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Abstract

Training algorithms for deep learning have recently been proposed with notable success, beating

the start-of-the-art in certain areas like audio, speech and language processing. The key role is

played by learning multiple levels of abstractions in a deep architecture. However, searching the

parameters space in a deep architecture is a difficult task. By exploiting the greedy layer-wise

unsupervised training strategy of deep architecture, the network parameters are initialized near a

good local minima. However, many existing deep learning algorithms require tuning a number of

hyperparameters including learning factors and the number of hidden units in each layer. Apart from

this, a predominant methodology in training deep learning models promotes the use of gradient-based

algorithms which require heavy computational resources. Poor training algorithms and excessive user

chosen parameters in a learning model makes it difficult to train a deep learner. In this dissertation,

we break down the training of deep learning into basic building blocks of unsupervised approximation

training followed by a supervised classification learning block. We propose a multi-step training

method for designing generalized linear classifiers. First, an initial multi-class linear classifier is

found through regression. Then validation error is minimized by pruning of unnecessary inputs.

Simultaneously, desired outputs are improved via a method similar to the Ho-Kashyap rule. Next, the

output discriminants are scaled to be net functions of sigmoidal output units in a generalized linear

classifier. This classifier is trained via Newton’s algorithm. Performance gains are demonstrated at

each step. We then develop a family of batch training algorithm for the multi layer perceptron that

optimizes its hidden layer size and number of training epochs. At the end of each training epoch,

median filtering removes any kind of noise in the validation error vs number of hidden units curve and

the networks get temporarily pruned. Since, pruning is done at each epoch, we save the best network

thereby optimizing the number of hidden units as well as the number of epochs simultaneously. Next,

we combine pruning with a growing approach. Later, the input units are scaled to be the net function

of the sigmoidal output units that are then feed into as input to the MLP. We then propose resulting

improvements in each of the deep learning blocks thereby improving the overall performance of the

deep architecture. We discuss the principles and formulation regarding learning algorithms for deep

autoencoders. We investigate several problems in deep autoencoders networks including training
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issues, the theoretical, mathematical and experimental justification that the networks are linear,

optimizing the number of hidden units in each layer and determining the depth of the deep learning

model. A direct implication of the current work is the ability to construct fast deep learning models

using desktop level computational resources. This, in our opinion, promotes our design philosophy

of building small but powerful algorithms. Performance gains are demonstrated at each step. Using

widely available datasets, the final network’s ten fold testing error is shown to be less than that of

several other linear, generalized linear classifiers, multi layer perceptron and deep learners reported

in the literature.
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Chapter 1

Introduction

1.1 Introduction

Machine learning is a consolidation of artificial intelligence and statistics in which we develop a set of

algorithms that tries to confront the holy grail of building a general purpose learning system. From an

artificial intelligence point of view, one focuses on building a computer to learn and automatically

identifying patterns in data and then uncover patterns to either predict (regression) or to make

certain kind of decisions (classification). From a statistics standpoint, the question one addresses is

to find the computational parametric models that are required, in order to infer from the data. 200

years ago, David Hume made an observation that every learner constitutes some knowledge beyond

the data it’s given in order to generalize beyond it. The no free lunch theorem [179] formalizes it

by stating that no machine learning algorithm can beat random guessing over all possible functions

that need to be learned.

In recent past, machine learning applications have advanced dramatically from the research lab to

actual commercial products. As in [123], till 1985 there was no commercial application of machine

learning. A growing number of linear and non linear algorithms are used to solve classification

problem in fields such as face recognition [11], [96], automatic tagging [169], speech recognition [41],

natural language processing [134], computer vision [142] [12] [182], bio surveillance [85], recommen-

dation engines [166], robotic control [132] and bio-engineering [89]. Classification algorithms are

also used in many data intensive areas such as consumer services [5] [32], flight engine fault diagno-

sis [159], astronomy [10] and many varying fields from social science [58] to computational biology

[170], [158] and criminology [28] to wildlife protection [165]. Many unconventional application such

as [55] discuss a robot waiter that recognize different drinks. Machine learning applications also

1
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includes many regression tasks such as claiming amount for insurance premiums [20] and [48], share

trading [35], [76]. Modern machine learning systems are also used in transcription for advanced

speech recognition [68], [57], [40] and machine translation [7], [167]. It has also found success in

many structured output tasks where the expected output are all tightly interrelated such as road

location from aerial photographs [124] and image captioning [84], [175] where the words produced

by the image captioning program must form a valid sentence. Anomaly detection methods [24] as

well as synthesis and sampling for video game applications and image style transfer [81] have all

benefited from the advancements in machine learning algorithms. Following a basic structure of

pattern recognition systems, a machine learning algorithm includes three components namely: 1)

feature extraction, 2) feature selection, and 3) feature classification. However, the no free lunch

(NFL) theorem [179] implied that no machine learning algorithm can beat random guessing over all

possible functions that need to be learned.

Deep learning is a rapidly growing area within the machine learning domain that makes use of

multiple levels of representations. Deep networks have been applied with success not only in clas-

sification tasks [16], [120] [95] [21] but also in regression [70], dimensionality reduction [69] [120]

textures modeling [137], information retrieval [70] and robotics [59]. Deep learning has performed

remarkably well in difficult non-linear pattern recognition task such as speech recognition [161] at

Microsoft, object recognition on the ImageNet dataset [91], machine translation [160]and language

processing at Google Image search [176]. The word Deep refers to the fact that the network has

more than one hidden layer. Each successive layer’s output represent higher level features than in

the previous layer. The idea of using unsupervised learning at each stage of a deep network was put

forward in [69], as part of a training procedure for the deep belief network (DBN), a generative model

with many layers of hidden stochastic variables. This training strategy has inspired a more general

approach to help address the problem of training deep networks. This approach can be extended

to non linear autoencoders [156], as shown by [13] and is found in stacked autoencdoer networks,

and in the deep convolutional neural networks [120] derived from convolutional neural networks [98].

Deep learning is known to be much more computationally efficient than multi layer perceptrons with

multiple hidden units[16], [13] as well as better when the task is complex enough along with lots

of data to capture that complexity [95]. In the current work, we use deep-autoencoder, which is a

discriminative deep neural network whose output targets are the data input itself rather than the

class labels; hence, an unsupervised learning model.
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Figure 1.1: Composition of a Deep Learning algorithm

1.1.1 Overview of problem in current methods

Neural networks have seen a re-birth after their increased success in the recent past. Neural networks

are particularly interesting due because of the following three reasons. Firstly, universal approxi-

mation [74], that implies that neural networks can approximate continuous discriminants arbitrarily

well. Secondly, the output of the neural network classifier approximates Bayes discriminants [145].

Lastly, the training algorithms for neural networks make it an effective learning model in a machine

learning framework. However, the universal approximation which throws some doubt upon the NFL

theorem because the multi layer peceptrons (MLP) can approximate other discriminants. Further

doubt about the NFL theorem is provided by the success of deep learners (DL) [97], [54], [157]. In

addition, there is little attempts to replace DL classifier layer by any classifier other than softmax

classifier. The objective in any classification problem is assign a correct class label to a given input

vector. In most cases, each input pattern is assigned to only one class thereby dividing the input

space into disjoint decision regions. In functional link neural networks (FLNN) and multilayer per-

ceptrons (MLP), designed through iterative regression [42], [154], it has been shown that the outputs

approximate posterior class probabilities P(i|x), where x is an input vector [56], [152]. However, the

approximations are frequently inaccurate because (1) regression algorithm are sensitive to outliers

[150] and (2) real word data is often non Gaussian [17]. Also, in many fields, the classification

problems are linear as in credit card fraud detection [46], [126], lung cancer classification [93] [164],

and in other bioengineering [87], [1] applications.

In order to solve the problems in regression based linear classifier design, investigators have used L1

methods and SVM related methods. LIBLINEAR [44] is a multi-class logistic regression and linear-

SVM classifier package. It supports both L1 and L2 type linear SVMs. It solves an unconstrained
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optimization problem using coordinate descent [75]. For multi-class problems, the one-against the

rest strategy is implemented. However LIBLINEAR is difficult to modify beyond tuning the free

parameters. The sequential dual method (SDM) [86], results in a multi-class classifier that combines

all binary models of the one-vs the rest method. Iteratively re-weighted least squares (IRLS) [151]

is an iterative method for finding the maximum likelihood estimate of a generalized linear model.

Unfortunately, these methods are overly complex and usually work best for small datasets. In

addition, these methods do not make use of embedded feature selection.

A serious problem in MLP training is the use of many user-chosen parameters such as initial network

weight values and hyperparameters such as the number of training iterations, hidden layers and

hidden units. It is a widely known fact that the initial weights have a large effect on network

performance [101], [136]. Similarly, tuning the hyperparameters directly effects the model capacity

which directly governs the generalization error. Methods such as early stopping [66] and pruning

[144] have been used to partially solve this problem. MLP training is hindered by the large number

of hidden units and large amount of heuristics that it becomes more of an art than science. MOLF

based MLP [113],[112], [143] provides an intermittent solution. Unfortunately, short-term variations

in the validation and testing errors are uncorrelated, leading to networks with too many hidden

units.

Similarly for a DL training, various techniques exist to prevent AE from learning the identity function

and to improve there ability to capture a ”good” representation of the input data. [174] introduces

denoising autoencoders which takes a partially corrupted input while training to recover the original

undistorted input. However, tuning the noise level is cumbersome and their performance is reported

on single layer autoencoders. In [21], introduces a form of sparsity regularization on autoencoders

that allow sparse representations of inputs. These are useful in pre-training for classification tasks

and implemented by adding additional terms in the error criterion during training. However, this

increases the number of hyper-parameters to be tuned thereby increasing the user chosen parameters

that need to be decided before the model can be put into use.

The goal of the present work is to simultaneously address two distinct questions. Firstly, in a

learning model how much sample complexity is required, which means how much data is necessary

to learn in order to avoid over-fitting and under-fitting ? Secondly, in a learning algorithm, how

much computation is required for analyzing the data i.e computational complexity ? Representation

(or Hypothesis) of the data plays a decisive role in answering above questions and by picking a

particular error measure, we pick a final hypothesis that gives us our final learning model [2]. This

has been summarized in the learning diagram as shown in Figure 1. Given a set of training examples,

our aim is to find a representation g (or hypothesis) from a set of representations H that the learning

algorithm can lead to minimization of an error function. Together, the representation set and the

learning algorithms are called the learning model. Primarily deep learning has been seen as with
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Figure 1.2: A generalized learning paradigm

both software and hardware viewpoint. From software side, mainly L-BFGS [19] or SGD [54] has

been used. From the hardware side, GPU processing has been used to tackle the speed problem [23],

[4]. We view the training of deep architecture purely from a software view point with a view that

desktop level computers can be used to tackle problems with efficient software. Another problem from

a software point of view is horizontal and vertical optimization needed in a deep neural networks. In

horizontal optimization, the depth of the network is picked up heuristically thereby leaving a scope

for automation. Similarly, in a vertical optimization, the number of hidden units needed in each

layer is still an open research problem. Contrary to popular choice, we use sigmoidal and means

square error as our activation and loss function in the classifiers. A quadratic error measure gives us

the freedom to use non-gradient optimization schemes and we use orthogonal least squares at every

design stage. Rather than heuristically chosen learning factors for weight updation, we use multiple

learning factors that are optimal in least square sense. Optimal selection of the depth of the deep
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neural network as well as developing an efficient method to determine the number of hidden units

in each layer is also studied in the present proposal.

1.1.2 Proposed work

In this dissertation, firstly we develop an efficient multi-step method for designing generalized linear

classifiers in applications that involve medium and high dimensional input data. The simple structure

of a linear classifier is augmented by the inclusion of feature selection and methods which limit

the effects of outliers. Next we develop an efficient second order multi-step method for designing

adaptive MLP classifiers. The resulting classifiers have increased accuracy and are successful in

replacing existing classifiers in deep learning models. We also design an efficient deep autoencoders

that is computationally fast and lightweight. Chapter II reviews several types of linear classifiers.

Chapter III review several types of nonlinear classifiers and problems with current training methods.

A second order training algorithm utilizing pruning of hidden units is discussed in chapter III. Deep

neural networks along with existing deep models are discussed in chapter IV. The problems with

linear, non linear and deep learning models along with goals and proposed task is presented in

chapter V. Chapter VI discuss the proposed improvements for linear classifiers. These improvements

include a method for removing inconsistent errors that cause the training mean square error and

misclassification probability to move in opposite directions. The proposed improvements is similar

to Ho-Kashyap [72], [73]. Using a second order algorithm, the linear classifier is converted to a

generalized linear classifier (GLC). To further improve performance, Newton’s method is used to

update the GLC weights. Chapter VII presents the proposed improvements in MLP classifiers. It

includes growing and pruning algorithms and second order based input sigmoidal algorithm. A

detailed investigation and improvements in deep autoencoders along with a proposed linear probe

to determine the depth of deep learner is presented in chapter VIII. Chapter IX mathematically

illustrates the linearity in deep learning models. Using several widely available mid-size and large

datasets, we compare our proposed algorithms to various other classifiers in chapter X. Chapter XI

presents our conclusions and possible enhancements to this work.



Chapter 2

Linear Networks Review

2.1 Review: Linear Networks

2.1.1 Structure and notation

In this chapter, we discuss the structure and notation of linear classifiers. As shown in Fig. 2.1, a

linear classifier is a weight matrix W that transforms an input vector x into a discriminant vector

y [2]. The weight w(m,n) connects the nth input to the mth output. The training dataset (xp, tp)

consists of N dimensional input vectors xp and M dimensional desired output vectors tp. The

pattern number p varies from 1 to Nv, where Nv denotes the number of training patterns. The

threshold is handled by augmenting x with an extra element which is equal to one as xa = [1 : xT ]T .

So xa contains Nu basis functions, where Nu = N + 1. For the pth training pattern, the network

output vector, yp can be written as

yp = W · xap (2.1)

where xap denotes xa for the pth pattern.

2.1.2 Regression based classifier

To train the linear classifier, we minimize the error function E that is a surrogate for a non smooth

classification error. As in [17], from a Bayesian point of view, we consider maximizing likelihood

function or minimizing mean square error (MSE) in a least square sense where the MSE between

7
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Figure 2.1: Linear classifier

the inputs and the outputs is

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (2.2)

Here the target output for the correct class ic and the output for every incorrect class id satisfy

tp(ic) = 1 and tp(id) = 0. M denotes the number of classes, so our output coding is one-versus-all.

We minimize the error function from equation (2.2) with respect to W by solving the M sets of

N + 1 linear equations given by,

C = R ·WT (2.3)

where the cross-correlation matrix C and the auto-correlation matrix R are respectively

C =
1

Nv

Nv∑
p=1

xap · tTp (2.4)
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R =
1

Nv

Nv∑
p=1

xap · xTap (2.5)

Since R in equation (3.5) is often ill-conditioned, it is unsafe to use Gauss-Jordan elimination.

Equation (3.5) is solved using orthogonal least squares (OLS) [115]. In [31], OLS is used to solve for

radial basis function network parameters. OLS is useful for practical applications for two primary

reasons. First, the training is fast, since solving linear equations is straightforward. Second, it helps

us to avoid some local minima [118]. In terms of optimization theory, solving equation(3.5) for W

is merely Newton’s algorithm for the output weights [148]. Since the linear output activation is

considered as a class discriminant, the classifier is said to have correctly classified the pth pattern

when yp(ic) has the largest output where the integer ic denotes the correct class. Let i
′

c denote the

estimated class for a particular pattern where

i
′

c = argmax︸ ︷︷ ︸
i

yp(i) (2.6)

If i
′

c = ic, we say that the network classified the current pattern correctly. Otherwise, the pattern

is misclassified. Note that the errors in regression-based classifiers satisfy −∞ < yp(i) - tp(i) < ∞,

so we can say that these errors are unbounded.

2.1.3 LIBLINEAR

LIBLINEAR [44] is a well known binary and multi-class logistic regression and linear-SVM classifier

package. The linear SVM is further split into L1 and L2 error functions. In this dissertation, we use

the L2 linear SVM. Given a set of training patterns, for a two class case, LIBLINEAR solves the

following unconstrained optimization problem with a loss function as:

min
w

1

2
wTw + c

Nv∑
p=1

Elin(p) (2.7)

where c ≥ 0 is a penalty parameter, w is an N by 1 column vector and Elin(p) = (max(1 -

tp(w
′
)Txap, 0))2 where w

′
= [wT : b]T and b is a bias term. The coordinate descent algorithm [60]

is used for training. For multi-class problems, one-vs the rest strategy is implemented.
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2.1.4 Sequential dual method

SDM-CS is a multi-class classifier designed using Crammer and Singer’s approach [86]. There are M

weight vectors w1, · · · ,wM for M classes. We consider the minimization of the following objective

function

min
w1,···wM

1

2

M∑
i=1

‖wi‖22 + c

Nv∑
p=1

Esdm(p) (2.8)

where c is the regularization parameter. The loss function for the pth pattern is [86]

Esdm(p) = max
i 6=t

[max(0, 1− (wt −wM )Txap)] (2.9)

and wt and wM are the weight vectors for the tth and M th classes respectively that correspond

to the tth and M th rows of W.The basic premise of this is to combine all binary models of the

one-against the rest method. The estimated class for the pth pattern is

i
′

c(p) = argmax
i

(wT
i xap) (2.10)

2.1.5 Iteratively reweighted least squares

As a generalized linear model, iteratively reweighted least squares (IRLS) [17] is an iterative method

which solves the following optimization problem

EIRLS = min
W

1

Nv

Nv∑
p=1

||tp − yp||2 (2.11)

where EIRLS is the error function that is minimized. IRLS is used to find the maximum likelihood

estimate W of a generalized linear model. Two advantages of IRLS over the convex programming

used in SDM-CS and LIBLINEAR are that it can be used with Levenber Marquardt (LM) [105],

[121] or Newton numerical algorithms [177] which exhibit quadratic convergence [111], [3] and that

it’s relatively easy to write the software.

2.1.6 Sigmoidal SVM

SVM’s as discussed in subsection 2.1.3, are not calibrated for posterior probabilities. For Nv training

examples xp, p = 1 · · · Nv, labeled by tp ∈ {+1, -1}, the binary SVM computes a decision function

f(x) such that sign(f(x)) is used to predict the label of any test example x. In order to derive

the posterior probabilities Pr(y = 1|x) from the SVM output, sigmoidal functions are added to the
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output layer of the SVM [138]

Pr(y = 1|x) ≈ sp ≡
1

1 + exp(A · fp +B)
(2.12)

for fp = f(xp). Here A and B are the scaling and shifting parameters respectively. If fp denotes

f(xp) then the best parameter setting z∗ = (A∗, B∗) is determined by solving the following cross

entropy error equation.

min
z=(A,B)

Esig−svm(z) = −
Nv∑
p=1

yplog(sp) + (1− yp)log(1− sp) (2.13)

where

yp =


N+

v +1

N+
v +2

, tp = +1

1
N−v +2

, tp = −1
(2.14)

Since equation (2.13) is a two parameter minimization, [138] uses the model-trust minimization

algorithm [49].



Chapter 3

Review: MLP with single hidden

layer

3.1 Review: MLP with single hidden layer

In the present chapter, we start by describing the multi layer perceptron (MLP), which is a non

linear signal processor that has good approximation and classification properties. The MLP has

basis functions that can adapt during the training process by utilizing example input and desired

outputs. An MLP will minimize an error criterion and closely mimic an optimal processor in which

the computational burden in processing an input vector is controlled by slowly varying the number

of coefficients [117] [66]. We review the first and second order training algorithms for MLP followed

by a classifier design of MLP through regression.

3.1.1 Structure and Notation

Figure 3.1 illustrates a single layer fully connected MLP. The input weights w(k, n) connect the

nth input to the kth hidden unit. Output weights woh(m, k) connect the kth hidden unit’s non-

linear activation Op(k) to the mth output yp(m), which has a linear activation. The bypass weights

woi(m,n) connects the nth input to the mth output. The training data, described by the set of

independent, identically distributed input-output pair {xp, tp} consists of N dimensional input

vectors xp and M dimensional desired output vectors, tp. The pattern number p varies from 1 to

Nv, where Nv denotes the number of training vectors present in the datasets. Let Nh denote the

number of hidden units. In order to handle the thresholds in the input layer, the input unit is

12
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augmented by an extra element xp(N + 1), where xp(N + 1) = 1. For each training pattern p, the

hidden layer net function vector np can be written as

np = W · xp (3.1)

The kth element of the hidden unit activation vector Op is calculated as Op(k) = f(np(k)) where

f(·) denotes the sigmoid activation function. The network output vector, yp can be written as

yp = Woi · xp + Woh ·Op (3.2)

The expression for the actual outputs given in equation (3.2) can be re-written as

yp = Wo ·Xa (3.3)

where Xa = [xp
T : Op

T ]T is the augmented input column vector with Nu basis functions, where

Nu = 1 + N + Nh . The total number of weights Nw = Nh · (1 + N) + M ·Nh. Similarly, Wo is

the M by Nu dimensional augmented weight matrix defined as Wo = [Woh, : Woi].

To train an MLP, we re-cast the MLP learning problem as an optimization problem and use an

structural risk minimization framework to design the learning algorithm [17] [95]. Essentially, this

framework is used to minimize the error function E as in equation 2.2 that is a surrogate for a

non smooth classification error. As in [17], from a Bayesian point of view, we consider maximizing

liklihood function or minimizing mean square error (MSE) in a least square sense. Therefore, the

MSE between the inputs and the outputs is defined as:

E
′

=
1

Nv

Nv∑
p=1

M∑
m=1

[tp(m)− yp(m)]2 + λ · ‖Wo‖2 (3.4)

Here, λ is an L2 regularization parameter that is used to avoid memorization and over-fitting.

The nonlinearity in yp causes the error E to be non-convex, and so in practice, local minima of

the error function may be found. In the above discussion, we have assumed that tp has a Gaussian

distribution with input xp. In case the conditional distribution of targets, given input has a Bernoulli

distribution, the error function, which is given by the negative log liklihood, is then a cross entropy

error function [17].

In [17] it is concluded that using a cross-entropy error function instead of the mean square error for

a classification problem leads to a faster training as well as improved generalization. Apart from

cross entropy and L2 error form we also have a L1 error measure. [52] and [163] discuss a good

comparison between the L2 and cross entropy and suggests using cross entropy error function for

classification in order to have faster training and improved generalization. Our goal is to obtain an
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optimal value of the weights connected in an MLP. In order to achieve this, we use empirical risk

minimization [66] framework to design the learning algorithms. An important benefit of converting

the training of an MLP into an optimization problem is that we can now use a variety of optimizing

algorithms to optimize the learning of an MLP.

Figure 3.1: Fully connected MLP

3.1.2 Initialization

As from [117], the input weights matrix W is initialized randomly from a zero mean Gaussian

random number generator. The training of the input weights, strongly depends on the gradient of

the hidden units activation functions with respect to the inputs. Training of input weights will cease

if the hidden units it feeds into has an activation function derivative of zero for all patterns. In

order to remove the dominance of a large variance inputs, we divide the input weights by the input’s

standard deviation. Therefore we adjust the mean and standard deviation of all the hidden units net

functions. This is called net control as in [135]. At this point, we have determined the initial input
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weights and we are now ready to initialize the output weights. To solve for the weights connected

to the output of the network, we use a technique called output weight optimization (OWO) [119],

[155]. OWO minimizes the error function from equation (2.2) with respect to Wo by solving the M

sets of Nu equations given by,

C = R ·WT
o (3.5)

Here the cross-correlation matrix C, auto-correlation matrix R

C =
1

Nv

Nv∑
p=1

tp ·XT
a and R =

1

Nv

Nv∑
p=1

Xa ·XT
a (3.6)

In order to incorporate the regularization, we modify the R matrix elements except the threshold as

R← R + λ · diag(r) (3.7)

where r is a vector containing the diagonal elements of R and diag() is an operator that creates a

diagonal matrix from the vector.

The MLP network is now initialized and ready to be trained with first or second order algorithms.

Training an MLP can be seen as an unconstrained optimization problem that usually involves first

order gradient methods such as backpropagation (BP), conjugate gradient (CG) and second order

Levenberg-Marquardt (LM), Newton’s method as the most popular learning algorithm. Training

algorithms can be classified as

1. One Stage, in which all the weights of the network are updated simultaneously and

2. Two Stage, in which input and output weights are trained alternately.

Figure 3.2 shows a flowchart that summarizes all the training algorithms that will be described in sub-

sequent sections. The two-stage algorithms namely output weight optimization- hidden weight optimization

(OWO-HWO) and output weight optimization- multiple optimal learning factors (OWO-MOLF) will

serve as basic building algorithms that will be further refined in this dissertation.
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Figure 3.2: Typical training algorithms for training an MLP

3.1.3 First order learning algorithms

The first order learning algorithms update the weights of the MLP based on gradient matrices i.e.

the first order information, hence the name. We start by discussing the training of an MLP with

a one stage algorithm. In this, we train both the output and input weights simultaneously using

either backpropagation or conjugate gradient algorithm. We then describe a two stage algorithm

called output weight optimization-hidden weight optimization.

Backpropagation algorithm

The backpropagation (BP) algorithm is a greedy line search algorithms that has a step size to

achieve the maximum amount of decrease of the objective function at each individual step [17].

Backpropagation is a computationally efficient method in conjunction with gradient based algorithms

that is used widely to train an MLP [153]. However due to non-convexity of error function equation

2.2 in neural networks, backpropagation is not guaranteed to find global minima but rather only

local minima. Although this is considered as a major drawback, recently in [34] it is discussed as to

why local minima is still useful in many practical problems. In each training epoch, we update all

the weights of the network in a backpropagtion algorithm as follows:

w← w + z · g (3.8)
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Here w is a vector of network weights as w = vec(W,Woh,Woi) and g is a vector of network

gradients g = vec(G,Goh,Goi). The gradient matrices are negative partial of E wrt the weights,

G = − ∂E
∂W , Goh = − ∂E

∂Woh
and Goi = − ∂E

∂Woi
. vec() operator performs a lexicographic ordering of a

matrix into a vector. z is the optimal learning factor that is derived using a Taylor series expansion

of the mean square error E, expressed in terms of z, as [101]

z = −
∂E
∂z
∂2E
∂z2

(3.9)

The backpropagation algorithm can be summarized as follows:

Algorithm 1 Backpropagation algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Calculate g
4: Compute z from equation (3.9)
5: Update w as w ← w + z · g
6: it ← it + 1
7: end while

As in [17], backpropagation algorithm has two major criticism. First, it does not scale well, i.e.

it takes O(N2
w) operations for sufficiently large Nw and second, being a simple gradient descent

procedure, it’s unduly slow in the presence of flat error surfaces and is not a very reliable learning

paradigm.

Conjugate Gradient algorithms

As we see from the previous section, in a basic gradient algorithm, the weights are updated in the

negative gradient direction. Although the error function reduces most rapidly along the negative di-

rection of the gradient, it does not necessarily create fast convergence. Conjugate gradient algorithm

[67] performs a line-search in the conjugate direction and has faster convergence than backpropaga-

tion algorithm. Although conjugate gradient is a general unconstrained optimization technique, its

use in efficiently training an MLP is well documented in [26].

To train an MLP using conjugate gradient algorithm, we use a direction vector that is obtained from

the gradient g as

p← −g +B1 · p (3.10)

Here p = vec(P,Poh,Poi) and P, Poi and Poh are the direction vectors. B1 is the ratio of the
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gradient energy from two consecutive iterations. This direction vector, in turn, update all the weights

simultaneously as follows:

w← w + z · p (3.11)

Conjugate gradient algorithm has many attractive qualities such as the following:

1. The number of iterations it takes to converge is equal to the number of unknowns.

2. It performs better than steepest descent and it can be applied to nonquadratic error functions.

3. Since there is no Hessian involved, we don’t invert any matrix and the computational cost is

O(w), where w is the size of the weight vector.

The conjugate gradient algorithm can be summarized as follows:

Algorithm 2 Conjugate gradient algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Calculate p from g
4: Compute z from equation (3.9)
5: Update w as w ← w + z · p
6: it ← it + 1
7: end while

Output weight optimization-hidden weight optimization algorithm

OWO-HWO algorithm is a two-step algorithm which alternately train the output and input weights.

During the first half of the training epoch, we update the input weights W using hidden weight op-

timization (HWO) [181]. HWO finds an improved gradient matrix as Ghwo by solving the following

linear equation.

Ghwo ·Ri = G (3.12)

where Ri is the input autocorrelation matrix defined as

Ri =
1

Nv

Nv∑
p=1

xp · xT
p (3.13)

In a separate result in [149], it is shown that applying OWO-HWO algorithm, is equivalent to

applying OWO-BP to whitening transformed input data. Re-writing equation (3.12) as

Ghwo = G ·R−1i (3.14)
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It can be shown that

Ghwo = G ·AT ·A (3.15)

where A is a whitening transform matrix [149]. Therefore by using OWO-HWO, we inherently

transform our data to be de-correlated.

In order to update the input weight matrix, we then use Ghwo instead of G as

W←W + z ·Ghwo (3.16)

In the second half of a training epoch, we use OWO to update the output weights by solving equation

()3.5 through OLS. The OWO-HWO algorithm is faster than one stage BP or CG algorithms because

training the output weights is equivalent to solving the linear equations. The OWO-HWO algorithm

can be summarized as follows:

Algorithm 3 OWO-HWO algorithm

1: Initialize W,Woi,Woh, Nit , it← 0

2: while it < Nit do

3: HWO step : Calculate Ghwo using equation (3.12).

4: Compute z from equation (3.9)

5: Update W as ← W + z · Ghwo

6: OWO step : Solve equation (3.5) to obtain Wo

7: it ← it + 1

8: end while

3.1.4 Softmax classifier

The softmax classifier [17] is a generalized logistic regression classifier that outputs approximate

class probabilities. Structurally, it’s a linear model with softmax function [42] at the output units.

For the pth pattern, it maps the input vector xp to the output class labels as

yp = W · xp (3.17)

where W is a weight matrix. The performance measure is a cross-entropy loss function [17] as

Esoftmax = − 1

Nv

Nv∑
p=1

M∑
i=1

log(
eyp(i)∑M
j=1 e

yp(j)
) (3.18)

The softmax classifier is often trained using L-BFGS training algorithm[183].
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3.1.5 Radial basis function classifier

A second order feed forward training algorithm for a radial basis function (RBF) classifier is described

in [171]. Using a weighted measure d(xp,mk) =
∑N+1
n=1 c(n) (xp(n) −mk(n))2 between K cluster

centers and input patterns, the RBF basis functions are given as

Xp(k) = e−βk·d(xp,mk) ; k = [1, · · ·K]. (3.19)

Modifying equation (2.2), the RBF objective function is

Erbf (Wo) =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (3.20)

where yp(i) is the ith element of the output discriminant vector

yp = Wo ·Xp (3.21)

Equating the gradient of Erbf (Wo) to zero, we solve for the output weight matrix Wo using OWO

[171]. Let mk, βk and c(n) denote the kth center vector, the kth spread parameter and the weighted

euclidean distance measure weight for the nth input. These parameters are optimized using an

efficient Newton’s algorithm [171].

3.1.6 Nonlinear SVM classifier

A nonlinear support vector machine (SVM) follows the structure similar to the RBF classifier. In

a nonlinear SVM, K(Xp, Xq) ≡ φ(Xp)
T φ(Xq) is called the kernel function and φ(Xq) is a feature

function. For our comparisons K(Xp, Xq) = exp(−γ||xp − xq||2), γ > 0. For a given two class

classification problem, a nonlinear SVM solves the following convex optimization problem

Esvm = min
Wo,b,ξ

1

2
WT

o Wo + C

Nsv∑
p=1

ξp (3.22)

subject to yp(W
T
o φ(Xp) + b) ≥ 1 - ξi, ξi ≥ 0. Here the weight vector Wo is Nsv by 1 and b is a

bias. The basis vector Xp is Nsv by 1, and 1 ≤ p ≤ Nsv. C is a user-specified positive parameter,

and the ξp are called the slack variables. We need to find the optimum values of the weight vector

Wo, bias b and the slack variables ξp to minimize Esvm. The coordinated descent algorithm [61] is

used for training. For multi-class problems, one-vs the rest strategy is implemented.
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3.1.7 Second order learning algorithms

The basic idea behind using a second order method is to improve the first order algorithms by using

the second derivative along with the first derivative [17]. We present two, one stage, algorithm,

namely Newton’s method and Levenberg-Marquardt (LM) and then a two stage algorithm called

Output weight optimization-multiple optimal learning factor (OWO-MOLF).

Newton’s method

For Newton’s method, given a starting point, we construct a quadratic approximation to a double

differentiable error function that matches the first and second order derivative value at that point.

We then minimize this quadratic function instead of the original error function by expanding the

Taylor series of E
′

about the point wk as is clear from the equation below :

E
′
≈ E + (w − ŵ))Tg +

1

2
(w − ŵ)TH(w − ŵ) (3.23)

Here ŵ is the new version of w that we’re trying to find. We calculate the Hessian and gradient, H

and g of the MSE error function where the elements of H are given by

h(m,n) =
∂2E

∂w(m)∂w(n)
(3.24)

and the elements of g are given by

g(n) =
∂E

∂w(n)
(3.25)

We calculate the second order direction, d, by solving the set of linear equations with OLS

H · d = g (3.26)

Assuming quadratic error function in equation (2.2) and H to be positive definite, applying first

order necessary condition (FONC) [45], on all the weights in an MLP, we update the weights as,

ŵ = w + d (3.27)

The Newton’s algorithm can be summarized as follows:

Newton’s method is quadratic convergent and affine invariant [117]. Since it converges fast, we would

like to use it to train an MLP, but generally the Hessian H is singular [177].
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Algorithm 4 Newton’s algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Calculate g and H from equation (3.25) and equation (3.24).
4: Compute d from equation (3.26).
5: Update w as w ← w + d
6: it ← it + 1
7: end while

If the error function is quadratic, then the approximation is exactly a one step solution; otherwise

the approximation will provide only an estimate to the exact solution. In case of a non-quadratic

error measure, we will require a line search and w is updated as

ŵ = w + z · d (3.28)

Levenberg-Marquardt algorithm

The LM algorithm is a compromise between Newton’s method, which converges rapidly near local

or global minima but may diverge, and gradient descent, which has assured convergence through

a proper selection of step size parameter but converge slowly. Following equation (3.23), the LM

algorithm is a sub-optimal method. Since usually H is singular in Newton’s method, an alternate is

to modify the Hessian matrix as in LM [105] algorithm or use a two step method such as layer by

layer training [104]. In LM, we modify the Hessian as

HLM = H + λ · I (3.29)

Here I is the identity matrix of the same dimensions as H and λ is a regularizing parameter that

forces the sum matrix (H + λ · I) to be positive definite and safely well conditioned throughout the

computation. We calculate the second order direction, d, similar to Newton’s method as

HLM · d = g (3.30)

After obtaining HLM, weights of the model are updated using equation (3.27).

The regularizing parameter λ plays a crucial role in the way the LM algorithm functions. If we set

λ equal to zero, then the equation (3.30) reduces to Newton’s method equation (3.27). On the other

hand, if we assign a large value to λ such that λ · I overpowers the Hessian H, the LM algorithms is

effective as a gradient descent algorithm. [140] recommends an excellent Marquardt recipie for the

selection of λ.
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From a practical perspective, the computational complexity of obtaining HLM can be demanding,

particularly when the dimensionality of the weight vector w is high. Therefore, due to scalability

constraints, LM is particularly suitable for a small network.

The LM algorithm can be summarized as follows:

Algorithm 5 LM algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Present all patterns to the network to computer error Eold from equation (2.2)
4: Calculate g and H from equation (3.25) and equation (3.24)
5: Obtain HLM from equation (3.29)
6: Compute d from equation (3.30)
7: Update w as w ← w + d
8: Re-compute the error Enew by using the updated weights.
9: if Enew < Eold then

10: Reduce the value of λ
11: goto step 3
12: else
13: Increase the value of λ
14: end if
15: it ← it + 1
16: end while

Output weight optimization-multiple optimal learning factor algorithm

As mentioned in subsection 3.1.7, an alternate approach apart from LM and Newton’s method is

to try a ”layer by layer” or two stage approach . We describe one such algorithm called OWO-

MOLF algorithm. It’s a two-stage algorithm that uses OWO to solve the output weights and uses a

multiple optimal learning factors (MOLF) for every hidden unit [143] in order to increase the speed

of learning and overall convergence. In the past, researchers have used multiple learning rates or

momentum terms in order to speed up the learning process [66]. Unfortunately, these methods are

mostly heuristics [78], and their performance relies on the settings of some user chosen parameters.

In OWO-MOLF algorithm the key idea is that while updating the input weight matrices for each

epoch, instead of using a single optimal learning factor z, we use Newton’s method to estimate a

vector z of length Nh. It is obtained by solving the following equation through OLS.

Hmolf · z = gmolf (3.31)

Hmolf and gmolf are the Hessian and negative gradient, respectively, of the error with respect to z.

During the first half of the training, we obtain the gradient matrix G and MOLF z to update the
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input weight matrix W as

W←W + diag(z) ·G (3.32)

In the second half of the training, OWO updates the output weights Wo by solving the linear equa-

tion ()3.5. Note here that G can be replaced with Ghwo in equation ()3.32 in order to incorporate

the hidden weight optimization obtained from equation ()3.12

The OWO-MOLF algorithm can be summarized as follows:

Algorithm 6 OWO-MOLF algorithm

1: Initialize W,Woi,Woh, Nit , it← 0
2: while it < Nit do
3: Compute G
4: MOLF step : Solve equation (7.8) for z using OLS
5: Update W as W ← W + diag(z) · G
6: OWO step : Solve equation (3.5) to obtain Wo

7: it ← it + 1
8: end while



Chapter 4

Review: Deep neural networks

4.1 Review: Deep neural networks

In chapter 3.1, we discussed the single hidden layer MLP along with first and second order training

algorithms. In this chapter, we introduce autoencoders, which are essentially single hidden layer

MLP’s, often used to learn effective encoding of the original data. The autoencoders are then used

to train deep neural networks by stack several layers of it. Therefore, training a deep neural network

is essentially training a multi hidden layer MLP. A typical deep neural network has two major parts,

an unsupervised learning based feature extraction and a supervised classification of the generated

features. We examine both the parts here and end the chapter by covering two variants of deep

autoencoders that will be later used for comparisons with our proposed algorithm.

4.1.1 Auto-Encoders: Structure, Notations, and Training

We first describe an auto encoder (AE) [22], [71] as shown in figure 4.1 that has the same structure

as that of an fully connected regression type MLP as shown in figure 3.1 except that the bypass

weights Woi are removed. In an autoencoder framework, an input layer represents the original data,

the hidden layer represents the transformed features and the output layer matches the input layer

for reconstruction. The dimension of the hidden layer can be either

1. smaller than the input layer, i.e under-complete. It’s used when the goal is feature compression.

2. larger than the input layer i.e over-complete. It’s used when the goal is mapping the input to

a higher-dimensional space.

25
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Figure 4.1: Cascade connected autoencoder

Given the input vector xp, the feature-extracting function called encoder allow a straightforward

and efficient computation of a feature vector Op. Here Op is the output of the hidden units as in

subsection 3.1.1. The hidden to output layer is called decoder that maps from feature space back

into the input space, producing a reconstruction vector x̂p. Training an AE involves minimizing the

mean squared reconstruction error between the inputs xp and the reconstructed inputs x̂p. From

equation ()2.2, replacing tp with x̂p, we get

E =
1

Nv

Nv∑
p=1

M∑
i=1

[xp(i)− x̂p(i)]2 + λ · ‖Woh‖2 (4.1)

The criterion that representation Op should retain information about xp is not self-sufficient to

yield a useful representation. Indeed mutual information can be trivially maximized by setting

Op = xp as in [13]. Similarly, an autoencoder where Op is of the same dimensionality as xp

(or larger) can achieve perfect reconstruction simply by learning an identity mapping. Without

any other constraints, this criterion alone is unlikely to lead to the discovery of a more useful

representation than the input. Thus further constraints need to be applied to attempt to separate

useful information. This will naturally translate to non-zero reconstruction error. The traditional



CHAPTER 4. REVIEW: DEEP NEURAL NETWORKS 27

approach to autoencoder uses a under-complete representation where Nh < N. The resulting low-

dimensional hidden units features can thus be seen as a lossy compresses representation of the input.

Since the autoencoder were primarily developed as MLP’s predicting their input, the most commonly

used forms of the encoder and decoder are affine mapping, followed by a non-linearity.

Op = f(W · xp)

yp = g(Woh ·Op)
(4.2)

Here f(·) and g(·) are the encoder and decoder activation function. When using affine encoder and

decoder without any nonlinearity and a squared error function, the autoencoder essentially performs

a PCA as shown in [9]. This is also true when using a sigmoid non-linearity in the encoder [22], since

its possible to stay in the linear regime of the sigmoid, but arguably not the only one [79]. Also,

when using the cross-entropy cost function rather than a squared error the optimization objective

is no longer same as that of PCA and will likely learn different features.

To summarize, in order to capture the structure of the distribution that generated the input data,

it is important to modify the training criterion so as to prevent the autoencoder from learning the

identity function, which has zero reconstruction error or avoids it to behave like a PCA. This is done

through many variations in autoencoder such as tying the weights together [69], using regularized

autoencoder [21], sparse autoencoder [120], denoising autoencoder [174] and contractive autoencoder

[147].

4.1.2 Deep autoencoder: Structure and Notation

This section describes the structure and notation for a deep autoencoder. Consider an MLP with

L hidden layers. A deep autoencoder contains an input layer and an output layer, separated by L

layers of hidden units. Given an input pattern xp, the value of hidden units activation in the lth

layer is denoted by Op
l, with l = 0 referring to the input layer and l = L+1 refer to the output

layer. We refer to the size of a layer as Nh
l. The set of weights Wl between Op

l−1 in the layer l−1

and unit Op
l in layer l determines the activation of units Op

l as follows:

Op
l = f(Wl ·Op

l−1) (4.3)

Here Op
0 = xp and f(·) is the sigmoidal function. Given the last hidden layer, the output layer is

computed similarly by

yp = Op
L+1 = g(WL+1 ·Op

l) (4.4)

Typically, g(·) will be the identity function for a regression problem and the softmax function for a

classification problem [94]. As from figure 4.2, when an input sample xp is presented to the network,
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the application of equation ()4.3 at each layer will generate a pattern of activity in the different layers

of MLP. Intuitively, we would like the activity of the first layer neuron to correspond to low level

features of the input and to the higher level of abstractions in the last hidden layer.

4.1.3 Deep autoencoder:pre-training and stacking

It has been shown in [74], that a single hidden layer MLP with only one arbitrarily large hidden layer

could approximate a function to any level of precision ( also add from haykin end of chapter stuff).

However, single hidden layer MLP are very inefficient in terms of a number of computational units

and thus in terms of training examples required [15],[16]. A deep neural network with more than one

hidden layer is difficult to train if we frame the training as a purely supervised learning optimization

problem. Unsupervised learning is a promising paradigm for greedy layer-wise training. Therefore,

as in [94],the deep network learning algorithms combine the idea of greedily learning the network

by breaking down the learning problem into easier steps and then using unsupervised learning tp

provide an effective hint about what hidden units should learn, thereby bringing along the way a

form of regularization that prevents overfitting even in deep networks with many degrees of freedom.

The greedy layer-wise unsupervised strategy provides an initialization procedure, after which the

neural network is fine tuned to the global supervised objective. A general paradigm followed by

these algorithms can be decomposed into three phases. In the next three subsections, we will layout

the training design paradigm in three phases that are used to train a deep neural network.

The following block diagram gives a general framework for a Deep Learning algorithm.

Figure 4.3: Block diagram for general deep learning algorithm

Unsupervised Pre-training

One of the difficulty in training a deep neural network is that the gradient descent can easily stuck

in a poor local minimum [6]. The number and quality of these local minima clearly also influence the

chance for random initialization to be in the valley of attraction. It’s possible that with more hidden

layers, the width of these poor valleys increases. Although using regularization parameter that will

favor simpler models is suggested [43] [104], however, in practice these approaches normally overfits
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and are not data dependent. Unsupervised pre-training helps to select the valley of attraction from

which the learning leads to a good generalization.

Pre-training is an unsupervised initialization procedure that is used to train the L layer deep au-

toencoder. In order to understand the deep learning being used for feature extraction, we have to

understand the Information Storage Property (ISP) [128] which states that if the feature vector x

can be used to reconstruct the raw data from which it was extracted, as the dimension of input

increases, then x contains enough information for useful classification. The aim of an unsupervised

pre-training is to obtain a useful representation of the inputs. The representation learning from the

input that is formed by the output of the hidden layer can reduce feature engineering thereby making

supervised classifier and regression models much efficient. In pre-training, we greedily train subsets

of the network parameters using a layer-wise and unsupervised learning criterion by repeating the

following steps:

Algorithm 7 Unsupervised pre-training for deep autoencoders

1: while a stopping criterion is met, for each layer ( l ∈ ( 1 · · · · · · L)) do
2: Map input training sample xp to represent Op

l using a unsupervised learning algorithm.
3: Update Wl of layer l and delete the output weights from hidden to output layer from the

trained auto encoder.
4: end while

Figure 4.4: Unsupervised pre-training

Figure 4.4 shows the above greedy layer-wise pre-training procedure. The pre-training helps to

initialize the networks and also encourages to encode the latent input structure in the hidden layer.

In other words training an auto encoder in each layer is an unsupervised step i.e. tp(i) = xp(i)

therefore, if validation error is close to zero than according to ISP, all the information from input
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layer is passed onto the corresponding forward hidden layer either as compressed features (when Nh

< N ) or mapped features in high-dimensional space (when Nh > N )

Stacking

Stacking is a key aspect of deep architecture. It’s basically taking advantage of the depth in a repre-

sentative learning and the stacked autoencoder harness the power of re-using the features by learning

higher level features in each layer. Theoretically, it’s well-established that deep representation are

exponentially more efficient that those that are not sufficiently deep [65], [15], [14]. Therefore, once

the pre-training of autoencoder is completed, we are ready to develop the deep network by stacking

each of these trained autoencoder. figure 4.4 shows the stacked autoencoder in a fan-in structure. We

show only 2 layers deep network for simplicity, in-fact we can stack the autoencoder with sufficient

depth. It is tobe notes that when the number of hidden layers is greater than one, the autoencoder

is considered to be deep.

Figure 4.5: Autoencoder stacking
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4.1.4 Classifier design

Once the unsupervised pre-training and stacking is completed, deep autoencoder features can be used

for classification problem by feeding them into a linear or non-linear classifier. It’s quite common to

use either a softmax classifier [17] with cross entropy loss. The mth output of a softmax classifier

[102] will be

Op(m) =
exp(yp(m))∑M

m=1(exp(yp(m))
(4.5)

The predicted class i
′

will be i
′

= argmax︸ ︷︷ ︸
i

Op(i). The MSE in equation (2.2) is modified by replacing

yp with Op from equation (4.5). In chapter 3.1, we described the training of an MLP network as a

regression model. [52] concludes using cross entropy error function for classifiers. Contrary to this,

we design our classifier via regression models by modifying the desired output with output reset

(OR) [108] algorithm. From [152], an MLP network is a Bayes discriminant where the output is

posterior probability p(y = ic | x) and the performance comes partially from the error criterion used

in training. Typically the output of the MLP is a discriminant function di(x) and approximates

posterior probabilities. The largest discriminant corresponds to the estimated class, while the other

values correspond to estimated incorrect classes. Universal approximation theorem [74] implies that

the MLP can approximate any continuous discriminants arbitrary well. However, given an MLP

with MSE as error criterion and fixed binary desired outputs, the training is damaged when actual

outputs are larger than 1 for the correct class and less than zero for the incorrect class. Therefore we

use output reset (OR) algorithm [108], [56] to modify the desired outputs so that the discriminant

types can be approximated. Following [117], we modify the target output tp to t
′

p. Here t
′

p(ic)

= yp(ic) if yp(ic) > tp(ic) and t
′

p(id) = yp(id) if yp(id) < tp(id). Following [108], by designing

classifier using this method, we greatly decrease the training and validation error. However, the OR

algorithm is fairly immune to the outliers but a strong disadvantage is that the decision boundary

may not necessarily be optimally placed. Clearly, it’s a fundamental research problem that will be

investigated in Chapter VII.

4.1.5 Fine tuning

Fine tuning is a well-known technique [69] that is used to update all the weights in the stacked

deep autoencoder including the classifier layer, in order to improve the overall performance. In each

iteration, fine tuning updates all the weights in all the layer of a stacked autoencoder along with the

classifier. Overall the entire deep learning network for 2 layers along with the classifier is shown in

figure 4.6.
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Figure 4.6: Deep neural network

The deep neural network algorithm can be summarized as follows:

Algorithm 8 Greedy layerwise training of deep autoencoder

1: Unsupervised pre-training: Train each autoencoder as illustrated in algorithm 7.
2: Stacking: Stack the trained autoencoders to form the deep autoencoder network.
3: Classifier: Add a classifier at the end of the last hidden layer of the stacked autoencoder and

train it using a supervised cost function.
4: Fine tuning: The entire network using BP and gradient descent on a global supervised cost

function.

4.1.6 Variants of autoencoders

As mentioned in the previous section, there are many variants of autoencoder that are useful in

generating the effective representation of the data instead of learning the identity function. Here, we

discuss two such variants. Sparse autoencoder is an under complete representation where the goal

is feature compression whereas denoising autoencoders generate overcomplete features that map in

the higher dimension.
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Sparse autoencoder

In autoencoder, sparsity is achieved by penalizing the hidden unit activations thereby making them

closer to there saturating value of 0 [21] [103], [184]. [130] [102] [141] describes a sparse autoencoders

(SAE) as in where a KL divergence penalty term is introduced into the error function. KL divergence

is a standard function for measuring how two distributions are different.

KL(O(k)) = ρ · log(
ρ

O(k)
) + (1− ρ) · log(

1− ρ
1−O(k)

) (4.6)

Here O(k) is the average activation of the kth hidden unit,

O(k) =
1

Nv

Nv∑
p=1

Op(k) (4.7)

ρ is the sparsity parameter, typically a small value close to zero. In equation ()4.6, for ρ = O(k),

KL(O(k)) = 0. In order to avoid overfitting, we add an L2 regularization term or weight decay

term. Adding these two terms in equation ()2.2, the final error function is now modified as follows

ESAE = E + β ·KL(O(k)) +
λ

2

Nl∑
l=1

N l
h∑

i=1

M∑
j=1

[wl(j, i)]2 (4.8)

Here β is the sparsity penalty term and λ is the weight decay parameter. The regularization term

tends to decrease the magnitude of the weighs and is not applied to the bias terms in weight matrices.

The regularization term is a variant of the Bayesian regularization method by replacing the Gaussian

prior on the parameters and doing Maximum apriori probability estimation.

Denoising autoencoder

In an over-complete representation where N > Nh, there is no compression and each hidden layer

can just copy a different input unit. To avoid this problem, Denoising autoencoders (DAE) [174] is

a modification to the basic autoencoders. The key idea in a DAE is that the input representation

should be robust to noise. Therefore the noise is added by

1. Switching off the random subset of input units to zero.

2. Adding Gaussian noise to the turned on input units.

Therefore the input x is first corrupted by the above two steps to get a partially destroyed input x̃

which is then fed to a basic autoencoder to obtain the reconstructed input x̂. The error measure in
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a cross entropy reconstruction function as

EDAE = −
N∑
i=1

x(i)log(x̂(i)) + (1− x(i))log(1− x̂(i)) (4.9)

Note that the error measure compares x̂ with the noiseless input x. By adding noise in the input,

we push it away from the manifold and then the basic autoencoder training try to project x̂ onto

the manifold. Overall this helps in learning more meaningful features than a linear autoencoder and

overcome the over-complete representation problem. Unlike SAE, DAE is a fan-out structure. It

is reported in [173] that adding Gaussian noise in input layer is not equivalent to weight decay or

regularization.
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Figure 4.2: Summary of deep neural network



Chapter 5

Problems, Goal and Proposed

Tasks

In this chapter we start by enumerating major problems and bottlenecks associated with training

a linear classifier, single hidden layer MLP and a deep learners. We also detail out the goals and

proposed tasks that we will be focusing on this dissertation.

5.0.7 Problems with linear classifiers

Existing regression based classifiers, and some others, have the following problems which damage

performance.

(L1) There are inconsistent errors yp(i) - tp(i) whose absolute value tends to move in a direction

opposite to that of the probability of classification error Pe while increasing the mean square

error. Specifically, this occurs when yp(ic) ≥ tp(ic) for the correct class ic or yp(id) ≤ tp(id)

for any incorrect class id.

(L2) There are consistent errors yp(i) - tp(i) whose absolute value tends to move in the same direction

as Pe. Specifically, this occurs when yp(ic) ≤ tp(ic) or yp(id) ≥ tp(id) for any incorrect class

id.

(L3) When small consistent or inconsistent errors grow to become outliers, performance is severely

impacted [109].

(L4) When we have too many useless inputs, testing errors increase due to Hughes phenomenon

36
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[77]. This is often called over-training in the machine learning literature. Useless inputs fall

into at least two categories:

(C1) Some inputs can be linearly dependent upon others.

(C2) Some inputs are not dependent upon others but have no information that improves the

calculation of the output discriminant vector y.

(L5) Performance suffers when there is a mismatch between the assumed and actual statistics of the

data.

(L6) Current training algorithms for the linear or generalized linear classifier do not include pruning

of noisy or dependent inputs.

Margin based classifiers are little effected by problems (L1) through (L5) because they are principally

effected by support vectors. In addition, some of these algorithms make use of slack variables which

limit the damage of support vectors due to imperfect outputs. However, even margin based classifiers

can be strongly effected by problem (L6) since they often fail to eliminate useless inputs.

It is to be noted that problem (L5) is obviously relevant for Bayes-Gaussian linear classifiers and

regression based classifiers, for which it is assumed that there are no outliers. The proposed algorithm

in this dissertation makes no assumptions about the data statistics and is tolerant of outliers. Similar

to this, [172] discusses the V matrix method that captures the geometric properties of the observation

data that are usually ignored by the classical statistical methods. This makes for a smoother

approximation.

5.0.8 Problems with single hidden layer MLP

(M1) Ideally, one would like to have a good generalization performance with the smallest size net-

work that does not have any dependent hidden units. In order to find the optimal smallest

independent number of hidden units, two methods are employed called growing and pruning

methods. In the current work, we look into pruning methods in detail. Pruning is essentially

training an MLP with larger than necessarily hidden units so that it learns reasonably quickly

with less sensitivity to the initial condition and then removing each unit to reduce to size so

that the generalization error is less. Pruning methods is further divided into dynamic pruning

methods such as weight decaying [27], [139] and static pruning methods such as skeletonization

[125], optimal brain damage [100], hidden unit reduction methods [60] and Frobenius norm

approximation method [92]. [144] provides an excellent survey of the pruning algorithms.

Therefore pruning of the hidden units becomes extremely important.
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(M2) A typical MLP training procedure is a supervised training that involves training using only

the labeled data. For any machine learning problem, Labeled data is usually very expensive

and difficult to obtain. Inability to use the unlabeled data holds it significantly in terms of

its applicability in various fields. Broadly, there are two types of learning algorithms that use

unsupervised data. Firstly, semi-supervised learning [133] and secondly, self-taught learning

[141]. Unlike semi-supervised learning, self-taught learning does not require the unlabeled

data to be from the same generative distribution as the labeled data.

(M3) The structural optimization of current MLP models is inadequate, resulting in networks with

more hidden units than necessary to minimize the generalization error.

5.0.9 Problems with deep learning networks

From a neural networks perspective, deep learning is a way to train a multi hidden layer MLP.

Until the seminal paper by Hinton [69], it appeared that deep neural network is hard to train due

to computational constraints. However, there are several problems associated with training a deep

learning algorithm that is summarized below:

(D1) Majority of literature on deep learning uses first order gradient based training [15], [94], [141],

[102] that is often computationally expensive.

(D2) In our opinion, the useful properties of sigmoid activation function are not completely ex-

ploited. There is a large scope of research in investigating the mean square criterion along

with sigmoid activation functions.

(D3) For any highly flexible deep network, there actually exists any valleys of attraction in the

parameter space that can give a poor generalization. So when a gradient descent is able to

find a good low training error, it’s not guaranteed that the associated parameter configuration

will provide good generalization. Therefore initialization of a deep neural network continues

to be an open problem.

(D4) The current training algorithms involves many phases i.e unsupervised pre-training, supervised

training and fine-tuning thereby making the entire training paradigm complicated.

(D5) Similar to MLP, there are many parameters in a deep learner that are user chosen. This caused

a problem while comverging to an optimal deep learner structure.

(D6) The deep autoencoders are unable to adapt to the unknown amount of nonlinearity in the

data. Even though the unsupervised pre-training helps in initializing the model, the abstract

features that are formed in a hierarchical manner are not entirely transferring the information
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to further deeper into the network.

(D7) Since deep learning is fairly a new area, there is a clear lack of theory that explains the learning

paradigm for a deep neural network. A strong theoretical analysis is still lacking in order to

explain the success of deep learning models for various applications. There is a clear need of

developing investigative tools for understanding the training of deep neural networks.

The high dependency on first order gradient based training as in (D1) is an appealing area of research.

Certainly, there is a need to investigate non-gradient methods like Grahm-Schmidt procedure along

with our successful implementation of second order MLP training algorithms [113], [143], [171], [88],

[62], [131]. As mentioned in (D2), the choice of activation function is extremely important while

training the deep learner. Sigmoid activation function usually leads to saturation of hidden units

[51] and many other alternative activation function have been suggested [69], [13]. It’s been reported

that the cross entropy cost function coupled with softmax activation works better than the MSE

and sigmoidal activation in the classification task. [106] [153], [52]. The difficulty in training in (D4)

is usually compensated by using cross-validation but usually the number of good generalization

configuration for the MLP model is small in comparison to a good training configuration. To

elaborate (D5), the number of parameters that needed to be adjusted before we start training

includes number of hidden layers, a number of hidden units in each layer and learning factor for the

hidden units.

5.0.10 Goals and proposed tasks

We narrow down to the following goals in the present work

1. Improve and automate the design of linear and MLP networks with small testing error and

minimum user intervention.

2. Adapt the automated feed forward technology to deep learning network design and minimize

the number of weights in a deep learner.

In order to expand on the above goals, we have following proposed tasks marked out, that we focus

on in this dissertation.

1. Develop and automate the linear network design by identifying and removing dependent inputs.

2. Improve the design of linear classifiers by adding a nonlinear activation function at the output.

3. Improve the pruning algorithm for hidden units in a single hidden layer MLP and an autoen-

coder.
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4. Develop robust MLP training algorithm that are prune to outliers effects.

5. Apply all the above improvements to the deep learning paradigm.

6. Automate user chosen parameter that are specific for deep learning models.

7. Improve the autoencoder theory by detailing out the mathematical framework of it’s working.



Chapter 6

Proposed improvements in linear

networks

In this chapter, we start with the linear classifier W of subsection 2.1.2 and describe several incre-

mental improvements to it, that partially solve problems (L1) through (L6). These improvements

consist of changes to the elements of matrices R and C in equation (3.5).

6.0.11 Modifying targets with output reset

In this subsection, our goal is to eliminate inconsistent errors of (L1) and unwanted variations in

output vectors yp due to (L5) by developing new target outputs t
′

p(i), while keeping the constraint

that the target margin satisfies t
′

p(ic) - t
′

p(id) ≥ 1. There are two kinds of inconsistent errors which

simultaneously increase E and decrease Pe or leave Pe the same. First each pattern’s output can

have a bias so that the average of tp(i) over i, differs from the average of yp(i). Second, as stated in

problem (L1), we can have yp(ic) > tp(ic) or yp(id) < tp(id). In order to remove these inconsistent

errors we design a new error function E
′

[108] [56] in which targets, but not labels are changed [53].

Specifically as in [47]

E
′

=
1

Nv

Nv∑
p=1

M∑
i=1

[t
′

p(i)− yp(i)]2 (6.1)

where t
′

p(i) is modeled as

t
′

p(i) = tp(i) + ap + dp(i) (6.2)

and where ap and dp(i) are initially equal to zero. Since ap is the same for each class, it has no

41
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effect on Pe. Following [56], [108], we calculate the closed form expression for ap by setting ∂E
′

∂ap
=

0, therefore obtaining

ap =
1

M

M∑
i=1

[yp(i)− t
′

p(i)− dp(i)] (6.3)

Similarly, dp(i) is defined as

dp(i) = yp(i)− t
′

p(i)− ap (6.4)

such that dp(ic) ≥ 0 and dp(id) ≤ 0. It is true that ap and dp(i) can be included in t
′

p(i) or yp(i)

during training. However, these parameters are not available during testing because they make use

of the correct class ic(p), which is unknown. Therefore we include them in t
′

p(i).

To avoid inconsistent errors we need t
′

p(ic) ≥ yp(ic) and t
′

p(id) ≤ yp(id) so

dp(ic) = [yp(ic)− ap − tp(ic)]u(yp(ic)− ap − tp(ic)) (6.5)

and

dp(id) = [yp(id)− ap − tp(id)]u(tp(id)− ap − yp(id)) (6.6)

where u(·) denotes the unit step function. Note here that for a classifier, the training halts when E
′

becomes zero, even if E is nonzero. The effect of (L5) is reduces because limyp(ic)→∞(y
′

p(ic)−tp(ic)) =

0 and similarly limyp(id)→∞(y
′

p(id)− tp(id)) = 0. We denote the process of obtaining t
′

p as an output

reset (OR) algorithm and describe it as follows

Algorithm 9 OR algorithm

Given p, tp(i) and yp(i) from the current regression based classifier, initialize ap to zero and

dp(i) to zero for 1 ≤ i ≤ M.

for it = 1 to 3 do

Calculate ap using (6.3).

for i = 1 to M do

Calculate dp(i) using (6.5) and (6.6)

Calculate t
′

p(i) using (6.2)

end for

end for

Note that in algorithm 1, letting the maximum number of iterations equal 3 allows considerable

improvement in performance without a significant change in training time [110]. In [56], the heuristic

iterative OR algorithm of [110] is replaced by an efficient closed from expression for the target

outputs. Using OR, we modify regression-based LC training as follows:
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Algorithm 10 LC-OR algorithm

Read the training data. Set the value of N1
it = 10.

Calculate R and C using equation (3.6).

Solve equation (3.5) for the initial weight matrix W.

Initialize it ← 0.

while it < N1
it do

Initialize C ← 0.

for p = 1 to Nv do

Use OR algorithm to process tp into t
′

p.

Update C by replacing tp by t
′

p in equation (3.6) as C ← C + xap (t
′

p)
T

end for

Solve equation (3.5) for weight matrix W.

it ← it + 1

end while

In this subsection we have removed inconsistent errors of (L1) from E
′

by changing elements of the

cross correlation matrix C. We have reduced the effects of output vector bias and outliers due to

(L5).

Another method for changing target outputs is the Ho-Kashyap procedure [72], [73]. Unlike OR,

Ho-Kashyap (1) does not handle pattern biases, (2) is used with binary or one-versus-one output

coding, and (3) solves linear equations simultaneously for both target vectors and classifier weights.

6.0.12 Pruning less useful inputs

As we discussed in problem (L4), many classifiers fail to eliminate less useful inputs, which can lead

to Hughes phenomenon [77] and other forms of overtraining. Our first solution for both categories of

(L4) is to utilize pruning of inputs when regression is used to solve for classifier weights. In pruning

which can be viewed as a type of L0 regularization, we:

• Order the inputs as x(o(1)), x(o(2)),x(o(N+1)), where o(n) is an order function denoting the

index of the nth most useful input.

• Find the number of ordered inputs Ni such that validation error is minimized.
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Basic algorithm

Here we describe a direct but inefficient version of our algorithm. The efficient version is discussed

in the next subsection. Let Sm denote an m-element subset of the indices of the m most useful

inputs.

The first step in pruning is to order the inputs using sequential forward selection (SFS) [53] so that

the input set S1 = {o(1)} yields the minimum training error for a classifier having one input. Each

successive set Sm is found as

S(m) = S(m− 1)
⋃
{o(m)} (6.7)

such that the input x(o(m)) is that which causes the maximal decrease in training error out of all the

unchosen inputs. Let Em(k) denote the training error when chosen inputs x(o(1)) through x(o(m1))

are used, along with x(k). The integer k denotes a candidate value of o(m). Then

Em(k) =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− ypm(i)]2 (6.8)

where the output ypm(i) is

ypm(i) = wo(i, k)xp(k) +

m−1∑
n=1

w(i, n)xpo(n) (6.9)

and where

xpo(n) ≡ xp(o(n)) (6.10)

Here Wo denotes the classifiers weight matrix when the inputs are ordered. Therefore,

yp = W · xp = Wo · xpo (6.11)

The set SU of unchosen input indices is initially {1, 2, 3, · · · , N + 1} . Sequential forward selection

[53] is implemented to order the inputs as in algorithm (3)

Algorithm 11 SFS algorithm

for i = 1 to N+1 do

o(m)= argmin
k∈SU

{min
Wo

Em(k)}

SU ← SU - {o(m)}.
end for
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The second step in our algorithm is to find the number of ordered inputs that minimizes the classifiers

validation error. Let Ev(m) denote the validation error when m ordered inputs are used, as

Ev(m) =
1

Nvv

Nvv∑
p=1

M∑
i=1

[tpv(i)− vpm(i)]2 (6.12)

where

vpm(i) =

M∑
n=1

wo(i, n)xpvo(n) (6.13)

where Nvv is the number of validation patterns, subscript m denotes the number of inputs being

used, tpv(i) denotes the ith target output for the pth validation pattern, vpm(i) is the ith output for

the pth validation pattern, and xpvo(n) denotes the nth ordered input in the pth validation pattern.

The number Ni of chosen ordered inputs is now found as

Ni = argmin
m

{Ev(m)} (6.14)

Efficient implementation

The algorithm of the previous subsection is efficiently implemented using a form of orthogonal least

squares, related to that in [31] for RBF networks. In our pruning algorithm [127], however, the

training data is represented using correlation matrices, so that Nv patterns are not stored in main

memory. Also, our method efficiently determines Ni. Using the Gram-Schmidt process [53], our

algorithm develops an (N + 1) by (N + 1) lower triangular matrix A, so that input vectors with

orthonormal elements can be found as

x
′

p = A · xpo (6.15)

The output vector yp can be written as

yp = W
′
· xap (6.16)
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Now, Em(k) can be rewritten as

Em(k) = Et − P (m, k) (6.17)

Et =

Nv∑
p=1

M∑
i=1

[tp(i)]
2 (6.18)

P (m, k) =

M∑
i=1

[w
′
(i,m, k)]2 +

M−1∑
n=1

[w
′
(i, n)]2 (6.19)

In the orthonormal network of equations (6.15) and (6.16), w
′
(i,m, k) is the weight from x

′

p(m) to

ypm(i) when o(m) equals the candidate value k. The argmin operation in algorithm 3 can now be

replaced by

o(m) = argmax
k∈SU

{P (m, k)} (6.20)

Minimizing validation error

In algorithm 3, all elements of the weight matrix Wo change when m increases. Therefore, in

equations (6.12) and (6.13), we have to store a different Wo for each value of m, use m multiplies for

each value of vpm(i), and potentially access the validation patterns every time Ev(m) is calculated

for a different value of m. These problems are eliminated when using the orthonormal network [127].

Specifically, vpm(i) in equation (6.13) is now written as

vpm(i) =

m∑
n=1

w
′
(i, n)x

′

pv(n) (6.21)

where x
′

pv(i) is the ith element of the pth validation pattern’s transformed input x
′

pv, found as

x
′

pv = A · xpvo (6.22)

Note that vpm(i) in equation (6.21) can be written recursively as

vpm(i) = vp,m−1(i) + w
′
(i,m)x

′

pv(m) (6.23)

Therefore to summarize,

1. For a given pattern, the calculation of vpm(i) in equation (6.23) requires one multiply.

2. One matrix W
′

needs to be stored rather than (N + 1) of them.

3. One pass through the data is necessary to calculate the Ev(m) sequence and Ni [127].
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4. After Ni and W
′

are found, W
′

is mapped back to W. Wo is generated from W
′

as Wo =

W
′ · A. The matrix W is found from Wo by rearranging its columns.

Further details of subsections 3.2.2 and 3.2.3 are given in the pruning description of [127]. Linear

classifier training using regression OR and pruning is denoted as LC-OR-P. The algorithm follows.

Algorithm 12 LC-OR-P algorithm

Read the training data.

Using training data, find weight matrix W using the LC-OR algorithm.

Randomly split off 30 % of the training data to be validation data.

Initialize N2
it , it ← 0.

while it < N2
it do

Using equation (2.5), find the R matrix. Find the C matrix using OR.

Find the order function o(n) and the triangular matrix A.

Using pruning, calculate the weight matrix W whose non-zero elements are w(i, o(n)) for 1

≤ n ≤ Ni

it ← it + 1

end while

Save W, o(n) and Ni.

Table 6.1 compares the numbers of inputs used when LC-OR and LC-OR-P are applied. As we see

from Table 6.1, pruning has the largest effect on data files with large input dimension, where it helps

to prevent over-fitting.

Table 6.1: Pruning results on linear classifiers

Datasets LC-OR number of input units (N) LC-OR-P number of input units (Ni)

Gongtrn 16 16

Comf18 18 18

MNIST 784 563

SVHN 1024 962

CIFAR-10 1024 985

COVER 54 52

SECTOR 55197 54871

RCVI 47236 46923

NEWS-20 9216 8521

Breast-Cancer 40 40



CHAPTER 6. PROPOSED IMPROVEMENTS IN LINEAR NETWORKS 48

We use 10-fold testing errors to evaluate the various versions of our classifiers. For each fold, 1/10 of

the data is used for testing and 9/10 for training and validation. Out of the 9/10 data, 70 % is used

for training and the rest is for validation. Table 6.2 lists the 10-fold testing errors along with the

standard deviation that results from each incremental improvement to the regression based linear

classifier (LC). For each datafile, the 10-fold testing errors either decrease or stay the same in each

successive step of LC-OR-P. Therefore LC-OR-P is the best algorithm we’ve developed up to this

point.

Table 6.2: 10-fold testing error % results for various linear classifiers

Datasets LC LC-OR LC-OR-P

Gongtrn 16.2577 ± 0.02 11.3668 ± 0.02 11.3668 ± 0.02

Comf18 28.6579 ± 0.37 20.3308 ± 0.32 20.3308 ± 0.27

MNIST 15.2478 ± 0.13 7.3575 ± 0.13 5.1816 ± 0.14

SVHN 18.2487 ± 0.31 5.8161 ± 0.33 4.7459± 0.26

CIFAR-10 20.2478± 1.08 11.3426 ± 0.99 10.8348 ± 0.85

COVER 28.1452 ± 0.44 22.3202 ± 0.43 20.0021 ± 0.44

SECTOR 11.3424 ± 1.18 9.34532 ± 1.15 8.34521 ± 1.04

RCV1 15.3245 ± 1.52 11.2345 ± 1.24 10.2343 ± 0.84

NEWS-20 29.6746 ± 0.38 17.6786 ± 0.34 15.4161 ± 0.28

Breast Cancer 19.3571 ± 0.94 17.987 ± 0.12 17.987 ± 0.12

6.0.13 Newton based improvements

The output reset (OR) algorithm discussed in section III eliminates inconsistent errors of problem

(L1) but is not designed to eliminate the consistent errors of problem (L2) that can become outliers.

In this section we develop a method for bounding consistent errors. We then formulate second order

algorithms for updating weights.

Initialization

At this point, the LC-OR-P algorithm uses regression and OR to design linear classifiers with errors

satisfying

0 ≤ t
′

p(ic)− yp(ic) <∞ (6.24)

and

−∞ ≤ t
′

p(id)− yp(id) < 0 (6.25)
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In other words, inconsistent errors are bounded but consistent errors are unbounded and can still

cause problems. Platt [138] has shown the utility of using non linear output activations such as

sigmoids. We therefore choose to limit both consistent and inconsistent errors in a new training

stage by using sigmoidal output activations to bound network outputs as shown in figure 6.1. The

error of the resulting generalized linear classifier (GLC) is

EG =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)−Op(i)]2 (6.26)

where Op(i) is defined as f(yp(i)) and f(·) denotes the sigmoid activation function. EG can be larger

than E
′

in (6.1) because yp(i) equal to 0 or 1 results in Op(i) equal to 1
2 or 1

1+e respectively.

Figure 6.1: Generalized linear model classifier

In order to mitigate this increase in EG, we need to map the linear output activations yp to sigmoidal



CHAPTER 6. PROPOSED IMPROVEMENTS IN LINEAR NETWORKS 50

outputs Op as

Op(i) = f(a · yp(i) + b) (6.27)

where a and b are scalars that are found such that EG is minimized. We choose to find the values

of a and b using Newton’s method. Given the error function in equation (2.2), we calculate the

negative gradient vector gab = [ga : gb]
T . Here the negative partial derivative ga is calculated as

ga = −∂EG
∂a

=
2

Nv

Nv∑
p=1

M∑
i=1

(tp(i)−Op(i))
∂Op(i)

∂a
(6.28)

and gb is calculated as

gb = −∂EG
∂b

=
2

Nv

Nv∑
p=1

M∑
i=1

(tp(i)−Op(i))
∂Op(i)

∂b
(6.29)

Similarly the Hessian matrix elements will be

haa =
2

Nv

Nv∑
p=1

M∑
i=1

(
∂Op
∂a

)2 (6.30)

hab =
2

Nv

Nv∑
p=1

M∑
i=1

∂Op
∂a
· ∂Op
∂b

(6.31)

hbb =
2

Nv

Nv∑
p=1

M∑
i=1

(
∂Op
∂b

)2 (6.32)

The Hessian matrix is now assembled as:

H =

[
haa hab

hab hbb

]

The weight gain vector e is obtained by solving the following linear equations

H · e = gab (6.33)

The scaling factor a and b are then updated as

a← a+ e(1) (6.34)
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b← b+ e(2) (6.35)

After the weight matrix is updated as

W← a ·W, (6.36)

each output threshold in W is updated as

w(i,N + 1)← w(i,N + 1) + b (6.37)

In case the error starts to increase, we backtrack, as in Rprop [146], from the previously saved

network.

Proposed algorithm

After, we have initialized the scaling factors, our GLC model is ready to be trained. In each training

epoch, the weight connecting the ith output to the nth input in the network is updated as follows:

w(i, n)← w(i, n) + ei(n) (6.38)

Here ei is the N + 1 length Newton’s direction vector for the ith output. To obtain the value of

ei(n), we calculate the gradient vector and Hessian matrix for each ith output with respect to error

as:

gi(m) =
2

Nv

Nv∑
p=1

[tp(i)−Op(i)]O
′

p(i)xap(m)

hi(m,u) =
2

Nv

Nv∑
p=1

∂Op(i)

∂w(i,m)

∂Op(i)

∂w(i, u)

(6.39)

for each ith output, we solve the following sets of linear equation through OLS.

Hi · ei = gi (6.40)

As seen in equation (6.40), we have a separate Hessian matrix for each output, which is a clear

disadvantage of this approach. We denote this Newton-based weight modification algorithm as

GLC-Newton, which is described below
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Algorithm 13 GLC-Newton algorithm

1: Initialize W using LC-OR-P.

2: Combine validation and training data.

3: Add sigmoid activation functions at each output to get Op as in equation (6.27).

4: Find a and b and re-scale W as in equations (6.36) and (6.37) .

5: Initialize N3
it , it ← 0

6: while it < N3
it do

7: for i = 1 , · · · M, solve equation (6.40) for ei.

8: Update W using equation (6.38)

9: it ← it + 1

10: end while

In Table 6.3, we now tabulate the testing error along with the standard deviation of the resulting

improvements in this section from GLC-Newton.

Table 6.3: 10-fold testing error % results for GLC-Newton

Datasets LC-OR-P GLC-Newton

Gongtrn 11.3668 ± 0.02 9.4567 ± 0.004

Comf18 20.3308 ± 0.27 17.1813 ± 0.27

MNIST 5.1816 ± 0.14 4.0775 ± 0.15

SVHN 4.7459± 0.26 4.4158 ± 0.22

CIFAR-10 10.8348 ± 0.85 8.4176 ± 0.85

COVER 20.0021 ± 0.44 15.0121 ± 0.47

SECTOR 8.34521 ± 1.04 6.1120 ± 0.99

RCV1 10.2343 ± 0.84 8.1203 ± 0.72

NEWS-20 15.4161 ± 0.28 13.6705 ±0.19

Breast Cancer 17.987 ± 0.12 10.9382 ±0.25

As seen in Table 6.3 GLC-Newtons handling of consistent errors is significantly better than that

of LC-OR-P. It is to be noted here that the incremental improvement comes at a cost of minor

increment in time complexity of the algorithm. So when we compare GLC-Newton with LC-OR-P,

there is a increment in time complexity but the model performance is far better.



Chapter 7

Improvements in MLP algorithm

In this section we start with the MA algorithm of chapter III and describe several incremental

improvements to it, that particularly solve problems (M1) through (M4). These improvements

consist of changes to the elements of matrices R and C in equation (3.5). We combine the MOLF

from Chapter III and pruning from chapter VI to form MA algorithm. The MA algorithm can be

summarized as follows:

Algorithm 14 MA algorithm

1: Read the training data.

2: Calculate R and C using equation (3.6).

3: Solve equation (3.5) for the initial weight matrix Wo.

4: Initialize N3
it , it ← 0, C ← 0 and input weight matrix W with Gaussian random numbers.

5: while it < N3
it do

6: BP step : Compute G using equation (3.12).

7: MOLF step : Solve equation (7.8) for z using OLS

8: Update W as W ← W + diag(z) · Ghwo

9: OWO step : Solve equation (3.5) to obtain Wo

10: Find the order function o(n) and the triangular matrix A.

11: Using pruning, calculate the weight matrix W whose non-zero elements are w(i, o(n)) for 1

≤ n ≤ Ni

12: it ← it + 1

13: end while

14: Save W, o(n) and Ni.

53
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During training the MA algorithm, we prune the hidden units after every third iteration since its

quite certain that the hidden units that are pruned are not yet trained and they might become useful

after few more iterations. All the hidden unit outputs are linearly dependent upon the inputs so

we have regular inputs and the linear combination of the inputs. While pruning, we prune all the

hidden unit weights and set the input weights to zero. The MA algorithm is an interesting algorithm

and potentially good in the sense that it paves way for reducing model complexity but it suffers from

serious flaws that we address in the subsequent sections.

7.0.14 Modification with regularization

The no free lunch theorem [179] implies that our algorithms should be desined to perform well on

specific tasks. By using regularization, we give preference to one solution of the learning algorithm

over another in its hypothesis space. In order to prevent over-training [50] and solve problem P4,

we modify equation (2.2) by adding an L2 regularization term. The resulting error function is

E
′

=
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 + λ · ‖Wih‖2 (7.1)

where, λ is the L2 regularization parameter. Regularization changes elements in the auto-correlation

matrix R as

R← R + λ · diag(r) (7.2)

where r is a vector containing the diagonal elements of R such that r(1) = 0 so that the bias

is not regularized. diag() is an operator that creates a diagonal matrix from a vector. Using a

grid search method, for different values of λ, we calculate validation error Ev(λ). The value of λ is

selected as the value that leads to minimum validation error Ev. Note that like any other regularizer,

the L2 regularizer reduces the generalization error but not its training error. By adding OR and

regularization in MA algorithm, we improve it to build an adaptive algorithm denoted by MA-OR-R.

The MA-OR-R algorithm can be summarized as follows:
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Algorithm 15 MA-OR-R algorithm

1: Read the training data.

2: Randomly split off 30 % data of the training data to be validation data.

3: Calculate R and C using equation (3.6).

4: Solve equation (3.5) for the initial weight matrix Wo.

5: Initialize N3
it , it ← 0, C ← 0 and input weight matrix W with Gaussian random numbers.

6: while it < N3
it do

7: Using equation (3.6), find the R matrix. Find the C matrix using OR.

8: Save the best sized Wo and Wi using MA algorithm.

9: it ← it + 1

10: end while

11: For each candidate λ value, update R using equation (7.2).

12: Solve equation (3.5) for W.

13: Calculate Ev(λ) and save the corresponding weight matrix Wλ

14: Find λ
′

= argmin
λ

Ev(λ)

15: Update output weight matrices Wo as Wo ← Wλ
′

o .

16: Recombine validation and training data.

17: Recalculate R using equation (3.6) and C using t
′

p.

18: Solve equation (3.5) for W.

Table 7.1 compared the pruning results for MA-OR algorithm. MA is a two-stage algorithm described

in algorithm 14 that has pruning based on validation error. As we see from Table 7.1, pruning has

the largest effect on data files with large input dimension, where it helps to prevent over-fitting.

Table 7.1: Pruning hidden units results MA-OR algorithm

Datasets Initial Nh Nh in MA algorithm

Gongtrn 30 26
Comf18 30 28
MNIST 200 164
SVHN 200 172

CIFAR-10 200 189
COVER-10 100 63

SECTOR 400 326
NEWS-20 300 242

Breast Cancer 100 82

We use 10-fold testing errors to evaluate the various version of the classifiers. For each fold, 1/10 of

the data is used for testing and 9/10 for training and validation. Out of the 9/10 data, 70 % is used

for training and the rest is for validation. Table 7.2 lists the 10-fold testing errors along with the
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standard deviation that results from each incremental improvement to the MOLF based classifiers.

For each datafile, the 10-fold testing errors either decrease or stay the same in each successive step

of MA-OR-R. Therefore MA-OR-R is the best algorithm weve developed up to this point.

Table 7.2: 10-fold testing error % results for MOLF based classifiers with Nit = 100

Datasets MA MA-OR-R

Gongtrn 8.2667 ±0.012 7.2667 ±0.196

Comf18 15.6881 ±0.001 14.4901 ±0.001

MNIST 4.5735±0.254 4.3461 ± 0.324

SVHN 4.5163 ± 0.269 4.0846 ± 0.210

CIFAR-10 7.8613 ± 0.214 6.2388 ± 0.229

COVER 14.8578 ± 0.251 12.1333 ± 0.281

SECTOR 5.87451 ± 0.205 4.7896 ± 0.264

NEWS-20 11.2472 ± 0.014 10.2478 ± 0.011

Breast Cancer 10.1470 ± 0.250 9.8771 ± 0.210

7.0.15 Improved pruning using median filtering

In this subsection, we will discuss the modifications for MA-OR-R algorithm. We first develop a

median filtering algorithm to improve pruning and then formulate the growing approach to combine it

with pruning. Following [143], we use OLS to perform one-pass pruning that removes the dependent

hidden units. Using OLS, we get orthonormal basis functions for the hidden units that will be

ordered based on their usefulness and eliminate the remaining hidden units. While training each

MLP, we prune the hidden units based on validation data. During pruning, we plot a validation

error Ev vs the hidden units Nh curve. The optimal number of hidden units is the one that gives

the minimum validation error. The pruning based on the above technique gives us a smaller network

that does not have dependent features. Pruning hidden units with validation helps us to get smaller

models, however, in certain scenarios, the noise in the curve induces small impulse in the validation

error that can lead us to pick far more hidden units than required. The noise in the data can deviate

us to get an optimal hidden units. In order to investigate it in detail, we examine the correlation

between the training and testing curve with respect to the number of hidden units.

Figure 7.1 shows the validation Ev and smooth validation Ev curves for the Gongtrn dataset as a

function of Nh. Similarly, figure 7.2 shows the testing Etest and smooth testing Etest curves for the

Gongtrn dataset as a function of Nh. Ev and Etest denotes the 3 point moving average. In both

figures, the differences between normal and smooth curves represent noise.
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Figure 7.1: Validation error and smooth validation curves for Gongtrn file

Figure 7.2: Testing error and smooth testing curves for Gongtrn file

In order to demonstrate that these noises are unimportant, we calculate the Pearson’s correlation
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coefficient ρ between Ev and Ev and similarly for Etest and Etest curves from figure 7.1 and figure

7.2 respectively. The correlation coefficient ρEv,Etest is given as [116]

ρEv,Etest
=

1
Nv

∑Nh

k=1[Ev(k)− Ev(k)] · [Etest(k)− Etest(k)]√
[Ev(k)− Ev(k)]2 ·

√
[Etest(k)− Etest(k)]2

(7.3)

From our experiments with the Gongtrn datafile on the MA algorithm with 100 iterations and 100

hidden units, we find that ρEv,Etest = 0.2. Therefore, we observe that the testing and validation

mean square errors are not correlated. From a signal processing point of view, the curves are non-

stationary. The nonlinear median filter has the ability to preserve edges while filtering out any

impulses. Therefore, we use it to smooth out the Ev vs Nh curve before pruning. Another property

of median filter that we put to use is that the low window size preserves the overall signal shape.

Therefore in current investigation, we take the window size to be of length 3.

7.0.16 Growing approach

While pruning of MLP reduces the network size, with large datasets, the pruning algorithms gets

slower owing to more processing to prune large number of hidden units in the starting. One way

to circumvent this progemblem is to take a growing approach and add hidden units on a certain

validation error criterion. Growing offers an advantage over pruning in the sense that the training

algorithm is relatively faster in the starting as we have less number of hidden units and the network

usually settles down to a much lower stable structure. In our experiments, for each growing steps,

we prune the number of hidden units and then calculate the validation error. We stop as soon as

the validation error increases and save the network with best size.

7.0.17 Network Pruning

In an MLP, pruning is the process of removing less useful weights [100], [64] or hidden units [162],

[125], [119], [83], [30], [29], [80], [25], in order to promote sparsity, prevent overtraining, and reduce

testing errors. In this section, we use a hidden unit pruning method [114], [127], which is defined as

follows.

Lemma 1 : Given an MLP with no linearly dependent or unused hidden units, pruning alone

cannot convert it to a functionally equivalent MLP [178], [82] of smaller size. If a useful hidden

unit is removed from an MLP, there are no dependent hidden units to replace it, so that the pruned

network is equivalent
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Lemma 2 : Given an MLP with no linearly dependent hidden units, that performs a nonlinear

mapping, a functionally equivalent MLP can be constructed with a larger number of independent

hidden units.

Proof : Given the target function t(x) and the hidden unit basis functions O(k,x), for 1 ≤ k ≤ Nh,

1. Generate a new hidden unit O(Nh + 1,x) that is linearly independent of the other hidden

units. This is possible, since otherwise, Covers theorem [38] is violated.

2. Train a new MLP that approximates 1
2 [O(Nh,x) + O(Nh + 1,x)] arbitrarily well [74] using

N1
h > 2 linearly dependent hidden units. Use this new MLP’s hidden units to replace unit

O(Nh,x) in the first MLP.

3. The resulting modified network approximates the first one arbitrarily well, using Nh + N1
h

linearly independent hidden units.

Lemma 3 : MLPs of many different sizes have virtually the same performance.

Proof : Given an acceptable MLP with Nh hidden units, many larger ones exist, and can be

generated via lemma 2 .

An MLP training algorithm [143] denoted as MA-OR-R has been developed, which starts out with

Nhi hidden units. At every 3rd iteration, pruning with validation [127] is used is remove dependent

or useless hidden units. The final MLP is more sparse than the initial network. From lemma 2

and lemma 3 , we cannot guarantee that this pruning based approach yields the smallest network

out of all those which are functionally equivalent. Therefore we can consider using MA-OR-R in an

algorithm based upon both growing and pruning [39], [127].

7.0.18 Growing Versus Pruning

Basically, our goal is to run MA-OR-R using many initial Nh values N i
h(k) for k = 1 to kf .

Two Approaches

In the pruning approach for applying MA-OR-R, N i
h(1), the initial number of hidden units is large.

MA-OR-R is used to generate successively smaller values N i
h(k) for k = 1 to kf . In the growing

approach, N i
h(1) is small and the N i

h(k) values for k > 1 are successively larger values.

Characteristics of the Pruning Approach

The pruning approach has these characteristics.

1. The initial Nh, N i
h(1) is unknown, and it is not clear how to pick its value.
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2. If N i
h(1) is too small, we cannot find min(Nh) since only network with Nh ≤ N i

h(1) can be

generated.

3. If N i
h(1) is too large, the algorithm may generate smaller networks, but it may use many

training iterations on large networks, resulting in computational complexity.

4. We can’t guarantee that min(Nh) is found because of lemma 3 .

Characteristics of the Growing Approach

The growing approach has these characteristics.

1. N i
h(1) can be 0 or some other small number. Because N i

h(k) can only increase, we can find a

good value of min(Nh), since there are no smaller values of N i
h to try.

2. An early stopping related approach can be used. We can stop when the network for N i
h(k+ 1)

is no better than that for N i
h(k).

3. We can add to the existing hidden units when N i
h(k) changes.

Table 7.3 presents the effect of median filter and combined growing and pruning approach on vari-

ous datasets. The median filtering based pruning algorithm is denoted by MA-OR-R-MF and the

combined growing and pruning approach by MA-OR-R-MF-GP.

Table 7.3: Pruning hidden units results on various MA improvements

Datasets Initial Nh MA-OR-R-MF MA-OR-R-MF-GP

Gongtrn 30 23 10
Comf18 30 26 11
MNIST 200 158 146
SVHN 200 172 162

CIFAR-10 200 182 166
COVER-10 100 58 42

SECTOR 400 312 236
NEWS-20 300 228 148

Breast Cancer 100 68 32

We observe that the median filter approach results in smaller networks. The primary goal of using

a median filter is to remove noise that might cause any impulse, thereby leading us to pick a larger

network. The growing pruning algorithm clearly makes a very small size model. The primary reason

for that being the growing starts with a smaller hidden units and eventually grows until it starts

overfitting and stop. At each growing step we do median filtering based pruning so as to prune

down the growing model. By adding median filtering and combined growing and pruning in MA-

OR-R algorithm, we improve it to build an adaptive algorithm denoted by MA-OR-R-MF-GP. The
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MA-OR-R-MF-GP algorithm can be summarized as follows:

Algorithm 16 MA-OR-R-MF-GP algorithm

1: Read the training data.
2: Randomly split off 30 % data of the training data to be validation data.
3: Calculate R and C using equation (3.6).
4: Solve equation (3.5) for the initial weight matrix Wo.
5: Initialize N3

it , it ← 0, C← 0 , input weight matrix W with Gaussian random numbers and Nh.
6: while it < N3

it do
7: Using equation (3.6), find the R matrix. Find the C matrix using OR.
8: Save the best sized Wo and Wi using MA-OR-R-MF algorithm.

9: if Ev(it)−Ev(it−1)
Nh(it))

< ε then

10: Increase the number of hidden units at exponential rate.
11: else
12: Save the best Wo, Wi and Nh.
13: end if
14: it ← it + 1
15: end while
16: Recombine validation and training data.
17: Recalculate R using equation (3.6) and C using t

′

p.
18: Solve equation (3.5) for W.

Table 10.2 presents the 10-fold testing error results for the proposed modification of MA on various

datasets.

Table 7.4: Comparision results for 10-fold testing accuracy results on single hidden layer MLP with
Nit = 100

Datasets MA-OR-R MA-OR-R-MF MA-OR-R-MF-GP

Gongtrn 7.2667 ±0.196 7.0333 ±0.157 7.001 ±0.152
Comf18 14.4901 ±0.001 14.3691 ±0.002 14.1487 ±0.001
MNIST 4.3461 ± 0.324 3.3116 ±0.221 3.2125 ±0.214
SVHN 4.0846 ± 0.210 4.0846 ± 0.247 3.8745 ± 0.124

CIFAR-10 6.2388 ± 0.229 6.0015 ± 0.210 6.998 ± 0.229
COVER 12.1333 ± 0.281 10.2147 ± 0.214 10.0258 ± 0.201

SECTOR 4.7896 ± 0.264 3.3475 ±0.214 3.2478 ± 0.211
NEWS-20 10.2478 ± 0.011 8.5475 ± 0.018 8.4127 ± 0.017

Breast Cancer 9.8771 ± 0.210 9.2458 ±0.278 9.2222 ± 0.219

Ideally, the use of median filter should either lead to a lower testing error or it should not change

the testing error at all. If we compare the testing accuracy for MA-OR-R-MF-GP with rest of the

algorithms, we observe that the proposed method has superior performance for all the datasets.

This is an encouraging result since MA-OR-R-MF-GP comes with an added advantage of generating

models with optimal number of hidden units. The 10-fold testing accuracy clearly suggest that
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MA-OR-R-MF-GP is the best algorithm we’ve developed up to this point.

7.0.19 Improvements in inputs in MA training algorithms

The output reset (OR) algorithm discussed in chapter V eliminates inconsistent errors of problem

(L1) but is not designed to eliminate the consistent errors of problem (L2) that can become outliers.

In this section we develop a method for bounding consistent errors. We then formulate second order

algorithms for modifying input units.

Initialization

At this point, the MA-OR-R algorithm uses regression and OR to design MLP classifiers with errors

satisfying

0 ≤ t
′

p(ic)− yp(ic) <∞ (7.4)

and

−∞ ≤ t
′

p(id)− yp(id) < 0 (7.5)

In other words, inconsistent errors are bounded but consistent errors are unbounded and can still

cause problems. Platt [138] has shown the utility of using non linear output activations such as

sigmoids. We therefore choose to limit both consistent and inconsistent errors in a new training

stage by using sigmoidal input activations to bound network inputs as shown in figure 7.3. The

error for the linear classifier is

Esig =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)−Op(i)]2 (7.6)

where the classifier output yp is given as

y(i) =

N+1∑
n=1

w(i, n) · z(n) (7.7)

where

z(n) = f(a(n) · x(n) + b(n)) (7.8)

where f(·) denotes the sigmoid activation function. Esig can be larger than E
′

in (2.2) because yp(i)

equal to 0 or 1 results in z(i) equal to 1
2 or 1

1+e respectively. In order to mitigate this increase in

Esig, we map the linear input activations x to sigmoidal outputs z in equation (7.8)



CHAPTER 7. IMPROVEMENTS IN MLP ALGORITHM 63

Figure 7.3: Input sigmoids in linear network

where a and b are N dimensional vectors that are found such that Esig is minimized. We choose to

find the values of a and b using Newton’s method. To initialize, we use

a(n) =
1

ε+ σ(n)
, b(n) = a(n) ·m(n) where ε = 0.001 (7.9)

we use,

tp(i) = δ(i− ic(p)) (7.10)

and use OWO along with it.

Gradient Calculations

Given the error function in equation (7.6), we calculate the negative gradient vector gab = [ga : gb]
T .

Here the negative partial derivative ga is calculated as
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ga = −∂E
∂a

=
2

Nv

Nv∑
p=1

M∑
i=1

[t
′

p(i)− yp(i)]
∂yp(i)

∂a
(7.11)

and gb is calculated as

gb = −∂E
∂b

=
2

Nv

Nv∑
p=1

M∑
i=1

[t
′

p(i)− yp(i)]
∂yp(i)

∂b
(7.12)

We know that

z(n) = f([a(n) + za · ga(n)]xn + [b(n) + zb · gb(n)]) (7.13)

Applying MOLF to calculate the learning factor z = [za : zb]
T , the Hessian matrix elements will be

haa =
2

Nv

Nv∑
p=1

M∑
i=1

(
∂yp
∂za

)2 (7.14)

hab =
2

Nv

Nv∑
p=1

M∑
i=1

∂yp
∂za
· ∂yp
∂zb

(7.15)

hbb =
2

Nv

Nv∑
p=1

M∑
i=1

(
∂yp
∂zb

)2 (7.16)

The Hessian matrix is now assembled as:

H =

[
haa hab

hab hbb

]

The learning factor vector z is obtained by solving the following linear equations

H · z = gab (7.17)

The scaling factor a and b are then updated as

a← a + za · ga (7.18)

b← b + zb · gb (7.19)
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We denote this Newton-based input sigmoid algorithm as IS algorithm, which is described below

Algorithm 17 IS algorithm

Read the training data.
Calculate R and C using equation (3.6).
Solve equation (3.5) for the initial weight matrix W.
Initialize N1

it , it ← 0, C ← 0
while it < N1

it do
for p = 1 to Nv do

Calculate ga and gb .
end for
for p = 1 to Nv do

Calculate haa, hab, hbb.
end for
Solve for z using equation (7.17) and update a and b.
for p = 1 to Nv do

Use OR algorithm to process tp into t
′

p.

Update C by replacing tp by t
′

p in equation (3.6) as C ← C + xap (t
′

p)
T

Perform OWO.
end for
it ← it + 1

end while

Table 10.2 presents the results for the proposed modification of MLP on various datasets. We also

present the performance of median filter based pruning and compare it with the best reported results.

We can view input sigmoids is a type of normalization that converges the MLP quickly, so overall

training is fast. Since the inputs are now bounded well within the limits, the network weights are

easier to initialize and therefore it helps to reduce the sensitivity towards initial starting weights.

By shifting and scaling the inputs, we actually introduce a little noise into the model, and hence the

input sigmoids provides some regularization.

7.0.20 Final algorithm

We combine the IS algorithm with MA-OR-R-MF-GP algorithm to give our final algorithm denoted

by MA-OR-R-MF-GP-IS algorithm, which is described below.

Algorithm 18 MA-OR-R-MF-GP-IS algorithm

1: Read the training data.
2: Find a and b using IS and re-scale the training data.
3: Use the rescaled data to save the best sized Wo and Wi using MA-OR-R-MF-GP algorithm.

If we compare the testing accuracy, we observe that the proposed method has superior performance

for all the datasets. The 10-fold testing accuracy clearly suggests that MA-OR-R-MF-GP-IS is the
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Table 7.5: Comparision results for 10-fold testing accuracy results on single hidden layer MLP with
Nit = 100

Datasets MA-OR-R-MF-GP MA-OR-R-MF-GP-IS

Gongtrn 7.001 ±0.152 6.5789 ± 0.179
Comf18 14.1487 ±0.001 14.015 ±0.001
MNIST 3.2125 ±0.214 2.8965 ± 0.112
SVHN 3.8745 ± 0.124 3.2478 ± 0.127

CIFAR-10 6.998 ± 0.229 6.2147 ± 0.227
COVER 10.0258 ± 0.201 9.1245 ± 0.201

SECTOR 3.2478 ± 0.211 2.8789 ± 0.214
NEWS-20 8.4127 ± 0.017 8.2478 ± 0.019

Breast Cancer 9.2222 ± 0.219 9.1212 ± 0.217

best algorithm we’ve developed.



Chapter 8

Investigation and improvements in

deep autoencoders

We now incorporate all the improvement mentioned above into the deep neural network. During

the autoencoder training, we prune each layer thereby doing feature selection. Pruning with the

median filter ensures that the learning do not go into the saturation area of sigmoid thereby giving

us an overall improved feature generation and selection method. The improved initialization scheme

ensures that the reconstruction error is small and the compressed features are able to re-construct

back. The multi-class OR algorithm, helps us to classify the misclassified patterns and making sure

that none of the desired output remain in the linear region of sigmoid. this helps us to give a good

performance even if we use a mean square error criterion and a sigmoid activation function. Usually

for classification, cross entropy and softmax are preferred. We are working more towards finding

better algorithm that can surpass the performance of cross entropy based models.

While utilizing the improvements from the linear classifier we try to address an open problems in

MLP based neural networks which is to determine the depth of the deep learner. In a typical greedy

layer-wise training of deep learner [15], we train the first layer for a particular number of iterations

or if it’s within acceptable reconstruction error limits and then add a second layer to start the

training again and so on. On insight, the features obtained from the trained autoencoder are good

for reconstruction but since we want to classify these high level features, we go the required depth

to which this is feasible. In our work, we try to have a methodology where we automatically choose

the number of layers by using a linear probe. The linear classifier as described in chapter II are

used as linear probe to determine the depth of the deep learning network as shown in figure 8.1. At

each stage, the hidden units features are feed as input to a linear probe and the desired output are

67
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the labels. We calculate the feature classification error and stop when it increases. This gives us a

good indication as to whether we need to add more layer of autoencoder. The layer just before the

classification error increases is the required depth. Adding to this, we also have a maximum depth

limit set in case the linear probe. Although it works well for a good number of datasets, it suffers

from two major problems, firstly, it requires the labeled data for classification error and secondly,

the stopping criterion is not meet sometime causing it to create an extremely deep network that

brings its own computational burden with it.

Alternatively we also experimented with the nonlinear probe where we feed the hidden units features

into a non linear MLP to observe the MSE. We prefer using a linear probe over it because of speed

considerations and the intention here is to compare the MSE with the previous layer so as to decide

to add more trained layer of auto encoder.

In summary, we develop compact stacked autoencoder that are pruned to generate independent

features. We feed these features to better classification scheme in the supervised training step to

give a lower generalization error.

Figure 8.1: Linear probe in a deep neural network



CHAPTER 8. INVESTIGATION AND IMPROVEMENTS IN DEEP AUTOENCODERS 69

8.0.21 Linearity in deep learning features

In this subsection, our goal is to develop tools to evaluate the quality of features obtained through

various deep autoencoders. Our task is to investigate the linearity of the features that are obtained

from training stacked autoencoder. We are motivated by two results regarding autoencoder training.

In the first reported result [9] we see that if we use an autoencoder, without any non linearity and

a squared error loss, the autoencoder essentially perform KLT. Secondly as reported in [22], even

when a nonlinearity such as sigmoid us used in the encoder, obtaining KLT subspace is a likely

possibility since its possible to stay in the linear region of sigmoid. We therefore inspect the features

obtained from SAE and DAE where they are stacked to form the deep neural network. In this study,

we inspect the features with a series of experiments to verify our claim about linearity. For all our

experiments, we use MNIST dataset therefore, the linearity of the features that we report is with

respect to the MNIST.

Linear mapping of inputs to autoencoder features

In our first experiment, our goal is to see if the entire stacked autoencoder pipeline can be replaced

by a linear network. In order for it to work well, there should be a linear mapping between the raw

inputs and the features from the last layer of the trained stacked autoencoder. We then use the

testing data to produce features that are used as input to the fine tuned classifier to measure the

testing accuracy.
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We formalize our proposition that the features obtained from SAE and DAE are linear as follows

Algorithm 19 Linearity check for deep autoencoder features

1: Train each autoencoder in a greedy unsupervised method. Stack them and complete the training
with fine-tuning.

2: Pass the training data through the trained autoencoder layers and get the output feature vector
from the last layer of the auto encoder ( excluding the classifier). If l is the last layer of
autoencoder then the feature vector will be Ol

p.

3: Train a linear network with training input data as xp and target output as Ol
p.

4: Put the testing data through the trained linear network to obtain feature vector Olinear
p .

5: Feed the output of the linear network Olinear
p to the classifier that is trained and fine tuned in

Step 1.
6: Measure the testing accuracy.

Based on the algorithm 19, we present the experimental results in Table 8.1. The sparse deep

autoencoder and the denoising deep autoencoder have softmax classifier and cross entropy error

function as described in subsection 4.1.6 and our proposed deep autoencoder has MSE error function

and MLP classifier with initialization through Newton’s method as described in section Chapter V.

Table 8.1: Linearity test on features from deep autoencoders for MNIST dataset

Deep autoencoder model Deep autoencoder features Linear network features

Sparse deep autoencoder 1.6213 1.9852
Denoising deep autoencoder 1.2858 2.0719
Proposed deep autoencoder 3.6124 3.8247

We observe from Table 8.1 that the accuracy of the linear network features is very similar to the deep

autoencoder features. This observation implies that the features obtained from the deep autoencoder

can be mapped by a linear network. This is an interesting observation since even though the deep

autoencoder features are obtained through a hierarchical structure, there replaceability by a linear

network strongly suggests that the features are in a similar subspace as KLT. Since the accuracy is

not exactly same as by the deep autoencoders, one plausible explanation can be that the specific

projection direction of these features is in general not correspond to the actual principal direction

and it may not need be orthonormal.

Identifying linearity using coefficient of determination

In order to understand more about the features obtained by training a linear network as in previous

subsection, we apply the idea of coefficient of determination (COD) or R2. COD is a measure that

allows us to determine how certain one can be in making predictions from a certain model. The
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coefficient of determination is such that 0 ≤ R2 ≤ 1. It denotes the strength of the linear association

between two features obtained from trained autoencoders and the input vectors. COD represent

the percentage of the data that is closest to the line of best fit. For example if COD = 0.9580, that

means 95 % of the total variation in one feature can be explained by the linear relationship between

the two features. For ith output we calculate COD as follows,

COD(i) = 1− MSE(i)

σ2(Op
l)

(8.1)

Table 8.2 illustrates the mean COD value for all the outputs.

Table 8.2: COD for deep autoencoders for MNIST dataset

Deep autoencoder model first layer COD second layer COD third layer COD

Sparse deep autoencoder 0.9992 0.9996 0.9998
Denoising deep autoencoder 0.9918 0.9921 0.9935
Proposed deep autoencoder 0.9924 3.8247 0.9975

We see from Table 8.2 that almost all the features in each stage of the deep autoencoder are linear

and can be mapped by a linear network. This is an extremely important result in terms of the feature

quality. It also indicates that level of abstraction in deep learning features from deep autoencoders

need to be investigated in more detail.

8.0.22 Analysis of sparse autoencoders

In order to analyze more about the effect of regularization and sparsity parameter in deep sparse

autoencoders [130], we experimented with various combinations of the parameters that were used in

deep sparse autoencoder. Table 8.3 tabulates the results for the experiment.

Table 8.3 gives us surprisingly intriguing results. We see that the model has very low effect of

regularization and sparsity on the final testing accuracy and it is the fine tuning that gives the

model a boost in the performance.

Table 8.4 describes the results of combining various deep autoencoders with different classifiers.
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Table 8.3: Linearity experiments on MNIST dataset with Deep sparse autoencoder

Model parameters Petest (w/o fine tuning) Petest (with fine tuning)

λ = 0, λsoftmax= 0,
β= 0 ρ =0 87.00 97.30

λ 6= 0, λsoftmax= 0,
β= 0 ρ =0 89.27 97.41

λ 6= 0, λsoftmax 6= 0,
β= 0 ρ =0 73.76 98.39

λ 6= 0, λsoftmax= 0,
β 6= 0 ρ 6= 0 94.02 98.24

λ = 0, λsoftmax=0,
β 6= 0 ρ 6= 0 93.32 97.97

λ = 0, λsoftmax 6= 0,
β 6= 0 ρ 6=0 92.03 98.22

λ = 0, λsoftmax 6=0,
β= 0 ρ= 0 74.76 98.26

λ 6= 0, λsoftmax 6= 0,
β 6= 0 ρ 6=0 92.03 98.38

Table 8.4: 10 fold testing accuracy with various combinations of features and classifiers for MNIST

dataset

Feature + Classifier Initial configuration Petest Petest

(w/o fine tuning) (with fine tuning)

Sparse AE + Linear Classifier 784-200-200 10.3213 5.9712

Sparse AE + MLP Classifier 784-200-200 8.1611 2.7222

Sparse AE + Softmax Classifier 784-200-200 7.9701 1.6213

DAE + Linear Classifier 784-1000-1000-1000 8.9613 5.6387

DAE + MLP Classifier 784-1000-1000-1000 7.3127 3.2162

DAE + Softmax Classifier 784-1000-1000-1000 4.8420 1.2858

proposed deep AE + Linear Classifier 784-200-200 4.9981 ——

proposed deep AE + MLP Classifier 784-200-200 3.6124 —–

proposed deep AE + Softmax Classifier 784-200-200 2.8128 0.9713

We see from Table 8.4 that the MLP and linear classifier has a comparable performance and we are

currently working to improve it’s performance.



CHAPTER 8. INVESTIGATION AND IMPROVEMENTS IN DEEP AUTOENCODERS 73

8.0.23 Linear classifiers as probe

In order to determine the depth of the deep neural network, we use linear classifiers as probe that

measure the validation error Pev. We keep adding the layers until probability of validation error Pev

fails to decrease. Table 8.5 shows the results with the linear probe as well as with pruning in each

hidden layer.

Table 8.5: 10 fold testing accuracy results on improvements with pruning and linear probe for

proposed deep AE

Datasets Initial configuration Configuration Petest Petest

of AE after pruning (initial configuration) (after pruning)

Gongtrn 16-200-200-200 16-151-172 6.1110 4.8521

Comf18 18-300-300-200 18-168-190 11.7844 13.6714

MNIST 784-400-400-300 784-187-201-243 4.8981 3.6124

Google-SV 1024-500-500-500 1024-387-424-428 2.8413 2.1143

CIFAR-10 1024-500-500-500 1024-358-462-442 6.8524 4.8674

STL-10 9216-4000-1000-500-300 9216-3416-880-488 26.1424 25.8674

We finally present our results with better initialization scheme and improved pruning in Table 8.6.

Table 8.6: 10 fold testing accuracy of proposed deep autoencoder

Datasets LC Single layer Proposed Sparse Denoising Best-result

MLP deep AE AE AE reported

Gongtrn 9.4667 7.9406 4.8521 4.9991 4.9001 —–

Comf18 17.1843 15.1117 3.6714 14.7113 14.8527 —–

MNIST 5.0765 5.0765 3.6124 1.6213 1.2858 0.2100

Google-SV 4.4058 3.9671 2.1143 1.8824 1.8876 1.6900

CIFAR-10 8.4106 5.8187 4.8674 4.1621 4.6140 3.4609

STL-10 30.6715 27.8619 25.8644 26.8924 25.9940 25.6712

As we see that our proposed deep autoencoder has comparatively lower accuracy, however, it is

not as different from the other two deep autoencoders. The best result reported is consisting of

algorithms that are based on various other deep learning variants. We enumerate the reasons for

our lagging performance below:

1. The validation data is not combined to get a final trained network. It means that we are
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training with less number of patters as compared to other algorithms.

2. We have not included fine-tuning in our model. This implies that our model performance is

compared with other algorithms that already have been fine-tuned. If we remove the fine-

tuning and compare the performance, then our proposed deep autoencoder is far better than

other algorithms.
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Proposed Auto encoder theory

Based on the theory of [74], [22], we now show a formal proof as to how the features of AE are linear

and equivalent of a KLT mapping.

9.0.24 Proof for linearity of AE features

Theorem 1: An Auto encoder with zero valued training error (Etr) is linear.

Proof : Let each auto encoder layer include the constant basis function as O(Nh+1) = 1 and y(N+1)

= 1. Here y ∈ <(N+1)×1 , Wo ∈ <(N+1)×(Nh+1) and O ∈ <(Nh+1)×1 and Nh < N . Now O can be

found from y as

O = B · y where B = (WT
o Wo)−1WT

o (9.1)

Now rank(B) = (Nh + 1) . Since Etr = 0 means y = x and O = B · x so O is a linear function of x

Theorem 2: An autoencoders has an infinite number of solutions

Proof : The net function vector for the hidden units is as follows:

O = A ·W ·X (9.2)

where A is any Nh × Nh non singular matrix. The input weight matrix is A ·W The actual output

y can be written as

y = Wo ·A ·W ·X (9.3)
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Since the number of inputs is equal to the number of outputs and from Theorem 1, we know that :

Wo ·W ·X = B ·A ·W ·X (9.4)

This leads to

Wo = B ·A (9.5)

therefore the output weight matrix is B is

B = Wo ·A−1 (9.6)

Since there are infinite number of A matrices, therefore it can have infinite number of solutions.

Theorem 2: As from [47], optimal features for compressing x that satisfy information storage

property are not optimal for classifying x that do not minimize the classification accuracy.

Training a deep learner is a two stage process. When we train each autoencoders, that is approxi-

mately linear and has infinite number of solutions which are all equally good for reconstruction of the

inputs. This is compression for reconstruction and not compression for classification. As we connect

and train the classifier keeping the input weights fixed for the autoencoders, the classifier learns how

to convert the linear feature of compression for approximation into linear feature of compression for

classification for a minimum classification error. Later fine tuning enables it to improve further. We

can break down the training of autoencoder in two stages.

Stage 1 : First compress the inputs. without destroying useful information. As from information

storage property, this is a linear operation. After training an autoencoder, we get a KLT matrix

times a non singular matrix of size Nh × Nh. It has infinite number of equally good solutions.

Stage 2: In second stage we want a feature extraction that is good for classification. It is initially

achieved by using softmax classifier and then fine tuning. This stage helps the stacked autoencoder

to change it’s linear transformation and weight change in softmax classifier. In essence, this stage

converts the features for compression to the features for classification.

In summary, our goal is to generate feature that are good for classification in two stages. First it’s

compression and then linearly convert those features for classification. We do compression first since

its easy and you squeeze a lot of information, although your real goal is to classification.
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9.0.25 KLT and Linear Mapping

An important question that arises here is that if an autoencoders is linear then why

does it have stacked layers ?

We now explain the reason as follows. As in equation (()9.2), we don’t have A and W separately,

so if we try to delete one row of A · W, we still have the same matrix. On the side note, the entire

A · W matrix is damaged if W was a real KLT matrix. we don’t have the KLT matrix separately

so when we delete row from A · W, that’s not equal to deleting the row from W. A ·W has same

reconstruction capability as W. Since we have B ·W ·A−1, if we delete any row for A ·W to make

it A
′ ·W′

we change all row for W.ie

A
′
·W

′
6= A ·W (9.7)

Now a logical question can be that if an autoencoders is simply a KLT transform then

why not delete features from each layer.?

This is because throwing away hidden units from an auto encoder is not going to give a KLT. That

is why an autoencoders change the number of features to get the minimum training error. Each

layer of autoencoders is linearly transforming the KLT matrix, i.e. each auto encoder is designing

its own A ·W. If we have W then we know how to remove the features by deleting the last row ot

if but since we don’t have W we are unable to do it. An autoencoders designs the A ·W matrix

and not W matrix. In the second layer of the autoencoders, we transfer the information of A ·W
by multiplying it by a new matrix that reduce the feature size vector as

A
′
·Wreduced (9.8)

where Wreduced is a reduced size KLT matrix.
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Experimental results

In this section, we first compare 10 fold testing performances of GLC-Newton with those of linear

classifiers such as linear SVM [44] [86], SDM-CS [75], sigmoidal SVM (Sig-SVM) [138], and with the

IRLS generalized linear classifier [151].

Table 10.1: 10-fold testing error % results for GLC-Newton and other algorithms

Datasets GLC-Newton LIBLINEAR IRLS SDM-CS Sig-SVM

Gongtrn 9.4567 ± 0.004 13.8674 ± 0.001 12.5789 ± 0.004 13.7895 ± 0.004 11.0254 ± 0.007

Comf18 17.1813 ± 0.27 25.6671 ± 0.34 21.8746 ± 0.29 20.0145 ± 0.32 21.0478 ± 0.31

MNIST 4.0775 ± 0.15 9.4306 ±0.18 5.2874 ± 0.29 8.2472 ± 0.42 7.0874 ± 0.17

SVHN 4.4158 ± 0.22 9.8753 ± 0.35 5.2864 ±0.26 8.2578 ± 0.31 7.3278 ± 0.13

CIFAR-10 8.4176 ± 0.85 11.0483 ± 0.79 10.2578 ± 0.94 10.8745 ± 1.01 10.7954 ± 0.92

COVER 15.0121 ± 0.47 19.2342 ± 0.59 18.2302 ± 0.54 18.3109 ± 0.78 16.1487 ± 0.25

SECTOR 6.1120 ± 0.99 6.1998 ± 1.02 7.2138 ± 1.09 7.9873 ± 0.97 6.1333 ± 1.11

RCV1 8.1203 ± 0.72 10.1245 ± 0.82 11.3958 ± 0.94 11.2344 ± 0.81 9.2547 ± 0.65

NEWS-20 13.6705 ± 0.19 15.2875 ± 0.24 14.7894 ± 0.21 15.1785 ± 0.22 14.8794 ± 0.17

Breast Cancer 10.9382 ±0.25 15.2472 ± 0.64 14.5873 ± 0.32 13.4785 ± 0.01 14.9871 ± 0.58

From Table 10.1, we see that GLC-Newton consistently performs better than the other techniques.

For smaller dimensional, uncorrelated datasets (Gongtrn and Comf18) GLC-Newton gives the best

performance. One reason of the better performance for GLC-Newton is that the pruning algorithm

removes useless inputs that damage the performance of the other algorithms. For object recog-

nition datasets (MNIST, SVHN, CIFAR-10), linear dataset (Breast Cancer) and text recognition
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datasets (RCV1 and NEWS-20), GLC-Newton performs better due to the second order algorithm

that suppresses consistent and inconsistent errors.

Next, we compare the 10 fold testing performance of MA-OR-R-MF-GP-IS with non-linear classifier

such as softmax classifier [130], standard MLP [66], non linear SVM [37] and RBF classifier [171].

We later use MOLF-Adapt-MF as a classifier in a deep learning architecture for various datasets.

10.0.26 Shallow classifiers

While comparing MA-OR-R-MF-GP-IS with other nonlinear classifiers, we set the initial hidden

units as 2 for all the datasets. For MA-OR-MF-GP-IS, we used 30% of training data as validation

data.

Table 10.2: Comparision results for 10-fold testing % results for MA-OR-R-MF-GP-IS with com-

paring algorithms

Datasets MA-OR-R- Softmax Nonlinear RBF CG

-MF-GP-IS SVM

Gongtrn 6.5789 ± 0.179 9.1578 ± 0.145 14.2231 ±0.104 8.8652 ±0.121 8.4785 ± 0.147

Comf18 14.015 ± 0.001 18.6321 ±0.001 21.3429 ±0.002 19.2283 ±0.010 18.9871 ± 0 006

MNIST 2.8965 ± 0.112 7.4503 ±0.221 11.2346 ±0.227 9.9987 ± 0.229 8.9654 ±0.247

SVHN 3.2478 ± 0.127 6.9541 ±0.197 10.2312 ± 0.139 9.3428 ± 0.167 8.7891 ± 0.167

CIFAR-10 6.2147 ± 0.227 8.3328 ±0.297 13.5453 ± 0.671 11.2396 ± 0.347 10.9987 ± 0.336

COVER 9.1245 ± 0.201 11.1478±0.214 14.2487 ± 0.210 12.4785 ± 0.241 12.1478 ± 0.200

SECTOR 2.8789 ± 0.214 3.8978 ± 0.252 4.2141 ± 0.201 4.2017 ± 0.201 4.1245 ± 0.222

NEWS-20 8.2478 ± 0.019 10.2547 ± 0.014 12.0214 ± 0.014 10.3257 ± 0.012 10.9874 ± 0.017

Breast Cancer 9.1212 ± 0.217 10.1114 ± 0.214 13.2547 ± 0.211 13.0101 ± 0.210 12.8795 ± 0.214

Claimbuster 14.2158± 0.024 14.9874 ± 0.021 17.6589 ± 0.021 16.1248 ± 0.022 15.6987 ± 0.021

Simulation results show that MA-OR-R-MF-GP-IS generalizes much better than other comparable

algorithms. This is because the proposed algorithm offers a model flexibility that adapts itself to

capture the inherent data structure.

10.0.27 Deep learning classifiers

We now demonstrate the MA-OR-MF-GP-IS algorithm performance as replacement classifier in

deep learning framework and compare it with pre-existing classifiers in stacked autoencoder [102],
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convolutional network [98]. For claimbuster dataset [63], features are extracted using Alchemy API

[?]. In our experiment, we use the claimbuster data along with a deep stacked autoencoder that we

designed for this problem. We pre-process the data by removing the zero column feature vector and

then splitting the data into 80%, 10% and 10% as training, validation and testing respectively. We

use principal component analysis to reduce the input dimension from 5413 to 1000. We compare

the above results with deep autoencoder (DAE) along with softmax classifier as in [102]. For our

final experiment, we use MA-OR-R-MF-GP algorithm to built and prune the deep autoencoder

(DAE-prune). A 2 hidden layer deep stacked autoencoder with 800 and 500 hidden units in first

and second layer respectively is trained for 500 iterations. The deep learner features are then feed

into the proposed MA-OR-R-MF-GP-IS classifier with 300 hidden units. Pruning the hidden units

makes a 232 hidden units. The results are presented in Table 10.5. Table 10.4 presents the results.

The precision, recall and F-measure value are given in Table 10.3

Table 10.3: 5-fold testing error % results for claimbuster dataset using SVM

Precision Recall F-measure

NFS 0.90 0.96 0.93
UFS 0.65 0.26 0.37
CFS 0.79 0.74 0.77

For claimbuster dataset [63], features are extracted using Alchemy API and SVM is used as classifier.

In our experiment, we use the claimbuster data along with a deep stacked autoencoder that we

designed for this problem. We pre-process the data by removing the zero column feature vector and

then splitting the data into 80%, 10% and 10% as training, validation and testing respectively. We

use principal component analysis to reduce the input dimension from 5413 to 1000. We compare

the above results with deep autoencoder (DAE) along with softmax classifier as in [102]. Table 10.4

presents the results.

Table 10.4: 5-fold testing error % results for claimbuster dataset using DAE-Softmax

Precision Recall F-measure

NFS 0.92 0.96 0.90
UFS 0.45 0.42 0.44
CFS 0.80 0.81 0.78

For our final experiment, we use MA-OR-R-MF-GP-IS algorithm to built and prune the deep au-

toencoder (DAE-prune). A 2 hidden layer deep stacked autoencoder with 800 and 500 hidden units

in first and second layer respectively is trained for 500 iterations. The deep learner features are then

feed into the proposed MOLF-Adapt-MF classifier with 300 hidden units. Pruning the hidden units

makes a 232 hidden units. The results are presented in Table 10.5.
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Table 10.5: 5-fold testing error % results for claimbuster dataset using DAE-MA-OR-R-MF-GP-IS

Precision Recall F-measure

NFS 0.95 0.94 0.95
UFS 0.57 0.66 0.61
CFS 0.85 0.83 0.84

Unlike claimbuster, rest of the datasets have balanced classes. For MNIST [99], we divided the

dataset into 60,000 training samples out of which 12,000 samples are used in validation. A test set

of 10,000 samples ar used as testing data. A 2 layer deep stacked autoencoder (DAE) with 200

hidden units in each layer, is trained with 300 iterations and the MA-OR-R-MF-GP-IS algorithm

with 200 hidden units is used to classify. After training, the features in autoencoder are pruned

to 182 and 162 in first and second layer respectively. Similarly hidden units are pruned to 158 in

MA-OR-R-MF-GP-IS classifier. A 2 layer deep stacked autoencoder described in [102] with 200

hidden units in each layer is used with softmax classifier for comparison. In Table 10.6, we see that

DL based on MA-OR-R-MF-GP-IS classifier performs slightly better than the comparing softmax

classifiers. One reason only a slight improvement is due to the linearity in the CNN and DAE

features that are feed into the classifier. Similar results are obtained for Google street view housing

numbers (SVHN ) [129], CIFAR-10 dataset [90] and Scrap dataset.

For the object detection datasets MNIST, SVHN, CIFAR, Scrap, a pre-trained Inception v3 [168]

is used in Keras [33]. Inception v3 is a deep CNN model that is trained from the 2012 ImageNet

large visual recognition challenge. This network is trained with mini-batch gradient descent with

the AdaDelta optimizer.

Table 10.6: 10-fold testing error % results using DAE-prune-MOLF-Adapt-MF

Dataset Inception v3- Inception v3- DAE- DAE-

Softmax MA-OR-R-MF-GP-IS Softmax MA-OR-R-MF-GP-IS

MNIST 0.9814±0.122 0.9718± 0.134 1.9857 ± 0.041 1.0434 ± 0.041

SVHN 2.5478 ± 0.113 1.2478 ± 0.132 2.9871 ± 0.267 2.4478 ± 0.362

CIFAR-10 5.2574±0.247 5.12478 ±0.127 5.7478 ± 0.217 5.2147 ± 0.281

Scrap 12.3587 ±0.141 9.9775 ± 0.154 12.9217 ± 0.322 12.8049 ± 0.128

COVER NA NA 8.6274 ± 0.200 8.4210 ± 0.200

SECTOR NA NA 1.4458 ± 0.219 1.2147 ± 0.222

NEWS-20 NA NA 7.6581 ± 0.104 7.3478 ± 0.121

Breast Cancer NA NA 8.2222 ± 0.214 8.1478 ± 0.214

Claimbuster NA NA 11.0817 ± 0.021 10.24784 ± 0.021
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From Table 10.6, we see that the Inception v3 based deep learners are good for object recognition

and DAE are good in capturing the language model as in Claimbuster and NEWS-20. For SECTOR

and Breast Cancer datasets, which are nonlinear, the DAE-MA-OR-R-MF-GP-IS is slightly better

than the DAE-Softmax classifier. Overall replacement classifier is better than traditional softmax

classifier.
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Conclusions

In the present dissertation, we analyzed the deep autoencoders and made following contributions.

1. We have improved the performance of a linear classifier and propose multiple modifications

that performs better than commercial package.

2. We have developed smaller MLP’s with better generalization error.

3. We developed an alternate pre-training algorithm for deep learning models

4. We demonstrated an efficient automatic scheme to estimate the number and size of hidden

layers in MLP.

5. We discovered ( or re-discovered) the linearity of many datasets with the AE based deep

learning models.

6. We discover the necessity for non linear classifiers in deep learning.

In this dissertation we have pointed out the pervasiveness of linear applications and the shortcomings

in existing linear classifiers. We have then developed a new multi-step approach for linear classifier

design which requires no user chosen parameters. The OR algorithm in the first step solves the

problem of inconsistent errors, where outputs are better than expected. The pruning algorithm

in the second step knocks out useless and dependent inputs thereby reducing the size of the linear

classifier and decreasing the effects of over-training. In the last step, the linear network is mapped to

a GLC and trained further using Newton’s algorithm. This step limits the effects of large consistent

errors. Using several widely available datasets, we have shown that our proposed algorithm results

in a classifier with significantly smaller 10 fold testing errors than those seen in existing linear and

generalized linear classifiers. In the future, we plan to extend GLC-Newton to the case of softmax
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activations and the cross entropy error measure.We will also try GLC-Newton as a method for

improving output weights in nonlinear classifiers.

We then turn our attention to make several incremental improvements to MOLF based classifiers.

The pruning algorithm deletes the useless and dependent inputs thereby reducing the size of MOLF

classifier and decreasing the effects of over-training. Regularization reduces over-training when

the input dimension is large compared to the number of patterns. Weights for less useful inputs

are reduced in size. The median filtering pruning in the third step further improves the pruning

algorithm to delete more useless hidden units. Further sizing improvements of growing and pruning

algorithm decrease the model size significantly without perturbing the testing performance. In the

last step, input sigmoids are added to the algorithm to prevent the effect of outliers. Using several

widely available datasets, we have shown that our proposed algorithm results in a classifier with

significantly smaller 10 fold testing errors than those seen in existing nonlinear and deep learning

classifiers. In the future, we plan to extend MA-OR-R-MF-GP-IS algorithm to include a K-fold

validation and testing technique that fuses the K optimal networks into one.

All the above improvements in linear and non linear design are then directly incorporated into

deep learning models. We first propose a new deep autoencoder with automated depth that is

gives a solution to horizontal optimization problem in deep learning models. We use our classifiers

as replacement classifiers and demonstrate a better performance than existing classifiers in deep

learning.
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Datasets

Below is the dataset we use to evaluate our work till now Description of datasets goes here

Table A.1: Specification of datasets

Datasets Nv N M Nv (train) Nv (validation) Nv (test)

Gongtrn 3000 16 10 2000 1000 1000
Comf18 12392 18 4 10000 2392 1000
MNIST 60000 784 10 50000 10000 10000
SVHN 73257 1024 10 73257 26032 26032

CIFAR-10 60000 1024 10 50000 10000 10000
COVER 581012 54 2 406700 110000 64312

SECTOR 6412 55197 105 4000 1000 1412
RCV1 531742 47236 103 400000 100000 31742

NEWS-20 15935 62061 20 8000 4000 3935
Breast Cancer 990 40 2 690 200 100

A.0.28 Gongtrn dataset

The geometric shape recognition data file [180] consists of four geometric shapes, ellipse, triangle,

quadrilateral, and pentagon. Each shape consists of a matrix of size 64*64. For each shape, 200

training patterns were generated using different degrees of deformation. The deformations included

rotation, scaling, translation, and oblique distortions. The feature set is ring-wedge energy (RNG),

and has 16 features.

85



APPENDIX A. DATASETS 86

A.0.29 Comf18 dataset

The training data file is generated from segmented images [8]. Each segmented region is separately

histogram equalized to 20 levels. Then the joint probability density of pairs of pixels separated by a

given distance and a given direction is estimated. We use 0, 90, 180, 270 degrees for the directions

and 1, 3, and 5 pixels for the separations. The density estimates are computed for each classification

window. For each separation, the co-occurrences for for the four directions are folded together to

form a triangular matrix. From each of the resulting three matrices, six features are computed:

angular second moment, contrast, entropy, correlation, and the sums of the main diagonal and the

first off diagonal. This results in 18 features for each classification window.

A.0.30 MNIST dataset

The digits data used in this book is taken from the MNIST data set [99], which itself was constructed

by modifying a subset of the much larger data set produced by NIST (the National Institute of

Standards and Technology). It comprises a training set of 60,000 examples and a test set of 10,000

examples. Some of the data was collected from Census Bureau employees and the rest was collected

from high-school children, and care was taken to ensure that the test examples were written by

different individuals to the training examples. The original NIST data had binary (black or white)

pixels. To create MNIST,these images were size normalized to fit in a 20 20 pixel box while

preserving their aspect ratio. As a consequence of the anti-aliasing used to change the resolution of

the images, the resulting MNIST digits are grey scale. These images were then centered in a 28 28

box. Examples of the MNIST digits are shown in Figure A.1. This dataset is a classic within the

machine learning community and has been extensively studied.
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Figure A.1: One hundred examples of the MNIST digits chosen at random from the training set

A.0.31 Google street view dataset

The Google street view housing numbers (SVHN) [129] is a real-world image dataset for developing

machine learning and object recognition algorithms with minimal requirement on data preprocessing

and formatting. It can be seen as similar in flavor to MNIST (e.g., the images are of small cropped

digits), but incorporates an order of magnitude more labeled data (over 600,000 digit images) and

comes from a significantly harder, unsolved, real world problem (recognizing digits and numbers in

natural scene images). SVHN is obtained from house numbers in Google Street View images.
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Figure A.2: Fifteen examples of the SVHN chosen at random from the training set

A.0.32 CIFAR dataset

The CIFAR-10 dataset [90] consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five

training batches and one test batch, each with 10000 images. The test batch contains exactly 1000

randomly-selected images from each class. The training batches contain the remaining images in

random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class.
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Figure A.3: One hundred examples of the CIFAR images chosen at random from the training set

A.0.33 STL-10 dataset

The STL-10 dataset [36]is an image recognition dataset for developing unsupervised feature learning,

deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 dataset but with some

modifications. In particular, each class has fewer labeled training examples than in CIFAR-10, but a

very large set of unlabeled examples is provided to learn image models prior to supervised training.

The primary challenge is to make use of the unlabeled data (which comes from a similar but different

distribution from the labeled data) to build a useful prior. The 10 classes are airplane, bird, car, cat,

deer, dog, horse, monkey, ship, truck. All the images are colored with 96x96 pixels. This includes

500 training images (10 pre-defined folds), 800 test images per class and 100000 unlabeled images

for unsupervised learning. These examples are extracted from a similar but broader distribution of

images. For instance, it contains other types of animals (bears, rabbits, etc.) and vehicles (trains,

buses, etc.) in addition to the ones in the labeled set.
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Figure A.4: One hundred examples of the STL-10 images chosen at random from the training set

A.0.34 COVER

This dataset [18] is contains forest cover type for a given observation (30 x 30 meter cell) that

was determined from US Forest Service (USFS) Region 2 Resource Information System (RIS) data.

Independent variables were derived from data originally obtained from US Geological Survey (USGS)

and USFS data. Data is in raw form (not scaled) and contains binary (0 or 1) columns of data for

qualitative independent variables (wilderness areas and soil types).

A.0.35 RCV1

Reuters Corpus Volume I (RCV1) [107] is an archive of over 800,000 manually categorized newswire

stories made available by Reuters, Ltd. for research purposes. The dataset is extensively described

in [1].
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A.0.36 NEWS-20

The 20 Newsgroups dataset [122] is a collection of approximately 20,000 newsgroup documents,

partitioned (nearly) evenly across 20 different newsgroups. The 20 newsgroups collection has become

a popular data set for experiments in text applications of machine learning techniques, such as text

classification and text clustering.
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Training weights by orthogonal

least squares

In the current work, we use orthogonal least square method to solve for the output weights, pruning

of hidden units and deciding on the number of hidden units in a deep learner. an orthogonal least

square method is a transformation of the set of ¡ ¡ ¿¿ ¿ into a set of orthogonal basis vectors thereby

measuring the individual contribution to the desired output energy from each basis vector.

In an autoencoder, we are mapping from an (N+1) dimensional augmented input vector to it’s

reconstruction in the output layer. The output weight matrix Woh ∈ <N×Nh and yp in elements

wise will be given as

yp(i) =

N+1∑
n=1

woh(i, n) · xp(n) (B.1)

To solve for the output weights by regression , we minimize the reconstruction error as in (2.2). In

order to achieve a superior numerical computation, we define the elements of auto correlation R ∈
<Nh×Nh and cross correlation matrix C ∈ <Nh×M as follows :

r(n, l) =
1

Nv

Nv∑
p=1

Op(n) ·Op(l) c(n, i) =
1

Nv

Nv∑
p=1

Op(n) · tp(i) (B.2)
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Substituting the value of yp(i) in (2.2) we get,

E =
1

Nv

Nv∑
p=1

M∑
m=1

[tp(m)−
Nh∑
k=1

woh(i, k) ·Op(k)]2 (B.3)

Differentiating with respect to Woh and using (B.2) we get

∂E

woh(m, l)
= −2[c(l,m)−

Nh+1∑
k=1

woh(m, k)r(k, l)] (B.4)

Equating (B.4) to zero we obtain a M set of Nh + 1 linear equations in Nh + 1 variables. In a

compact form it can be written as

R ·WT = C (B.5)

By using orthogonal least square, the solution for computation of weights in (B.5) will speed up. For

convineance, let Nu = Nh+1 and the basis functions be the hidden units output O ∈ <(Nh+1)×1 aug-

mented with a bias of 1. For an unordered basis function O of dimension Nu , the mth orthonormal

basis function O
′

is defines as ¡¡ add reference ¿¿

O
′

m =

m∑
k=1

amk ·Ok (B.6)

Here amk are the elements of triangular matrix A ∈ <Nu×Nu

For m = 1

O
′

1 = a11 ·O1 a11 =
1

‖O‖
=

1

r(1, 1)
(B.7)

for 2 ≤ m ≤ Nu, we first obtain

ci =

i∑
q=1

aiq · r(q,m) (B.8)

for 1 ≤ i ≤ m− 1. Second, we set bm = 1 and get

bjk = −
m=1∑
i=k

ci · aik (B.9)



APPENDIX B. TRAINING WEIGHTS BY ORTHOGONAL LEAST SQUARES 94

for 1 ≤ k ≤ m− 1. Lastly we get the coeffeicent Amk for the triangular matrix A as

amk =
bk

[r(m,m)−
∑m−1
i=1 c2i ]

2
(B.10)

Once we have the orthonormal basis functions, the linear mapping weights in the orthonormal system

can be found as

w
′
(i,m) =

m∑
k=1

amkc(i, k) (B.11)

The orthonormal system’s weights W
′

can be mapped back to the original system’s weights W as

w(i, k) =

Nu∑
m=k

amk · w
′

o(i,m) (B.12)

In an orthonormal system, the total training error can be written from (2.2) as

E =

M∑
i=1

Nv∑
p=1

[〈tp(i), tp(i)〉 −
Nu∑
k=1

(w
′
(i, k))2] (B.13)

Orthogonal least square is equivalent of using the QR decomposition [53] and is useful when equation

(B.5) is ill-conditioned meaning that the determinant of R is 0.
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learning and its applications to biology. PLoS Comput Biol, 3(6):e116, 2007.

[171] Kanishka Tyagi. Second order training algorithms for radial basis function neural networks.

Masters Thesis, 2012.

[172] Vladimir Vapnik and Rauf Izmailov. V-matrix method of solving statistical inference problems.

Journal of Machine Learning Research, 16:1683–1730, 2015.

[173] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting

and composing robust features with denoising autoencoders. In Proceedings of the 25th inter-

national conference on Machine learning, pages 1096–1103. ACM, 2008.

[174] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-

zagol. Stacked denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. Journal of Machine Learning Research, 11(Dec):3371–3408,

2010.

[175] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural

image caption generator. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3156–3164, 2015.

[176] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to

rank with joint word-image embeddings. Machine learning, 81(1):21–35, 2010.

[177] Jorg Wille. On the structure of the hessian matrix in feedforward networks and second deriva-

tive methods. In International Conference on Neural Networks, volume 3, pages 1851–1855.

IEEE, 1997.

[178] Robert C Williamson and Uwe Helmke. Existence and uniqueness results for neural network

approximations. IEEE Transactions on Neural Networks, 6(1):2–13, 1995.

[179] David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural

computation, 8(7):1341–1390, 1996.

[180] Hung-Chun Yau and Michael T Manry. Iterative improvement of a nearest neighbor classifier.

Neural Networks, 4(4):517–524, 1991.



BIBLIOGRAPHY 109

[181] Changhua Yu, Michael T Manry, Jiang Li, and Pramod Lakshmi Narasimha. An efficient

hidden layer training method for the multilayer perceptron. Neurocomputing, 70(1):525–535,

2006.

[182] David Zhang, Wangmeng Zuo, and Feng Yue. A comparative study of palmprint recognition

algorithms. ACM Computing Surveys (CSUR), 44(1):2, 2012.

[183] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:

Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on

Mathematical Software (TOMS), 23(4):550–560, 1997.

[184] Will Y Zou, Andrew Y Ng, and Kai Yu. Unsupervised learning of visual invariance with

temporal coherence. In NIPS workshop on deep learning and unsupervised feature learning,

volume 3, 2011.


