
DESIGNING HIGHLY-EFFICIENT DEDUPLICATION SYSTEMS WITH OPTIMIZED
COMPUTATION AND I/O OPERATIONS

by
FAN NI

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment

of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
May 2019

Copyright c© by Fan Ni 2019
All Rights Reserved

ACKNOWLEDGEMENTS

I would like to express my thanks to my thesis advisor, Dr. Song Jiang, for his
guidance in the completion of this thesis. During my Ph.D. study, Dr. Jiang has always
be supportive to my research and given me a lot of help for my study and life. My thanks
also extend to Drs. Hong Jiang, Jia Rao and Jiang Ming, my thesis committee members. I
also want to thank Xing Lin who helped me a lot during my internship at NetApp, and also
NetApp which will be my next stop for my career. Last on paper but first on my thoughts,
I would like to give my most heartfelt thanks to my wife Qin Sun, who has always be so
supportive and devoted her energy and time to take care of the whole family. I also want to
thank my son Alex, who has given us so much fun and happiness.

April 17, 2019

iii

ABSTRACT

DESIGNING HIGHLY-EFFICIENT DEDUPLICATION SYSTEMS WITH OPTIMIZED
COMPUTATION AND I/O OPERATIONS

Fan Ni, Ph.D.
The University of Texas at Arlington, 2019

Supervising Professor: Song Jiang

Data deduplication has been widely used in various storage systems for saving stor-
age space, I/O bandwidth, and network traffic. However, existing deduplication techniques
are inadequate as they introduce significant computation and I/O cost. First, to detect dupli-
cates the input data (files) are usually partitioned into small chunks in the chunking process.
It can be very time consuming if the content-defined chunking (CDC) method is adopted,
where the chunk boundaries are determined by checking the data content byte-by-byte,
for detecting duplicates among modified files. Second, for each chunk generated in the
chunking process, we need to apply a collision resistant hash function on it to generate a
hash value (fingerprint). Chunks with the same fingerprint are deemed as having the same
contents and only one copy of the data is stored on the disk. The fingerprinting process of
calculating the collision-resistant hash value for each chunk is compute-intensive. Both the
chunking and fingerprinting processes in existing deduplication systems introduce heavy
computation burdens to the system and degrade the overall performance of the system.
Third, in addition to the extra cost introduced by the chunking and fingerprinting pro-
cesses, a deduplication system introduces extra I/O overheads for persisting and retrieving
its metadata, which can significantly offset its advantage of saving I/O bandwidth.

To this end, a deduplication system demands efficient computation and I/O oper-
ations. In this dissertation, we made several efforts to reduce the computation and I/O
overheads in deduplication systems. First, two efforts have been made to accelerate the
chunking process in the CDC-based deduplication. We designed a new parallel CDC al-
gorithm that can be deployed on the SIMD platform to fully exploit its instruction-level
parallelism without compromising the deduplication ratio. Further, we designed a highly
efficient CDC chunking method that removes the speed barrier imposed by the existing
byte-by-byte chunk boundary detection technique through exploiting the duplication his-
tory. Second, we identified an opportunity to use fast non-collision-resistant hash func-

iv

tions for efficient deduplication of journaled data in a journaling file system to achieve
much higher file access performance without compromise of data correctness and reliabil-
ity. Third, to avoid the performance degradation caused by the frequent writes of small
metadata in primary deduplication systems, we proposed to opportunistically compress
the fixed-size data block to make room for embedding the metadata. With the proposed
method, in most cases the explicit metadata writes on the critical path can be avoided to
significantly improve the I/O efficiency.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii
ABSTRACT . iv
Chapter Page
1. INTRODUCTION . 1
2. SS-CDC: A Two-stage Parallel Content-Defined Chunking for Deduplicating

Backup Storage . 5
2.1 Introduction . 5

2.1.1 Using Deduplication to Improve Space Efficiency 5
2.1.2 Accelerating CDC-based Deduplication 6
2.1.3 Our Contribution . 8

2.2 Background and Related Work . 8
2.2.1 Fixed vs. Variable-size Chunking 8
2.2.2 Optimizing Rolling Hashing . 9
2.2.3 Parallel Chunking and its Limitations 10

2.3 The Design . 11
2.3.1 Decoupling Rolling Hashing from Chunk Boundary Determination 12
2.3.2 Parallelizing Operations in SS-CDC 13
2.3.3 SS-CDC on AVX Instructions . 13
2.3.4 Multi-threaded SS-CDC on Cores with AVX 15

2.4 Evaluation . 17
2.4.1 Chunking Speed . 18
2.4.2 Deduplication Ratio . 21

2.5 Conclusions . 23
3. RapidCDC: The Duplicate Locality and its Use to Accelerate Chunking in CDC-

based Deduplication Systems . 25
3.1 Introduction . 25
3.2 The Duplicate Locality . 27
3.3 The Design of RapidCDC . 30

3.3.1 Quickly Reaching Next chunk’s Boundary 30
3.3.2 Accepting Suggested Chunk Boundaries 32
3.3.3 Maintaining List of Next-chunk Sizes 33

3.4 Evaluations . 34
3.4.1 The Systems in Evaluation . 35

vi

3.4.2 The Datasets . 36
3.4.3 Results with Synthetic Datasets 36
3.4.4 Impact of Modification Count and Distribution 36
3.4.5 Results with Real-world Datasets 40

3.5 Related Work . 45
3.5.1 Reducing Computation Cost in Chunking 45
3.5.2 Accelerating Chunking with Parallelism 46

3.6 Conclusion . 47
4. WOJ: Enabling Write-Once Full-data Journaling in SSDs by Using Weak-Hashing-

based Deduplication . 49
4.1 Introduction . 49

4.1.1 Data Journaling is Necessary . 49
4.1.2 SSD’s Endurance is now a Barrier 50
4.1.3 Regular Deduplication is too Expensive 51
4.1.4 A Lightweight Built-in Solution 52

4.2 The Design of WOJ . 53
4.2.1 SSD with File-system-level Knowledge 53
4.2.2 Deduplication with Non-collision-resistant Fingerprints 54
4.2.3 Metadata Supporting Movements of Physical Blocks 56

4.3 Evaluation . 57
4.3.1 Experiment Methodology . 57
4.3.2 Results with Write-only Micro Benchmarks 59
4.3.3 Results with Filebench Benchmarks 64
4.3.4 Results with Database Workload 65
4.3.5 Results with Workloads Using Real-world data 66
4.3.6 Memory Space Overheads . 67

4.4 Conclusion . 68
5. ThinDedup: An I/O Deduplication Scheme that Minimizes Efficiency Loss due

to Metadata Writes . 69
5.1 Introduction . 69
5.2 The design of ThinDedup . 71

5.2.1 Window-based Metadata Persistence 72
5.2.2 Zone-based Data Persistence . 75
5.2.3 Service of Read Operations . 77

5.3 Performance Evaluation . 78
5.3.1 Experiment Setup . 79
5.3.2 Experiment Results with Synthetic Workloads 80

vii

5.3.3 Experiment Results with Real-world Workloads 84
5.4 Conclusion . 88

6. CONCLUSIONS AND FUTURE WORK . 90
6.1 Contributions . 90
6.2 Future Work . 91

REFERENCES . 93

viii

CHAPTER 1

INTRODUCTION

In the big data era, data from all sources have shown explosive growth. The rapid
growth in data volumes poses a critical challenge to system designers for providing highly
efficient storage infrastructure support to upper-layer software, which is a must to guarantee
service quality for users.

Data deduplication, an important data reduction technique, has been introduced in
both primary and backup storage systems for efficient data storage. And it has become a
standard feature in commercial storage systems, including Dell-EMC Data Domain system
and NetApp ONTAP system. With data deduplication, not only can the size of the data
stored in the storage devices be significantly reduced, but also the I/O or network bandwidth
can be saved. However, deploying deduplication technique in storage system is not free,
and it can introduce extra computation and I/O cost compromising the system performance
significantly. In order to perform data deduplication in a storage system, the input data
(usually files) need first to be partitioned into small pieces or chunks before stored on the
disk (if necessary) in a so-called chunking phase. Duplicates are detected by checking the
uniqueness of the chunks’ fingerprints. There the three sources of overheads introduced
by the deduplication. First, the chunking process can be time-consuming and become a
new performance bottleneck of the system if the content-defined chunking approach is
used for high deduplication ratio. Second, calculation of fingerprints of data chunks is
CPU-intensive task and can add significant computation cost. Third, maintaining necessary
metadata for a deduplication system introduces extra requirements on data consistency and
persistency, which can significantly compromise the I/O efficiency of the system if it is not
processed in an efficient way.

Accordingly, the major work of the thesis focuses on improving the efficiency of
performing data deduplication in a storage system. And several solutions have been pro-
posed to reduce the computation and I/O cost for data deduplication for a highly-efficient
deduplication system design.

To remove the performance bottleneck posed by the chunking process in CDC-based
deduplication systems, two efforts have been made to accelerate the CDC process. The
first effort is to leverage the Instruction-Level Parallelism (ILP) in modern processors, that
has not been fully exploited in existing parallel CDC methods, to conduct chunking in

1

parallel in a core. To achieve the goal, a two-stage parallel CDC method (SS-CDC) was
proposed, that enables (almost) full parallelism on chunking of a file. Moreover, different
from existing parallel CDC methods that compromise deduplication ratio while achieving
high chunking speedup, SS-CDC provides high chunking speedup without deduplication
ratio reduction. The key idea is to first locate all potential chunk boundaries in parallel (in
the first phase) and then make real chunking decision sequentially (in the second phase).
As long as the first phase can be fully parallelized and the second phase only accounts
for a small percentage of the chunking time, the parallel chunking speedup can be retained.
Meanwhile, the chunking output can be identical to that in the sequential chunking method.
As a case study, by using Intel AVX-512 instructions, SS-CDC consistently obtains super-
linear speedups on a multi-core server. Our experiments using real-world datasets show
that, compared to existing parallel CDC methods which only achieve up to a 7.7× speedup
on an 8-core processor with the deduplication ratio degraded by up to 40%, SS-CDC can
achieve up to a 25.6× speedup and retain the high deduplication ratio of the sequential
CDC algorithm.

The other effort to accelerate CDC is to avoid the byte-by-byte detection whiling
locating a valid chunk boundary. We identify existence of a property in the deduplicatable
data, named duplicate locality. This locality reveals the fact that multiple deduplicatable
chunks are likely to occur together. In other words, one deduplicatable chunk is likely to
be immediately followed with a sequence of contiguous deduplicatable chunks. The longer
the sequence, the stronger the locality is. After demonstrating evidence of existence of
such locality in real-world data, a suite of chunking techniques that exploit the locality to
remove almost all chunking cost for deduplicatable chunks in CDC-based deduplication
systems are proposed. The consequent deduplication method, named RapidCDC, has two
salient features. One is that its efficiency is positively correlated to the deduplication ratio.
RapidCDC can be as fast as a fixed-size chunking method when it is applied on data sets
with high data redundancy. The other feature is that its high efficiency does not depend
on existence of strong duplicate locality. Actually its efficiency with weak locality can be
as high as that with very strong locality. These attractive features make RapidCDC’s ef-
fectiveness almost guaranteed for datasets with high deduplication ratio. Our experimental
results with synthetic and real-world datasets show that RapidCDC’s chunking speedup can
be up to 33× over regular CDC chunking. Meanwhile, it maintains the same deduplication
ratio.

To detect duplicates, the high computation cost of calculating a collision-resistant
hash value for each chunk (block) to write seems unavoidable in general, however, we
identified a unique opportunity to use non-collision-resistant for deduplication in the con-
text of journaling file system to provide high-performance file access without compromis-

2

ing data correctness and reliability. we proposed a light-weighted file system journaling
support technique inside SSDs to provide efficient file system journaling without compro-
mising SSD’s lifetime. Journaling is a commonly used technique in file systems to provide
data reliability for applications. Full-data journaling, which stores all file system (data and
metadata) updates in a journal before they are applied to their home locations, provides
the strongest data reliability, reduces application developers’ efforts on application-level
crash consistency, and helps to remove most crash-consistency vulnerabilities. However,
file system users usually hesitate to use it as it doubles the write traffic to the disk, leading
to compromised performance. While fast SSDs have the potential to make full-data jour-
naling affordable, its doubled writes threaten the devices’ durability, which is their Achilles
heel. While data deduplication has the potential to remove the second writes to the home
locations, it can be too expensive to be a practical solution with its computing and caching
of collision-resistant hashing values (fingerprints). The issue is especially serious for SSDs,
which are becoming increasingly large and fast, and less tolerant of additional overhead in
the I/O stack. Leveraging the fact that all writes to the home locations in a file system
on the data-journaling mode are preceded by corresponding writes to the journal, we pro-
pose Write-Once data Journaling (WOJ), which uses a weak-hashing-based deduplication
dedicated for removing the second writes in data journaling. WOJ can reduce regular dedu-
plication’s time and space overheads significantly without compromising the correctness.
To further reduce metadata persistency cost, WOJ is integrated with SSD’s FTL within the
device.

Lastly, we proposed a new method to address the efficiency challenge introduced
by frequent metadata flushes in data deduplication systems to provide highly efficient data
storage. I/O deduplication is an important technique for reducing I/O volume and increas-
ing effective storage capacity for both backup and primary storage systems. However,
I/O deduplication requires a new level of indirection between logical addresses exposed
to users of storage systems and physical addresses on storage devices, and consequently
needs to maintain corresponding metadata. To meet requirements on data persistency and
consistency, the metadata writing is likely to make deduplication operations much more
expensive, in terms of amount of additional writes on the critical I/O path, than one might
expect. One fundamental reason for the bloated cost is the incompatibility between writ-
ing of usually small metadata and storage devices’ block interface. we propose a new
deduplication scheme, named ThinDedup, to compress the data and insert metadata into
data blocks to reconcile the incompatibility. Assuming that performance-critical data are
usually compressible, we can mostly remove separate writes of metadata out of the crit-
ical path of servicing users’ requests. In addition to metadata insertion, ThinDedup also

3

uses persistency of data fingerprints to evade enforcement of write order between data and
metadata.

4

CHAPTER 2

SS-CDC: A Two-stage Parallel Content-Defined Chunking for Dedupli-
cating Backup Storage

2.1 Introduction
Backup storage is a critical infrastructure in protecting users from data loss events

such as incautious data deletion. To minimize the performance impact on production ser-
vices, backup jobs are usually scheduled after midnights or during weekends. To complete
backing up a large amount of data within a tight time window, the system has to provide
sufficiently high backup performance [106, 35]. The single-stream1 backup throughput
measures how fast a system can process one backup stream. With a higher single-stream
backup throughput, the backup system can complete a backup job more quickly within the
backup window. While many backup systems support concurrent backups, they usually
have a limit on the maximum number of concurrent backup streams [23, 61], to prevent
resource contention which could degrade the performance of single-stream backups.

2.1.1 Using Deduplication to Improve Space Efficiency
Along with the backup performance, space efficiency is also an important aspect

for a backup storage system. Backup files usually contain a large amount of duplicate
data, while changes between two consecutive backups can be small. Accordingly, data
deduplication is often used in a backup storage system to detect and remove redundant
data among backups. A data deduplication scheme partitions input files into small chunks
and only unique chunks are stored in the system. Deduplication ratio, which is defined as
the ratio of the original data size and the size after deduplication, is used to measure its
effectiveness in removing duplicate data. Prior research [92] has demonstrated significant
space saving from deduplication, achieving deduplication ratios from 2-14× in production
deployments.

However, deduplication also adds significant performance overhead to the system,
especially with the variable-size chunking process that is commonly used in backup storage
systems. A typical variable size chunking algorithm, such as content-defined chunking

1A backup client often creates a tar-like backup file and transfers backup files as backup streams to the
backup system.

5

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

10

20

30

40

D
ed

up
lic

at
io

n
R

at
io

-6
.4

%

-7
.6

% -1
0.

4%

-1
5.

6%

-1
4.

0% -1
3.

2%

-2
4.

7%

Baseline 1MB segments

Figure 2.1: Deduplication ratio reduction caused by existing parallel CDC approaches.

(CDC) [57], scans almost every byte in an input file using a fixed-size rolling window
and calculates a hash value for each rolling window2. A chunk boundary is determined
when two conditions are met. One is that the chunk size is within the range of pre-defined
minimum and maximum chunk sizes. And the other is that the hash value of the rolling
window matches a specific pre-defined value. As we need to calculate a hash value for the
rolling window at almost every byte offset of a file, this process consumes significant CPU
resource and has become a performance bottleneck in many backup storage systems [103,
2, 5].

2.1.2 Accelerating CDC-based Deduplication
To address the chunking bottleneck, many researchers have proposed to partition an

input file into segments, and leverage parallel hardware, such as multi-core processors or
GPGPU platforms, to perform chunking on the segments in parallel, termed as parallel
CDC hereafter. While they receive performance benefit of parallelism to some extent, they
have at least one of the two limitations. They do not provide either guarantee of chunking
invariability [97] or compatibility to the SIMD platforms, such as Advanced Vector Exten-
sions (AVX) [20] that is available in recent Intel and AMD processors or GPUs. We discuss
each of the two limitations in the below.

Chunking invariability requires that a parallel chunking algorithm always generate
the identical set of chunks independent of the parallelism degree and the segment size.
However, many parallel CDC algorithms do not provide this guarantee. The chunks gener-

2The hash function used here is different from the hash function used to generate the fingerprint to
uniquely identify a chunk. To support efficient rolling hashing, we assume a hash function that can be
incrementally calculated, such as CRC. For fingerprints, a cryptographic hash function, such as SHA1, is
adopted to minimize hash collisions.

6

ated from a parallel chunking are usually different from those from a sequential chunking
of the same file (sequential CDC) and they are also influenced by the segment size. The
fundamental reason is that the boundary of the next chunk in a file is determined not only
by contents in the chunk but also by the boundary of its previous chunk. Besides, to de-
tect a new boundary we need to skip a certain number of bytes from the last boundary to
maintain a minimum chunk size before starting the rolling-window-based hashing. Due to
existence of this inherent dependency, chunk boundaries obtained by independently per-
forming CDC within individual segments are different from those obtained by sequential
CDC on the entire file. Since the segmentation enabling the parallelism is not based on
the file content, the parallel CDC usually has a deduplication ratio lower than the sequen-
tial CDC. Figure 2.1 shows the comparison of deduplication ratio between sequential CDC
and parallel CDC using 1MB segments, using chunk size configuration from Dell EMC
Data Domain (4KB, 8KB, and 12KB as the minimum, expected average, and maximum
chunk sizes, respectively). The deduplication ratios from the parallel CDC are lowered by
6%-25%, compared to those of the sequential CDC.

The other limitation of many parallel CDC algorithms, in particular the multithread-
ing chunking algorithms, is that they can only be accelerated with multiple cores, but can-
not take advantage of instruction-level parallelism from SIMD platforms, such as AVX or
GPUs. The reason is that SIMD requires simultaneous application of the same operation
on different data. Any programs with frequent branches cannot be efficiently executed on
such platforms. However, the chunking process does have frequent branches. At the same
offset for different segments, some may detect valid chunk boundaries while others may
not. As a result, applying existing CDC algorithms on SIMD platforms cannot deliver the
desired performance one may expect.

In the meantime, it becomes more and more important to leverage the SIMD plat-
forms for compute-intensive tasks such as chunking for three reasons. One is that the cost
per CPU core increases superlinearly as we move to processors with more cores. Using
processors with a reasonable number of cores is a necessity for keeping the hardware cost
within the budget. The second reason is that SIMD platforms provide better performance
and power efficiency, as they can process multiple data elements in a single instruction.
The third reason is these SIMD platforms are already or will soon be available in enter-
prise storage systems. On a backup system, compute-intensive chunking job is certainly a
good candidate to utilize them. By offloading chunking to SIMD platforms, we can free up
the CPU resources for other tasks, such as compression. These motivate us to re-examine
parallel CDC to make it compatible with the SIMD platform.

7

2.1.3 Our Contribution
In this work, we identify the root cause of deduplication ratio degradation of existing

parallel CDC and provide quantitative analysis on it using real world datasets. We propose
SS-CDC, a two-stage parallel chunking algorithm, that can be parallelized by SIMD plat-
forms while provides chunking invariability. We implemented SS-CDC with Intel AVX
instructions as a case study. To the best of our knowledge, this work is the first to use the
AVX instructions for parallel chunking. Our experiments with real-world datasets show
that compared to existing multithreading CDC, SS-CDC can detect up to about 47% more
duplicate data, and achieve superlinear speedups (higher than the number of cores) [96], up
to 3.3× more, by exploiting parallelism from AVX.

2.2 Background and Related Work
In this section we provide additional background on chunking techniques in the dedu-

plication, especially the time-consuming content-defined chunking and efforts on its paral-
lelization.

2.2.1 Fixed vs. Variable-size Chunking
A file can be partitioned into either fixed-size or variable-size chunks for deduplica-

tion. In fixed-size chunking, chunk boundaries are determined at offsets of multiple of a
unit size. Since chunking is fast in fixed-size chunking, it is usually used in storage systems
where performance is critical, such as NetApp All Flash FAS [63] or Pure Storage [71].
However, fixed-size chunking cannot address the issue of boundary shifting due to data
insertion or deletion in a file. To this end, variable-size chunking, whose chunk bound-
aries are defined by file content, is proposed so that duplicate chunks can be identified
even after file data shifting. In the so-called content-defined chunking (CDC) algorithm, a
rolling window of a fixed size is used to scan a file in a byte-by-byte manner to determine
chunk boundaries. For the rolling window at any byte offset, a hash value is computed
and compared to a predefined value. If they match, a chunk boundary is declared at the
end of the window. Otherwise, the rolling window moves forward by one byte and this
process is repeated. To avoid generating too small or too big chunks, the minimum-chunk-
size and maximum-chunk-size thresholds are defined. When a chunk boundary is declared,
the rolling window skips the following minimum-chunk-size bytes. Meanwhile, a chunk
boundary is automatically declared once the chunk size reaches the maximum-chunk-size.

It is noted that in the CDC chunking the process of determining a sequence of bound-
aries in a file is inherently sequential, as declaration of a new boundary is not only depen-

8

Segment boundary

Skipped boundary

Before change

After change

B1 B2 B3

Minimum chunk size

Determined chunking boundary

Segment 1 Segment 2

B4 B5 B6

B’4 B’5 B’6 B’7

Inserted data

B1 B2 B3

Segment 1 Segment 2

Figure 2.2: An example showing how deduplication opportunities are lost in existing segment-
based CDC methods.

dant on hash value of the current rolling window, but also on the previous boundary’s posi-
tion. This places a challenge on its effective parallelization. In the meantime, because the
process is highly compute intensive, it is necessary to accelerate the chunking process. To
this end, there are two categories of efforts, which are optimization of the rolling hashing
and parallel chunking.

2.2.2 Optimizing Rolling Hashing
In CDC, a hash value is computed over the content of a rolling window at almost ev-

ery byte offset of a file. As a result, the computation cost of the rolling hash function has a
significant impact on the chunking speed. Lightweight hash functions have been proposed
to reduce the cost. Gear [102] uses a lightweight hash function which requires only one
bit-shift, one add, and one table lookup, while Rabin fingerprint, such as CRC used in this
paper, requires two bit-shift, two XOR operations, and two table lookups. FastCDC [103]
proposed a few techniques to accelerate the Gear-based chunking process. AE [105] is a
non-rolling-hash-based chunking algorithm that employs an asymmetric rolling window to
identify extremums of data stream as boundaries. Yu et al. [104] use two functions, one
lightweight and the other heavyweight, to select a chunk boundary. A simpler condition
is tested first. Only when the condition is satisfied are additional computation steps per-
formed. These techniques are orthogonal to SS-CDC, and many of them can be parallelized
and accelerated using SS-CDC.

9

2.2.3 Parallel Chunking and its Limitations
Another apprach to speed up CDC is to parallelize the algorithm and run it on a

parallel hardware. Many backup systems [22, 61, 101] have taken the approach to partition
the input files into segments and use a thread to chunk a segment independently. With this
approach, we can leverage multi-core processors to achieve parallel chunking. However, it
does not guarantee chunking invariability and compromises the deduplication ratio. And it
cannot fully exploit the parallelism on an SIMD hardware.

Regarding the impact on deduplication ratio, Figure 2.2 illustrates how a data inser-
tion changes the segment boundaries and thus chunk boundaries, leading to the failure in
detecting identical data in the second segment using the segment-based parallel chunking
approach. Hash values for rolling windows at offsets B1, B2, ..., B6, and B′4, B

′
5, B

′
6, and

B′7 all match the predefined value and thus these offsets may potentially be chunk bound-
aries. Before the insertion, B′4, B

′
5, B

′
6, and B′7 are too close to their respective previous

chunks (within the minimum chunk size) and thus were not selected as chunk boundaries.
Instead, B4, B5, and B6 were selected. After the insertion of a few bytes at the beginning
of the file, as shown in Figure 2.2 the second segment shifts to the left by the same num-
ber of bytes. Now B′4, B′5, B

′
6, and B′7 become valid chunk boundaries and accordingly

invalidate original chunk boundaries at offsets B4, B5, and B6. For the second segment,
the new chunks are unlikely to be identical to the old ones and cannot be deduplicated. In
general, data insertions or deletions will shift segment boundaries, which can change chunk
boundaries and reduce deduplication ratio. The root cause of the reduction is that segment
boundaries are not content-defined, though chunks within each segment are. In contrast, in
a sequential CDC algorithm every chunk is content-defined without impact of boundaries
defined by the segmentation.

Next, we introduce a few existing parallel chunking approaches. The chunking oper-
ation in P-Dedup uses a segment-based and multithreading approach [101]. It made efforts
to achieve chunking invariability. After chunks within each segment are determined, a mas-
ter thread does additional rolling hash for the data between any two adjacent segments and
declares a new chunk boundary whenever it finds a matching hash value. However, this
approach only produces additional small chunks and still cannot ensure chunking invari-
ability.

The only work we are aware of that guarantees chunking invariability and also pro-
vides multithreading chunking is MUCH [97]. In MUCH, data is partitioned into segments
and each segment is assigned to one thread for parallel chunking. To ensure chunking in-
variability, it introduces a chunk marshalling stage to additionally process chunks obtained
within each segment, which includes coalescing chunks that are smaller than the minimum
chunk size and splitting chunks that are larger than the maximum chunk size. Neverthe-

10

Table 2.1: Comparison of existing parallel chunking algorithms with SS-CDC

Chunking invariability Multi-core GPU AVX
P-Dedup No Yes No No
MUCH Yes Yes No No

Shredder No No Yes Maybe
SS-CDC Yes Yes Yes Yes

less, MUCH was designed as a multithreading chunking algorithm without consideration
of running on an SIMD hardware. As a result, it cannot be applied on AVX or GPUs.

Shredder [5] is a parallel chunking scheme that is designed for running on GPUs. A
major issue addressed in its design is to reduce the overhead of data transfer from the main
memory to the GPU device’s local memory and to minimize its performance impact on the
chunking. However, because the window does not roll over segment boundaries, chunk
boundaries in corresponding regions can be missed. Thus, Shredder does not guarantee
chunking invariability.

Table 2.1 summarizes existing parallel chunking approaches and compares them with
our approach, SS-CDC. SS-CDC is the only approach that guarantees chunking invariabil-
ity while at the same time enables parallel chunking on multi-core processors, AVX, and
GPUs.

2.3 The Design
SS-CDC is a new CDC approach which enables high parallelism for CDC chunking

to utilize parallel hardware’s computing power without compromise of deduplication ratio.
The key insight of the work is that the chunking process can be separated into two tasks.
One task is for rolling window computation to generate all potential chunk boundaries,
which is expensive but can be performed in parallel in different segments. The second task
is to select chunk boundaries out of the candidate ones so that they meet the minimum
and maximum chunk size requirements, whose execution has to be serialized across the
segments but is lightweight. Accordingly, SS-CDC separates the chunking process into two
stages, one for each task. As both the rolling window computation in the first stage and the
searching for final chunk boundaries in the second stage are conducted in parallel, the CDC
chunking is almost fully parallelized at any reasonably small granularity. Meanwhile, as the
determination of chunk boundaries is performed sequentially, SS-CDC produces identical
set of chunk boundaries and the same deduplication ratio as the sequential CDC.

11

S4

S1 E1
S2 E2

S3 E3

Input data

Stage 1

P0
P1
P2
P3

hash

cmp

0
hash

cmp

1
hash

cmp

0
hash

cmp

0

Bit array 0 … 0 1 1 0 1 0 0 1 … 1 0 1 0 0 1 0 … 1 1 0 0 0 1 0 … 0 0 1 0 1

Stage 2
0 … 0 1 1 0 1 0 0 1 … 1 0 1 0 0 1 0 … 1 1 0 0 0 1 0 … 0 0 1 0 1

Determine chunk boundaries, based on the bit array and min/max chunk size constraints

Chunks

Find all potential chunk boundaries and record them in a bit array

Figure 2.3: The two stages of SS-CDC algorithm. Each thread continues the rolling hashing for
extra (rolling_window_size - 1) bytes from the next segment, donated as E1, E2 and E3 in the figure.
P0, P1, P2, and P3 are processes (or threads) for chunking.

2.3.1 Decoupling Rolling Hashing from Chunk Boundary Determina-
tion

For rolling window based CDC, a chunk boundary is declared at the end of the cur-
rent window only when two conditions are met. First, the hash value of the contents within
the rolling window matches a predefined value. Second, the size of the chunk is within the
range of the minimum and maximum chunk sizes. Instead of checking both conditions at
an offset together, SS-CDC separates them into two stages. Specifically, in the first stage, a
hash value for each rolling window is calculated and compared with the predefined value.
A chunk boundary candidate is declared at the end of the rolling window if the hash value
matches. At the end of this stage, it produces a set of chunk boundary candidates which
satisfy the first condition. During the second stage, final chunk boundaries are selected
from the candidates, which meet the minimum and maximum chunk size constraints (the
second condition).

Figure 2.3 illustrates operations involved in the two stages. The input data is first
partitioned into equal-size segments (S1, S2, S3, and S4), and each segment is assigned to a
thread for identifying chunk boundary candidates. To determine chunk candidates at every
offset, a thread working on a segment will include the extra (rolling_window_size − 1)
bytes from the next segment for rolling window computation, which are illustrated as E1,
E2, and E3 in Figure 2.3. The hash value of each rolling window is calculated and com-
pared to a predefined value and the result is recorded in a bit array, where each bit indicates
whether there is a hash value match for the corresponding rolling window. Multiple bits in
the bit array can be set simultaneously using SIMD instructions without using locks. For

12

an input data with N bytes, the output bit array will be of N bits 3. A bit ‘1’ at bit-offset
k in the bit array indicates a chunk boundary candidate at the byte-offset k in the input
file. After all candidates are identified, SS-CDC enters its second stage where the bit array
produced by the first stage is scanned from its beginning, searching for the ‘1’ bits that
meet the minimum and maximum chunk size constraints. These offsets are the final chunk
boundaries.

2.3.2 Parallelizing Operations in SS-CDC
To achieve parallel chunking performance, SS-CDC parallelizes both of its stages to

take full advantage of the parallel hardware. It is straightforward to parallelize computation
in the first stage. We assign each segment to a different thread, and the rolling window
hashing and comparison are performed independently in each thread in parallel. However,
the second stage must be performed by sequentially checking the bit array in a bit-by-bit
manner to find the next chunk boundary which meets the minimum and maximum chunk
size constraints. With the first stage being optimized, the runtime from the second stage
becomes significant.

To address this issue, we observed that the bit array contains mostly ‘0’ bits, with
only a few ‘1’ bits. For example, with an expected average chunk size of 4KB, there will
be one ‘1’ bit in every 4000 bits on average. The bit array can be represented as an array
consisting values of a longer data type, such as 32-bit integers. By comparing whether the
next 32-bit integer is 0, we effectively check the next 32 bits in the bit array. When a non-
zero value is found, a bit-by-bit checking is needed. Furthermore, SIMD instructions [74]
(or multiple threads) can be used to check multiple values in parallel and we can skip the
‘0’ bits and locate values with ‘1’s in the array quickly.

2.3.3 SS-CDC on AVX Instructions
SS-CDC can be easily deployed on a wide range of parallel platforms, including

multi/many-core systems, GPGPU platforms and others supporting SIMD instructions. As
a case study, we implemented SS-CDC with Intel Advanced Vector Extensions 512 (AVX-
512) instructions [74, 20], which are extensions to the x86 ISA for Intel and AMD pro-
cessors, and provide vector operations in an SIMD manner for some instructions. They
are generally available in today’s mainstream processors [19, 18] and provide the benefit
of parallel execution without requiring extra hardware support. We leave it as future work

3The additional memory to store the bit array can be freed or reused, as soon as the chunking is completed.

13

Table 2.2: Multi-threaded Chunking Implementations on Multi-cores with AVX

Sequential on Files Parallel on Files
Sequential on Segments in a Core SFSS (w/ dedup ratio loss) MFSS

Parallel on Segments in a Core SFMS MFMS

to port SS-CDC to other parallel hardware. For processors with AVX-512 instructions
support, the extended registers are 512-bit long.

In the prototype, we use CRC-32 (with the polynomial 0xedb88320) as the rolling
hash function for detecting chunk boundaries. The hash value of a rolling window with
size w and ending at offset is calculated as shown in Equations 2.1 and 2.2. Like many
other efficient CRC implementations [30], we pre-compute two static tables, crcu and crct,
and use them to remove and add contribution of a byte in the rolling hash computation. In
Equation 2.1, the contribution of the leftmost byte leaving the window is removed, while
in Equation 2.2 the contribution of the byte entering the window from the right is added to
the value. We use a rolling window of 256 bytes.

hash_tmp = hash_old ⊕ crcu[buf [offset − w]] (2.1)

hash_new = (hash_tmp >> 8)⊕ crct [buf [offset]] (2.2)

In the first stage of SS-CDC, the input data, which are partitioned into 16 segments, are
processed in parallel to identify all potential chunk boundaries. We use an AVX regis-
ter (named Rc) to store 16 CRC values for the current 16 rolling windows, one for each
segment. The execution of an AVX-512 instruction can be viewed as 16 parallel threads
performing the same operation. For the load operation, AVX-512 instructions support load-
ing 16 32-bit values from 16 different locations in the memory to an AVX register. So the
bytes entering and leaving a rolling window from a segment are loaded with 32 bits at a
time into registers. To remove the contribution of the byte leaving the window, for each
segment, the leftmost byte in the corresponding window is used as the index to retrieve a
value from the crcu table. The 16 values from the table, one for each segment, are stored
in an AVX register (named Ru). Then, the result of Rc xor Ru is stored in a register as
hash_tmp. Similarly, we add the contribution of the byte entering the window for each
segment by using the byte as the index to retrieve a value from the crct table, and xor the
16 values with hash_tmp right-shift by 8 bits, to obtain hash_new.

14

PU PU … PU
…

Core1

File1

PU PU … PU
…

Core2

File2

PU PU … PU
…

Core3

File3

PU PU … PU
…

Core4

File4

(a) MFMS chunking

PU PU … PU
…

Core1

File1

PU PU … PU
…

Core2

File2

PU PU … PU
…

Core3

File3

PU PU … PU
…

Core4

File4

Segment

(b) SFMS chunking

Figure 2.4: Illustrations of SS-CDC’s MFMS (Multi-File Multi-Segment) and SFMS (Single-File
Multi-Segment) multi-threaded designs. In either design, multi-segments are processed in multiple
processing units (PUs) supporting AVX instructions in a core.

One challenge in the implementation is the two table lookups in each iteration of
the computation, which can be very time-consuming if performed sequentially because it
would require 16 separated memory accesses for each lookup. One such example is to
use the _mm512_set_epi32 instruction to directly set an AVX register with 16 values from
one of the tables. Instead, we accelerate the table lookup by performing parallel fetching
with the _mm512_i32gather_epi32 instruction, and reduce the time spent on the first stage
by over 50%. The second stage checks 512 bits at a time using one AVX instruction by
taking advantage of widespread ‘0’ bits in the bit array. In most cases, we will have 512
consecutive ‘0’ bits.

To detect a boundary, after skipping minimum_chunk_size bits, we load the fol-
lowing 512 bits (as 16 32-bit integers) from the bit array to a register, and use the _mm512_-
cmpneq_epi32_mask instruction to compare it with 16 0s and generate a 16-bit mask indi-
cating whether there are non-zero integers. SS-CDC will continue with the next 512 bits in
the bit array unless non-zero integer(s) are found or the maximum chunk size is reached,
which will declare a chunk boundary. Compared to scanning the bit array one bit at a time,
using the AVX instructions accelerates the second stage by 30-40×, making its running
time account for only ∼2% of the total chunking time.

2.3.4 Multi-threaded SS-CDC on Cores with AVX
SS-CDC exploits parallelism among segments of a file on the AVX parallel hardware

available on individual cores. In reality, the workload may consist of multiple files for
deduplication on multiple cores. Assuming the parallelism across the cores is used in a
parallel deduplication scheme, there are design choices to be made in the scheme. One
is whether multiple files are processed in parallel. Or the choice is either single file (SF)
or multiple files (MF) at a time. The other is whether the AVX parallelism within each
core is used to process multiple segments simultaneously. Or the choice is either single

15

segment (SS) or multiple segments (MS) at a time in a core. For a multiple-thread SS-
CDC on on multi-cores supporting AVX, there are two efficient options, which are multi-
file multi-segment (MFMS) and single-file multiple segments (SFMS), as illustrated in
Figure 2.4. In contrast, existing multi-threaded deduplication scheme is either MFSS or
SFSS, as summarized in Table 2.2.

In the MFMS design, a file is processed by only one thread running at a core. In the
thread, the file is partitioned into segments, which are then processed in parallel with the
AVX-512 instruction. The single thread will process both chunking stages (filling the bit
array and scanning it for true boundaries) at the core, as described in Section 3.3. If there
are a sufficient number of files available to keep all cores busy, MFMS is an efficient im-
plementation of multi-threaded SS-CDC. However, there may not be enough files ready for
deduplication at a time. A backup file is usually very large, and a deduplication workload
may contain a few big files received via the network at a time. Furthermore, a backup file
may consume a large amount of memory. The amount of available memory may limit the
number of backup files for parallel deduplication. In such scenarios, an SFMS design of
the multi-threaded SS-CDC becomes necessary.

In an SFMS implementation, a backup file is first partitioned into fixed-size seg-
ments, which are placed into a segment queue. There is a chunking thread at each core,
which retrieves a batch of (N) segments each time from the head of the queue for the first-
stage chunking. As a lock is required to enforce an exclusive access to the queue, a larger N
is preferred to reduce the locking cost. Another benefit for a thread to retrieve and process
multiple (contiguous) segments at a time is the reduced cost of calculating hash value for
the rolling window, as an incremental hash function is used for the calculation. When all
the segments of a file complete their first-stage processing, a barrier synchronization among
the threads is required. After this, One of the threads proceeds to the second stage to select
the final chunk boundaries according to the bit array produced in the first stage. To reduce
the synchronization cost, a smaller segment batch (N) is preferred. To strike a balance be-
tween these two requirements on the batch size, for a segment size of about 0.5% of a file
size using an N value of 2-8 generally leads to good performance. And our experiments
find that the performance is not sensitive to the value in the range. Therefore, SS-CDC
uses 4 as N ’s default value. In the SFMS implementation, an apparent concern is the serial
processing at the second stage. However, its impact is small. First, this stage involves very
little computation accounting for about 2% of a file’s total chunking time. Second, during
the second-stage processing by one thread the other cores can be used to processing other
file(s). The SS-CDC’s SFMS implementation is necessary when deduplication of a partic-
ular file needs to be accelerated or only a small number of files are available at a time for

16

Table 2.3: Real-world datasets used in the experiments. All the Docker images are downloaded
from Docker Hub [24].

Name Size (GB) # of files Dedup Ratio Description
Cassandra 14.2 40 5.0 Docker images of Apache Cassandra, an

open-source storage system [9].
Redis 4.1 34 7.2 Docker images of the Redis key-value store

database [77].
Debian 9.5 92 15.8 Docker images of Debian Linux distribution

(since Ver. 7.11) [39].
Linux-src 570 1013 16.4 Uncompressed Linux source

code (v3.0∼v4.9) downloaded from the
website of Linux Kernel Archives [86].

Neo4j 46.0 140 19.0 Docker images of neo4j graph database [60].
Wordpress 181.7 501 22.0 Docker images of WordPress rich content

management system [41]
Nodejs 800.0 1567 41.4 Docker images of JavaScript-based runtime

environment packages [40]

chunking. It is noted that while SFSS can also accelerate a single file’s chunking, it cannot
exploit parallelism within a core for chunking multiple segments simultaneously.

2.4 Evaluation
We answer the following questions in the evaluation. First, how much speedup does

SS-CDC provide by leveraging AVX at a single core? To answer this question, we com-
pare the chunking time of SS-CDC with sequential CDC. Second, how does SS-CDC with
AVX scale to multiple cores? We use the sequential CDC as the baseline and compare the
speedups from SS-CDC with existing multithreading CDC, for both single-file chunking
and multi-file chunking. Finally, we evaluate the deduplication ratio reduction (degrada-
tion) from existing segment-based multithreading CDC.

The experiments were conducted on a Dell-EMC PowerEdge T440 server with 2
Intel Xeon 3.6GHz CPUs, each with 4 cores and 16MB LLC. The server is equipped with
256GB DDR4 memory and installed with Ubuntu 18.04 OS. The processors support Intel
AVX-512 instructions. The datasets are stored on the local disks. In the measurements,
the chunking time only includes the time spent on determining chunking boundaries, and
excludes the time for loading the data to memory before the chunking is performed. We use
7 real-world datasets as shown in Table 2.3. For the Linux source code, we downloaded
all 1013 versions (from 3 to 4.9) from the Linux Kernel Archives [86]. Each version is
converted into a file of the mtar format [51] for backup. The others are six groups of

17

Docker images, downloaded from Docker Hub [24], where each image is a tar file. In the
figures showing experiment results, measurements about the datasets are presented in the
order of their deduplication ratios, from low to high. Unless noted, we use 1MB as the
segment size for dispatching data to threads, and 2KB, 16KB, and 64KB, as the minimum,
expected average, and maximum chunk size respectively, as those in LBFS [57].

2.4.1 Chunking Speed
With the instruction-level parallelism from using AVX, we expect to see speedups in

chunking for both one core and multiple cores for SS-CDC.
Results on One Core. We first run the chunking process on one core with the dif-

ferent datasets and see how the use of the AVX instructions improves the chunking per-
formance. Figure 2.5 shows the speedups of SS-CDC’s chunking performance over se-
quential CDC with one thread running on one core. The speedups are very consistently,
at about 3.3×, though different datasets have different deduplication ratios. The speedups
are achieved by leveraging the instruction-level parallelism within a single core and the
deduplication ratio of a specific dataset does not impact the speedup, as SS-CDC always
scans the complete dataset.

Although the speedup is significant, it may be lower than one might expect in the
light of parallelism provided by the AVX-512 instructions, where it processes 16 segments
concurrently. There are a few reasons. First, SS-CDC actually needs to read more data and
do more rolling hash calculation than sequential chunking, as it does not skip the input data
using the minimum chunk size. As we will see next, the minimum chunk size has a consid-
erable impact on the speedups of SS-CDC. Secondly, while the chunking process is CPU
intensive, it also includes substantial memory accesses which load data from the memory to
registers for processing. While SS-CDC leverages the AVX instructions and reduces num-
ber of instructions executed for chunking, it does not reduce the amount of data that needs
to be loaded from the memory. Third, since we conduct chunking for 16 segments con-
currently, data are accessed at 16 different memory addresses in parallel. Existing DRAM
controllers and CPU caches may not be optimized to handle such workloads. Nevertheless,
for all datasets we examined, we achieved more than 3× speedups over sequential CDC.

While the speedups of SS-CDC are not impacted by the deduplication ratio of a
dataset, the minimum chunk size has a direct impact on the speedup of SS-CDC. The reason
is that the sequential CDC skips the minimum chunk size of bytes after each new chunk
boundary is detected while SS-CDC has to scan and calculate a hash for every byte. To
understand the impact of the minimum chunk size on SS-CDC’s performance advantage,
we measured the chunking speedups with different minimum chunk sizes. The results

18

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

1

2

3

C
hu

nk
in

g
Sp

ee
du

p

Figure 2.5: Single-thread SS-CDC’s chunking speedups over the sequential CDC at one core. The
minimum, expected average and maximum chunk sizes are 2KB, 16KB, and 64KB, respectively.

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

1

2

3

C
hu

nk
in

g
Sp

ee
du

p

Mini=2 KB Mini=4 KB Mini=8 KB

Figure 2.6: Chunking speedups when different minimum chunk sizes are used. The expected
average and maximum chunk sizes are 16KB and 64KB, respectively.

are presented in Figure 2.6. As expected, the chunking speedup is decreased when the
minimum chunk size is increased. However, even with a large minimum chunk size (e.g.,
with a 8KB minimum chunk size and a 16KB average chunk size, 50% of the input data
can be skipped in the sequential CDC baseline.), the chunking speedups are still substantial,
about 2.5×. As the 2KB minimum chunk size is commonly used, we adopt it as the default
value in the evaluation.

Results on Multiple cores. Next, we evaluated the scalability of the chunking speed
of SS-CDC on multiple cores. Specifically, we examined multithreading SFMS (scaling
SS-CDC to multiple cores for single files) and MFMS (scaling SS-CDC to multiple cores
for multiple files). We compared them with multithreading regular CDC methods (SFSS
and MFSS) which do not use AVX. Their chunking speeds were normalized to the sequen-
tial CDC without using AVX, one file at a time, on one core.

19

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

2

4

6

8
C

hu
nk

in
g

sp
ee

du
p

1 thread 2 threads 4 threads 8 threads

(a) SFSS Regular CDC

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

5

10

15

20

25

30

C
hu

nk
in

g
sp

ee
du

p

1 thread 2 threads 4 threads 8 threads

(b) SFMS SS-CDC

Figure 2.7: Chunking speedups of multithreading regular CDC and multithreading SS-CDC over
sequential CDC at one core with different datasets and thread/core counts when a file is processed
by all threads.

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

2

4

6

8

C
hu

nk
in

g
sp

ee
du

p

1 thread 2 threads 4 threads 8 threads

(a) MFSS Regular CDC

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

5

10

15

20

25

30

C
hu

nk
in

g
sp

ee
du

p

1 thread 2 threads 4 threads 8 threads

(b) MFMS SS-CDC

Figure 2.8: Chunking speedups of multithreading regular CDC and multithreading SS-CDC over
sequential CDC at one core with different datasets and thread/core counts when each file is pro-
cessed by one thread.

To examine how SS-CDC scales for single file chunking, we look at how the chunk-
ing speedup increases when we use more threads for chunking a single file. After we es-
tablish SS-CDC scales for single file chunking, we examine multiple file chunking where
one file is assigned to only one thread and we increase the number of concurrent files being
chunked. While in a real deployment, there are many different ways to assign chunking
threads among backup jobs, the experiments serve our purpose to demonstrate the scalabil-
ity of SS-CDC for both single file chunking and multiple file chunking. For each dataset,
we change the number of chunking threads from 1 to 8 and show their speedups over se-
quential chunking using one thread.

The results are shown in Figure 2.7 for single file chunking and Figure 2.8 for multi-
ple file chunking. From (a) in both figures (note the Y axes in (a) and (b) are using different
ranges), we can see multithreading regular CDC receive a speedup approximately propor-
tional to the number of cores (or threads). This is especially true for the MFSS case (Figure
2.8a) where each file is processed independently by a chunking thread. For example, for the

20

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

10

20

30

40

50

D
ed

up
 R

at
io

 R
ed

uc
tio

n
(%

)

SFSS w/ 512KB segments
SFSS w/ 1MB segments
SFSS w/ 2MB segments

Figure 2.9: Deduplication ratio reduction of the regular multithreading CDC chunking approach
(SFSS), compared with that of SS-CDC’s SFMS implementation (on 8 cores) when different segment
sizes are used.

Cassandra dataset, its MFSS speedups are 1.0, 2.0, 3.9, 7.5 on 1, 2, 4, and 8 cores, respec-
tively. The speedups become smaller (1.0, 1.9, 3.6 and 6.3) with its SFSS implementation,
where one file is partitioned into segments for the threads to process in parallel, resulting
in overheads for using locks at the segment queue and waiting for all chunking threads to
complete the first stage.

In contrast, with its use of the AVX instructions, multithreading SS-CDC achieves
superlinear chunking speedups. Still take the Cassandra dataset as an example. Its MFMS
speedups are 3.5, 6.8, 12.5, and 23.6 on 1, 2, 4, and 8 cores, respectively, which shows the
extra speedup of using AVX instructions scale well with the number of cores (consistently
∼3×). When scaling SS-CDC’s performance to multiple cores for single-file chunking in
SFMS, the speedups become smaller. For example, the SFMS speedups for the Cassandra
dataset reduces to 3.1, 5.4, 9.8, and 17.8 on 1, 2, 4, and 8 cores, respectively. Multithreading
SFMS suffers from the same bottlenecks as multithreading SFSS, such as the use of a lock
at the segment queue, barrier synchronization at the end of the first stage, and serialization
for the second stage. Besides, SFMS needs to do more rolling hash calculation for the extra
bytes, as shown in E1, E2, or E3 in Figure 2.3. In spite of that, while SFMS cannot achieve
the same speedups as MFMS, SFMS still achieves superlinear speedups. In the meantime,
it unlocks the opportunity of exploiting intra-file chunking parallelism.

2.4.2 Deduplication Ratio
SS-CDC is designed to provide chunking invariability. When used in either MFMS

or SFMS, it can always achieve the same deduplication ratio as that of sequential CDC.
In fact, during our development of SS-CDC, we compared the chunk boundaries from SS-

21

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

10

20

30

40

50
D

ed
up

 R
at

io
 r

ed
uc

tio
n

(%
)

Mini=2 KB
Mini=4 KB
Mini=8 KB

(a) Varying minimum chunk
sizes

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

10

20

30

40

50

D
ed

up
 R

at
io

 R
ed

uc
tio

n
(%

)

Expected Avg =4 KB
Expected Avg =8 KB
Expected Avg =16 KB

(b) Varying expected average
chunk sizes

Cassandra Redis Debian Linux-src Neo4j Wordpress Node
Datasets

0

10

20

30

40

50

D
ed

up
 R

at
io

 R
ed

uc
tio

n
(%

)

Maxi=32 KB
Maxi=64 KB
Maxi=128 KB

(c) Varying maximum chunk
sizes

Figure 2.10: Reduction of deduplication ratio (in percentage) for multithreading CDC (SFSS) on
8 cores, compared to SS-CDC (multithreading SFMS) with different chunk size configurations. The
segment size is 1MB.

CDC with sequential CDC, to verify our SS-CDC implementation is correct. However,
existing segment-based single file parallel chunking (SFSS) cannot achieve this chunking
invariability, and experience deduplication ratio reduction. To gauge significance of the
reduction, we compare the deduplication ratios of SS-CDC’s SFMS implementation with
SFSS and conduct a quantitative study where we vary the segment size and the chunk size.

Figure 2.9 presents the deduplication ratio reduction from SFSS when we vary the
segment size. The reduction is compared with the deduplication ratio from SS-CDC (and
also sequential CDC). The results show that SFSS can suffer significant deduplication ra-
tio reductions, when using different segment sizes. For example, the reduction is about
45% when the segment size is 512KB for the Node dataset. The reduction decreases when
increasing the segment size. However, for some datasets even when the segment size is
large, the reduction can still be substantial. For example, for the Node dataset, the reduc-
tion is about 18% when the segment size is 2MB. In many scenarios, including execution at
GPGPU’s cores, it is necessary to avoid using very large segments to exploit sufficient par-
allelism or/and to accommodate the segments in the limited device local memory. Existing
segment-based parallel chunking, as in SFSS, has the fundamental limitation that requires
a user to make a tradeoff between fine-grain parallelism by using a small segment size and
a high deduplication ratio with a large segment size. With SS-CDC, a user can use any
segment size without deduplication ratio reduction.

Next, we turn to look at how the chunk size impacts deduplication ratio for SFSS.
We vary all three parameters controlling the chunk size, including the minimum, the ex-
pected average, and the maximum chunk sizes, one at a time. The deduplication ratios are
compared with SS-CDC.

Across all three figures in Figure 2.10, in general when a dataset has a higher dedu-
plication ratio, the reduction of deduplication ratio from SFSS is more significant. When
there are more duplicates in the dataset, SFSS is more likely to turn a duplicate chunk into

22

a unique one due to chunk boundary shifts because of file segmentation. The deduplica-
tion ratio reduction is most significant when we vary the minimum chunk size, ranging
from 10% to 38% as shown in Figure 2.10a. Furthermore, when we increase the minimum
chunk size, the reduction becomes larger. With a larger minimum chunk size, it increases
the possibility of finding a matching rolling hash value in that window and having different
chunks between sequential CDC and SFSS. This can leave the use of SFSS in a dilemma
where a larger minimum chunk size can skip more bytes for better chunking performance
while a smaller minimum chunk size can avoid substantial deduplication ratio reduction.

The impacts of the average chunk size on deduplication ratio for SFSS are more com-
plicated. On one hand, with a larger average chunk size, there are fewer chunks and thus
fewer chunk boundaries. We have a smaller probability to find candidate chunk boundaries
in the minimum chunk size window that could lead to different chunks in segment-based
SFSS. On the other hand, with a larger average chunk size, it takes more bytes for SFSS
to synchronize back to chunk boundaries as those in sequential CDC as there will be fewer
candidate chunk boundaries. To investigate which factor has a larger impact on the dedu-
plication ratio in SFSS, we conduct experiments by varying the expected average chunk
size. As shown in Figure 2.10b, with a larger average chunk size, the deduplication ra-
tio reduction is more significant, which indicates the second factor has a bigger impact on
deduplication ratio reduction.

In addition to the minimum and the average chunk size, the maximum chunk size
also affects deduplication ratio. Figure 2.10c shows the deduplication ratio reduction when
varying the maximum chunk size. With a larger maximum chunk size, the deduplication
reduction is more significant. By using a larger maximum chunk size, the size of the
chunks are more likely larger as more bytes can be scanned when deciding the next chunk
boundary. So once a unique chunk is generated due to the segmentation, it can potentially
make a larger range of bytes not deduplicated.

To summarize, existing parallel chunking using segments suffers significant dedu-
plication ratio reduction when they exploit segment-based parallelism. SS-CDC guaran-
tees chunking invariability and achieves parallel chunking performance without impacting
deduplication ratios.

2.5 Conclusions
In this paper, we presented SS-CDC, a new parallel CDC that takes full advantage of

the parallel computing power of the underlying hardware for high chunking speed without
compromising deduplication ratio. SS-CDC separates the chunking process into a stage
that is compute intensive but easy to parallelize and a second stage that is sequential but

23

with low runtime cost. It can achieve almost full parallel chunking performance and the
same level of deduplication as sequential CDC. With a prototype based on AVX-512, we
demonstrated SS-CDC can be implemented on an SIMD platform and evaluated that we can
achieve parallel chunking performance for both single file chunking and multi-file chunk-
ing. With SS-CDC, we can now offload compute-intensive CDC to SIMD platforms to
exploit extra instruction-level parallelism to accelerate chunking and get high deduplica-
tion ratios.

24

CHAPTER 3

RapidCDC: The Duplicate Locality and its Use to Accelerate Chunking
in CDC-based Deduplication Systems

3.1 Introduction
With explosive growth of data volume and rising demand on high storage space ef-

ficiency and high performance, deduplication (or dedup hereafter) techniques have been
widely deployed in various storage systems, including Dell EMC Data Domain [22], and
NetApp ONTAP system [62].

There are two metrics to assess a dedup technique, namely dedup ratio and dedup
speed. The dedup ratio is the ratio between sizes of a data set before and after a dedup
operation. For datasets of low redundancy, the dedup technique may not be employed.
However, for those of sufficient redundancy, different dedup techniques may produce vastly
different dedup ratio. A dedup technique’s ability of detecting and removing redundancy
for high dedup ratio largely relies on its chunking method. Assuming a file is to be dedu-
plicated, one may use either fixed-size chunking (FSC) or content-defined chunking (CDC)
methods to partition the file into chunks before their fingerprints are computed and com-
pared to detect redundancy. Between the two methods, CDC often produces much higher
dedup ratio than FSC, as it can accommodate various differences between stored files and
files to be written. With FSC, a file is segmented into fixed-size chunks from its beginning.
If any insertions or deletions are applied at the beginning of a stored file and their sizes are
not exactly multiples of a predefined chunk size, all chunk boundaries in the file are shifted,
causing boundary-shift issue [57]. Consequently, few chunks can be deduplicated, though
a majority of the file is unchanged. CDC effectively addresses the issue by forming chunks
based on the file content instead of at fixed file offsets.

However, CDC’s operation of detecting chunk boundaries, or forming the chunks,
can be very expensive, as it may have to scan a file byte-by-byte to avoid missing any
potential chunk boundary and thus compromising dedup ratio. Specifically, a common
practice of a CDC method is to use a fixed-size window to roll over the file. It applies a
hash function on the byte sequence covered in the window and compares the hash value to
a predefined value. If matched, a chunk boundary is declared at the end of the window. In
principle, the window rolls forward by only one byte after every hash function computation
and hash value comparison. In reality, CDC needs to avoid a chunk that is too small for

25

Linux-tar
dr=4.06

Redis
dr=7.17

Neo4j
dr=19.04

0

20

40

60

80

100

Ti
m

e
(%

)
Chunking
Fingerprinting

Others
IO Busy

IO Idle

(a) Datasets of different deduplication ratios
(shown as "dr" with respective dataset names)
on the hard disk.

Hdd
(138MB)

SATA SSD
(520MB)

NVMe SSD
(1.20GB)

0

20

40

60

80

100

Ti
m

e
(%

)

Chunking
Fingerprinting

Others
IO Busy

IO Idle

(b) The “Redis" dataset on disks of different se-
quential write throughput (shown with respec-
tive disk types).

Figure 3.1: Breakdown of CPU time and disk time with CDC dedup of different datasets on different
disks. In each bar group, the first two bars are for regular CDC chunking, and the last two are for
the proposed RapidCDC.

lower dedup metadata overhead or is too large for higher dedup ratio. To this end, a min-
imum chunk size and a maximum chunk size are set for the CDC method. When a chunk
boundary is detected, or a chunk is formed, CDC moves the window forward by the min-
imum chunk size before it resumes its byte-by-byte rolling. When the window rolls away
from the last boundary for the maximum chunk size without detecting a new boundary, the
current window position is declared as a boundary (at the end of the window).

Even with introduction of the minimum chunk size, a significant portion of a file still
has to be scanned with the hash function computation during the window rolling. For a
CDC system whose minimum, maximum, average chunk sizes are 4KB, 12KB, and 8KB,
respectively, about half of the bytes in a file are scanned [104]. For a storage system
admitting data at the speed of 1GB/s, the CDC dedup component of the system must carry
out around 500 million of such function computations per second so that the component
itself does not become the storage system’s performance bottleneck. However, it can be
a serious challenge for the current CDC technique to make the I/O devices, such as hard
disks and SSDs, instead of its own operations, be the performance bottleneck.

To illustrate whereabout of the bottleneck, we run the rolling-window-based CDC
dedup on datasets of different dedup ratios and residing on the disks of different speeds.
The datasets are described in Table 3.1. Detailed experiment setup is depicted in Section
4. In each experiment, duplication within each dataset is detected and removed by a CDC
dedup system using Rabin as its hash function for rolling window and SHA-1 as its finger-
printing function. The minimum, expected average, and maximum chunk sizes are set at
4KB, 8KB and 12KB, respectively. Non-deduplicated data are asynchronously written to

26

the disks, so that the CPU time and disk time can be maximally overlapped. The first two
bars in each bar group in Figure 3.1 show the breakdown of CPU time and disk time nor-
malized over the corresponding dataset’s total writing time. As non-deduplicated data are
always written to a disk sequentially as a log, the percentage of disk busy time is calculated
as the ratio of actual amount of written data and maximum amount of data that can be writ-
ten to the disk under its peak sequential write throughput. From the figure we can see that
the disk busy time percentage, or its utilization, is low. With either increasingly high dedup
ratios (see Figure 3.1(a)) or increasingly high speed disks (see Figure 3.1(b)), the disk busy
time holds accordingly smaller share of the disk time. In other words, the dedup’s CPU
time becomes an increasingly serious performance bottleneck. This is especially problem-
atic for an archive storage system providing data backup service, where dedup is almost
always deployed, as it usually has a high dedup ratio and uses a disk array consisting of a
large number of disks for high throughput. Because collision-resistant hash function has to
be employed on each chunk to generate its fingerprint, the fingerprinting cost can hardly
be reduced. Fortunately, chunking is usually a more expensive CDC operation. As shown
in the figure, chunking consistently represents over 60% of CPU time and therefore a great
potential for CDC’s performance improvement. In this paper, we aim to remove almost all
of the chunking cost for workloads of high dedup ratio. To this end, we will first identify
an important but currently much ignored property, named duplicate locality, and show how
it may help accelerate chunking speed (Section 2). We will exploit the property to design
a suite of chunking techniques with different trade-offs between performance risk and gain
(Section 3). In Section 4, we extensively evaluate the CDC dedup strategies adopting these
chunking techniques, named RapidCDC, with synthetic and real-world datasets to assess
improvements of the chunking speed and entire dedup system’s performance. The last two
bars in each bar group in Figure 3.1 show the results with RapidCDC, where chunking time
is significantly reduced and the disks are better utilized.

3.2 The Duplicate Locality
Existence of duplication is often a result of limited updating of an existing dataset.

Naturally when an update operation, such as insertion, deletion, or overwrite, occurs at a file
offset, there is a tendency that file contents around the offset are more likely to be updated.
That is, the updates are likely to be unevenly distributed in a dataset. In other words, non-
updated data, or duplicates, are likely to be contiguously laid out in a file. We name this
layout of duplicate data the duplicate locality. In the context of dedup, this locality refers to
the phenomenon that duplicate chunks are likely to stay together. When one such duplicate
chunk is detected, the chunks around it are likely to be also deduplicatable.

27

10 20 40 80 209
of files

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f c

hu
nk

s
(%

)

Duplicate chunks
Duplicate chunks in LQ sequences

(a) Linux-tar

10 20 40 80 90
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(b) Debian

10 20 40 80 140
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(c) Neo4j

10 20 40 80 1567
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(d) Nodejs

10 20 40 80 501
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(e) Wordpress

5 10 20 30 40
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(f) Cassandra

5 10 20 30 34
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(g) Redis

2 4 6 8 14
of files

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
)

Duplicate chunks
Duplicate chunks in LQ sequences

(h) Google-news

Figure 3.2: Percentage of all duplicate chunks and percentage of duplicate chunks in the LQ
sequences among all chunks when increasing number of files in a dataset are admitted into the
system.

Because chunks are not very large in practice (usually tens of KBs) for high dedup
ratio, the duplicate locality at the chunk granularity tends to be strong. We use the number
of contiguous deduplicatable chunks immediately following the first deduplicatable chunk
to quantify the locality. These deduplicatable chunks constitute a chunk sequence, named
locality-quantification sequence, or LQ sequence in short. Existence of such sequences mo-
tivates our proposed RapidCDC that may significantly reduce chunking cost. The longer
the sequences are, the stronger the locality is. If the sequences’ length is always 0, ei-
ther there are not any duplicate chunks or individual duplicate chunks are all isolated by
non-duplicate chunks. To investigate the existence and strength of the locality, we exam-
ine percentage of chunks in the sequences (Figure 3.2) and the sequence lengths’ distri-
bution (Figure 3.3) for a selected group of real-world datasets. As detailed in Table 3.1,
the data sets cover various application domains, including Linux source code as tar files
("Linux-tar"), Linux distribution as Docker images ("Debian"), graph database ("Neo4j"),
JavaScript-based runtime environment packages ("Nodejs"), WordPress container images
("Wordpress"), Apache Cassandra snapshot images ("Cassandra"), Redis key-value store
backup images ("Redis"), and daily Google news archives ("Google-news"). As the inves-
tigation is on locality in terms of chunk sequences, we use a rolling-window-based CDC
method to identify chunks in files. And still we use the 4KB-8KB-12KB configuration (for
the minimum, expected average, and maximum chunk sizes, respectively) in the chunking.

In each experiment files in a dataset are sent to the CDC dedup system one at a time.
When a certain number of files, such as 10, 20, up to the total file count in the dataset, are
admitted into the system, we count all duplicate chunks and those duplicate chunks in the

28

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f c

hu
nk

s
(%

) 10
20
40
80
209

(a) Linux-tar

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 10

20
40
80
90

(b) Debian

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 10

20
40
80
140

(c) Neo4j

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 10

20
40
80
1567

(d) Nodejs

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 10

20
40
80
501

(e) Wordpress

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 5

10
20
30
40

(f) Cassandra

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 5

10
20
30
34

(g) Redis

21 23 25 27 29 211

Sequence length of duplicate chunks
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

(%
) 2

4
6
8
14

(h) Google-news

Figure 3.3: CDF (Cumulative Distribution Function) curves of LQ sequence lengths when a certain
number of files in a dataset are admitted into the system. The number of currently admitted files is
shown in the legend.

LQ sequences, and show their respective percentages over total number of chunks at the
time in Figure 3.2. The percentage of all duplicate chunks, shown as the upper lines in
the figures and named accordingly as upper percentage, positively correlates to the dedup
ratio. In contrast, the percentage of chunks in the LQ sequences, named lower percentage,
exhibits existence of duplicate locality. The gap between the two percentages indicates the
percentage of isolated duplicates, or duplicates without the said locality. As we observe the
two percentages for each data set when different number of files are admitted in Figure 3.2,
the gap is small (mostly less than 5% and up to 10%), and the majority of duplicate chunks
are in the LQ sequences. Another observation is that these two percentages are correlated.
A dataset of a higher dedup ratio has higher upper percentages. It accordingly has higher
lower percentages, which makes RapidCDC more effective, as to be revealed in the next
section.

To further see the strength of the duplicate locality, quantified by length of the LQ
sequence, we show percentage of chunks that stay in an LQ sequences whose length is
smaller than a certain threshold for different data setsat the time when different numbers of
files are admitted in Figure 3.3. From the figure we can see that only a small percentage of
chunks are in very short LQ sequences, such as those whose lengths are not more than 8
chunks, as a majority of chunks are duplicates. For some datasets of high dedup ratio, such
as Debian and Wordpress, there can be more than 50% of chunks are in the LQ sequences
whose lengths are longer than 64 chunks. When more files are added into the system, there
tends to be more chunks in the shorter LQ sequences. Even so, across all the datasets and
with various number of files are admitted a majority of duplicate chunks stay in relatively

29

<FP1, s1> <FP2, s2> <FP3, s3> <FP4, s4>

B1 B2 B3 B4…

…Filestored

Filenew

P1P0 P2 P3 P4

…

…
A2A1 A3 A4

Offset in file:

Figure 3.4: An illustration of the idea of RapidCDC for determining chunk boundaries rapidly.
A1−4 and B1−4 are chunks, FP1−4 are fingerprints of chunk A1−4, respectively. s1−4 are size (in
bytes) of chunk A1−4, respectively.

long sequences, demonstrating strong duplicate locality. This is an encouraging result.
Interestingly, as we will show, RapidCDC’s effectiveness is not sensitive to the locality’s
strength. Instead, it is correlated only to the percentage of chunks in LQ sequences of any
lengths.

3.3 The Design of RapidCDC
The key technique of RapidCDC is to exploit the duplicate locality in the datasets to

enable a chunking method that can detect chunk boundaries without a byte-by-byte window
rolling. Due to existence of the locality, immediately following a current deduplicateable
chunk, denoted B1 in Figure 3.4, in a file named Filenew, the B2 chunk can also be a du-
plicate. The question is where the end boundary B2 is. To this end, current CDC chunking
method would take a window rolling over possibly a large number of bytes, one byte at a
time with hash function calculation and comparison. The number is the difference between
B2’s size and the minimum chunk size, which is usually a count of a few thousands of bytes
or more.

3.3.1 Quickly Reaching Next chunk’s Boundary
Let’s assume the fingerprint of B1 in Filenew matches fingerprint FP1, which is

currently in the dedup system and is associated with a unique (physical) chunk of data
in the storage system, which is mapped to by at least one logical chunk. Assume one
of the logical chunks is Chunk A1 in a file named Filestored that is currently stored in
the storage, as illustrated in Figure 3.4. In a CDC dedup system each file has a recipe
recording the mapping between each of its logical chunks and its mapped physical chunk
for rebuilding file content [87, 28, 53, 79, 91, 92, 93]. Because the system maintains the
mapping from fingerprints to their respective physical chunks, a file’s recipe only needs
to record its chunks’ fingerprints along with their respective chunk sizes in the order of

30

their occurrence in the file. For example, Filestored’s recipe is composed of a sequence of
records [..., (FP1, s1), (FP2, s2), ...], where s1 and s2 are corresponding chunks’ sizes.

As B1 in Filenew shares its fingerprint (and exact data content) with A1 in Filestored,
their respective next chunks, B2 and A2, and likely to have the same content. Accordingly,
we may use s2, Chunk A2’s size, in Filestored’s recipe as a hint to speculate B2’s size,
and directly move the rolling window on Filenew to the corresponding file position, P2, as
shown in Figure 3.4. The key enabling operation is to obtain the s2 size from the duplicate
chunk A1. A naive approach is to maintain a pointer for each fingerprint pointing to its cor-
responding recipe record (e.g., from Fingerprint FP1 to (FP1, s1), the record in Filestored’s
recipe). For example, we can following this relationship chain to obtain s2 after knowing
B1 is a duplicate chunk: B1 → FP1 → (FP1, s1)→ (FP2, s2)→ s2. While this approach
works, it unnecessarily increases complexity and overhead by involving recipes in the op-
eration. A recipe may be lost after its corresponding file is removed, making corresponding
pointers invalid. In the meantime, a sequence of its fingerprints may remain in a different
file’s recipe with a sequence of duplicate chunks in the corresponding file, and the pointers
need to be adjusted accordingly. It can be expensive to adjust the pointers in response to
changes of recipes. Furthermore, as a fingerprint can be associated with multiple logical
chunks, or multiple recipe records, it may be attached with multiple pointers. This may
further increase cost of maintaining the pointers.

To address this issue, RapidCDC adopts a much more simple and efficient method.
The CDC-based dedup process always starts from the beginning of a file and moves se-
quentially towards the end of the file. For any two consecutive chucks in a file, say A1

and A2, we record the size of A2, say s2, along with the fingerprint of A1, say FP1. In
the example shown in Figure 3.4, the duplicate chunk B1 can use a simpler relationship
chain (B1 → FP1 → s2) to obtain the suggested size (s2) of its next chunk B2 without
involving recipes. While in different files, A1 having Fingerprint FP1 may be followed
with chunks of different sizes, we allow a list of next-chunk sizes, named size list, to be
attached to FP1. Because the size of a chunk falls within a relatively small range (between
the minimum and maximum sizes), the size can be efficiently represented (e.g., 2 bytes for
a range of [2KB-64KB]). As a fingerprint itself needs tens of bytes for its storage (e.g., 20
bytes for a SHA-1 fingerprint), recording a few next-chunk sizes with a fingerprint is well
affordable.

The next-chunk sizes attached to a fingerprint are actually hints of next chunk’s
boundary position. With such a hint, the rolling window can directly jump to the suggested
position. If the position is accepted, RapidCDC avoids rolling the window one byte at a
time for thousands of times to reach the next chunk boundary in regular CDC chunking. We
will detail criteria of the acceptance in the next section. If not accepted, it will try another

31

next-chunk size in the size list of the duplicate chunk’s fingerprint. Only when none of the
sizes in the list is accepted, RapidCDC moves the window back to the position which is the
minimum chunk size after the last chunk, or the position where a regular CDC would use
after the last chunk. It then rolls the window byte-by-byte as the regular CDC does until
a new duplicate chunk is found. As soon as a new duplicate chunk is found, RapidCDC’s
window jumps again attempting to take advantage of expected duplicate locality. In this
way, RapidCDC can flexibly switch its window rolling between a fast forwarding mode and
a byte-by-byte slow movement mode to maximally exploit duplicate locality and perform
chunking as fast as possible.

3.3.2 Accepting Suggested Chunk Boundaries
After a duplicate chunk is detected, we retrieve the size list associated with its fin-

gerprint, which provides hints for possible sizes of its next chunk, or accordingly its next
chunk’s possible end boundaries. We will check each of the sizes in the list in order until a
chunk size (or the corresponding chunk boundary) is accepted or none of them can be ac-
cepted. There are four candidate acceptance criteria possibly adopted in RapidCDC, each
with different trade-offs between performance gain and risk of performance penalty.
• FF (Fast-forwarding only). The suggested chunk boundary is always accepted. This

is the most aggressive criterion for fast chunking. However, it may risk dedup ratio
by choosing invalid chunks and missing true chunk boundaries. Our experiments
with real-world datasets show the risk is very low due to RapidCDC’s ability of
switching to byte-by-byte detection whenever un-deduplicatable chunk is found (see
Section 3.4.5).
• FF+RWT (Rolling Window Test). The suggested boundary is verified by one rolling

window computation and comparison at the boundary position. Like the window
used in a regular CDC chunking, its hash value is computed and compared to the
pre-determined value. Only when they are equal and accordingly a valid chunk is
confirmed, the boundary is accepted.
• FF+MT (Marker Test). Instead of computing the hash value of the window in the

FF+RWT criterion, which can involve tens or hundreds of bytes, in FF+MT Rapid-
CDC compares the last byte, treated as a marker, of the two chunks under consider-
ation (e.g., A2 and B2 in Figure 3.4 after duplicate chunks A1 and B1 are found.).
The boundary is accepted if the two bytes are equal. This criterion requires recording
last byte of a chunk along with its size in the size list. This marker-byte comparison
needs few instructions, and is faster than rolling window test.

32

File A:

Size lists: FP1: <s2> …

…FP1
s1

FP2
s2

FP3
s3

FP2: <s3>
(a) Creation of fingerprints and their size lists.

File A:

Size lists: FP1: <s'2, s2> …

…FP1
s1

FP2
s2

FP3
s3

FP2: <s3>

File A': …FP1
s1

FP'2
s'2

(b) Updating size lists

Figure 3.5: Maintenance of size lists

• FF+RWT+FPT (Fingerprint Test). This is the most stringent criterion. After the
boundary passes the rolling window test, FF+RWT+FPT additionally computes the
fingerprint of the chunk delimited by the suggested boundary and tests whether the
fingerprint currently exists (or whether the chunk is a duplicate). Only if the second
test is also passed is the boundary accepted. By computing the fingerprint, this veri-
fication process is the most expensive one. However, if the fingerprint test is passed,
the chunk is confirmed to be a duplicate chunk and can be readily deduplicated. Oth-
erwise, it has a relatively high performance penalty.

3.3.3 Maintaining List of Next-chunk Sizes
As each fingerprint is associated with a size list providing hints on next chunk’s end

boundary, maintenance and use of the hints can be performance-critical. As illustrated in
Figure 3.5(a), File A is sent to the CDC dedup system for storage. Assuming chunks of File
A cannot be deduplicated. When its first chunk’s fingerprint (FP1) is added to the system’s
signature pool, its size list is created. When the file’s second chunk is determined, its size
(s2) is added to FP1’s list as its first member. A list can grow. In Figure 3.5(b) File A′ also
has a chunk whose fingerprint is FP1. But the chunk is followed with a chunk of a different
size (s′2 6= s2). s′2 is then added to the FP1’s list, which is now < s′2, s2 >.

The size list is an ordered list. Once the fingerprint of a chunk in the file matches one
already stored in the system, the size values in the fingerprint’s size list will be checked one
by one for next chunk boundary, until a boundary is accepted, in the order as they appear
in the list. Consequently, the order can have an impact on the chunking performance. An
acceptance of a file offset suggested by a size value as the next chunk boundary is termed
a hit on the size value; otherwise, a miss on the value. Each miss may carry a miss penalty,
depending on which of the four acceptance criteria is used. Therefore, we should place
size values that are more likely to produce hits at the front of the list. To this end, we use
the LRU (Least Recently Used) policy, which always places the most recently hit value at
the front, including new value just added into the list. For example, in Figure 3.6 FP1’s

33

Size lists: FP1: <s'2, s2>

FP1

s1

FP3

s3

FP'2
s'2

FP8

s8

FP4

s4

FP5

s5

FP6

s6

FP7

s7

File A:

FP1

s1
FP2

s2

FP'8
s'8

FP4

s4

FP5

s5

FP'6
s6

FP7

s7
File A':

FP2: <s4> FP3: <s4> FP4: <s5> FP5: <s'6, s6> FP6: <s7> FP7: < s'8, s8>

FP'2: <s3> FP'6: <s7>

FP1

s1

FP2

s2

FP'8
s'8

FP4

s4

FP5

s5

FP6

s6

FP7

s7
File B':

Minimum chunk size range Range with regular rolling window

Range jumped with RapidCDC Chunk boundary

Figure 3.6: Use of size lists to accelerate CDC chunking (The shown size lists reflect their contents
after Files A and A′ are stored and before File B is written.)

list is < s2 > before File A′ is stored. After File A′ is stored, it becomes < s′2, s2 >,
where the newer size value s′2 is placed at the head. After File B is written, the list becomes
< s2, s

′
2 > as s2 is hit to help quickly find File B’s second chunk. A common scenario

is that a file is incrementally updated generating a sequence of file versions, each version
resulting from updating of its previous one. Use of the LRU policy can maximize chance
of hit at the first size value in a list. As shown in Figure 3.6, due to existence of duplicate
locality, after sufficient history access sequences are available (Files A and A′), a new file
(File B) can flexibly exploit the locality in multiple chunk sequences.

While keeping multiple size values in a size list accommodates different sequence
patterns to minimize probability of switching backing to the window’s slow movement
mode, using a too-long list may incur excessive space overhead. As the list is managed with
LRU, misses on the list can automatically evict the low-hit-ratio size values. However, if the
list is too long, some low-hit-ratio size values may stay in the list for a long time period and
experience misses. Any miss on a size value carries a penalty, because the cost of using the
value for boundary acceptance check can be substantial, such as that for the FF+RWT+FPT
criterion. Therefore, the list should be reasonably short to keep low-hit-ratio values out of
the list.

3.4 Evaluations
To evaluate performance of RapidCDC, we conduct extensive experiments with both

synthetic and real-world datasets.

34

Table 3.1: Real-world datasets used in the experiments. All the Docker images are downloaded
from Docker Hub [24].

Name Size (GB) # of files Dedup Ratio Description
Google-news 7.2 14 2.1 Two weeks’ data

(10/17/2018∼10/31/2018) from
news.google.com, one file for each
day, collected by wget with a maxi-
mum retrieval depth of 3.

Linux-tar 37.2 209 4.1 Tar files of Linux source code (Ver.
4.0∼4.9.99) from kernel.org.

Cassandra 14.2 40 5.0 Docker images of Apache Cassandra,
an open-source storage system [9].

Redis 100.4 34 7.2 Docker images of the Redis key-value
store database [77].

Debian 9.5 92 15.8 Docker images of Debian Linux distri-
bution (since Ver. 7.11) [39].

Neo4j 46.0 140 19.0 Docker images of neo4j graph
database [60].

Wordpress 181.7 501 22.0 Docker images of WordPress rich con-
tent management system [41]

Nodejs 800.0 1567 41.4 Docker images of JavaScript-based
runtime environment packages [40]

3.4.1 The Systems in Evaluation
We implement a prototype of RapidCDC that can be configured with any of the

four chunk boundary acceptance criteria (FF, FF+RWT FF+MT, and FF+RWT+FPT). The
rolling window size is set to 256 bytes. The default hash function applied on the content of
the window to identify chunk boundaries is Rabin [73], which is an efficient rolling hash
function that can reuse its hash computation of data that still remains in the window when
the window shifts forward. This function has been widely used in CDC-based deduplica-
tions [57, 106, 47, 64, 100, 56]. In the evaluation, we also include a more lightweight hash,
Gear [102]), to replace Rabin to reveal how the function’s cost impacts RapidCDC’s per-
formance advantage. A CDC dedup system’s minimum and maximum chunk sizes can be
designated, and its expected average chunk size can be configured by adjusting parameters
of the hash function. The default minimum/expected average/maximum chunk sizes used
in the RapidCDC prototype are 4KB/8KB/12KB, respectively, which is the configuration
adopted in the Dell-EMC Data Domain system [22]). In the evaluation we also test a con-
figurations with a larger range of chunk size (2KB/16KB/64KB), which is used in LBFS, a
low-bandwidth network file system using the CDC technique to reduce network traffic [57].
The prototype uses SHA-1 to compute a chunk’s fingerprint. The implementation has about

35

2400 lines of C code, which is compiled by GCC 7.3.0 with “-O3” compiler optimization
. By default, we use one thread. We will also conduct experiment with RapidCDC with
multiple threads. And the default length of a fingerprint’s size list is 2.

Each experiment includes a regular CDC dedup system as a counterpart of the Rapid-
CDC system in comparison. All systems in a comparison are configured the same except
stated otherwise, including the window size, the hash function, and chunk size setups. We
run the systems on a Dell-EMC PowerEdge T440 server with 2 Intel Xeon 3.6GHz CPUs,
each with 4 cores and 16MB LLC. The server is equipped with 256GB DDR4 memory and
installed with Ubuntu 18.04 OS. We use a hard disk as the default device for data storage.
The hard disk has model number of WDC WD1003FZEX-00K3CA0 with sequential write
and read bandwidths of 138MB/s and 150MB/s, respectively.

3.4.2 The Datasets
The datasets used in the evaluation include a series of synthetic datasets and eight

real-world datasets as described in Table 3.1. Each synthetic dataset includes 10 files emu-
lating a sequence of file versions with each produced after limited amount of modification
over its previous version. The first version in the sequence is created with the dd command
by copying 500MB randomly generated data from “/dev/urandom”. A modification can be
an insertion, deletion, or overwrite. To allow each modification to independently impact the
dedup performance and ratio, we make sure each chunk receives at most one modification.
The real-world datasets represent various workloads expected by a deduplication system,
including the source code files, virtual machine images, database images, and internet news
archives. Details of the datasets are listed in Table 3.1. The dedup ratios shown in the table
are obtained by applying the aforementioned regular CDC dedup with its default configu-
ration. As each dataset consists of a sequence of files, in a dedup experiment we write the
files in a sequence, one at a time, to a dedup system and observe the deduplication speed
and amount of data that can be deduplicated within the dataset itself.

3.4.3 Results with Synthetic Datasets
As mentioned, starting from the second one in the sequence of 10 files in a synthetic

dataset, each chunk receives at most one 100-byte modification.

3.4.4 Impact of Modification Count and Distribution
Modifications can be categorized into two types. One may cause chunk boundary

shift, including insert and delete. The other (overwrite) does not shift the boundary, and

36

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6
Sp

ee
du

p
FF+RWT+FPT
FF+RWT
FF+MT
FF

(a) Insert/Delete

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

7

Sp
ee

du
p

FF+RWT+FPT
FF+RWT
FF+MT
FF

(b) Overwrite

1000 2000 5000 10000 20000
of modifications

0
1
2
3
4
5
6
7

D
ed

up
lic

at
io

n
ra

tio

Regular
FF+RWT+FPT
FF+RWT
FF+MT
FF

(c) Insert/Delete

1000 2000 5000 10000 20000
of modifications

0
1
2
3
4
5
6
7
8

D
ed

up
lic

at
io

n
ra

tio

Regular
FF+RWT+FPT
FF+RWT
FF+MT
FF

(d) Overwrite

Figure 3.7: Chunking speed and dedup ratio for datasets with different numbers of modifications
spread over an entire file.

only changes a chunk’s content. To generate a new version of file, we choose a modification
type and a number of modifications and randomly apply them into a file. For the type of
boundary-shift operations, we randomly choose either insert or delete. Figure 3.7 shows the
chunking speed (reciprocal of total chunking time) and dedup ratio on a dataset generated
with different types and different numbers of modifications for RapidCDC using different
boundary acceptance criteria. The chunking speed is normalized to the speed of the regular
CDC dedup on the same dataset, and is presented as speedup. As shown, RapidCDC with
the FF criterion, which accepts a suggested boundary without any testing, has a consistently
higher speedup. However, for Insert/Delete its advantage on the speedup comes at the
cost of reduced dedup ratio. Because RapidCDC quickly switches to the slow window
movement mode to look for the next legitimate boundary after a fingerprint mismatch,
the reductions are limited. There is not such a reduction with datasets generated with
overwrites, as they do not change the boundaries. Except with FF, RapidCDC has the
same dedup ratio as the regular CDC. Across the various datasets it seems that FF+MT is
a consistently well-performed choice in terms of both chunking speed and dedup ratio.

37

10 20 50 80 100
Range of modified chunks (%)

0
1
2
3
4
5
6

Sp
ee

du
p

FF+RWT+FPT
FF+RWT

FF+MT
FF

(a) Insert/Delete

10 20 50 80 100
Range of modified chunks (%)

0
1
2
3
4
5
6
7

Sp
ee

du
p

FF+RWT+FPT
FF+RWT

FF+MT
FF

(b) Overwrite

Figure 3.8: Chunking speedups for datasets where 1000 modifications are applied to different
range of a file.

Understandably the dedup ratio decreases with the increase of modification count.
As RapidCDC takes advantage of duplicate sequence, which tends to become fewer and
shorter with the increase, its chunking speedup is accordingly reduced. However, the
speedup is always positively correlated with its corresponding dedup ratio, and is very
close to the ratio. For example, for Insert/Delete and the FF RapidCDC, the dedup ratios
are 7.9, 6.6, 4.3, 2.8, and 1.8 with modification counts of 1000, 2000, 5000, 10000, and
20000 in a file, respectively. And the respective speedups are 6.1, 4.8, 3.1, 2.1, and 1.6,
which are close to the respective dedup ratios. RapidCDC can enable its fast forwarding
mode to reach boundaries of any duplicate chunks in the LQ sequences. We speculate that
the speedup can stay high regardless of distribution of LQ sequence lengths, as long as
there are a sufficient number of duplicate chunks. This speculation is confirmed by the ex-
periment results shown in Figure 3.8. Datasets used in the experiments are generated after
applying the same number (1000) of modifications within the first certain percentage of a
file. The speedup shows little change when the modifications are either made narrowly in a
10% file range or scattered over the entire file (100%). That is, RapidCDC’s performance
is not sensitive to LQ sequence length’s distribution.

3.4.4.0.1 Impact of Minimum Chunk Size and Hash Function During chunking op-
erations of a regular CDC, a rolling window also enters fast-forwarding mode to skip the
minimum chunk size of bytes immediately after a chunk boundary is found. This opti-
mization on the window rolling may have an impact on RapidCDC’s relative benefit. To
this end, we vary the minimum chunk size for a dedup on a dataset with 1000 insert/delete
modifications randomly distributed in a file. To allow the minimum size can be varied in
a larger range, we adopt a 2KB/16KB/64KB configuration, instead of the 4KB/8KB/12KB
default one, for minimum/expected average/maximum chunk sizes. Figure 3.9 shows that

38

2 4 8
Minimum chunk size (KB)

0
1
2
3
4
5
6

Sp
ee

du
p

FF+RWT+FPT
FF+RWT

FF+MT
FF

(a) Insert/Delete

2 4 8
Minimum chunk size (KB)

0
1
2
3
4
5
6
7
8

Sp
ee

du
p

FF+RWT+FPT
FF+RWT

FF+MT
FF

(b) Overwrite

2 4 8
Minimum chunk size (KB)

0
1
2
3
4
5
6
7
8

D
ed

up
lic

at
io

n
ra

tio

Regular
FF+RWT+FPT

FF+RWT
FF+MT

FF

(c) Insert/Delete

2 4 8
Minimum chunk size (KB)

0
1
2
3
4
5
6
7
8

D
ed

up
lic

at
io

n
ra

tio

Regular
FF+RWT+FPT

FF+RWT
FF+MT

FF

(d) Overwrite

Figure 3.9: Chunking speedup and dedup ratio with different minimum chunk sizes.

the impact is small. With a decent dedup ratio, RapidCDC has removed most of the chunk-
ing time, leaving only a small number of window rollings in the slow movement mode.
Therefore, the acceleration of the slow mode does not take away much of the RapidCDC’s
relative advantage. Furthermore, the small reduction of speedups are correlated to that of
dedup ratio. A larger minimum size leads to large chunk sizes, which tends to reduce dedup
ratio. RapidCDC’s speedup becomes smaller with fewer duplicate chunks.

Another factor likely impacting RapidCDC’s speedup is the hash function used for
detecting chunk boundaries. Because the function is used very frequently in a regular CDC
(at every rolling window position), chunking will become faster by using a faster hash
function. The Gear [102] function used in FastCDC [102] can be 3× faster than Rabin.
Figure 3.10 shows the speedups with the faster function used in both RapidCDC and regular
CDC. The speedups are modestly smaller than those with the Rabin function (compared to
Figure 3.7). For example, for RapidCDC’s FF criterion they are 5.9, 4.5, 2.7, 1.8, and 1.5
with Gear for modification counts of 1000, 2000, 5000, 10000, and 20000, respectively.
The corresponding speedups are 6.1, 4.8, 3.1, 2.1, and 1.6 with Rabin. While the window’s
slow rolling mode becomes faster, RapidCDC’s relative advantage becomes smaller. These
results also indicate that RapidCDC’s performance strength is largely orthogonal to other
optimization efforts on improving the CDC dedup.

39

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5
Sp

ee
du

p
FF+RWT+FPT
FF+RWT
FF+MT
FF

(a) Insert/Delete

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

Sp
ee

du
p

FF+RWT+FPT
FF+RWT
FF+MT
FF

(b) Overwrite

Figure 3.10: Chunking speedups of RapidCDC on datasets with different modification counts and
a faster hash function, Gear.

3.4.4.0.2 RapidCDC’s Worst-case Scenario RapidCDC’s effectiveness relies on its
successful acceptance of suggested next-chunk sizes. For any unaccepted size value, or a
miss on the value, a miss penalty occurs for any acceptance criteria except FF. To gauge the
impact of the miss on RapidCDC’s chunking performance in the worst-case scenario, we
change RapidCDC’s prototype code to make none of the suggested boundaries accepted
after a check using one of the criteria (FF+RWT FF+MT, or FF+RWT+FPT) and redo the
experiment presented in Figure 3.7(a). The chunking speed slowdowns over the regular
CDC are shown in Figure 3.11. Compared to multiple-times speedups observed in realistic
datasets, the less-than 10% slowdowns are insignificant. With more modifications and ac-
cordingly lower dedup ratios, there are fewer size values to be checked and the slowdowns
are smaller. Understandably such datasets are unlikely to occur.

3.4.5 Results with Real-world Datasets
We categorize the eight real-world datasets into the groups according to their re-

dundancy quantified by dedup ratios shown in Table 3.1: a high data redundancy group
(Debian, Neo4j, Wordpress, and Nodejs) and a low data redundancy group (Google-news,
Linux-tar, Cassandra, and Redis), and use them to evaluate RapidCDC’s dedup ratio and
performance.

3.4.5.0.1 RapidCDC Performance Impact on Chunking and the Entire Dedup Sys-
tem. Figure 3.12 shows rapidCDC’s chunking speedups with the datasets as well as the
dedup ratios. For datasets of high redundancy, the dedup ratio can be over 40. But only
RapidCDC with FF has speedups close to the high dedup ratios. Speedups of the other al-
ternatives are much lower, especially for datasets of very high dedup ratios, such as Nodejs.

40

1000 2000 5000 10000 20000
of modifications

0

5

10

20

Sl
ow

do
w

n
(%

)

FF+RWT+FPT
FF+RWT
FF+MT

Figure 3.11: Chunking speed slowdowns when all suggested next-chunk sizes are misses in Rapid-
CDC.

A speedup of around 10 is equivalent to a removal of 90% of chunking time from the regu-
lar CDC. Further improving the ratio, or removing the remaining time, requires elimination
of even small operational costs, such as hashing for boundary acceptance and rolling the
window back for a slow movement mode upon an unacceptance. Only FF mostly removes
the costs and reaches the high ratio. Another interesting observation is that FF does not
compromise the dedup ratio for the real-world datasets. To reveal the reason, we increase
length of each fingerprint’s size list to 4, and measure the hit ratio of each of the list’s posi-
tions. A hit means the size at the position is accepted by the FF+RWT criterion. The results
are shown in Figure 3.13. The first position has a very high hit ratio. For example, for the
Nodejs dataset, the ratio is 99.24%, which means that in almost all cases the first sizes are
the accepted ones. FF accepts the first sizes without any checking, and fortunately it indeed
makes the right decision and does not sacrifice dedup ratio.

While the first position in the list has such a high ratio, we do not expect a long list
could make a substantial difference on chunking performance. Figure 3.14 shows speedups
of RapidCDC using FF-RWT with different size list lengths. While a miss on the entire
list would cause RapidCDC to enter the slow window movement mode and have a siz-
able penalty, even a small hit ratio on positions other than the first one can contribute to
the chunking performance. As shown, using a longer list often produces a visibly higher
speedup. Meanwhile, the small contributions do not justify the space cost for keeping a
long list. Therefore, its default length is 2.

To understand impact of RapidCDC’s increased chunking speed on the CPU compu-
tation, we present speedups of the computation, whose two major components are chunk-

41

Debian Neo4j Wordpress Nodejs
0

5

10

15

20

25

30

35
Sp

ee
du

p
FF+RWT+FPT
FF+RWT
FF+MT
FF

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0

1

2

3

4

5

6

Sp
ee

du
p

FF+RWT+FPT
FF+RWT
FF+MT
FF

(b) Low Data Redundancy

Debian Neo4j Wordpress Nodejs
0

10

20

30

40

D
ed

up
lic

at
io

n
ra

tio

Regular
FF+RWT+FPT
FF+RWT
FF+MT
FF

(c) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0

1

2

3

4

5

6

7

D
ed

up
lic

at
io

n
ra

tio

Regular
FF+RWT+FPT
FF+RWT

FF+MT
FF

(d) Low Data Redundancy

Figure 3.12: Chunking speedup and dedup ratio for real-world datasets.

ing and calculation of fingerprints, in Figure 3.15. While these two components often take
roughly similar amount of time in the regular CDC, and RapidCDC can remove signifi-
cant portion of the chunking time, the speedup of the CPU computation is around 2. The
speedup is less than 2 for low data-redundancy datasets as RapidCDC’s chunking speedups
are lower.

To see the impact of RapidCDC’s chunking speedups on efficiency of an entire
dedup storage system, we present throughput of the dedup system when various real-world
datasets are written to the system in Figure 3.16. Disks of different speeds are used in the
experiments. In addition to the default hard disk, a SATA SSD and NVMe SSD are used.
The SATA SSD is Samsung SSD 860 EVO of 500GB and has write and read bandwidths
of 520MB/s and 550MB/s, respectively. The NMVe SSD is Intel SSDPEDMW012T4 of
1.2TB and has write and read bandwidths of 1.2TB/s and 2.4TB/s, respectively. The Rapid-
CDC uses FF as its chunk boundary acceptance criterion. In addition to RapidCDC, it also
shows the results of a fixed size chunking (FSC) dedup system with the 8KB chunk size,

42

Debian Neo4j Wordpress Nodejs
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Te

st

99.18% 99.72% 99.55% 99.24%

1st 2nd 3rd 4th

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

97.97% 98.68% 99.38% 99.34%

1st 2nd 3rd 4th

(b) Low Data Redundancy

Figure 3.13: Hit ratios of positions in the size lists. The first position’s ratio is marked above its
bar, which is not scale.

Debian Neo4j Wordpress Nodejs
0

2

4

6

8

10

12

14

Sp
ee

du
p

1
2

3
4

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0

1

2

3

4

5

Sp
ee

du
p

1
2

3
4

(b) Low Data Redundancy

Figure 3.14: Chunking speedups for real-world datasets with RapidCDC/FF+RWT of different
lengths of the size list.

those of the regular CDC, and a hypothetical dedup system. The hypothetical system rep-
resents an ideal CDC dedup, in which chunking time is completely removed. In this case,
we obtain chunking boundaries offline.

There are several interesting observations in the figure. First, the disk can be a per-
formance bottleneck when it has a low bandwidth and the dataset has a low dedup ratio
that increases I/O demand. Figure 3.16(d) shows the datasets’ dedup ratios. For FSC
and RapidCDC, when their dedup ratios are low (e.g., for Google-news), using faster disks
(SATA SSD and then NVMe SSD) increases the throughput. However, with a higher dedup
ratio, the bottleneck shifts to the CPU, and faster disks do not lead to higher throughput.
For example, RapidCDC has a dedup ratio of 7.2 on Redis and its throughput increases
minimally. However, FSC’s dedup ratio is 1.9, and its throughput keeps increasing (from
360MB/s, 745MB/s, to 760MB/s). Second, with a higher dedup ratio, RapidCDC’s ad-
vantage over regular CDC becomes increasingly higher, because regular CDC’s chunking
speed is not correlated with the ratio. Its throughput is about 2.3X as high as that of regular
CDC with Nodejs. Third, with low dedup ratio and fast disks, such as Google-news or

43

Debian Neo4j Wordpress Nodejs
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

FF+RWT+FPT
FF+RWT

FF+MT
FF

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

FF+RWT+FPT
FF+RWT

FF+MT
FF

(b) Low Data Redundancy

Figure 3.15: Speedups of CPU computation (Chunking+fingerprinting) for real-world datasets.

Linux-tar on NVMe SSD, FSC can have a higher throughput than RapidCDC as the bot-
tleneck is on the CPU and RapidCDC cannot make the chunking fast enough to catch up
with the speed of FSC. However, once RapidCDC can have a high dedup ratio, its chunking
speed can be close to that of FSC. With its dedup ratio is usually much higher than that of
FSC, its throughput is higher than FSC’s in most cases. Fourth, once the dedup ratio is high
or a fast disk is used, RapidCDC’s throughput is close to that of Ideal as the bottleneck is
on the CPU and RapidCD removes most of the chunking cost.

3.4.5.0.2 Throughput of Multi-threaded RapidCDC We implement a multi-threaded
RapidCDC, each thread working on a different file in a dataset. Being challenged by high
cost of CDC’s chunking, researchers have proposed methods to use multi-core or even GPU
to accelerate the operation [2, 31, 5, 100, 98]. RapidCDC can also leverage the parallelism
in a multi-core system. To protect integrity of fingerprints and their size lists, we place
the data items in a hash table and apply a lock on each hash bucket. For each dataset,
an available thread picks up the next unprocessed file in the set. Figure 3.17 shows the
chunking throughput (with disk I/O and fingerprinting operations excluded) of RapidCDC
with FF and different thread counts. As shown, the system is well scaled and the throughput
increases almost linearly. For high-data-redundancy datasets, the chunking throughput can
reach tens of GB/s, making the chunking hardly be a performance bottleneck and making
it be a fully addressed issue.

44

0
250
500
750

1000
FSC Regular CDC RapidCDC Ideal

0
250
500
750

1000

Google-news
Linux-tar

Cassandra Redis
Debian

Neo4j
Wordpress

Nodejs
0

250
500
750

1000

(c) NVMe SSD

(b) SATA SSD

(a) SATA HDD
T

ro
ug

hp
ut

 (M
B

/s
)

Google-news
Linux-tar

Cassandra Redis
Debian

Neo4j
Wordpress

Nodejs
0
8

16
24
32
40 FSC RapidCDC

(d) Deduplication ratio

D
ed

up
lic

at
io

n
ra

tio

Figure 3.16: Throughput and dedup ratio of the dedup systems.

3.5 Related Work
Efforts on improving chunking performance in CDC-based deduplication have been

made mainly on optimization of the rolling hash function and leveraging of parallel hard-
ware to parallelize chunking operations.

3.5.1 Reducing Computation Cost in Chunking
In the CDC, a hash value is computed over the content of a rolling window at most of

byte positions in a file, representing the major cost of the chunking operation. The Rabin
fingerprint, or similarly CRC32, are commonly used as the hash function for determin-
ing chunk boundaries reported in literature [57, 106, 47, 64, 100, 56] and for production
systems [22]. While chunking becomes a performance bottleneck of a CDC-based dedup
system, many techniques have been proposed to reduce its cost. SimpleByte [1] was de-
signed to provide fast chunking to eliminate fine-grained redundant data transmitted across
networks. It uses a rolling window of only one byte to detect boundaries of chunks whose
sizes are only 32-64 bytes. However, this approach is not likely to be used in regular stor-

45

Debian Neo4j Wordpress Nodejs
0

20

40

60

80
Th

ro
ug

hp
ut

 (G
B

/s
)

1 thread
2 threads
4 threads
8 threads

(a) High Data Redundancy

Google-news Linux-tar Cassandra Redis
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut
 (G

B
/s

)

1 thread
2 threads
4 threads
8 threads

(b) Low Data Redundancy

Figure 3.17: Chunking throughput with different number of threads, each on a different core.

age systems as its condition to form a chunk boundary is too weak and will produce very
small chunks, which significantly increase metadata management overhead. Gear [102] is
a lightweight hash function requiring only one bit-shift, one add, and one table lookup in
one hash computation. As reported, Gear-based chunking can be 3× as fast as Rabin-based
chunking [103]. Some issues with the Gear function, such as small rolling window size,
are addressed in the FastCDC dedup design [103]. Instead of applying a hash function on
a window of bytes to obtain a hash value, MAXP [7] and AE [105] treat bytes in a win-
dow as numerical values and find a local extremum to determine a chunk boundary more
efficiently. Yu et al. use two functions, a lightweight one and a heavyweight one, to detect
a chunk boundary [104]. A lightweight function is applied first to check if a condition is
met. Only when it is not is the second function executed. All the efforts have been made to
reduce the computational cost at individual window positions, instead of reducing number
of file positions where the function has to be applied. RapidCDC takes a radically different
approach. It minimizes number of file positions for detecting chunk boundaries. It makes
chunking speed less sensitive to the cost of the hash function. And the efforts on reducing
the function’s computation cost further help with RapidCDC’s efficiency.

3.5.2 Accelerating Chunking with Parallelism
StoreGPU [2, 31] and Shredder [5] leverage GPUs to accelerate the compute-intensive

chunking and fingerprinting in deduplication. They focus on minimizing the data transfer
cost between the host and GPU. P-Dedupe pipelines deduplication tasks and parallelizes
chunking and fingerprinting process in each task with multiple threads and achieves high
throughput [100]. MUCH is a multi-threaded chunking method, where a file is partitioned
into segments for parallel chunking on different cores. It ensures the same set of chunks are
generated as that from the sequential CDC chunking [98]. RapidCDC can remove most of

46

CDC chunking cost, making chunking a lightweight operation and making its paralleliza-
tion less necessary.

3.5.2.0.1 Exploitation of Locality in Deduplication Locality in workloads has been
recognized and exploited to improve various aspects of a dedup system. A sparse index-
ing structure has been proposed to reduce the in-memory chunk index by taking advantage
of the locality of duplicate chunks [50]. The technique has been used in Hewlett-Packard
backup products, and effectiveness of the method highly relies on existence of locality of
duplicate chunks in segments. ChunkStash also leverages the locality to establish a com-
pact in-memory chunk index and stores the full index on the flash to speedup the index
lookup in a dedup system [21]. SiLo organizes a number of small files into a large data
stream, so that long duplicate segments, or strong duplicate locality, can occur. This helps
to improve dedup ratio and makes large chunks possible, and accordingly reduces amount
of index structure [99]. To address the issue of file fragmentation in an FSC dedup system,
iDedup [81] exploits the spatial locality in a duplicate data in a primary storage system
to deduplicate only chunk sequences of sufficient lengths, so that random disk access can
be minimized to efficiently serve read requests. After demonstrating widely available of
duplicate locality in various real-world datasets, we propose RapidCDC to leverage the lo-
cality to accelerate chunking operations. To the best of our knowledge, this is the first work
leveraging the locality to remove the major performance bottleneck of CDC deduplication.

3.6 Conclusion
In the paper we propose RapidCDC, a chunking technique for CDC-based deduplica-

tion, that can dramatically reduce chunking time. While chunking has been well recognized
as a major performance bottleneck in a CDC dedup system and substantial efforts have
been made to reduce its cost, RapidCDC represents a departure from existing optimiza-
tion techniques for reducing chunking time. It innovatively leverages duplicate locality and
access history. Instead of slowly scanning a file to search for chunk boundaries, it uses
highly accurate hints on next chunk boundary to reach the boundary with only one veri-
fication operation. The RapidCDC technique can be incorporated into any existing CDC
dedup systems with minor effort, which is to retrieve a suggested next-chunk size for every
matched fingerprint and try to use it for accepting the next chunk boundary. Furthermore,
its benefit is orthogonal to other optimizations made in a dedup system, including those for
improving chunking performance.

We prototype RapidCDC and conduct extensive experiments comparing its chunking
performance and deduplication ratio with other dedup systems. The results show that it can

47

provide up to 33× chunking speedup, which essentially removes the chunking performance
bottleneck for datasets of high data redundancy. Meanwhile, it maintains the same dedup
ratio as regular CDC systems.

48

CHAPTER 4

WOJ: Enabling Write-Once Full-data Journaling in SSDs by Using
Weak-Hashing-based Deduplication

4.1 Introduction
Journaling is a commonly used technique in today’s file systems (e.g., ext3 [90] and

ext4 [8]) to ensure data consistency in the face of a system failure. In a journaling file
system, updates are first recorded in the journal (in the commit phase) and later applied
to their home locations in the file system (in the checkpoint phase). In case of a system
crash, all completed records (transactions) in the journal are replayed and applied, while
uncompleted ones are discarded, to ensure the file system’s consistency.

File system journaling can be in one of the two modes, data or metadata journaling,
based on the contents written to the journal. In the data journaling mode, all file system
(data and metadata) updates are written to the journal before being checkpointed to the
files later on. In contrast, in the metadata journaling mode, only the updated metadata of
the file system, such as inode and free block bitmap, are first written to and protected by
the journal, while data are written directly to their home locations in the files. Due to the
double write of both data and metadata in the data journaling mode, file system users are
usually reluctant to use it and resort to metadata journaling for its fast speed. However,
they have to tolerate compromised data reliability.

4.1.1 Data Journaling is Necessary
Metadata journaling has several limitations. First, as data are written directly to a

file, without explicit synchronization control, updated data blocks can be mixed with un-
updated ones in any order even with sequential write pattern if the system crashes during the
file’s overwriting [76]. Second, metadata journaling cannot guarantee even the consistency
of metadata. For example, with the metadata journaling in the ordered mode in ext3 and
ext4, the modify time (“mtime") of a file may remain unchanged after the file is updated.
The anomaly is due to a critical rule, which is to write data before committing metadata
to the journal in the ordered mode. This metadata inconsistency can raise an issue with
applications relying on the mtime attribute to decide their next actions, including GNU
make [85, 34] and file integrity checks using signatures [33, 84]. Last but not least, recent

49

research has revealed that metadata journaling is prone to introduce vulnerabilities to user-
level applications as it reorders applications’ write operations for performance [66, 67, 68].
To avoid the vulnerabilities, application developers have to be aware of write re-ordering
in file systems and eliminate their side effects with extra efforts in their programming,
such as inserting extra flushes between file system operations to enforce the right order.
However, it is not easy to avoid the vulnerabilities at the application level even for expert
programmers. These vulnerabilities are found in widely-used applications [67], including
Google’s LevelDB [32] and Linus Torvalds’s Git [89].

As Linus Torvalds stated "Filesystem people should aim to make ’badly written’ code
’just work’" [88], use of data journaling adheres to the belief. With data journaling, the
file system maintains a total write order and preserves application order for both metadata
and data updates, which provides the strongest data consistency support for applications.
As shown in existing studies, most crash-consistency vulnerabilities in commonly-used
applications can be avoided with the use of data journaling, and the remaining ones have
minor consequences and are ready to be masked or fixed [66, 67]. With the clear advantages
in providing data reliability and stronger file system consistency support for upper-level
applications, application developers will prefer to use data journaling if the performance is
not a concern. With the extensive use of SSDs and their ever-improving I/O performance,
data journaling’s higher demand on write bandwidth is likely to be accommodated, and the
once-thought expensive journaling approach may become affordable.

4.1.2 SSD’s Endurance is now a Barrier
While SSD can provide much higher write throughput to potentially support data

journaling well, its endurance becomes a new barrier to the practical use of data journaling,
which doubles write traffic to the disk. For most flash-based SSD devices, each flash mem-
ory cell can only be written several thousand times in its lifespan [38, 80, 52, 42]. While
high-end SSDs can deliver GB/s-level throughput and TB-level capacity, their lifetime is
not improved accordingly [78]. Actually, due to the adoption of MLC (multi-level cells)
and TLC (triple-level cells) for larger capacity, SSDs’ lifetime is worsening [38, 42]. For
example, Intel 750 Series NVMe 400GB SSDs can provide up to 2.2GB/s and 900MB/s
throughput for sequential read and write accesses, respectively, while the endurance is rated
for up to a maximum of 127TB written (70GB per day) over the course of its 5-year limited
warranty [45]. That is, even if the cells of the device are written evenly (an ideal scenario), it
cannot surely admit new writes successfully after each flash cell is written about 317 times
(127TB/400GB) on average. In other words, if the device keeps admitting writes at its full
write speed, the total write time of the device can be only about 37 hours (127TB/900MB

50

Table 4.1: Throughput of different hash functions under different CPU frequencies

Hash functions MiB/s (3.0GHz CPU) MiB/s (1.2GHz CPU)
MD5 526.1 215.3

SHA-1 470.1 172.5
SHA-256 204.1 79.2
SHA-512 327.5 130.5
CRC32C 7631.3 3050.7
xxHash 5715.4 2285.2

seconds). While these numbers may be derived from highly conservative estimates on
SSD’s lifetime, endurance of SSDs is indisputably a major concern. If the write-twice is-
sue could be addressed by efficiently removing the second write (for checkpointing) that
follows the corresponding first one to the journal, data journaling would not be a concern to
the SSD’s endurance. As contents of the two writes are the same, block-level deduplication
technique [106] is a potentially viable solution.

4.1.3 Regular Deduplication is too Expensive
Though deduplication can be a promising solution, it is too expensive to be effective

for fast SSDs in terms of its computation, space, and synchronization overheads. Existing
deduplication techniques rely on fingerprints, which are hash values computed on indi-
vidual blocks’ contents with a collision-resistant hash function, to identify duplicate data.
Example collision-resistant hash functions include SHA-1 [27] and MD5 [75]. As write of
every block requires computation of its fingerprint, the impact of the computation can be
substantial. Table 4.1 shows throughput of computing hash values of 4KB blocks on a Dell
server with Xeon E5-2680v3 CPUs (1.2GHz∼3.0GHz with DVFS technique) and 30MB
LLC when different hash functions are used. As we can see, the collision-resistant hash
functions, such as MD5, SHA-1, SHA-256, and SHA-512, have throughput higher than or
comparable to that of hard disks or slow SSDs. These functions are affordable when the
slow devices are used. However, the time of fingerprint computation can be larger than
the access time of fast SSDs. For example, Intel 750 NVMe SSD has 900MB/s sequential
write throughput [45], much higher than that for computing SHA-1 fingerprints (470MB/s).
When the fingerprint computation becomes the performance bottleneck on the I/O path,
deduplication is unlikely to be applied. Though non-collision-resistant hash functions, such
as CRC32C and xxHash[15], have throughput higher by more than ten times (even on less
powerful embedded CPUs [70], as illustrated in Table 4.1 showing throughput under lower
CPU frequency), their use can compromise correctness. As we will show, deduplication is
preferred to be implemented within a disk [10]. High-performance multi-core processors

51

are less likely to be used inside an SSD. Furthermore, today’s high-performance SSDs,
such as Intel Optane SSDs [46], have throughput as high as more than 2GB/s and demand
any computation on their I/O paths to be very light.

To make matters even worse, regular deduplication techniques consume a large amount
of memory for caching its metadata, including fingerprints, block address mappings, and
reference counts, for its efficient operations. The space demand can be substantial. For ex-
ample, assuming a disk of 4TB (1G 4KB blocks) and a fingerprint of 20B (a SHA-1 value)
and each physical block is mapped to two logical blocks on average, the space demand for
block address mapping and fingerprints can be 28GB (4B*1G*2+20B*1G). While finger-
prints usually have weak locality, almost all of them have to be in the memory to achieve
an optimal deduplication ratio.

Finally, deduplication requires periodical synchronization of its metadata, in partic-
ular, the block address mappings, onto the disk on a timely manner for data reliability and
short response time. Additionally, different types of metadata should be persisted onto the
disk in a particular order. All these require frequent use of expensive flush operations [11].
For deduplication not implemented in the disk, metadata synchronization operations can
significantly degrade I/O throughput and offset deduplication’s potential performance ad-
vantage.

4.1.4 A Lightweight Built-in Solution
In this work we propose a solution that is built in the SSD to transparently support

Write-Once data Journaling, named WOJ. While it still uses fingerprints to detect duplicate
blocks and leverages deduplication technique to remove the second writes, it addresses all
three issues with the regular deduplication technique. First, WOJ can use ultra-lightweight
non-collision-resistant hashing to identify second writes of duplicated blocks without com-
promising correctness. Second, WOJ only needs to maintain a small amount of metadata,
which is thousand times smaller than that for regular deduplication and can be fit in the
SSD’s internal memory. Third, WOJ integrates its block mapping with SSD’s FTL and
does not require frequent flushes from the host to the device.

Our contributions in the paper are threefold: (1) We investigate potential benefits and
challenges of enabling data journaling in SSDs. We address the challenges with a design
with little compromise on I/O performance even for high-end SSDs that are sensitive to
even small overheads added into their I/O stack. Also, it protects SSDs’ durability as well
as regular deduplication does; (2) We prototype WOJ as a device mapper target supporting
real file systems (ext3 and ext4) and perform I/O on real SSDs, instead of SSD simulators,
to demonstrate its practicality and efficacy; (3) We extensively evaluate WOJ with micro-

52

benchmarks, widely-used file system benchmarks, database workload, and workloads with
real-world data. The results show that WOJ removes about half of the writes in data jour-
naling and provides significant performance improvement over full deduplication schemes.

4.2 The Design of WOJ
The design goal of WOJ is to address challenges on minimizing time and space costs

that are required by the deduplication technique and are usually too high to fit in the I/O
stack of high-performance SSDs. As we have mentioned, deduplication on the host needs
to periodically and often frequently flush its metadata to the disk for their persistency and
consistency [11]. This excessive overhead is unlikely to be removed on most of today’s
general-purpose computers as long as the deduplication is performed at the host side. In
contrast, WOJ is situated within the SSD to leverage the non-volatile memory that is often
found in today’s SSDs in the form of DRAM protected by battery or super capacitor. An
additional benefit of performing deduplication in the SSD is that its address mapping table
overlaps with the SSD’s existing mapping table (as part of the SSD’s FTL), and additional
space and maintenance costs for the table required by the deduplication can be avoided.

However, the resources available for deduplication, including computing power and
memory, are highly constrained in the SSD. Accordingly, objectives of WOJ’s design in-
clude (1) use of ultra-lightweight fingerprints without compromising correctness, and (2)
very small demand on metadata space with its size decoupled from the SSD’s capacity.
WOJ achieves the design goals by taking advantage of a priori knowledge on the source
of data duplication (checkpointing data that have been in the journal) and of very limited
amount and lifetime of the data in the journal.

4.2.1 SSD with File-system-level Knowledge
To be simple and effective, WOJ performs deduplication at the block level. That is,

it identifies and removes writes of duplicate data at the unit of blocks defined by the SSD’s
interface. WOJ is designed to remove the second writes in a journaling file system in the
data journaling mode. It requires that the whole blocks (not only the updated portions)
where (data or metadata) modifications take place are recorded in the journal and later
written to the file system. This requirement is met by any file systems using physical
journal [69, 94] (including ext3 and ext4), in which file system updates are logged in their
original blocks of data and written to the journal. We are aware that file systems with
logical journal (like XFS [95]) only record the deltas (the changes) made by the writes
in the journal to reduce the amount of logged data. This is at the expense of increased

53

complexity. While WOJ can remove all the cost of second writes and enable a physical
journal that is more efficient than logical journal, we believe that the simpler physical
journal will become the preferred journaling approach and take the place of logical journal.

A unique feature of WOJ, as a block-level deduplication design, is to leverage knowl-
edge that is only available at the upper level, i.e., file system level, to distinguish whether
a block is written to the journal or not. With this knowledge WOJ can use non-collision-
resistant fingerprints and maintain a very small set of metadata for lightweight dedupli-
cation without compromising correctness (details in the next subsection). As WOJ is im-
plemented in the SSD, a journaling file system must inform WOJ that data journaling and
WOJ functionality be enabled when the file system is mounted. In a journaling file system,
such as ext3, ext4, and ReiserFS, a special file with contiguous space allocation at a fixed
disk address and of fixed size is designated as the file system’s journal to store records
(transactions), which are then periodically checkpointed into the file system. The journal
is used as a circular buffer, where space holding records that have been checkpointed can
be reused. As long as the journal’s address space, possibly in the form of its starting disk
address and length, is disclosed by the file system to the disk, WOJ knows which of the
writes to the disk are commit ones (the first writes) to the journal and which are checkpoint
ones (the second writes) to the home locations. When there are more than one partition on
the SSD, a file system needs to specify the address space the partition occupies, and WOJ
distinguishes the two types of writes and performs its deduplication operations separately
for individual WOJ-enabled partitions. WOJ can be enabled at the time of mounting a file
system (with a mount system call). The journal’s address space can be passed to the SSD
via an SSD primitive similar to the ptrim and exists commands proposed by FusionIO [59].
When the WOJ functionality is not enabled or is turned off after being enabled, the SSD
functions as a normal SSD device without deduplication.

4.2.2 Deduplication with Non-collision-resistant Fingerprints
WOJ does not pursue full deduplication, where all duplicate blocks are detected and

only one copy of the duplicate blocks is physically stored in the disk. Instead, WOJ uses
non-collision-resistant fingerprints to deduplicate the second writes (writes in the check-
point phase) in a data-journaling file system with very low overheads. In the process it is
required that (1) the correctness is not compromised; and (2) the collision rate is low so
that deduplication ratio is negligibly affected. The key difference in its use of fingerprints
from regular deduplication is that WOJ does not rely on fingerprints to determine the ex-
istence of duplication between a given block in the checkpoint phase and those that are
recently committed to the journal and have not been checkpointed yet, as in the data jour-

54

naling mode “all new data is written to the journal first, and then to its final location" [48]
and the duplication is guaranteed. Instead, a block’s fingerprint is used only to identify
which block in the journal has identical contents as the block under consideration in the
checkpoint phase. As long as a fingerprint is not shared by more than one block in the
journal, it can be used to identify the corresponding block in the checkpoint phase (even if
non-collision-resistant fingerprints are used) and avoid writing it to the disk.

To facilitate the identification, WOJ maintains a fingerprint pool. A fingerprint will
be inserted in the pool and used for detecting duplicate blocks in the checkpoint phase
only when two conditions are satisfied. First, the fingerprint is computed over the contents
of a block in the commit phase. Second, the fingerprint is unique in the pool. For each
fingerprint in the pool, it is associated with a unique physical page address (PPA) indicating
where the corresponding block of data is stored. We assume the block size exposed by the
SSD’s interface is identical to the flash memory page size inside SSD. If not, an adaptation
is straightforward [6]. To this end, when a block is written into the journal (in the commit
phase), its fingerprint is computed (Step 1.1 in Figure 4.1) and used as the key to search in
the pool. If it is not found, the fingerprint is added into the pool (Step 1.3 in Figure 4.1).
Otherwise, a collision occurs (Step 1.2 in Figure 4.1). A straightforward solution is to
mark the fingerprint as invalid and abort the deduplication attempt on the blocks of this
fingerprint. Note that when a fingerprint is designated as invalid, it is not immediately
removed from the pool. Otherwise it can cause correctness issue as there can be further
collisions on the fingerprint. An alternative is to introduce secondary fingerprints for the
blocks in collision and enable a second chance after a collision. We do not take this option
in the design as the probability of the collision is small. As disclosed in a recent study [4],
the collision rate of CRC32 (and CRC32C) for typical storage workloads is lower than
8X10−5, and for xxh64 (64-bit version of xxhash) 4 billion hashes have a 50% chance of
getting one collision [13]. Additionally, the fingerprint pool is small, whose size is capped
by number of blocks in a journal, whose size is usually configured as a few hundreds of
megabytes to several gigabytes. Further, WOJ removes a fingerprint from the pool right
after it is used for a successful removal of a second write. Otherwise, it will be removed
when the space for its corresponding block is reclaimed in the journal. In either case the
lifetime of a fingerprint in the pool is short and the collision is expected to be rare. It is
noted that, no blocks in the commit phase will be deduplicated regardless of the uniqueness
of their fingerprints.

For a block in the second write (in the checkpoint phase), its fingerprint is computed
and searched in the fingerprint pool (Step 2.1 in Figure 4.1) for a match. Note that there
always exists such a match. If it matches a valid fingerprint (one that has not experienced
any collision), the block is deduplicated (Step 2.2 in Figure 4.1). Instead of actually writing

55

A B C M
Running Transaction

Memory

A B C M A B C M……

1 Commit Phase
 1.1 compute WFP (weak fingerprint) for each block to write;
 1.2 if the WFP is in the WFP pool:
 mark the WFP as invalid;
 1.3 else:
 insert the WFP to the WFP pool;
 1.4 write the block to the journal area;
2 Checkpoint Phase
 2.1 compute WFP for each block to write;
 2.2 if the WFP is in the WFP pool and it is valid:
 add new LPA->PPA entry to the address mapping table;
 add new PPA->LPA to the reverse mapping table;
 remove the matched WFP from the WFP pool;
 2.3 else:
 write the block to its home location;

Layout of journaling file system on the SSD

Fa, Fb, Fc, Fm

 WFP Pool

1.1Fa, Fb, Fc, Fm

JournalHome locations

1.2

2.1

1.3 1.4

2.2

2.3

Figure 4.1: Sequence of operations in WOJ for committing and checkpointing blocks. In the figure,
Fa, Fb, Fc, and Fm refer to weak fingerprints of blocks A, B, C, and M , respectively.

the data again to the disk, only an entry in the FTL’s address mapping table (from a block’s
logical page address (LPA) to its logical page address (PPA)) is updated to reflect that the
block’s LPA is mapped to the PPA of the block with the matching fingerprint. Note that
WOJ does not need to maintain a separate address mapping table. If the block matches an
invalid fingerprint (Step 2.3 in Figure 4.1), it is written to the disk as usual, instead of being
deduplicated.

4.2.3 Metadata Supporting Movements of Physical Blocks
As mentioned above, to serve writes and reads from users WOJ only needs to use

FTL’s address mapping table and maintains a very small fingerprint pool (tens of KB for
a journal of a few hundreds of MB) due to the small number of much shorter fingerprints
(8B for xxhash vs. 20B for SHA-1). The pool can be easily held in the SSD’s memory.

However, WOJ needs to maintain a reverse address mapping table (from PPA to LPA)
to support SSD’s internal operations such as garbage collection and static wear leveling.
When a physical block at a PPA is migrated during the operations, one has to know the
LPA(s) that are mapped to the PPA, so that the address mapping table (LPA→ PPA) can
be properly updated. When a block in the checkpoint phase is deduplicated, and its logical
page address (LPA2) is mapped to the PPA of a matching block in the journal, whose
logical page address is (LPA1), the PPA is mapped to two LPAs (PPA → LPA1 and
PPA→ LPA2). The first one is automatically recorded in the physical page’s OOB (out-

56

of-band) area when the page is written. The second one is recorded into a reverse mapping
table. Note that a PPA is mapped to no more than two LPAs in WOJ, and a reference
count maintained for each PPA in the regular deduplication is not necessary. To reclaim a
physical block, both block’s OOB area and the reverse table are checked to ensure no LPAs
are still mapped to its PPA .

Most of the reverse mapping table will be stored on the flash. The organization of the
table can be similar to the directory-based one for the address mapping table in DFTL [36].
As updates of the table have strong spatial locality due to usually sequential writes to PPAs
in the journal, they can be done efficiently in batches. Though lookups into the table can
be expensive by involving flash reads, they may not be on the critical path of servicing
user requests. More importantly, they are often followed by erase operations, which can be
hundreds of times more expensive than the lookups and make their impact negligible.

4.3 Evaluation
We extensively evaluate WOJ with a variety of workloads on a WOJ prototype to

reveal its performance insights. In particular, we will answer the following questions: 1)
can WOJ retain data journaling’s performance on fast SSDs, and to what extent can WOJ
reduce the performance overheads introduced by deduplication? 2) in terms of reducing
writes to the disks, can WOJ address the write-twice issue in data journaling by removing
the duplicate writes to the disk?

4.3.1 Experiment Methodology
As an SSD with built-in WOJ is not available yet, we prototyped a virtual SSD with

WOJ functionality enabled. In the virtual SSD, the WOJ functionality is implemented in
Dmdedup [82], an open-source deduplication framework, as a device mapper target at the
generic operating system block device layer in Linux kernel 4.12.4. All the data written to
the virtual disk are first processed in the target and those to be persisted are directed to a
real SSD. Block size of the device is set to be the file system’s default page size, which is
4KB. Since WOJ is to be implemented inside SSDs, where the metadata can be cached in
the NVM space (e.g., battery-backed RAM) to avoid frequent data persistence, we choose
the INRAM backend of Dmdedup to manage the deduplication metadata. With the INRAM
backend, the deduplication metadata is only stored in DRAM, rather than writing to the
disk. In the prototype, WOJ can be enabled/disabled by using the “dmsetup message"
command. An the ext3 file system is installed on the virtual SSD, and data journaling mode
(data = journal) is enabled with a 256MB journal. In the prototype we implemented the

57

Table 4.2: SSDs used in the experiments

Type Fast SSD Moderate SSD Slow SSD
Disk Size 400GB 240GB 80GB

Model Family Intel 750 Series [45] Intel 520 Series [44] Intel X18-M/X25-M [43]
Device Model SSDPEDMW400G4 SSDSC2CW240A3 SSDSA2M080G2GC

Sequential Read 2200MB/s 550MB/s 250MB/s
Sequential Write 900MB/s 520MB/s 70MB/s

Interface PCI-Express 3.0 X4 SATA 3.0, 6.0GB/s SATA 2.6, 3.0Gb/s
Endurance Rating 70GB/day for 5 years 20GB/day for 5 years 100GB/day for 5 years

deduplication operations as well as their supporting data structures including an address
mapping table, a reverse mapping table, and a fingerprint pool. It is noted that, using
Dmdedup framework adds additional overheads (compared to an in-SSD implementations)
to WOJ and its counterparts, which are described in the below. Because WOJ itself is more
lightweight than its counterparts, the overhead represents a larger percentage of its service
time, and accordingly WOJ’s reported relative performance advantages are conservative.

The experiments are conducted on a Dell R630 server with two Xeon E5-2680v3
2.50GHz CPUs, each with twelve cores and 30MB last-level cache. The server is equipped
with 128GB DDR4 memory. Three SSDs with different performance (as listed in Table 4.2)
are used in the experiments to create different evaluation scenarios.

In the evaluation, the file system is configured with one of following three configu-
rations:
• WOJ_X: data journaling mode with WOJ enabled. "X" indicates the hash function for

fingerprinting. In the experiments, we use xxHash [15], a fast non-cryptographic hash
algorithm, to generate weak fingerprints as a representative of non-collision-resistant
hash functions1. Specifically, we applied the xxHash function over the first 64 bytes
of a 4KB block to generate a 64-bit fingerprint for the block. Accordingly this WOJ
is named WOJ_xxh64. In addition, to show the impact of hash functions, we also use
collision-resistant hash function, namely, SHA-1 and MD5, in WOJ (WOJ_sha1 and
WOJ_md5, respectively.)
• No_Dedup_DJ: data journaling mode without using any deduplication. For a fair

comparison, the I/O requests are also directed to the Dmdedup framework, and then
sent to the device without deduplication.

1Using crc32c for fingerprinting can provide even better performance (see Table 4.1) and reduce space
overhead, but its high speed depends on special Intel instructions that are not available in most embedded
processors.

58

• Dmdedup_sha1: data journaling mode with Dmdedup enabled for full deduplication
using SHA-1 values as fingerprints, where any blocks with identical fingerprints are
detected and deduplicated.
We use four types of workloads to evaluate WOJ:

• Running write-only micro benchmarks. We continuously write 4KB data to a file.
Both sequential and random writes are tested.
• Running Filebench benchmarks. We conduct experiments on write-intensive bench-

marks in Filebench [55], a widely-used file system and storage benchmark suite,
which includes common file operations, such as create, open, close, delete, read,
and write. We fill the data blocks in the write operations with randomly-generated
contents.
• Hosting database workloads. In the above two workloads, each user file access had

been aligned to 4KB blocks before being sent to the disk. In the database workloads,
we choose a popular KV store (LevelDB [32]) and run the off-the-shelf benchmark
(db_bench) on it. In the tests, users’ data are usually re-organized before they are
written to the disk, which may have implication on WOJ’s deduplication ratio.
• Serving workloads with real-world data. In this experiment we conduct some com-

mon file system operations (file creations, reads, and writes) on real-world data.

4.3.2 Results with Write-only Micro Benchmarks
In these workloads write requests of 4KB data are issued continuously to a file, and a

flush operation (issued with the fsync system call) is issued after a given number of writes
for data persistency. We name this number the flush window size. Using a smaller flush
window reduces chance of losing data during a system crash but may suffer a higher per-
formance penalty.

We first perform sequential writes to a new file until it grows to 8GB. Because of use
of journaling and file system operations, the actual amount of data written to the disk is
larger than the amount of data requested by user programs for writing. The ratio between
these two amounts is named write amplification, or WA. Figure 4.2 shows the through-
put and WA of the sequential writes with different flush window sizes on different SSDs.
The results reveal a number of insights. First, WOJ_xxh64 achieves the highest throughput
among the three configurations as shown in Figures 4.2a, 4.2b and 4.2c. Second, throughput
difference among the three configurations varies on different SSDs. For the fast SSD, Dmd-
edup_sha1 shows much lower throughput than No_Dedup_DJ. For example, its throughput
is only about 60% of No_Dedup_DJ’s throughput when the window size is 1000. Although
applying deduplication removes almost half of the writes to the disk in data journaling as

59

10 50 100 1000
Window_size

0

50

100

150

200

250

300
Th

ro
ug

hp
ut

 (M
B/

se
c)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(a) Fast SSD

10 50 100 1000
Window_size

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

B/
se

c)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(b) Moderate SSD

10 50 100 1000
Window_size

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

B/
se

c)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(c) Slow SSD

10 50 100 1000
Window_size

0.0

0.5

1.0

1.5

2.0

2.5

W
rit

e
Am

pl
ifi

ca
tio

n

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(d) Write amplification

Figure 4.2: Throughput and write amplification for sequential write accesses with different window
sizes on the three SSDs.

shown in Figure 4.2d, it introduces fingerprinting overheads, which is too expensive for
the fast SSD as indicated in Tables 4.1 and 4.2. These results confirm our belief that reg-
ular deduplication schemes are too expensive for high-performance SSDs. For moderate
and slow SSDs, since their I/O performance is much lower (as shown in Table 4.2), their
overhead of fingerprinting becomes less significant, making Dmdedup_sha1 provide com-
parable (as shown in Figure 4.2b) or higher (as shown in Figure 4.2c) throughput than that
with No_Dedup_DJ. Third, there is an anomaly in the performance difference between
No_Dedup_DJ and Dmdedup_sha1 in Figure 4.2b when the window size is 1000. Al-
though the throughput of fingerprinting with SHA-1 (470MB/s) is a little lower than the
write throughput of the moderate SSD (550MB/s) as shown in Tables 4.1 and 4.2, Dmd-
edup_sha1 achieves higher throughput when the window size is small as the frequently
issued flush operations add extra cost to the I/O operations. However, when the window
size becomes larger, No_Dedup_DJ has higher performance than Dmdedup_sha1. This is
because the overhead of the expensive flush operations is amortized by more write opera-

60

10 50 100 1000
Window_size

0

50

100

150

200

250

300

350
Th

ro
ug

hp
ut

 (M
B/

se
c)

WOJ_xxh64
WOJ_md5

WOJ_sha1
Dmdedup_sha1

(a) Fast SSD

10 50 100 1000
Window_size

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
se

c)

WOJ_xxh64
WOJ_md5

WOJ_sha1
Dmdedup_sha1

(b) Moderate SSD

10 50 100 1000
Window_size

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

B/
se

c)

WOJ_xxh64
WOJ_md5

WOJ_sha1
Dmdedup_sha1

(c) Slow SSD

10 50 100 1000
Window_size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
rit

e
Am

pl
ifi

ca
tio

n

WOJ_xxh64
WOJ_md5

WOJ_sha1
Dmdedup_sha1

(d) Write amplification

Figure 4.3: Throughput and write amplification of WOJ for sequential write accesses with different
hash functions for different window sizes.

tions, which improves the I/O performance and makes the overhead of fingerprinting more
significant. In general, WOJ improves the throughput by about 1.85X to 2.03X compared
to Dmdedup_sha1 for the the fast SSD.

As shown in Figure 4.2d, WOJ_xxh64 removes about half of the data written to the
disk as Dmdedup_sha1 does. The results show that hash collisions due to the use of weak
fingerprint are rare in WOJ. We also see that WA is lower when the window size is larger.
For example, WA for No_Dedup_DJ is about 2 when the window size is 1000, while it
increases to 2.6 when the window becomes 10. There are two reasons for this. First, with
a larger window size file system metadata updates to the same metadata blocks in the same
window can be merged and thus fewer metadata blocks are written to the disk. Second,
with larger window size flush operations are less frequently issued, the file system can fit
more file system updates into a single transaction, which will improve file system efficiency
and reduce the journal metadata blocks (e.g., descriptor blocks and commit blocks).

61

200 400 600 800 1K 1.2K 1.4K 1.6K
Latency (us)

0

20

40

60

80

100
Pe

rce
nt

ile
 (%

)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(a) Win_size=10,Fast SSD

1K 1.5K 2.0K 2.5K 3.0K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(b) Win_size=50,Fast SSD

2.0K 3.0K 4.0K 5.0K 6.0K 7.0K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(c) Win_size=100,Fast SSD

10K 20K 30K 40K 50K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(d) Win_size=1K,Fast SSD

1K 1.2K 1.4K 1.6K 1.8K 2.0K 2.2K 2.4K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(e) Win_size=10,Moderate SSD

1.5K 2.0K 2.5K 3.0K 3.5K 4.0K 4.5K 5.0K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(f) Win_size=50,Moderate SSD

3.0K 4.0K 5.0K 6.0K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(g) Win_size=100,Moderate SSD

10K 20K 30K 40K 50K 60K 70K 80K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(h) Win_size=1K,Moderate SSD

750 1K 1.25K 1.5K 1.75K 2.0K 2.25K 2.5K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(i) Win_size=10,Slow SSD

2.5K 5.0K 7.5K 10K 12K 15K 17K 20K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(j) Win_size=50,Slow SSD

6.0K 8.0K 10K 12K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(k) Win_size=100,Slow SSD

20K 40K 60K 80K 100K 120K 140K
Latency (us)

0

20

40

60

80

100

Pe
rce

nt
ile

 (%
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(l) Win_size=1K,Slow SSD

Figure 4.4: Sequential write latency with different window sizes on the three SSDs.

To understand the contribution of the use of a weak hash function in WOJ to its
performance improvement, we replace the hash function with collision-resistant ones for
generating fingerprints in WOJ. The results for WOJ_xxh64, WOJ_md5, and WOJ_sha1
are shown in Figure 4.3. There are several observations. First, WOJ_xxh64 provides much
better performance than the other two, as xxhash is much more lightweight than the other
two as shown in Table 4.1. Second, the throughput difference between the three is more
significant on the fast SSD, where a larger proportion of run time is spent on computing
fingerprints. Third, WOJ_sha1 has a little lower performance than Dmdedup_sha1. This
is because WOJ_sha1 detects and removes duplicates only in the checkpoint phase, while
Dmdedup_sha1 achieves full deduplication, which may reduce a little more writes to the

62

disk as shown in Figure 4.3d. Last, comparing Figures 4.3a and 4.3b, we can find that with
strong hash functions, the throughput of WOJ on the fast SSD and moderate SSD does not
show significant difference for large window size even though the raw performance of the
SSDs is quite different. The reason is that the computation of strong fingerprints becomes
performance bottleneck for fast SSDs and offsets the performance advantage of the fast
SSD. In general, with faster hash functions, such as xxHash, WOJ provides up to 2.24X
throughput improvement over that using slow hash functions such as SHA-1.

For file system users, I/O request latency is also a critical performance metric. Fig-
ure 4.4 shows the CDF curves of write latencies of the three schemes on the three SSDs
with different window sizes. The latency increases when the window grows for all the
three schemes as a request is acknowledged only when the flush operation at the end of
the window completes, which ensures all data blocks in the window are persisted on the
flash. On the fast SSD, the latency with WOJ_xxh64 is similar to that with No_Dedup_-
DJ, and much lower than that with Dmdeup_sha1 for all window sizes. For the fast SSD
with high bandwidth, the doubled amount of writes poses a modest impact on the write
latency for No_Dedup_DJ. For WOJ_xxh64, although half of the writes are removed, it
has write latency similar to that of No_Dedup_DJ. On the moderate SSD, the benefit of
reducing half of the write traffic outweighs the overhead of computing weak fingerprints.
Accordingly, WOJ_xxh64 provides lower latency than No_Dedup_DJ. In contrast, com-
puting strong fingerprint is still too expensive. Thus, the latency of Dmdedup_sha1 is the
highest. On the slow SSD with low bandwidth, the doubled write traffic in No_Dedup_DJ
poses a significant overhead, causing No_Dedup_DJ to have the highest latency. For the
fast SSD, the 90th percentile latency of WOJ_xxh64 can be reduced to around 50% of that
with Dmdedup_sha1.

To understand impact of different access patterns, we also conduct experiments with
4KB writes at random locations in a 8GB file. The experiments demonstrate similar perfor-
mance trends, though random access has lower performance than sequential access. Fig-
ure 4.5 shows experiment results on the fast SSD. Compared to Figure 4.2, we see two
significant differences. First, the throughput is much lower than that with sequential ac-
cess. For example, for a window size of 1000 writes, the throughput of WOJ_xxh64 is
about 165MB/s for random writes, while it is about 290MB/s for sequential writes. Sec-
ond, the WA is higher for random access, which contributes to its throughput degradation.
For random writes, the metadata updated in a flush window are less likely to be merged as
they usually scatter in different metadata blocks, which causes more metadata blocks to be
written to the disk.

Results with sequential and random writes show that WOJ reduces almost the same
amount of duplicated data as that in full deduplication schemes with strong fingerprints.

63

10 50 100 1000
Window_size

0

25

50

75

100

125

150

175
Th

ro
ug

hp
ut

 (M
B/

se
c)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(a) Throughput

10 50 100 1000
Window_size

0

1

2

3

4

W
rit

e
Am

pl
ifi

ca
tio

n

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(b) Write amplification

Figure 4.5: Throughput and write amplification for random write accesses with different window
sizes on the fast SSD.

Meanwhile, WOJ reduces the performance overhead to significantly improve both through-
put and latency.

4.3.3 Results with Filebench Benchmarks
The Filebench benchmarks include commonly-used file system operations, such as

create, open, read, append, overwrite, close, and delete. Figure 4.6 shows the throughput
and amount of data written to the disk for selected benchmarks on the three SSDs. For al-
most all the benchmarks, WOJ_xxh64 provides the highest performance. On the fast SSD,
WOJ_xxh64 achieves much higher throughput than Dmdedup_sha1 for benchmarks with
large flush window sizes, such as cp_L, cr_L, ws_w1000 and ws_pa_w1000. The improve-
ment can be up to 2.44X. For the benchmarks varmail and fileserver, WOJ_xxh64 achieves
high throughput improvement for a different reason. These two benchmarks generate about
the same amount of read and write operations and the I/O time dominates their execution
time. In such workloads, read and write requests compete for the disk’s bandwidth. While
WOJ removes about half of the writes and makes the corresponding disk bandwidth avail-
able, read throughput also increases. Although Dmdedup_sha1 can remove about the same
amount of writes, its high fingerprinting overhead largely offsets this benefit.

In a case with varmail shown in Figure 4.6c, the throughput of Dmdedup_sha1 is
a little higher than WOJ_xxh64 on the slow SSD. In varmail about 10% more data writ-
ten to the disk are removed by Dmdedup_sha1 than WOJ_xxh64 (shown in Figure 4.6d).
WOJ only removes duplicate data in the checkpoint phase, while Dmdedup implements
full deduplication. WOJ misses some deduplication opportunities hidden within the jour-
nal area and takes more I/O time.

64

Benchmarks0

100

200

300

400

500

600

700

800
Th

ro
ug

hp
ut

 (M
B/

s)

cp
-L

cp
-S cr

-L

cr
-S

fil
es

er
ve

r

ra
nd

-W se
q-

W

va
rm

ai
l

w
s-

pa
-w

1

w
s-

pa
-w

10

w
s-

pa
-w

10
0

w
s-

pa
-w

10
00

w
s-

w
1 w
s-

w
10

w
s-

w
10

0

w
s-

w
10

00

No_Dedup_DJ Dmdedup_sha1 WOJ_xxh64

(a) Fast SSD

Benchmarks0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

B/
s)

cp
-L

cp
-S

cr
-L

cr
-S

fil
es

er
ve

r

ra
nd

-W

se
q-

W

va
rm

ai
l

w
s-

pa
-w

1

w
s-

pa
-w

10 w
s-

pa
-w

10
0

w
s-

pa
-w

10
00

w
s-

w
1

w
s-

w
10 w

s-
w

10
0

w
s-

w
10

00

No_Dedup_DJ Dmdedup_sha1 WOJ_xxh64

(b) Moderate SSD

Benchmarks0

50

100

150

200

Th
ro

ug
hp

ut
 (M

B/
s)

cp
-L

cp
-S

cr
-L

cr
-S

fil
es

er
ve

r

ra
nd

-W

se
q-

W

va
rm

ai
l

w
s-

pa
-w

1 w
s-

pa
-w

10

w
s-

pa
-w

10
0

w
s-

pa
-w

10
00

w
s-

w
1

w
s-

w
10 w
s-

w
10

0

w
s-

w
10

00

No_Dedup_DJ Dmdedup_sha1 WOJ_xxh64

(c) Slow SSD

Benchmarks0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f w
rit

es

cp
-L cp

-S

cr
-L cr

-S

fil
es

er
ve

r

ra
nd

-W

se
q-

W

va
rm

ai
l

w
s-

pa
-w

1

w
s-

pa
-w

10

w
s-

pa
-w

10
0

w
s-

pa
-w

10
00

w
s-

w
1

w
s-

w
10

w
s-

w
10

0

w
s-

w
10

00

No_Dedup_DJ Dmdedup_sha1 WOJ_xxh64

(d) Number of Writes

Figure 4.6: Throughput and normalized number of writes on the three SSDs with filebench bench-
marks. Meaning of the abbreviations: cp=copy; cr=create; L=Large file (1GB); S=Small file
(64KB); W=Write; ws=Write with sync; pa=Preallocate file.

The results with Filebench workloads also show that in most cases WOJ can perform
as well as full deduplication schemes in reducing redundant data, as shown in Figure 4.6d.
Except for varmail and ws-w1, where many blocks are journal metadata and less likely to
be deduplicated even by full deduplication schemes, WOJ can remove about 38% to 50%
blocks written to the disk, which will substantially help to improve the disk’s lifetime.

4.3.4 Results with Database Workload
User applications usually rely on the database for data storage and retrieval, and

expect it to be highly reliable as a crash in a database can affect all upper-layer applications
that use its service. As databases, like LevelDB [32], are usually built on top of file systems
and store their data in files, the development of database programs can be much easier if the
underlying file systems provide stronger data consistency support and preserve write orders
by using data journaling [66]. In this experiment we mount the ext3 file system with the data
journaling mode enabled. We then extensively conduct experiments on PUT workloads
with different access patterns on LevelDB. We use all the default configurations of LevelDB

65

10 100 1000 2000
Value Size

0

100

200

300

400

500

Re
qu

es
ts

/S
ec

 (x
10

00
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(a) Fillseq

10 100 1000 2000
Value Size

0

50

100

150

200

250

300

350

Re
qu

es
ts

/S
ec

 (x
10

00
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(b) Fillrandom

10 100 1000 2000
Value Size

0

200

400

600

800

1000

1200

Re
qu

es
ts

/S
ec

 (x
10

00
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(c) Fillseqbatch

10 100 1000 2000
Value Size

0

50

100

150

200

250

300

350

400

Re
qu

es
ts

/S
ec

 (x
10

00
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(d) Fillrandbatch

10 100 1000 2000
Value Size

0

50

100

150

200

250

300

350

Re
qu

es
ts

/S
ec

 (x
10

00
)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(e) Overwrite

Figure 4.7: Throughput for PUT operations with different value sizes in LevelDB on fast SSD. The
key size is 16 bytes.

during the experiments. In particular, the SSTable’s size is 2MB. We run db_bench released
with the LevelDB code [12]. Due to space constraint, we only show experiment results on
the fast SSD, which poses significant performance challenges to existing deduplication
schemes.

Figure 4.7 shows the throughput for LevelDB benchmarks on the fast SSD. For all
the benchmarks, WOJ_xxh64 provides better performance than Dmdedup_sha1. The im-
provement is about 1.38X to 2.7X, and higher improvements are achieved with larger value
sizes. Given a fixed number of requests, requests of larger value sizes will generate more
blocks for writing and more I/O operations. On the contrary, with smaller value sizes more
requests’ data (key-value items) can fit in a single block and written to the disk together,
leading to reduced I/O operations, and the advantage of using WOJ to reduce write traffic
is weakened.

4.3.5 Results with Workloads Using Real-world data
In this section, we evaluate WOJ with workloads with real-world data, rather than

randomly generated data, in the I/O operations. In the first experiment (Copy-DVD-Image),
we copy a Debian DVD image [84] (about 3.7GB) from the tmpfs (/tmp) to the tested file
system. In the second experiment (Copy-GCC-Code), we copy a compressed gcc source
code [65], which includes more than 4000 files and has a size of about 3.1GB, from the

66

Copy-DVD-Image Copy-GCC-Code Git-Clone-GCC
0

10

20

30

40

Ti
m

e
(s

)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(a) Time on Fast SSD

Copy-DVD-Image Copy-GCC-Code Git-Clone-GCC
0

10

20

30

40

50

Ti
m

e
(s

)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(b) Time on Moderate SSD

Copy-DVD-Image Copy-GCC-Code Git-Clone-GCC
0

20

40

60

80

100

120

140

Ti
m

e
(s

)

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(c) Time on Slow SSD

Copy-DVD-Image Copy-GCC-Code Git-Clone-GCC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
m

be
r o

f b
lo

ck
s w

rit
te

n

No_Dedup_DJ
Dmdedup_sha1
WOJ_xxh64

(d) Number of Writes

Figure 4.8: Run time and number of writes of workloads with real-world data on the three SSDs.
The number of writes is normalized based on the number of blocks written with No_Dedup_DJ.

tmpfs (/tmp) to the tested file system. In the third experiment (Git-Clone-GCC), we use git
clone to clone a gcc repository to the tested file system. The results are shown in Figure 4.8.

Consistent with observations on other workloads, WOJ shows substantial perfor-
mance advantages in the three experiments on the three SSDs. Compared to Dmdedup_-
sha1, WOJ_xxh64 reduces the execution time by about 55.6%, 56.3%, and 54.5% in the
three experiments on the fast SSD, respectively. As expected, the improvements are less
significant on the slow SSD, which are about 8.3%, 5.4%, and 9.3%, respectively. As
shown in Figure 4.8d, WOJ_xxh64 performs almost as well as Dmdedup_sha1 in terms of
write reduction due to deduplication. In all the experiments, WOJ removes about 50% of
data blocks being written to the disk, demonstrating that use of non-collision-resistant hash
function has negligible impact on the deduplication effectiveness.

4.3.6 Memory Space Overheads
Reducing memory space overhead is critical to effectively enable WOJ inside SSDs.

In WOJ, three main data structures are maintained in memory: an address mapping table,

67

a fingerprint pool, and a reverse mapping table. For the address mapping table WOJ does
not require any extra space beyond that currently available in the SSD’s FTL.

The size of the fingerprint pool is proportional to the journal size. In our evaluation,
we have configured the ext3 file system with journals of different sizes (from 32MB to
1GB). The performance results show little difference. So we choose a moderate journal
size, which is 256MB. With this journal size, the signature pool size is capped at 768KB2.
For the reverse mapping table, only the segment where the PPAs mapped by current journal
blocks needs to stay in memory, and has a size of 512KB (256MB/4KB ∗ 8). Therefore,
WOJ requires only about 1.28MB memory in the SSD for its operations.

In contrast, if a full deduplication scheme with collision-resistant hashing is deployed
in an SSD, a few gigabytes of metadata have to be maintained assuming a 400GB SSD [10],
like the 400GB fast disk listed in Table 4.2. In the scheme even a fingerprint pool can be
larger than 1GB. Specifically, in the pool each item can be of 24 bytes (a 20-byte SHA-1
value and a 4-byte PPA) and total size can be 2.4GB (400GB/4KB ∗ 24B). For effi-
cient and effective deduplication, it is often expected that its metadata are mostly cached
in the memory. Otherwise, additional flash reads for cache miss and writes for metadata
persistency are required, which compromises its performance. In the aforementioned ex-
periment, we conservatively assume a sufficiently large non-volatile memory for it to hold
all the metadata.

4.4 Conclusion
In this paper we describe WOJ, a weak-hashing-based deduplication scheme for de-

ployment inside SSDs to address the write-twice issue of data journaling with negligible
performance and space overheads. With a prototype implemented as a device mapper tar-
get, we extensively conducted experiments with a variety of workloads, and the results
show that the ext3 file system with data journaling on WOJ-enabled SSDs can achieve up
to 2.7X higher throughput than that with regular deduplication, and it also removes about
half of the writes to the SSD.

2Each item in the pool is 12B, including an 8B fingerprint (an xxh64 hash value) and a 4B PPA. There are
at most 256MB/4KB items.

68

CHAPTER 5

ThinDedup: An I/O Deduplication Scheme that Minimizes Efficiency
Loss due to Metadata Writes

5.1 Introduction
Data deduplication has been widely used in various storage systems to reduce stor-

age space [10, 72, 81, 106]. With data growth at an explosive rate, deduplication plays
an important role at various computing environments, including data centers, portable de-
vices, and cyberphysical systems. Currently the technique finds its most successful uses
in archival and backup systems [106, 25, 35] as well as with offline deduplication dur-
ing primary storage system’s idle time [3, 17]. However, there are apparent advantages of
incorporating data deduplication on primary storage. According to an IDC report, dedupli-
cation in primary storage has “cascading benefits across all tiers", contributing to reduction
of network and I/O loads to other storage tiers and of space demand on all the tiers [26].
In addition, advantages of inline deduplication are also well recognized [81]. It removes
unnecessary consumption of disk space and disk bandwidth in the first place. It does not
incur additional reads and writes, which interfere with the foreground workloads at a later
offline deduplication.

However, even with these clear benefits inline deduplication in primary storage sys-
tems is rarely deployed in production systems [81]. Primary storage systems are usually
performance sensitive. There are two main concerns on impact of the deduplication on
service quality experienced by foreground users. One is degraded read performance due
to compromised locality. When data are deduplicated on the hard disks, sequentiality of
data layout can be disrupted, leaving one or even multiple disk seeks during originally se-
quential reads. This issue has been well addressed by the iDedup scheme by performing
selective deduplication to retain data spatial locality [81]. The other concern, which can be
more challenging to tackle, is additional writes for persistency of deduplication metadata.

As deduplication introduces a layer of indirection, it has to maintain mappings from
logical address space exposed to users of the storage system to the physical address space
supported by the storage devices1. In particular, as we limit this work on the block-level
deduplication, the mapping is from a logical block number (LBN) to a physical block num-

1In this context the physical address is distinct from the one internal to the storage devices. It refers to a
logical address in the linear address space exposed by the device(s)

69

ber (PBN). To service a request for synchronously writing a data block, its corresponding
address mapping must be persisted onto the disk even when the data block itself does not
need to be due to its deduplication. In addition to the address mapping, there are other
metadata whose persistency can be expensive, including that recording mapping between a
data block’s fingerprint and its physical address, and a data block’s reference count indicat-
ing number of logical block addresses mapped to it. Furthermore, frequency of updating
the metadata is high. For example, with every write corresponding signature(s) have to be
updated. As another example, in many deduplication system implementations and designs,
out-of-place block writing is used to enable efficient maintenance of consistency between a
block’s content and its fingerprint [83, 81, 11]. In addition, because the out-of-place writes
are made into a log, slow random accesses can be turned into fast sequential ones. These
benefits come at the cost of high metadata maintenance cost – every write causes a new
LBA to PBA address mapping.

For high persistency and strong consistency of the system, immediate persistency of
the metadata is required, which poses significant challenges to use of inline deduplication in
the primary storage. First, the metadata are small compared to the data block size. Writing
them through the block interface of disks can make the disk bandwidth substantially under-
utilized, or the seemingly small persistency cost can be greatly amplified. Second, many
today’s applications prefer to quickly persist user data to minimize chances of losing them
in a trend where concern on user experience exceeds that on consumption of resources [37].
This may neutralize the effort of collectively writing metadata through batched service of
requests for high I/O efficiency and make metadata I/O even more expensive. Third, meta-
data may be retained in non-volatile memory without being immediately persisted on the
disks. However, this requires special hardware support, such as PCM (Phase Change Mem-
ory) or battery- or supercapacitor-backed RAM, which may not be available. It is desired
that a general-purpose solution does not assume availability of such supports while still
achieving similar performance and persistency. Fourth, to maintain crash consistency be-
tween metadata and data on the disk, one has to pay extra cost to apply approaches such
as journaling, shadowing-based atomic write, or flush-ordered writes. These approaches
incur expensive disk flush operations and/or additional writes.

In this work we propose a deduplication scheme, named ThinDedup, to address the
challenges without requiring any special hardware supports. The idea is to compress the
data in the data blocks to make room for holding (critical) metadata. Because the metadata
are hidden in the data blocks, they can be immediately persisted with data without concerns
of amplified write cost, increased latency, and frequent use of flushes. To further reduce
use of flushes for keeping data and metadata order, we always store address mapping and
signature about the same data block together to enable non-ordered writes of data and

70

metadata. We note that in the workloads of an online primary storage it is more common to
have data blocks that can be compressed than those of an archival or backup storage [16].
In addition, as we will show, to be effective ThinDedup only needs a small percentage of
the data blocks to be slightly compressible.

In a summary, we made three contributions in the work.
• We address the metadata issue, which is a major concern of using the deduplication

technique in the inline primary storage system, with an innovative and effective ap-
proach. This is achieved in the proposed ThinDedup scheme by (1) hiding the critical
address mapping information in the compressed data blocks, and (2) collocating two
types of metadata, address mapping and corresponding fingerprint, to minimize use
of flushes.
• We design ThinDedup that can take advantage of compressibility of data blocks with

minimally added compression cost and leaving only a relatively small percentage of
data blocks in their compressed format.
• We have implemented a ThinDedup prototype as a Linux device mapper target and

extensively evaluated it. Experiment results show that ThinDedup can provide up to
3X throughput compared to state-of-the-art deduplication schemes. Meanwhile, the
latency can be reduced by up to 88% without compromising the throughput.

5.2 The design of ThinDedup
A major design goal of ThinDedup is to remove extra metadata writes out of critical

path of inline deduplication in primary storage system and to minimize use of flushes with-
out compromising consistency requirement. While insertion of metadata into compressed
data blocks is an appealing idea, there are a number of challenges to address in the design to
make it truly effective. First, compression consumes CPU cycles, and reading compressed
data requires decompression operation. While these costs are negligible compared to the
access times of hard disks, they might become a performance issue when faster devices,
such as SSD, are used. The design should ensure that overhead of data block compression
and decompression is sufficiently low compared to the operation cost of both hard disk and
SSD. Second, to reduce (de)compression cost only necessary data blocks are compressed.
With compressed and uncompressed data blocks co-existing on the disk, these two kinds
of data blocks should be able to be identified with minimal metadata support and overhead,
and be managed efficiently. Third, when a data block is deduplicated (not to be stored on
the disk) or is incompressible, its metadata cannot be inserted into the block itself. The
design has to make sure that success of metadata insertion does not strongly rely on small
deduplication ratio or large percentage of compressible blocks.

71

5.2.1 Window-based Metadata Persistence
In a deduplication system, there are two critical issues that must be addressed in its

design, which are persistency and consistency. For persistency, a synchronous write request
is acknowledged only after it is ensured that the data in the request will not be lost even
with a system crash afterwards. For consistency, with a loss of in-memory data structure,
possibly due to a system crash, at any time, all data and metadata on the disk must remain
consistent to each other. While immediate persistency and consistency can be too expensive
to achieve, we use window-based batch persistency and fingerprint-assisted consistency in
ThinDedup.

In ThinDedup, all incoming write requests are buffered in the memory, until the total
number of data blocks involved in the writes reaches a pre-defined number threshold or the
interval since the first request arrives in the buffer reaches a time threshold. The window
size is defined by either of the thresholds, whichever reached earlier. At the end of the
window, we calculate total amount of metadata (except reference count of physical blocks)
to be updated due to the writes, and select one data block for compression. If the block
can be compressed and the extra space made available by the compression is large enough
to hold the metadata, all the metadata are inserted into the compressed block. If the extra
space is not large enough, only part of them is inserted. Whenever there are still metadata
remaining to be inserted, another block is selected for its data compression. This process
is repeated until all the metadata are inserted, or all the data blocks have been tried.

After this, all the dirty blocks about the writes in the window are written to the disk
without using flushes to enforce a particular order between them for high disk efficiency.
The dirty blocks include data blocks that are compressed and hold metadata and that are not
compressed. If there still exist some metadata that cannot be inserted into data blocks, they
will stay in their respective metadata blocks and be written to the disk. After submitting
the block writes to the disk, ThinDedup issues a flush command to the disk to make sure all
the blocks are persisted. Only after the flush is complete, the write requests that had been
buffered during the window are returned with acknowledgement indicating the data have
been safely written.

Figures 5.1 and 5.2 show how ThinDedup works to serve write requests in a flush
window for avoiding extra writes and flushes due to metadata persisting. Based on the data
compressibility and deduplication ratio of the blocks in a flush window, there are mainly
four cases on scheduling and servicing the requests. In the first case shown in Figure 5.1a,
some data blocks (e.g., A and D) in the window are deduplicated and some of the other
blocks (e.g., B and C) are selected for compression to make room to hold metadata for data
blocks in the window. In this case, compression of Block B produces sufficiently large
extra space to hold all the metadata. All the metadata are then inserted in the block, next

72

Disk

B

ThinDedup

DC

C

Compress/Decompress Layer

B C

Deduplication Layer

B

C-Zone

A D CU-Zone

Flush Window

Data Block

Metadata

B

A

(a) Case I

Disk

B

ThinDedup

DC

Compress/Decompress Layer

B C

Deduplication Layer

B

C-Zone

A DU-Zone

Flush Window

Data Block

Metadata

C

B C

A

(b) Case II

Figure 5.1: Cases of serving write requests in a flush window in ThinDedup where explicit meta-
data persisting is removed. The two cases differ due to different deduplication ratio and the com-
pressibility of blocks in a window. In the figure, the four data blocks (A, B, C, and D) are in the
same window.

to the compressed data, and data block C is left without being compressed. After that, the
compressed and uncompressed blocks (B and C) are written to the disk and stored in differ-
ent regions as explained in Section 5.2.2. According to existing studies on primary storage
workloads’ deduplication ratio and compressibility characteristics [54], this case represents
the most common scenario in practice. Figure 5.1b illustrates the second case where the
metadata have to be inserted in more than one compressed data blocks. The case usually
happens when the window size is very large (e.g., 100 or larger), or the compression ratio
of the data blocks is very low. In both of the two cases, ThinDedup can avoid explicitly
writing metadata by embedding them into compressed data blocks. More importantly, en-
forcement of ordering between data and metadata persisting, which can be very expensive,
is removed.

If the compressed data block(s) cannot make enough space to hold all metadata, as
shown in Figure 5.2a, or there are not any data blocks to be written to disk at all due to a
complete deduplication, as shown in Figure 5.2b, extra blocks containing the metadata must
be explicitly written to the disk for metadata persistency. Actually, Figure 5.2a represents
a less likely case where none of the data blocks to be written can be compressed. In these
two cases, ThinDedup does not remove metadata writes. However, it can still remove re-
quirement on write ordering between metadata and data, which is also performance-critical.
This is due to the batching of fingerprints with LPA-to-PBA mappings.

This design has several efforts on reducing I/O costs. First, persistency with a win-
dow of data blocks improves write locality exploited by the I/O scheduler. Second, with

73

Disk

B

ThinDedup

DC

Compress/Decompress Layer

B C

Deduplication Layer

C-Zone

A DU-Zone

Flush Window

Data Block

Metadata

B C

B C

A

(a) Case III

Disk

B

ThinDedup

DC

Compress/Decompress Layer

B C

Deduplication Layer

C-Zone

A DU-Zone

Flush Window

Data Block

Metadata

B C

A

(b) Case IV

Figure 5.2: Cases of serving write requests in a flush window in ThinDedup where explicit meta-
data writes are still needed. The two cases differ due to different deduplication ratio and the com-
pressibility of blocks in a window. In the figure, the four data blocks (A, B, C, and D) are in the
same window.

such a window of data blocks, it would be relatively easy to find one or some blocks that
can be compressed to receive metadata, even when deduplication ratio is high. Third, when
data blocks are well compressible, we can compress only one or a few blocks for receiving
all metadata associating with the writes in the window and leave most blocks in a win-
dow uncompressed. This has the potential to significantly reduce the compression cost for
higher write performance as well as the decompression cost for higher read performance.
Fourth, address mapping and fingerprint about the same data block are stored together, ei-
ther inserted into a compressed data block or left in a metadata block. Therefore, they will
be atomically written to the disk. Usually, a data block has to be written (persisted) before
its corresponding address mapping. This is often enforced with a flush between the writes, a
soft-update-style approach for crash consistency [29]. However, by storing the data block’s
fingerprint together with the mapping entry ThinDedup allows them to be persisted in any
order without using a flush. This doesn’t lead to a consistency issue. Assume that a system
crash happens when the mapping info is persisted but the corresponding data block is not
yet. As the mapping is stored with the fingerprint, ThinDedup uses the fingerprint to verify
the data block at the address pointed to by the mapping and can detect that the data block
is not a valid one. Therefore, wrong data will not be returned.

Note that the address mappings and fingerprints inserted into data blocks on the disk
are not ready for online use as they may not yet be reflected in on-disk data structures re-
garding the deduplication’s metadata. However, for a substantially long time period they
are still in memory for serving I/O requests before being forced out of memory. Further-

74

more, after their persistency with the data blocks, they will incrementally be committed to
the data structure.

In a deduplication system a reference count is maintained for each physical block
tracking number of logical blocks mapped to the physical block. Once the count is decre-
mented to 0, the physical block is likely to be reclaimed for receiving new data. Whenever
a data block is updated, the old physical block’s count cannot be decremented before in-
crementing new physical blocks’s count and persistency of new data to prevent data loss.
Enforcing such an order for every update needs many flushes. Instead, ThinDedup en-
forces the consistency requirement in a much larger scale. For every certain (large) number
of windows ThinDedup first writes all increased reference counts during the windows to
the disk, followed with a flush, and then writes all decreased counts. In this way, the flush’s
cost can be well amortized. A crash during the process may leave inconsistency between
reference counts and address mappings. This is resolved by scanning the address mappings
touched during the windows.

5.2.2 Zone-based Data Persistence
ThinDedup has two types of data blocks to store on the disk (compressed and uncom-

pressed). However, a data block itself cannot reveal its own type. Therefore, ThinDedup
sets up two types of space zone, each for holding blocks of corresponding type. Specif-
ically, C-Zone is to hold compressed blocks with metadata inserted in them, and U-Zone
is to hold uncompressed (regular) data blocks. Figures 5.1 and 5.2 show examples how
compressed and uncompressed data blocks are stored in the C-Zone and U-Zone.

A zone holds a large number of blocks (e.g., a 4MB zone can hold 1024 4KB blocks).
On the disk there is a zone bitmap, where each zone’s status is represented by two bits.
There are four possible statues: unallocated, U-Zone, uncommitted C-Zone, and committed
C-Zone. ThinDedup periodically (usually not during the period when the system is fully
loaded) writes the metadata embedded in the compressed blocks in a C-Zone to the well-
structured metadata area on the disk. After the commitment, the C-Zone changes its status
from ’uncommitted’ to ’committed’. Note that this commitment usually does not involve
reading the compressed blocks into the memory, as recently used metadata are always
retained in the memory for high performance. Because a zone is relatively large, its status
does not change frequently and the cost for maintaining its status is very small.

The structured metadata area include two arrays (an array of logical-to-physical
block address mapping entries and an array of physical-address-to-reference-count entries)
and a B+ tree for indexing fingerprints to their corresponding physical addresses. However,
they may not be up to date, as the newest updates may be still only permanently stored in

75

the C-Zones and in the volatile memory. After an expected system crash, the volatile up-
dates are lost. Although the updates are also available in the C-Zone(s), they are not yet
well indexed and readily usable. To recover the metadata, ThinDedup needs to scan all
compressed blocks that contain not-yet-committed metadata to extract the metadata and
commit them to the metadata structure. Because zone statuses are synchronously persisted,
this scanning only needs to cover those zones whose statuses are marked as ’uncommitted
C-Zones’. Because C-Zones are periodically committed, the zones that have to be scanned
during the recovery period is of small number and ThinDedup’s impact on the recovery
time is minimal.

The allocation of zone space is generally conducted in a manner similar to that of a
log-structured file. Whenever a recently allocated zone is filled to its capacity with blocks
of the same type (either compressed or not), a new zone of the same type is allocated. Zones
are allocated sequentially and the new zone is appended at the end of the log. Similar to
a log-structure file system, when serving a write to LBA that has been mapped to a PBA
ThinDedup does not overwrite data in the PBA. Instead, it performs an out-of-place write
to a new PBA to ease the maintenance of metadata, in particular, the consistency of a data
block’s content and its fingerprint. Correspondingly, reference count of the original PBA
block is decremented by one. When the count is reduced to zero, space occupied by the
corresponding block is available for reclamation. While the disk capacity is limited, the
space has to be reclaimed and reused in a later time. The common practice in log-structure
file systems for performing garbage collection in a selected segment (equivalent to the zone
in ThinDedup) is to copy all live blocks out of the segment and make the entire segment
available for new allocations. However, ThinDedup does not take the strategy to minimize
metadata maintenance cost. Migration of each live block can lead to a number of updates
on metadata, some of which may not be committed yet. These metadata include LBA-to-
PBA mappings, PBA-to-reference-count entry, and fingerprint-to-PBA entry. As a major
design objective of ThinDedup is to minimize metadata write cost, we leave the live blocks
in a zone in place during space reclamation and re-allocate the available space in the zone.
A downside of the strategy is to spatial locality may be compromised for sequential writes.
While the impact is small for SSD, it can potentially degrade I/O performance on the hard
disk. To this end, ThinDedup first selects zones with a large number of contiguous idle
blocks for space reclamation. In the future, we will consider introducing operations for
defragmenting scattered idle spaces when the system is not loaded. In the reuse of idle
blocks in a zone, there are two issues that have to be addressed effectively.

The first issue is about efficient maintenance of block status. To determine whether
a block is idle, we maintain a bitmap for a zone, each bit for a block. The bitmap needs
to be up-to-date so that allocated blocks are not re-allocated until their reference counts

76

reach zero. For correctness and space efficiency the bitmap needs to be updated whenever
a block is allocated or a block’s reference count turns into zero. The bitmaps are small
enough to be kept in memory and keeping the maps in the memory up-to-date is efficient.
However, immediately updating them on the disk is not affordable in ThinDedup. In theory,
after a loss of up-to-date bitmaps in the memory due to a power failure or system crash, the
bitmaps on the disk can be brought up to date by scanning all the block mappings. However,
such a recovery process can be too long. To reduce number of zones that have to be scanned
in the recovery, we assign each zone a one-bit flag indicating whether the zone’s in-memory
bitmap is consistent to the one on the disk (’clean’) or not (’dirty’). When a clean bitmap
is to be updated, ThinDedup changes its status to ’dirty’ and synchronously write it to the
disk. The following updates on the bitmap will not incur any I/O operation until the bitmap
is scheduled to be persisted. Because of spatial locality in the block write and allocation,
the number of dirty bitmaps would be limited. When an idle block in a committed C-
Zone is re-allocated and receives a new block of data, the zone must change its status to
’uncommitted’ to reflect the fact that there are embedded and uncommitted metadata in the
zone. While this status change also needs to be persisted, we co-locate the bitmap and the
commitment status about a zone and persist them together to save an I/O operation.

When new blocks are written into a committed C-Zone, their embedded metadata
are not yet committed and metadata in the existing blocks have been committed. The sec-
ond issue is how to efficiently differentiate them so that metadata are not unnecessarily
re-committed and only new metadata are committed to overwrite old ones. To this end,
ThinDedup maintains a clock for each type of metadata. The clock ticks when a new meta-
data entry of the type is generated, and current clock reading becomes a timestamp attached
to the entry. When each metadata entry has its unique timestamp, only an entry with a larger
timestamp can overwrite one with a smaller timestamp during the commitment. When a
C-Zone completes its commitment and changes its status to ’committed’, for each type of
metadata it records the largest timestamp among all of its blocks as the zone’s timestamp
for this type. In this way, new metadata can be easily recognized as their timestamps are
larger than the zone’s. When the zone is committed again, only the new ones are considered
for being committed. Because there is a possibility that the metadata entries in the struc-
tured metadata area can be newer ones, ThinDedup always compares timestamps during
the commitment to make sure that old entries do not overwrite newer ones.

5.2.3 Service of Read Operations
In ThinDedup, a read request is served by first looking up in the LBA-to-PBA map-

ping table in the main memory with the LBA of the request as the key. This process works

77

as any other deduplication systems and will return a PBA indicating where the data block
is stored in the disk. With the PBA, a read operation is carried out at the disk to retrieve the
data block. In ThinDedup, the data block fetched from the disk cannot be directly returned
to the upper-level software as it may be a compressed block and needs to be decompressed.
Because normal (uncompressed) and compressed data blocks are organized into different
zones (U-Zone or C-Zone) in the disk, to distinguish whether the block is compressed or
not we need to figure out which zone the block is stored in. The zone id can be extracted
from the block’s PBA. For example, if the 4MB zone is used and the block size is 4KB,
the zone id can be calculated as (PBA >> 10). Using the zone id to index into the zone
bitmap, we can get the status of the zone, which will indicate whether it is a U-Zone or
C-Zone. If the block belongs to a U-Zone, it can be returned directly to the upper-level
software. Otherwise, we extract the header of the block to obtain offset and size of the
compressed data in the block, and use the information to decompress the data and then
return the resulting data. In the process of serving a read request, the metadata inserted in
the compressed block (shown in Figures 5.1 and 5.2) are not used because the metadata are
either still in the main memory or have been asynchronously spilled into the on-disk meta-
data area. The inserted metadata are only used to restore the system to a consistent state
when the following two conditions are met. First, the system is recovering from a system
failure. Second, the metadata belong to a uncommitted C-Zone. The inserted metadata in a
committed C-Zone are not needed for recovery as they have been already be checkpointed
to the on-disk metadata area. In ThinDedup, the service of read requests for normal data
blocks is almost as efficient as existing deduplication system as only very little additional
computation overhead is involved. The performance of reading compressed data is a little
lower as an extra decompression operation is required. However, compared to the rela-
tively slow I/O operations, the decompression operation can be considered as light weight.
On our experiment platform as shown in Section 5.3.1, the throughput of single-threaded
4KB-block decompression is over 2GB/s, much higher than the SSD’s throughput, which
is around 500MB/s or lower.

5.3 Performance Evaluation
To evaluate ThinDedup’s performance, we implemented a prototype at the generic

operating system block device layer as a device mapper target in Linux kernel 4.7.1. The
design follows the basic block read/write interfaces provided by the Dmdedup [83] frame-
work. We extensively conducted experiments to reveal insights of its performance behav-
iors.

78

5.3.1 Experiment Setup
As a block-layer deduplication scheme, ThinDedup uses 4KB block as its block unit

and calculates a 128-bit MD5 fingerprint for any blocks of new data. The LBA and PBA
are 8 bytes, respectively, and an 16-byte timestamps are used to serialize the metadata en-
tries. Thus, the metadata about a block write to be inserted in a compressed data block is 44
Bytes (16B LBA->PBA+16B fingerprint+16B timestamp), which is only about 1% of the
block size. We use a fast compression algorithm (LZ4 [14]) for data (de)compression. On
the server used in the evaluation, the algorithm can produce about 700MB/s and 2.45GB/s
throughputs for compressing and decompressing 4KB blocks, respectively. Regarding win-
dow size, we test windows of different blocks in the evaluation. As write requests are con-
tinuously fed into the system without an interval, we use number of blocks requested for
writing to define window size. Zone size is 4MB. C-Zones start to be committed when
there are two or more uncommitted C-Zones in the system.

The experiments are conducted on a server with two Xeon E5-2680v3 2.50GHz
CPUs, each has twelve cores and 30MB last-level cache. The server equips with 128GB
DDR4 memory, a 320GB Western Digital Caviar Blue SATA disk and a 1TB Crucial/Mi-
cron SSD. For the hard disk, its 90th percentile latencies of sequential and random writes
of 4KB block are 8.33ms and 13.36ms, respectively. For the SSD device, the latencies are
5.67ms and 5.71ms, respectively.

In the evaluation, we compare ThinDedup with three other block-layer deduplication
schemes. Among them, ideal represents an idea (but unrealistic) scenario for producing the
optimal performance, in which all metadata always stay only in the memory and only data
blocks are written to the disk.

OrderedWrites is similar to ThinDedup except that its metadata are not inserted into
data blocks. Instead, at the end of a window, all dirty data blocks are batch written to the
disk, followed by a flush to establish the order, and then all critical metadata (mainly the
block mappings) are batch written to the metadata structure on the disk. This scheme rep-
resents the upper-bound performance of the OrderMergeDedup [11] scheme, which uses
flushes to enforce order and uses I/O delay and merging to exploit write locality. Ordered-
Writes limits the number of flushes for ordering to only one and allows requests within a
window to be scheduled freely. However, OrderedWrites does not always ensure metadata
consistency on the disk. After a crash, all metadata are restored to a consistent state by
scanning the persisted critical metadata.

Dmdedup is an open-source deduplication system using page shadowing to main-
tain on-disk metadata consistency. It uses Linux’s on-disk Copy-on-Write (COW) B-tree
implementation to organize the metadata, and each metadata update involves several meta-

79

1 2 4 8 16 32 64 128 256
Window Size

0

1000

2000

3000

4000

5000

6000
T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Random Accesses to the HD

1 2 4 8 16 32 64 128 256
Window Size

0

1000

2000

3000

4000

5000

6000

7000

8000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Sequential Accesses to the HD

1 2 4 8 16 32 64 128 256
Window Size

0

5000

10000

15000

20000

25000

30000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(c) Random Accesses to the SSD

1 2 4 8 16 32 64 128 256
Window Size

0

5000

10000

15000

20000

25000

30000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(d) Sequential Accesses to the SSD

Figure 5.3: Write throughput for varying window sizes. The deduplication ratio is 2 and com-
pressibility ratio is 80%.

data page write operations and flushes. This scheme can keep the metadata and data always
consistent, and does not require a recovery for consistency after a crash.

5.3.2 Experiment Results with Synthetic Workloads
In the section we generate synthetic block write traces and issue them continuously

to each of the deduplication systems. For the traces there are several parameters we may
change. Besides window size, we vary deduplication ratio, which is the ratio of numbers of
data blocks written to the disk before and after the deduplication. We also vary compress-
ibility ratio, which is the ratio of data blocks that can be compressed among all blocks in a
window to be written to the disk. If a block can be compressed, we assume a compression
ratio of 1.25, or about 20% of the block space can be made available to hold metadata after
a compression. We also test two different access patterns. One is random access, where
data blocks’ logic address is randomly distributed in a 120GB address space, and the other

80

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100
P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Window size=32, Random Accesses

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Window size=256, Random Accesses

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(c) Window size=32, Sequential Accesses

0 30 60 90 120 150 180

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(d) Window size=64, Sequential Accesses

Figure 5.4: Write latency on the hard disk with different window sizes. The deduplication ratio is
2 and compressibility ratio is 80%.

is sequential access. In the evaluation, we use both hard disk (HD) and SSD as the storage
devices.

Figure 5.3 shows the write throughput with the four deduplication schemes using dif-
ferent window sizes with various access patterns and storage devices. As shown in all the
test scenarios ThinDedup produces a throughput significantly higher than that of Ordered-
Writes and Dmdedup. In particular, with random accesses ThinDedup has a larger improve-
ment than sequential ones due to the fact that random accesses cause more metadata page
writes and ThinDedup avoids most of them by inserting the metadata in compressed data
blocks. Generally, using larger window size helps increase relative performance advantage
of ThinDedup as it is more likely to find data blocks for compression to avoid expensive
explicit metadata writes. However, when the window is too large, for example 256 in Fig-
ure 5.3, the improvement can become smaller as all benefits from compression have been
exploited by ThinDedup while OrderedWrites and Dmdedup favor large windows. For ex-
ample, ThinDedup achieves the highest improvement when window size is 64, which is
about 3X compared to that of OrderedWrites, and the improvement is 2.73X and 2.88X

81

when the window size is 32 and 128 respectively. With sequential access on the SSD, the
improvements reduce to 1.9X and 1.77X for 32 and 128 window size, respectively. While
data blocks are written sequentially, random access in the logical address space does lead
to random access on the disk. Furthermore, sequential access helps reduce amplification
of metadata write, as multiple metadata entries are more likely located in the same meta-
data blocks. This is why even on SSD, which is less sensitive to access pattern, sequential
access receives a higher throughput than random access. In comparison, Dmdedup consis-
tently has the lowest throughput, as it involves the largest number of metadata writes and
flush operations for strong consistency. Throughput of ThinDedup is close to that of the
Ideal’s deduplication. This is especially the case with the use of SSD, as our measurements
show that ThinDedup removes more than 95% of the metadata and the remaining metadata
writes introduces relatively low overhead. On the hard disk, write of the small amount of
leftover metadata produces a larger performance loss.

It is obvious that increasing window size can help substantially increase throughput
in all the systems. However, it also deteriorates request latency, which measures the period
from the time when a request enters a scheduling window to the time when the window
of requests are serviced. Figure 5.4 shows CDF curves of request latency with different
window sizes for the four systems on the hard disk. For a given window size, ThinDedup
has a latency much lower than OrderedWrites and Dmdedup, and close to that of Ideal.
With a larger window size the latency can be significantly increased (though throughput
also greatly increases). For example, the 80th percentile latencies of ThinDedup and Or-
deredWrites with a 32-block window and random access are increased to 3.5X and 3.2X,
respectively, when the window size increases to 256. However, Figure 5.3a shows that
ThinDedup has about the same throughput (about 2000 blocks/sec) at a 32-block window
as that of OrderedWrites at a 256-block window. That indicates that ThinDedup can achieve
higher throughput without having to significantly increase the window and compromising
latency. For sequential access, Figure 5.3b show that ThinDedup at a 32-block window has
a throughput (about 2000 blocks/sec) similar to that of OrderedWrites at 64-block window.
However, it can have a lower latency, as seen in Figures 5.4c and 5.4d.

While throughputs of random access on SSD for ThinDedup with a 8-block window
and OrderedWrites with a 16-block window are similar (about 2000 blocks/second), we
show their latency in Figure 5.5. We find that this increase of window size does not sig-
nificantly impact the latency. SSD has a much higher speed than the hard disk. The I/O
time spent for a window of requests is mainly dominated by the flush operations. While in-
creasing window size does not require more flushes, the impact is small. However, because
ThinDedup reduces one flush with its fingerprint-assisted consistency for each window, its
latency is significantly smaller than OrderedWrites.

82

0 15 30 45 60

Latency (ms)

0

20

40

60

80

100
P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Window Size = 8

0 15 30 45 60

Latency (ms)

0

20

40

60

80

100

P
e
rc

e
n
ti

le
 (

%
)

Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Window Size = 16

Figure 5.5: Random write latency on SSD with different window sizes. Deduplication ratio is 2
and compressibility ratio is 80%.

To investigate how deduplication ratio affects throughput of the systems, we change
the ratio in traces of different access patterns on the hard disk and SSD. The results are
shown in Figure 5.6. As shown, the Ideal system keeps increasing its throughput with
increase of the ratio as more writes of data blocks are removed. For other systems, dedupli-
cation of a data block only removes write of data blocks, and writes of metadata remain. For
OrderedWrites and Dmdedup, higher deduplication ratio does not help increase through-
put. As data blocks are sequentially written, the improvement due to reduction of number
of data blocks is limited. While ThinDedup maintains a higher throughput than these two
systems, interestingly its throughput has minimal increase with the increase of deduplica-
tion ratio, and even has small decrease. With a high deduplication ratio, many data blocks
in a window are removed, and it is hard to remove metadata by finding compressible data
blocks to insert them, and more metadata have to be explicitly written to the disk. Figure 5.7
shows the percentage of metadata blocks that have to be explicitly written to the disk due to
inability of being inserted into data blocks (compared to number of written metadata blocks
with zero insertion). As we can seen, if the deduplication ratio is relatively small (a ratio of
around 2 is common [54]) or the window size is large, almost all writes of metadata blocks
can be removed. Figure 5.6 also shows that ThinDedup’s throughput is almost the same as
that of the Ideal system on the SSD. On an SSD, write of a few leftover metadata blocks in
ThinDedup has minimal impact on its performance. Meanwhile, its removal of a flush per
window does give its advantage over the other two systems.

To understand the impact of data compressibility, we show ThinDedup’s throughput
on the hard disk under different data compressibility ratios in Figure 5.8. As we can see,
with a reasonably large window sizes (16 or 32), as long as the ratio is 40% or higher, or
40% or more of data blocks in a window can be compressed, ThinDedup can receive its full

83

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

500

1000

1500

2000
T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(a) Random write to HD

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(b) Sequential write to HD

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(c) Random write to SSD

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

1000

2000

3000

4000

5000

6000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Ideal

ThinDedup

OrderedWrites

Dmdedup

(d) Sequential write to SSD

Figure 5.6: Throughput under different deduplication ratios. The window size is 8 and compress-
ibility ratio is 80%.

benefit. With a high compressibility ratio (e.g., 80%) and window size (e.g., 32), a high data
block compression ratio (e.g, 1.5), and a moderate deduplication ratio (e.g., 2), only about
10% of the data blocks need to be compressed and only a small percentage of zones on
the disk are C-Zones (e.g., 10%). Considering the high throughput of the (de)compression
operations and the low percentage of C-Zone, the performance degradation caused by the
(de)compression operations is negligible.

5.3.3 Experiment Results with Real-world Workloads
To evaluate ThinDedup’s performance under realistic workloads, we use publicly

available FIU traces, which includes three traces collected on production systems at Florida
International University: Web, Mail, and Homes [49]. Each trace covers requests in 21 con-
tinuous days. Access pattern in the trace is relatively consistent across the duration of 21
days. However, the deduplication ratio varies substantially across the days. To highlight
correlation of the trace characteristic with its running performance, we choose three write-

84

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

10

20

30

40

50

60

70

80

90
P
e
rc

e
n
ta

g
e
 o

f
m

e
ta

d
a
ta

 p
a
g
e
s

p
e
rs

is
te

d
Window Size = 4

Window Size = 8

Window Size = 16

(a) Random access

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Deduplication Ratio

0

10

20

30

40

50

60

70

80

90

P
e
rc

e
n
ta

g
e
 o

f
m

e
ta

d
a
ta

 p
a
g
e
s

p
e
rs

is
te

d
 (

%
)

Window Size = 4

Window Size = 8

Window Size = 16

(b) Sequential access

Figure 5.7: Percentage of metadata blocks written to the disk in thinDedup with different
deduplication ratio. The compressibility ratio is 80%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compressibility Ratio

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Window Size = 8

Window Size = 16

Window Size = 32

(a) Random Access

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compressibility Ratio

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c) Window Size = 8

Window Size = 16

Window Size = 32

(b) Sequential Access

Figure 5.8: ThinDedup’s throughput on the hard disk with different data compressibility. The
deduplication ratio is 2.

intensive segments from each trace, each segment representing one-day-long accesses of
distinct deduplication ratio. In an experiment, the system is warmed up with requests pre-
ceding the tested segment of requests.

Table 5.1 lists the days on which segments are chosen as well as their respective
deduplication ratios. The traces only contain data fingerprints but no real data. We assume
a compressibility ratio of 80% (80% of blocks are compressible) and a compression ratio
of 1.25 (each compressible block can contribute 20% of its space). According to [92], this
is a conservative and reasonable assumption. The window size is 8.

Figures 5.9 and 5.10 show the throughput of trace segments on the hard disk and on
SSD. Across the test cases ThinDedup produces the highest throughput, while Dmdedup’s
throughput is much worse than the two systems. Compared to OrderedWrites, ThinD-

85

Table 5.1: Characteristics of FIU traces

Trace Selected Day Dedup. Ratio (respectively)
WebVM 4,8,12 1.60, 1.35, 1.16
Homes 11,12,13 1.77, 2.80 , 4.63
Mail 1, 2, 5 5.43, 16.08, 9.73

1.6 1.35 1.16

Deduplication Ratio

0

100

200

300

400

500

600

700

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(a) WebVM

1.77 2.8 4.63

Deduplication Ratio

0

100

200

300

400

500

600

700

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(b) Homes

5.43 16.08 9.73

Deduplication Ratio

0

200

400

600

800

1000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(c) Mail

Figure 5.9: Throughput of different trace segments on the hard disk.

edup improves throughput by 19% to 112% on the hard disk and 7% to 91% on the SSD.
Consistent to observations on synthetic workloads, a very high deduplication ratio reduces
ThinDedup’s advantage (see throughput of the Mail trace with the ratios of 16.08 and 9.73
in Figure 5.9c and 5.10c, respectively). A higher ratio reduces opportunity of finding com-
pressible blocks. As we expected, improvements of ThinDedup on the SSD is smaller than
those on the hard disk with the same trace segment as SSD’s performance is less sensitive
to random writes. However, SSD’s performance is still heavily affected by flushes, which
ThinDedup manages to reduce. Also, considering the amount of data blocks written to
the disk when the deduplication ratio is extremely high (e.g. 16.08), about 27.8% of the
metadata writes can be avoided. This is important for SSD, which has limited lifespan. We
can also see that a high deduplication ratio (e.g., 16.08 and 9.73 in Figure 5.9c and 5.10c,
respectively) does not necessarily lead to substantial improvement of throughput, though
many writes of data blocks can be removed. As data blocks are sequentially written, cost
of persisting metadata can dominate the I/O cost in the deduplication. This highlights the
importance of addressing the metadata issue in an online primary deduplication.

Besides FIU traces, we also evaluate ThinDedup with the public block-level I/O
traces collected on a storage cluster and released by Microsoft Research Cambridge [58].

86

1.6 1.35 1.16

Deduplication Ratio

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(a) WebVM

1.77 2.8 4.63

Deduplication Ratio

0

500

1000

1500

2000

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(b) Homes

5.43 16.08 9.73

Deduplication Ratio

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(c) Mail

Figure 5.10: Throughput of different trace segments on the SSD.

The traces are captured on 36 volumes of 179 disks located in 13 servers. We randomly
select three traces from three different servers (hardware monitor, research, and source
control) in our experiments. MSR Cambridge traces do not expose any content informa-
tion (data or fingerprint) of the requests, so we have to generate contents for the requests.
According to previous publications [54], the deduplication ratio for primary storage work-
loads are mainly around 2. In our experiments, we choose three different deduplication
ratios (1.5, 2 and 4) for the evaluation. We also assume a compressibility ratio of 80%
(80% of blocks are compressible) and a compression ratio of 1.25, the same as that for the
FIU trace evaluation. The window size is still 8.

Figures 5.11 and 5.12 show the throughput of the three traces with different dedu-
plication ratio settings. ThinDedup achieves much higher throughput in all test cases than
OrderedWrites and Dmdedup as expected. Compared to OrderedWrites, ThinDedup im-
proves throughput from 88% to 145% for the hard disk and 58% to 96% for the SSD. When
comparing Figures 5.11a and 5.11b, we can see that even with the same deduplication ratio,
the throughput can be quite different for different workloads. The reason is that these two
workloads have very different access patterns. Compared to HM, RSRCH touches about
25% more metadata pages in our experiments. The random access feature of RSRCH in-
troduces more metadata writes and thus degrades the throughput. For SSD, however, the
performance difference is not significant as SSD is not so sensitive to random access.

87

1.5 2 4

Deduplication Ratio

0

100

200

300

400

500

600

700

800
T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(a) HM

1.5 2 4

Deduplication Ratio

0

100

200

300

400

500

600

700

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(b) RSRCH

1.5 2 4

Deduplication Ratio

0

100

200

300

400

500

600

700

800

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(c) SRC

Figure 5.11: Write throughput on the hard disk under different deduplication ratio for MSR
Cambridge traces. The window size is 8 and data compressibility ratio is 0.8.

5.4 Conclusion
In this paper we describe ThinDedup, an efficient deduplication scheme designed to

minimize the performance loss due to metadata persistency. By embedding metadata into
the compressed data blocks, ThinDedup removes most of metadata persisting operations
out of the critical path. It also uses window-based batch persistency to amortize the high
flush overhead. To provide crash consistency, ThinDedup stores fingerprint together with
block mapping to remove requirement on the write ordering.

Our extensive experiments with micro benchmarks and real-world workloads demon-
strate that ThinDedup can significantly improve performance of deduplication systems.
Compared to other state-of-the-art approaches, it provides up to 3X throughput. Mean-
while, the write latency can be reduced by up to 88% without compromising the through-
put.

88

1.5 2 4

Deduplication Ratio

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(a) HM

1.5 2 4

Deduplication Ratio

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(b) RSRCH

1.5 2 4

Deduplication Ratio

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
lo

ck
s/

se
c)

ThinDedup

OrderedWrites

Dmdedup

(c) SRC

Figure 5.12: Write throughput on the SSD under different deduplication ratio for the MSR traces.
The window size is 8 and data compressibility ratio is 0.8.

89

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

I/O Deduplication, a key technique for data reduction, has become a standard feature
in many commercial storage systems. For a storage system with deduplication feature
enabled, the deduplicatio performance has a significant impact on the overall performance
of the system. However, existing deduplication techniques can significantly degrade the
performance due to its high computation cost in the chunking and fingerprinting phase
and high I/O overheads introduced by the frequent write and flush operations for metadata
persistency. The major work of this dissertation has been focused on proposing solutions
to improve the performance of deduplication systems. The efforts covers all phases of data
deduplication. With all the efforts, we can design a more efficient deduplication system.

6.1 Contributions
The contributions of this dissertation can be summarized as follows:

• We quantify the impact of the existing parallel CDC methods on deduplication ratio,
and proposed a two-phase CDC method (SS-CDC) that can provide high chunking
speedup as regular parallel CDC approaches, and achieve the same deduplication
ratio as the sequential CDC method does. Also, since most of the chunking work
acts in an SIMD way, it can fully exploit the ILP computation power of modern
processors.
• Although SS-CDC can significantly improve the chunking speed, it relies on the com-

putation power of specific hardware, and it does not reduce the computation in the
chunking process. Fortunately, we disclosed the existence of deduplicate locality in
the datasets of deduplication systems. With the locality, we can leverage the dedupli-
cation history to guide the chunking process, which helps to remove the byte-by-byte
detection for a valid chunk boundary in most cases. Accordingly, we designed a very
fast CDC method, named RapidCDC, that is totally different from existing chunk-
ing acceleration methods. The evaluation results with real-world datasets show that
RapidCDC can provide tens of times chunking speedup with one chunking threads
and the performance scales with the number of chunking threads, which totally re-

90

moves the performance bottleneck posed by the chunking process in CDC-based
deduplication systems.
• Existing data deduplication techniques rely on collision-resistant hash functions (such

as MD5 or SHA1) to generate strong fingerprints for detecting duplicates. The calcu-
lation of fingerprints is time-consuming, and for systems where data are stored on a
fast disk (i.e., NVMe SSD), it has become a new performance bottleneck of the sys-
tem. We identify an opportunity in journaling file system where fast non-collision-
resistant hash functions can be used to generate weak fingerprints for detecting du-
plicates and thus avoiding the write-twice issue for the data journaling mode without
compromising data correctness and reliability.
• Deduplication systems need to maintain extra metadata, which must be persisted to

disk periodically. However, the persistency of the metadata can be very expensive as
it will introduce many small writes and frequent use of the expensive flush operations.
We propose a method that opportunistically compresses the data block to make room
to insert the small metadata. With a sophisticated design, in most cases the small
metadata writes on the critical path can be removed, which significantly improve the
I/O efficiency of the system.

6.2 Future Work
In the cloud environment, the cloud platform stores data from many different users

in the cloud storage systems. And a file can be uploaded and stored on the cloud multiple
times by different users, which produces many redundant data. The application of dedu-
plication technique in cloud storage systems can help to detect the duplicates and avoid
saving the same files on the cloud multiple times, which significantly reduces the expense
on storage devices. Nowadays, data deduplication in cloud storage systems has become
a practice, and commercial cloud companies, including EMC and Dropbox, have already
deployed deduplication technique in their cloud products for saving storage space and net-
work bandwidth. Compared to local storage systems, the deployment of deduplication on
cloud systems faces a big challenge, the data confidentiality. In the cloud environment,
the data are stored remotely on the cloud and users usually have no control of the physical
devices where the data are stored, which leads to extra concern of the data confidentiality.
A commonly used approach to protect data confidentiality in an untrusted environment is
data encryption. However, to retain the deduplicatability of the data after encryption, there
are some limitations on the encryption methods. How to efficiently perform deduplication
without sacrificing data confidentiality for cloud storage systems is increasingly attracting

91

attentions from both academia and industry. My future work will focus on this topic and
try to propose solutions for deduplication of secure data in the cloud.

92

REFERENCES
[1] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan, R. Ramjee, and

G. Varghese. Endre: An end-system redundancy elimination service for enterprises. In Proceedings
of the 7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10, pages
28–28, Berkeley, CA, USA, 2010. USENIX Association.

[2] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu. Storegpu: Exploiting graph-
ics processing units to accelerate distributed storage systems. In Proceedings of the 17th International
Symposium on High Performance Distributed Computing, HPDC ’08, pages 165–174, New York, NY,
USA, 2008. ACM.

[3] C. Alvarez. Netapp deduplication for fas and v-series deployment and implementation guide. Techni-
cal ReportTR-3505, 2011.

[4] J. An and D. Shin. Offline deduplication-aware block separation for solid state disk, 2013.

[5] P. Bhatotia, R. Rodrigues, and A. Verma. Shredder: Gpu-accelerated incremental storage and compu-
tation. In Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST’12,
pages 14–14, Berkeley, CA, USA, 2012. USENIX Association.

[6] M. Bjørling, J. González, and P. Bonnet. LightNVM: The linux open-channel SSD subsystem. In
Proceedings of the 15th Usenix Conference on File and Storage Technologies, FAST’17, pages 359–
373, Berkeley, CA, USA, 2017. USENIX Association.

[7] N. Bjrner, A. Blass, and Y. Gurevich. Content-dependent chunking for differential compression, the
local maximum approach. J. Comput. Syst. Sci., 76(3-4):154–203, May 2010.

[8] M. Cao, S. Bhattacharya, and T. Ts’o. Ext4: The next generation of Ext2/3 filesystem., 2007.

[9] A. Cassandra. Apache cassandra. http://planetcassandra.org/what-is-apache-cassandra, 2014.

[10] F. Chen, T. Luo, and X. Zhang. Caftl: A content-aware flash translation layer enhancing the lifespan
of flash memory based solid state drives. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies, FAST’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX Association.

[11] Z. Chen and K. Shen. OrderMergeDedup: Efficient, Failure-consistent Deduplication on Flash. In
Proceedings of the 14th Usenix Conference on File and Storage Technologies, FAST’16, pages 291–
299, Berkeley, CA, USA, 2016. USENIX Association.

[12] H. Chu. Database benchmarks. https://github.com/hyc/leveldb/tree/benches,
2014.

[13] Y. Collet. xxHash wider: assessing quality of a 64-bits hash function. http://
fastcompression.blogspot.com/2014/07/xxhash-wider-64-bits.html, 2014.

[14] Y. Collet. lz4. http://cyan4973.github.io/lz4/, 2015.

[15] Y. Collet. xxHash–Extremeley fast hash algorithm. http://cyan4973.github.io/
xxHash/, 2016.

[16] C. Constantinescu, J. Glider, and D. Chambliss. Mixing deduplication and compression on active data
sets. In 2011 Data Compression Conference, pages 393–402. IEEE, 2011.

[17] I. Corporation. IBM white paper: IBM storage tank – a distributed storage system, Jan. 2002.

93

https://github.com/hyc/leveldb/tree/benches
http://fastcompression.blogspot.com/2014/07/xxhash-wider-64-bits.html
http://fastcompression.blogspot.com/2014/07/xxhash-wider-64-bits.html
http://cyan4973.github.io/xxHash/
http://cyan4973.github.io/xxHash/

[18] I. Corporation. Intel xeon phi processors. https://www.intel.com/content/www/us/
en/products/processors/xeon-phi/xeon-phi-processors.html, 2013.

[19] I. Corporation. Intel Skylake Processors. https://ark.intel.com/products/codename/
37572/Skylake, 2015.

[20] I. Corporation. Intel architecture instruction set extensions programming reference.
https://software.intel.com/sites/default/files/managed/c5/15/
architecture-instruction-set-extensions-programming-reference.pdf,
2018.

[21] B. K. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up inline storage deduplication using
flash memory. In USENIX annual technical conference, pages 1–16, 2010.

[22] Dell EMC. Data Domain - Data Backup Appliance, Data Protection, 2019.

[23] DELL EMC inc. Supported Stream Counts for Data Domain OS 5.7. https://community.
emc.com/docs/DOC-63282, 2018.

[24] Docker, Inc. Official repositories on Docker Hub. https://hub.docker.com/, 2016.

[25] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and P. Shilane. Tradeoffs in scalable data
routing for deduplication clusters. In FAST, volume 11, pages 15–29, 2011.

[26] L. DuBois, M. Amaldas, and E. Sheppard. Key considerations as deduplication evolves into primary
storage. White Paper, 223310, 2011.

[27] D. Eastlake 3rd and P. Jones. US secure hash algorithm 1 (SHA1), 2001.

[28] K. Eshghi, M. Lillibridge, L. Wilcock, G. Belrose, and R. Hawkes. Jumbo store: Providing efficient
incremental upload and versioning for a utility rendering service. In Proceedings of the 5th USENIX
Conference on File and Storage Technologies, FAST ’07, pages 22–22, Berkeley, CA, USA, 2007.
USENIX Association.

[29] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N. Patt. Soft updates: a solution to the metadata
update problem in file systems. ACM Transactions on Computer Systems (TOCS), 18(2):127–153,
2000.

[30] Gary S. Brown. CRC32 code in FreeBSD derived from work by Gary S. Brown. http://web.
mit.edu/freebsd/head/sys/libkern/crc32.c, 1986.

[31] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu. A gpu accelerated storage sys-
tem. In Proceedings of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, pages 167–178, New York, NY, USA, 2010. ACM.

[32] S. Ghemawat and J. Dean. Leveldb. URL: https://github. com/google/leveldb,% 20http://leveldb. org,
2011.

[33] J. Graham-Cumming. Rebuilding when a file’s checksum changes. https://www.
cmcrossroads.com/article/rebuilding-when-files-checksum-changes,
2006.

[34] J. Graham-Cumming. The GNU make book. No Starch Press, 2015.

[35] F. Guo and P. Efstathopoulos. Building a high-performance deduplication system. In USENIX Annual
Technical Conference, 2011.

[36] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A flash translation layer employing demand-based
selective caching of page-level address mappings. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIV, pages
229–240, New York, NY, USA, 2009. ACM.

94

https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://ark.intel.com/products/codename/37572/Skylake
https://ark.intel.com/products/codename/37572/Skylake
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://community.emc.com/docs/DOC-63282
https://community.emc.com/docs/DOC-63282
https://hub.docker.com/
http://web.mit.edu/freebsd/head/sys/libkern/crc32.c
http://web.mit.edu/freebsd/head/sys/libkern/crc32.c
https://www.cmcrossroads.com/article/rebuilding-when-files-checksum-changes
https://www.cmcrossroads.com/article/rebuilding-when-files-checksum-changes

[37] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. A file is not a
file: understanding the i/o behavior of apple desktop applications. ACM Transactions on Computer
Systems (TOCS), 30(3):10, 2012.

[38] HP Workstations. Technical white paper: SSD endurance. http://h20195.www2.hp.com/
v2/getpdf.aspx/4AA5-7601ENW.pdf?ver=1.0, 2015.

[39] D. Inc. debian: Docker Official Images. https://hub.docker.com/_/debian/, 2018.

[40] D. Inc. Node: Docker Official Images. https://hub.docker.com/_/node/, 2018.

[41] D. Inc. wordpress: Docker Official Images. https://hub.docker.com/_/wordpress/,
2018.

[42] L. E. Inc. How to properly calculate write endurance. http://h20195.www2.hp.com/v2/
getpdf.aspx/4AA5-7601ENW.pdf?ver=1.0, 2015.

[43] Intel. Intel X25-M and X18-M Mainstream SATA Solid-State Drives. https://www.intel.
com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_
50nm_X25-M_X18M_Series_Product-brief.pdf, 2008.

[44] Intel. Intel solid-state drive 520 series product specification. https://www.intel.com/
content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_520_
Series_Product_specification.pdf, 2012.

[45] INTEL. Intel Solid State Drive 750 Series Product Specification, Revi-
sion 004. https://www.intel.com/content/www/us/en/products/
\memory-storage/solid-state-drives/gaming-enthusiast-ssds/
750-series/750-400gb-2-5-inch-20nm.html, 2015.

[46] Intel. Intel Optane SSD DC P4800X Series. https://www.intel.com/content/www/
us/en/products/memory-storage/solid-state-drives/data-center-ssds/
optane-dc-p4800x-series/p4800x-750gb-2-5-inch.html, 2017.

[47] H. Kambo and B. Sinha. Secure data deduplication mechanism based on rabin cdc and md5 in cloud
computing environment. In Recent Trends in Electronics, Information & Communication Technology
(RTEICT), 2017 2nd IEEE International Conference on, pages 400–404. IEEE, 2017.

[48] L. Kernel. Ext4 Filesystem. https://www.kernel.org/doc/Documentation/
filesystems/ext4.txt, 2017.

[49] R. Koller and R. Rangaswami. I/O Deduplication: Utilizing Content Similarity to Improve I/O Per-
formance. Trans. Storage, 6(3):13:1–13:26, Sept. 2010.

[50] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and P. Camble. Sparse indexing:
Large scale, inline deduplication using sampling and locality. In Proccedings of the 7th Conference
on File and Storage Technologies, FAST ’09, pages 111–123, Berkeley, CA, USA, 2009. USENIX
Association.

[51] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone, and G. Wallace. Metadata considered harmful
... to deduplication. In Proceedings of the 7th USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’15, pages 11–11, Berkeley, CA, USA, 2015. USENIX Association.

[52] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen. Duracache: A durable SSD cache using mlc nand
flash. In Proceedings of the 50th Annual Design Automation Conference, DAC’13, pages 166:1–166:6,
New York, NY, USA, 2013. ACM.

[53] Y. Lokeshwari, B. Prabavathy, and C. Babu. Optimized cloud storage with high throughput dedu-
plication approach. In Proceedings of the International Conference on Emerging Technology Trends
(ICETT). Citeseer, 2011.

95

http://h20195.www2.hp.com/v2/getpdf.aspx/4AA5-7601ENW.pdf?ver=1.0
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA5-7601ENW.pdf?ver=1.0
https://hub.docker.com/_/debian/
https://hub.docker.com/_/node/
https://hub.docker.com/_/wordpress/
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA5-7601ENW.pdf?ver=1.0
http://h20195.www2.hp.com/v2/getpdf.aspx/4AA5-7601ENW.pdf?ver=1.0
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_50nm_X25-M_X18M_Series_Product-brief.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_50nm_X25-M_X18M_Series_Product-brief.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_50nm_X25-M_X18M_Series_Product-brief.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_520_Series_Product_specification.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_520_Series_Product_specification.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_520_Series_Product_specification.pdf
https://www.intel.com/content/www/us/en/products/\memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series/750-400gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/\memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series/750-400gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/\memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series/750-400gb-2-5-inch-20nm.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-2-5-inch.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-2-5-inch.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-p4800x-series/p4800x-750gb-2-5-inch.html
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt

[54] M. Lu, D. Chambliss, J. Glider, and C. Constantinescu. Insights for data reduction in primary storage:
a practical analysis. In Proceedings of the 5th Annual International Systems and Storage Conference,
page 17. ACM, 2012.

[55] R. McDougall and J. Mauro. Filebench. http://www.nfsv4bat.org/Documents/
nasconf/2004/filebench.pdf(Citedonpage56.), 2005.

[56] D. Meister and A. Brinkmann. Multi-level comparison of data deduplication in a backup scenario.
In Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference, SYSTOR ’09, pages
8:1–8:12, New York, NY, USA, 2009. ACM.

[57] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file system. SIGOPS Oper.
Syst. Rev., 35(5):174–187, Oct. 2001.

[58] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practical power management for
enterprise storage. ACM Transactions on Storage (TOS), 4(3):10, 2008.

[59] D. Nellans, M. Zappe, J. Axboe, and D. Flynn. ptrim ()+ exists (): Exposing new ftl primitives to
applications, 2011.

[60] Neo Technology. Neo4j Graph Database Platform. https://neo4j.com/, 2018.

[61] NETAPP inc. NetApp R© AltaVault R© Cloud Integrated Storage 4.0: Installation and Service Guide for
Physical Appliances. goo.gl/wj2Y4K, 2015.

[62] NetApp inc. ONTAP Data Management Software: ONTAP Data Management Software. https://
www.netapp.com/us/products/data-management-software/ontap.aspx, 2018.

[63] NETAPP inc. AFF A-Series All Flash Arrays: Leads the market with new performance
benchmark results. https://www.netapp.com/us/products/storage-systems/
all-flash-array/aff-a-series.aspx, 2019.

[64] A. Neumann. Fast implementation of Content Defined Chunking (CDC) based on a rolling Rabin
Checksum in C. https://github.com/fd0/rabin-cdc, 2018.

[65] G. operating system. Mirror of all gcc svn branches and tags. https://gcc.gnu.org/git/
?p=gcc.git;a=summary, 2017.

[66] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Application crash consistency and performance with ccfs. In Proceedings of the 15th Usenix Confer-
ence on File and Storage Technologies, FAST’17, pages 181–196, Berkeley, CA, USA, 2017. USENIX
Association.

[67] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal: On the complexity of crafting crash-consistent appli-
cations. In Proceedings of the 11th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’14, pages 433–448, Berkeley, CA, USA, 2014. USENIX Association.

[68] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Crash consistency. Commun. ACM, 58(10):46–51, Sept. 2015.

[69] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analysis and evolution of journal-
ing file systems. In Proceedings of the Annual Conference on USENIX Annual Technical Conference,
ATC ’05, pages 8–8, Berkeley, CA, USA, 2005. USENIX Association.

[70] A. Pranckevicius. Performance tests of various non-cryptographic hash functions, on various cpus.
http://aras-p.info/blog/2016/08/09/More-Hash-Function-Tests/, 2016.

[71] Pure Storage, Inc. Pure Unifies Cloud: Your Hybrid Cloud Journey Just Got A Lot Easier. https:
//www.purestorage.com/, 2019.

96

http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf (Cited on page 56.)
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf (Cited on page 56.)
https://neo4j.com/
goo.gl/wj2Y4K
https://www.netapp.com/us/products/data-management-software/ontap.aspx
https://www.netapp.com/us/products/data-management-software/ontap.aspx
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx
https://github.com/fd0/rabin-cdc
https://gcc.gnu.org/git/?p=gcc.git;a=summary
https://gcc.gnu.org/git/?p=gcc.git;a=summary
http://aras-p.info/blog/2016/08/09/More-Hash-Function-Tests/
https://www.purestorage.com/
https://www.purestorage.com/

[72] S. Quinlan and S. Dorward. Venti: A new approach to archival storage. In FAST, volume 2, pages
89–101, 2002.

[73] M. O. Rabin. Fingerprinting by random polynomials. Technical report, 1981.

[74] J. Reinders. Intel avx-512 instructions, 2013.

[75] R. Rivest. The md5 message-digest algorithm. https://tools.ietf.org/html/rfc1321,
1992.

[76] D. Robbins. Advanced filesystem implementor’s guide, part 8. https://www.ibm.com/
developerworks/library/l-fs8/index.html, 2001.

[77] S. Sanfilippo and P. Noordhuis. Redis. http://redis.io, 2015.

[78] B. Schroeder, R. Lagisetty, and A. Merchant. Flash reliability in production: The expected and the un-
expected. In Proceedings of the 14th Usenix Conference on File and Storage Technologies, FAST’16,
pages 67–80, Berkeley, CA, USA, 2016. USENIX Association.

[79] P. Shilane, G. Wallace, M. Huang, and W. Hsu. Delta compressed and deduplicated storage using
stream-informed locality. In HotStorage, 2012.

[80] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber. Extending SSD lifetimes with
disk-based write caches. In Proceedings of the 8th USENIX Conference on File and Storage Technolo-
gies, FAST’10, pages 8–8, Berkeley, CA, USA, 2010. USENIX Association.

[81] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti. idedup: latency-aware, inline data dedu-
plication for primary storage. In FAST, volume 12, pages 1–14, 2012.

[82] V. Tarasov, D. Jain, G. Kuenning, S. Mandal, K. Palanisami, P. Shilane, S. Trehan, and E. Zadok.
Dmdedup: Device mapper target for data deduplication, 2014.

[83] V. Tarasov, D. Jain, G. Kuenning, S. Mandal, K. Palanisami, P. Shilane, S. Trehan, and E. Zadok.
Dmdedup: Device mapper target for data deduplication. In 2014 Ottawa Linux Symposium, 2014.

[84] Debian Project. Debian CD Image Download page. https://cdimage.debian.org/
debian-cd/current/amd64/iso-cd/, 2017.

[85] GNU Operating System. Timestamp resolution and make. https://www.
gnu.org/software/autoconf/manual/autoconf-2.61/html_node/
Timestamps-and-Make.html, 2008.

[86] The Linux Kernel Organization, Inc. The Linux Kernel Archives, 2019.

[87] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, T. C. Bressoud, and A. Perrig. Opportunistic use
of content addressable storage for distributed file systems. In USENIX Annual Technical Conference,
General Track, volume 3, pages 127–140, 2003.

[88] L. Torvalds. Linux 2.6.29. https://lwn.net/Articles/326505/, 2009.

[89] L. Torvalds and J. Hamano. Git: Fast version control system. http://git-scm.com, 2010.

[90] S. Tweedie. Ext3, journaling filesystem. In Ottawa Linux Symposium, pages 24–29, 2000.

[91] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G. Calkowski, C. Dubnicki, and A. Bohra.
Hydrafs: A high-throughput file system for the hydrastor content-addressable storage system. In
Proceedings of the 8th USENIX Conference on File and Storage Technologies, FAST’10, pages 17–
17, Berkeley, CA, USA, 2010. USENIX Association.

[92] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness, and W. Hsu. Characteristics
of backup workloads in production systems. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies, FAST’12, pages 4–4, Berkeley, CA, USA, 2012. USENIX Association.

97

https://tools.ietf.org/html/rfc1321
https://www.ibm.com/developerworks/library/l-fs8/index.html
https://www.ibm.com/developerworks/library/l-fs8/index.html
http://redis.io
https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/
https://cdimage.debian.org/debian-cd/current/amd64/iso-cd/
https://www.gnu.org/software/autoconf/manual/autoconf-2.61/html_node/Timestamps-and-Make.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.61/html_node/Timestamps-and-Make.html
https://www.gnu.org/software/autoconf/manual/autoconf-2.61/html_node/Timestamps-and-Make.html
https://lwn.net/Articles/326505/
http://git-scm.com

[93] J. Wei, H. Jiang, K. Zhou, and D. Feng. Mad2: A scalable high-throughput exact deduplication
approach for network backup services. In Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST ’10, pages 1–14, Washington, DC, USA, 2010.
IEEE Computer Society.

[94] Wikipedia. Wiki Page: Journaling file system. https://en.wikipedia.org/wiki/
Journaling_file_system, 2017.

[95] Wikipedia. Wiki Page: XFS-Journaling. https://en.wikipedia.org/wiki/XFS#
Journaling, 2017.

[96] Wikipedia. Speedup. https://en.wikipedia.org/wiki/Speedup#Super-linear_
speedup, 2019.

[97] Y. Won, K. Lim, and J. Min. Much: Multithreaded content-based file chunking. IEEE Transactions
on Computers, 2015.

[98] Y. Won, K. Lim, and J. Min. Much: Multithreaded content-based file chunking. IEEE Transactions
on Computers, 64(5):1375–1388, 2015.

[99] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo: A similarity-locality based near-exact deduplication
scheme with low ram overhead and high throughput. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’11, pages 26–28, Berkeley, CA, USA, 2011.
USENIX Association.

[100] W. Xia, H. Jiang, D. Feng, and L. Tian. Accelerating data deduplication by exploiting pipelining and
parallelism with multicore or manycore processors. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies (FAST’12 Poster), pages 1–2, 2012.

[101] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Z. Wang. P-dedupe: Exploiting parallelism in data
deduplication system. In 2012 IEEE Seventh International Conference on Networking, Architecture,
and Storage, pages 338–347, Xiamen, China, 2012. IEEE, IEEE.

[102] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Y. Zhou. Ddelta: A deduplication-inspired fast delta
compression approach. Performance Evaluation, 79, 2014.

[103] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Y. Zhang, and Q. Liu. Fastcdc: A fast and efficient
content-defined chunking approach for data deduplication. In Proceedings of the 2016 USENIX Con-
ference on Usenix Annual Technical Conference, USENIX ATC ’16, pages 101–114, Berkeley, CA,
USA, 2016. USENIX Association.

[104] C. Yu, C. Zhang, Y. Mao, and F. Li. Leap-based content defined chunking – theory and implemen-
tation. In the 31st Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara, CA,
2015. IEEE.

[105] Y. Zhang, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang, and Y. Zhou. A fast asymmetric extremum con-
tent defined chunking algorithm for data deduplication in backup storage systems. IEEE Transactions
on Computers, 66(2), 2017.

[106] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain deduplication file
system. In Proceedings of the 6th USENIX Conference on File and Storage Technologies, FAST’08,
pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

98

https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/XFS#Journaling
https://en.wikipedia.org/wiki/XFS#Journaling
https://en.wikipedia.org/wiki/Speedup#Super-linear_speedup
https://en.wikipedia.org/wiki/Speedup#Super-linear_speedup

	ACKNOWLEDGEMENTS
	ABSTRACT
	INTRODUCTION
	SS-CDC: A Two-stage Parallel Content-Defined Chunking for Deduplicating Backup Storage
	Introduction
	Using Deduplication to Improve Space Efficiency
	Accelerating CDC-based Deduplication
	Our Contribution

	Background and Related Work
	Fixed vs. Variable-size Chunking
	Optimizing Rolling Hashing
	Parallel Chunking and its Limitations

	The Design
	Decoupling Rolling Hashing from Chunk Boundary Determination
	Parallelizing Operations in SS-CDC
	SS-CDC on AVX Instructions
	Multi-threaded SS-CDC on Cores with AVX

	Evaluation
	Chunking Speed
	Deduplication Ratio

	Conclusions

	RapidCDC: The Duplicate Locality and its Use to Accelerate Chunking in CDC-based Deduplication Systems
	Introduction
	The Duplicate Locality
	The Design of RapidCDC
	Quickly Reaching Next chunk's Boundary
	Accepting Suggested Chunk Boundaries
	Maintaining List of Next-chunk Sizes

	Evaluations
	The Systems in Evaluation
	The Datasets
	Results with Synthetic Datasets
	Impact of Modification Count and Distribution
	Results with Real-world Datasets

	Related Work
	Reducing Computation Cost in Chunking
	Accelerating Chunking with Parallelism

	Conclusion

	WOJ: Enabling Write-Once Full-data Journaling in SSDs by Using Weak-Hashing-based Deduplication
	Introduction
	Data Journaling is Necessary
	SSD's Endurance is now a Barrier
	Regular Deduplication is too Expensive
	A Lightweight Built-in Solution

	The Design of WOJ
	SSD with File-system-level Knowledge
	Deduplication with Non-collision-resistant Fingerprints
	Metadata Supporting Movements of Physical Blocks

	Evaluation
	Experiment Methodology
	Results with Write-only Micro Benchmarks
	Results with Filebench Benchmarks
	Results with Database Workload
	Results with Workloads Using Real-world data
	Memory Space Overheads

	Conclusion

	ThinDedup: An I/O Deduplication Scheme that Minimizes Efficiency Loss due to Metadata Writes
	Introduction
	The design of ThinDedup
	Window-based Metadata Persistence
	Zone-based Data Persistence
	Service of Read Operations

	Performance Evaluation
	Experiment Setup
	Experiment Results with Synthetic Workloads
	Experiment Results with Real-world Workloads

	Conclusion

	CONCLUSIONS AND FUTURE WORK
	Contributions
	Future Work

	REFERENCES

