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Abstract 
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MALWARE USING SANDBOXING AND YARA 

RULESET 

 

Mohit Singhal, MS 
 

The University of Texas at Arlington, 2019 
 

Supervising Professor: David Levine  

With the increase in the usage of websites as the main source of information 

gathering, malicious activity especially drive-by download has exponentially 

increased. A drive-by download refers to unintentional download of malicious code 

to a user computer that leaves the user open to a cyberattack. It has become the 

preferred distribution vector for many malware families. Malware is any software 

intentionally designed to cause damage to a user computer. 

The purpose of this research is to analyze the malware that were obtained 

from visiting approximately 100,000 malicious URLs and then running these 

binaries in sandboxes and then analyzing their runtime behavior with a software 

tool (YARA) to categorize them and classify what malware family to which they 

belong. Out of the 1414 program executables (binaries) that were captured, 1000 

binaries were executed and 99 were identified as false-positive. Out of the 1414 

binaries that were extracted 959 of them were executable, 48% of the binaries were 

extracted from websites that were hosted in the US. We also found that 105 binaries 

had the same name but different hashes that is, they were not identical. Out of the 

901 binaries, 867 of them were identified as Trojan Horse and we were able to 
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identify 53 type of malware families, with one particular family, Kyrptik, having 

176 malware belonging to it which is about 19% and about 4% of the malware 

families were not identified. 
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Chapter 1  

Introduction 

With the increase in the number of websites as the main source of information gathering, 

malicious activity has also increased exponentially. According to an Internet security 

threat report from Symantec [1], one in ten websites are malicious. Since the Internet has 

become a main source of gathering information, attackers are using it to spread malware 

using “exploit-as-a-service” model which is based on “drive-by download” attacks. Gone 

are the days when the user had to click “accept” in order to download or install a software 

update to become infected, the user now just has to visit or “drive by” a webpage, without 

stopping to click or accept any software, and the malicious code will be downloaded in 

the background to the user device [2]. Exploits are normally the errors in the software 

development process that leave holes in the software’s built-in security that 

cybercriminals can then use [22].  Attackers rather than creating their own exploit kits, 

pay for an existing exploit kits like Blackhole and Eleonore to do the “dirty work” of 

exploiting the victim’s browser. A typical drive-by download is shown in Fig 1-1. [3] 

 
        Figure 1-1 Drive-by Download Architecture [3] 

As we can see in fig 1-1, we can see that the victim is visiting a compromised site which 

is also known as landing site which is often setup as a legitimate website. The landing 

website then redirects the victim’s browser to a chain of intermediate pages to the final 

URL which is the exploit site which hosts the exploit kit. The attack code is downloaded 

from this exploit site and is executed by the victim’s web browser. Then, the victim’s 

browser forcibly downloads additional malware from the malware download site. 
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  Malware is a term used to describe software that accomplishes the deliberately 

harmful intent of an attacker [4].  Basically, malicious attacks are done in order to steal 

critical user data or to control the victim’s computer from a remote location or to damage 

the compromised system. There has been an exponential increase in the number of new 

malware that are affecting computers since 2015. According to AV-TEST [6], total 

number of malware’s increased from 47 million to 882 million from 2010 to 2019. There 

are different types of malware, each classified by their unique and specific capabilities. 

Some of the popular types of malware are given below. 

Trojan Horses: This is the most commonly seen type of malware. Trojans masquerade 

as a normal software trick the victims into installing it. For instance, once installed, it will 

execute the payload which can either steal user data or financial information, or it can 

give access to the attacker to remotely control the system. 

Spyware: This is designed to monitor and gather user’s activity without their knowledge. 

They often spread through the Trojan Horse payload. Keyloggers are the most common 

type of spyware which is used to collect user’s keystrokes.  

Downloader: This is designed to have only the functionality of downloading content. 

The downloaded content can vary from case to case but they can compromise of, but not 

limited to, configuration/command information, miscellaneous files, misleading 

applications [5]. 

Viruses: These are designed to replicate and then spread by hiding inside a normal 

computer program or file. The file/program that the virus has infected is called the host. 

When this host is executed, the virus also get executed. Viruses normally disable system 

defenses, steal user data and in some cases, can even corrupt the boot sector which is used 

by the computer to load the operating system and other programs that are necessary. 

Botnet: A botnet is a collection of Internet-connected devices, which may include PCs, 

servers, mobile devices and Internet of things devices that are infected and controlled by 

a common type of malware. Infected devices are controlled remotely by threat actors, 

often cybercriminals, and are used for specific functions, so that the malicious operations 

stay hidden to the user [7].  
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Remote Access Trojan (RAT): A remote access Trojan (RAT) is a malware program 

that includes a back door for administrative control over the target computer. RATs are 

usually downloaded invisibly with a user-requested program -- such as a game or sent as 

an email attachment. Once the host system is compromised, the intruder may use it to 

distribute RATs to other vulnerable computers and establish a botnet [8]. 

Riskware: Riskware is the name given to legitimate programs that can cause damage if 

they are exploited by malicious users – in order to delete, block, modify or copy data, and 

disrupt the performance of computers or networks [9].  

Backdoor: A backdoor is a means to access a computer system or encrypted data that 

bypasses the system's customary security mechanisms. Attackers often use backdoors that 

they detect or install themselves as part of an exploit. In some cases, a worm or virus is 

designed to take advantage of a backdoor created by an earlier attack [10]. 

Ransomware: It is a special type of malware, which infects the victim’s computer and 

limits the victim’s access to the system and its files until a ransom is paid. It does this by 

encrypting the victim’s files and locking the user’s desktop and then displaying the user 

a message which demands ransom and the way to pay that ransom. 

 According to [38], malicious cyber activity cost the U.S. economy between $57 

billion and $109 billion in 2016. Verizon’s data breach investigations report noted that 

75% of recent cyber incidents and breaches were caused by outsiders, while 25% were 

performed by internal actors. According to [38], on an average a median firm with a 

market capitalization of $12 billion, lost $498 million per adverse cyber event. 

PricewaterhouseCoopers in 2014 reported that as many as 71% of cyber compromises go 

undetected. 

 Given the exponential increase in the number of new malware being discovered 

[6], and the huge losses suffered by firms, it is necessary that these malware should be 

analyzed and categorized so that their signatures can be fed into the available anti-virus 

software, in order to protect users from these malicious software’s. In this paper, we take 

a much deeper dive into the analysis of these malicious entities by checking their effect 

and behaviors on the system using both static and dynamic analysis. 
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 There are two basic approaches to malware analysis: static and dynamic analysis. 

Static analysis encompasses examining the sample without executing it, whereas dynamic 

analysis involves running the sample in a contained and isolated environment called a 

“sandbox”. A sandbox is a security mechanism for running untrusted programs in a safe 

environment without fear of harming real systems [13]. In static analysis, the sample is 

examined on its static properties like header details, hashes, signatures. The sample is 

also disassembled using a disassembler to look into its instructions to see what it does. In 

contrast, in dynamic analysis the sample behavior is observed while it is being executed 

in a contained environment. This provides new insights into the working of the sample as 

we can see any changes in the system or any odd behavior. Through dynamic analysis an 

analyst can see track any changes in the registry, whether any existing file was modified 

or was added/deleted, if there was any new process that was created, whether the sample 

tried to connect to the Internet. As stated earlier, dynamic analysis is normally performed 

in a contained environment such as sandbox. By using a sandbox, we can easily go back 

to a previous state and we also eliminate the possibility of the sample affecting the host 

machine and infecting it. 

 In this paper, we analyze the binaries (which could be executables, documents, 

pdf) that were collected after visiting approximately 100,000 malicious websites using a 

malware crawler. A malware crawler is a software which visits links of websites in order 

to extract meaningful information from them. These binaries were stored in a labeled 

database and then executing them in Cuckoo Sandbox, VMRay Analyzer Cloud and the 

sandboxes available in VirusTotal, we analyzed the static and dynamic behaviors and 

then using a software tool (YARA) categorizing them and classifying what malware 

family to which they belong. 

Out of the 1414 program executables (binaries) that were captured, 1000 binaries 

were executed and 99 were identified as false-positive. Out of the 1414 binaries that were 

extracted 959 of them were executable, 48% of the binaries were extracted from websites 

that were hosted in the US. We also found that 105 binaries had the same name but 

different hashes that is, they were not identical. Out of the 901 binaries, 867 of them were 
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identified as Trojan Horse and we were able to identify 53 type of malware families, with 

one particular family, Kryptik, having 176 malwares belonging to it which is about 19%, 

and about 4% of the malware families were not identified. 
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Chapter 2  

                                                                  Background 

 
Malware authors are always trying to find new methods to conceal a malicious executable 

in a form that can evade existing detection method such as anti-virus search. In order to 

do that, they create new naming conventions, obfuscating the code in an image or making 

it a macro in a Microsoft Word document or an Excel sheet. According to Symantec, 

office macro downloaders and the use of powershell scripts increased 1,000 percent [1] 

over a period of two years. Different malware uses different techniques to increase the 

potential harm to the victim’s computer. For example, they can create a process in a 

hidden window, inject its script into other running processes, it can disable meta files, it 

can corrupt the master boot sector of the computer, it can store store the keystrokes of the 

user, encrypt user’s file and establish a communication with a command-and-control 

servers. In addition to the above, the proposed system assumes that a binary is indeed a 

malware it should also perform one or more of the following activities. 

Registry Changes: The Windows registry is a very easy target for any malware. It is a 

collection of configuration settings for the Windows operating systems. One of the widely 

reported registry changes is the addition into the “Autostart Extensibility Points 

(AESPs)”. Normally malware might add itself to AESPs to store keystrokes so that it can 

capture the password in plain text or to store other password’s which can be used by the 

attacker to either cause financial fraud or to get hold of the system remotely. In order to 

do that the malware has to manipulate the  

“HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run” 

registry key. Figure 2-1, shows the hook that is used by keylogger to monitor the 

keystrokes.  

 

 
Figure 2-1 Keylogger hook 
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In order to gain persistence, malware normally manipulate the registry key that was given 

earlier. They can also achieve persistence by hooking the malicious software to a 

particular Winlogon event like logon, logoff, startup and shutdown. A hook is a place and 

usually an interface provided in packaged code that allows a programmer to insert 

customized programming [23]. 

They do that by making changes to the  

“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 
NT\CurrentVersion\Winlogon\” registry key. 
 
Connections to a remote host or non-responsive IP addresses: One of the ways 

malicious agents are able to get control of the victim’s system is generally by having a 

direct connection to the victim’s system and that is achieved by the malware executing a 

payload that pings an IP address that belongs to the malware author. One common type 

of attack is the creation of a backdoor. In a recent report by Symantec, Asus software 

updates were hijacked by attackers and they were able to install a backdoor on thousands 

of computers [11]. Fig 2-2 shows malware creating a backdoor and then receiving data. 
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Figure 2-2 Malware creating a backdoor and then receiving data 

 

Changes in the System: Malware families such as Emotet, Ramnit and various others 

[24, 25] make changes to the operating system, either modifying the registry keys or 

dropping new files or crashing running processes. They also can stop crucial Windows 

services such as disabling the Windows security center or killing the .NET framework 

[26]. One of the commonly seen behavior from malware samples were that after they 
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were executed in any of the sandboxes, they would suddenly reboot the system and then 

start their execution in a hidden window. Fig 2-3 shows the same. 

 
Figure 2-3 Malware sample is rebooting the system and then running in a hidden 

window 

 

 

Identification using YARA ruleset: This is an extremely powerful tool that is aimed at 

(but not limited to) helping malware researchers to identify and classify malware samples 

[12]. While executing in the binaries in Cuckoo sandbox [13] and VMRay Analyzer 
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Cloud [14], they were able to match the behavior of some of the samples with the existing 

YARA rules.  

 In this work, we were able to use all the features that are listed above and able 

to categorize malware based on the effect they were having on a system. 
 
 
 

 
 

 

 
 

 

   
 
  
 
 
 
 



 

20 

Chapter 3  

Related Works  

• In [32] Matthew et al. assesses the efficiency and effectiveness of the existing 

tools for automated malware analysis. The main aim was to use six existing tools 

to study how malware persists on the infected system. The author tested the tools 

by using malware samples that were extracted from various sources and then 

studied which techniques of persistence was detected by which tool.  

One of the limitation of this research was that the number of malware 

samples that were extracted for the study. They only considered 33 samples in 

order to study the tools. The other limitation was that, the author never considered 

using sandboxes in order to get a much better perspective on the persistence 

methods. In this research, the authors executed the malware for three minutes and 

after that would extract data from the tools that the authors are considering for the 

research. The authors never considered the possibility that malware author are 

using “Sleep” functionalities in order to evade possible detection. 

• In [33] Bailey et al. assesses the efficiency of existing anti-virus software’s to 

detect and provide meaningful information about the malware samples that were 

collected. The authors provide evidence that different anti-virus software 

characterize malware in a way that is inconsistent across anti-virus products. The 

aim of authors in this research was to come up with a novel solution to identify 

the malware not only based on the number of hits on various anti-virus software 

but also by looking into the system changes. This paper provides many solid 

insights. 

The limitations of this research were that the authors only considered a 

small amount of information. The authors never measured the extensive amount 

of information that can be extracted by disassembling the code, in order to get 

more insights, as well as that they also didn’t consider the possibility of 
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obfuscated code and as well as the possibility of sleep functionalities used by 

malware authors.  

• In [34] Tanaka et al. investigate the rise of exploit-as a service ecosystem. The 

main aim of this research was to analyze the malware download sites focusing on 

the time series variation of malware by examining their SHA1 hashes daily for a 

period of one and a half years. The authors daily examined approximately 43,000-

malware download URLs in order to study their behavior and to investigate 

malware distribution network. The authors were able to categorize the variation 

into three categories i.e. unchanged, every time changed and changed 

occasionally.  

The limitation of this research was that the authors were only considering 

if there were any changes in the hashes and not looking if the changed malware 

were in any way different in their behavior then the previously discovered 

malware. Also, the choice of using SHA1 in order to compare hashes is 

questionable, because in 2015, a collision attack on SHA1 was detected. 

• In [35] Nappa et al. investigated the hosting and distribution of drive-by 

downloads, however the main aim of their research was to understand how drive-

by download operates? In order to study this, the authors created an infrastructure 

to track individual exploit servers over time, collecting and classifying the 

malware that they distribute.  

Limitation in this research was the authors were classifying the malware 

based on icons, network and screenshots that were obtained while the malware 

executed in an isolated contained environment. They executed the samples in a 

virtual machine rather than in a sandbox, hence limiting themselves to some of 

the basic ways to classify a malware.  
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• In [3] Grier et al. investigated the emergence of exploit-as-a-service model in the 

drive-by download ecosystem. The authors performed their analysis on about 

77,000 malicious URLs. They were able to extract about 10,000 binaries from 

these URLs which they then executed in a contained environment.  

The authors classified the binaries solely on the results that they got from 

executing the malware. They never considered the possibility of using YARA 

rules, as that would have decreased the number of unknown binaries.  

• In [36] Moshchuk et al. studied the threats from malicious spyware that exist on 

the web. They used a crawler to do a large-scale, longitudinal study of the web, 

by crawling 18 million URLs. They found spyware in approximately 13% of the 

21,200 executable that they tested. 

The authors in this research determined the existence of a spyware by 

running a scan of an anti-spyware tool called “AdAware”. In addition, the authors 

considered executing the sample in a sandbox if it triggered some of the trigger 

conditions. The authors did not take into consideration if the binary was doing any 

networking activity as part of a trigger condition.   
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Chapter 4  

System Design 
 

In this chapter, we describe the techniques for a binary to be identified as a malware 

sample. The ultimate goal of the proposed system is to identify which binaries are 

malicious in nature and which are false-positive. A false-positive is when a program/file 

is not malicious in nature but shows those characteristics. As the proposed system is using 

Cuckoo sandbox and VMRay Analyzer Cloud, it is virtually impossible that any data will 

be lost as Cuckoo reverts back to its original state and VMRay has multiple virtual 

machines that are working with no interaction between them and after the binaries have 

executed reverts back to its original state. 

 We first describe the malware aggregation stage in the proposed system. Then, 

we mention the need of a virtualized environment, after that we describe what settings 

were being used to execute the binaries in the sandboxes that were used, and then we 

describe on what parameters the static and dynamic analysis were performed on the 

summaries that we got from the sandboxes. Finally, describing how YARA ruleset were 

applied on the summaries to manually classify whether the binary was a false-positive or 

the binary was malicious in nature, if that is the case then what is the type of malware and 

to which family does the malware belong.  

Virtualized Environment: One of the most important things while executing any 

malware sample is that it doesn’t affect the analysts machine. So, for that analysts always 

use virtual machines in order to curb that problem. In the proposed system, we are using 

a Host-Only networking which is depicted in fig 4-1 [13]. 

 
    Figure 4-1 Host-Only networking [13] 
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Using the above stated architecture, it creates a separate private LAN between the host 

OS and the guest OS [13]. Since this connection is not connected to the Internet, the 

malware sample is contained in the VM but it is still allowed network connectivity.  

Malware Aggregation:  One of the most difficult job for any malware analyst especially 

the one’s focusing on drive-by download is the number of websites that exist on the 

Internet. According to one survey there are about 1.8 billion websites on the world-wide 

web [14]. Now going to all of them and determining whether they contain malware 

samples or not is not possible. However, there are some malware URL feeds such as 

Malshare, CleanMX, Cymon, Malc0de [27, 28, 29, 30] to name a few, that makes it easier 

to collect malware samples. 

 Our malware crawler (ph0neutria) sources the samples straight from these URL 

feeds [15]. One of the interesting aspect of this malware crawler is that it stores all the 

extracted binaries in a viper database [16], which is discussed more in chapter 5. 

Ph0neutria has plugins for the above URL feeds. One thing that the malware crawler aims 

to do is to only crawl to those URL feeds which are frequently updated. Using this 

crawler, we were able to crawl approximately 100,000 URL’s and was able to collect 

1414 binaries. 

Execution Environment: Sandboxing is used in malware analysis, to run an unknown 

and untrusted application or file inside an isolated system and get the details of what that 

application/file does to that test system. 

  In order to differentiate whether the binary that we extracted is indeed malicious 

in nature, the proposed system uses two of the leading sandboxes which are available in 

the market i.e. Cuckoo sandbox and VMRay Cloud Analyzer. The proposed system also 

makes use of the sandboxes that are present in VirusTotal. Cuckoo sandbox is a leading 

open source automated malware analysis system. It’s used to automatically run and 

analyze files and collect comprehensive analysis results that outline what the malware 

does while running inside an isolated operating system [17]. Fig 4-2 shows the Cuckoo 

sandbox architecture. Cuckoo sandbox provides the following in its result [17]: 
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• Traces of calls performed by all processes spawned by the malware. 

• Files being created, deleted and downloaded by the malware during its execution. 

• Memory dumps of the malware processes. 

• Network traffic trace in PCAP format. 

• Screenshots taken during the execution of the malware. 

• Full memory dumps of the machines. 

 

       Figure 4-2 Cuckoo sandbox architecture [17]  

VMRay Analyzer is an automated malware detection and analysis framework that utilizes 

dynamic, static, and reputation-based analysis to generate comprehensive behavior 

reports of unknown software [18]. Fig 4-3 shows the VMRay Analyzer architecture. One 

of the advantage of using VMRay Analyzer is that it has inbuilt VMRay Threat Identifier 

(VTI) which automatically identify and flags malicious behavior. 
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Figure 4-3 VMRay Analyzer architecture [18]  

 

Static and Dynamic analysis: In order to classify whether the binary is indeed malicious 

in nature, we need to perform static and dynamic analysis on the sample. Static analysis 

involves examining the sample without running it, while in dynamic analysis the sample 

is executed. Since, Cuckoo sandbox and VMRay analyzer already do both the static and 

dynamic analysis, we only have to infer the results and extract the key behaviour from 

the analysis.  

 Obfuscating or packing of a malware sample is one of the widely-used techniques 

that malware authors use. Using this technique, it’s hard to detect malware. One of the 

important tool to detect this is by using PEiD [31]. If a binary is packed or obfuscated, 

then it could be malicious in nature. This is already addressed in the proposed system, as 

the sandboxes gives this information and is one of the parameters that was considered 

while analyzing the sample. The other parameters that we considered in order to classify 

whether a binary is malicious or not is if the binary was making any changes to the system 
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such as abnormal number of files and processes being created, deletion or modification 

of a system file/service, whether it was disabling any services such as Windows update 

center or Windows security center, whether it was encrypting user files or changing the 

master boot record. The other parameter that was focused was while the binary was 

running if it was establishing any network connections, was it sending data out or 

receiving any data, was it downloading additional components. Lastly, we also 

considered if the binary was making any registry changes. 

YARA ruleset: In the final step of the proposed system, we are extracting YARA rules 

to classify whether the binary in question, a false-positive or a malicious in nature. If the 

binary is malicious in nature then, what is its type and which malware family does it 

belong to. 

 YARA ruleset here comes in handy to help classify the sample. It is a tool aimed 

at (but not limited to) helping malware researchers to identify and classify malware 

samples. Using YARA one can create descriptions of malware families (or whatever one 

want to describe) based on textual or binary patterns [12]. Using this we were able to 

compare the extracted parameters that we got from static and dynamic analysis with the 

YARA rules, in order to describe if the binary was malicious and to which family does 

the malware belong. Below is the YARA rule for Emotet: 
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rule Emotets{ 

meta: 

author = "pekeinfo" 

date = "2017-10-18" 

description = "Emotets" 
strings: 
$mz = { 4d 5a } 
$cmovnz={ 0f 45 fb 0f 45 de } 
 
$mov_esp_0={ C7 04 24 00 00 00 00 89 44 24 0? } 
 
$_eax={ 89 E? 8D ?? 24 ?? 89 ?? FF D0 83 EC 04 } 
 

condition: 

($mz at 0 and $_eax in( 0x2854..0x4000)) and ($cmovnz or $mov_esp_0) 
} 
 

As we can see the part highlighted in the yellow are the strings that can be found while 

doing the disassembling of the sample. If we see these strings and if they are according 

to the condition that is highlighted in blue, we can conclude that the sample belongs to 

the malware family Emotet. 
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Chapter 5  

                                              Experimental Setup and Implemenation 

In order to collect binaries through drive-by download, Fig 5-1 shows the proposed 

architecture. 

  
Figure 5-1 Proposed architecture 

 

Ph0neutria is the malware crawler, it is using plugins that contain the websites 

reference name that it crawls and extract binaries and stores them into the Viper database. 

The crawler is executed everyday so that it can add newly discovered binaries into the 

Viper database. Then exporting the binaries to the three sandboxes i.e. Cuckoo, VMRay 

and VirusTotal (that are available in it) which will give us the analysis report and then 

performing static and dynamic analysis from those reports to monitor any system 

changes, traffic analysis and registry changes. Then using the YARA ruleset we are 

manually classifying each sample with its respective malware family and then storing the 

result in the Viper database. 

In order to capture binaries that maybe malicious in nature, we used a malware 

crawler called Ph0neutria. We used Ubuntu to execute the crawler. As discussed in the 

previous chapter ph0neutria has in-built plugins which contain the location of the 
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websites to crawl and from which to extract binaries. We will now discuss each of those 

plugins in detail here. 

• CleanMX: CleanMX is one of the most popular malware website database 

collected and verified since February, 2006. As of April 9th, 2019, it has a total of 

10 million URL’s which contains both malicious and clean links. In order to 

extract the data, one has to register one’s user agent. 

• Cymon: Cymon is one of the largest open trackers of malware, phishing, botnet, 

spams and many more. This plugin gets its feed from the following websites: 

Abuse.ch, Bambenek Consulting C2, Cyber Crime Tracker, Malc0de, URLVir 

and VX Vault. In order to use this plugin, we created our username and password 

and then updated that in the plugin. 

• Hybrid: Hybrid analysis is a free online malware analysis service. In other words, 

it is an online analysis tool which uses the Falcon sandbox. The primary purpose 

of this plugin in the malware crawler is to check if the malware family is 

blacklisted and if it is then save the information as a tag on the Viper database. 

• Malshare: Malshare is a free malware repository.  

• Open Threat Exchange (OTX): OTX is the largest open threat intelligence 

community that enables collaborative defense with actionable, community-

powered threat data [20].  

• Shodan: Shodan is a search engine that lets user search various types of 

computers connected to the Internet. The primary purpose of this plugin is to find 

the C2 servers or commonly known as Command and Control server hosting 

malware. 

URLhaus which is part of Abuse.ch, used to produce a list of malware URL’s.  

One of the important feature of Ph0neutria is the ability to enable or disable any plugin. 

In this experiment, collection of binaries was a crucial part of the research. Ph0neutria 

has a seamless integration of Viper database which is where the crawler is storing the 

captured binaries.  
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Viper Database: Viper is a binary analysis and management framework. It’s 

fundamental objective is to provide a solution to easily organize a collection of malware 

and exploit samples. It has two types of interfaces: one is the console access and the 

second is a web based interface. In this research, we used the web based interface because 

of ease of use. The web based interface is implemented using the open source Python web 

framework Django [16].  Fig. 5-2 shows the web interface of Viper database. 

 
Figure 5-2 Viper web based interface 

 

The web interface gives us the option to create our own projects, add/modify YARA 

rules. As shown in fig. 5-2, we are using the default project. The binaries that were 

extracted by the malware crawler are stored here. It is a labeled database with the SHA256 

of the binary, the name of the binary, the type, its size and the tags which consists of the 

date when it was added and the website from which it was extracted.  
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Figure 5-3 Binary information  

Fig. 5-3 shows the information that is stored regarding each binary in the database. As 

one can see, one can download or delete the sample from the database, see the hashes of 

the binaries that are computed when that binary is being stored in the database. We 

captured 1414 binaries in total.  

 Table 5-1 Number of binaries captured 

Type Count 
Rich Text Format 21 
Zip 175 
Executable 959 
Microsoft Word Document 200 
Microsoft Excel Sheet 2 
Octet Stream 57 

 

Table 5-1 shows the types of binaries that were captured and the respective count. One of 

the interesting aspects of the database are the tags associated with the binaries. One can 

get information about the binaries such as when was the binary added to the database, the 

website it was extracted from and which country hosted the website.  
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 Figure 5-4 Percentage of binaries extracted from different countries 
 

Fig. 5-4 shows the percentage of binaries extracted from different countries, 48% of the 

binaries were extracted from websites which were hosted in the US. Out of the 1414 

binaries that were extracted, 1000 of the binaries were tested in sandboxes. One reason 

to test 1000 binaries, is to see which of the malware type is most popular and with more 

binaries under scrutiny that gives us a better idea of the behavior of malware on that OS. 

 Once the binaries were downloaded on the local machine, the binaries were then 

executed in Cuckoo sandbox and VMRay Cloud Analyzer. In order to have uniformity in 

the execution operating system, we selected Windows 7 SP 2 (32 bit) for both Cuckoo 

and VMRay. We used Windows 7 (32 bit) for Cuckoo sandbox, because it works well 

with it. One of the tricks that malware authors employ is to check whether they are being 

executed on a sandbox is to see whether there is any fake network being setup using 

InetSim [21]. In order to minimize that possibility, we configured the sandboxes to host-

only, which will still give the binaries limited DNS, IRC and HTTP traffic so that they 

can communicate with C2 server making it look like a genuine network. 

Each binary was executed and immediately afterwards the execution was over, a 

report was generated and the sandboxes were rolled back to its original clean state. Upon 
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40% 
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getting the report, the main focus was to extract behavior of the binaries and also to 

classify on a preliminary stage whether the binary was a false-positive or malicious in 

nature which will be explained in detail in chapter 6.  

 The final stage was to classify the binary to see whether it was malicious or not, 

by using YARA rules. They were applied to the summaries which were extracted from 

the reports generated by running in the sandboxes. If the binary was malicious is nature, 

we were looking at the behavior of the malware to identify what type of malware it is 

which is outlined in chapter 1 and the family to which the malware belongs. 
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Chapter 6   

                                                           Observations 

We started the malware aggregation phase from the 12th of January 2019 and we ended 

the aggregation phase on 5th of March 2019 when there were no new binaries being 

discovered and stored in the database. In the malware aggregation phase we were able to 

capture and store 1414 binaries. Fig. 6-1 shows the number of websites that were crawled 

in 52 days. 

 

  
        Figure 6-1 Number of websites that were crawled 

 

As we can see from fig. 6-1, there is an exponential growth in the number of websites 

that were crawled.  
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Figure 6-2 Number of binaries collected 

 

Fig. 6-2 shows the number of binaries that were collected and stored over a period of 52 

days. Fig. 6-3 shows the working of ph0neutria which; is first checking the hash of the 

binary that it just pulled with the existing entries, and if it finds that, then it is deleting the 

binary, if not, then it will add that binary to the database.  
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    Figure 6-3 Ph0neutria working 

 

 After collecting and storing the binaries in the Viper database, we looked for 

samples that have the same name but different hashes. The aim was to see if they were 

extracted from the same website and if they were, then when and how many times the 

hash value was changed. The goal was to identify whether malware authors were 

monitoring the traffic and/or creating new malware, with the same name. We were able 

to identify a total of 105 binaries which had the same name and they were extracted from 

the same website but had different hashes. The mean difference between the first store of 

binary and the last store of the same binary but with different hashes was found to be 17 

days. 

 After the samples were analyzed for the hashes, they were executed in the 

sandboxes.  

Cuckoo sandbox:  The binaries were uploaded to the sandbox using the default settings 

that were previously set. In this we used Internet routing so that the binary is tricked that 

it is being executed on a user machine rather than in a sandbox. 
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      Figure 6-4 Cuckoo sandbox result 
Fig. 6-4 shows the summary from executing the sample. We can see that one is able to 

get the details regarding the sample like the size, type, various hashes and if it was able 

to match with any YARA rules. In addition to this one can see the duration (time) the 

binary executed and one can also get the screenshots from the execution which are shown 

in fig. 6-5. 

 
Figure 6-5 Screenshots of the execution of binary 

One of the classical indicators whether the sample is encrypted or not is entropy. 

Entropy is the randomness collected by an operating system or application for use in 
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cryptography or other uses that require random data. Encrypted or compressed data/file 

has a higher value of entropy whereas a typical file/data will have a lower value of 

entropy.  

 
Figure 6-6 Static analysis of a binary 

Fig.6-6 shows the static analysis of the binary. We can see that the .text and. rsrc sections 

have a higher entropy than the other section so we can say that the binary may be 

encrypted. In order to confirm this, we can see the strings. Strings gives us information 

such as the DLL’s being imported by the sample and any other significant thing such as 

if the binary is trying to connect to a remote server or if the binary is collecting user’s 

keystroke. DLL is a dynamic link library file format used for holding multiple codes and 

procedures for Windows programs. DLL files were created so that multiple programs 

could use their information at the same time, aiding memory conservation [37]. Fig. 6-7 

shows the strings output of the above sample. 
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Figure 6-7 Strings output 

As we can see from fig. 6-7, there is nothing but random bits of data, hence suggesting 

that the binary is encrypted. If the binary was not encrypted/packed, then we would 

have got an output similar to the one shown in fig. 6-8. 

 
Figure 6-8 Strings output when sample is not encrypted 

We can also see that some of the information about the behavior of the sample are 

provided by the “signature”. It is a component of Cuckoo sandbox that gives what is the 



 

41 

sample doing to the system after it was executed. Fig 6-9 shows some of the signatures 

that were identified. 

 
Figure 6-9 Signatures of the binary 

As shown in fig.6-9, using these signatures we can make some assumptions regarding 

what the binary is trying to do and we can make an assumption that the binary belongs 

to this malware type.  

 
Figure 6-10 Report generated from a false-positive sample 
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Fig. 6-10 shows the report from a false-positive sample. As we can see that there are no 

screenshots of the execution of the sample as well as there are no meaningful signatures 

that can give an idea regarding the working of the sample. 

VMRay Cloud Analyzer: One of the advantage of using VMRay is that it gives us access 

to VirusTotal through API key which is provided free of cost by VirusTotal. As 

mentioned earlier, we are also using the sandboxes that are provided by VirusTotal.  

 
Figure 6-11 Report generated from VMRay 

 

As we can see from fig. 6-11, we can see the report generated by VMRay. We can see 

that there are different analysis that this sandbox provides such as the dynamic analysis, 

static analysis, report from VirusTotal and the reputation report from VMRay. We can 

also see the various threat indicator which are same as what we saw in the report that was 

generated by Cuckoo sandbox. Fig. 6-12 shows the dynamic analysis report. 
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Figure 6-12 Dynamic analysis report 

 

As we can see in fig. 6-12, we can see the screenshot of the execution of the binary, we 

can see the processes that the malware created while executing and then we can see the 

information about the sample. 
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Figure 6-13 Process tree from the execution of binary 

 

Fig. 6-13 shows the process that were created from the execution of the binary. Using 

this, we can go to the process and see what the process was doing and what changes it 

made to the system. Fig. 6-14 shows the information that was given about the process 

“dj.exe”.  
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       Figure 6-14 Process information  

We can get information such as the dropped files which are files that the malware might 

use when it is executing, the memory dump and we can get information about the host 

such as what registry did the malware query or what processes did it create. Fig. 6-15 

shows the same. 

 
Figure 6-15 Information about the execution of a binary 



 

46 

As we saw in fig. 6-11, we can make some classification about the binary, such as what 

is the type of malware.  

 
     Figure 6-16 Information from VirusTotal 

As mentioned earlier, fig. 6-16 shows the information that we got from VirusTotal. We 

can see the entire report by clicking on the tab. In order to get the final classification 

regarding the binary, we extracted the function log from VMRay. Fig. 6-17 shows part of 

the report. 
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Figure 6-17 Function log obtained from VMRay 

Fig. 6-17 shows the information regarding the binary. We can see what the binary did and 

what all process that it created/modified and deleted. We also see what changes the binary 

made to the registry of the system and also if there was any network connection. The 

importance of this functional log is that we will use this to finally classify the binary as 

malicious or false-positive using the YARA rules. 

Evaluating false-positive: One of the way that we evaluated whether the sample was a 

false-positive was using the result that were obtained from the result of sandboxes. We 

also considered a sample as false-positive if only one sandbox showed that the binary was 

malicious but the other two sandboxes returned that the binary was not malicious. Out of 
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the 1000 samples that were analyzed 99 of them were false-positive with about 98% of 

them as octet-stream.  

 Using the YARA rules we were able to identify the following types of malware 

which are shown in table 6-1. 

Table 6-1 Categorization of malware 

Type Count 

Trojan Horse 867 

Spyware 723 

Downloader 756 

Virus 34 

Botnet 320 

Remote Access Trojan (RAT) 325 

Riskware 202 

Backdoor 763 

Ransomware 34 

 

As we can see in Table 6-1, Trojan Horse was identified in the most prevalent followed 

by downloader. Table 6-2 gives the categories and their count that were identified in the 

research. 

Table 6-2 Number of malware families identified 

Family Count Family Count 

CVE-2017-0199 3 Msilperseus 2 

Trickbot 3 Banload 7 

Fareit 21 Qhost 1 

Grp 6 Emotet 150 

Injector 77 Androm 12 

Coinminer 8 Shade 138 

Rnd 1 Cqc 4 
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Yakes 3 Donoff 1 

Stealer 6 Dhjogse 3 

Formbook 5 Com 2 

Guildma 1 Liusky 1 

Inject 3 Lokibot 6 

Ramnit 4 Cridex 3 

Rdn 41 Nanocore 4 

Kryptik 176 Obfuse 14 

Miner 4 Tiny 1 

Ulise 14 Auebm 1 

Generic 7 Agentwdcr 1 

Lnk 1 Strictor 7 

Coinsteal 1 Sload 42 

Disclipboard 1 Blocker 4 

Valyria 10 Frs 10 

CVE-2017-11882 15 Mbt 4 

Nymeria 4 Quasar 2 

Nemesis 3 Diple 1 

Loki 5 Vbkryjetor 4 

Nanobot 9 Unknown 38 

 

As we can see from the table above, 38 sample family were unknown, 176 malware 

belong to the family Kryptik, 150 malware belong to Emotet and 138 malware belong to 

Shade.  

 Kryptik is the most prevalent malware family followed by Emotet. As per reported 

in [1] Emotet increased its market share in 2018 by 16%, however we showed that Kyrptik 

Table 6-2 Continued  
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was the preferred choice of family by malware authors rather than Emotet as it consisted 

of 19%, whereas Emotet consisted of 15%. 
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Chapter 7  

                                                                 Conclusion 

On examination of the current landscape of drive by downloads, fueled both by 

availability of exploit-as-a-service and compromised websites directing users to 

malicious domains, it is evident that drive-by download is the preferred distribution 

vector for most of the malware families. The purpose of this thesis was to examine these 

risks and to identify these risks. In this work, we collected 1414 binaries through a 

malware crawler which visited and extracted these binaries by visiting approximately 

100,000 websites. Upon collecting those binaries, we downloaded 1000 of the binaries 

and then used 3 sandboxes (Cuckoo, VMRay, VirusTotal) to study their behavior in an 

isolated contained environment. Using those results, we were able to identify that 10% of 

the binaries were false-positive.  

After the identification of false-positive binaries, we did analysis on the reports 

that were provided from the sandboxes to get information about their behavior in the 

sandbox. The main aim was possibly to identify what type of malware where the binary 

belong. The last part was to use this information and apply YARA rules to find the family 

and the type of malware. Out of the 1414 program executables (binaries) that were 

captured, 1000 binaries were executed and 99 were identified as false-positive. Out of the 

1414 binaries that were extracted 959 of them were executable, 48% of the binaries were 

extracted from websites that were hosted in the US. We also found that 105 binaries had 

the same name but different hashes that is, they were not identical. Out of the 901 binaries, 

867 of them were identified as Trojan Horse and we were able to identify 53 type of 

malware families, with one particular family, Kyrptik, having 176 malwares belonging 

to it which is about 19% and about 4% of the malware families were not identified.  
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Chapter 8  

                                                        Future Work 

The main aim of this thesis was to analyze and identify drive-by download malwares 

through the use of sandbox and YARA ruleset. In the future, we would like to employ 

machine learning in order to minimize the fraction of the number of malware with 

unknown families. Previous literature has used a random forest algorithm as the main 

machine learning algorithm to classify samples. We would like to compare various 

algorithms to find which give us the better result. Also, we would like to study the 

economic impact that the victims have to incur. In the study that was conducted in [38], 

authors excluded the small and medium-sized firms from their analysis. We would like 

to study that because according to the study done in [39], 884 small-business owners, 

42% of the respondents experienced breach or a cyber-attack. 

 We would also like to extend the study of the malwares that were extracted with 

the same name but with different hashes. As we saw in our research that the mean 

difference between the binary first store in the database to its second store with same 

name but with a different hash was 17 days. According to [34], the researchers did not 

test the hypothesis that even if the hashes were different, were the malware different in 

nature? We would like to employ our proposed system to test the samples to further 

classify, if the malware obtained with the same name but with different hashes were 

giving exactly the same result. 
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