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As a direct measurement modality of neural electrical firing patterns, electroencephalo-

gram (EEG) has a much higher temporal resolution up to millisecond compared to

positron emission topography (PET) and functional magnetic resonance imaging (fMRI)

and it has become one of the popular neuroimaging tools to find signatures of brain dis-

eases and to understand how the brain works. Other advantages of EEG include low

cost, easy portability, and non-invasive. However, a limitation of EEG is its low spatial

resolution since the measurement is on the scalp rather than inside the brain. Given

the recorded scalp EEG data, to reconstruct the activated brain sources signal inside the

brain is known as EEG inverse problem or EEG source imaging (ESI). ESI technique

has been widely used in the study of language mechanisms, cognition process, sensory

function, as well as the localization of epileptic seizure, etc. However, due to the ex-

isting strong spontaneous background source activations, traditional ESI methods will

inevitably incur the spurious activation patterns that are not task-related.
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In this dissertation, we proposed the idea of discriminative ESI which aims to

find the task-related sources and reduce the contamination from high background noises

or spurious sources and reformulated the traditional ESI problem by using label infor-

mation. Discriminative source activation pattern corresponding to different cognitive

tasks provides more insights compared to the activation pattern reconstructed from tra-

ditional methods. To discover discriminative ESI, label information was integrated to

the traditional ESI problem, and several frameworks have been proposed: (1) A sparse

dictionary learning framework was proposed and a revised version of discriminative

K-SVD (DK-SVD) algorithm is given to solve the formulated supervised dictionary

learning problem. As the proposed learning framework incorporated the EEG label in-

formation of different brain status, it is capable of learning a sparse representation that

reveals the most discriminative brain activity sources among different brain states. (2) A

graph regularized ESI model, which implicitly use label information in the graph regu-

larization term to promote in-class consistency and out-class discrimination, an efficient

algorithm called feature sign search is used to optimize the proposed model. (3) As ESI

solution always favors spatially smooth activation pattern instead of isolated discrete ac-

tivations, we included first-order total variation (TV) and spatial graph Fractional Order

Total Variation (gFOTV) with ADMM algorithm and practical technique to find a bet-

ter spatially smoothing source activations. (4) Traditional ESI methods usually do not

distinguish the task-related and spurious non-task-related sources that jointly generate

EEG signal, which will inevitably yield misleading reconstructed activation patterns.

We proposed to infer the true task-related EEG sources location by exploiting its low-

rank property. To find a source activation pattern with low-rank structure, a novel ESI
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model based on low-rank representation was developed. Simulation results illustrate

the effectiveness of those several proposed methods under different Signal Noise Ratio

(SNR) and a variant of source configuration settings.
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Chapter 1

Introduction

1.1 Introduction to EEG Source Imaging

The development of neuroimaging technology and intelligent algorithms con-

tribute significantly to a better understanding of brain functionality and brain structure

via analyzing bio-electrical brain signals. Neuroimaging technique plays an integral

role in neurodegenerative disease diagnosis and intelligent surgical planning [42].

To study the brain, different brain modality data are recorded including elec-

troencephalography (EEG) and magneto-encephalopathy (MEG), positron emission to-

mography (PET), and more recently functional near infra-red (fNIR) spectroscopy. Due

to its low cost, easy portability, high temporal resolution and no exposure to radioli-

gands, EEG has become one of the most popular brain imaging tools. Compared to

other techniques such as PET and functional magnetic resonance imaging (fMRI), EEG

is a direct measurement of real-time electrical neural activities, and EEG is more suit-

able to answer exactly when different brain modules are activated and hence in what

processing steps each module is involved [64]. PET and fMRI cannot be used to assess

rapidly varying neuronal activity due to the slow response of metabolism [35]. In this

dissertation, we focus on techniques for EEG signal analysis. Successful applications

of EEG can be found in several clinical environments, such as real-time monitoring of

1



patients’ sleep apnea [73], detection and prediction of epilepsy seizures [18] [91] [80].

The electrical potentials measured by EEG electrodes originates from secondary

ohmic current propagation from the tissues with primary intracellular currents [42]. It

has been previously estimated that if as few as one in a thousand synapses become ac-

tivated simultaneously in a region of about 40 mm2 of cortex, the generated signal can

be detected and recorded by EEG electrodes. However, the EEG electrodes measure

electrical activities on the scalp surface instead of directly measuring the active neu-

rons in the brain; it doesn’t provide conclusive locations and distributions of the related

activated sources. The problem of inferring the brain source from the recorded EEG

is termed as EEG inverse problem, EEG Source localization or EEG Source Imaging

(ESI). In this dissertation, we use the expression ESI, EEG inverse problem, source lo-

calization interchangeably. By solving EEG inverse problem, we can better understand

how our brain is functioning under different cognitive tasks, and the discovery of un-

derlying reason that caused brain functionality impairment as suffered by patients with

neurological disorders such as Parkinson’s disease, epilepsy, schizophrenia, depression

and Alzheimer’s diseases. Precise localization of activated sources inside the brain can

also offer an insightful awareness of the responsible cortex regions that collaborated

to perform certain cognitive tasks. The relationship between EEG forward and EEG

inverse problem is given Fig.1.1. For the forward problem, source activation pattern

is assumed to be known. The source signal propagates to the EEG electrodes via a

conductivity matrix or lead field matrix calculated through a pipeline described in [2].

For the inverse problem, we want to infer the activation pattern in the brain given the

EEG data and lead field matrix, which is a more realistic problem compared to the for-

2



Figure 1.1: Illustration of forward and inverse problem.

ward problem. As a result, the inverse problem has been a hot topic among biomedical

imaging and computational neuroscience community.

1.2 Literature Review

Since the number of electrodes usually outnumbers that of brain sources, the ESI

problem is highly ill-posed or mathematically underdetermined. A variety of methods

have been proposed to address this challenging problem with different neurophysio-

logical assumptions, formulated by various regularization techniques [29, 64]. There

are two main types of inverse solvers for ESI: equivalent dipole fitting and distributed

source imaging [69]. Dipole fitting empirically solves the MEG/EEG forward and in-

verse problems by characterizing a few equivalent current dipoles of unknown locations

which are responsible for electrical potential detected on the scalp sensors [44, 64].

Although dipole fitting gives a good estimate when the number of estimated sources

are small, it is difficult to determine in advance the number of dipoles to explain very

complicated neural activations. The algorithms proposed in recent years to solve the

ESI problem within distributed dipoles paradigm can be further summarized into three
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categories in general, which are the (1) Bayesian framework [8, 11, 19, 20, 56, 87], (2)

state-space based algorithms [9, 43, 92, 96], (3) models using sparse representation tech-

nique [26, 28, 35, 69, 81, 83, 101].

In many sensory or cognitive studies, the underlying activated cortical responsi-

ble for the signal processing are relatively focal and thus sparse, which makes the sparse

representation models being extremely successful in brain signal reconstruction [6, 13].

For the ESI problem, one widely accepted assumption is that a sparse spatial struc-

ture is favored than a complicated source configuration to explain the same data [16].

A representative early pioneering work is the `2-norm based minimum norm estimate

(MNE) inverse solver [31]. Based on MNE algorithm, Pascual-Marqui et al. later pro-

posed standardized low-resolution brain electromagnetic tomography (sLORETA) [71]

that enforces spatial smoothness of the neighboring sources and normalizes the solu-

tion concerning the estimated noise level. Some algorithms proposed to use combined

multiple solvers, e.g., Weighted minimum norm-LORETA (WMN-LORETA) which

combines the LORETA solver and a weighted minimum norm to compensate for deeper

sources originate from the subcortical regions [82]. As the above-mentioned algorithms

are based on `2-norm to different extents, the estimated source area is over-diffuse. By

replacing `2-norm by `1-norm, minimum current estimate (MCE) [85] is proposed to

overcome overestimation of active area sizes incurred by `2-norm. Recent development

of compressive sensing algorithm proved the `p (p ≤ 1) regularization on the original

source signal usually provides a set of discrete sources distributed across the cortex due

to high coherence of lead field matrix, in order to encourage reconstruction of extended

source patches, it has been found that by enforcing sparsity in a transformed domain,
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e.g., total variation (TV) regularization [22, 47, 75, 81], focal source extents can be bet-

ter estimated.

The aforementioned algorithms estimate source location at each time point in-

dependently, leading to discrepancy along the time direction. To encourage tempo-

ral smoothness, a number of regularization techniques based on spatiotemporal mixed

norms have been developed, including the famous Mixed Norm Estimates (MxNE)

which uses `1,2-norm regularization [26], and time-frequency mixed-norm estimate

(TF-MxNE) which uses structured sparse priors in time-frequency domain for better

estimation of the non-stationary and transient source signal [28].

1.3 Scientific Proposal

In this section, we make four new proposals to solve the ESI problem from a

different perspective, regarding problem formulation or assumptions on source struc-

ture.

• Proposal 1: As is summarized in the literature review section, different algo-

rithms solving the inverse problem were proposed, implemented and validated.

However, to the best of our knowledge, there is no literature addressing simul-

taneously estimation of brain sources and distinguishing different sources given

different states of the brain. We propose to use label information in the inverse

problem and develop efficient algorithms to solve it. The new formulation is

composed of two ingredients, source reconstruction, and supervised source clas-

sification. The contributions of this proposal are fourfold, including: (1) First
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proposed a model with the discriminative power to solve EEG inverse problem.

(2) First described the EEG inverse problem as an overcomplete dictionary learn-

ing problem and show the opportunities of using algorithms from compressive

sensing and computer vision community. (3) The proposed revised version of K-

SVD algorithm to solve the optimization model good accuracy. (4) Employed the

most recently developed highly accurate head model rather than approximated.

• Proposal 2: As EEG data is highly non-stationary, and task-related sources also

exhibit time-variant patterns. Thus the EEG inverse solver should also retrieve

consistent patterns within each class. To explicitly extract factual sources and

promote the in-class consistency and out-class discrimination, we implemented

the graph regularized version of discriminative source reconstruction, tested on

simulated EEG data, and showed its effectiveness in finding the discriminative

sources and precise localization of the task-related sources. The contributions of

this proposal are listed as follows: (1) A graph regularized EEG inverse model

is presented that can promote in-class consistency and out-class discrimination.

(2) A Voting Orthogonal Matching Pursuit algorithm is given to decompose the

common sources.

• Proposal 3: We propose a novel EEG source imaging model in transformed do-

main based on a temporal graph structure by exploiting label information of brain

state. In particular, both a first order TV n and graph fractional-order TV are pro-

posed to seek spatial smoothness. The proposed spatiotemporal graph regular-

ized model is solved by applying the alternating direction method of multipliers
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(ADMM). Numerical experiments are conducted to verify the effectiveness of the

proposed work on discovering is discriminative source extents. The contribution

of our paper is summarized as follows: (1) We proposed a novel EEG source

imaging model to promote spatial smoothness and intra-class consistency. (2)

We derived the ADMM procedure to solve our model, and an enhanced frame-

work based on the derived ADMM procedure is given to address the limitation

of the standard ADMM procedure and achieved better performance. (3) We use

a common source extents to represents the spontaneous activation and a discrim-

inative source patch to represent the task-related activation pattern to make the

simulation more realistic which is seldom explored in the literature.

• Proposal 4: One common drawback of the existing ESI algorithms is that they

only consider noises on the sensor level and ignore the spurious noise from the

cortex. If perfectly reconstructed, the estimated source is aggregated by task-

related source and spurious noise in the source space. The true task-related

sources will be corrupted by spurious sources, which motivates us to develop

new algorithms to find the true task-related source. There are two commonly

accepted assumptions (1) spatially sparse (2) temporally continuous for the task-

related source activation pattern, which inevitably leads to the low-rank property

of the source space. To better discover the task-related source, we impose the

low-rank term in the goal function as we consider it is a more direct constraint for

spatial sparse. We use a more direct penalty term for temporal smoothness, which

is to penalize dissimilarity of temporally neighboring samples based on manifold

graph embedding. It is worth noting that we used the graph regularization term
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in our previous paper, however the graph is defined to be fully connected among

all the points within one class [50], which inevitably drive all the activate patterns

at different time points having the same magnitude, thus making the previously

defined graph regularization term rely on a strong assumption and limit its future

application for realistic cases.

We propose a novel EEG source imaging model based on temporal graph reg-

ularized low-rank representation. The model is solved based on the alternating

direction method of multipliers (ADMM) [12]. We conducted extensive numer-

ical experiments to verify the effectiveness of discovering task related low-rank

sources. The reconstructed solution is temporally smooth and spatially sparse.

The graph regularization can help to eliminate the spurious source and rectify

bad estimations based on temporally neighbored reconstruction results. The con-

tributions of our paper are summarized as follows: (1) We propose to consider the

noise not only at the sensor level but also in the source space. (2) A low-rank rep-

resentation model (LRR) is proposed for the first time on EEG inverse problem

inspired by the low-rank property of true task-related source configurations. (3)

We redefined graph embedding regularization based on our previous paper that

utilizes temporal vicinity information of samples to promote temporal smooth-

ness. (4) An algorithm based on ADMM is given which is efficient extracting the

low-rank task-related source patterns.
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Chapter 2

Fundamentals

2.1 Brain conductivity model

Brain conductivity model quantifies the amount of electrical signal received

from EEG electrodes from the source signal. The brain conductivity model can also

be called lead field matrix, forward model in ESI literatures.

A simplified brain model assumes spherical shape for three layers of head tissue

with assumption of isotropic and homogeneous conductivities. However a three-layer

spherical model oversimplified the realistic shape and tissue distribution of the head.

Thus a Boundary element method (BEM) calculated brain model after mesh generation

and tissue segmentation is more realistic and preferred in ESI study. Figure 2.1 gives

one example of the head model containing 5 types of tissues, i.e. the scalp, skull, grey

tissue, white tissue and Cerebrospinal fluid (CSF), which are segmented from the MRI

DICOM format and tessellated into triangular meshes.

There are many software packages available to calculate the head model include

Fieldtrip [68], OpenMEEG [27], SPM [25], SCIrun [70] and Brainstorm [84]. They

are based on different programming languages including Matlab, Python, C etc. An

illustration of tissue segmentation and mesh generation for a head using SCIRun [70]

is given in Fig.2.1. The location of electrodes and all the voxels in the cortex are co-
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Figure 2.1: Illustration of tissue segmentation and mesh generation using FEM

registered and a lead field matrix can be calculated, a realistic brain model registered

with EEG electrodes are illustrated in Fig.2.2 generated using the code from [1]. Each

brain source is represented by a triangle.

2.2 Forward Model, Inverse Model and Regularizations

In this section, we first talk about the forward problem and then the inverse

problem, and why we use regularization technique to solve EEG inverse problem.

2.2.1 Forward Model

The collective interaction from neurons with electrical activity induced by the

flow of changed ions across membranes give rises to potentials that can be measured

by EEG electrodes. Under the quasi-static approximation of Maxwell’s equations, the

measured EEG signal X can be described as the following linear function of current
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Figure 2.2: Triangle meshed realistic brain model. Each triangular element represents
a current dipole located at its center and the orientation of dipoles is assume to be
perpendicular to the cortical surface.

sources S,

X = LS + E, (2.1)

where X ∈ RNc×Nt is the EEG data measured at a set of Nc electrodes for Nt time

points, L ∈ RNc×Ns is the lead field matrix which maps the brain source signal to sen-

sors on the scalp, each column of L represents the activation pattern of a particular

source to the EEG electrodes. Fig.2.2 gives an exemplary brain model, the cortex is

represented with triangle meshes, each triangle represents a brain voxel. In this disser-

tation, we use brain model and lead field matrix interchangeably. Also we use brain

voxel, source, dipole interchangeably, sometimes with triangle as well. The number of

triangles is equal to Ns. S ∈ RNs×Nt represents the corresponding electrical potentials

in Ns source locations for all the Nt time points. E ∈ RNc×Nt is additive noise signal.

11



Figure 2.3: Illustration of brain sources propagate to EEG electrodes.

2.2.2 Inverse Model

According to Hadamard, a problem is well-posed if

1. there exists a solution to the problem (existence).

2. there is only one solution to the problem (uniqueness).

3. the solution depends continously on the parameters (stability).

A problem is ill-posed if it’s not well-posed. Contrary to forward problem which is to

find EEG data if given the mapping operator L and the source matrix S, the inverse

problem is to infer the source signal given the EEG data, which is highly ill-posed. The

inverse model is written as:

S = arg min
S
‖X − LS‖2

F , (2.2)

12



As L is a matrix with number of columns far much greater than number of rows,

the inverse problem becomes ill-posed. There are infinite number of solutions.

2.2.3 Regularization

To seek an unique solution, a regularization term has to be adopted. An estimate

of S can be found by minimizing the following cost function, which is composed of a

data fidelity term and a regularization term:

arg min
S
‖X − LS‖2

F + λΘ(S). (2.3)

The regularization term Θ(S) is to discourage complicated source configurations tem-

porally or spatially and enforces neurophysiologically plausible solutions, and ‖·‖F
is the Frobenius Norm. The regularization term take the form of `2, `1 or mixed

norm [26] [83], spatially smooth formulation such as in LORETA algorithm or spa-

tial total variation formulation in a transformed domain [22]. The earliest version of

regularization is based on minimum energy of source signal using `2 norm, known as

minimum norm estimation [31]. To promote sparsity, one of the best intuitive formula-

tions is to use `0-norm to restrict the total number of activated sources less than a scalar

k, the following formulation can be used:

arg min
S
‖X − LS‖2

F s.t. ‖si‖0 6 k, (2.4)

As `0-norm constrained problem is NP-hard, to avoid the NP-hard problem, approxi-

mating `0 with `1-norm is a common practice. Donoho suggested that `1 and `0 norm

are equivelant under certain conditions [23]. The `1-norm regularized formulation is
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described as

si = s∗(xi, L) = arg min
si
‖xi − Lsi‖2

2 + γ‖si‖1. (2.5)

The ill-posed problem of Eq.2.2 arises from the fact that the L is an wide ma-

trix, and the number of columns is greater than number of rows. From a linear system

perspective, the dimension of observed output is less than that of input signal, making

inferring si from xi an under-determined problem with infinite solutions if no regular-

ization term is applied. Given the EEG recordings at a time point, which is denoted

as ith column xi of X matrix, we want to represent the signal with minimum error by

trying to find the best linear representation from activation patterns (atoms) in the over-

complete dictionary L. The solution si is the sparse coding for the xi in the dictionary

L, the non-zero entries in si represent the activated regions inside the brain.

2.3 Optimization Algorithms

Based on different ESI problem formulations, the solutions can be iterative al-

gorithm or closed form one. We list several models and the corresponding optimization

algorithms.

2.3.1 Minimum Norm Estimate (MNE)

The expression for MNE is given as:

min
s
‖s‖2

2 subject to x = Ls. (2.6)

The solution for the MNE is ŝ = LT (LLT )−1x. The MNE solution prefers superficial

sources and usually omit deeper sources. To rectify for this biased preference, a subse-
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quent modification for the MNE algorithm is called weighted minimum norm estimate

(WMNE), which is formulated as:

min
s
‖Ws‖2

2 subject to x = Ls, (2.7)

where W is a diagonal matrix with wii = (‖Li‖)2
2 with Li being the i-th column of L.

The corresponding solution is ŝ = WW TLT (LWW TLT )−1x.

2.3.2 LORETA

LOw Resolution Electromagnetic Tomography (LORETA) is a widely used ap-

proach for ESI problem. LORETA further includes spatial smooth prior based on

WMNE formulation by defining a Laplace operator B for smoothness regularization,

the LORETA is trying to solve the formulation below:

min
s
‖BWs‖2

2 subject to x = Ls. (2.8)

Here W is similarly defined as WMNE formulation to correct the bias of MNE towards

superficial sources. The solution of LORETA algorithm is

ŝ = (WBTBW )−1LT
[
L(WBTBW )−1LT

]†
,

where † denotes Moore-Penrose pseudo-inverse.

2.3.3 Augmented Lagrangian Multiplier Method

The general formulation of an optimization problem is an objective function

subject to some constraints. The ESI problem can be generalized into the following

form:

min
x∈Rn

f(x) subject to g(x) = 0, (2.9)
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where f(x) is the objective function, and g(x) is constraints. Without loss of generation,

g(x) ∈ Rk To solve Eq.2.9, the method of Lagrange multipliers is commonly. By

introducing a new variable µ, the Lagrangian function is defined as

L(x, µ) = f(x) + 〈µ, g(x)〉. (2.10)

Usually, we use an augmented Lagrangian multiplier method by incorporating an ad-

ditional quadratic penalty term of the constraints, to make the dual ascent more robust.

The augmented Lagrangian formulation at the k-th iteration is

Lk(x, µ) = f(x) + 〈µ, g(x)〉+
λ

2
‖g(x)‖2

2 (2.11)

We update the solution x and the multiplier alternatively as follows

{
xk = argminLk(x, µ

k−1)

µk = µk−1 + λg(xk)
(2.12)

If the goal function can be decomposed into two parts, and the original update on xk in

Eq. 2.12 is difficult to calculate. Support f(x) = f1(x) + f2(x), and argminx f(x) is

hard to calculate and both the solution to minimization of f1(x) and f2(x) has a close

form solution or approximate solution. The original problem can be reformulated as

min
x∈Rn

f1(x) + f2(y) subject to g(x) = 0, y = x. (2.13)

Write those two constraints g(x) = 0, y = x as g̃(x, y) = 0. The augmented Lagrangian

formulation at the k-th iteration is

Lk(x, y, µ) = f1(x) + f2(y) + 〈µ, g̃(x, y)〉+
λ

2
‖g̃(x, y)‖2

2 (2.14)
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We update the solution x, y and the multiplier alternatively as follows


xk = argminLk(x, y

k−1, µk−1)

yk = argminLk(x
k, y, µk−1)

µk = µk−1 + λg̃(xk, yk)

(2.15)

The above Gauss-Seide way of updating the variable and Lagrangian multipliers falls

into the framework of Alternating Direction Method of Multipliers (ADMM).
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Chapter 3

Sparse Dictionary Learning for Supervised EEG Source
Imaging

3.1 Introduction

Per the discussion in literature review section, based on different assumptions,

different algorithms solving the inverse problem were proposed, implemented and vali-

dated. Due to the existing strong spontaneous background source activations, discrimi-

native source activation pattern corresponding to different cognitive tasks which provide

more insights shall be reconstructed but with few studies. To the best of our knowledge,

there is no literature addressing simultaneously estimation of brain sources and distin-

guishing different sources given different states of the brain. In this chapter, we propose

a new supervised formulation of the inverse problem and with efficient algorithms to

solve it. The new formulation is composed of two ingredients, source reconstruction

and supervised source classification. The contributions of this chapter is fourfold, in-

cluding:

1. First proposed the idea of combining traditional EEG Source Imaging (ESI) prob-

lem and classification problem and solve them in a joint framework to find task-

related discriminative patterns rather than find the overall activation patterns with

spontaneous brain activations.
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2. Reformulated the EEG inverse problem as a sparse dictionary learning problem

and show the opportunities of using algorithms from compressive sensing and

computer vision community.

3. Proposed revised version of DK-SVD algorithm to solve the optimization model

good accuracy.

4. Employed the most recently developed highly accurate head model rather than

approximated head model compared to previous studies.

The structure of the rest chapter is as follows: In Section 2, the problem formulation is

given. In Section 3, the optimization method is proposed. In Section 4, the numerical

experiments and the effectiveness of our proposed framework, conclusions are given in

Section 5.

3.2 Discriminative Source Reconstruction

In this section, we first briefly review the inverse problem, and then the proposed

model in the form of discriminative dictionary learning is described, which comprises

the source reconstruction term and label guided discriminative term. The motivation of

such a discriminative inverse model will be discussed in details.

3.2.1 The Inverse Problem

Generally, an estimate of S can be found by minimizing the following cost func-

tion, which is composed of a quadratic error and a regularization term:

arg min
S
‖X − LS‖2

F + λΘ(S) (3.1)
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The penalty function Θ(S) is to discourage unnecessary complicated source configura-

tions and enforces neurophysiologically plausible solutions, and ‖·‖F is the Frobenius

Norm. The regularization term takes the form of `2, `1 or mixed norm, spatially smooth

formulation as in LORETA estimation or spatially sparse formulation with least abso-

lute shrinkage and selection operator estimate.

3.2.2 Extract Discriminative Sources with Label Information

As the brain has different emotion/task related states, classification of different

status is important in Brain-Computer Interface(BCI) application, also it helps us un-

derstand the mechanism how the brain is functioning. Mapping the EEG to the source

gives us a direct sense of how the sources are evoked and evolved in different states.

The motivation of the supervised inverse problem formulation can be explained using

a simple demonstrative example as it is illustrated in Fig.3.1. The electrical potential

mentioned at x1 can be formulated as x1 = a1s1 +a2s2 +a3s3 + ε and the same case for

x2 channels, where ai(i = 1, 2, 3) describe the conductivity from for electricity traveling

from site si to channel x1. According to previous studies [76], only a small portion of

electrical energy are task related and it’s reasonable to assume that s1 represents to the

non-task resting state source and contribute most of the potential measured in sensors.

Assume s2 is activated when performing task A and s3 is related to task B. Under the

condition of low signal noise ratio (SNR), the reconstructed source tends to be only s1

without explicitly using the supervising label. Here we leverage the label information

explicitly in the hope of successful reconstruction of the discriminative source s2 and

s3. Here we present a new framework that can infer the source signal guided by the
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Figure 3.1: Cortex source signal propagate to EEG electrodes. Both discriminative
sources (s2, s3)and common sources (s1) contribute to EEG data.

label information. A classification of different brain status based on the sparse coder si

is obtained by determining its model parameters W , where

W = arg min
W

Σ
i
`{hi, f(si,W )}+ λ ‖W‖2

F (3.2)

where `{·} is the loss function for classification accuracy based on the ground

truth and classification model f(·), and hi is the label vector where non-zero entry

denotes the corresponding class. Traditional procedure solves the pure inverse problem

ignoring the supervising label and then train the sparse coding si with classification

model. Separating the inverse problem and classification problem can be misleading,

we argue that since we have the brain status information, it’s better to use it as a label

to make the inverse solution exhibiting discriminative capability. With this thought

and inspired by literature in computer vision community [41, 74, 95, 99], the following
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sparse discriminant inverse model is given:

〈W,S〉 = arg min
W,S
‖X − LS‖2

F + β Σ
i
`{hi, f(si,W )}

+ λ ‖W‖2
F s.t. ∀i, ‖si‖0 6 T

(3.3)

The first term is the reconstruction error; the second term represents the classification

loss, the third term is the regularization of W to avoid over-fitting. This formulation

aims to simultaneously learn the sparse coding and the classification model. Using the

multi-class classifier f(·) instead of one-against-all classifiers is efficient for classifi-

cation, by suppressing features sharing among classes and trying to explicitly extract

different sparse representation among different classes. In this paper, We focus on an

inverse solution with more balanced reconstructive and discriminative power by adding

the classification regularization term λ. A summary of our proposed framework is illus-

trated in Fig.3.2. In Fig.3.2 The left two topoplots represent the recorded EEG potentials

on the scalp for two stimulus status (e.g. finger tapping and comedy video stimulus),

and the lead field matrix is represented as overcomplete dictionary, the sparse coef-

ficients are the codes for the source activation location and activation potentials; The

sparse coefficients and W matrix are estimated simultaneously. Each row of the W ma-

trix is termed as the discriminative filter because the Hadamard product of the source

code coefficient and the discriminative filter can highlight the corresponding stimulus

activated source signal by masking the common background or resting activation sig-

nals which are share by other different brain stimulus inputs. The rightmost pictures are

exemplary reconstructed discriminative source activation patterns on the cortex.
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Figure 3.2: Discriminative Source Reconstruction Framework.

3.2.3 Source Reconstruction Based on Linear Classifier

From Eqn.3.3, we reduce to the following optimization problem by using a sim-

ple linear classifier.

〈W,S〉 = arg min
W,S
‖X − LS‖2

F + β ‖H −WS‖2
F

+ λ ‖W‖2
F s.t. ∀i, ‖si‖0 6 T

(3.4)

Here H = [h1, h2, . . . , hN ] ∈ Rm×Nt , with each row hi, i = 1, . . . , Nt being the label

vector corresponding to an EEG signal xi. In order to solve the optimization problem

(3.4), the K-SVD algorithm and its derivatives can be used. However, our proposed
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method is different from these previous methods in several aspects, owing to it being

tailored to solve the EEG inverse problem.

3.3 Optimization with K-SVD Algorithm

For Equation 3.4, it can be rewritten as

〈W,S〉 = arg min
W,S

∥∥∥∥( X√
βH

)
−
(

L√
βW

)
S

∥∥∥∥2

F

+λ ‖W‖2
F s.t. ∀i, ‖si‖0 6 T

(3.5)

Let Xnew = (X t,
√
βW t)t, Lnew = (Lt,

√
βW t)t, the optimization of Equation 3.5 is

equivalent to solving the following problem:

〈Lnew, S〉 = arg min
Lnew,S

‖Xnew − LnewS‖2
F

+ λ ‖W‖2
F s.t. ∀i, ‖si‖0 6 T

(3.6)

We use normalized lead field matrix L to meet the requirement of K-SVD algorithm.

It’s more important to find an explanatory activation pattern compared to magnitude of

the signal as a common practice [33]. Later we show that the normalization doesn’t

effect the solution in case of `0 norm. The normalization is defined as:

L′ = {l′1, l′2, ..., l′Nd
}

= { l1
‖l1‖2

,
l2
‖l2‖2

, ...,
lNd

‖lNd
‖2

}

W ′ = {w′1, w′2, ..., w′Nd
}

= { w1

‖l1‖2

,
w2

‖l2‖2

, ...,
wNd

‖lNd
‖2

}

(3.7)
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Suppose xi is the EEG signal vector and we want to find corresponding source location.

xi is a sparse linear combination of the atoms in L, which can be expressed as:

xi =
∑Nd

m=1
lmsi(m) =

∑Nd

m=1

(
lm
‖lm‖2

)
(si(m)‖lm‖2)

=
∑Nd

m=1
l′ms

′
i(m)

Also, the Label matrix hi can be expressed as

hi =
∑Nd

m=1
w′ms

′
i(m) =

∑Nd

m=1

(
wm
‖lm‖2

)
(si(m)‖lm‖2)

=
∑Nd

m=1
wmsi(m)

The sparse coding with or without normalization of L is equivalent in terms of `0-

norm, which is ‖si‖0 = ‖s′i‖0, thus the normalization of lead field matrix doesn’t effect

the reconstruction solution under condition of `0-norm. As Lnew is always normalized

column-wise, we can drop the regularization penelty term ‖W‖F .

〈L′new, S〉 = arg min
L′new,S

‖Xnew − L′newS‖2
F

s.t. ∀i, ‖si‖0 6 T
(3.8)

For similarity, we omit the apostrophe (′) notation when there is no confusion. When

fixing S, solving L matrix can be regarded as solving a simple regression problem:

L̂ = arg min
L
‖X − LS‖2

F , (3.9)

where L̂ = XST (SST )−1. The computational complexity of XST (SST )−1 is O(n3),

it is advisable to solve it using K-SVD by updating the dictionary atom-by-atom. This

optimization problem of Eqn.3.8 is exactly what K-SVD algorithm [3] solves and the

only difference is that the upper L part of dictionary Lnew will not be updated. We adopt

the procedure in the original K-SVD algorithm.
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Following K-SVD, denote l′k as the kth column in the L′new, and sk is the corre-

sponding kth row in S. The second term L′newS can be decomposed into the following

formulation:

LnewS =

Nd∑
k=1

lk ∗ sk

LetEk = (X−
∑

j 6=k(lj∗sj)), representing the error without using the atom lk, the main

idea of K-SVD is to update each atom in the dictionary sequentially to the projected

direction that most reduces the error. Let s̃kR and Ẽk denote the result of discarding the

zero entries in xkR and Ek, respectively. As a result, lk and s̃kR can be computed using

〈
lk, s̃

k
R

〉
= arg min

lk,s̃
k
R

∥∥∥Ẽk − lks̃kR∥∥∥2

F
(3.10)

The above optimization problem can be easily solved by employing an SVD compo-

sition of Ẽk, namely, UΣV t = SV D(Ẽk), and using the SVD result and update the

lk and s̃kR with lk = U(:, 1), s̃kR = Σ(1, 1)V (1, :). U(:, 1) denotes the first column of

matrix U , and V (1, :) is the first row of V , Σ(1, 1) is the first diagonal value of Σ. The

upper part of the Lnew matrix will not be updated, and only the lower part composed of

W matrix is updated. The detailed algorithm is given in the following algorithm 1 with

matlab indexing notation.

3.4 Numerical Experiments

In this section, we conducted numerical experiments comparing the proposed

framework with the benchmark algorithms for ESI based on a realistic high accurate

brain model. The benchmark algorithms include sLORETA [71], Minimum Norm Es-
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Algorithm 1 Revised DK-SVD algorithm
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , relative controlling
scalar β, label matrix H
OUTPUT: classification matrix W , EEG source matrix S
Initialization: Using K-SVD initialization described in Ref. [3]

set m = 1
while not converged do

Solve the following sparse coding problem using matching pursuit algorithm for
i = 1, 2, . . . , N :
min
si
‖xi − Lsi‖2

2 s.t. ‖si‖0 6 T

while i is not equal to Nd do
(1) Compute the representation error without atom li, Ei = (X −

∑
j 6=i(lj ∗

sj))
(2) Extract the nonzero entries of si and truncate the Ei to EP

i accordingly.
(3) SVD decomposition for EP

i as EP
i = UΛV

(4) Update li and sTi :
li(Nc + 1 : end)←− U(:, 1)(Nc + 1 : end),
s̃iR ←− Σ(1, 1)V (1, :).

(5) Update index i←− i+ 1;

end while
m←− m+ 1

end while

timate (MNE), Minimum Current Estimate (MCE), also known as `1 constrained for-

mulation. All computations in this paper were conducted on a 64–bit windows 7 with

i7-6700 CPU, the memory of 16 GB and frequency is 3.40 GHz.

3.4.1 Head Model

Head model is a volume conductor model which is used to describe the flow

of electric current in the head. Usually, the brain model was built in 4 steps, (1) col-

27



lect the MRI images; (2) tissue segmentation (3) Mesh generation and assignment of

conductivities for different tissues (4) Solve boundary element finite equations to get

the lead field matrix. We used a newly developed lead field model called ICBM-NY or

“New York Head” [39] which is based on highly detailed standardized finite element

model (FEM) of the non-linear averaged anatomical template-ICBM152. The brain tis-

sue segmentation is divided into six tissue type (scalp, skull, cerebrospinal fluid(CSF),

gray matter, white matter and air cavities) with native MRI resolution of 0.5mm3. Also,

we divided the brain into 8 regions of interests (ROI) [34] called Right Anterior Inferior

(RAI), Right Anterior Superior (RAS), Right Posterior inferior (RPI), Right Posterior

Superior (RPS), Left Anterior Inferior (LAI), Left Anterior Superior (LAS), Left Pos-

terior inferior (LPI), Left Posterior Superior (LPS) to measure the distance between the

reconstructed EEG source and the true source locations within each region. The “New

York Head” model has two different precision levels, corresponding to 74382 and 2004

voxels respectively. The dimension of lead field matrix we are using is 108 × 2004,

representing 108 channels and 2004 voxels. We also assume that source orientation is

perpendicular to the cortex surface.

3.4.2 Experiment Setup

In the simulation experiments, we designed 1-3 common sources that are located

in different ROIs with a higher magnitude and three discriminative sources related to

three different brain states with smaller magnitude located at different ROIs. The com-

mon sources represent the spontaneous activation patterns in the brain. The each of the

discriminative source is corresponding to one of three the brain states in the simulation.
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Specifically, we designed the spontaneous sources with a magnitude of 0.6 with

standard deviation to be 0.1 and task-related discriminative with a magnitude of 0.4

with a standard deviation of 0.05 located in different ROIs from the common sources.

We sampled 200 time points for each class and repeated 20 times the experi-

ments under the same setting. The noise matrix is designed to affect the EEG recording

together with the true source signal. For each time point, three random voxels are cor-

rupted randomly with the average value being {0.2,0.3,0.4} resulting in different SNR

design. We define the SNR = 10 log10
Ps

Pn
, where Ps and Pn are the power of signal

and noise respectively. We did experiments with common activation sources with dif-

ferent level, using 1,2,3 common sources, the test the performance of the discriminative

source locations under different SNR.

3.4.3 Result

The discriminative source reconstruction performance of the proposed method,

as well as the benchmark methods, are summarized in Table 3.1–3.3. In Table 3.1-3.3,

computation time is recorded in seconds (s). The distance evaluation is based on the

shortest path of two voxels on the cortex surface instead of direct Euclidean distance.

The location of the largest source in the same ROI with the ground truth location is con-

sidered to be the reconstructed source. Unlike the previous way of measuring both the

common source accuracy and discriminative source accuracy in previous paper [50], we

only focus on the accuracy of the discriminative sources, and their location accuracy in

the one of the 8 ROIs. As in the simulated data, we know the ground truth of discrim-

inative sources, the location error is calculated with the ground truth of discriminative
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source and the largest activated source in the same ROI. The distance was defined on the

surface of an irregular mesh, calculated using shortest path algorithm. All of the values

in Table 3.1-3.3 except the Time column in the table represents distance in (mm) from

ground true source to the reconstructed source. The time column records the amount of

time spent to calculate each time point to perform source reconstruction. EC1 represents

localization Error for Class 1, which is the distance of the reconstructed discriminative

source to the ground truth within the same ROI. EC2 and EC3 are similarly defined.

Table 3.1: Localization accuracy summary when number of common source is 1.

SNR =4.5 SNR =1.5 SNR = -1
Methods Time EC1 EC2 EC3 Time EC1 EC2 EC3 Time EC1 EC2 EC3

Homotopy 0.27 9.4 7.0 12.3 0.26 15.9 12.8 11.4 0.25 19.4 15.9 19.4
sLORETA 0.017 16.0 18.1 17.7 0.017 23.8 20.1 21.1 0.017 31.5 28.0 31.5

MNE 3.2e-5 20.2 22.0 22.5 2.6e-5 27.9 26.4 25.4 2.4e-5 32.8 30.0 32.8
Proposed 0.27 7.5 5.1 10.4 0.26 12.7 8.8 8.75 0.26 13.0 9.9 12.9

Table 3.2: Localization accuracy summary when number of common source is 2.

SNR =5.4 SNR =2.0 SNR = 0.5
Methods Time EC1 EC2 EC3 Time EC1 EC2 EC3 Time EC1 EC2 EC3

Homotopy 0.27 8.6 10.5 11.4 0.26 8.0 9.9 12.4 0.25 15.1 13.9 17.1
sLORETA 0.017 18.7 19.7 25.0 0.017 23.9 23.6 26.6 0.02 31.9 28.9 31.1

MNE 3e-5 20.8 24.3 27.8 2.5e-5 26.9 27.3 26.2 2.5e-5 29.5 27.1 30.7
Proposed 0.28 6.7 8.2 9.1 0.26 5.15 6.6 9.6 0.25 9.4 7.7 11.3

Table 3.3: Localization accuracy Summary when number of common source is 3.

SNR =6.2 SNR =3.5 SNR = 0.35
Methods Time EC1 EC2 EC3 Time EC1 EC2 EC3 Time EC1 EC2 EC3

Homotopy 0.21 3.9 6.5 9.1 0.21 5.8 7.1 7.3 0.2 12.6 12.8 13.1
sLORETA 0.013 29.1 28.7 28.6 0.013 27.1 25.2 24.4 0.01 30.3 27.8 30.8

MNE 5.7e-5 31.6 34.7 31.7 5.4e-5 25.3 27.7 21.8 4.8e-5 29.7 26.3 30.2
Proposed 0.21 2.3 5.12 6.8 0.21 2.1 3.1 3.6 0.2 6.7 6.6 7.4

We can see from Table (3.1-3.3) and the Fig.3.3–Fig.3.5 that our proposed

method provide much high accuracy in locating the discriminative sources under all the
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settings conducted in the experiment. The sLORETA algorithm and MCE and MNE

give very diffuse solution and failed to estimate the exact location. When we increase

the noise, our algorithm performs very robust compared to others. It is worth noting that

in most of the cases, our algorithm can find a very good solution, however, in several

cases, our algorithm failed to estimate the exact location due to the high coherence of

the lead field matrix. As the traditional algorithm such as MNE ans sLORETA may find

common sources due to they have larger magnitude, missing unanimously the discrim-

inative source, meaning that the task related source can’t be estimated correctly. As is

shown in the boxplots, even though the mean value of the proposed algorithm is very

small, still in some cases, our algorithm failed, and the exact locations on the cortex

where the sources are difficult to reconstruct needs further exploration.

Figure 3.3: Boxplot of the error comparing different algorithms when there is 1 common
source, from left to right when SNR equals 4.5, 1.5 and -1 respectively.

We also conducted a pairwise t-test comparing all the localization error of all

algorithms, and the summary table for the is given below Table 3.4. According to

t-test, all the comparison is significant, and sLORETA is slightly better than wMNE

and the localization error from both sLORETA and wMNE are significant larger than
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Figure 3.4: Boxplot of the error comparing different algorithms when there are 2 com-
mon sources, from left to right when SNR equals 5.4, 2.0 and 0.5 respectively.

Figure 3.5: Boxplot of the error comparing different algorithms when there are 3 com-
mon sources, from left to right when SNR equals 6.2, 3.5 and 0.35 respectively.

Table 3.4: Localization error pairwise comparison using t-test

Comparison Test mean std T-value p-value
sLORETA - wMNE -2.60 0.36 -7.28 <0.001

sLORETA - Homotopy 11.45 0.49 23.6 <0.001
sLORETA - Proposed 15.14 0.52 29.22 <0.001
wMNE - Homotopy 14.05 0.50 28.19 <0.001
wMNE - Proposed 17.74 0.52 34.03 <0.001

Homotopy - Proposed 3.69 0.12 31.57 <0.001
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Homotopy and the proposed method. Our proposed algorithm has smaller localization

error than the Homotopy, on average, we do 3.69 mm better than Homotopy and more

than 10 mm better than sLORETA and wMNE. Although, we did not list Homotopy

in our result, we compared Homotopy and FOCUSS algorithm, and they have similar

result, but FOCUSS is much slower than Homotopy.

We also demonstrated an exemplary results in Fig.3.6 and Fig.3.7. Fig.3.6

demonstrates the reconstructed source and calculated discriminative filters W ; the dis-

criminative filters suppress common source shared by different status while extract-

ing and magnifying distinguished ones. The common resting state signal is attenuated

by W (as is illustrated in LAS region) and the reconstructed discriminative sources

are extracted and magnified by the corresponding rows of W . The upper subfigure is

the reconstructed source S and discriminative filter W is given in the lower subfig-

ure. Fig.3.7 illustrates the EEG potentials topoplots on the scalp before and after the

application of our method, distinctive source activation patterns can be revealed. We

also give the exemplary plots of cortex from different algorithms. In fig.3.7, the top

3 topoplots are corresponding to 3 different brain tasks with the high common source

of spontaneous activity or resting state potentials, it’s very hard to distinguish them.

Below is the topoplots after we applied our methodology to extract the discriminative

expression for different brain tasks. The lower topoplots are constructed by applying

the discriminative source to the forward model.

To illustrate the effect of the proposed algorithm, the ground truth of the ac-

tivated pattern is given in Fig.3.8, with the reconstructed source estimated by MNE,

sLORETA, Homotopy, and our method given in Fig.3.9–Fig.3.12. In Fig.3.8, Each row
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Figure 3.6: Sparse coding and discriminative filter for 3 different brain status.

Figure 3.7: Discriminative filtered topoplots for 3 different brain status.
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is a source activation pattern for each brain states. From left to right, are the left lateral

view, right lateral view and superior view. There are two common sources shared by 3

brain states, which are circled in blue, and the discriminative source are specific to each

class, which is circled in red. For the reconstructed EEG Source Imaging illustrated in

Fig.3.9–Fig.3.12, each row is a source activation pattern for each brain states. From left

to right, are the left lateral view, right lateral view and superior view. There are two

common sources shared by three brain states, and the discriminative source is specific

to each class. The sLORETA and MNE failed to find the discriminative sources, and

MCE (Homotopy) can find the solution pretty well but with a lot of spurious sources

so that reconstructed result can be misleading. Our filtered result is given in Fig.3.12,

which illustrates the discriminative source particular to one brain state.

Figure 3.8: Ground truth common sources and discriminative source corresponding to
3 different classes.
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Figure 3.9: Solution from wMNE algorithm for 3 classes with left lateral view, right
lateral view and superior view respectively from left to right.

Figure 3.10: Solution from sLORETA algorithm for 3 classes with left lateral view,
right lateral view and superior view respectively from left to right.
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Figure 3.11: Solution from Homotopy algorithm for 3 classes with left lateral view,
right lateral view and superior view respectively from left to right.

Figure 3.12: Solution from Homotopy algorithm for 3 classes. Each row is correspond-
ing to each class with left lateral view, right lateral view and superior view respectively
from left to right.
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3.5 Conclusion and Discussion

We aim to reconstruct discriminative sources given different brain status. A la-

bel guided dictionary learning formulation is given for the first time is solved using our

revised version of the DK-SVD algorithm. Through numerical simulations, we showed

that regarding accuracy and speed, our method is better than the `1 or `2 related ones.

The reason is the high coherence of lead field matrix and sparsity constraints are easy to

fail. The classification component trained aW matrix with each row corresponding cer-

tain type of brain status, which is physically meaningful, we termed as a discriminative

filter. Our proposed framework can achieve satisfactory result compared to traditional

methods and can be extended to more specific priors such as spatially smoothness re-

quirement or depth compensation requirement.

Even though in the same experiment setting, our algorithm performs better than

the benchmark algorithms, we find that there is a large portion of outliers regarding lo-

calization error in the algorithm when the linear mapping true source location has a high

coherence with the linear mapping from sources at other locations. The intuition is if the

SNR is higher, the more accurate the localization performance it should be. However,

due to the huge computation time, we only repeated 20 times of each experiment. The

comparison of the proposed algorithm with the benchmark algorithms under the same

setting makes more sense rather than compare across different experimental settings.

The inverse nature of ESI problem makes the accuracy unstable. Further investigation

of the impact of level different sensor noises is our future work.
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Chapter 4

Graph Regularized EEG Source Mapping using with
in-class consistency and out-class discrimination

4.1 Introduction and Motivation

It’s worth noting that the previous EEG inverse problem solvers solve the prob-

lem in an unsupervised way without taking any available label information. The inverse

problem was solved under different brain statuses independently rather compare and

discriminate different brain status in a comprehensive and unified framework. Usually,

when we design a sequence of experiments to record the EEG and asked the subjects to

perform different psychological tasks within certain time windows, the label informa-

tion (happiness, sadness, surprise, etc. in emotion processing experiment, or different

motion imagination tasks in brain-computer interface (BCI) studies) of the recorded

EEG data can be easily obtained. Label information in such controlled environment is

not expensive to collect. Traditional algorithms solve the EEG inverse problem with-

out leveraging the label information, which will make it hard to compare the recon-

structed sources for different brain statuses due to its low SNR (Signal-to-Noise Ratio)

and high volume of spontaneous background source activation patterns. EEG data is

highly non-stationary, and task-related sources also exhibit time-variant patterns. Thus

the EEG inverse solver should also retrieve consistent patterns within each class. To

explicitly extract factual sources and promote the in-class consistency and out-class
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Figure 4.1: Triangle meshed realistic
brain model. Each triangular element rep-
resents a current dipole located at its cen-
ter, and the orientation of dipoles is as-
sume to be perpendicular to the cortical
surface.

x1
x2

S1 S2

S3

Figure 4.2: Sources propagate to elec-
trodes: s3 is the common activation
source and has larger magnitude, s1 is
a discriminative source corresponding to
class 1, and s2 is a discriminative source
corresponding to class 2.

discrimination, we implemented the graph regularized version of discriminative source

reconstruction, tested on simulated EEG data, and showed its effectiveness in finding

the discriminative sources and precision localization of the task-related sources.

The contributions of this chapter are listed as follows: (1) We propose to use

label information to solve the EEG inverse problem in a supervised way. (2) A graph

regularized EEG inverse model is presented that can promote in-class consistency and

out-class discrimination. (3) A Voting Orthogonal Matching Pursuit algorithm is given

to decompose the common sources.
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4.2 Proposed Framework
4.2.1 Discriminative Source Reconstruction with Graph Regularization

According to previous research [38] [76], most the EEG potentials originate

from the non-task related spontaneous neural firing that can be regarded as the back-

ground activity. Combined with the fact that an EEG signal is non-stationary with low

SNR, traditional method is hard to extract discriminative signal of interests. A simple

example is shown in Fig.4.2, s1 and s2 represent the discriminative sources correspond-

ing to class 1 and class 2, s3 is the common source shared by class 1 and class 2. If the

magnitude of s3 is much larger than s1 and s2, a lot of algorithms will fail to infer the

discriminative sources under low SNR. In the following numerical experiments section

of this paper, we use similar source configurations: each class has a dominant primary

source that is shared with other classes and relatively small secondary source that is

unique to this class. We are trying to get consistent inverse solutions under the same

brain state and discriminative solutions given different brain states [77] utilizing the

available label information. Inspired by the successful applications of graph regular-

ization in computer vision community [30] [14], the proposed model is in the form

of sparse representation of discriminative sources with a graph regularization term,

which is termed as Laplacian Graph Regularized Discriminative Source Reconstruc-

tion (LGRDSR), and includes the source reconstruction fidelity term and label guided

in-class consistency and out-class discrimination term:

〈S 〉 = arg min
S
‖X − LS‖2

F + α‖S‖1,1 +
β

2

N∑
i,j=1

‖si − sj‖2
2Mij, (4.1)
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where X ∈ RNc×N , N is the total number of time points from different classes, ‖·‖1,1 is

the `1 norm notation for a matrix, equal to the sum of the absolute values of all elements

in a matrix, the second term is the cost of sparse coding, and the third term is the graph

regularization term that requires the sources within the same category to have similar

patterns while making the sources for different classes to be distinct. The definition of

the M matrix is written as:

Mij =

{
+1, if (si,sj) belong to the same class
−1, if (si,sj) belong to different classes

The goal of this formulation is to find discriminative sources while maintaining the con-

sistency of in-class reconstructed sources.

Remarks on design of M matrix

When (si, sj) belong to the same class, the value of Mij should be positive, which will

penalize difference in in-class sources. By driving the intrinsic geometric structure of

si and sj to be the same, the in-class consistency of the sources can be achieved.

When (si, sj) belong to different classes, assigning a negative value to Mij will explic-

itly promote out-class discrimination of the source. In practice, if we care more about

in-class consistency, we can set Mij = 0 when (si, sj) belongs to different classes. The

magnitude of Mij can also be adjusted to tailor the relative weight between in-class

consistency and out-class discrimination.

Define D as a diagonal matrix whose entries are column or row sums of the

symmetric matrix M , Dii =
∑

jMij , define G = D −M , where G is called the graph

Laplacian Matrix [14], The third term of Eq.4.1 can be further derived as:
N∑

i,j=1

‖si − sj‖2
2Mij =

N∑
i,j=1

(si
T si + sj

T sj − 2si
T sj)Mij = 2tr(SGST ).
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As a result, Eq.4.1 is written as

〈S 〉 = arg min
S
‖X − LS‖2

F + α‖S‖1,1 + β(Tr(SGST )). (4.2)

Eq.4.2 can be rewritten into a decomposed form

〈s1, s2, . . . sN 〉 = arg min
s1,s2,...sN

N∑
i=1

‖xi − Lsi‖2
2 + β

N∑
i,j=1

Gijs
T
i sj+α

N∑
i=1

‖si‖1. (4.3)

Fixing the other sources sj (j 6= i) while solving si, each problem is presented as

〈si 〉 = arg min
si
‖xi − Lsi‖2

2 + βGiis
T
i si + sT

i
hi + α

Ns∑
k=1

∣∣∣s(k)
i

∣∣∣, (4.4)

where hi = 2β(
∑

j 6=iGijsj), and s(k)
i is the k-th coefficient of vector si. Eq.4.4 can be

solved using feature-sign search algorithm [45] [14] [59]. To better describe the feature-

sign search algorithm, denote g(si) = ‖xi − Lsi‖2
2 + βGiis

T
i si + sT

i
h and f(si) :=

g(si) + α
Ns∑
k=1

∣∣∣s(k)
i

∣∣∣, Eq.4.4 is rewritten as 〈si 〉 = arg min
si

f(si) = arg min
si

g(si) +

α
Ns∑
k=1

∣∣∣s(k)
i

∣∣∣. Each si is solved sequentially while fixing other sj (j 6= i). Algorithm (2)

presented the famous feature-sign search algorithm properly adapted for Eq.4.2 with the

graph regularized term. Note that the analytical solution for Eq.4.4 is s̃newi = (LTL +

βGiiI)−1(L̃Txi − αθ̃+h̃i
2

) in part b) of the feature-sign stage of Algorithm (2), and the

inversion of LTL+ βGiiI is the most computationally expensive part since L matrix is

overdetermined wide matrix, the calculation speed can be boosted by using Woodbury

formula [88]:

(LTL+ βGiiI)−1 =
1

βGii

(I − 1

βGii

LT (LLT +
1

βGii

I)−1L).

The inverse operation of a matrix with the same dimension as the number of dipoles/voxels

is reduced to the inverse of a matrix with the dimension number equal the total number
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of electrodes, as a result, the calculation cost is reduced significantly. Different from

original version of feature sign search algorithm which includes only the inner for-loop,

Algorithm (2) has an while-loop since the updates of all sj(j 6= i) will impact the so-

lution of sj due to the inclusion of graph regularized term, the algorithm stops until the

convergence of S∗.

4.2.2 Common Sources Decomposition with Voting Orthogonal Matching Pur-
suit (VOMP)

Under the assumption of strong common spontaneous source activation pattern,

the contribution of discriminative sources to the EEG recorded data is relatively small,

making the solution space for different classes highly correlated, which limits the ca-

pability of discrimination. Previous research has shown that pulling out the high abso-

lution value of coefficients sij associated with the common activation pattern can assist

to find the discriminative source of interest [10].

In the similar way as addressing the “cross-and-bouquet” model presented in

[90], a useful step is decomposition ofX for better extraction of discriminative sources.

Similar procedure can be found in [93]. As we assumed, the spontaneous source acti-

vation pattern is very strong, thus making the convex hull spanned by all the source

configuration to a tiny portion of the space [90]. The Voting Orthogonal Matching Pur-

sue (VOMP) is proposed as given in Algorithm 3. The aim is to extract the common

sources across all classes by voting the most popular source location using stepwise or-

thogonal matching pursuit. Problem (4.5) describes the common source decomposition

problem. The VOMP is considered as an integral preprocessing part to find discrimi-
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Algorithm 2 Feature-sign search algorithm
INPUT: Lead field matrix L, EEG data X , graph matrix G, parameter α and β
OUTPUT: Source matrix S
while S∗ is not converged
for i = 1, . . . , N
1. Initialization:

si :=
−→
0 , θ := 0, active set A := {}, where θj ∈ {−1, 0, 1} denotes sign(s

(j)
i )

2. Update of the active set:
For all zero coefficients of si, find j = arg maxj |∂g(si)

∂s
(j)
i

|, add j to the active set A

only if it locally improves the objective, under the following conditions:
if ∂g(si)

∂s
(j)
i

> α, then let θj := −1, A = A ∪ {j}.

if ∂g(si)

∂s
(j)
i

< −α, then let θj := 1, A = A ∪ {j}.

3. Feature-sign step
a) Let L̃ be a submatrix of L that contains only the columns corresponding to the

active set A, s̃i and h̃i is the subvectors of si and hi similarly defined.
b) The analytical solution for Eq.4.4 is derived:
s̃newi = 1

βGii
(I − 1

βGii
LT (LLT + 1

βGii
I)−1L(L̃Txi − αθ̃+h̃i

2
).

c) Perform discrete line search from s̃i
new to s̃i:

Examine the objective value at s̃inew and all points where any coefficient changes
sign.
Update s̃i (and corresponding entries in si) where the objective function achieves
the lowest value.
Remove the zero coefficients of s̃i from the active set and update θ = sign(si).

4. Check the optimality conditions
a) Optimality condition for nonzero coefficients: |∂g(si)

∂s
(j)
i

| + αsign(s
(j)
i ) = 0, for all

s
(j)
i 6= 0.

If condition (a) is not satisfied, go to step 3 to perform discrete line search.
b) Optimality condition for zero coefficients: |∂g(si)

∂s
(j)
i

| < α, for all s(j)
i = 0.

If condition (b) is not satisfied, got to Step 2; otherwise return si as the solution,
denoted as s∗i

end for
end while
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Figure 4.3: Procedures of our framework: After gathering labeled EEG recorded data,
the brain model is constructed using finite element method (BEM) based on MRI im-
ages, then we first use the VOMP algorithm to decompose the primary common source
starting with a high minimum voting percentage, and then solve it using feature-sign
search algorithm, validate the source configurations and do these steps alternative until
solutions are converged, the last step is to map discriminative sources to the cortex.

native sources. The procedure to solve Problem (4.2) is given in Algorithm (4) and is

illustrated in Fig.4.3.

〈Sc 〉 = arg min
Wc

‖X − LSc‖2
F

s.t. ‖si‖0 6 Tmax, i = 1, 2, ...Nd

si = sj, i = 1, 2, ...Nd, j = 1, 2, ...Nd (4.5)

After the decomposition of common source, its contribution to the EEG data X is also

removed. The new EEG data after removal of the common source is written as Xnew =

X − LSc. In the following part, we still use X to represent Xnew when no confusion is

caused.
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Algorithm 3 Decomposition of Non-discriminative Sources with VOMP
INPUT: Lead field matrixL, EEG dataX , maximum number of common sources Tmax,
minimum voting acceptance threshold p
OUTPUT: Sc, result of removed common sources Xnew

Initialization: T ← 1, Ω = ∅, R = X , Rnew = X , S ′ = 0

while Stopping criteria is not met do
for i ∈ 1, ..., Nt do

si ← OMP(L, xi, 1)
qi ← nonzero index of si

end for
qbest ← most frequent qi
if T = Tmax or frequency of f(qbest) < p then

break;
else

Ω ← Ω ∪ qbest ; L′ = (L:,i|i ∈ Ω) ; S ′ ← pinv(L′)X; S ′ ← mean(S
′
);

Rnew ← X − L′S ′
end if
for k ∈ 1, ..., C do

Rk
new = {Rnew(i)|i ∈ class k} ;

Rk = {R(i)|i ∈ class k}
end for
if
∥∥Rk

new

∥∥ < ∥∥Rk
∥∥ for k ∈ 1, ..., C then

continue;
else break;
end if
T ← T + 1; R← Rnew

end while
Xnew = Rnew; Sc = S ′

return Sc, Xnew
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Algorithm 4 Proposed framework of solving Problem (4.2)
INPUT: Lead field matrix L, EEG data X , graph matrix G
OUTPUT: Discriminative source Sd
Initialization: T ← 1, Ω = ∅, R = X , Rnew = X , S ′ = 0

while stopping criteria not met do
(1) Use VOMP algorithm for common source decomposition.
(2) Solve the following sparse coding problem for
〈S 〉 = arg min

S
‖X − LS‖2

F + α‖S‖1,1 + β(Tr(SGST )) using the feature-sign
search algorithm described in Algorithm (2) .
(3) Adjust the voting threshold p.

end while

4.3 Numerical Results
4.3.1 Experiment setup

We used a recently developed realistic head model called ICBM-NY or “New

York Head” [40] which is based on highly detailed standardized finite element model

(FEM) of the non-linear averaged anatomical template-ICBM152. The “New York

Head” model has two different precision levels, corresponding to 74382 and 2004 vox-

els respectively. The dimension of lead field matrix we are using is 108 × 2004, rep-

resenting 108 channels and 2004 voxels. We also assume that source orientation is

perpendicular to the cortex surface. In Ref. [81] Sohrabpour et al. estimated source

when the source signal is around the peak value, the similar practice can be found in

Ref. [54]. As is shown in the experiment part of Ref. [69], the source images are plotted

when the source activation is at peak value. Here in our experiments, we designed all

the source activation magnitude bearing a positive value. For really EEG data, a tech-

nique called energy thresholding (in the following subsection) can be used to find the

corresponding EEG data samples that have non-zero source activation pattern. In each
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simulation, noises originate from sensor level and cortex voxel level both contributed to

the recorded EEG data. The SNR is calculated as

SNR = 20 log10

‖S‖2

‖N‖2

.

The brain is divided into 8 Region Of Interest (ROI)s, namely RAI Right Anterior

(RAI), Right Anterior Superior (RAS), Right Posterior Inferior (RPI), Right Posterior

Superior (RPS), Left Anterior Inferior (LAI), Left Anterior Superior (LAS), Left Pos-

terior Inferior (LPI), Left Posterior Superior (LPS) [34]. In the simulation experiments,

we designed common sources that contain much higher magnitude and three discrimi-

native sources related to three brain states with smaller magnitude from different ROIs.

All computations in this paper were conducted on a 64–bit Linux workstation with i7-

5960x CPU, a memory of 64 GB and frequency is 3.00 GHz.

4.3.2 Validate the VOMP algorithm

In this subsection, we validated the VOMP under different SNR and source

configurations. The voting threshold p was set to different values to test the VOMP’s

performance. For example, if we set the voting threshold to be 0.5, it means that a

common source is determined when at least half of the samples in each class “agreed”

the common source pattern. Note that, when there are more than 3 classes, the common

source pattern is still extracted if more than 50% of at least two classes shared the same

pattern. The VOMP algorithm can be further improved by using multi-step VOMP,

which is to run OMP for multiple steps for each sample instead of just one step as

described in Algorithm (3), and then aggregate the common source location information

calculated from above steps and only keep the best one in terms of occurrences, and find
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the residual matrix and continue the VOMP procedure. Another improvement is that

the spatially adjacent source locations can be regarded the same instead of treating them

differently, as they have similar forward mappings.

The VOMP algorithm tries to reduce the signal correlation by decomposing

common sources. Two experiments were conducted under different SNR values and

source configurations. Each time, a different voting threshold was tested. In the first

experiment, there are two common sources and two discriminative activated sources at

different ROIs corresponding to three classes. Both noises originating from brain voxels

and white noise from sensor measurement are added to the original signal. In the first

experiment, the noise level is SNR= 17 dB. In the second experiment, the SNR is 12 dB

with 3 common sources. The energy boxplots of 600 samples from 3 different classes

under different voting threshold p are given in Fig.4.4. and Fig.4.5 for both experiment

setups. The first common source can easily be extracted in the first iteration. However, if

the noise level is large, it’s hard to reach a consensus for a voting threshold p = 0.3 as is

shown in Fig.4.5. Choose a small p will introduce false common source that will cause

potential problem locating the right discriminative source. Our framework requires to

check the accuracy and soundness of the final prediction and adjust the threshold back

and forth. A recommended starting search point is p = 0.2. The advantage of VOMP

is its speed as its core ingredient is OMP, and the evaluation time for each sample took

1.2763× 10−4 s on our workstation.

An example of our VOMP algorithm in filtering out the common background it-

eratively is illustrated in Fig.4.6, which is the time series version of “cross-and-bouquet”

example, in contrast to the image recognition version as is illustrated in Fig.2 of Ref.
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Figure 4.4: Boxplot of total signal en-
ergy of 50 experiments: to show the ef-
fectiveness of VOMP in removal of com-
mon souces under SNR=12 with 3 com-
mon sources.

Figure 4.5: Time series plot of common
source decomposition: from left to right,
common sources are removed iteratively.

[89].

Figure 4.6: Time series plot of common source decomposition: from left to right, com-
mon sources are removed iteratively.

4.3.3 Discussion on Tuning the Parameters

Usually, if there are two parameters, the common practice is to do a grid search

and find the best combination of the best performance. However, this can involve a
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lot of computation to find the best parameters. Moreover, the performance measure-

ment can be misleading since it’s not a direct measurement of accuracy, which is based

on squared error of the reconstructed signal and the ground truth signal. Instead, it’s

based on the shortest path distance between inferred location and true source location.

For example, if the ground truth signal is (1, 0, 0, 0), the first reconstructed signal is

(0, 1, 0, 0), and the second reconstructed signal is (0.3, 0, 0.7, 0), with the assumption

that the neighboring elements in the vector are also neighboring voxels in the brain, the

first reconstruction has larger squared error compared to the second one, even though

the first one has better performance (location) precision. If the reconstructed sources are

spurious ones (can be anywhere inside the brain), a better performance does not really

mean the parameter setting is better compared to worse performance in one numerical

experiment. It may mean the spurious source with better accuracy happened to locate a

source close to the actual source.

Based on the discussion above, its quite tricky to find the best combination of parame-

ters. However, there are some ways to fine-tune the parameters. We propose a two-step

fine-tuning mechanism. In the first step, we assign the graph regularization weight β

to 0 and try to solve the simple `1 constrained problem using the Homotopy algorithm

and find the best setting of α, which is quite easy since there is only one parameter

to tune. The second step is to find the best value of β while fixing α. The rationale

behind this is that our proposed model works well if the `1 problem can be solved with

accurately. The graph regularization term can smooth out spurious sources that are not

shared within a class, and the representative sources are encouraged and remained. The

localization error under a different parameter setting is illustrated in Fig.4.7 under SNR
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= 16. Fig.4.7 is based on a result from 3rd outer iterations depicted in Algorithm (2).

The maximum inner iteration is set to be 50. We assigned 250 mm when the inferred

location is in a different hemisphere for visualization purposes. When the parameters

are not well set, the graph penalty term will drive all the inferred source location from

all time points to the wrong hemisphere. When the sparse regularization parameter α is

set to be large, the solution will be a zero matrix.

Figure 4.7: Discriminative source location error (in mm) given different parameter set-
tings

4.3.4 Effect of Graph Regularization

In this section, we show the effectiveness of the graph regularization term in re-

constructing the discriminative sources by comparing it with the other eight benchmark

algorithms. We designed the spontaneous common sources with a magnitude of 0.8

with standard deviation to be 0.1 and task-related discriminative source with a magni-

tude of 0.2 with a standard deviation of 0.05 located in different ROIs from the common
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sources.

We sampled 200 time points for each class and did the experiment 5 times to get

the average accuracy of the reconstructed source. For the LGRDSR parameter, we set

β to be 0.05 and α to be 0.06; Mij is set to 1 if sample i and j belong to the same class

since we care more about in-class consistency based on the example. The noise matrix

is designed to affect the EEG recording together with the true source signal. For each

time point, 3 random voxels are corrupted randomly with the average value being 0.2,

0.4, 0.6 and variance being 0.05 based on different SNR design. The 8 benchmark meth-

ods include ElasticNet [86], Homotopy [5], DALM [100], PDIPA [100], FISTA [100],

sLORETA [71], MNE [31]. The former six algorithms are compared in image recon-

struction applications and can be referred to Ref. [93] for details. The reconstruction

performance of the proposed method, as well as the benchmark methods based on 150

experiments, are given in Table 4.1.

In Table 4.1, computation time is recorded in seconds (s), PSE represents pri-

mary source error, which is the distance of reconstructed primary source to the ground

truth primary source. The distance evaluation is based on the shortest path of two voxels

on the cortex surface instead of direct Euclidean distance. PSE measures the capability

of each algorithm to reconstruct the common sources.

All of the values in Table (1), except the Time column in the table represents

distance in (mm) from ground true source to the reconstructed source. When the re-

constructed location is on a different hemisphere from the ground truth, there is no

path connecting those two voxels, so we mark the distance to be 250 mm. EC1 repre-

sents error for class 1, which is the distance of the reconstructed discriminative source
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to the ground truth. EC2 and EC3 are similarly defined. To illustrate the effect of

the proposed framework, the ground truth of the activated pattern is given in Fig.4.8,

with the reconstructed source estimated by MNE, sLORETA, Homotopy, DALM and

our method given in Fig.4.9–Fig.4.13. We can see from Table (4.1) and the Fig.4.9–

Fig.4.13 that when the SNR is large, all the algorithms perform well in reconstructing

primary sources. As for the discriminative sources for different classes, our method

can achieve almost perfect reconstruction. All other algorithms’ performances are also

acceptable when SNR is large, except for sLORETA, MNE and ElasticNet. When we

increase the noise, all of the algorithms can still achieve high accuracy in finding the

primary source. For the discriminative source, our algorithm performs much better. We

also validated that, to solve a pure `1 EEG inverse problem, the Homotopy algorithm

performs better in most cases than other algorithms in the EEG inverse problem, which

is in accordance with Ref. [93].

Figure 4.8: Ground truth for all 3 classes

4.3.5 Signal Energy Thresholding

In our experiments, we designed our primary sources to hold a large value, and

the magnitude of discriminative sources are also larger than zero. One may argue that
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Table 4.1: Reconstruction Accuracy Summary

SNR = 10 SNR =16 SNR = 22
Methods Time PSA EC1 EC2 EC3 Time PSA EC1 EC2 EC3 Time PSA EC1 EC2 EC3

ElasticNet 0.001 43.4 142.3 159.6 159.2 0.001 21.5 188 162.3 136.0 0.001 8.87 172.5 195.0 13.0
Homotopy 0.12 3.43 53.2 42.5 40.8 0.11 0.006 20.9 23.4 45.9 0.09 0 0.28 0.70 8.00

DALM 0.07 4.59 53.0 43.1 39.6 0.07 0.01 20.9 22.0 45.5 0.08 0 0.28 1.73 7.98
PDIPA 0.29 3.43 53.4 45.0 40.4 0.31 0.006 22.1 26.7 48.4 0.26 0 0.28 0.63 7.98
L1LS 3.89 0.69 51.6 67.4 37.1 3.98 0.25 24.6 24.0 47.1 3.92 0.069 0 0 4.36
FISTA 0.95 0.63 61.0 95.2 47.6 0.95 2.92 44.1 33.1 62.9 0.96 40.1 66.1 73.5 54.5

sLORETA 0.015 10.2 131.7 178.2 142.8 0.015 16.9 200 175.1 152.1 0.02 2.62 194.1 164.2 123.5
MNE 3e-5 29.3 131.8 157.7 131.7 3e-5 9.02 197.5 174.9 131.9 3e-5 4.30 119.8 136.2 113.5

LGRDSR 0.15 1.85 14.4 4.13 3.67 0.13 0.006 0 5.42 10.2 0.10 0 0 0 2.12

Figure 4.9: MNE solution: The above row is the MNE solution for class 1; Class 2
and class 3 is illustrated in the middle and bottom row. The solution MNE gives is not
sparse, with too many spurious sources of small magnitude.
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Figure 4.10: sLORETA inverse solution: sLORETA solution for class 1, class 2 and
class 3 is illustrated from the top to bottom rows. sLORETA can successfully re-
construct the primary source, however the secondary source is not successfully recon-
structed. Compared to the solution of MNE, sLORETA can suppress the numerous
spurious sources with small magnitude.

Figure 4.11: Homotopy inverse solution: From top to bottom are the Homotopy solution
for class 1, Class 2 and class 3 respectively. Homotopy can successfully reconstruct the
primary source, however the secondary source is not successfully reconstructed.
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Figure 4.12: DALM inverse solution: DALM can successfully reconstruct the primary
source, however the secondary source is not successfully reconstructed. Compared to
the solution of MNE and sLORETA, the solution is better in terms of accuracy and
sparsity, similar performance compared to Homotopy.

Figure 4.13: LGRDSR reconstructed source: The reconstruction solutions for 3 classes
are given in each row. As can be seen from the illustration, the discriminative source
can be successfully reconstructed compared to other methodologies.
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it’s not realistic since the value we designed is never close to zero in real situations.

However, the logic behind it is that once the source signal is close to zero, its con-

tribution to the EEG data can’t be reflected, making the corresponding reconstruction

impossible. A useful technique to circumvent this problem is using Energy Threshold-

ing (ET) of the EEG data. The purpose of ET is to eliminate data points of low energy

with the hope of inferring a source signal that is not close to zero. The relationship

between EEG data and source is xi = Lsi + ε. Energy of the signal is defined as

p(xi) = xTi xi. To find out the relationship of p(xi) and p(si), we did a linear regres-

sion to predict p(xi) using p(si) based on Monte Carlo simulation with 3000 samples,

and found the linear trend between p(xi) and p(si) is statistically significant, and the

detailed regression model is given in Table (4.2). From previous research, the Event-

Table 4.2: Regression result on energy of signal and source

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.004841 0.008742 0.554 0.58

x 0.144889 0.007761 18.669 2e-16

related potential demonstrates higher energy on P1 and N1 points that can be used to do

the source mapping [60]. By using ET techniques, we can select the EEG data points

with higher energy that correspond to source signals with higher energy. The discussion

above shows it’s reasonable to set the source signal with a magnitude not close to zero.

4.4 Conclusion and Future Goal

In this paper, we proposed using label information to retrieve discriminative

sources corresponding to different brain statuses, extending the traditional EEG source
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imaging problem to a supervised one guided by label information. Although determin-

ing a sparse representation with graph regularization in the computer vision and com-

pressive sensing communities is not new, its application in the EEG inverse problem that

implicitly utilizes label information has never been proposed. Our model employed a

Laplacian graph regularized term that can boost the in-class similarity and discourage

the out-class similarity, thus making the source solution from the same class more ro-

bust to noise. Numerical results show the proposed algorithm outperforms eight bench-

mark algorithms in localizing the task related sources under certain levels of noise. We

showed the common source decomposition using the “cross-and-bouquet” model in the

inverse problem and presented an efficient algorithm to address the high background

spontaneous source signals. Our proposed supervised version of EEG source imaging

algorithm can be incorporated with other state-of-the-art algorithms. To sum up, the

EEG inverse problem can be solved in a supervised framework, and it’s beneficial to

formulate it in that way to extract task related source activation patterns.

We tried to mimic the true source activation data using the simulated data. As it

is well studied using fMRI data, our brain contains a resting state default mode network

with some spontaneous neural behavior in certain brain areas. Another fact is that

when given a specific task, different brain regions can be activated which correspond

to the discriminative sources described in our paper. In that perspective, our model is

more realistic than numerous previous studies that used simulated data. However, the

weakness of our paper is that we used one spot as a common activated source, even

though there may be several common source activation regions co-existing in reality.

Overcoming this weakness is one of our future research goals.
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Chapter 5

Graph Regularized EEG Source Mapping in
Transformed domain with Total Variation

5.1 Graph Regularized EEG Source Imaging in Transformed Do-
main

The idea of transform sparseness in solving ESI was first reported by by Ding in

2009 using a first order total variation (TV) matrix, which penalize variations between

neighboring elements and leading to sparsity in extended source space [22]. In this sec-

tion, we first introduce the sparse constraints in the transformed domain (first-order TV)

which promote the discovery of extended source patches rather than isolated noncontin-

uous sources on the cortex. Our proposed graph regularized model in the transformed

domain is presented in the first part of this chapter. In the second part of this chapter, we

use fractional order graph total variation to promote natural spatial smoothness, which

requires the center source activation point has the highest magnitude and the magnitude

decreases as the distance is farther away from the center point. A practical computation

framework is given to solve the ESI problem with spatial and temporal smoothness.

5.1.1 EEG Source Imaging in Transformed Domain

In order to encourage source extents estimation, Ding [22] proposed to used

sparse constraint in the transformed domain and the model was termed as Variation-
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Based Sparse Cortical Current Density (VB-SCCD). In [101], Zhu et al proposed to

use multiple priors including variation-based and wavelet-based constraints. The VB-

SCCD model can be extended by adding sparse constraint in the original source domain

named Sparse VB-SCCD (SVB-SCCD) [10]. The common yet most important term is

the total variation term, which encourage the neighboring sources to be activated or

remain unactivated simultaneously so that the spatial smoothness can be guaranteed.

The total variation measurement was defined on `1 norm of the transformed domain

using a linear transform characterized with matrix V , defined as below:

V =


v11 v12 · · · v1N

v21 v22 · · · v2N
...

... . . . ...
vP1 vP1 · · · vPN


with {

vij = 1; vik = −1; if element j,k share edge i ;
vij = 0; otherwise.

where p = 1, ..., P, d = 1, ..., D, and N is the number of nodes, P is the number of

edges from the triangular grid. The motivation of total variation regularization is illus-

trated in Fig.(5.1), when the red triangle is estimated to be activated, the neighboring

blue voxels should also be activated.

The V S describes the differences in amplitude between adjacent voxels, and the

VB-SCCD optimization cost function is defined as follows:

〈S 〉 = min
S
‖X − LS‖2

F + λ‖V S‖1,1. (5.1)
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Figure 5.1: Illustration of V matrix design purpose. When one voxel (in red) is acti-
vated, the neighbor voxels (in blue) are encouraged to be activated to achieve smaller
goal value in Eq.5.1

5.1.2 Discriminative Source Reconstruction with Graph Regularization

Previous studies [38] [76] indicated that the brain spontaneous sources con-

tribute most part of the EEG signal. The neurons in our brain are still active even the

subjects are in closed-eye resting state. As a result, the source solution given by tradi-

tional EEG inverse algorithm is likely to be corrupted by background noise. A simple

example is that suppose x1 = L(s0 +s1) and x2 = L(s0 +s2), and s0 is the spontaneous

common source across different classes: brain status 1 and status 2. s1 is the discrim-

inative source for class 1, and s2 is the discriminative source for class 2. Without the

label information, traditional method is trying to estimate the overall source activation

pattern instead of the task related ones. Even worse, when the magnitude of s0 is much

greater than s1 and s2, the traditional method will be more likely to fail.

Inspired by graph regularization in computer vision community for discover-

ing discriminators of images [14, 30, 58, 59, 77], the proposed model employs a graph

regularized in the original VB-SCCD and is termed as VB-SCCD-graph in this paper.
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The graph term tries to eradicate the spurious sources that are not consistent intra-class.

The common source are decomposed as the first step using (Voting Orthogonal Match-

ing Pursuit) VOMP algorithm proposed in [49]. The VB-SCCD-graph model is given

below:

〈S 〉 = arg min
S

1

2
‖X − LS‖2

F +
β

2

N∑
i,j=1

‖si − sj‖2
2Mij + λ‖V S‖1,1. (5.2)

Here ‖·‖1,1 is the `1 norm notation for a matrix, equal to the sum of absolute values of

all entries from a matrix. X ∈ RN×T the EEG data, where T is the number of samples

from different classes. The second term that penalizes the inconsistent source solutions

within the same class is the graph regularization term. The definition of M matrix is

given as:

Mij =

{
+1, if (si,sj) belong to the same class;
0, if (si,sj) otherwise.

The goal of this formulation is to find discriminative sources by decomposing the com-

mon source while maintaining the consistency of in-class reconstructed sources.

By Defining D as a diagonal matrix whose entries are row sums of the symmetric ma-

trix M , Dii =
∑

jMij and G = D −M , the last term of Eq.5.2 can be further derived

as:

N∑
i,j=1

‖si − sj‖2
2Mij =

N∑
i,j=1

(si
T si + sj

T sj − 2si
T sj)Mij = 2tr(SGST ).

As a result, Eq.5.2 is written as

〈S 〉 = arg min
S

1

2
‖X − LS‖2

F + β(Tr(SGST )) + λ‖V S‖1,1
(5.3)
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Using variable splitting, Eq.5.3 is equivalent to

min
S

1

2
‖X − LS‖2

F + λ‖Y ‖1,1 + β(Tr(STGS))

s.t. Y = V S.

(5.4)

The new formulation makes the objective function separable with respect to two vari-

ables S and Y . For Problem (5.4), S can also be written in a decomposed format as

min
si

1

2
‖xi − Lsi‖2

2 + λ ‖yi‖1 + βGiis
T
i si + sT

i
hi

s.t. yi = V si,

where hi = 2β(
∑

j 6=iGijsj), and xi, si, yi and zi are the i-th column of the correspond-

ing matrix, Gij is the (i, j) entry of matrix G.

Remarks: connection to spatio-temporal smoothness constraint:

An important assumption in EEG source imaging is the prior to guarantee spatio-

temporal smoothness in the source solution [16, 26, 43, 83], our proposed model can

assure the spatial smoothness using total variation constraint plus temporal smoothness

can be achieved by promoting in-class consistency with graph regularization.

5.1.3 Optimization with ADMM algorithm

Problem (5.5) can be solved with alternating direction method of multipliers

(ADMM) [12] after reformulating it to unconstrained augmented Lagrangian function:

Lp(si, yi, ui) =
1

2
‖xi − Lsi‖2

2 + λ ‖yi‖1 + βGiis
T
i si + sTi hi (5.5)

+ uTi (V si − yi) +
ρ

2
‖V si − yi‖2

2 .
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Augmented Lagrangian methods can bring robustness to the solution compared to other

penalty The variable si, yi, ui are updated sequentially, with the hope that each sub-

problem has a closed form solution or can be calculated efficiently. In short, ADMM

consists of three substeps, given in Eq.5.6 to Eq.5.8,

s
(k+1)
i := arg min

s
Lρ(s, y

(k)
i , u

(k)
i ) = arg min

s

1

2
‖xi − Ls‖2

2 + βGiis
T s+ sThi

+
ρ

2

∥∥∥∥∥V s− y(k)
i +

u
(k)
i

ρ

∥∥∥∥∥
2

2

(5.6)

y
(k+1)
i := arg min

y
Lρ(s

(k+1)
i , y, u

(k)
i ) = arg min

y
λ‖y‖1 +

ρ

2

∥∥∥∥∥V s(k+1)
i − y +

u
(k)
i

ρ

∥∥∥∥∥
2

2

(5.7)

u
(k+1)
i := u

(k)
i + ρ(V s

(k+1)
i − y(k+1)

i ) (5.8)

The update of s(k+1)
i has a closed form solution, which is

s
(k+1)
i = P−1[LTxi − hi + ρV T (y

(k)
i −

u
(k)
i

ρ
)],

where P = LTL+2βGiiI+ρV TV . The update of y(k+1)
i can use the proximal operator

in the `1 norm. Denote the `1 norm proximal operator as

proxµ(v) = arg min
x
µ‖x‖1 +

1

2
‖x− v‖2

2 , (5.9)

with µ > 0. The above problem (6.18) has a closed form solution, called soft thresh-

olding, defined by a shrinkage function,

shrink(v, µ) = (|v| − µ)+ sgn (v) ,
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Algorithm 5 ADMM framework for solving goal function 5.4
INPUT: Lead field matrix L, EEG signal matrix X , Laplacian Graph G, total variation
matrix V , parameter α and β, λ
OUTPUT: Source matrix S
while S∗ is not converged
for i = 1, . . . , N
Alternating update until converge:

s
(k+1)
i = P−1[LTxi − hi + ρV T (y

(k)
i −

u
(k)
i

ρ
)],

y
(k+1)
i = shrink(V s

(k+1)
i +

u
(k+1)
i

ρ
, λ
ρ
),

u
(k+1)
i := u

(k)
i + ρ(V s

(k+1)
i − y(k+1)

i )

end for
end while

where (x)+ is x when x > 0, otherwise 0. The shrinkage function is efficient to solve

`1 minimization problem due to its calculation is element-wise. As a result, the updates

of y(k+1)
i and z(k+1)

i can be expressed as:

y
(k+1)
i = shrink(V s

(k+1)
i +

u
(k+1)
i

ρ
,
λ

ρ
), (5.10)

The procedure for solving problem (5.4) is summarized in Algorithm (5). The update of

all si is the most time consuming, however the computation time can be greated reduced

by using distributed computation since the updates of si is independent within the for

loop in Algorithm(5).

5.1.4 Numerical Experiment

A realistic head model called “New York Head” [40] and synthetic data with

known ground truth is used for validation of our method. The dimension of lead field

matrix is 108 by 2004 for the head model. We sample 1s of the data with 200 Hz fre-

quency from each class or brain status. The number of classes are defined to be 3. A
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common source extended patch for all 3 classes with 5 neighboring sources to be acti-

vated simultaneously. The discriminative task related source extent for each class also

has 5 neighboring sources activated. The magnitude of common source is defined to be

0.8 with a standard derivation of 0.1 and the discriminative source is assigned to be 0.2

with a standard derivation to be 0.05. To mimic the noise from other source locations,

we defined the 10 spurious sources with the magnitude to be 0.35 or 0.5 for experiments

under different signal noise ratios (SNR). The SNR are defined as 20 log10
‖S‖2
‖N‖2

. Under

the current experiment settings, the factual activated number of source is 20, according

to the result in [20], the recover rate is dropped quickly when the number of dipoles

are increased, when the number of activated source is 20, the recover rate is about 40%

since the lead field matrix has a very high coherence across columns.

Figure 5.2: Ground truth for all 3 classes aggregated in one figure with a common
source and 3 discriminative sources

5.2 Spatial Graph Fractional-Order Total Variation

In pursuit of improving spatial smoothness of source extents, we design a spatial

regularization term based on our recent work on graph fractional-order TV [47]. To re-

duce staircase artifacts of TV, fractional-order TV (also known as total fractional-order

variation) has been proposed and widely applied in the image processing community
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Figure 5.3: Illustration of primary source reconstruction and discriminative source re-
construction by difference methods. The first row is source solution provided by MNE,
the second row is from the solution of sLORETA, the third and fourth row are DALM
and FISTA method within the MCE framework, the last row is our proposed method.
Our method can provide sparse and precise reconstruction of discriminative source.
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to improve image smoothness by considering more neighboring information [7, 17, 78].

It is known that the anisotropic fractional-order TV of an image u defined on a 2D

rectangular mesh has the following form

TVα(u) = ‖∇αu‖1 =
M∑
i,j=1

(
|(Dα

xu)i,j|+ |(Dα
y u)i,j|

)
,

where α ∈ (1, 2). Here the fractional derivative is based on the Grüwald-Letnikov

derivative definition [67]

(Dα
xu)i,j =

K∑
k=0

wα(k)u(i− k, j),

(Dα
y u)i,j =

K∑
k=0

wα(k)u(i, j − k),

where the coefficients are wα(k) = (−1)k Γ(α+1)
k!Γ(α−k+1)

. Based on this definition, TVα be-

comes the traditional TV when α = 1. Although valid for (0, 1)∪(2,∞), the parameter

α is typically set between 1 and 2 to achieve the best performance in practice [17].

Using a triangle mesh, the discretized cortex surface can be treated as a graph

with voxel or dipole as graph node. For a specific node vi, let d(vi, vj) be the number

of nodes on the shortest path connecting the nodes vi and vj , which is in or close to

a geodesic of the underlying cortex surface passing through vi and vj . Given a path

p = (vi=m0 , vm1 , . . . , vmK
) where the shortest distance between vm0 and vmj

is j nodes,

the fractional-order derivative along the path p is defined as

(Dα
p u)i := Dα

p u(vi) =
K∑
j=0

wα(j)u(vmj
).

The discretized fractional-order TV of u is defined as [47]:

TVα(u) = ‖Dαu‖1 =
M∑
i=1

∑
p∈P(i;K)

|(Dα
p u)i|,
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where P(i;K) is the set of all paths starting from the i-th node with length of K nodes.

Here we use the breadth-first search (BFS) algorithm to first compute the shortest path

between each node pair to get a pairwise distance matrix, and then create the matrix

Dα ∈ RNp×D by seeking all Np paths of length K nodes and recording all nodes on

each path. For a specific node vi, the nodes at level k, i.e., the nodes have shortest

distance k from vi, are assigned the weight wα(k). Note that K specifies the maximal

level of nodes to be used. By the assumption that u has a sparse spatial structure, it is

sufficient to use K ≤ 4 levels of neighboring nodes to achieve the desired accuracy in

our experiments.

5.2.1 Proposed EEG Source Imaging Approach

In this section, we present our proposed approach which utilizes the tempo-

ral and spatial graph structures of the EEG data to help recognize extended source

patches on the cortex and enhance spatial smoothness of source extents. A numeri-

cal algorithm is derived by applying the ADMM and an enhanced version based on

the derived algorithm called Two-stage Geolocation-based Solution Expansion ADMM

(TGSE-ADMM) is proposed.

There has been a large number of work devoted to developing EEG source lo-

calization methods by using various regularization techniques, such as Variation-Based

Sparse Cortical Current Density (VB-SCCD) [22] which is essentially the TV, In [101],

Zhu et al. proposed to use multiple priors including variation-based and wavelet-based

constraints. However, based on the assumption that the underlying signal is piece-

wise constant, TV can easily cause staircase artifacts. To preserve high-order spatial
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smoothness of the EEG signal defined on the cortex, we use the graph fractional-order

total variation described in Section 5.2. On the other hand, previous studies [38, 76] in-

dicated that the brain spontaneous sources contribute most part of the EEG signal. The

neurons in our brain still fires even when the subjects are in closed-eye resting state.

By combining the spatial and temporal graph regularizations described in Sec-

tion 5.2, we propose the following model for EEG discriminative source imaging

min
S
E(S) +Rs(S) +Rt(S)

= min
S

1

2
‖X − LS‖2

F + λ‖DαS‖1,1 +
β

2

N∑
i,j=1

‖si − sj‖2
2Mi,j

(5.11)

where β, λ > 0 are tuning parameters and ‖DαS‖1,1 =
∑T

i=1‖Dαsi‖1. Note that an

important assumption in EEG source imaging is the prior to guarantee spatiotempo-

ral smoothness in the source solution [16, 26, 43, 54, 83]. Our proposed model is able

to enforce high order spatial smoothness via graph fractional-order TV plus temporal

smoothness via temporal graph regularization involving label information of brain state.

5.2.2 Proposed Algorithms

To simplify discussion, we first replace the temporal regularization term by (6.4)

and rewrite (5.11) as follows

min
S

1

2
‖X − LS‖2

F + λ‖DαS‖1,1 + β(tr(SGST )). (5.12)

By change of variables, (5.12) can be rewritten as

min
S,Y

1

2
‖X − LS‖2

F + λ‖Y ‖1,1 + β(tr(SGST )) s.t. Y = DαS. (5.13)
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The new formulation makes the objective function separable with respect to the two

variables S and Y . Furthermore, by denoting the i-th column of X and Y by xi and yi

respectively, we obtain a column-wise form of (5.13)

min
si,yi

1

2
‖xi − Lsi‖2

2 + λ‖yi‖1 + βGiis
T
i si + sT

i
hi s.t. yi = Dαsi, (5.14)

where hi = 2β(
∑

j 6=iGijsj) and Gij is the (i, j)-th entry of the matrix G.

ADMM is an efficient method to solve convex and even non-convex problems by

decomposing the original problem into several subproblems such that each subproblem

has a closed form solution or can be computed efficiently [12]. To apply the ADMM to

solve (5.14), we first construct the following augmented Lagrangian function

L(si, yi,ui) =
1

2
‖xi − Lsi‖2

2 + λ ‖yi‖1 + βGiis
T
i si

+ sTi hi + uTi (Dαsi − yi) +
ρ

2
‖Dαsi − yi‖2

2

(5.15)

Then ADMM results in the following two subproblems for updating si, yi:

s
(k+1)
i = argmin

s
L(s, y

(k)
i , u

(k)
i ),

y
(k+1)
i = argmin

y
L(s

(k+1)
i , y, u

(k)
i ).

The s-subproblem has a least-squares solution

s
(k+1)
i = argmin

s

1

2
‖xi − Ls‖2

2 + βGiis
T s+ sThi

+
ρ

2
‖Dαs− y(k)

i + u
(k)
i /ρ‖2

2

= P−1[LTxi − hi + ρDT
α (y

(k)
i − u

(k)
i /ρ)],

where P = LTL+ 2βGiiI + ρDT
αDα. The y-subproblem essentially finds the proximal

operator of the `1-norm, which has a closed form

y
(k+1)
i = shrink(Dαs

(k+1)
i + u

(k)
i /ρ, λ/ρ), (5.16)

73



Algorithm 6 Source Imaging Based on Spatial and Temporal Graph Structures
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , graph matrix G,
precalculated matrix Dα, parameters β, λ > 0, Homotopy solution S0, and κ > 0.
OUTPUT: Source matrix S.
Initialize: Set S(0) = S0, y

(0)
i = V S0 and u(0)

i = κ× 1.
for t = 1, . . . , Tmax do

for i = 1, . . . , N do
while si is not converged do

s
(k+1)
i = P−1[LTxi − hi + ρDT

α (y
(k)
i − u

(k)
i /ρ)]

y
(k+1)
i = shrink(Dαs

(k+1)
i + u

(k)
i /ρ, λ/ρ)

u
(k+1)
i = u

(k)
i + ρ(Dαs

(k+1)
i − y(k+1)

i )
end while

end for
update St, Yt

end for

where the shrinkage function shrink(·, ·) is defined by

shrink(v, µ) = (|v| − µ)+ sgn (v) ,

where (x)+ is x when x > 0, otherwise 0. Here sgn(·) is the componentwise sign func-

tion. The algorithm based on ADMM for solving (5.11) is summarized in Algorithm 6.

Despite its effectiveness, Algorithm 6 is sensitive to the initialization and returns

undesirable solutions numerically-either too sparse using the `1-regularized solution as

initial guess or too diffuse using 0 as initial guess. To address this issue, we propose

a two-stage algorithm based on ADMM and Geolocation-based Solution Expansion

(GSE), termed as Algorithm 2, which is empirically shown to be effective in recon-

structing large source extents. At the first stage, we run Algorithm 6 with a small graph

parameter β to reduce the impact of misleading (initial) solutions from samples of the
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Figure 5.4: Pipeline of Algorithm 2

same class. Here the solution from the homotopy algorithm [93] is set as the initial

guess of S. Although Algorithm 6 locates the most desirable source patches and de-

activates the wrongly activated sources, the result is prone to have either narrow or flat

source extents. To further correct source extents, we perform GSE, i.e., triggering the

neighboring sources of `1 inferred activated sources to give an overestimation at the

first few iterations, followed with expanding the solution by finding a large patch of

the source extent. An illustration of the effect of GSE is given in Fig.5.5. Then the

second stage runs Algorithm 6 with a larger β, which corrects the first stage result by

eliminating spurious activated sources. Both stages use Algorithm 6 but with different
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temporal graph parameters and different initial guesses of S.

Figure 5.5: Illustration of using GSE to expand sparse discrete solution and produce an
over-estimated solution. GSE is done by assigning neighbor voxels the same value as
the inferred activated sources.

5.2.3 Numerical Experiment

A realistic head model called “New York Head” [34] is used in our numerical

experiment. The lead field matrix is a linear mapping from 2004 sources to 108 elec-

trodes. We use two focal source extents to represent the spontaneous activation pattern

shared by different classes and discriminative task-related pattern corresponding to one

brain state. To mimic the real world source propagation pattern, one focal source extent

is generated with a center source location and neighboring sources with spatial standard

deviation along the cortical manifold with σ = 20 mm. The magnitude of spontaneous

center source is 0.8 and the magnitude of task-related center source is 0.5. Both source

extents have 15 activated sources by setting other smaller sources to be 0. We also

assign 10 randomly selected source with magnitude of 0.35 with variance to be 0.05

to represent spurious sources for each sample. The maximum iteration is set 50 for

updating si at each stage. We set β = 10−5 for the first stage and β = 0.1 for the
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second stage. The spatial graph parameter λ is set 10−4 to make the data fitting term

and the spatial regularization in the same scale. For the GSE operation, we choose 15

sources with largest magnitude, and then assign 5 nearest neighbor sources of them to

have the same magnitude starting from the minimum to the largest magnitude of these

15 sources. Fig.5.5 illustrates the effect under the aforementioned setting. The ground

truth source activation and reconstructed sources images as well as a brief discussion

by different algorithms are summarized in Fig.5.6. In Fig.5.6, the superiority of the

proposed two-stage algorithm over sLORETA, MCE, one-stage Algorithm 6 is clearly

demonstrated for reconstructing source extents.

For quantitative comparison, we use several metrics including the data fitting

r2, the spatial regularization term Rs defined in (5.11) to measure the spatial smooth-

ness, predicted source precision P= TP/(TP+FP) and sensitivity S=TP/(TP+FN), where

TP, FN, FP represents true positive, false negative and false positive respectively. Note

that if the predicted source extent has no overlap with the true source extent, both pre-

cision and sensitivity is 0. Here Pc and Sc represent precision and sensitivity for the

common source, respectively, and Pd and Sd are defined similarly for the discrimina-

tive source. We use threshold values 0.35 and 0.25 when calculating sensitivity and

accuracy for the common and the discriminative sources for Homotopy, one-stage Al-

gorithm 6 and two-stage Algorithm 2. We also use the mean absolute error (MAE) to

measure the discrepancy between the reconstructed source and the ground truth. Ta-

ble 5.1 summarizes the performance of our proposed algorithm and benchmark algo-

rithms. Since Homotopy and one-stage Algorithm 6 without the GSE operation yield

very sparse solutions, their precision is high but with very low sensitivity. sLORETA
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has higher sensitivity accuracy than precision due to its diffusiveness. Our proposed

method achieves a better balance of precision and sensitivity. Despite of its capability

to better explain the data and a smaller spatial regularization term than the proposed

result, the result by one-stage Algorithm 6 is very focalized with narrow source extent.

The proposed Algorithm 2 corrects the source extent and provides a more useful result

in practice.
Table 5.1: Performance Comparison

Algorithm r2 Rs Pc Sc Pd Sd MAE
sLORETA 0.503 487.7 0.27 0.33 0.14 0.7 84.9
Homotopy 1.000 244.5 0.70 0.19 0.72 0.23 20.0
Algorithm 6 0.979 209.5 0.64 0.20 0.62 0.23 18.6
Algorithm 2 0.976 229.2 0.77 0.54 0.82 0.93 16.8

5.3 Conclusion

In the first part of this chapter, we proposed a model called VB-SCCD-graph

which has the advantage to better find the task related activation source extents than

traditional method. The proposed ADMM algorithm is given to solve the VB-SCCD-

graph model with better performance validated in the numerical experiments. One of

the drawbacks for the proposed framework is the total variation term only allow smooth-

ness for the first spatial derivative, and this problem is solved by using graph fractional

order TV, which is introduced in the second part of this chapter. In the second part, we

propose a novel EEG source imaging model using the spatial graph fractional-order TV

and the temporal graph regularization involving label information of brain state. The

model is solved efficiently by an ADMM-based algorithm. To further correct source

extents, a two-stage algorithm is proposed to combine geolocation-based solution ex-

pansion. Numerical experiments have demonstrated that the proposed method can pre-
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Figure 5.6: Ground truth source activation and reconstructed sources by difference al-
gorithms. The top row is ground truth activation pattern. The 2nd row is the sLORETA
solution, the 3rd row is the `1-regularized solution based on the Homotopy algorithm,
the 4th row is the one-stage Algorithm 6 solution without GSE, and the row denoted as
5.1 is the solution after the first stage of the proposed algorithm, the row denoted as 5.2
is our final proposed solution. The sLORETA gives over-diffuse and inaccurate solu-
tion. Algorithm 6 with the `1-regularized solution as initial guess gives a very sparse
solution. The proposed two-stage algorithm produces the best solution, where spurious
activated sources at the first stage are eliminated at the second stage.
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serve high-order spatial smoothness and intra-class consistency, which shows the great

potential to achieve high resolution EEG source localization for real-time non-invasive

brain imaging research.
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Chapter 6

EEG Source Imaging with Graph Regularized Temporal
Smooth Low Rank Representation

6.1 Introduction

In the literation review chapter, we introduced different algorithms for ESI prob-

lem. One common drawback of the existing ESI algorithms is that they have more

discussion on the noises in the sensor level and the studies about spurious noise in the

source space is lack in the literature. If perfectly reconstructed, the estimated source is

aggregated by task-related source and spurious noise in the source space. The true task-

related sources will be corrupted by spurious sources, which motivates us to develop

new algorithms to find true task-related source. There are two commonly accepted

assumptions (1) spatially sparse (2) temporally continuous for the task-related source

activation pattern, which inevitably leads to the low-rank property of the source space.

To better discover the task-related source, we impose the low-rank term in the goal

function as we consider it is a more direct constraint for spatial sparse. Also, we use

a more direct penalty term to temporal smoothness, which is to penalize dissimilarity

of temporally neighboring samples based on manifold graph embedding. It is worth-

noting that we used the graph regularization term in our previous chapter, however the

graph is defined to be fully connected for all the points within one class [50], which

inevitably drive all the activate patterns at different time points having the same mag-
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nitude, thus making the previously defined graph regularization term rely on a strong

assumption and limit its future application for realistic cases.

In this chapter, we propose a novel EEG source imaging model based on tem-

poral graph regularized low-rank representation. The model is solved based on the

alternating direction method of multipliers (ADMM) [12]. We conducted extensive

numerical experiments to verify the effectiveness on discovering task related low-rank

sources. The reconstructed solution is temporally smooth and spatially sparse. The

contributions of this chapter are summarized as follows:

1. We propose to consider the noise not only in the sensor level, but also in the

source space.

2. A low-rank representation model (LRR) is proposed for the first time on EEG in-

verse problem inspired by the low-rank property of true task-related source con-

figurations.

3. We redefined graph embedding regularization based on our previous chapter that

utilizes temporal vicinity information of samples to promote temporal smooth-

ness.

4. A new algorithm based on ADMM is given which is capable of extracting the

low-rank task-related source patterns.
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6.2 Inverse Problem and Temporal Graph Structures

In this section, we briefly review the inverse problem and then discuss the design

of temporal graph regularization.

6.2.1 The Inverse Problem

The cortex source activations propagate to EEG sensors through a linear map-

ping matrix called lead field matrix, and it can be described as the following linear

model:

X = LS + E (6.1)

where X ∈ RNc×Nt is the EEG data measured at a set of Nc electrodes for Nt time

points, L ∈ RNc×Nd is the lead field matrix which maps the source signal to sensors

on the scalp, each column of L represents the electrical field of a particular source to

the EEG electrodes, S ∈ RNd×Nt represents the corresponding driving potential in Nd

sources locations for the Nt time instants. Since the number of sources is much larger

than electrodes, solving S given X is ill-posed with infinite feasible solutions, which

necessitates a regularization term to be imposed. Generally, an estimate of S can be

found by minimizing the following cost function, which is composed of a quadratic

error and a regularization term:

arg min
S
‖E‖2

F + γΘ(S) s.t. X − LS = E, (6.2)

where ‖·‖F is the Frobenius Norm. The penalty term Θ(S) is to encourage neurophys-

iologically plausible solutions. The regularization term take the form of `2, `1 or mixed
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norm. For example, spatially smooth formulation as in LORETA estimation or spatially

sparse formulation with Least Absolute Shrinkage and Selection Operator (LASSO) es-

timate.

6.2.2 Temporal Graph Embedding

An important assumption on the source signal is that two temporal adjoint data

points should have similar intrinsic activation pattern. In computer vision community,

a lot of manifold learning methods have been proposed to find intrinsic similar struc-

ture on low-dimensional sub-manifolds embedded in a high dimensional ambient space,

such as locally linear embedding [79], Locality Preserving Projection [37], Neighbor-

hood Preserving Embedding [36]. A graph can be viewed as geometric neighborhood

relationship between each vertex representing each data sample, the weight between

vertex represents similarity between two points [97]. Inspired by the manifold the-

ory [14] and work from Liu et al [55], we use a regularization term to penalize the

difference of two neighboring source signal. In our previous work, we use a graph

regularization term to promote intra-class consistency [50], but the assumption is too

strong by requiring all the reconstructed sources at different time points has the same

location as well as signal magnitude as long as they belong to the same class. Now

define a temporal graph regularization as

Rt(S) =
N∑

i,j=1

‖si − sj‖2
2Wij, (6.3)
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where si is the i-th column of the matrix S, and a binary matrix W is designed as

follows

Wij =

{
1, if si ∈ Nk(sj) or sj ∈ Nk(si)
0, otherwise.

The graph embedding matrix W contains temporal vicinity information. Nk(si) is

the set containing k temporally closest points to si. This formulation intends to force

neighboring source signal having similar pattern. The benefits are twofold, one is for

temporal smoothness, another advantage is to make the reconstructed source denoised

for intermittent spurious source activates. By defining D as a diagonal matrix whose

entries are row sums of the symmetric matrix W , i.e., Dii =
∑

jWij , and denoting

G = D −W , Rt(S) can be rewritten as:

Rt(S) =
N∑

i,j=1

(si
T si + sj

T sj − 2si
T sj)Wij =

N∑
i

sTi siwii −
N∑

i,j=1

sTi sjwij

= 2 tr(SDST )− 2 tr(SWST ) = 2 tr(SGST ), (6.4)

where tr(·) is the trace operator of a matrix, i.e., adding up all diagonal entries of a

matrix.

6.3 Proposed EEG Source Imaging Model

Before we present our low-rank model with temporal graph structures, we com-

ment on the limitations of traditional model and come up with the decomposition of

task-related source with low-rank property and spontaneous non-task-related spurious

sources that is sparsely distributed spatially and with transient patterns. We come up

with a graph regularized low-rank representation model and detailed discussion on the

purpose of each term in the goal function.
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Figure 6.1: Illustration of temporal smoothness. By design the temporal graph matrix
G, the reconstructed signal should have consistent pattern within the same neighbor-
hood window.

6.3.1 Decomposition of True and Spurious Sources

In general, two types of noises should be considered, one originates from inac-

curate measurement of the sensors modeled by Guassian white noise, which is denoted

as E in Eq.(6.1), the other type of noise is called biological noise that comes directly

from the spontaneous activations in the source space, which are not task-related and

termed as spurious source. The second types of noise (spurious source) also contributes

to the EEG signal in the same way as ground truth source. A drawback of traditional

models is that they didn’t distinguish the spurious sources from the true sources, and the

estimated source can be composed of both task-rated source and spurious sources. To

address the above mentioned problem, we propose to use a decomposed source spaces,

composed of a low-rank source space and spurious sources originates from spontaneous

biological noises. The illustration of decomposition of source space as well as the whole
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procedure is given in Fig.6.2, where S1 has a low-rank property and S2 is sparse, and

sum of S1 and S2 is no long low-rank, making X lose low-rank structure.

Figure 6.2: Extraction of low-rank true source from spurious source pipeline: After
gathering the MRI scans of the head, tissue segmentation is conducted followed by
mesh generation. By assigning conductivity values to different tissues and electrodes
co-registered with the meshing model, boundary element method (BEM) was used to
solve the forward model. Each triangle represents a brain source, the direction of the
source is assumed to be perpendicular to the triangular surface. With EEG data and
forward brain model, source reconstruction is calculated. The factual source signal S
can be decomposed into two source matrix. The task related true sources S1 have a low-
rank property and the spurious sources S2 are the sparse but not temporally consistent.
The low-rank source solution is projected to cortex voxels to illustrate the activation
pattern.

6.3.2 Basic Low-Rank Representation (LRR) Model

We argue that during a short period of task-related Evoked Repose Potential

(EPR), the number of corresponding activated sources is sparse and remain activated

during this period of time, which makes the EPR source matrix low-rank with most
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rows being zero. However, the brain signal is known to be heavy noisy, spontaneous

activations are also active from different source spots. The low-rank representation

model for the EEG inverse problem is introduced as follows:

min
S,E

rank(S) + β‖S‖1,1 + λ‖E‖1,1

s.t. X = LS + E,
(6.5)

where β, λ and γ are positive scalars to balance the rank function, sparsity cost of

sources and the reconstruction error. It is pointed out that `1 on the error term is more

robust to outliers, we use `1 in the row-rank model [53]. The ‖E‖1,1 is defined as∑
j

∑
i |Eij|. Due to the discrete nature of the rank function, it is a common practice to

use a surrogate nuclear norm ‖·‖∗ instead. The goal function is given as:

min
S,E
‖S‖∗ + β‖S‖1,1 + λ‖E‖1,1

s.t. X = LS + E,
(6.6)

The above formulation is a simple version trying to estimate the task-related

source activation pattern by using low-rank constraint. To promote the temporal smooth-

ness, the Laplacian graph structure is included in the next section followed by the opti-

mization algorithm.

6.3.3 LRR Model with Graph Regularization

Incorporating the previous temporal graph structures, we introduce our proposed

model called low-rank representation with temporal graph structures ESI (LRR-TG-

ESI). The model is composed of data fitting term to explain the EEG data, temporal

graph embedding regularization term that promote temporal smooth, and a `1 norm for

sparsity penalty and nuclear norm for the low-rank structure of ground true source. By
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combining the low-rank prior and the temporal graph regularization, we propose the

following model for ESI:

min
S,E
‖S‖∗ + λ‖E‖1,1 + β‖S‖1,1 + α tr(SGST )

s.t. X = LS + E, (6.7)

where λ, β, α > 0 are tuning parameters to balance the trade-off of different terms.

Our proposed model is able to enforce row-sparse via low-rank prior and temporal

smoothness via temporal graph regularization while fitting the EEG data X . Compared

to earlier works on the ESI problem, both the low-rank prior and graph regularization

is novel, although the graph regularization term has been discussed in our early paper

[50], but it is not defined on the temporal manifold, and the previous definition in [50]

make the magnitude of source signal to be equal intra-class, which is not realistic in

real world. To further consider the spatial smoothness, a total variation term can be

imposed as another penalty term, such as first order total variation (TV) regularization

in Ref. [22, 65], fractional order TV in [47, 75], and similar algorithm can be derived

under the framework of ADMM, however further investigation with constraints of TV

is our future work.
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6.4 Numerical Algorithm

To solve (6.7), an algorithm in the ADMM framework is developed. The aug-

mented Lagrangian function of (6.7) is

L(S,M,E, T1, T2, µ) = ‖S1‖∗ + λ‖E‖1,1 + β‖M‖1,1 + α tr(SGST )

+ 〈T1, X − LS − E〉+ 〈T2,M − S〉+
µ

2
× (‖X − LS − E‖2

F + ‖M − S‖2
F )

(6.8)

By some simple algebra, (6.8) can be reformulated as

L(S,M,E, T1, T2, µ) =‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1 + α tr(SGST ) +
µ

2
× (‖X − LS − E +

T1

µ
‖2
F

+ ‖M − S +
T2

µ
‖2
F )− 1

2
µ(‖T1‖2

F + ‖T2‖2
F ), (6.9)

where T1 and T2 are Lagrangian multipliers and µ is a parameter for the augmented

Lagragian term. The variables are updates alternately in a Gauss-Seidel manner by

minimizing the augmented Lagrangian function, with other variables fixed. For sym-

bolic simplicity, we rewrite Eq.(6.9) into the following form:

L(S,M,E, T1, T2µ) = ‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1

+ h(S,E,M, T1, T2, µ)− 1

2
µ(‖T1‖2

F + ‖T2‖2
F ), (6.10)

where

h(S,E,M, T1, T2, µ) = α tr(SGST ) +
µ

2
× (‖X − LS − E +

T1

µ
‖2
F + ‖M − S +

T2

µ
‖2
F ).

If the augmented Lagrangian function is difficult to minimize with respect to a variable,

a linearized approximate surrogate function can used, hence the algorithm bears the
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name Linearized Alternating Direction method [48, 97]. Updating S by minimizing

h(S,Ek,Mk, T k1 , T
k
2 , µ

k) (suppose we are at iteration k) is equivalent to minimize the

following goal function with the other variables fixed:

LS = ‖S‖∗ + h(S,Ek,Mk, T k1 , T
k
2 , µ

k), (6.11)

which is approximated by optimizing its linearizion at Sk1 plus a quadratic proximal

term, given as:

S = argmin
S
‖S‖∗ +

〈
∇Sh(Sk), S − Sk

〉
+
η

2

∥∥S − Sk∥∥2

F
. (6.12)

Here η is a constant satisfying

η > 2α‖G‖2 + µ(1 + ‖L‖2
2), (6.13)

where ‖·‖2 is the spectral norm of a matrix, i.e, the largest singular value. As long as

(6.13) is satisfied, (6.12) is a good approximate to (6.11). The solution to (6.12) has a

closed form using a singular value thresholding operator (SVT) [15] given as:

Sk+1 = Θη−1(Sk −∇Sh(Sk)/η), (6.14)

where Θε(A) = USε(Σ)V T is the SVT operator, in which UΣV T is the singular value

decomposition of A and Sε(s) is defined as sin(x) max(|x| − ε, 0). ∇S1h(Sk1 ) is calcu-

lated as

∇Sh(Sk) = α(SkG+ SkGT ) + µLT (LS −X + E − T1

µ
) + µ(S −M − T2

µ
)

(6.15)
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To update M and E, it is equivalent to solve the following problem:

argmin
M

µ

2
‖M − S +

T2

µ
‖2
F + β‖M‖1,1 (6.16)

argmin
E

µ

2
‖X − LS − E +

T1

µ
‖2
F + λ‖E‖1,1 (6.17)

The general form of (6.16)–(6.17) is a `1 norm proximal operator defined as

proxµ(V ) = arg min
X

µ‖X‖1,1 +
1

2
‖X − V ‖2

F , (6.18)

with µ > 0. The above problem (6.18) has a closed form solution, called soft thresh-

olding, defined by a shrinkage function,

shrink(V, µ) = (|V | − µ)+ sgn(V ),

where (x)+ is xwhen x > 0, otherwise 0. The shrinkage function is defined as element-

wise operator. Problem (6.16)–(6.17) has a close form solution described with the

shrinkage function. After updating all the variables, these Lagrange multipliers are

updated by
T1 = T1 + µ(X − LS − E)

T2 = T2 + µ(M − S).
(6.19)

The parameter µ is updated by µ = min(ρµ, µmax). A summarized algorithm is given

as Algorithm 1. We initialize the S with the estimate S0 from `1 solver.

It’s worth noting that the data fitting term we use is `1,1 norm of E in the model,

and there are other options. Generally, if the Gaussian noise E is small, then the norm

‖E‖F , is an appropriate choice, but for random data corruption, `1,1 should be used, and
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Algorithm 7 Source Imaging Based on Spatial and Temporal Graph Structures
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , graph matrix G,
precalculated matrix Dα, parameters α, ζ > 0, and β > 0.
OUTPUT: Source matrix S.
Initialize: Set S = S0, J = 0,M = 0 .
while not converged do

update S according to
Sk+1 = Θ̃η−1(Sk −∇Sh(Sk)/η),

update M according to Equation (6.16),
update E according to Equation (6.17),
update T1, T2 according to Equation (6.19),
update µ = min(ρµ, µmax),

end while

for sample specific data corruption, `2,1 [24, 66, 98], should be used. It has been shown

that `2,1 is more robust to large outliers in some samples. Although the norm used in

Algorithm 1 is `1,1, it can be extended to `2,1 norm of E, where ‖E‖2,1 is defined as

‖E‖2,1 =
∑
i=1

√∑
j=1

E2
ij.

In stead of solving (6.17) to update E, the following goal function (6.20) needs to be

solved to update E.

argmin
E

µ

2
‖X − LS − E +

T1

µ
‖2
F + λ‖E‖2,1 (6.20)

By substituting K = X − LS + T1
µ

, if E∗ is the optimal solution of

min
E

λ

µ
‖E‖2,1 +

1

2
‖E −K‖2

F (6.21)

Based on the Lemmas in Ref [94], the solution to (6.21) is
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e∗i =

{
‖ki‖2−λ/µ
‖ki‖2

ki, if λ/µ 6 ‖ki‖2,

0, otherwise,

where e∗i and ki is the i-th column of matrix E∗ and K respectively.

Convergence: The convergence of Algorithm 1 can be easily derived from [48].

Even though the update of M and E is separated in Algorithm 1, they can be combined

in one step to become a larger block step and simultaneously solving for (M,E) which

is the same case described by LADMAP algorithm [48]. The convergence analysis

in [48] can be applied to our case, thus the algorithm convergence is guaranteed [97].

6.5 Numerical Experiments

In this section, we conducted several experiments to illustrate the effectiveness

of our proposed method. Since both the nuclear norm and the graph regularization

is relative new for the ESI problem, we started from the simple model (6.6) to help

the readers understand the property and impacts of low-rank prior along with data fi-

delity term and sparsity term for source reconstruction. In the first experiment, we did

a comprehensive exploration for different parameter settings by varying the weights

between low-rank term, data fitting term and sparsity term. In the second experiment,

we illustrate the temporal smoothing functionality of the graph regularization term for

uncorrupted smooth source and corrupted source with abrupt signal jumps. In the third

experiment, we give comprehensive numerical results by testing our algorithm against

the benchmark algorithms to showcase the effectiveness of the proposed method in re-

constructing task-related source, where we show that our algorithm can not only find
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the activated locations, but also reconstruct the time-course of source activation with

high precision.

6.5.1 Head Model

A realistic head model, referred to as New York Head model [40], is used in

our numerical experiment. The New York Head model is based on highly detailed MRI

images derived ICBM152 anatomy, which is a nonlinear average of the T1-weighted

structural MRI of 152 adults and calculated with state-of-the-art finite element electrical

modeling. The New York Head model is considered to be highly accurate since it

considers six tissue types when conducting segmentation, which is scalp, skull, CSF,

gray matter, white matter, air cavities, with a native MRI resolution of 0.5 mm3. The

dimension of the lead field matrix used in the numerical experiment part is 2004 by 108,

representing a linear mapping from 2004 sources to 108 electrodes.

6.5.2 Experiment 1: Test on Simple Low-rank Model

To understand the property of low-rankness, we start from a simple model to

help the readers understand the property of low-rank in the EEG source imaging and

the validity of low-rank when recovering the accurate location as well as time course

of source signal. Like in [34], eight octants are divided as regions of interest (ROI) are

considered, which are Right Anterior Inferior (RAI), Right Anterior Superior (RAS),

Right Posterior Inferior (RPI), Right Posterior Superior (RPS), Left Anterior Inferior

(LAI), Left Anterior Superior (LAS), Left Posterior Inferior (LPI), Left Posterior Supe-

rior (LPI). In the simple experiments, we selected 2 different ROIs and randomly select
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one activated voxel in each of these ROIs, and a 4th order moving average time series

is generated, as illustrated in Fig.6.3.

Figure 6.3: Illustration of two activated sources time series on two different ROIs.

At each location, a time series with length of 500 were generated to represent

the source activation time-course. At each time point, two randomly picked sources are

activated to simulate the non-task related spurious noise with mean of 0 and variance

to be 1. The task-related activate pattern has low-rank property, however, the noise

corrupted source space is no longer low-rank. We repeated our experiment 50 times

for all the combinations of λ and β, where λ = {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5}

and β = {0.005, 0.01, 0.015, 0.02, 0.05, 0.1}. The reconstructed error (RE) metric used

here is

RE = ‖Ŝ − S‖2/‖S‖2, (6.22)

where Ŝ represents the reconstructed source. We define the SNR = 10 log10
Ps

Pn
, where

Ps and Pn are the power of signal and noise respectively. The violin plot is used to visu-

alize the distribution of reconstruction errors, in corresponding to β and λ respectively

in Fig.6.4a and Fig.6.4b. Increasing β will penalize the strength of signal and make the
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reconstruction error to be large when λ is small. However, When λ is set to be 0.5, the

weight of data fidelity is high, thus driving the solution have a better data fidelity, which

can balance off the increase of β.

(a) (b)

Figure 6.4: Averaged reconstruction error and rank varying (a) λ and (b) β over 50
experiments.

The averaged reconstruction error of 50 experiments for all of β and λ is given

in Fig.6.5a and the averaged rank for the estimated source for all the combination of β

and λ is given in Fig.6.5b. As we increase the value of λ, the rank is also increasing,

which underlies the trade-off between explaining the data and finding the latent low-

rank structure of the source space. Increasing λ means more weight on the data fitting

term, and the spurious source can also be recovered, thus increasing the rank of the

reconstructed source.

To empirically understand and explain the reconstruction error in Fig.6.5a, we

visualize the curve fitting performance for truth source time series and the reconstructed

source time-course corresponding to different level of reconstruction error. We picked

the curve fitting cases when the reconstructed error is 0.2, 0.4, 0.8 and 1 respectively.

For error equal to 0.2, we picked one experiment and plot the fitting of time series which
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(a) (b)

Figure 6.5: Averaged reconstruction error and rank varying λ and β over 50 experi-
ments.(a) average of reconstruction error for different λ and β (b) average of rank for
the source matrix S. Increasing λ means more weight on data fidelity and the rank
becomes higher. Our model works well with a wide range of parameter setting.

demonstrated a very good curve fitting of the ground truth vs the reconstructed one as

is shown in part (a) of Fig.6.6. Also we picked another experiment whose error equal

to 0.4 and it is shown in part (b) of Fig.6.6. The curve fitting is slightly worse than

the previous one but it is hard to notice the difference compared to the previous one,

however according to our error metric, the error is 0.4. One thing to notice is that in both

situations, the reconstructed rank equal to the ground truth rank, which is equal to 2,

moreover, the estimated two active source location is exactly the ground true locations.

We also examined the case when error is up to 0.8, and the curve fitting plot is given in

part (c) of Fig.6.6. We examined this happened when we set λ = 0.01 and β = 0.1. In

this case, the penalty for sparsity is 0.1, which means too much penalty for the sparse

term and the signal magnitude is reduced by the shrinkage operation. We also notice

than in the experiment, the error can be up to 1 no matter what parameter settings are

given, as can be seen in the top region of Fig.6.4a and Fig.6.4b. The curve fitting plot

for the failed case is given in part (d) of Fig.6.6.
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Figure 6.6: Source time course fitting illustration: (a): ground truth time course vs
reconstructed for two activated source at different ROIs in one experiment when fitting
error equal to 0.2. Here λ = 0.02 and β = 0.005.(b): ground truth time course vs
reconstructed for two activated source when fitting error equal to 0.4. Here λ = 0.5,
β = 0.01. (c): ground truth time course vs reconstructed for two activated source when
fitting error equal to 0.8. Here λ = 0.01 and β = 0.1. (d): ground truth time course
vs reconstructed for two activated source when fitting error equal to 1. Here λ = 0.02
and β = 0.01. The curve fitting of (b) is slightly worse than (a), corresponding to the
RE= 0.2 and RE= 0.4. When the sparsity parameter is set too large, the reconstructed
magnitude is smaller than the ground truth as is shown in (c). For some cases, only the
time course in one source location is reconstructed shown in (d) with RE to be 1.0.
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Although the situation is very rare when RE = 1, we want to visualize the acti-

vation pattern on the cortex to see how discrepant the reconstructed location compared

to the true source location. For comparison, Fig. 6.7 is given when RE = 0.4 and

RE = 1. The reconstructed source locations on two ROIs are exactly the same with

the ground true location when RE = 0.4, when RE = 1, one source location is recon-

structed perfectly while the other source location is not accurately located, however the

neighboring sources are reconstructed.

To check how the rank of S evolve during the iterations, the boxplot of the rank

at selected steps are given in Fig.6.8. Starting from an initial value with high rank, the

rank of Ŝ is decreasing as the iteration proceeds. We set the maximum rank to be 20,

during the iteration process, the rank of S is converged to very small number for most

of the cases.

6.5.3 Experiments 2: Test LRR with Temoral Graph Prior

In this section, we solve the LRR-TG-ESI problem (6.7) with graph regulariza-

tion term to test its impact on the reconstructed signal. Under the same setting with

Experiment 1, we assign different values {0.01, 0.02, 0.05, 0.1, 0.5} for the graph reg-

ularization parameter α. The original source signal was smooth, then it was corrupted

with randomly number at some time points. There are also 2 randomly picked acti-

vated sources representing spurious sources with mean of 0 and variance to be 1. The

“temporal smoothing” impact of the graph regularization is shown in Fig.6.9, where

λ = 0.02 and β = 0.01. In Fig.6.9, the original signal is corrupted and not smooth at

some time points, we set the neighbor size to be 2 (the closest signal before and after
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(a)

(b)

(c)

Figure 6.7: (a) Ground truth source activation pattern (b) Reconstructed source activa-
tion when 0.4. This plot illustrates the perfect localization of ground true sources. (c)
Reconstructed source activation when RE is 1. This plot illustrates when our algorithm
failed to recover one of the the exact locations of two activated sources, while the other
one can be recovered perfectly. the pictures on the left is the reconstructed location, but
still close to the ground truth.
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Figure 6.8: Convergence of rank of S during iteration procedure: In the first iteration,
we set the maximum rank to be 20, and in most case the rank will converge to 2.

the one to be estimated) when calculating the Laplacian matrix. It is evident from the

formulation (6.3) that the graph regularization term will decrease the dissimilarity of

temporally neighbored reconstructed source. If α is set to be 0.5, the graph regulariza-

tion term penalized heavily on the curvature of the reconstructed signal as is illustrated

in Fig.6.9. We can see that with the temporal graph prior, the reconstructed source is

more smooth. It is worth noticing that the main purpose of temporal graph prior is not

to smooth the time course for the activated locations, the main purpose is to filter out

the spurious activations that are short transients with abrupt jumps. Combined with

the low-rank prior, the temporal graph prior can filter the spurious activations and re-

construct the task related activated source. The randomly planted spurious sources are

filter out by penalizing the graph regularization and nuclear norm, and in most of the

cases, the final rank is 2 can be achieved within a wide range of parameters. The time

series plots of original EEG signal, corrupted EEG signal, and EEG signal recovered
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from the reconstructed sources from (6.7) by setting λ = 0.02 and β = 0.01, as well as

the topoplots at 42 ms is given in Fig.6.10. To illustrate again the impact of the graph

regularization, α is chosen from {0.01, 0.02, 0.05, 0.1, 0.5}. The first row is the EEG

data generated from the task-related sources (persistent and low-rank), the second row

is the EEG data from the task-related sources and the spurious source, the SNR is−0.72

dB, which means the energy of spurious source is slightly larger than the task-related

sources. The 3rd row is the EEG data calculated from forward model after the source

is reconstructed from our proposed model with α = 0.01. The 4th-7th row is the time

series plots when α = 0.02, 0.05, 0.1, 0.5 respectively. The topoplots on the right part

of Fig.6.10 is are sampled from 42 ms of the EEG data on the left.

Figure 6.9: Illustration of the smoothing effect of temporal graph regularization: recon-
structed time courses from varied graph regularization parameters.
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Figure 6.10: EEG time series plot of the uncorrupted EEG signal, corrupted EEG sig-
nal vs the reconstructed EEG signal using the proposed method and the corresponding
topoplots at 42 ms: The 1st row is the time series plot of the original uncorrupted EEG
data, the 2nd row is the plots for corrupted EEG data, the 3rd row is the EEG data recon-
structed by applying our algorithm with α = 0.01, the 4th row is the reconstructed EEG
data with α = 0.02, the 5th row is the reconstructed EEG data with α = 0.05, the 6th
row is the reconstructed EEG data with α = 0.10, the 7th row is the reconstructed EEG
data with α = 0.5. The spurious source in the source space corrupted the task-related
EEG data, and by using our graph regularized LRR model, the true EEG data can be
recovered.
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6.5.4 Experiments 3: Comprehensive Comparison with Benchmark Algorithms

The purpose of previous numerical experiments is to validate each term of the

goal function and to understand their properties. The trade-off between low-rankness,

data fidelity, sparsity, temporal smooth are fully discussed by varying different param-

eters. In this part, a comprehensive study is conducted to compare the proposed algo-

rithm with the popular ESI algorithms such as MNE [31], sLORETA [71], MCE and

well as the state-of-art algorithm mixed-norm estimate (MxNE) [26].

We generated independent sources in different ROIs for easy validation purpose,

the number of independent sources varied from 2 to 4 corresponding to different rank

of ground-truth source, and the number of spurious source are generated by randomly

activating the sources on the cortex with a random scalar whose mean value to be 0, and

the variance is 1. Moreover, the noise on sensor level is also added to the EEG data.

Two of the MCE algorithms are selected, which are Homotopy and FISTA [93]. For

MxNE algorithm, we choose `2,1 to enforce `2 norm on the temporal time series of each

voxel and `1 norm to impose spatial sparsity.

To measure the performance, we introduced 5 metrics, including 1) CPU time in sec-

onds, 2) rank of the calculated source, 3) Sparsity, measuring the number of nonzero

elements in the source space at each time point, 5) Reconstruction Error (RE) defined

in Eq.(6.22), 5) Localization Error (LE), which is calculated using the shortest path al-

gorithm over the irregular meshes from the reconstructed source location to the ground

truth location. The LE metric is the most important one, since it measures the discrep-

ancy in location, the other metrics give information of the property of the rendered so-

lution. To calculate LE for each ROI with activated sources, we first locate source with
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the largest activation magnitude in this ROI, and calculate the shortest path distance

from the located source to the ground truth location. We conduct the same procedure

for all the activated ROI, and calculate the average value of all the distances at each

time point. The final LE is the averaged distance value for all the 500 time points for

each experiments.

All the algorithms are implemented in Matlab except MxNE which we call as

a Python script (MultiTaskLasso.py) under the linear model of scikit-learn library [72]

from Matlab. The formulation for MxNE is

||X − LS||2F + γ||S||2,1 (6.23)

We found that parameter tuning process for MxNE algorithm is very time consuming,

even though there is only one parameter for the unweighted version. If the parameter γ

in Eq.(6.23) is tuned for one experiment with good performance, and we use the same

setting of parameter and the same setting to generate random source activation patterns,

the reconstructed source matrix can be a zero matrix. We tuned the parameter γ accord-

ing to the best LE performance when the rank is 2 and the number of spurious activated

source is 2. By conducting experiments for parameter tuning of MxNE, we set γ in

Eq.(6.23). For our proposed algorithm, we set λ = 0.01 and β = 0.01, which were

tested to have good performance for the same case when the rank is 2 and the number

of spurious activated source is 2, and the graph parameter α is also set to be 0.01. 10

experiments were conducted under the same setting and the performance of all the algo-

rithms are summarized in Table 6.1 to Table 6.3. The SNR is calculated after the noise

signal is generated and it was averaged from 10 experiments under the same experiment
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setting. As can be seen from the tables, our algorithm is the most accurate to locate the

task related activated source. The CPU time of our algorithm is between Homotopy and

FISTA algorithm. The running time for Python version of MxNE is much faster than

our proposed algorithm, but there are many cases that MxNE algorithm failed, thus

making the overall accuracy drop significantly. Although our algorithm have more pa-

rameter, it is a more sophisticated model that allows better controllability to customize

the weight of different terms in the goal function. Although MxNE has large RE and

LE, it is still worth noting that the MxNE algorithm we used is a simple version with

`2,1 norm discussed in Ref. [26], and the algorithm to solve the goal function 6.23 is co-

ordinate descent, other algorithms can be tested to solve the same problem. MCE model

solve using `1 algorithms Homotopy and FISTA can render good LE accuracy, and Ho-

motopy outperforms FISTA in all the experiment with better speed, which confirms the

comparison discussed in [50] [94].

Table 6.1: Source Reconstruction Performance Comparison (Rank=2)

Method Rank =2; SNR= −0.356 dB Rank =2; SNR= −1.12 dB Rank =2; SNR= −1.67 dB
Time Rank Sparsity RE LE Time Rank Sparsity RE LE Time Rank Sparsity RE LE

Homotopy 0.41 449 65 0.80 2.02 0.41 449.8 84.4 0.95 3.31 0.50 459.3 91.15 0.97 4.57
FISTA 2.76 500 1812.4 0.62 3.93 2.76 500 1920.4 0.89 9.39 2.73 500 1888.0 0.80 11.25

sLORETA 0.055 500 2004 1.18 33.5 0.05 500 2004 1.26 34.13 0.056 500 2004.0 1.32 38.31
WMN 8.4e-5 107 2004 0.99 22.6 8.4e-5 107 2004 0.99 31.47 8.4e-5 107 2004.0 0.99 28.46
MxNE 0.026 7.9 7.9 0.95 42.1 0.023 10 10 0.97 45.79 0.028 11.8 11.8 1.04 68.80

Proposed 0.75 3.3 3.3 0.24 0.145 0.75 4.8 4.8 0.414 1.94 0.83 6.4 6.5 0.42 2.27

Table 6.2: Source Reconstruction Performance Comparison (Rank=3)

Method Rank =3; SNR= 0.938 dB Rank =3; SNR= −0.174 dB Rank =3; SNR= −0.784 dB
Time Rank Sparsity RE LE Time Rank Sparsity RE LE Time Rank Sparsity RE LE

Homotopy 0.36 445.4 77.6 0.64 5.18 0.48 464 87.2 0.68 6.1 0.46 474.1 92.5 0.84 5.88
FISTA 2.64 500 1812.5 0.69 9.33 2.56 500 1969.0 1.23 21.5 2.67 500 1939.2 0.94 17.44

sLORETA 0.057 500 2004 1.90 41.93 0.06 500 2004 1.81 43.9 0.05 500 2004.0 1.25 46.60
WMN 8.4e-5 107 2004 6.79 29.55 7.6e-5 107 2004 6.82 35.63 7.3e-5 107 2004.0 0.99 34.41
MxNE 0.026 9.2 9.2 0.91 64.95 0.028 10 10 0.98 67.95 0.028 12.2 12.2 0.96 57.49

Proposed 0.72 5.2 5.2 0.43 2.98 0.80 6.1 6.1 0.488 3.82 0.75 7.3 7.3 0.45 2.86
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Table 6.3: Source Reconstruction Performance Comparison (Rank=4)

Method Rank = 4; SNR= 1.04 dB Rank =4; SNR= 0.603 dB Rank =4; SNR= −0.179 dB
Time Rank Sparsity RE LE Time Rank Sparsity RE LE Time Rank Sparsity RE LE

Homotopy 0.45 448 78.7 0.57 3.77 0.41 467.3 87.9 0.62 5.87 0.46 475.1 93.15 0.62 5.35
FISTA 2.97 500 1978.7 1.03 16.54 2.46 500 1964.5 1.01 16.64 2.45 500 1961.9 1.35 19.4

sLORETA 0.058 500 2004 1.99 45.3 0.058 500 2004 1.72 49.26 0.050 500 2004.0 1.71 49.38
WMN 7.8e-5 107 2004 7.43 31.0 7.8e-5 107 2004 6.63 33.49 7.8e-5 107 2004.0 6.66 38.00
MxNE 0.024 11.9 11.9 0.997 68.36 0.023 11.7 11.7 0.947 56.42 0.025 13.9 13.9 0.99 61.46

Proposed 0.79 5.9 6.8 0.38 2.24 6.9 7.8 7.8 0.43 3.90 0.76 10.1 14.3 0.44 4.5

6.6 Conclusion

In this chapter, we propose to consider the noise not only on the sensor level,

but also in the source space. We come up with an EEG source imaging model based on

temporal graph structures and low-rank representation. The model is solved with our

proposed algorithm based on ADMM. Numerical experiments are conducted to verify

the effectiveness of the proposed work on discovering task related low-rank sources. We

delineate the discussion on the properties and impacts for each term in the cost function

to help better understand our proposed graph regularized low rank representation model.

Compared the traditional model, our proposed one can find the intrinsic task related

activation patterns and suppress the spurious source patterns.
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Chapter 7

Conclusion and Future Work

In summary, we proposed the concept of discriminative ESI which aims to find

the task-related sources and reduce the contamination from high background noises or

spurious sources, and reformulated the traditional ESI problem by inclusion of label in-

formation. We use the state-of-art sparse representation algorithms to recover the task

related spatial and temporal smooth regularizations. Discriminative source activation

pattern corresponding to different cognitive tasks provides more insights compared to

the activation pattern reconstructed from traditional methods. To discover discrimina-

tive ESI, label information was integrated to the traditional ESI problem, and several

frameworks have been proposed: (1) A sparse dictionary learning framework was pro-

posed and a revised version of discriminative K-SVD (DK-SVD) algorithm is given to

solve the formulated supervised dictionary learning problem. As the proposed learning

framework incorporated the EEG label information of different brain status, it is capa-

ble of learning a sparse representation that reveal the most discriminative brain activity

sources among different brain states. (2) A graph regularized ESI model, which im-

plicitly use label information in the graph regularization term to promote in-class con-

sistency and out-class discrimination, an efficient algorithm called feature sign search

used used to optimize the proposed model. (3) As ESI always favors spatially smooth

activation pattern instead of isolated discrete activations, we included first-order to-
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tal variation (TV) and spatial graph Fractional Order Total Variation (gFOTV) with

ADMM algorithm and practical technique to find a better spatially smoothing source

activations. (4) Traditional EEG Source Imaging (ESI) methods usually do not distin-

guish the task-related and spurious non-task-related sources that jointly generate EEG

signal, which will inevitable yield misleading reconstructed activation patterns. We

proposed to infer the true task-related EEG sources location by exploiting its low-rank

property. To find a source activation pattern with low rank structure, thus a novel ESI

models based on low-rank representation was developed. Simulation results illustrates

the effectiveness of those several proposed methods under different Signal Noise Ratio

(SNR) and variant of source configuration settings.

The future work can be summarized as below:

• Combine EEG and fMRI data for better source localization. As EEG always con-

tains a lot of noise, the source localization performance can be bad due to those

noise. Better prior can be included. fMRI can provide good prior information

with high spatial resolution. Multi-modality analysis should be very beneficial

for EEG source localization.

• There are many ways to build the head model, and to explore different setup

of head models on the performance of ESI algorithms should be beneficial to

guide the procedue of building better head models. The discussion on the impact

of tissue conductivity value, choice of BEM or FEM algorithms, choice of will

arouse a lot of interests to the ESI community.

• As deep learning exhibits great potential of solving image reconstruction inverse
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problem, an use of deep learning to solve EEG inverse problem should be ex-

plored.

• ESI for Ictal EEG. As Ictal EEG contains less noise, ESI with real data Ictal EEG

can be more accurate than scalp EEG. Future research should combine ESI and

functional connectivity to find the driver of the seizure using Ictal EEG data.
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