2),

(iii) ‘out of context’ images (Fig. 5.3), (iv) the images with captions comprised of

novel semantic constructs generated due to fewer “hallucinations” and more visual

understanding (Fig. 5.4, 5.5, and 5.6), and (v) the images with captions showing

better utilization of rich visual features (Fig. 5.7). Next, cases where the model fails
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to generalize well (Fig. 5.8), are shown. Furthermore, Fig. 5.9 highlights our model’s

ability to shift its context focus to the word being generated and Fig. 5.10 includes in-

stances relating to the skateboard context where our model successfully understands

the context and associates words, objects, object’s attributes and object’s surround-

ings. Finally, we present additional examples (Fig. 5.11) demonstrating the quality

of captions produced by our model:
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Figure 5.1: Detection of more than two items in images

Up-Down: A bathroom with a toilet and a sink.
Ultra CTX: A bathroom with a sink a toilet and a bathtub.
GT: A bathroom with a bathtub next to a white toilet and a sink.
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Figure 5.2: Detection of black and white photo frames

Up-Down: A cow and a sheep are standing in a field.
Ultra CTX: Black and white photo of a cow and sheep standing on a field.
GT: Black and white photograph of a dog standing on a cow’s back.
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Figure 5.3: An example of the model describing a less common concept is shown.
Generally, soft attention mechanisms tend to “hallucinate” a knife for cutting the
cake but our model is relatively more closely grounded in what it sees

Up-Down: A group of people standing around a cake.
Ultra CTX: A group of soldiers cutting a cake with a sword.
GT: A group of solders cutting up a sheet cake.
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Figure 5.4: There are many instances in the dataset where the model sees a cement
block and the skateboarders doing tricks but mostly in different contexts. Still, it
learns to associate them well.

Up-Down: A man doing a trick on a skateboard.
Ultra CTX: A man riding a skateboard on top of a cement block.
GT: A skateboarder riding on a park bench, on a cloudy day.
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Figure 5.5: The model describes the position of the women relatively more precisely
in relation to the presence of pigeons within the image

Up-Down: A woman sitting on a bench next to pigeons.
Ultra CTX: A woman sitting on a bench surrounded by a flock of pigeons.
GT: The woman sits on a wooden bench near a large flock of pigeons.
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Figure 5.6: Another example where the model does not “hallucinate” commonly seen
concepts and forms novel sentence in terms of semantics

Up-Down: A dog is standing on a floor with a leash.
Ultra CTX: A dog is laying on the floor next to a persons feet.
GT: A little dog laying under the table at someones feet.
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A failure case where the model makes an
intelligent guess that is better than the
Up-Down model

Up-Down: A dog wearing a tie and
a sweater.
Ultra CTX: A dog wearing a pair of
shoes.
GT: Animal with hoofs made to wear
colorful pair of shoes.

The model describes the color of the jer-
sey along with the girl’s current action

Up-Down: A woman kicking a soccer
ball on a field.
Ultra CTX: A girl in a white uniform
kicking a soccer ball.
GT: A young lady kicking a soccer
ball on a field.

Figure 5.7: Two examples are shown where the model utilizes the image visual features
to a better extent
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Up-Down: Two un-
cooked pizzas sitting on a
counter top.

Ultra CTX: A pizza
sitting on top of a
cutting board.
GT: The halved melon
is on the counter next
to the remote.

Up-Down: A woman is
looking at her phone in
front of a train.

Ultra CTX: A woman
is standing in front of a
train.
GT: A woman looking
out the window of a
train.

Up-Down: A woman
wearing a helmet and
holding a cup.

Ultra CTX: A woman
wearing a helmet and
glasses holding a knife.
GT: A man dressed in
a helmet and goggles in-
doors has a goofy smile
on and his hand raised.

Figure 5.8: Examples of failure cases
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a group of

soldiers cutting a

cake with a

sword

Figure 5.9: Example analysis of the Ultra CTX model during caption generation. Red
boxes show the dominant region proposals at the corresponding time step as identified
from the sum of α and β weights, illustrating the spatial focus of the network during
the generation of the word indicated below the corresponding image frame
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A blurry photo of
a person riding a
skateboard.

A white dog sitting
on top of a skate-
board.

A man riding a
skateboard on a
street at night.

A man doing a trick
on a skateboard in
the water.

A person standing
next to a skateboard
on the street.

A man doing a trick
on a skateboard in
the air.

A woman riding
a skateboard on a
street.

A man sitting on
a skateboard on a
street.

A man doing a trick
on a skateboard on
a bench.

A young boy hold-
ing a skateboard in
the street.

A man sitting in
front of a building
with a skateboard.

A group of people
riding skateboards
down a street.

Figure 5.10: A series of images highlighting our model’s ability to associate words,
objects, object’s attributes and object’s surroundings. We specifically chose the skate-
board related context with diverse surroundings and a variety of different interactions
between objects. All images are taken from the MS-COCO 2014 test-set and thus,
they are never seen by the model during training. Moreover, there is no ground truth
caption available for these images since they are used for testing for the MS-COCO
Leaderboard competition

41



A series of photos showing
different types of food.

A cat wearing a pink hat
sitting on top of a carpet.

A stone patio with a stone
walkway and a lot of chairs.

A group of men standing
around a sheet cake holding
a sword.

A bathroom with a walk in
shower next to a toilet.

A classic car parked in the
grass near a group of peo-
ple.

A man flying through the
air while riding a kiteboard.

A man in a yellow shirt
catching a white frisbee.

A school bus is reflected in
a rear view mirror.

Figure 5.11: Additional examples showing the model’s ability to utilize the rich image
features from the encoder, showing fewer “hallucinations” while captioning
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CHAPTER 6

Conclusion

6.1 Conclusion

Description of images by humans usually reflect a contextual basis. Realizing

the significance of this basis and its nuances, we introduced a novel context-based

mechanism that strongly couples the visual and language features on three contex-

tual grounds: (i) region-based image feature-level context, (ii) task-specific context,

and (iii) semantic word-level context. A thorough evaluation of the couplings demon-

strates qualitative advantages of our approach in the form of novel semantic constructs

and effective utilization of the encoder’s features. We maximize focus of attention (and

thus caption generation performance) by integrating complementary mechanism that

couple visual features (from the input image) and textual features (from the already

generated caption components). The inspiration behind our approach is explained

and the intuition behind our final model is progressively laid using three increments

to baseline. Our architecture: (i) maintains a balanced attention between the two

structurally different modalities of vision and language, and (ii) enhances information

retention in the learned components of the architecture from both modalities leading

to increased visual and textual feature utilization. Our final model outperformed

state-of-the-art models with a wide margin using an end-to-end jointly trainable ar-

chitecture without incurring an overhead of using any external resource in terms of

supervision and training. We experimentally established our model’s ability to: (i)

correctly focus on salient image region while generating words, (ii) form meaningful

semantic associations within learned embeddings, and (iii) generate novel semantic
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constructs. Our work could have wide implications in creating attentive encoder-

decoder architectural pipelines in any task lying at the intersection of vision and

language.

6.2 Future Work

Our future work will focus on analyzing our captioning architectures on learning-

based metrics [42].

44



REFERENCES

[1] X. Chen, H. Fang, T. Lin, R. Vedantam, S. Gupta, P. Dollr, and C. L.

Zitnick, “Microsoft coco captions: Data collection and evaluation server,”

arXiv:1504.00325, 2015.

[2] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua, “Sca-cnn:

Spatial and channel-wise attention in convolutional networks for image caption-

ing,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, 2017, pp. 6298–6306.

[3] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,

K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for vi-

sual recognition and description,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2015, pp. 2625–2634.

[4] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing when to look: Adaptive

attention via a visual sentinel for image captioning,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), vol. 6, 2017,

p. 2.

[5] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-critical

sequence training for image captioning,” in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017.

[6] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and

Y. Bengio, “Show, attend and tell: Neural image caption generation with visual

attention,” in International conference on machine learning, 2015, pp. 2048–

2057.

45



[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European

conference on computer vision. Springer, 2014, pp. 740–755.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recog-

nition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.

211–252, 2015.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] P. Bloom, How children learn the meanings of words. MIT press, 2002.

[12] K. Tran, X. He, L. Zhang, J. Sun, C. Carapcea, C. Thrasher, C. Buehler, and

C. Sienkiewicz, “Rich image captioning in the wild,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp.

49–56.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[14] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). IEEE, 2017, pp. 2261–2269.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[16] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,

“Bottom-up and top-down attention for image captioning and visual question an-

46



swering,” in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018.

[17] R. Luo, “Unofficial pytorch implementation for self-critical sequence training for

image captioning,” https://github.com/ruotianluo/self-critical.pytorch, 2017.

[18] R. Egly, J. Driver, and R. D. Rafal, “Shifting visual attention between objects

and locations: evidence from normal and parietal lesion subjects.” Journal of

Experimental Psychology: General, vol. 123, no. 2, p. 161, 1994.

[19] B. J. Scholl, “Objects and attention: The state of the art,” Cognition, vol. 80,

no. 1-2, pp. 1–46, 2001.

[20] L. Zhou, C. Xu, P. Koch, and J. J. Corso, “Watch what you just said: Image

captioning with text-conditional attention,” in Proceedings of the on Thematic

Workshops of ACM Multimedia 2017. ACM, 2017, pp. 305–313.

[21] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, “Image captioning with semantic

attention,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 4651–4659.

[22] T. J. Buschman and E. K. Miller, “Top-down versus bottom-up control

of attention in the prefrontal and posterior parietal cortices,” Science,

vol. 315, no. 5820, pp. 1860–1862, 2007. [Online]. Available: http:

//science.sciencemag.org/content/315/5820/1860

[23] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with

improved correlation with human judgments,” in Proceedings of the acl workshop

on intrinsic and extrinsic evaluation measures for machine translation and/or

summarization, 2005, pp. 65–72.

[24] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-based im-

age description evaluation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 4566–4575.

47



[25] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” Text

Summarization Branches Out, 2004.

[26] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic proposi-

tional image caption evaluation,” in European Conference on Computer Vision.

Springer, 2016, pp. 382–398.

[27] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating

image descriptions,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 3128–3137.

[28] X. Jia, E. Gavves, B. Fernando, and T. Tuytelaars, “Guiding the long-short

term memory model for image caption generation,” in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 2407–2415.

[29] J. Mun, M. Cho, and B. Han, “Text-guided attention model for image caption-

ing.” in AAAI, 2017, pp. 4233–4239.

[30] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information

processing systems, 2015, pp. 91–99.

[31] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), vol. 2, 2014, pp. 302–308.

[32] L. K. Senel, I. Utlu, V. Yucesoy, A. Koc, and T. Cukur, “Semantic structure

and interpretability of word embeddings,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 2018.

[33] G. Murphy, The big book of concepts. MIT press, 2004.

[34] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and

beyond,” in International Conference on Learning Representations, 2018.

[Online]. Available: https://openreview.net/forum?id=ryQu7f-RZ

48



[35] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for se-

quence prediction with recurrent neural networks,” in Advances in Neural Infor-

mation Processing Systems, 2015, pp. 1171–1179.

[36] D. Elliott and F. Keller, “Comparing automatic evaluation measures for image

description,” in Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), vol. 2, 2014, pp. 452–457.

[37] M. Kilickaya, A. Erdem, N. Ikizler-Cinbis, and E. Erdem, “Re-evaluating auto-

matic metrics for image captioning,” arXiv preprint arXiv:1612.07600, 2016.

[38] W. Zhao, B. Wang, J. Ye, M. Yang, Z. Zhao, R. Luo, and Y. Qiao, “A multi-task

learning approach for image captioning.” in IJCAI, 2018, pp. 1205–1211.

[39] J. Gu, J. Cai, G. Wang, and T. Chen, “Stack-captioning: Coarse-to-fine learning

for image captioning,” arXiv preprint arXiv:1709.03376, 2017.

[40] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting image captioning with

attributes,” in IEEE International Conference on Computer Vision, ICCV, 2017,

pp. 22–29.

[41] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic

evaluation of machine translation,” in Proceedings of the 40th annual meeting

on association for computational linguistics. Association for Computational

Linguistics, 2002, pp. 311–318.

[42] Y. Cui, G. Yang, A. Veit, X. Huang, and S. Belongie, “Learning to evaluate

image captioning,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018, pp. 5804–5812.

49



BIOGRAPHICAL STATEMENT

Ankit Khare was born in Bhopal, M.P., India in 1991. He received his B.S.

degree from Lovely Professional University, India, in 2014, his M.S. degree from The

University of Texas at Arlington in 2019 all in Computer Science. From 2014 to 2016,

he was with Nagarro Software Pvt. Ltd., India as a software developer. His current

research interest is in the area of Computer Vision and Natural Language Processing

using Deep Neural Networks.

50


