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ABSTRACT

A TWO STAGE EVENT BASED DATA DRIVEN CONTROLLER FOR

IMPROVED GRASPING OF AN ARTIFICIAL HAND

CHRISTOPHER EDWARD ABREGO, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Panos S. Shiakolas

Committee Members:

Alan Bowling

Kamish Subbarao

Kent Lawrence

Christopher McMurrough

The human hand is one of the greatest (if not the greatest) tool known to

mankind for grasping objects. So much so, that researchers have been investigating

the development of artificial biomimetic hands in an effort to mimic their functionality

and dexterity with the indent to apply the technology to various robotic platforms;

ranging from end effectors for industrial pick-and-place robotics, to upper-limb pros-

thetics, to humanoids. There are certain features that make this endeavor challenging

such as the mechanical design, actuation and sensorization, and functionality as well

as the interaction from both the view point of interacting with an end user and view

point of interacting with an environment.

v



At UT Arlington, the Manufacturing Automation and Robotic Systems lab

has developed a Human-Robot Interaction (HRI) software platform along with a 5-

finger 8-DOF biomimetic artificial hand (H2) for research purposes. This research

focuses on the grasping component of HRI. The aim of this research is to investigate

approaches and develop methodologies for autonomous to semi-autonomous object

grasping in physical space. Grasp research has progressed in the investigation of

pure kinematic grasping starting with a 5-finger 5-DOF hand (H1) to currently an

improved 5-finger 8-DOF artificial biomimetic hand with a dexterous 4-DOF thumb.

The method used for grasp pattern prediction is based on Artificial Neural Networks

trained with experimental data on the HRI platform. A methodology is developed for

the prediction of grasp patterns for objects of non-uniform geometric features based

on the object and artificial hand geometric dimensions. This information is used to

establish the normalized grasp and length ratios which do not discriminate on object

category and further allow for their integration in the training data sets for grasp

learning.

It was observed that pure kinematic grasping produced accurate predictions

based on object characteristics, however it was noticed that the there was an issue of

undergrasping which sometimes results in unsuccessful grasps. A two stage data/state

driven even based controller was proposed to address the unsuccessful grasp scenario.

The event based controller has been researched and developed to provide reliable

grasping on low compliant convex objects. The controller first stage follows a kine-

matic objective of properly positioning the fingers for grasping based on the object.

The final position of the fingers is predicted by a trained non-discriminatory 3-layer

Artificial Neural Network based on the characteristics of the desired object. The

controller second stage incorporates sensor information for torque/force feedback to

ameliorate “under” grasping and reliably hold the object. This controller has been
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verified with the H2 platform with an over 95% success rate and the controller algo-

rithm has also been shown to be transplantable by successfully performing on other

robotic hands such as the H1.
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CHAPTER 1

Introduction and Proposal

1.1 Human-Robot Interaction

The study of Human-Robot Interaction (HRI) seeks to improve, facilitate, and

expand the way we, humans, interact with robots. In recent history, robots have been

a topic of fascination, fear, wonder and inspiration, which has not only reflected itself

in popular culture, music and films, but also in academia, research, and industry. It

is important to get terms right, so one of the first questions that needs to be answered

before proceeding is, “what is a robot?”. The word “robot”, can be traced back to

have Czech origin, robota, which in Czech means servitude [4]. To do justice to the

origins of the word, and to not be ambiguous with language, the term robot will be

considered a physical agent with a primary objective of being assistive in nature.

Since the conception of robots and in the context of this research, there are some

general properties that still remain in all robots. For instance, robots are usually a

mechanical construction, composed of electrical communication and actuation, are

able to perform physical actions, are programmed to mimic human intelligence and

attempt to mimic anatomical components of a biological system (human and non-

human animals), hence the term biomimetic is used to categorize the types of robots

that are in scope of this research.

With the advancements in technology, robots have branched out into many

areas that were once only imagined. Robots have flourished in these areas because

they have proved to be a more reliable and effective solution than previous solutions.

Just to mention a few applications, robots can be found in manufacturing, assembly,
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medicine, rehabilitation, space exploration, tele-manipulation, prosthetics, assistive

living, and even entertainment applications such as theater stage actors, drink servers,

musicians and dancers [5].

Figure 1.1 shows the macro and micro level of this research. The top most layer,

robotics is the study of robots and a subcategory is HRI which seeks to improve and

facilitate communication with robots. This research will focus on machine learning

in autonomous grasping.

Figure 1.1: Sub branches of robotics and the area of scope concerned in this research.
Grasping begin a subset of human-robot interaction and human-robot interaction
being a subset of robotics.

Interaction modes between humans and robots have improved, with the ad-

vancement of technologies, and now there is a wide spectrum of modalities that can

fit almost any application. One can imagine the first types of interaction modes

were levers, buttons, and switches to have the robot perform a certain action. Later,

joysticks and mechanical manipulators were used to “drive” robots. Then, with the

development of computers, perhaps interaction shifted to keyboard and mouse inter-

face to interact and command the robot. The improvement of graphical user interfaces

(GUIs) have also improved interaction. To further improve tele-manipulation, modal-
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ities such as voice and gesture recognition to control a robot emerged. The desire for

tele-presence has motivated the development of modalities in the attempt to transport

the user (or the actions of the user) to a remote or alternative location to perform an

operation.

There are ways of interaction with robots, some more efficient than others

depending on the situation and application. For instance, some tasks require humans-

in-the-loop as opposed to complete robotic autonomy, such as robot assisted surgery

where cooperation combines benefits of both robotic precision and human judgment

[6, 7, 8]. On the other hand, there are repetitive and mundane tasks where robotic

automation will outperform humans. Among one of the subcategories of HRI is

grasping which depending on the application can be performed in an autonomous or

a cooperative operation.

It seems that the most fascinating modality is cognition or neural signals to

control robots. Cognitive remote control seeks, among other objectives, to facilitate

interaction for those humans who lack the natural faculties that previous interaction

modalities would require, such as arms, hands, legs, etc. With the increase in tech-

nology, one could wonder to the future advancements and potential for HRI. The

goal, from the beginning of HRI, has been to consider the robot a perfect communi-

cation partner to help carry out tasks. The goal is to reduce the residual effects of

communication, such as frustration, trust or disappointment which come from unmet

expectations, so that the user can focus more on task completion instead of the user

focusing on communication.
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1.1.1 Research Focus

The research that has been performed, and is proposed, aims to contribute

towards improving the current state of HRI in the branch of grasping. Contributions

in the field of HRI require knowledge in technologies and methodologies that will

enhance and facilitate communication and task execution. As a result, the discipline

of mechanical engineering alone is not enough and topics from electrical and computer

science are needed. It is also important to mention that one side of HRI research is

concerned with how the human operator interacts, hence there is also a subjective

dimension in HRI research, particularly of grasping with a high DOF biomimetic

hand.

In the vast spectrum of HRI and to further focus the scope of this research,

we consider a particular type of robot, biomimetic. The term biomimetic refers to a

robot that attempts to mimic the biological process of living organisms, particularly

humans. There is a natural tendency to anthropomorphise robots for the sake of

familiarity and comfort, but also for advantages in task execution [9]. However, there

are also negative connotations and potential anxiety that arises with anthropomorphic

robots [10]. In this research, the topic of HRI will be explored using an artificial hand

as a platform for research and hardware validation.

In terms of tele-manipulation and HRI research there are benefits in having

biomimetic hands, as opposed to nonhuman-like manipulators. Ciocarlie considered

the human hand the most versatile end-effector known [3]. Matter puts forth the

idea that multi-fingered hands provide for a unique sensing modality that cannot

be achieved with other manipulators [11]. This is accomplished by incorporating

position, force, tactile, and proximity sensors into the manipulator. Moreover, multi-

fingered hands also provide an opportunity to obtain information about the mechan-

ical and physical attributes of objects and tasks from a human reflection perspective.
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Likewise, in support of biomimetic hands, Li describes the efficiency of manipulation

through relatively fast and small motions of fingers [12]. Consider the wide variety

of motions and coordination that hands and fingers perform for instance when tying

shoe laces to peeling an orange to holding a spoon.

The line of research that has been investigated concerns the exploration and

improvement of HRI. Here, a biomimetic artificial hand will be the platform where

hardware execution and validation will be performed. The technologies incorporated,

as well as the design and control of HRI platforms will be investigated. It should be

noted that the focus of this research is not to develop a platform, but to contribute

to the body of knowledge in HRI in the category of machine learning decision making

for grasp execution.

1.2 Grasp Learning

The application of machine learning algorithms aims to improve grasping as

well as its understanding. Based on research conducted thus far with the biomimetic

artificial hand, it was proposed to investigate the application of machine learning algo-

rithms to improve grasping. Grasping will further be explored with the incorporation

of an improved thumb (in terms of dexterity and controllability) on the biomimetic

artificial hand and furthermore with the incorporation of an event based two stage

data driven controller. Figure 1.2 shows the previous and current artificial hand with

the improved controllable thumb.

Grasping is not a new field in robotics and neither is the desire to improve

grasping. The study of grasping can be performed in virtual space through a simula-

tion or in physical space. Furthermore, the study of grasping is limited by the hand

characteristics selected for grasping. For instance, a primitive (low quality, dexterity

and controllability) biomimetic hand will not be able to evaluate or assess the use of
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Figure 1.2: Comparison between two versions of the artificial hand, A) Previous
artificial hand (H1) with under-actuated thumb B) New artificial hand (H2) with
fully motorized thumb.

learning algorithms that require features that the physical artificial hand itself does

not poses. For instance, if it is proposed to develop an algorithm that improves power

grasping, however the physical biomimetic hand doesn’t have the dexterity or flexi-

bility to move the fingers accordingly, then no matter how complex and complete the

algorithm, it will not be able to perform better than the quality of the hand used

for investigation. Other limitations could be due to the lack of actuators for motion

and sensors for observation. Another example is that a normal (perpendicular) force

sensor embedded on the gripper will not be able to help observe the torque or vibra-

tion, similarly one motor will no be able to control the multiple degrees of freedom

of an under-actuated hand. This is very important to emphasize, hardware will limit

the capability and quality of a grasp, hence algorithms can only be effective up to

the point of hardware capabilities. A brief study of machine learning algorithms has

already begun for certain aspects of grasping. Grasping will focus on considering both

kinematics of the fingers of the artificial hand and force reaction upon contact.
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To help simplify grasping, Mason et al. researched synergies of the hand when

grasping a variety of objects [13]. Along the hypothesis that hand postures for grasp-

ing can be reduced to a few principal components, “eigenpostures”, Mason studied

postural synergies of the hand for different grasps. Using single value decomposition

analysis on the kinematic position of the user hand when grasping, it was found that

“eigenpostures” were similar across subjects and grasps.

Similarly, Ciocarlie et al. studied grasp synthesis considering low-dimensional

posture subspaces for an artificial hand [3]. The case is made that the added versatility

of anthropomorphic artificial hands has come with the cost of increased complexity.

Figure 4 in the Appendix shows the different grasp poses that result with different

hands and objects. As more mechanical components developed on the artificial hand,

so did the degrees of freedom. However, it is known that 80% of the variance in

hand postures are contained in two-dimensional subspaces, hence many hand postures

used for grasping have the same eigenpostures. Ciocarlie developed an optimization

algorithm for selecting and planning grasping.

Among some of the algorithms of choice to classify stability of grasping is by

using Gaussian Mixture Models (GMM). Note that in terms of grasping, stability is

a term used to characterize a grasp of an object where the risk of the object leaving

or slipping away from the hand is minimal. Huang et al. considered using GMMs to

facilitate real-time grasping in robots for HRI [14]. The GMM was chosen because

of its ability to effectively extrapolate missing data. To accomplish this, a three-step

approach was taken. The system computes a variety of stable grasps for a given

object, then computes the probability distribution of grasps based on the computed

grasps, and finally generates a grasp. About 1000 testing grasps were generated for

experimentation. In the experiments, grasps of complex objects had a success rate of

85%.
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Santello et al. studied the temporal synergies of hand movement and deter-

mined the influence of sensory cues to control these synergies [15]. Subjects were

asked to reach to and grasp various objects under experimental conditions. The mo-

tion of the arm and of the hand (15 degrees of freedom) were recorded. A principal

components analysis was developed to provide a concise description of the spatio-

temporal patterns underlying the motion. It was noted that having the participants

see the object during the reaching movement had no influence on the kinematics, and

the effect of the physical presence of the object became manifested primarily after the

fingers had contacted the object. After discriminant analysis, two principal compo-

nents accounted for more than 75% of the variance. For both components, there was

a strong positive correlation in the rotations of metacarpophalangeal and proximal

interphalangeal joints of the fingers. The first principal component exhibited a pat-

tern of finger extension reversing to flexion, whereas the second principal component

became important only in the second half of the reaching movement.

Dillmann et al. looked into programming by demonstration (PbD) of service

robots to simplify programming [16]. The goal was to transfer skills from a human

operator to a robotic manipulation system. Optimization techniques where used to

simplify processing observational data such as sensors and vision acquisition. To focus

on grasping, the user would wear a glove and grasp a variety of objects. Kinematic

and force data gathered from the glove sensors were then processed using artificial

neural networks to distinguish various grasps, such as power and precision grasps.

One of the most successful machine learning algorithms for classification is Sup-

port Vector Machines (SVM). Zollner et al. researched PbD for biomimetic robotic

manipulators, such as arms and hands [17] [18]. When classifying the motion of the

human hand and arm, support vector machine (SVM) classifiers were used to find

patterns and similarities in each grasp. Particularly, this task was performed using
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SVMlight to classify dynamic grasps. They found that the dynamic grasps corre-

sponded to twenty six classes. The training data set contained 2600 vectors and the

SVM classifier used 486 support vectors for classification.

Similarly, Dang et al. used machine learning for the perception and determi-

nation of stable grasps [19]. The only data that is used to determine a stable grasp

is tactile feedback and kinematic data that give the position and orientation of the

hand. A SVM is used to predict if the grasp is stable or not. They collected about

15000 robotic grasps from 936 objects across 23 different classes for training. Using a

Ferrari-Canny grasp metric [20], an error threshold quality was determined to estab-

lish if a grasp is stable or not. As a result of the SVM classifier, an overall accuracy

of about 70.4% was achieved.

By using a variety of machine learning algorithms, Laaksonen et al. investigated

grasp stability [21]. Laaksonen first considered reducing features of the robotic hand,

since there would be a total of about 169 to 241, depending on the hand used to prac-

tice. To reduce the amount of features, methods such as Partial Component Analysis,

Image Moments, Histogram using 10 bins, Spatial Partitioning, Local Binary Patterns

and Row Column sums were used. Next, grasping was considered as a classification

problem, the output would be classified as either stable or unstable. The different

classifiers used were SVMs, Gaussian Mixture Models (GMM), k -Nearest Neighbors

(KNN), and AdaBoost. After experimentation with 11 different data sets and all

dimensional reduction types and all classifiers, it was found that AdaBoost was the

best performing classifier with the highest success percentages.

Miller et al. researched and developed Graspit!, an open-source grasp simulator

that considers seven different manipulators to virtually grasp objects [22]. This pro-

gram helps visualize grasping and investigate how grasping will help. In the study,

Miller used the virtual Barrett Hand to investigate grasping. About 1600 grasps were
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simulated, consisting of 100 random roll and spread angle combinations. SVM re-

gression was used to create a mapping between object shape, grasp parameters and

the quality of grasp. Given these qualities as a fixed length vector, the SVM returns

a single scalar which estimates the quality of grasp.

Bekiroglu et al. used machine learning algorithms to assess grasping stability

based on haptic data from sensors [23]. They studied the planning stage of grasping

(the moments before grasping is executed) and the grasping stage (closed loop online

control). To do so, Bekiroglu considered grasp stability as a probability distribution

where grasp stability depends on different measure and known factors. Also, support

vector machines and AdaBoost are used to model the instantaneous model while

Hidden Markov models were used for the general time series case. Both AdaBoost

and SVM were used as classifiers for their probabilistic outputs regarding stability.

Moreover, the Hidden Markov models (HMMs) were generally used to represent stable

and unstable grasps.

HMMs have been used to recognize continuous grasping sequences to further

study grasping. Bernardin et al. recorded the motion of users and analyzed the

patterns recognized [24]. Programming by Demonstration was the motivation behind

the research, and HMMs were used in the data acquisition portion of the study,

using information from a data glove and tactile sensors. The commercially available

HMM toolkit Hidden Markov Model Toolkit (HTK) was used for recognition routines.

Grasping classification was achieved by separating grasps according to their purpose,

hand shape and contact points. The features for the HMM, 16 finger joint angle values

and the outputs were 13 pressure values. The system was able to fuse inputs from

two sensors, detect grasping phases while demonstrating and classified the different

grasps.
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Alternatively, Carrozza et al. did not use machine learning algorithms to control

the artificial hand developed, the CyberHand [25]. In the control of the artificial hand

was distributed There was a high and low level control architecture for grasping.

The high level control component looked into classifying and interpreting the users

intentions and suggest grasping initiatives. This command would then be sent to the

lower level control component, which would observer and correct the motion of the

actual hand, by using PID algorithms to control the motion of the motors actuating

the fingers.

Another method is to consider a hybrid approach and open the control field

to both motion (position) and force control, as opposed to only position control.

Raibert and Craig investigated using a hybrid system that considered both posi-

tion and force in robotic manipulation by using a two prong jaw manipulator and a

Scheinman force-sensing wrist[26]. The position control loop used a constant gain,

proportional-integral-derivative (PID) control law. Force control was achieved by

combining proportional-integral (PI) control with a saturation-type feedback limiter

and a simple feed-forward term. Zhang and Paul also looked into hybrid control of

both force and position [27]. Similarly, Khatib performed a similar analysis with a 2-

prong end-effector [28] [29]. The same concept of hybrid control eventually branched

out to biomimetic hands. Roccella and Zecca et al. developed a nine (DoF) 3 fin-

ger artificial hand with two motors, which was controlled with information from the

three dimensional force (Fx, Fy, Fz) sensors on the fingertip of the hand and encoder

position of the motors [30] [31].

There have been different grasping approaches based on various algorithms to

achieve a successful grasp, in either virtual or physical space. Machine Learning

(ML) algorithms have been useful for the prediction of values when a model of the

system is not available or hard to develop. In the broad field of ML algorithms, the
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main similarity is that it involves a learning process in which a predictive method

is improved by reducing the value of a cost function or reducing the error between

predicted and benchmark values.

Li et al. investigated grasping with the 3-finger Barrett hand and the 4-finger

hand under object shape uncertainty [32]. They developed a system where the system

takes into account the uncertainty of the object shape during the grasp planning and

execution stage. The process by which uncertainty is considered in the grasping

algorithm is that the shape uncertainty is parameterized using Gaussian processes

and incorporated as a constraint. Their algorithm was demonstrated in hardware on

a 4-finger Allegro hand to grasp objects such as a cylinder, spray bottle and a jug.

Fok et al. developed Recurrent Neural Networks (RNNs) for grasping force

optimization of multi-fingered (3-finger) hands [33]. The force optimization prob-

lem is formulated as nonlinear and the cost function is convex and subject to linear

equality constraints. Their algorithm was shown to converge to a force vector that

remained positive towards the normal direction of the object. Xia et al. considered

the problem of grasping with a multifingered robot as an optimization problem where

a cost (objective) function would need to be minimized considered a set of assumed

constraints such as object balance (external wrench) and finger force distribution

[34]. They used a RNN to solve their linear and nonlinear constraint equations and

they demonstrated that their solutions converged to an optimal grasping force. They

further demonstrated their results in simulation by successfully grasping polyhedral

objects of known weights with a 3-finger gripper.

The recent trend in grasping research has been in the area of coupling a vision

system to a robot with a simple (2 or 3-finger ) gripper as discussed by [35, 36, 37,

38, 39, 40, 41, 42, 43, 44] among others. This type of research focused on tripodal
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or 2-finger pinch grasp of various objects in a controlled area, such as a bin, box or

conveyor belt.

Using the Baxter robot, Lenz et al. researched the application of deep learning

using a 2-finger gripper and a vision system [45]. Images of the objects were acquired

and used in a two stage method to predict potential rectangles superimposed over

the object to be grasped. The rectangles would give the general gripper approach

orientation and location to the object for a successful grasp. They were able to

structure regularization in the deep neural net in order to learn features from the

images gathered. Similarly, Redmon et al. expanded on the bounding box method by

using five layers of Convolutional Neural Networks (CNNs) into the first five layers

of the prediction algorithm architecture [46]. Among one of their results is that their

approach performs classification so that in a single step it recognizes the object and

predicts a good grasp rectangle. Later, Kumra et al. further expanded the method

of prediction grasp rectangles for a parallel (2-finger) gripper using deep CNNs to

extract object features from an image [47]. Kerzel et al. researched the use of the

NICO (3-finger gripper) robot in a self-learning process where the input to the system

was a RGB image and after two convolutional layers of 16 filters and then two dense

layers of 900 neurons, the resulting output was the joint configuration of the robotic

arm (6 DoF) [48]. Guo et al. also employed the use of five CNNs, using max pooling

as a filter, and then used two fully connected layers with the two final outputs, one

for object discovery and the other for grasp representation [49]. Guo used the 4

DoF Barrett Hand (3-finger gripper) and a Microsoft Kinect camera for hardware

verification. They were able to discover and successfully grasp a desired target object

from a cluster of 15 or more objects and grasp it successfully.

What has been described till now has been methodologies where grasping was

performed in simulation or if in hardware, performed by a 2 or 3-finger gripper with
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low or basic finger complexity. However, researchers have also shown interest to

investigate grasping using biomimetic artificial hands. For a biomimetic hand, one of

the most important digits is the thumb since it plays a major role in object grasping

and manipulation, as described by Cotugno and Nanayakkara [50] [51]. Regoli et

al. used the iCub humanoid robot to implement a two level controller with the

addition of Gaussian Mixture Model (GMM) to predict the joint reference values and

object position [52]. Vicente et al. also researched manipulation using a method

based on position and visual feedback to demonstrate their importance in grasping

tasks [53]. Only few researchers have investigated similar research with reference to

Ku et al. who used the Robonaut-2 hand (5-fingers) and Huang et al. who used

a Dreamer Mekahand (5-finger underactuated) with the use of different Artificial

Neural Networks for grasp point predictions [54] [55]. The University of Bologna (UB)

hand has also been a platform for anthropomorphic grasping research and has made

major contributions in demonstrating effective grasps in hardware with Principal

Component Analysis of 36 hand configurations [56, 57, 58, 59]. Ficuciello et al. was

able to consider three predominant postural synergies which yields the entire reference

set of grasps defined for the 5-finger 12 DoF UB hand [57].

In summary, the proliferation of robots in society, industry, military, entertain-

ment, medicine, and education require efficient communication for interaction and

task execution. In the area of anthropomorphic grasping, this research will focus on

researching machine learning algorithms in an effort to more reliably grasp objects

with an anthropomorphic hand.

This dissertation document is organized in the following way. In Chapter 2,

initial research in the development of the hardware platform to be used in research

is discussed. Furthermore, initial research in grasp pattern prediction is elucidated

as a proof of concept, based on the hardware platforms developed (biomimetic hand
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H1 and H2) as well as their advantages pertaining to grasping research. In Chapter

3, the methodology, results, and conclusions of grasping investigation are discussed.

Afterwards, some of the limitations found with H1 are addressed with the second

iteration hand H2 in Chapter 4. To further address issues that arose with both H1

and H2, an event based controller was investigated and incorporated. The results

and discussion are described in Chapter 5. Then a summary all the investigations

and results are presented in Chapter 6. It is important to note that there is some

supplemental information such as tables and figures located in the Appendix.
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CHAPTER 2

Pre-Comprehensive Research

This chapter discusses research that has been conducted since the start of the

graduate career. The majority of research conducted builds upon the central area of

HRI, however, some research topics have gone above and beyond the current focus

of research. Consequently, a patent is being pursued in conjunction with the UT

Southwestern, regarding a medical diagnostic device developed. Research ranges from

vision feedback control to a rolling robot to the development of a HRI platform using

an artificial hand. The purpose of this chapter is to provide scholarship up to this

moment and quality of research and development of skills in software and hardware

needed for the proposed research.

2.1 Single Finger Platform

A paper was published in the ASME IMECE 2015 conference that goes into

more depth regarding the development, interaction and accomplishments with a single

finger platform, Abrego [60].

French designer, Gaël Langevin has developed a full body humanoid robot which

is open source so that hobbyists and researchers can download the stereo lithography

(stl) files and 3D print on their own [61]. A single finger was printed, along with

a holder for the motor and microcontrol board, as a proof of concept, presented in

Figure 2.1. The tendons of the finger were actuated with a servo motor, TowerPro

MG995, via NI LabVIEW software. A tendon, attached to the motor, runs through

the finger and is anchored at the tip of the finger. As a result, when the motor turns,
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the tendon is tensioned, resulting in the finger joints rotating. It is important to note

that the system in underactuated and the rotation of some joints depend on the full

rotation of previous joints. This is a result of having one actuator rotate 3 rotational

joints in series.

Figure 2.1: Single mechanical finger with force sensor on the second joint.

For the scope of this research, certain modalities were investigated, using a

single finger as a testbed, such as force control, holding action and voice control. A

single finger was employed to prove algorithmic concepts, however the end goal of this

research is to have a full hand (multiple fingers) perform grasping and manipulation

tasks.

As mentioned, the software used to interact with the single finger was National

Instruments LabVIEW. The user interacts with the front panel, which is a graphical

user interface. The front panel of the program is found in Figure 2.2. There is a

pull down menu where the user can select the desired interaction mode. There is a
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vertical slider where the user can control the angular motion of the motor. The user

can also observe the force experienced on the force sensors. The user can also observe

the voice command that the system recognized.

Figure 2.2: Front panel of the system in which the user interacts directly to control
the system.

To accomplish force control, the artificial finger was outfitted with a force sen-

sor, FSR 400 series from Interlink Electronics. The force sensor would provide an

indication of the force experienced by the finger. As the force on the sensor increases,

the resistance decreases, which in turn changes the voltage output of the sensor.

Initially, an Arduino control board was used for data acquisition and control sig-

nal execution1. However, a programming transition was then made from the Arduino

control board to the National Instruments myRIO. Decision making algorithms based

1Even though the Arduino board was utilized, no programming was completed in the native

Arduino language. All programming was completed in LabVIEW.
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on the force sensed were developed in the LabVIEW programming environment, so

that if a certain amount of force was experienced, then the motor would stop closing

the finger. For this, finite state machine algorithms were developed and programmed

in LabVIEW in order to perform the action of position or state holding at a desired

applied force.

Finite state machines can be explained as distinct and independent states and

their relation with each other. It is claimed that each motion of the artificial hand

can be decomposed to a combination of simple prime states of the hand. Static

and dynamic states of the artificial hand were categorized and established. For the

artificial hand to move from one state to another state, an action would need to be

executed. This helps visualize sequential actions that the hand must take in order to

complete a desired action from the user, which in turn will help the operator provide

coherent inputs to accomplish tasks.

Additionally, voice commands to interact with the single finger were explored.

Three commands were pre-programmed to be recognized in the LabVIEW program;

close hand, open hand, half hand. Close hand had the motor action command to

rotate the motor output shaft about 120◦, half hand would rotate the output shaft

about 60◦ and open hand would rotate the output shaft to 0◦. The software program

used for speech recognition was Windows Speech Recognition. Previously, there was a

program created to call windows speech recognition, capture the voice, then interpret

the utterance, all in LabVIEW [62]. This LabVIEW sub-program was used to actuate

the finger with voice commands.

The voice recognition system was first trained using Christopher Abrego’s voice2.

The training was completed by reading out-loud a series of short stories. Voice would

be captured with a desktop microphone and then correlated to the required text to

2In terms of demographics, Christopher is a Hispanic male who grew up in Texas.
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read. The voice control modality was able to successfully recognize and match the

utterance of the user with a specified motor action. To further test this modality,

14 people were asked to utter 21 commands3, in order to test the reliability of the

voice recognition program and command execution. The participants that were asked

to interact with the platform ranged from male and female as well as White, Black,

Hispanic, Arab, and Indian backgrounds, so a variety of accents were tested.

The participants were given a microphone to capture their voice and a series

of commands to recite 4. The number of times (i.e. the number of repeats) it took

the system to respond5 to the voice command were counted. The 21 command test

was performed in a quiet environment and also in noisy environment. The noisy

environment is characterized by playing background music. In total there were 588

commands spoken (14 participants asked to give 42 commands). The number of

times that it took the system to respond appropriately to the spoken command was

collected. For instance, if the system responded appropriately the first time the

command was issued, then 1 was inputed for that command, likewise, if the user had

to repeat the command three times, then 3 was inputed to the command. Therefore,

at the end of a test session with a participant, a 42 by 1 table had the number of

times it took for the system to recognize the command and execute motor functions

correctly.

Among the results, intuitively, the system responded better when there is no

noise compared to with noise. It was observed that the voice command half hand was

the most misinterpreted command and, on average, it required the most repetitions.

321 commands were spoken, consisting of close hand, half hand, and open hand. The voice

commands were ordered such that the successive commands would not repeat.
4Every participant was given the same number of commands in the same order
5By responding, the system had to accept and correctly interpret the command and perform the

appropriate mechanical motion.
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The reason behind this is could be because of the pronunciation of the word half. It

was noticed that some people pronounced it “haff” and others “halef”6” and others

“have”.

Moreover, it was observed that system was not sensitive to males or females,

nor accents based on backgrounds. It should be noted that the average number of

attempts for each trial in the case with no noise imposed was 1.241 and 1.439 for the

case where noise was imposed. Not only this, but among the 588 voice commands

spoken, only once was there a false command executed. This is important to point

out because in a practical application of this platform, executing a false command is

riskier than having to repeat a voice command.

Having to repeat a command assumes, in practice, that the finger is currently in

a acceptable state but needs to transition to a new state to achieve a certain purpose,

such as being in a open state and needing to go to the close state in order to hold an

object. If the system does not respond the first time to the voice command, the user

would have to repeat this voice command until the system responds appropriately.

From the tests conducted, on the conservative side, the user would have to repeat the

word 1.439 times (2 times) for the system to respond appropriately. Having to repeat

a voice command without it falsely executing a different command is more assuring

and reliable, than if the system executed a false command instead.

The developed platform was able to successfully stop the motors from moving

once a certain force threshold7 was achieved. Moreover, the investigation of voice

commands show promise to further incorporate this modality in future HRI platforms

and combine it with desired applied force thresholds.

6More emphasis on the “l”
7The force threshold is set by the user to be whatever desired value. This is beneficial since it

allows for the threshold to be modular, based on the object being grasped.
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2.2 Artificial Hand

Based on the success of the single finger platform, the idea of a single finger

expanded to an entire 5 finger artificial hand. Once again, stl files were downloaded

from inmoov.fr to print the complete hand, along with the forearm, presented in

Figure 2.3. Each finger is actuated with a single servo motor and all 5 motors are

packaged in the forearm. The control program in LabVIEW was expanded by dupli-

cating the actions required to move the single finger, 5 times in order to move each

finger. Once again, as mentioned in Abrego [60], the cable mechanism that mimics

muscle tendons, is employed to rotate the joints in the finger.

Figure 2.3: Image of the artificial hand with a artificial skin sleeve used to dress
manikins.

The tensioning mechanism for the mechanical hand has been an issue in the

past, such as when initial investigations were performed on the single finger. This is

due to the fact that the pull length required for finger actuation is not equal to slack

provided for rotation. After rotating, there is unnecessary slack in the tendon, which
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delays reverse motion. To ameliorate this issue, springs were attached to the base of

the servo holder hub. This ensures that the finger is maintained in tension and allows

for a smooth retraction of the finger.

The spring is anchored on a nut which revolves around a bolt which is fixed

to the servo carriage, presented in Figure 2.4. This allows for the tension on the

cables to be modular, i.e. increase or decrease the tension as desired. As the motor

rotates and pulls the cable, the reverse direction cable is maintained in tension by the

spring. When the motor rotates the opposite direction (direction required to open8

the finger), the spring pulls on the reverse cable so that the finger opens.

Figure 2.4: Springs used to retract the fingers back to their original open position.

After the mechanical and electrical modifications were incorporated to the arti-

ficial hand, focus was switched to investigate grasping. The research topic of grasping

8Open is the term that is used to indicate that all the joints have not been rotated from their

zero position.
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is popular when developing artificial hands. Among one of the pioneers in this re-

search, Cutkosky [63], researched the classification of different grasps by observing

how operators in a machine shop would grasp tools. This provided a taxonomy for

grasping patterns and helped initiate the growing field of grasping for mechanical

hands.

Mattar [11] reviewed biomimetic hands to further show the importance of not

only the use of biomimetic hands, but also the study of grasping. A non-exhaustive

list of pioneering mechanical hands include the the UTAH/M.I.T. hand [64], the

Stanford/JPL hand [65], Belgrade hand [66], the famous DLR hand [67] [68] [69] [70],

the University of Bologna hand [71] [72] [73] [58], the Gifu hand [74] [75] [76] [77],

and the CyberHand [78] [25] among the most recognized mechanical hands developed

an used for research.

The question of grasping has focused on different aspects such as dexterity [79],

hand synergies [13], hand postures [3], grip control [80], and slip detection [81]. It

evident that the development of a mechanical hand has created many branches of re-

search that incorporates different technologies and controls based on the applications.

As shown in Figure 2.5, the space alloted by the geometry of the inmoov hand

allows for objects no bigger than 79mm in diameter, about the size of a bottle of

watter, and no smaller than 28mm to be grasped. Any object with diameter beyond

this would not be able to be securely grasped using a cylindrical grasp [1]. Therefore,

at this point of research, investigations regarding grasping were limited to objects

that fit in that range. These pitfalls will be further addressed in later sections as well

as a solution to the lack of dexterity.
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Figure 2.5: Grasp limits based on the geometry of the artificial hand. On the left,
the maximum diameter cylinder that can be grasped is about 79mm. On the right,
the minimum diameter cylinder is about 28.5mm.

2.2.1 Grasp Learning

Grasp learning in the artificial hand platform is another important focus in the

field of developing biomimetic hands. The goal of this line of research is to use machine

learning algorithms in order to automate the artificial hand to appropriately grasp

objects of different dimensions, without requiring the user to input a large amount of

data. As mentioned earlier, at this point in research, objects such as cylinders were

used to investigate grasping, shown in Figure 2.6.

In order to “learn” the objects, an Artificial Neural Network (ANN) was pro-

grammed in LabVIEW. In this algorithm, only cylinders were investigated and not

spheres. The ANN was composed of 3 layers; input, hidden and output layer. The

input layer was composed of 3 neurons which were the physical characteristics of the

cylinder such as the diameter, length, and height relative to the hand. The hidden

layer of the neural network contained 24 neurons with sigmoid activation functions.
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Figure 2.6: Mechanical hand demonstrating grasping simple objects such as cylinders
of different sizes and a sphere.

The output layer consists of 5 neurons, each representing each motor for the fingers.

Figure 2.7 shows a visual representation of the ANN and its connectivity between

layers.

For “learning” to take place, the ANN needs training data. The gradient decent

method minimizes error between the actual and calculated outputs and the back prop-

agation algorithm updates the values of the weights. To perform learning 28 training

patterns were developed for the algorithm. This was accomplished by measuring the

diameter, length and location of the object relative to the hand and having this infor-

mation as input. Afterwards, the fingers were manually closed onto the object until

there was a secure grip9.

The input to the ANN is the object data set and the output is the required

motor angles for grasping. The object data set consisted in object dimensions and

relative position to the hand. Output of the ANN are motor angles required to grasp

9The observer would judge when the grip would be secure based on how well the object could be

held in the artificial hand without it falling.
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Figure 2.7: Visual of ANN. Note that the layers are fully connected and there is no
direct communication between input and output layer.

the object. This set of motor angles is what is termed grasping pattern, the state of

the hand which relates to a secure grasp over a desired object. As can be imagined,

objects of different shapes and sizes would require different grasping patterns [63]

[13].

There are a number of observations which are common when training ANNs. As

the number of iterations for train the ANN increased, the resulting Mean Square Error

(MSE) decreased. Likewise, as the iteration count increases, the algorithm will be able

to, in theory, find a set of values that will minimize error for the next step. Likewise,

another observation made was that as the number of neurons in the hidden layer

increased, so did the MSE. The reasoning behind this is that theoretically, neurons

help connect patterns in data, since every neuron is associated with at least two
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weights. Therefore, if there are many neurons, in theory, there are more variables that

the back propagation algorithm, in conjunction with the gradient descent method, is

able to fine tune for optimization.

Another observation is the number of neurons in the hidden layer. As men-

tioned, there are 3 input neurons because of the object characteristics and there are 5

output neurons because there are 5 motors that move the fingers. However, selecting

how many neurons are in the hidden layer is not as simple as the input and output

layers. Every scenario calls for a different number of neurons in the hidden layer, and

there are no suggested number of neurons. However, a key is to start off with a small

number of neurons and increase to minimize the resulting MSE. At the same time, it

is key not to increase the number of neurons ad infinitum because there are risks of

long computation time, redundant neurons and memorization. In this analysis, the

number of neurons began at 5 and increased till 24 to minimize MSE and at the same

time not strain the computation time which takes about 3 seconds for computing the

resulting output motor angles.

To test the efficacy of the ANN, two objects that were previously used to train

with were provided as training data. Therefore, the user knew what the motor angles

should be in order to securely grasp the object. What this demonstrated is that

indeed, the ANN is able to give accurate predictions based on object characteristics.

As shown in Table 2.1, for the two cylinders, C1 and C210, the motor angles, per finger,

Table 2.1: Comparison between ANN output motors angles and actual motor angles,
[1].

Object Actual Output (degrees) Predicted Output (degrees)
θI θM θR θP θT θI θM θR θP θT

C1 53 105 85 30 70 56 112 81 33 76
C2 81 110 80 38 56 83 109 79 37 59
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from the ANN and the experimental results are compared. The maximum angular

difference for cylinder C1 is 7 degrees and the maximum difference for cylinder C2

is 3 degrees. Taking into account that servo motors used, neither of these maximum

differences are significant11. Moreover, in both cases, the artificial hand was able to

securely grasp both objects.

A more convincing test of the ANN was to provided the algorithm with an

unknown object which had not been introduced during training. This would demon-

strate that unknown objects, of similar shape, are able to be handled by the algorithm

to find the appropriate motor angles for each finger. Therefore, a new object was

tested with a diameter of 61mm, length of 147mm and a relative height of 165mm.

Figure 2.8: Time lapse images of the artificial hand grasping the unknown object
based on input characteristics, [1].

As observed in Figure 2.8, the ANN was able to generate the appropriate motor

angles to each finger so that the unknown object may be grasped securely. Never-

theless, it is important to mention that the input data works best when the data is

within the range of the training data, i.e. interpolation as opposed to extrapolation.

10C1 has a diameter of 51.5mm, length of 197mm and a relative height of 139.7mm. Similarly, C2

has a diameter of 40.5mm, length of 202mm and a relative height of 139.7mm
11Servo motors control is crude, therefore, anything less than 4 degrees of rotation is not distin-

guishable.
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For instance, if the object were to have a diameter beyond the grasp capabilities of

the hand, then a resulting non-achievable angle might be sent to the motors, which

could result in damage or instability of the system.

2.3 Improved Biomimetic Thumb

With the assistance of a senior design team12, a more dexterous thumb was

developed. While working with the Inmoov artificial hand, it was observed that

grasping space was limited. For instance, when the hand would close, the thumb

would only be able to contact the index finger. The actual human thumb is able to

touch the tip of every other finger, which this ability is advantageous when it comes

to manipulating and grasping. Therefore to improve the dexterity of the thumb, a

new thumb was designed, fabricated and assembled.

Figure 2.9 shows the improved thumb with more grasping range and control.

The human thumb is critical in grasping operations, therefore the improvement will

help in controlling the grasping process. The thumb represents 40% of the function-

ality of the human hand [82], hence the importance of the thumb. The base joint of

the thumb is called the carpometacarpal joint (CMC) and the next joint is called the

metacarpophalangeal joint (MCP) and then the interphalangeal joint (IP). The CMC

joint has two degrees of freedom and the MCP and IP joints have a single degree of

freedom [83]. The ability of the thumb to oppose the other fingers in motion is a ma-

jor characteristic of the thumb for grasping, which if it were not available, grasping

could not be accomplished as easily. Therefore, the design of the thumb aimed to

mimic the joint lengths and rotational ranges.

12The 2016/17 team consisted of senior students in mechanical engineering: chief engineer - Eddie

Ordonez, engineering specialist - Aaron Romero, engineering quality control - Samantha Meeks,

engineering R&D - Britton Sanders
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Figure 2.9: Improved design of the mechanical thumb (view of the back of the hand).

The previous artificial hand was able to have a maximum grasp of about 79mm,

but with the improved thumb, the maximum grasp is about 88mm, a size improvement

by about 11%. The previous thumb was under-actuated, see Section 2.1, in other

words, one tendon cable was employed to move 3 joints. Moreover, the control of

the individual joints of the thumb was not possible. With the pull of the cable,

from the motor, each joint is actuated when the previous joint reaches its mechanical

limit13. However, the improved thumb has the ability to move each joint individually

by commanding of separate motors, since each joint has an associated motor which

controls its angular rotation.

13Relative to the palm of the artificial hand, the furthest finger joint bends until it reaches its

geometric limit. The distal joint bends until it reaches its mechanical limit, then the intermediate

joint bends until it reaches its limit and finally the proximal joint bends until it reaches its mechanical

limit.

31



Figure 2.10: Thumb joint kinematics [2].

Figure 4.1 shows the naming convention of each motor in the thumb. Due to

the fact that the motors are not used to pull cables to tension the finger, they have

to be incorporated near the joint location to use the body as a rotation link.

It is important to mention that θT1 consists of two coupled motors since it was

assumed that this joint would have to provide the highest torque for grasping. After

the motors were embedded into the finger joints, free weights were used to determine

how much output torque the motors could give. By suppling 7V of power and about

31mA of current, the stall torque was 1.7kg/cm.

With the addition of the new thumb, control as well as dexterity, were improved

for grasping. The new thumb allows for precise grasp, spherical grasps, cylindrical

and planar grasps.

2.4 Machine Learning Object Recognition Sans Vision

Another front of research was the use of machine learning algorithms to improve

grasping understanding. This research was mentored by Christopher Abrego and the
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Figure 2.11: Thumb with improved mobility. Naming convention for each motor on
the thumb starting from the base of the thumb, moving toward the tip of the thumb.

mentee was Saul Gutierrez 14, funded by the McNair Scholar program at UT Arlington.

Research in this section was performed with the original thumb and not the improved

thumb.

Tele-manipulation is an interesting and important modality of HRI research.

The glove allows the user to perform tasks in remote locations without having to

be in the location of the operation. One of the motivating questions in this line of

14Saul G. is an undergraduate senior in the Computer Science Engineering department at UT

Arlington.
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research was object identification in the absence of a vision system. This challenge

was approached by using a tele-manipulation glove, presented in Figure 2.12, and

various machine learning algorithms.

Figure 2.12: Image of the user grasping a sphere while using the interaction glove.

The objective was to have the user grasp an object while wearing the glove and

have the system correctly identify the object and its dimensions. Figure 2.13 demon-

strates that the algorithm should first distinguish between spheres and cylinders and

based on that, decide which algorithm would be used to predict the dimension of the

object (either sphere or cylindrical). As a proof-of-concept, simple objects such as

spheres and cylinders were used for test grasping. Then different machine learning

(ML) algorithms were investigated such as Support Vector Machines (SVM), Artificial

Neural Networks (ANN), and K -Nearest Neighbors (KNN). The software platform

used was LabVIEW, where these ML algorithms were programmed.

Among one of the questions of interest was grasping methods that could be

mimicked by the artificial hand developed. The artificial hand could not match the

dexterity of the human hand. It was chosen, for the purpose of the research to

constrain the human hand to better match the performance of the artificial hand.
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Figure 2.13: Algorithm flow used to identify objects.

Different people can take different approaches at grasping objects, so 3 appre-

hension methods were identified in order to standardize and be able to get repeatable

results. One approach, Method 1 was not to have the object come in contact with

the palm of the hand, instead, focus mainly on the finger tips for contact. Method 2

consisted in specific placement of the fingertips around the object15. Method 3 con-

sidered the user to first approach the object and make contact with the palm of the

hand. Then, naturally wrap fingers around the object to get a grip. Method 4 tried

to mimic the dexterity of the robotic hand by preventing abduction and adduction16

of the base joints of the fingers.

The voltage from each flex sensors was captured with the NI myRIO and ana-

lyzed to help distinguish between spheres and cylinders using different machine learn-

ing algorithms. A statistical t-test was performed to determine the similarity of the

grasping methods. However, visual and experiential analysis was also used to deter-

mine which grasp method was most repeatable and comfortable for the user. Based

15For spheres, place fingers around the largest cross sectional area plane. For cylinders, place

fingers on a longitudinal plane.
16Abduction is the motion of a limb away from the body, adduction is the motion of a limb toward

the body.
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on how repeatable the method and how well the artificial hand could reproduce the

motions, Method 4 was chosen to carry out the experimentation.

Once the grasping method was determined, training data was collected. The

user was asked to grasp various objects and the resulting voltages from the flex sensors

were manually recorded in a spreadsheet, later to be used as inputs to the machine

learning algorithms. For classification, cylinders were given the classification ID as 0

and spheres were given the classification ID as 1. Therefore, data patterns look like the

following example, [0.5, 0.6, 1.2, 0.3, 0.5, 1]. Where the first 5 entries are the voltage

values from the flex sensors from each finger and the 6th entry is the appropriate

shape classification. The total set of data patterns collected was 58. Ideally, it is

beneficial to have as many training patterns as possible, as a rule of thumb over 100

patterns [84] [85], however there are only a limited amount of objects that would be

graspable which would result in significantly different data17.

As mentioned in the beginning, the machine learning algorithms explored were

ANN, KNN, and SVM. All three algorithms were programmed in LabVIEW to accept

a spread sheet with training data, formatted as previously mentioned. The output of

the algorithms were to indicate the shape of the object, in other words give the shape

classification (0 or 1). The efficiency of the algorithms was determined by the ability

to classify a object correctly or not.

Artificial Neural Networks is an algorithm attempting to mimic the biological

functions of the brain. The algorithm is provided with training data and the neurons

of the network. Weights in the network are trained so that the provided outputs

can be calculated by the inputs. Optimization techniques, such as back propagation

and gradient decent, are used in the process of minimizing error between the actual

17The difference in output voltage between grasping a cylinder that is 33mm in diameter and a

cylinder that is 35mm in diameter is not significant.
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output and the training data output. The parameters that the user defines when

creating an artificial neural network are the number of layers, hidden layer nodes,

node connections and iteration number.

Support vector machines (SVM) are algorithms that find linear models to sepa-

rate classes of patterns [86]. The goal of the SVM algorithm is to design a hyperplane

that separates data into independent and distinguishable sets. As a result of this

separation, the hyperplanes calculated help distinguish distinct sets of data. The

data that has similar patterns form into groups. Therefore, SVM was chosen to help

classify objects.

K -Nearest Neighbors (KNN), similar to SVM, seeks to group similar patterns.

Given a new pattern, the algorithm takes into consideration the distance between

the new pattern and its k nearest neighbors, where k is defined by the user [87]

[88]. Based on this distance (Euclidean, Mahalanobis, Weighted, etc) either closest

neighbor or majority vote decides on the new patterns classification.

In order to identify which method would perform best, training and testing

data were developed from the number of available training patterns gathered. There

were 3 training sets as well as 3 testing sets18. Using the KNN algorithm, tests using

closest neighbor method and majority vote method (3, 5, and 7 votes) was carried

out, see Table 2.2. Likewise, test results of for ANN and SVM as shown in Table 2.3.

To determine which algorithm was best suited for classification, the following

observations were made. Using the ANN, the resulting output would not be binary

(0 or 1), but because of the summation technique that the ANN uses, the output

was a number between -0.25 and 1.25. It was decided, based on observation, that the

numbers that fell between -0.25 and 0.25, would be rounded to 0. Similarly, number

18Test set 1 contained 14 spheres and 12 cylinders (26 total), Test set 2 contained 7 spheres and

6 cylinders (13 total) and Test set 3 contained 17 spheres and 15 cylinders (32 total).
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Table 2.2: K-Nearest Neighbor test results. Percent accuracy based on method Clos-
est or Majority Vote (MV).

Test Set Number Closest MV 3 MV 5 MV 7
1 100 96.2 96.2 96.2
2 92.3 92.3 100 100
3 90.6 84.4 87.5 84.4

Table 2.3: Test result for the ANN and SVM algorithms. Percent accuracy based on
both methods.

Test Set Number ANN SVM
1 100 100
2 100 100
3 91 91

that would fall between 0.75 and 1.25 would be rounded to 1. This decision is difficult

to justify, so using ANN as a classifier was discarded. It is also important to note

that ANN are more suited to give variable values, as opposed to binary values.

Both KNN and SVM are naturally classification algorithms, therefore, they

are more appropriate for this application. Based on the accuracy in Tables 2.2 and

2.3, it can be concluded that the SVM algorithm has a better ability to accurately

distinguish between cylinders and spheres. Therefore, SVM was chosen to be the

algorithm for the first part of item identification.

After an object is classified, the next step is for the algorithm to determine the

diameter of the object. For this step, the ANN machine learning algorithm is chosen,

since both the SVM and KNN algorithms are naturally more focused on classification.

The ANN developed had 1 hidden neuron, used sigmoidal activation functions, and

6000 iterations were used. The average diameter difference between the actual and

predicted is about 5%, which puts confidence in the ANN developed.

Improvements in this system could be performed by increasing the number of

iteration and number of hidden nodes, however, there would be more time spent

38



on computation. Another general improvement would be to improve the interaction

glove by potentially incorporating more sensors. At this point, only flex sensors that

capture the bending of the fingers were used. However, it can be conceived that

including force sensors as well can help determine which fingers are exploited when

grasping spheres in cylinders.
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CHAPTER 3

Grasp Analysis and Performance of First Iteration Hand, H1

3.1 Grasping Objects

In this chapter, research in the investigation of grasping with H1, the first

iteration hand developed, is discussed. Furthermore, the training/testing process

and the procedure for predicting object dependent grasp patterns is discussed. The

grasping algorithm is testing in both software and hardware to determine the success

of the predicted grasp pattern. The experimental procedure for grasping is outlined

in Figure 3.1.

Figure 3.1: Procedure for grasping considering both software analysis and hardware
validation.

The first step in the procedure is to gather the object characteristics such as the

object diameter, length, and shape category (sphere, cylinder or neither) as well as the

relative height of the object with respect to the hand. The next step is to perform
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a grasp pattern prediction based on the appropriately trained ANN. Afterwards,

if the grasping pattern is known, in our software analysis, the prediction will be

compared to the actual grasp pattern to evaluate the accuracy of the prediction. Then,

during hardware verification, the developed hand (H1) is controllably commanded to

move to the predicted grasp pattern onto the object and observed if the grasp is

successful or unsuccessful. Therefore, there are two validation processes to evaluate

the performance of the prediction algorithms.

A variety of household convex and assumed rigid objects were used to grasp

by H1, among which were spheres and cylinders. In general, the objects used to

grasp are rigid and some, to a degree, are slightly compliant (such as the insulation

koozie, object C3). A total of 21 cylindrical objects and 7 spherical objects used to

investigate grasping. Table 1 in the Appendix presents all the objects and dimensions

(Lo and Do) along with normalized dimensions (Gr and Lr, see Equations 3.1 and

3.2) with respect to the hand. There are two dimensions used to characterize every

object, which are a vertical distance length, Lo, and a horizontal distance, Do. The

normalized ratios (Gr and Lr) are important because they are scalable to different

size hands and objects, hence results can be generalized to similar structured hands.

Note that the denominators of Equations 3.1 and 3.2 are dependent of the hand used

for experimentation. In this case, Dh is 3.7” which is the largest diameter object that

can be held with the hand. Moreover, Lh is the vertical length of the palm, which is

3.75”.

Gr =
Do

Dh

(3.1)

Lr =
Lo

Lh

(3.2)
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Figure 3.2: Image of objects with their dimensions marked which are used for the
prediction algorithm.

Equation 3.1 normalizes the diameter of the object, Do, with the total grasp

diameter of the hand. This term is called the grasp ratio , Gr, and all objects in the

study will have a grasp ratio less than 1.0. If a grasp ratio were larger than 1.0, then

the object would not be grasped by the hand because its diameter has exceeded the

grasp potential of the hand. Similarly, Equation 3.2 normalizes the object length,

Lo, with the span of the palm of the hand. This term is called the length ratio, Lr.

When the length ratio is less than 1.0, the length of the object is smaller than the

palm span of the hand (see Figure 3.3). If the length ratio is greater than 1, then the

object will be longer than the palm span of the hand. Both Gr and Lr are important

since they determine how the hand will grasp the object and what fingers will be used

to grasp it.

The 28 objects were grasped at 4 different locations relative to the hand height.

Note that the objects were grasped twice. Figure 3.4 presents cylinder and sphere

dimensions (Figure 3.4 a) and the relative object dimensions compared to the hand

(Figure 3.4 b). It is noticeable that there are no objects with diameters greater than

3.7” because the hand is not possible to grasp these. It is also observed (Figure 3.4

a) that the object with the smallest length is about half the length of the palm and

the thinest object is a little less than a third of the grasp diameter of the artificial

hand H1.
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Figure 3.3: Dimensions of the artificial hand including the palm height and the arc
grasp. Note, that the largest object that the hand can grasp has a diameter no larger
than 3.70”. This was found through experimentation. The yellow arrow indicates the
positive direction of the height.

Every object grasp was recorded as well as the front panel of the program

(Figure 3.5) used to actuate the motors. Each grasp video was on average about 30

seconds long, therefore in total 112 minutes of grasp recordings. The angular motor

values necessary to have the fingers grasp the object were noted and entered into a

database.

Among some of the preliminary observations of the grasp data is that objects

can be grasped with a variety of fingers with different poses. For instance, an object

can be grasped with 3, 4, or 5 fingers (including the thumb) depending on the relative

height of the object with respect to the hand and depending on object size. Notation

that is used to distinguish different fingers used are: T - thumb, I - index, M - middle,

R - ring, P - pinky. So, for instance, “TRM” indicates that the object was grasped
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(a) Survey of all the objects used for
grasping.

(b) Survey of the objects that have the
relative heights to the dimensions of the
artificial hand.

Figure 3.4: Spheres and cylinders that are used for grasping.

Figure 3.5: Image of the computer with the real-time video feed of the artificial hand
on the left hand side, and the front panel of the LabVIEW VI used to control the
actuation of the servo motors for grasping.

with a thumb-ring-middle finger combination. For cylinders, Figure 3.6 indicates how

objects with different dimensional ratios are grasped with various finger combinations.

It can be observed from Figure 3.6 that all objects were grasped with 3 fingers,

particularly using the combination of TMI, TRM and TRP. Note that the TRP

grasps were done on the objects that had low Lr and Gr, which makes sense since

this combination of fingers would be used to grasp small objects. Moreover, 5 fingers

were used to grasp objects, except for two occasions, particularly because the Lr value

was less then 0.8. The reason for this is that the object has a length less than the

palm span of the hand (Lr < 1), then not all 5 fingers will be required to grasp it.
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(a) Grasps made with 3 fingers. (b) Grasps made with 4 fingers.

(c) Grasps make with 5 fingers.

Figure 3.6: Distribution of grasps of cylinders with with different finger combinations
respect to their relative size, Gr and Lr.

In Figure 3.7, various grasp combinations with different number of fingers are

presented. The objects grasped with TRP and TRM combination are on the lower

side of the Gr and Lr ratios, which corresponds to small objects. One thing to note

at this point is that the height location of the object has not been mentioned yet,

however, it will be addressed in further sections. Considering 4 finger grasps, objects

that have Lr less than about 0.75 do not appear. The reasoning behind this is that

smaller objects require less fingers to grasp objects.

The type of finger and number of fingers required for grasping is also dependent

on the relative height of the object with respect to the hand. This is important because

depending on the object dimensions and height, different fingers and at different motor

angles will be used. It can be observed in Figure 3.8 the patterns of the objects grasped

at different heights. Note that all objects were able to be grasped at all heights, but
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(a) Grasps made with 3 fingers. (b) Grasp made with 4 fingers.

Figure 3.7: Distribution of grasping spheres with different finger combinations with
respect to their relative size, Gr and Lr.

not all grasps were performed at all heights. Therefore the same data points are found

on every plot in Figure 3.8, but sometimes with different fingers for grasping.

It is observed that all objects are grasped at 1” height and only 3 fingers were

used. This reasonable since at 1” height, only the thumb index and middle finger can

be used for grasping. Similarly, at a height of 1.5”, only 3 fingers are used to perform

all the grasping. However, once the height increases to 2.5”, the middle finger is

employed to grasp objects. At this height, 3 fingers are still used, however, it can

be noted that for cylinders that have Lr < 0.75 and Gr < 0.5, indicating that the

cylinders are relatively small, which can be visualized in Figure 3.9. The distribution

of grasps of cylinders at a height of 3.5” can be observed. Once again, relatively small

objects have grasps that can be made with 3 or 4 fingers, where as the majority of

the grasps are made with all 5 fingers. In Figure 3.10, the comparison of the objects

grasped with different number of fingers is shown for different heights. As the height

increases, from 1.5” to 2.5”, the number of fingers used for grasping changes from 3 to

4, this being because more fingers are “required” to grasp. However, when the height

increases from 2.5” to 3.5”, the majhority of the grasps are now performed with 5

fingers, however, there are some grasps that are performed with 3 and 4 fingers. The
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(a) Height of 1.0” (b) Height of 1.5”

(c) Height of 2.5” (d) Height of 3.5”

Figure 3.8: Different cylinders grasped at various heights.

reason behind this is that some of the objects have a small height, Lr in the range of

0.5 - 0.7, thus not requiring all 5 fingers to grasp.

Now that an analysis of the different grasps required to hold cylinders, with

respect to relative dimensions and height, the same analysis is realized for the spheres.

The distribution of grasps at different heights is presented in Figure 3.11. It can be

noticed that all the objects appear throughout the different heights. At height 1” and

1.5” all objects are grasped with 3 fingers. Then, at 2.5” and 3.5”, larger objects with

Lr and Gr values greater than 0.75, are grasped with 4 fingers and smaller objects

with Gr and Lr less than 0.75, are grasped with 3 fingers. Figure 3.12 indicates the

percent distribution of the number of fingers used for grasping spheres are different

47



Figure 3.9: Cylinders that are grasped with 3 fingers considering them at a height
of 2.5 inches. Note that the objects grasped are small and only require 3 fingers for
grasping.

(a) Grasps at 1.0” (b) Grasps at 1.5” (c) Grasps at 2.5” (d) Grasps at 3.5”

Figure 3.10: Pie graphs of the total fingers used to grasp cylinders at different heights.

heights, indicating that 3 fingers is the most used posture for the hand. This could

also be because 4/7 spheres used to experiment have Gr and Lr less than 0.75.

Some general observations can be made based on both grasping spheres and

cylinders. Relative height of the object being grasped is important, this is especially

true if the Lr and Gr are below a certain range, namely around 0.75. The order

in which the appropriate fingers close is also notable, namely, all grasps require the

thumb to close to a certain position before other fingers actuate. The second finger

to close is usually the middle finger which pushes the object against the fixed thumb.

Some noticeable differences between grasping cylinders and spheres is the dimensional

ratios with respect to the finger count for grasping. Since the sphere will have Lr and

Gr relatively close in value, and Gr cannot exceed 1, therefor, spheres are not grasped

with 5 fingers. For instance, spheres closer to Gr = 1 will, in theory, be grasped with
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(a) Spheres that grasped at 1.0”. (b) Spheres that grasped at 1.5”.

(c) Spheres that grasped at 2.5”. (d) Spheres that grasped at 3.5”.

Figure 3.11: Number for fingers used to grasp different spheres at various heights.

all 5 fingers, however, spheres that approach Gr = 1 will not be grasped and as a

result not all fingers will be able to be used.

This analysis is performed prior to developing an Artificial Neural Network

(ANN). Trends and patterns observed will help determine relationships between ob-

ject and grasp which will then be used to reinforce predictions and forecast which

fingers are used to grasp various objects at different heights. For instance, objects

can be categorized by their Gr and Lr, therefore not depending strickly if the object

is concretely a sphere or cylinder. If the general shape of the object closely conforms

to a sphere, then the Gr/Lr ratio will approximate 1. This is because the Gr and Lr

will be very similar. The following, is a list of observations for quick reference:
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(a) Total grasps
performed at 1.0”.

(b) Total grasps
performed at 1.5”.

(c) Total grasps
performed at 2.5”.

(d) Total grasps
performed at 3.5”.

Figure 3.12: Pie graphs of the total finger used to grasp spheres at different heights.

• Objects that have Gr and Lr similar to one another (Gr/Lr ≈ 1) can be con-

sidered spheres.

• At height 2.5” and 3.5”, if a sphere has a Gr or Lr value less that 0.75, will only

require a 3 finger grasp.

• (The converse of the previous point), at a height of 2.5” and 3.5”, if a sphere

has a Gr or Lr value greater that 0.75, will require a 4 finger grasp.

• No spheres can be grasped with 5 fingers.

• Cylinders with Lr less than 0.7 cannot be grasped with 5 fingers at height 3.5”.

Similarly, at the height of 2.5” cylinders cannot be grasped with 4 fingers (only

grasp with 3 fingers).

Other benefits from this analysis is decision making after ANN prediction1.

Take for instance the grasp prediction of a object with both Gr and Lr less than 0.7.

Based on what is observed, if Gr/Lr = 1 then the object can be closely considered

a sphere. Furthermore, if Gr and Lr are less than 0.7, then 3 fingers will likely be

the amount of fingers used to grasp the object. Now, if the output of the ANN

gives a finger count of 4 or 5, then we know that some fingers will not be necessary.

A decision will then be made on which 3 fingers will move and which will remain

1The grasp needed for the object will be determined by the prediction of the Artificial Neural

Network

50



stationary. This decision will be made based on the trends observed with respect to

the height. As noted previously, at heights 2.5” and 3.5”, only 3 fingers are used,

and only the thumb, middle, ring, and pink fingers are used, eliminating the use

of an index finger. Observations from patterns like the one just mentioned will be

incorporated to the post-processing of the ANN outputs for data conditioning.

3.2 Grasp Observations

Another observation is that grasping was improved with the addition of a high

friction surface placed at various points of contact that the artificial hand makes with

objects. These locations are at the finger tips and on the middle of all the finger

joints. The material used for grip was a standard glove worn by people to wash

dishes. Another observation is that the tip of the thumb does not come into contact

with the objects. Instead, the last joint of the thumb contacts the object. Hence,

even if the tip of the thumb were to be covered with grip material, grip og the thumb

on the object would not improve. Therefore, the joint was covered with grip material

and contact with the grip surface was easily made with the object.

Repeatability is low and the area of contact is not always the same, even for the

same object. The reason is that the fingers are under-actuated to start with, where

one motor controls the actuation of 3 joints. Moreover, the actual motion is not as

repeatable as if there were direct control over all the joints in the finger. In theory,

when actuating, the next joint will begin to actuate when the last joint has reached its

mechanical limit of motion. The actuator will continue to pull the actuation tendon

and this will require the next joint to rotate. In theory, this is true for all the joints

with the assumption that there is no interference friction on all the joints and no

friction between the actuation tendon and the cavities of the finger, and so forth. For

51



Figure 3.13: Image of the same cylinder (C1, Lr = 2.069 and Gr = 0.549) grasped at
different heights. On the right, the normalized close percent values at the respective
height. The top image shows the cylinder being grasped at height 3.5” and progresses
down to 1” at the bottom image.

these reasons, the motion of the finger cannot be predicted to a degree that will result

in a desired contact surface.

Moreover, the finger has limited dexterity and the desired contact surface cannot

always be met. The human hand has the ability to flex and extend about multiple axes

due to the fact that some joints would be modeled as spherical joints. On the other

hand (pun intended) all the joints in the fingers are modeled as purely rotational

joints. Therefore, the human hand has more possible poses that could result in a

specific contact area. The grasp of the artificial hand does not have the ability to

grasp an object with a desired contact surface. Figure 3.14 shows the different contact

areas observed based on the grasp ratio (Gr) of the object. When the value of the

object starts low, Gr < 0.5, the finger tips are used the most. The reason for this
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Figure 3.14: Areas of contact on the fingertips with respect to the object Gr. The
different colors on the fingertips represent the contact area on the finger for an object
with a certain Gr range.

is that the last two joints have completely closed, so that the resulting contact with

the object will be made with the tip or near tip of the finger. Note that objects with

Gr < 0.5 are relatively thin, requiring the fingers to close the most to contact the

object. For instance, object C11 has a Gr = 0.310 and the resulting close percentages

at a height of 3.5” are Tn = 96.43%, In = 59.29%, Mn = 63.57,Rn = 63.57%, and

Pn = 62.14%. On the other extreme of the objects, those that are grasped with a

Gr > 0.9 are grasped with an area closer to the base of the joint. The reason for this

is that the fingers do not need to close as much in order to contact the object. This is

observed in Figure C13 which has a Gr = 0.946 and the resulting close percentages of

the fingers at height 3.5” are Tn = 58.57%, In = 27.14%, Mn = 28.57%, Rn = 35.00%

and Pn = 34.29%.
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Based on the expressed observations, it can be concluded that object grasping is

not repeatable to the degree that the contact area can be accurately predicted on the

fingers. The reason for mentioning this is for the outlook of force control for grasping.

Force control will incorporate the force experienced on the hand to determine when

the hand will stop closing or when the fingers have made contact with the object. To

embed a sensor would require the sensor of the finger contact location is guaranteed.

However, this does not seem possible, given the low repeatability of contact area on

the fingers.

3.3 Artificial Neural Network Analysis

After grasping all the objects, the next step is to implement a machine learning

algorithm to predict the desired grasp for both the cylinders and the spheres. Artificial

Neural Networks (ANNs) will be utilized to predict the appropriate grasp. The inputs

of the ANN will be the diameter of the object (Do), length (Lo), and relative height

(Ho). The outputs of the ANN will be the motor angles; index (θI), middle (θM),

ring (θR), pinky (θP ), and thumb (θT ).

In terms of software, a three layer ANN will be used for prediction and Back

Propagation will be the algorithm used for optimizing weights, input (Wjk) and output

(Vki). The back propagation procedure updates the weights using the error gradient

with respect to the individual weight and a learning factor, η, as shown in Equations

3.3 and 3.4 respectively.

Wjk ← Wjk − η
∂E

∂Wjk

(3.3)

Vki ← Vki − η
∂E

∂Vki
(3.4)

The input, X, for the ANN is the object geometry, which is the object horizontal

distance (Do, diameter), vertical dimension (Lo, length). The relative height of the
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Figure 3.15: Image of the general architecture of ANNs. Inputs are the diameter
(Do), length (Lo), and relative height (Ho) of the object. The outputs are the motor
angles index (θI), middle (θM), ring (θR), pinky (θP ), and thumb (θT ).

hand (H, height) starts at zero at the index metacarpal location and is positive in the

downward direction. This information (D, L, H) is gathered by direct measurement

of the object, Equation 3.5.

Xi = {Li, Di, Hi}|i={1,n} (3.5)

Yi = {θI , θM , θR, θP , θT1, θT2, θT3, θT4}i|i={1,n} (3.6)

For the training procedure, the object was placed near the hand, and the user con-

trolled the servo motors to a position where the fingers were grasping the object.

The object dimensions (and relative height) and the motor angles for all the fingers

were recorded in a database as inputs and outputs for each training set. Then, utiliz-

ing National Instruments LabVIEW, the grasp data was used to train two separate
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(a) Absolute Percent Difference (b) Mean Square Error

Figure 3.16: The Absolute Percent Difference and Mean Square Error of the result-
ing ANN architectures when the number of iterations for optimization is varied as
functions of number of nodes in the hidden layer. This training was performed with
27 data sets.

ANNs, each consisting of 3 layers, see Figure 3.15, which used back propagation and

gradient descent method to optimize the weights, Wjk and Vki, between the layers,

[89]. The activation function used for the hidden layer is a hyperbolic tangent which

compresses the outputs into the range of -1 to 1, Equation 3.7.

tanh(z) =
e2z − 1

e2z + 1
(3.7)

Two parameters needed to be investigated to find the appropriate architecture.

The number of iterations for optimization and the number of nodes in the hidden

layer are the two parameters that the user can tune in order to reduce the mean

square error (MSE) of the resulting ANN. A two layer loop was developed which

iterated the number of iterations and the number of nodes in the hidden layer. As

shown in Equations 3.8 3.9 3.10, the MSE, absolute percent difference (APD) and the

(AD) absolute difference for the overall architecture for the ANN are functions of the

number of iterations for optimization (NI) and the number of nodes in the hidden

layer (NHN). These are the main contributors to the resulting metrics of error, and
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the major contributers are NI and NHN , which are also the direct parameters that

change the architecture of the ANN.

MSE = f(NI , NHN) (3.8)

APD = f(NI , NHN) (3.9)

AD = f(NI , NHN) (3.10)

3.3.1 Cylinder Prediction

Figure 3.16 gives the results of the different ANN architectures based on the

change of number of iterations for optimization and the number of nodes in the

hidden layer. On the left hand side of Figure 3.16 shows the resulting absolute

percent difference and the graph on the right shows the MSE. In terms of the Percent

Difference, the majority values of absolute percent difference begin around the same

range (35-38). Then, after the number of iterations increases to 500-1000, the absolute

percent difference becomes more sparse among the various node lines. After about

2000 iterations, the absolute percent difference becomes steadily monotonic and some

eventually plateau (5-6 nodes in the hidden layer). Eventually, the lowest point of

absolute percent difference occurs when 4600 iterations are used for optimization with

13 nodes in the hidden layer.

The MSE of the resulting ANN based on the architecture parameters of the

number of iterations for optimization and the number of nodes in the hidden layer.

At the beginning, 200-600 iterations, the majority of the node lines increases in MSE.

Afterwards, 600 and onward, there is a steady monotonic decrease in MSE value.

Just as was observed for the absolute percent difference, the architecture that yielded

the lowest MSE was 13 nodes in the hidden layer and about 4600 iterations for

optimization.
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A question that comes to mind is why the absolute percent difference is too

high. Absolute percent difference is calculated the following way,

100× |predicted− actual|
predicted

(3.11)

To get a metric of how the ANN is preforming holistically, the absolute per-

cent difference is performed on the individual sets. Then, all the absolute percent

differences are averaged to give a benchmark of the performance of the architecture

based on the number of nodes in the hidden layer and the number of iterations for

optimization. However, the average is skewed when the actual value of an angle is 0◦.

For instance, for object C1 grasped at height 2.5”, the motor angle of the pinky is

0. However, the ANN predicted is 0.969◦ for the pinky2. Therefore, using Equation

3.11, the resulting absolute percent difference is,

100× |0.969− 0|
0.969

= 100× 0.969

0.969

= 100

The resulting absolute percent difference is 100, even though the magnitude

difference was off by 0.969◦. Therefore, an alternative understanding of the perfor-

mance of the ANN architectures is viewing the absolute value difference between the

ANN prediction and the actual value, as a function of iterations for optimization and

number of nodes in the hidden layer. In Figure 2, the absolute angular difference be-

gins around 9-13 degrees in general. Then, after about 2000 iterations, the absolute

difference decreases monotonically. Similar to what was found in Figure 3.16, the

lowest absolute difference is found with an architecture of NHN = 13 with NI = 4600,

Cy-13/46.

Given the results from Figures 3.16 and 2, the overall consensus is that an

architecture of NHN = 13 and NI = 4600 for the ANN will yield the lowest absolute

2The prediction was performed with NHN = 6 and NI = 3400.
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percent difference, MSE, and absolute difference. Nevertheless, another aspect to

consider is the time for computation. In the scenario envisioned, the system will

identify an object, then identify the dimensions, and then send those dimensions to

the designed ANN. The ANN will then predict, based on the object data, what the

final motor angles should be to appropriately grasp the object.

If the ANN were to take a long period of time, for instance 2 minutes or more,

to calculate what the final motor angles should be, then the whole grasping process is

stalled for a period of time. Case in point, if the number of iterations for optimization

or the number of nodes in the hidden layer, requires a large amount of computation (¿1

min), then the grasping process will be hindered for a period. Keeping two objectives

in mind, process time and error (MSE,APD,AD), the needs to be a balance given

that both extremes may not be achieved simultaneously. In this study, optimization

was only taken at a maximum of 5000 iterations and 15 nodes in the hidden layer.

Additionally, for 9-15 nodes in the hidden later, the difference between 4600 and 2200

iterations is relatively small3.

Apart from the question of optimization of the objectives of time and error,

the control algorithm also needs to be considered. The control algorithm will be

two-stage, and will consider the grasping process of approach and apprehend. The

fingers first approach the object (approach stage) and once contact is made, the fingers

embrace the object with a certain amount of force (apprehend stage). Therefore, in

the first stage, purely kinematic or position information will need to be considered

and in the later part, purely force information will contribute to the actualization of

the grasp. Hence, related to the topic of deciding the architecture of the ANN, it is

proposed that the positional error can be slightly compromised since the next process

310% change in AD, 2% change in APD and 16% change in MSE
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(force control in the apprehend stage) will switch to force error control as opposed to

position error control.

Keeping both optimization objectives of error and time, it is decided that ANN-

9/2600 will be investigated. This architecture should, in theory, be faster to perform

computations, compared to 15 nodes in the hidden layer and 4200 iterations for op-

timization. The difference in errors between Cy-9/2600 and CY-13/4600 is relatively

low, as already mentioned.

3.3.2 Sphere Prediction

Similar to the previous section, the same analysis on the training data was

performed, however this time to the spheres. There were a total of 7 spheres used for

collecting data, which resulting in 28 data sets gathered. Out of the data gathered,

24 of the 28 were used for training and 4 out of the 28 were used for testing. Figure

3.17 indicates the resulting APD and the MSE of the resulting ANN. The value of NI

was varied from 200 - 5000 in increments of 200 and NHN ranged from 1 - 15 nodes

in the hidden layer.

(a) Absolute Percent Difference (b) Mean Square Error

Figure 3.17: The resulting Absolute Percent Difference and MSE of the various ANN
architectures. The training was performed with 24 training data sets.
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In both the APD and MSE (Figure 3.17) the architecture that yields the lowest

error is Sp-15/5000. The majority of the lines of constant NHN decreases monoton-

ically and the change in error flattens out. Figure 3, in the Appendix, shows the

average AD for each individual ANN architecture. Likewise, the architecture that

results in the lowest error is Sp-15/5000. Note that the error range between the

APD and AD (Figure 3). Therefore, there is a clear consensus between all 3 metrics,

that the architecture that will yield the lowest error is Sp-15/5000. For comparison

purposes, a relatively smaller ANN was selected to compare its predictive accuracy

based on similar APD and MSE. Therefore, it is proposed to use Sp-9/3600, where

the relative error difference between architectures is small.

3.4 Artificial Neural Network Prediction

3.4.1 Software Implementation

There will be two ANNs used for testing. One ANN will be dedicated to predict

the grasping patterns for cylinders, and the other will be dedicated to predict graping

patterns for spheres. It is important to note that the number of training sets for

cylinders and spheres are not equal, since there are more cylinders available to grasp,

as opposed to spheres. As a result, the predictions made for cylinders may be more

accurate as opposed to spheres because of the different training data set size. In the

following subsubsection the results of testing in software are discussed.

3.4.1.1 Cylinders

After training the ANN with 76 data sets, the next part is to test to benchmark

the predictive performance of the ANN. There were 4 data sets4 used to test the

4The four data sets are noted as Test1, Test2, Test3, and Test4. The test is performed on an

object, C22, with D = 2.129”, L = 4” and Height of H = {3.5, 2.5, 1.5, 1} respectively.
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ANN. In Figure 3.18 indicates the angular errors between the actual and predicted

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.18: Angular errors between the actual and predicted angles for grasping
cylinders. The predictions were performed with Cy-9/2600 trained with 76 data sets.
Black bars indicate overgrasping and red bars indicate undergrasping.

angles. From a conservative standpoint, it is preferred that the object be squeeze

rather than not contacted. Considering the control architecture, the output result

from the approach stage, should leave the fingers in position that has already made

contact with the object. The second stage of the controller will focus on the force

control of the object, hence the system will begin in a non-null state.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.19: Angular errors between the actual and predicted angles for grasping
cylinders. The predictions were performed with Cy-13/4600 trained with 76 data
sets. Black bars indicate overgrasping and red bars indicate undergrasping.

For comparison, the ANN was trained with the architecture that would yield

the lowest error. Figure 3.19 presents the error between the actual and predictions

of motor angles. In general, the characteristics for the angular errors are similar be-

tween both architectures, i.e. the fingers that overgrasp for the first architecture also

overgrasp in the second architectures, etc. Another observation is that the angular
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errors are lower, in general, for the second architecture (Cy-13/4600) compared to

the first architecture (Cy-9/2600).

3.4.1.2 Spheres

Training was performed with 24 data sets, for two different architectures; Sp-

9/3600 as well as Sp-15/5000. There are 4 data sets which are utilized, Test 1, Test 2,

Test 3, and Test 4. As seen in Figure 3.20, the angular errors between predicted and

actual based on Sp-15/5000. Test 1 the thumb undergrasped and the index, middle,

ring and pinky overgrasp. In Test 2 the thumb undergrasped and the index, middle,

ring and pinky overgrasp. Then, in Test 3 the thumb, index and pinky undergrasps

and the middle and ring finger overgrasp. In Test 4, the thumb and ring overgrasp,

while the index, middle and pinky undergrasp.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.20: Angular error between the actual and ANN predicted angles for grasping
sphere S1. The predictions were performed with Sp-15/5000 with 24 data sets. Blue
bars indicate overgrasping and red bars indicate undergrasping.

The “under” and “over” grasping of the fingers based on the predictions of Sp-

9/3600 can be seen in Figure 3.21. For Test 1, the index, middle, and ring overgrasp

the object, while the pinky and thumb undergrasp. Test 2, all the fingers, except the

thumb, overgrasp. In Figure Test 3, the middle and the ring finger overgrasp, while

the index, pinky, and thumb undergrasp. Finally, in Figure Test 4, the index, middle,

and ring overgrasp, while the pinky and thumb undergrasp. Another observation

63



to make is that in general, the predictions made by Sp-9/3600 yielded lower error

compared to Sp-15/5000.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.21: Angular error between the actual and ANN predicted angles for grasping
spheres. The predictions were performed with Sp-9/3600 trained with 24 data sets.
Black bars indicate overgrasping and red bars indicate undergrasping.

After software validation for grasp predictions for both spheres and cylinders,

it was observer that the errors were relatively small, which provided confidence to

move forward to hardware validation, which is found in the following subsection.

3.4.2 Hardware Implementation - Grasping Known Objects

To validate the performance of the ANNs, hardware validation will be performed

to determine successful or unsuccessful grasps. The motor angles predicted for Test1,

Test2, Test3, Test4 are sent to the actuators to grasp cylinders and spheres. Note

that the motion of the fingers follow the order of moving first the thumb, then the

middle finger, then the index and ring finger at the same time and then finally the

pinky. This is true for the fingers required for a grasp. There is also a motion delay

artificial. The motion of the fingers run off the same clock, however, the fingers are

delayed. For instance, the thumb (θT ) runs off of time t, while the middle (θM) finger

runs off time t-4. Then the index (θI) and ring (θR) finger runs off time t-5, while

the pinky (θP ) runs off time t-6. All fingers start from their initial position (θ = 0◦)
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and then end at their final position (θ = θf ) following a cubic polynomial profile.

Hence, the equations of motion for all the fingers are the following:

θT (t) = a0 + a1t+ a2t
2 + a3t

3 (3.12)

θI(t− 5) = a0 + a1(t− 5) + a2(t− 5)2 + a3(t− 5)3 (3.13)

θM(t− 4) = a0 + a1(t− 4) + a2(t− 4)2 + a3(t− 4)3 (3.14)

θR(t− 5) = a0 + a1(t− 5) + a2(t− 5)2 + a3(t− 5)3 (3.15)

θP (t− 6) = a0 + a1(t− 6) + a2(t− 6)2 + a3(t− 6)3 (3.16)

Where the constants of the equations are evaluated based on desired end posi-

tion, velocity and acceleration of the motors, hence,

a0 = θ0, a1 = 0, a2 =
3

t2f
(θf − θ0), a3 = − 2

t3f
(θf − θ0)

The value of tf for all fingers is set to 5 seconds, so that upon motion, it takes all

the individual fingers 5 seconds to reach their final positions. As for the value of θf ,

this is the output of the ANN and is different for each finger. Since each experiment

starts at the hand completely open, the value of θ0 is set to zero.

3.4.2.1 Grasping Cylinders

Figure 3.22 shows the final positions of the fingers based on the output pre-

dictions of Cy-9/2600. It is observed that the fingers adequately grasp the object at

all heights except at 3.5”. On the other hand, at relative height of 3.5”, the index

does not come into contact with the object. The reason for this is that the object

is assumed uniformly cylindrical, from the point of view of the ANN. However, in

reality, the object is a pill container, composed of a body and a cap (the body and

cap have similar diameters, but the cap has a slightly smaller diameter). Therefore

the object is not grasped with the index finger.
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.22: Images of the final grasp from the resulting prediction of Cy-9/2600
trained with 76 data sets.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.23: Images of the final grasp from the resulting prediction of the Cy-12/4600
trained with 76 data sets.

Using Cy-12/4600, Figure 3.23 shows the resulting grasps. As observed in all

the Subfigures, all the fingers come into contact with the object. As opposed to the

previous architecture, the object is grasped throughout all the relative heights. The

prediction made by the ANN resulted in the overgrasp of the index finger, and as a

result, contact is made on the object.

For the majority of the tests, in both architectures, the ANN prediction results

in overgrasping for the majority of the fingers. This puts confidence in the prediction

of the ANN, given that the finger positions will ensure the grasp of the object. It

is observed, in both Figures 3.18 and 3.19, that the finger that always results in the

highest overgrasp, in general, is the middle finger, θM . This is important to note,

since for the majority of the grasps, the order by which the fingers close on to the

object is first the thumb (θT ) and then the middle finger (θM), see Figure 3.6. If the

middle finger overgrasps the object, then the apprehension of the object is at least
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guaranteed from a two contact-point5 perspective. Then, the rest of the appropriate

fingers will grasp the object, however, an initial first grasp is made with the thumb

and middle fingers.

Up till now, the tests performed have been on objects for which we know what

the grasp patterns should be at. For Test1, Test2, Test3, and Test4, the final fin-

ger positions were already investigated, that is how the error was calculated, where

the difference was taken between the actual (measured) and predicted motor angles.

The next stage of testing is to introduce new objects for which the grasp pattern is

unknown.

3.4.2.2 Grasping Spheres

After testing the ANN prediction in software, the next step, as it was for the

cylinders, is to test out the algorithm in hardware. As shown in Figure 3.24, the final

grasping positions for the fingers are noted for Sp-9/3600. One of the observations

made of how the artificial hand grasps objects, made with ANN predictions, is the

inability to grasp the object at height of 1.5”. The thumb is is undergrasping, even

if the index and the middle finger are overgrasping. Moreover, the undergrasping

angular error is quantified as a little more than 20◦. Due to this, the sphere was not

able to be grasped.

The same test was performed for ANN-15/500 on the object. The final grasps

can be observed in Figure 3.25. The grasps between both Figures look similar, and the

same fingers were incorporated to grasp the sphere at a specific height. The thumb

actually performs worse with the ANN architecture that resulted in the lowest MSE

5In general, a contact or grasp using two finger, is termed a precise grasp. This is given since

two fingers will not apply a relatively large amount of grasp force and delicate objects which require

precise handling, are performed with two fingers.
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.24: Images of the final position of the fingers in grasping based on the
Sp-9/3600. The object grasped is a Sphere S1.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.25: Images of the final position of the fingers in grasping based on the
Sp-15/5000 predictions. The object grasped is a Sphere S1.

and APD (Sp-15/5000). It can be observed in Figure 3.20 that the angular error is

about 30◦, more than the angular error observed in Figure 3.21 with Sp-9/3600.

Both of the different architectures (Sp-15/5000 and Sp-10/3600) were able to

successfully grasp the object 75% of the time. On the occurrence that the object was

not grasped successfully, it was due to the thumb undergrasping its required position.

Once again, at this stage of research, only position control is considered as opposed

to force control. In this environment, there is no awareness of contact or the degree

of contact if contact is made. However, it is envisioned that when force control is

implemented, the issue of not making contact will be eliminated with a force control

algorithm for grasping.
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3.4.3 Hardware Implementation - Grasping Unknown Objects

There were 3 objects, two cylinders and one sphere, that were not used in

the training process. These objects are considered unknown, since they were not

incorporated in the optimization of the ANN, hence, their “actual” grasping pattern

is not known. The following subsections demonstrated the hardware implementation

of grasping unknown objects.

3.4.3.1 Cylinders

To test the robustness of the ANN for predicting grasp patterns, two cylinders

that were not used for the training of the ANN were utilized to evaluate prediction.

Both of the objects that were used for unknown cylinders for grasping are found in

Figure 3.26. There dimensions are tabulated in Table 3.1. Note, based on Gr and Lr,

there is an object that was used in training that was similar to UC1 which is object

C20. Similarly for object UC2, object C7 has similar Gr and Lr ratios6.

(a) UC 1 (b) UC 2

Figure 3.26: Objects used to evaluate the prediction performance of the ANN.

6See Figure 1 found in the Appendix to note the similarities
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Table 3.1: Table of the geometric properties of the objects used to test the ANN
prediction abilities.

Object Diameter, Do (in) Length, Lo (in) Gr (in/in) Lr(in/in)

UC 1 2.90 4.91 0.78 1.31
UC 2 2.08 7.00 0.56 1.87

Table 3.2: Final finger positions for grasping object UC 1. The units for the fingers
are in degrees. The first 4 rows are results of Cy-9/2600, while the last 4 rows are
results from Cy-12/4600.

ANN Architecture Height (in) θT θI θM θR θP

Cy-9/2600

1.0 92 45 54 0 0
1.5 98 51 56 0 0
2.5 106 54 61 55 0
3.5 113 61 62 52 52

Cy-12/4600

1.0 89 47 51 0 0
1.5 96 54 57 0 0
2.5 107 56 58 53 0
3.5 110 63 65 49 52

Table 3.2 shows the tabulated results of the grasp patterns of the mechanical

hand at all the standard heights (1.0, 1.5, 2.5, 3.5) for both proposed architectures

Cy-9/2600 and Cy-12/4600. It is noticed that the angles between both architectures.

Moreover, the images of the final position of the hands grasping object UC 1 for

Cy-9/2600 as well as Cy-12/4600 can be observed in Figure 5 (Appendix) and 3.27

respectively. It is important to note that all the objects were able to be grasped at all

heights for both architectures, and all the finger tips made contact with the surface

of the cylinder.

In Figure 6, in the Appendix, the grasping of the unknown object, UC 2, can be

observed at all the standard heights (1.0, 1.5, 2.5, 3.5). Throughout all heights, the

artificial hand was successful at grasping with Cy-9/2600. The final angular positions
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Table 3.3: Final finger positions for grasping object UC 2. The units for the fingers
are in degrees. The first 4 rows are results of Cy-9/2600, while the last 4 rows are
results from Cy-12/4600.

ANN Architecture Height (in) θT θI θM θR θP

Cy-9/2600

1.0 100 66 76 0 0
1.5 105 70 78 0 0
2.5 112 65 78 65 0
3.5 121 69 74 64 57

Cy-12/4600

1.0 98 70 77 0 0
1.5 105 70 81 0 0
2.5 114 67 77 63 0
3.5 119 65 73 64 58

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.27: Final grasp positions of the fingers for object UC 1. The ANN was
trained with Cy-12/4600.

of the motors for each individual finger can be observed in the first four rows of Table

3.3. Similarly, in Figure 3.28, the final grasps of the fingers on cylinder UC 2 are

observed to successfully grasp the object, this time with Cy-12/2600. The last four

rows of Table 3.3 indicate the final angles for grasping with this architecture. For all

heights that the object UC 2 was placed, the final angles for both architectures are

similar, and result in a successful grasp.

3.4.3.2 Spheres

To test the predictive performance of the ANN in hardware, a sphere that was

provided to the ANN so that it could predict the grasp pattern. The sphere has a
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.28: Final grasp positions of the fingers for object UC2 with Cy-12/4600.

diameter of 3” and can be seen in Figure 3.29. The final finger angles used for grasping

sphere US1 are tabulated in Table 3.4. The images of the final finger positions for

grasping the object at different heights are presented in Figures 7 (Appendix) and

3.30 for Sp-9/3600 and Sp-15/5000 respectively.

Figure 3.29: Object used as an unknown sphere to grasp.

Using object US 1, testing was performed with ANN-10/3600 and then the

motor angles for the fingers were sent to the on-board motors. It is observed from

Figure 7 that the object, US 1, is grasped at all heights, except at 2.5” the index

finger does not make contact with the sphere. At height 2.5”, the index finger dose

not make contact with the object. However, it is important to note that the object

is firmly maintained with the thumb, middle and ring finger grasp. Afterwards, the

object is grasped with ANN-15/5000. It is assumed that the grasp predictions will
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Table 3.4: Final finger positions for grasping object US 1. The units for the fingers
are in degrees. The first 4 rows are results of Sp-9/3600, while the last 4 rows are
results from Sp-15/5000.

ANN Architecture Height (in) θT θI θM θR θP

Sp-9/3600

1.0 94 56 60 0 0
1.5 94 56 60 0 0
2.5 104 42 63 57 0
3.5 121 0 64 59 50

Sp-15/5000

1.0 84 54 67 0 0
1.5 97 55 60 0 0
2.5 105 42 60 58 0
3.5 119 0 64 60 50

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 3.30: Final grasp positions of the fingers for object US1 with Sp-15/5000.

improve, however, it is observed in Table 3.4, the angles only slightly differ between

both architectures. Moreover, the same issue that was present at height 2.5” occurred

again with the larger ANN architecture. In both cases, the index finger does not move

enough to make contact with the object, hence does not participate in the holistic

grasp of the object, nevertheless, the object is still secure in the grasp of the hand

with the other fingers (thumb, middle and ring).

This is a issue at the moment, because it is assumed that the object will be firmly

held by the had with all available fingers. Nevertheless, at this point in research, only

position is the main component that will be considered for control. It is envisioned

that when the two stage controller is implemented, the force control will ensure a firm

contact is made with all the fingers, thus ameliorating this current issue.
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3.4.4 Conclusion - Hardware Implementation

In conclusion from both scenarios, grasping spheres and cylinders, it can be seen

that algorithm performed adequately considering only position control. One of the

recommendations would be to grasp more objects, particularly spheres. There were

only 7 spheres used to train the ANN, compared to the cylinders, in which there were

21 cylinders. This could be the reason why the ANN predicted an undergrasp twice for

the unknown object US1. Nevertheless, the predictive system based on the training

structure for spheres and cylinders are promising for future control architecture and

hardware grasp implementation. Below is a summary of the ANN architectures that

were established as benchmarks for testing.

• Cylinders

– Cy-9/2600

– Cy-12/4600 - Architecture yielding lowest MSE

• Spheres

– Sp-9/3600

– Sp-15/5000 - Architecture yielding lowest MSE

3.5 Non Discriminatory Artificial Neural Network

So far, an ANN has been isolated to predict grasp patterns for specific objects;

spheres and cylinders. The inputs to both ANNs were the object dimensions of length

and diameter7 as well as the height at which the object will be grasped relative to the

location of the hand. This resulted in two customized ANNs that would be able to

provide the user, specifically the system, a prediction of the necessary motor angles

for grasping either the sphere or cylinder. In this section, we will investigate the

7For spheres, the diameter and the length are equal.
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development of a ANN that will take as input, not length and diameter, but Gr and

Lr (Equations 3.1 and 3.2). The reason for this is two fold:

• In one sense, this will avoid the user having to strictly use the terms of sphere

and cylinder, but would allow shapes that are not perfectly cylindrical or spher-

ical.

• Second, it allows the training set to expand to combine both what have already

been categorized as spheres and cylinders into one group. This will result in a

larger size for training sets, which in theory will make more accurate predictions

of grasp patterns.

In the context of this research with objects of distinct geometric features, cylin-

ders and spheres, a 5-step process for identifying grasp patterns is developed as shown

in Figure 3.31. In order to predict a grasp pattern, it is required to first discriminate

or identify/define the object, as a cylinder or sphere, and its geometric characteristics.

Then, two ANNs would need to be trained with distinct object specific training data.

Once both ANNs are trained, the testing process would required that the category of

whatever object to be grasped need to be identified (sphere or cylinder). Finally, the

shape specific ANN would be used to predict the grasp pattern. On the contrary, as

presented in the bottom of Figure 3.31, the entire process can be shortened if a non-

discriminatory ANN was trained to predict the grasp pattern of the shape without

apriori specific knowledge on the object category (sphere or cylinder). This approach

would reduce the grasp pattern prediction procedure from five to two steps. As such,

training occurs with the entire object population and then the resulting trained ANN

is used to predict the grasp pattern of any object. This is a simpler approach of

attaining the final outcome of a grasp pattern to be executed in hardware.

Therefore, all the dimensions of the objects (diameter and length) were nor-

malized to the dimensions of the artificial hand, hence Lr and Gr. The inputs to the
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Figure 3.31: Schematic of grasp planning with discriminating objects, top, and non-
discriminating objects, bottom.

ANN would now be Lr, Gr, and relative height. The next task was to determine the

architecture of the ANN for training and testing purposes.

3.5.1 Sphere and Cylinder Predictions

There are a total of 6 spheres and 19 cylinders, so there are a total of 25 objects

that were used for training. Each object had 4 heights at which it was grasped, thus

there are a total of 100 sets. The last 4 will be removed from the set and will be used

for testing8, hence there will be 100 training sets and 4 test sets.

In Figure 3.32, the APD and MSE can be seen with respect to the different

ANN architectures. The minimum Absolute Percent Difference begins around the

same range of about 40-45%. After about 600 iterations, the different architecture

lines become more sparse and the architectures that yield the lowest error become

8Which are grasping object C22 grasped at height 3.5” and 2.5” and object S6 grasped at height

1” and 1.5”
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(a) Absolute Percent Difference (b) MSE

Figure 3.32: Performance of the ANN based on the APD and MSE. The ANN was
trained with 100 training sets.

more pronounced. The architecture that yields the smallest APD is NI = 5000 and

NHN = 8. This is also observed in MSE and in AD (Figure 8 found in the Appendix).

Another observation made from Figure 3.32 and 8 is that starting from 3000

iterations, the majority of the architectures yield similar errors. This is advantageous

when considering computation time, given that the architecture that yield the lowest

error is also the largest architecture will require the most computations. Due to this,

it would be beneficial to identify a smaller architecture, yet would yield a relatively

small error. Based on the Figures, it was identified that CySp-10/3600 would be

smaller than CySp-8/5000 and yet still yield a relatively small error. Therefore, two

architectures will be used to investigate grasp pattern predictions, CySp-10/3000 and

CySp-8/5000.

3.5.2 Software Implementation

Now that the ANN architectures have been identified, the next step is to test the

ANN. The resulting difference will determine the accuracy of the prediction relative

to the actual/measured grasp pattern.
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3.5.2.1 Spheres and Cylinders

Using objects C22 and S6 at all heights, the ANN architectures are tested by

comparing the actual and predicted grasp pattern. Figure 3.33 presents the angular

errors for the predictions made with CySp-10/3000 are presented. Note that for all

four test, the only finger to consistently overgrasp is the middle finger. This could be a

positive characteristic, as mentioned before, overgrasping could result in a guarantee

that the hand will make contact with the object. The most accurate prediction, in

terms of fingers throughout all test, is the pinky, which is observed by the its low

magnitude. Moreover, comparing Test 1 and 2 to Test 3 and 4, the “over” and

“under” grasping is more pronounced. This indicates, at least for these four test,

that grasping cylinders will result in least accurate predictions compared to grasping

spheres.

(a) C22 at height
3.5”

(b) C22 at height
2.5”

(c) S1 at height 1.0” (d) S1 at height 1.5”

Figure 3.33: Angular error between the actual and ANN predicted angles for grasping
sphere. The predictions were performed with CySp-10/3000 trained with 100 data
sets. Blue bars indicate overgrasping and red bars indicate undergrasping.

Figure 3.34 presents the angular error between the prediction and the actual

grasp patterns with CySp-8/5000. In general, the accuracy has improved slightly,

which is observed by noting the magnitudes of the errors between Figure 3.33 and

3.34. Just as in the case for CySp-10/3000, the most accurate finger is the pinky and
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(a) C22 at height
3.5”

(b) C22 at height
2.5”

(c) S1 at height 1.0” (d) S1 at height 1.5”

Figure 3.34: Angular error between the actual and ANN predicted angles for grasping.
The predictions were performed with CySp-8/5000 trained with 100 data sets. Blue
bars indicate overgrasping and red bars indicate undergrasping.

the least accurate is the middle finger. From both ANN architectures, two items can

be concluded:

• Predicting grasps for cylinders is less accurate than for spheres.

• The middle finger and then pinky are the least and most accurate of the fingers.

3.6 ANN Architecture Comparison

There have been 3 independent ANN architectures investigated so far; one for

spheres (Sp), cylinders (Cy) and a combined (CySp). The predictive performances

will be compared between the ANN trained for spheres and combined objects (Sp

vs. CySp) and then the ANN trained for cylinders and combined objects (Cy vs.

CySp) will be compared. In the combined test, a cylinder and sphere were utilized,

particularly, cylinder C22 and sphere S1. Therefore, the predictions made for C22 at

height 2.5” and 3.5” will be compared (Cy vs. CySp) and the predictions for S1 at

height 1” and 1.5” will be compared (Sp vs. CySp).

3.6.1 Cy and CySp: Comparison of Predictive Performance

In Figure 3.35, the angular errors as a result of the predictions can be ob-

served for grasping C22 between both categories of ANN. At height 2.5”, considering
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the index finger, CySp-8/5000 resulted in the smallest error and Cy-9/2600 has the

highest error, and all architectures result in undergrasping of the index finger. For

the middle finder, Cy-13/4600 results in the lowest error while CySp-8/5000 had the

highest error and all fingers are overgrasping. For the ring finger is Cy-13/4600 and

the highest is CySp-8/5000, note that all the fingers result in overgrasping. For the

pinky, Cy-13/4600 has the lowest error and Cy-9/2600 has the highest error. Note

that for the prediction of the pink results in the lowest error for all the ANN architec-

tures. For the thumb, lowest error is a result of Cy-13/4600 and the highest is from

CySp-10/3000.

(a) C22 at 2.5” (b) C22 at 3.5”

Figure 3.35: Comparison of the angular errors between the actual grasp and the
predictions of the various ANN architectures. This is for grasping object C22 at
height 2.5” 3.5”.

At height 3.5”, the lowest error for the index finger is provided by the architec-

ture Cy-13/4600 and the highest is provided by CySp-8/5000. For the middle finger,

the lowest error is given by Cy-9/2600 and the highest error is given by CySp-8/5000,

and all fingers result in the finger overgrasping. The ring finger has the lowest error

is given by Cy-9/2600 and the highest error is given by CySp-10/3000. The lowest

error for the pinky is given by CySp-10/3000 and the highest is given by Cy-13/4600.
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And for the thumb, CySp-8/5000 results in the lowest error and the highest error is

from Cy-9/2600.

In Table 3.5, the average absolute errors for each architecture are presented.

It is observed that for height 2.5”, Cy-13/4600 results in the smallest error and the

largest absolute error by CySp-8/5000. Then, for the height of 3.5”, the lowest error is

from Cy-13/4600 and the largest error is from CySp-8/5000. It can be concluded from

Table 3.5, the architecture that yields the lowest error is Cy-13/4600 and the highest

error by CySp-8/5000. Moreover, it can be concluded that the ANNs specifically

trained for cylinders resulted in more accurate predictions compared to the combined

ANN.

Table 3.5: Summary of the average absolute error for all the architectures across all
the fingers.

Height Cy-9/2600 Cy-13/4600 CySp-8/5000 CySp-10/3000

2.5” 7.086 4.252 11.153 10.226
3.5” 9.125 8.681 10.996 9.319

3.6.2 Sp and CySp: Comparison of Predictive Performance

It is also interesting to analyze the angular error in the predictions by differ-

ent architectures, now predicting for object S1, presented in Figure 3.36. For the

predictions made for the index finger, the lowest error is provided by CySp-8/5000,

and the highest by Sp-15/5000, all of which resulted in overgrasping of about 10◦.

The largest errors occurred when predicting the middle finger position. The smallest

prediction error is provided by CySp-10/3000 and the largest by Sp-15/5000. For the

ring finger, the largest error was made by CySp-10/3000 and the smallest error is by

Sp-9/3600. The pinky finger angle prediction resulted in the smallest error across all
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architectures, smallest by Sp-9/3600 and the largest by Sp-15/5000. Then, for the

thumb, the largest error was by Sp-15/5000 and the smallest by CySp-8/5000.

(a) S1 at 1.0” (b) S1 at 1.5”

Figure 3.36: Comparison of the angular error between the actual grasp and the pre-
dictions of the various ANN architectures. This is grasping object S1 at height 1.0”
and 1.5”.

Table 3.6: Summary of the average absolute error for all the architectures across all
the fingers.

Height Sp-9/3600 Sp-15/5000 CySp-8/5000 CySp-10/3000

1.0” 10.162 14.543 5.663 6.635
1.5” 12.630 18.311 5.031 5.671

In Table 3.6, the absolute error was averaged for all the fingers and tabulated

for each architecture at the different heights. It is observed that the architecture that

resulted in the lowest error was CySp-8/5000 where Sp-15/5000 yielded the highest

error. It can be concluded that the combined ANN, CySp-8/5000, resulted in more

accurate predictions of grasping objects and the least accurate was the ANN trained

with only spheres, Sp-15/5000. Moreover, the prediction of the pinky resulted in the

most accurate and the prediction of the middle finger resulted in the least accurate,

for all architectures.
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From the results of comparing the combined ANN with both the sphere and

cylinder ANN, it was observed that the combined ANN performed more accurately

when compared with the sphere ANN. The reason for this might be attributed to the

fact that the ANN for combined objects has 27 objects compared to 7 spheres and as

a result, the more training sets, the more accurate the expected prediction. However,

the cylinder ANN performed more accurately than the combined ANN. The possible

reason behind this is that the spheres introduced to the ANN, created more variance

to the data set and resulted in less accurate predictions. Nevertheless, all three ANN

architectures result in a firm grasp of the objects.

3.6.3 Grasping Near-Cylinders and Near-Spheres

Another aspect of research is grasping objects that are not strictly spheres

or cylinders. The research question is how do the three architectures compare in

predicting the grasp of the object. In Figure 3.37, the two objects used for unidentified

grasping are a decorative apple, UO1, and a decorative orange, UO2, which are neither

spherical nor cylindrical. The outer dimensions of these objects are found in Table

3.7.

(a) UO1 - decorative apple (b) UO2 - decorative orange

Figure 3.37: Two objects that are neither completely spherical or cylindrical.
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Table 3.7: Dimensions of objects UO1 and UO2.

Object Horizontal Width Vertical Length

UO1 2.972 3.001
UO2 2.933 3.382

After grasping the both objects with all the selected ANNs, Table 3.8 has all

the resulting motor angle predictions tabulated for grasping UO1. It is observed that

there were instances where the object was grasped but some fingers did make contact

with the object. For grasp UO1 at height 1.0” from Sp-9/3600, the grasp resulted

weak and when tapped, the object slipped out. For grasp UO1 at height 1.0” from

Cy-9/2600, the object slipped out of the hand and was not grasped. For grasp at

height 2.5” with CySp-8/5000, Cy-13/4600, Sp-9/3600 and Sp-15/5000 result in a

good grasp, however, the index is undergrasped and does not make contact with the

object. For grasp UO1 at height 3.5” for CySp-10/3000, the hand is able to grasp

the object, however, the middle finger does not make contact with the object. For

grasp UO1 at height 3.5” for CySp-8/5000, the hand is able to grasp the object,

however, the middle and pinky finger do not make contact the object. For OU1

grasped at height 3.5” for Cy-9/2600, the object is grasped, however, the index and

pinky finger do not make contact with the object. For OU1 grasped at height 3.5”

with Cy-13/4600, the object is grasped, however, the index and the pinky do not

make contact with the object. For both architectures, Cy-9/2600 and Cy-13/4600

predict that the index finger should move and contact the object, nevertheless, the

index finger does not make contact. For grasping with Sp-9/3600 and Sp-15/5000,

the object is grasped but pinky does not make contact with the object.

Moreover, Table 3.9 tabulates the predictions by the different ANN architectures

for grasping UO2. It is important to note that some of the fingers did not make
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Table 3.8: ANN predictions by various architectures on unidentified object UO1. The
values in bold indicate when the finger has moved however, no contact was made with
the object.

Height Architecture Thumb Index Middle Ring Pinky

1 CySp-10/3000 84 53 63 0 0
CySp-8/5000 83 57 64 0 0
Cy-9/2600 86 60 65 0 0
Cy-13/4600 79 58 70 0 0
Sp-9/3600 90 49 63 0 0
Sp-15/5000 83 54 66 0 0

1.5 CySp-10/3000 93 60 67 0 0
CySp-8/5000 93 55 63 0 0
Cy-9/2600 93 61 67 0 0
Cy-13/4600 91 57 74 0 0
Sp-9/3600 93 56 60 0 0
Sp-15/5000 97 55 60 0 0

2.5 CySp-10/3000 109 34 64 58 0
CySp-8/5000 109 31 58 57 0
Cy-9/2600 104 48 69 63 0
Cy-13/4600 110 42 69 63 0
Sp-9/3600 103 44 62 57 0
Sp-15/5000 104 44 59 58 0

3.5 CySp-10/3000 123 0 38 59 60
CySp-8/5000 121 0 39 58 59
Cy-9/2600 112 42 65 61 60
Cy-13/4600 119 40 71 58 59
Sp-9/3600 120 0 66 60 50
Sp-15/5000 119 0 66 60 50

contact with the object, these are indicated with bold numbers. When grasping

UO2, at height 2.5” with CySp-10/3000, the object is grasped, however, the index

finger does not make contact. Grasping OU2 at height 2.5” with CySp-8/5000, the

object is grasped however, the index finger does not make contact. For grasping

UO2 at height 2.5” with Cy-9/2600, the object is grasped however, the index and

the ring finger barely come into contact. Grasping at height 3.5” with CySp-8/5000,

UO2 is grasped however, the index finger moves a little (26◦) and the middle finger
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Table 3.9: ANN predictions by various architectures on unidentified object UO2. The
values in bold indicate when the finger has moved however, no contact was made with
the object.

Height Architecture Thumb Index Middle Ring Pinky

1 CySp-10/3000 84 56 62 0 0
CySp-8/5000 87 54 61 0 0
Cy-9/2600 88 56 62 0 0
Cy-13/4600 82 55 65 0 0
Sp-9/3600 87 50 62 0 0
Sp-15/5000 79 58 67 0 0

1.5 CySp-10/3000 93 61 66 0 0
CySp-8/5000 96 57 61 0 0
Cy-9/2600 95 59 65 0 0
Cy-13/4600 93 57 71 0 0
Sp-9/3600 91 55 59 0 0
Sp-15/5000 93 58 64 0 0

2.5 CySp-10/3000 107 41 67 57 0
CySp-8/5000 111 39 60 55 0
Cy-9/2600 105 51 67 61 0
Cy-13/4600 110 48 68 61 0
Sp-9/3600 100 51 50 58 0
Sp-15/5000 99 54 55 59 0

3.5 CySp-10/3000 120 23 47 58 57
CySp-8/5000 122 26 47 56 56
Cy-9/2600 113 48 64 58 57
Cy-13/4600 118 48 71 55 56
Sp-9/3600 119 0 60 66 60
Sp-15/5000 118 0 73 64 52

makes contact. For grasping at height 3.5” with CySp-10/3000, UO2 is grasped,

however, the index finger moves slightly but does not make contact. Grasping object

at height 3.5” with Sp-9/3600, the object is held however the pinky moves but does

not make contact with the object. At height 3.5” with Sp-15/5000, the object is

grasped however, the pinky does not make contact with the object. At height 3.5”

with Cy-9/2600, the object is held by the index moves slightly and does not come

close to contacting the object, and the pinky moves up to the object but does not
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make contact. At height 3.5” with Cy13/4600, UO2 is grasped, however, the index

finger does not come into contact with the object and the pinky moves toward the

object but does not make contact with it.

From both Tables 3.8 and 3.9, it can be concluded that once the object is held at

heights 2.5” and 3.5”, there are instances where some of the fingers do not come into

contact with the object. Moreover, the finger that does not contact with the object

at height 3.5” is the pinky. The pinky moves toward but does not make contact with

the object. This is observed for both case of UO1 and UO2.

Another observation is that the ANN trained with only cylinders (Cy), when

grasping at height 3.5”, predicts that the index should move, slightly, but does not

result in a contact. For instance, at height 3.5”, in Table 3.8, the combined (CySp)

and the sphere (Sp) ANNs predict zero (0) motion for the index, nevertheless, the

cylinder (Cy) ANN predicts small motion, (42◦ and 40◦). Similar predictions can be

observed in Table 3.9 at height 3.5”, where the index finger is predicted to move,

however, it does not come into contact with the object. At 3.5”, the combined

(CySp) and the cylinder (Cy) ANNs predict that the index finger should move, but

no contact is made. The combined (CySp) ANN has a smaller prediction of the index

finger motion compared to the cylinder (Cy)9.

Both observations10 result in the lack of contact from the active fingers, never-

theless, the objects are grasped successfully. Another observation is that the thumb

makes contact with objects in an unorthodox contact surface, thumb nail. Even

though there are successful grasps considering the thumb awkward position, it is of

9The cylinder ANNs predicted about 48◦ for the index to move and the combined ANNs predicted

about 25◦.
101) It is not very contact for the pinky to make common with the object at 3.5”, and 2) the

cylinder ANNs do not predict the position of the index finger, where instead the finger should not

move at all.
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interest to optimize thumb positioning based on the shape of the object as well as its

relative height to the hand to improve grasping. It is also observed that the fingers

have a lack of contact after height 3.5”. Issues of undergrasping or no contact could

be possibly be resolved with additional sensor that could monitor contact.
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CHAPTER 4

Grasping Analysis and Verification with Improved Hand H2

A second generation artificial hand with 8 degrees of freedom was utilized to

investigate its grasping ability as well as the ability for the ANN to predict the

position of the joints or their state for secure and successful grasping. The new thumb

incorporated into the second generation hand for grasp investigation is presented in

Figure 4.1 and among its different features found in the previous hand is a 4 degree

of freedom thumb. Therefore, in total, the user has control of 4 fingers (θP , θR, θM ,

and θI) and 4 joints in the thumb, namely θT1, θT2, θT3, and θT4.

Figure 4.1: Thumb on the second generation hand with individually control joints.
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The first joint of the thumb is θT1, which provides the thumb with flexion and

extension movement. The next joint is θT2, which provids abduction and adduction.

The next two joints, θT3 and θT4 provide additional flexion to the thumb. The motion

of flexion/extension and abduction/adduction are presented in Figure 4.2 with a

natural palm/thumb. The addition of these joints in the thumb provided the user with

the advantage of having the ability to control the joints independently and provide

fine tuned movement, both features which were not available for the first generation

hand. However, there are some disadvantages to the thumb, such as less torque

output due to smaller motors and more complexity in motion. These advantages and

disadvantages will be observed when grasping objects as well as when predicting the

grasp pattern by the ANN.

Figure 4.2: From left to right, abduction, adduction, extension, flexion.

4.1 ANN Training

As presented in Chapter 3, the hand was utilized to collect data for training

purposes, where different objects were presented to it, grasps were performed and the

final angles of all the joint positions were recorded. The information of the object

properties such as length, diameter and height, were used as inputs to the ANN, and
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the outputs were the final joint angles for grasping the object. Previously, the outputs

of the ANN would predict 5 joint angles, now the ANN will have to predict 8 joint

angles.

4.1.1 Cylinder Prediction

The cylinder ANN was trained with 76 data sets. Figure 4.3 presents the APD

between the ANN predicted angles and the actual joint angles. Along with the APD,

the MSE of different ANN architectures is presented.

(a) APD (b) MSE

Figure 4.3: The APD and MSE of the resulting ANN architectures when the number
of iterations for optimization is varied as functions of number of nodes in the hidden
layer. This training was performed with 76 data sets.

At the beginning of the APD, the majority of lines of constant node number

begin around the range of 40-44%. Afterwards, at about 100 iterations, the lines

become more sparse and distinguishable. At about 4000 iterations, there are two

lines that provided low APD, 13 and 11 hidden nodes, the latter yielding the lowest

number. Similarly, the same pattern of line separation can be observed, however,

at 4000 iterations, 13 nodes yields the lowest MSE. In Figure 9, in the Appendix,

the average absolute difference between the predicted and actual angles is presented.
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Similar to the results from the MSE, the number of hidden nodes that yields the lowest

difference is 13, closely followed by 11 nodes. Therefore, based on all 3 performance

metrics, between the APD, MSE, and AD, the architecture to use for testing will be

NHN = 13 and NI = 4600 (Cy-13/4600). For comparison, another ANN architecture

used for testing is NHN = 11 and NI = 2400 (Cy-11/2400).

4.1.2 Sphere Prediction

There are a total of 24 data sets utilized for training the ANN. The resulting

APD and MSE based on the different architectures are presented in Figure 4.4. Con-

sidering the APD, the majority of the architectures result in APD of about 37-39% at

200-400 iterations. Afterwards, at 800 iterations, the resulting APD for the architec-

tures become sparse and distinguishable. The architecture that yields the lowest APD

is NHN = 12 and NI = 5000 (Sp-12/5000). This combination of number of hidden

nodes and iterations for optimization also yields the lowest MSE. In the Appendix,

the average absolute difference between the predicted and actual grasp pattern is

plotted against the the number of iterations for optimization, Figure 10, where the

lowest yielding AD has the architecture of NHN = 11 and NI = 5000 (Sp-11/5000).

Nevertheless, the architecture that will be utilized as a benchmark for testing will

be NHN = 12 and NI = 5000 (Sp-12/5000). For comparison, another architecture

that yields similar error (in both APD and MSE) is NHN = 11 and NI = 3000 (Sp-

11/3000). This architecture will also be used to experiment and compare with the

first choice architecture.

4.2 Artificial Neural Network Prediction

After the investigation of appropriate ANN architectures for both cylinders and

spheres, it was concluded that:
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(a) Absolute Percent Difference (b) Mean Square Error

Figure 4.4: The Absolute Percent Difference and Mean Square Error of the resulting
ANN architectures when the number of iterations for optimization is varied as func-
tions of number of nodes in the hidden layer. This training was performed with 24
data sets.

• For cylinders, the first choice is Cy-13/4600 and second choice will be Cy-

11/2400.

• For spheres, the first choice is Sp-12/5000 and the second choice will be Sp-

11/3000.

These architectures will be used to compare the actual grasp pattern with the

predicted motor angles. This comparison will be analyzed in both software and

hardware for verification.

4.2.1 Software Implementation

There were 4 patterns, in both the cylinder and sphere category, that were not

used for training. These patterns will be used to test the predictive ability of the four

architectures (two architectures for cylinder prediction and two for sphere prediction)

in software.
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4.2.1.1 Cylinders

As was performed in Subsubsection 3.4.1.1 with the first generation hand, train-

ing was performed with 76 data sets and testing would be performed on 4 data sets.

In particular, the four data sets are noted as Test1, Test2, Test3, and Test4, on object

C22, with D = 2.129”, L = 4” and relative height H = {3.5, 2.5, 1.5, 1}” respectively.

It is important to note that the same data sets were used for testing in both versions

of the hand.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.5: Angular error between the actual and ANN predicted angles for grasping
cylinder C22. The predictions were performed with Cy-11/2400 trained with 76 data
sets. Blue bars indicate overgrasping and red bars indicate undergrasping.

Considering the resulting angular error of Cy-11/2400, as presented in Figure

4.5, there are some noticeable observations. For instance, height 1.5” resulted in the

lowest overall angular error while height 3.5” resulted in the highest overall angular

error. The joint that resulted in the highest error throughout all tests was thumb 4,

θT4. On the other hand, the joint that resulted in the lowest overall error is thumb

2, θT2. This is acceptable, since the thumb joints that will be providing the main

motion for power grasps are θI , θM , and θT2. Note that θT2 is the main joint in the

thumb that provides abduction/adduction to perform power grasps, [63].

Considering the resulting angular error from Cy-13/4600, presented in Figure

4.6, similar observations were noted as with Cy-11/2400, such as predictions at height

1.5” resulting in the lowest overall angular error and at height 3.5” resulting in the
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.6: Angular error between the actual and ANN predicted angles for grasping
cylinder C22. The predictions were performed with an Cy-13/4600 trained with 76
data sets. Blue bars indicate overgrasping and red bars indicate undergrasping.

highest overall angular error. In general, the angular errors are lower for the first

ANN, in the majority of the joints for all four tests. Hence predictability improves

with the first choice ANN (Cy-13/4600).

4.2.1.2 Spheres

As was performed with cylinders, the ability of the sphere ANNs to predict the

sphere grasp pattern was examined. Training was performed on 24 data sets and

testing on 4 data sets. In particular, the testing was on object S1 with D = 2.25” at

H = {1, 1.5, 2.5, 3.5}”.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.7: Angular error between the actual and ANN predicted angles for grasping
sphere S1. The predictions were performed with Sp-11/3000 trained with 24 data
sets. Blue bars indicate overgrasping and red bars indicate undergrasping.

Considering Sp-11/3000, presented in Figure 4.7, it was noted that the joint

that consistently yields the highest angular error is θT4, where θP yields the lowest

angular error. Another observation is that at height 2.5”, θI is falsely predicted to

95



(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.8: Angular error between the actual and ANN predicted angles for grasping
sphere S1. The predictions were performed with Sp-12/5000 trained with 24 data
sets. Blue bars indicate overgrasping and red bars indicate undergrasping.

activate by the ANN, which means that the actual value of θI is 0◦ is predicted to be

θ̃I = 22◦, resulting in a relatively large error. The height that yields the most error is

at 1.5” and the least error at 3.5” and 1”. In a similar manner, some observations can

be made with the angular error resulting from using predictions with Sp-12/5000, as

presented in Figure 4.7. The thumb joints result in more angular error compared to

the joints for the main fingers. However, unlike the performance comparison found

in the previous section with cylinder grasp pattern prediction, here the first choice

ANN does not significantly improve the overall prediction of the grasp, indicating

that both architectures perform near-equally overall.

4.2.2 Hardware Implementation - Grasping Known Objects

After evaluating the performance of ANNs in software for predicting grasp pat-

terns for cylinders and spheres, the next step is to validate their performance in

predicted grasping patterns in hardware with the new artificial hand platform, H2.

This was accomplished by sending signals to the actuators to move controllably to

the ANN predicted motor angles, while an object is suspended by a string on the

palm of the hand. All the motor angles would begin at their nominal position (fin-

gers open exposing the palm of the hand) and gradually move to the predicted motor

angle. After the fingers move to their predicted position, the string that is keeping
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the object suspended is removed. If the object drops or slips out of the hand, the

test is deemed unsuccessful. On the other hand, if the object is maintained in the

grasp, then the grasp is deemed successful. In hardware, it is important to note that

even if the grasp is deemed successful, there can still be undergrasping present for

individual fingers. In physical space, undergrasping is the scenario of when an active

finger reaches its final position, however, does not touch the object. Intuitively, at

least two fingers are required, the thumb and another opposing finger, to successfully

grasp an object, therefore having some fingers resulting in undergrasping does not

necessarily deem the grasp unsuccessful. However, if a significant number of fingers

result in undergrasping, then the object could potentially slip out resulting in being

unsuccessful.

The timing of the finger motion when grasping the object is important, in order

to result in a successful grasp. Based on the grasp study, it was observed that the

thumb should be the first finger to reach its final state, since it acts as a structural

ground, that resists/opposes the motion of object being grasped. After the thumb,

the middle finger moves to its final position and then the ring and index, and finally

the pinky. The controlled time dependent trajectory of each motor angle, from initial

to final position was defined in a spline profile to reduce large changes in acceleration

at the start and end of the motion, [90]. The motion profile for each finger with time

delays incorporating the timing order of closing the fingers is presented in Equations

4.1-4.8.
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θT1(t) = a0 + a1t+ a2t
2 + a3t

3 (4.1)

θT2(t− 2) = a0 + a1(t− 2) + a2(t− 2)2 + a3(t− 2)3 (4.2)

θT3(t− 2) = a0 + a1(t− 2) + a2(t− 2)2 + a3(t− 2)3 (4.3)

θT4(t− 2) = a0 + a1(t− 2) + a2(t− 2)2 + a3(t− 2)3 (4.4)

θM(t− 5) = a0 + a1(t− 5) + a2(t− 5)2 + a3(t− 5)3 (4.5)

θI(t− 6) = a0 + a1(t− 6) + a2(t− 6)2 + a3(t− 6)3 (4.6)

θR(t− 6) = a0 + a1(t− 6) + a2(t− 6)2 + a3(t− 6)3 (4.7)

θP (t− 7) = a0 + a1(t− 7) + a2(t− 7)2 + a3(t− 7)3 (4.8)

Where the constants (a0, a1, a2, a3) are based on the desired end position and

time for the motion and evaluated according to Equations 4.9-4.12,

a0 = θ0 (4.9)

a1 = 0 (4.10)

a2 =
3

t2f
(θf − θ0) (4.11)

a3 = − 2

t3f
(θf − θ0) (4.12)

4.2.2.1 Cylinders

The grasping predictions from Cy-11/2400 on for object C22 are presented in

Figure 4.9. At every height, the object is grasped successfully, in other words, does

not slip/fall out of the hand. However, it is observed that at height 3.5” (Figure

4.9 c) even though the object is being held securely, the pinky finger does not come

into contact with the object. It is observed that C22 slightly tilted based on the

contact by the other fingers. Note, the fingers close at specific times, and in this case,

the thumb joints reach their final angular position first and then the pinky reaches
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its final angular position last. Also, note that in Figures 4.5 and 4.6, the index and

middle undergrasp. Even though the pinky overgrasps by 5 degrees, it is not sufficient

to contact the object.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.9: Images of the final grasp on object C22 from the resulting prediction of
Cy-11/2400 trained with 76 data sets.

The test grasp was then performed with ANN-13/4600, with the images of the

grasps presented in Figure 4.10. The grasps at all heights were successful, however,

there were occasions where fingers did not come into contact with the object. At

heights 1.0” and 1.5”, all appropriate fingers required for grasping (thumb, index,

and middle) made contact with the object, but at heights 2.5” and 3.5”, some fingers

did not come into contact with the object. It can be observed that at height 2.5”

(Figure 4.10), the index finger comes close, but does not contact the object, this is

reflected in the undergrasping prediction of the ANN as shown in Figures 4.7 and 4.8.

Moreover, at height 3.5” in Figure 4.10, the index and the pinky under grasp and

do not come into contact with the object. This is similar to what was observed in

the second ANN grasp, however, the grasp prediction did not improve with the first

choice ANN in hardware, hence Cy-13/4600 did not perform better than Cy-11/2400.
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.10: Images of the final grasp on object C22 from the resulting prediction of
Cy-13/4600 trained with 76 data sets.

In conclusion, hardware testing resulted in successful grasps for all cases. These

results coincide closely with the results observed in the software analysis. Even with

all the test resulting successful, some of the fingers resulted in undergrasping.

4.2.2.2 Spheres

In Sp-12/5000 (first choice), the test was repeated in order to observe how well

the prediction would result in a successful grasp of sphere S1. In Figure 4.11, the

resulting grasps for Sp-12/5000 are presented. At both heights 1.0 and 1.5” (Figure

4.11) the index is activated and comes close to the sphere, but it does not make

contact. The same is true with the pinky at height 3.5” (Figure 4.11), where the

prediction is made to move a certain number of degrees, but does not come into

contact with S1. The images of the resulting grasp with Sp-11/3000 (second choice

ANN) are presented in Figure 4.12. An observation from the grasps is that the sphere

was grasped at all heights and did not slip out of the hand. However, at height 1”

(Figure 4.12), the index does not come into contact with S1. Again, at height 1.5”

(Figure 4.12), the index finger does not contact the sphere. Additionally, at height

3.5” (Figure 4.12), even though the pinky finger is predicted to contact the object, it

does not. In summary, for both ANN architectures, even though there was clear
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.11: Images of the final grasp of object S1 from the resulting prediction of
Sp-11/3000 trained with 24 data sets.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.12: Images of the final grasp of object S1 from the resulting prediction of
Sp-12/5000 trained with 24 data sets.

undergrasping present in the index and pinky, as was observed in the software analysis

(Figure 4.7 and 4.8), the sphere was successfully grasped in all the tests. It was also

observed that in hardware, there was no significant improvement in physical grasping

between the more theoretically accurate Sp-12/5000 compared to Sp-11/3000.

4.2.3 Predicting Grasp Patterns of Unknown Objects

The predictive performance of the ANNs was evaluated with grasping of un-

known objects not used in training or testing; objects for which the grasping pattern

is not know a priori. There were 3 objects, two cylinders and one sphere, were

used for testing the effectiveness of the ANNs, see Figure 3.37. The dimensions

of the objects are tabulated in Table 3.1. The tests were performed at all heights

H = {1.0, 1.5, 2.5, 3.5}.
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4.2.3.1 Cylinders

In Figure 4.13, images of the final grasp with Cy-13/4600 for UC1 are presented.

The predictions resulted in successfully grasping all the cylinder at all heights. How-

ever, at height 2.5” the index finger does not come into contact with the object. The

images of the grasps performed with second choice ANN are presented in Figure 4.14.

It is observed that at each height, the ANN predicted a grasp pattern that resulted

in a successful grasp. It is important to note that at heights 2.5” and 3.5” the index

finger undergrasped the object.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.13: Final grasp positions of the fingers for object UC1. Cy-13/4600 was
trained with 76 data sets.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.14: Final grasp positions of the fingers for object UC 1. Cy-11/2400 was
trained with 76 data sets.
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In Table 4.1, all the motor angles for each finger for all the grasps for cylinder

UC1, for the two ANN architectures considered are tabulated. In the table, the

underlined bold faced values indicate that even though the finger was activated, it

did not make contact with the object.

Table 4.1: Final finger positions for grasping object UC1. The units for the fingers
are in degrees.

ANN Architecture Height (in) θT1 θT2 θT3 θT4 θI θM θR θP

Cy-11/2400

1.0 109 144 0 0 42 69 0 0
1.5 120 140 0 0 42 70 0 0
2.5 129 140 0 0 33 59 41 0
3.5 136 133 0 0 34 57 41 46

Cy-13/4600

1.0 108 146 0 0 43 72 0 0
1.5 115 139 0 0 45 73 0 0
2.5 125 139 0 0 39 61 42 0
3.5 135 134 0 0 40 59 40 48

For both sets of ANN architectures, the joint angles were similar with a low

deviation. In the predictions, Cy-13/4600 had slightly higher values for joint angles.

This is particularly apparent in the θI column, where the low joint angles predicted

by Cy-11/2400 did not result in contact with the cylinder, whereas in Cy-13/4600

the index did make contact because the angles were slightly larger1.

The images of grasping UC2 with Cy-11/2400 are presented in Figure 4.15. It is

observed that at all heights, the UC2 was successfully grasped with all fingers coming

into contact with the object. In Figure 4.16, the final images of the grasp of UC2 with

Cy-13/4600 are presented. It is observed that at heights 1.0” and 1.5”, the object

slipped out of the hand. Even though the fingers contact the object, there was not

enough force exerted on the object to prevent it from sliding out. Also at height 3.5”,

1For instance, at height of 3.5”, Cy-11/2400 predicted 34◦ compated to Cy-13/4600 predicted

40◦, which is slightly larger that the former prediction.
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even though the pinky undergrasps and does not come into contact with the object,

the object is successfully grasped and does not slide out of the hand.

For both ANN architectures, the motor angles were similar with a low deviation

in value. In the predictions, Cy-13/4600 had slightly higher values for motor angles.

This is particularly apparent in the θI column, where it was observed the low joint

angles predicted by Cy-11/2400 did not contact the cylinder, whereas in Cy-13/4600

the index did make contact.

Table 4.2: Final finger positions for grasping object UC2. The units for the fingers
are in degrees.

ANN Architecture Height (in) θT1 θT2 θT3 θT4 θI θM θR θP

Cy-11/2400

1.0 109 151 0 0 51 86 0 0
1.5 119 148 0 0 52 88 0 0
2.5 129 151 0 0 46 81 53 0
3.5 135 146 0 0 55 88 52 52

Cy-13/4600

1.0 110 152 0 0 48 83 0 0
1.5 120 147 0 0 50 85 0 0
2.5 130 151 0 0 47 80 51 0
3.5 138 146 0 0 49 88 51 51

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.15: Final grasp positions of the fingers for object UC2 with Cy-11/2400,
trained with 76 data sets.
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(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.16: Final grasp positions of the fingers for object UC2 with Cy-13/4600
trained with 76 data sets.

In Table 4.2, all the motor angles predicted by both ANNs are tabulated for

comparison. The entries in bold indicate that even if the motor was activated, the

finger did not make contact. It is interesting to compare the predictions made by both

ANNs at heights 1.0” and 1.5” for the index and middle fingers. For Cy-11/2400,

the predictions were higher for θI and θM compared to the values predicted by Cy-

13/4600. As a result of these low values predicted by Cy-13/4600, the object was

undergrasped and slipped out of the hand.

Two distinct ANNs were tested for their ability to predict grasping patterns for

unknown objects. Out of 16 test grasps, two were unsuccessful attempts at grasping.

Another observation is that there were occasions where the hand was able to grasp the

objects, however, some of the active fingers according to the prediction were not able

to make contact with the object. It was also observed that the index had the most

difficulty in coming into contact with the object. Nevertheless, undergrasping issues,

could be addressed by incorporating additional sensors or other types of sensors, as

will be discussed in Chapter 5.
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4.2.3.2 Spheres

One unknown sphere, US1 was used to investigate the ability of the ANN to

predict the grasp. In Figure 4.17, the images of the final grasps based on the predic-

tions of Sp-11/3000 are presented. It is observed that at each height, the object is

successfully grasped with the predictions made. However, at height 2.5”, the index

finger undergrasps and fails to contact the object. The resulting grasps for Sp-12/5000

are presented in Figure 4.18, and at all heights, US1 is successfully grasped. However,

at height 2.5”, the index finger is active but does not come in contact with US1.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.17: Final grasp positions of the fingers for object US1 with Sp-11/3000
trained with 24 data sets.

(a) Height 1.0” (b) Height 1.5” (c) Height 2.5” (d) Height 3.5”

Figure 4.18: Final grasp positions of the fingers for object US1 with Sp-12/5000
trained with 24 data sets.
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Table 4.3: Final finger positions for grasping object US1. The units for the fingers
are in degrees.

ANN Architecture Height (in) θT1 θT2 θT3 θT4 θI θM θR θP

Sp-11/3000

1.0 101 146 0 0 37 65 0 0
1.5 109 147 0 0 41 69 0 0
2.5 121 142 0 0 37 66 45 0
3.5 139 133 0 0 0 54 36 57

Sp-12/5000

1.0 101 149 0 0 35 69 0 0
1.5 108 144 0 0 41 65 0 0
2.5 120 143 0 0 38 63 45 0
3.5 140 134 0 0 0 60 38 55

In Table 4.3, the final angular positions for the two ANNs are tabulated. The

numbers in underline bold indicate that the finger did not come into contact with the

object or undergrasping. It is observed that for both architectures, the index under-

grasps at height 2.5” and the middle finger undergrasps at height 3.5”. Nevertheless,

the other fingers active in the grasp are able to “compensate” for the undergrasp

of the finger and the object is held without falling or slipping, yielding a successful

grasp.

In summary, both architectures are able to successfully predict grasp patterns

for an unknown sphere. There are, however, instances where the object was not held

by all the active fingers. As discussed earlier, this issue of undergrasping can be

mitigated with the addition of other sensors, as will be discussed in Chapter 5.

4.3 Non Discriminatory ANN

Previously, ANNs were trained specifically with only spheres or cylinders, in

order to later predict the angular positions of the joints to grasp a sphere or cylinder.

This was performed by having the user first indicating to the system if the object

is a sphere or cylinder, then proceed with providing the object’s dimensions and
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relative height. It is of interest, however, to investigate an ANN that will not need

the user to specifically provide the system whether the object is a sphere or cylinder,

instead just provide the object dimensions and relative height. In this section, the

investigation and selection of a ANN that will predict the appropriate grasp, based

only on the object dimensions and relative height, without indicating whether the

object is spherical or cylindrical in nature is introduced.

Given previous training data for grasping based on spheres and cylinders, a

combined training set was developed resulting in 100 data sets for training. The

inputs for the ANN are the object diameter (horizontal width) and length (vertical

width) as well as it’s relative height compared to the hand. The object dimensions

are then scaled based on the dimensions of the hand, Lr and Dr, as mentioned in

Section 3.5.

(a) Absolute Percent Difference (b) Mean Square Error

Figure 4.19: The Absolute Percent Difference and Mean Square Error of the result-
ing ANN architectures when the number of iterations for optimization is varied as
functions of number of nodes in the hidden layer. This training was performed with
100 data sets.

After a training set was developed, the resulting MSE and APD were calculated

for a variety of architectures. Figure 4.19 shows the resulting average APD and MSE
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of the various ANN architectures. The APD begins around the same range of 43-

48%. Afterwards, the values tend to decrease slightly, and after 3000 iterations,

architectures are more spread out. The architecture yielding the lowest APD is with

13 hidden nodes and 5000 iterations for optimization. The resulting MSE based on

the various architectures trained. At the beginning, the majority of the architectures

have a MSE of about 90 to 110, and decrease uniformly to about 600-800 iterations.

After 1400 iterations, there is a clear distinction between the architectures. The ANN

resulting in the lowest MSE is 13 hidden nodes and 5000 iterations. Figure 11, in

the Appendix, presents the average Absolute Difference resulting from the various

ANN architectures. The ANN resulting in the lowest average Absolute Difference is

13 hidden nodes and 5000 iterations for optimization, which is the same architecture

for both the MSE and APD. Therefore, the architecture that will be used for our first

choice investigations will be CySp-13/5000.

The architecture that will be used as a second choice will be CySp-15/2000. The

reason behind this is because the architecture has 4% APD higher, 1% AD higher

and 10 units higher in MSE, therefore, similar in error metrics. Thus, the second

choice ANN will be CySp-15/2000. In summary, two architectures will be used to

for testing the predictive ability of a non-discriminatory neural network, specifically

CySp-13/5000 and CySp-15/2000.

4.3.1 Software Implementation

Testing was performed on a sphere and a cylinder in order to compare later with

the grasp prediction of ANN’s dedicated to one type of geometry. The test performed

investigated the prediction of grasping cylinder C22 at heights 2.5” and 3.5”, and the

sphere S1 at heights 1.0” and 1.5”.
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(a) C22 at 3.5” (b) C22 at 2.5” (c) S1 at 1.0” (d) S1 at 1.5”

Figure 4.20: Angular error between the actual and ANN predicted angles for grasping
sphere S1 and cylinder C22. The predictions were performed with CySp-15/2000
trained with 100 data sets. Blue bars indicate overgrasping and red bars indicate
undergrasping.

Figure 4.20 presents the difference in angles between the actual and prediction

with CySp-15/2000. As presented, the largest error is in the index and middle finger

motor angles, which result in undergrasping. It is noticeable that undergrasping occurs

most frequently when grasping cylinder C22 at height 3.5”.

(a) C22 at 3.5” (b) C22 at 2.5” (c) S1 at 1.0” (d) S1 at 1.5”

Figure 4.21: Angular error between the actual and ANN predicted angles for grasping
sphere S1 and cylinder C22. The predictions were performed with CySp-13/5000
trained with 100 data sets. Blue bars indicate overgrasping and red bars indicate
undergrasping.

In Figure 4.21, the angular error between the actual and prediction with CySp-

13/5000, is presented for all grasps. It is observed that between CySp-15/2000 and

CySp-13/5000, there is an improvement in prediction clearly shown in grasping cylin-

der C22 at 3.5”, by yielding overall less angular error. However, there is worse per-

formance in grasping C22 at 2.5” and S1 at heights 1.0” and 1.5”. The largest issue

resulting from the predictions is undergrasping.
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In conclusion, an ANN trained with both cylinders and spheres was able to

predict the resulting joint angles for both a cylinder and sphere. Among one of the

most frequent issues was undergrasping, especially when predicting grasp patterns for

cylinders.

4.4 ANN Architecture Comparison

The combined ANN (CySp) will be compared to the distinct sphere (Sp) and

cylinder (Cy) ANNs in order to evaluate and compare its performance with the indi-

vidual ANNs. The cylinder C22 test object data set with results using Cy-11/2400

and Cy-13/4600 will be compared to the performance of CySp-15/2000 and CySp-

13/5000. Similarly, a comparison will be performed for sphere S1 with results from

Sp-11/3000 and Sp-12/5000 will be compared to the performance of CySp-15/2000

and CySp-13/5000.

In the software analysis, the term undergrasping will be used which implies

that individual predicted motor angles (equivalent to a predicted grasp pattern) are

less than the actual ones. In other words, the prediction made by the ANN is under

the actual angular value. This scenario is more distinguishable in hardware since

undergrasping will result in an active finger not contacting the object. Additionally,

overgrasping is the scenario in which the angular prediction is greater than the actual

angle. In hardware, overgrasping would result in squeezing the object which could

result in the object and/or the fingers being damaged.

4.4.1 Cy and CySp: Comparison of Predictive Performance

Figure 4.22 shows the error magnitude between the actual motor angles and

the predictions by all the ANNs for grasping cylinder C22. It is observed that the

predictions for all heights are mixed with both under and overgrasping. For grasping
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C22 at height 2.5”, CySp-15/2000 results in the lowest error for 4 fingers (index,

middle, ring, and pinky). Among these four fingers, the largest error is found in the

prediction of the middle finger, θM . It is also noted that the architecture with the

largest error is CySp-13/5000. The thumb joint that is most accurate in the prediction

is joint θT1 and finger θI .

For grasping C22 at height 3.5”, more error results from the predictions. It

is observed that both the prediction of the index and middle finger position results

in the largest error. On the other hand, the prediction of the ring finger is most

accurate. The architecture that results in the highest error for all the joint angles is

CySp-15/2000, while CySp-13/5000 results in the lowest error. Among the joints in

the thumb, θT2 and θT3 have the lowest error in predictions.

(a) C22 at 2.5” (b) C22 at 3.5”

Figure 4.22: The angular error the actual and predicted joint angles for grasping.
The results are provided by Cy-11/2400 and Cy-13/4600 trained with 76 data sets
and CySp-15/2000 and CySp-13/5000 trained with 108 data sets.

Overall, it has been observed that the combined architectures performed better

than the cylindrical ANN at both heights 2.5 and 3.5” for grasping cylinder C22.

However, accuracy of motor angle predictions were not uniform across both heights.

For instance, at height 2.5” CySp-13/5000 resulted in the largest error and CySp-
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15/2000 in the lowest error. However, the converse is true at height 3.5”, where

CySp-15/2000 yields the largest error and CySp-13/5000 the lowest error.

4.4.2 Sp vs. CySp

The errors between actual and predicted motor angles are presented in Figure

4.23. It is important to note that sphere S1 is grasped at heights 1.0” and 1.5”,

therefore the only active fingers for the grasp are the index, middle and the thumb.

Therefore, no real discussion could take place for the ring and pinky fingers, with

respect to the actual motor angles since they are not active in grasping.

(a) S1 at 1.0” (b) S1 at 1.5”

Figure 4.23: The angular error the actual and predicted joint angles for grasping.
The results are provided by Sp-11/2000 and SP-12/5000 trained with 24 data sets
and CySp-15/2000 and CySp-13/5000 trained with 108 data sets.

Among the thumb joints, θT2 is the most accurate and θT4 the least accurate.

The most accurate architecture is CySp-13/5000, and least accurate are the sphere

architectures Sp-11/2000 and Sp-12/5000. At height 1.5”, Figure 4.23, the sphere ar-

chitectures are less accurate at predicting grasp patterns of the four fingers compared

to the combined architectures (CySp), see Table 4.4. Among the thumb joints,the

motor angle predicted with the lowest error is for θT2. In general, the combined ar-
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chitecture CySp-13/5000 performs with the lowest error across the fingers and thumb

joints.

Table 4.4: Average (all motor angles) absolute percent error of different ANNs with
respect to known objects. Values presented are in terms of percentage.

ANN S1 C22
1.0” 1.5” 2.5” 3.5”

Cy-11/2400 - - 5.203 2.959
Cy-13/4600 - - 6.041 6.053
Sp-11/3000 2.783 9.192 - -
Sp-12/5000 3.268 9.129 - -

CySp-15/2000 4.674 5.645 4.494 10.992
CySp-13/5000 4.588 4.409 5.131 4.702

In summary, for grasping sphere S1 at heights 1.0” and 1.5”, the thumb joint

that resulted in the lowest angular error is θT2. This is promising because this thumb

joint provides adduction, which is the most influential joint for grasping. It is also

observed that the combined architectures, CySp-15/2000 and CySp-13/5000, perform

best at providing an accurate prediction of angular motor angles for grasping com-

pared to architectures specifically dedicated to predicting motor angles for sphere

grasping.

4.5 Grasping Unknown Near Spheres/Cylinders

To further verify the predictions of developed ANNs, we evaluated how well they

can predict grasp patterns of unknown non-traditional shapes, and then applied it to

the hardware of the biomimetic artificial hand. Non-traditional shapes are objects

that do not fall easily in the category of sphere or cylinder. Hence, in this verification

step, we will be using all 3 ANNs to predict the grasp of the object. Two objects will
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be used for testing as presented in Figure 3.37, a decorative apple (UO1) and orange

(UO2). Neither object has a uniform radius or fit in a specific shape category.

The geometric characteristics and box dimensions of the non-uniform shape

objects are shown in Table 3.7. Note that the box dimensions are those of a rect-

angle superimposed to the side profile of the object, hence a horizontal and vertical

dimension. These dimensions are used to evaluate the Gr and Lr ratios of the object.

A limitation of taking the dimensions of a superimposed box over the object is that

other details of the object shape along its axis are not captured. Moreover, distinct

objects can have the same box dimensions which could potentially require more in-

formation about the object in order to be grasped appropriately. At this stage of

research, we consider only convex objects.

The Gr and Lr ratios and the reference height for each object are presented as

inputs to the ANN architectures for distinct cylinders (Cy-11/2400 and Cy-13/4600),

distinct spheres (Sp-11/3000 and Sp-12/5000), and combined (CySp-15/2000 and

CySp-13/5000). The predicted motor angles for grasping each object apple or UO1

and orange or UO2 at all heights (1.0, 1.5, 2.5, 3.5) and for each ANN are tabulated

in Tables 4.5 and 4.6 respectively.

Subsequently, each object is placed in suspended at the correct height relative to

the H2 biomimetic artificial hand and the motors are commanded to their final values

using the motion profile in Equations 4.1-4.8. The performance of each predicted set

of motor angles is discussed based on the observations from the hardware verification.

Note that in Tables 4.5 and 4.6 numbers in underlined bold indicate that the respective

finger was active but it did not contact the object, i.e. was undergraspng. Also, ANNs

architectures in underlined bold indicate an unsuccessful grasp with the object not

securely held when the string was released.
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As presented in Table 4.5 and hardware observations, the index, θI , performed

the poorest and experienced the most undergrasping. Moreover, undergrasping is

observed when the object is located at larger heights. Also, there is noticeable motor

angle boundary for the index motor in which undergrasping is present. For θI , at all

heights and for all architectures, if the motor angle prediction was smaller than about

37◦, it was observed that no contact was made with the object.

It is observed that at height 3.5”, the index was not required for grasping

based on the Gr < 1.0, however, the cylindrical architectures predicted the activation

of θI . Cylindrical architectures are the least successful since one of the predictions

resulted in a unsuccessful grasps (at height 3.5”). It is noted that the combined

ANN architectures (CySp-15/2000 and CySp-13/5000) resulted in successful grasps as

observed during hardware verification. The images for all the grasps for the different

architectures and two test objects are presented in the Appendix in Figures 12, 13,

14, and 15.

The angular values predicted for object UO2 by all the architectures are tab-

ulated in Table 4.6. Among some of the first observations is that the finger that

results in the most undergrasping is the index finger, once again. At height 2.5”,

all the predictions made for the index finger result in undergrasping. Moreover, at

height 3.5”, Sp-12/5000 is the only architecture that has a successful grasp and all

the active fingers come into contact with the object. The only occasions that result

in unsuccessful grasping are at height 3.5”, in particular Cy-11/2400 and Sp-11/3000.

The images of all the grasps are presented in Figures 16, 17, 18, and 19.

In conclusion, the motor angles were successfully predicted for 94% (45/48)

of the grasps with the various architectures since they resulted in successful grasps.

However, at large heights such as 2.5” and 3.5”, undergrasping was evident for both

objects. Both the cylindrical and spherical architectures resulted in unsuccessful
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grasps (UO1 with Cy-13/4600 at 3.5”, UO2 with Cy-11/2400 at 3.5”, UO2 with Sp-

11/3000 at 3.5”), however, the non-discriminatory architecture only predicted suc-

cessful grasps. The attractive aspect of the non-discriminatory ANN is that the user

does not need to specify whether the object is a sphere or cylinder, the user only needs

to input the horizontal width and vertical length, and the architecture will interpo-

late a solution between sphere and cylinder. This can be especially useful if a vision

system is incorporated to capture the object major dimensions, where the combined

architecture will predict the motor angles for the artificial hand. The issues regard-

ing undergrasping, can be resolved if a controller is implemented, where the finger is

required to contact the object in order to complete its task. The implementation of

a feedback controller is part of the next step in this research, in Chapter 5.
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Table 4.5: ANN predictions by various architectures on unknown object UO1 (apple).
The motor angle values in underlined bold indicate an active finger not making contact
with the object.

Height Architecture θI θM θR θP θT1 θT2 θT3 θT4

(in) deg deg deg deg deg deg deg deg

1.0 Cy-11/2400 39 64 0 0 102 145 28 0
Cy-13/4600 38 71 0 0 105 145 28 1
Sp-11/3000 37 65 0 0 101 146 24 0
Sp-12/5000 35 69 0 0 101 149 26 0

CySp-15/2000 41 70 0 0 101 146 26 0
CySp-13/5000 38 70 0 0 97 147 26 0

1.5 Cy-11/2400 37 63 0 0 116 141 31 3
Cy-13/4600 37 70 0 0 111 139 30 5
Sp-11/3000 41 70 0 0 109 147 24 3
Sp-12/5000 41 65 0 0 108 144 23 3

CySp-15/2000 42 70 0 0 105 145 28 1
CySp-13/5000 42 69 0 0 110 145 28 0

2.5 Cy-11/2400 26 52 40 0 134 138 36 7
Cy-13/4600 29 57 41 0 123 136 39 11
Sp-11/3000 37 67 45 0 121 143 38 4
Sp-12/5000 38 64 45 0 120 143 39 3

CySp-15/2000 30 67 43 0 117 142 35 5
CySp-13/5000 31 66 39 0 125 143 32 6

3.5 Cy-11/2400 29 52 43 44 143 129 50 10
Cy-13/4600 35 59 41 45 137 131 50 12

Sp-11/3000 0 54 37 57 139 133 45 19
Sp-12/5000 0 60 38 54 140 134 44 20

CySp-15/2000 0 53 39 53 137 131 49 15
CySp-13/5000 0 50 37 51 143 131 46 17
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Table 4.6: ANN predictions by various architectures on unknown object UO2 (or-
ange). The motor angle values in underlined bold indicate an active finger not making
contact with the object.

Height Architecture θI θM θR θP θT1 θT2 θT3 θT4

1 Cy-11/2400 40 66 0 0 103 145 28 0
Cy-13/4600 40 71 0 0 105 146 27 0
Sp-11/3000 36 62 0 0 100 143 22 0
Sp-12/5000 33 72 0 0 98 149 24 0

CySp-15/2000 40 67 0 0 103 145 27 0
CySp-13/5000 39 68 0 0 96 146 27 0

1.5 Cy-11/2400 38 65 0 0 117 141 31 3
Cy-13/4600 39 71 0 0 112 139 30 4
Sp-11/3000 40 66 0 0 107 143 21 2
Sp-12/5000 39 67 0 0 105 144 22 1

CySp-15/2000 41 69 0 0 106 145 29 1
CySp-13/5000 43 68 0 0 108 144 29 0

2.5 Cy-11/2400 28 54 40 0 133 139 36 7
Cy-13/4600 31 58 41 0 123 137 38 10
Sp-11/3000 39 66 44 0 119 139 34 3
Sp-12/5000 41 62 48 0 116 144 39 0

CySp-15/2000 33 67 42 0 119 143 34 5
CySp-13/5000 36 68 41 0 123 143 33 4

3.5 Cy-11/2400 31 55 42 44 141 130 49 9

Cy-13/4600 37 60 41 46 137 132 49 12
Sp-11/3000 0 60 35 56 138 130 37 19

Sp-12/5000 0 67 39 54 148 134 39 19
CySp-15/2000 0 57 38 51 139 132 45 13
CySp-13/5000 21 59 40 49 140 132 45 13
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CHAPTER 5

Event Based Grasp Controller

Grasping has been performed with only kinematic information with respect to

the angular position of the motors actuating the fingers. There has not been any

feedback from the system to indicate that the object has been grasped or that the

fingers have made contact with the object. Instead, ANNs have been trained to

predict and provide the user the motor angles in order to grasp an object based on

its relative location and geometric information. However, some of the drawbacks

encountered are:

• An active finger did not contact the object. The ANN would predict a motor

angle for an active finger, however the prediction would result in undergrasping.

This affects the force distribution balance on the object as well as the risk of

not exerting enough force to hold the object.

• Not being able to hold the object. Even with the predictions of motor angle

positions, the grasp of the object is not guaranteed. There have been a few

instances in which the object was not grasped due to undergrasping.

Both of these issues could be mitigated by adding a feedback system. An event based

two-stage grasp controller which will help avoid “blind” grasping and ensure that the

object is successfully and securely grasped is investigated.

The controller will incorporate a kinematic stage for the initial portion of the

grasp. At the beginning, the motor angles required to grasp the object will be pre-

dicted using an ANN trained with both cylinders and spheres. This stage of the

controller will be open loop and will not have any direct feedback from the envi-
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ronment, hence “blind”. The second stage of the controller will ensure a successful

grasp is made by incorporating sensor fusion in the grasping algorithm. The previous

chapters have introduced and extensively discussed the results of the first stage of

the controller based on pure kinematic grasping which has had positive results. This

chapter will introduced the second stage of the controller based on sensor information

and proceed with integrating the two stages in hardware demonstration.

5.1 Sensor Fusion Feedback - Hardware

In order to determine if the object has been engaged or not, feedback from the

environment needs to be introduced to the control system. The two environmental

sensors explored are a QTC force sensor and current sensor. The resulting information

from both sensors will provide clear indication whether the object has been engaged

or not by the fingers.

5.1.1 QTC Force Sensor

The QTC force sensor is used to indicate contact with an object. The sensors

are placed in the tips of the fingers in two places; one location closer to the end, and

the other closer to the interphalangeal joint since, based on the size of the object, a

different contact region will be used to grasp the object (see Figure 3.14 in Chapter

3).

It was noted that the among all the grasps, the fingers most active were the

index, middle, and ring. Therefore, it was decided that the sensors be placed on these

fingers. Given the size of the sensor with respect to the approximate potential contact
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area of the finger, two sensors were place on each finger, Figure 5.1, to cover 66% of

the contact area, yielding 6 sensors on the hand1.

Figure 5.1: Images of the QTC sensors attached to the different locations of the finger
tips.

Note that the QTC sensor output is only used as an indicator in the feedback

that contact is made. Because contact is not repeatable, the surface area for contact

cannot be predicted with high accuracy and as such the control scheme does not

prioritize the QTC sensor.

5.1.2 Servo Motor Current Sensors

There are four current sensors to monitor the current consumption of the motor

for the index, middle, ring and pinky fingers. The control scheme will consider a

control action for the fingers and not for the thumb. More current drawn from the

motor will relate to more torque output by the motor which will indicate that a finger

1Note that we installed sensors on both H1 and H2 on the same locations since the fingers were

the same for both hands
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is interacting and “squeezing” an object during the stages of the grasping process.

Hence, the grasping scheme will incorporate torque monitoring for control purpose

[91], [92].

The current sensors use an Allegro hall effect transducer ACS712ELC, which

determine a correlation between the current being pulled by a load, iP , and output

voltage, vout, to the user, as presented in Equation 5.1.

vout = iP × 0.25 + 2.5 (5.1)

Where iP is in Amps, and vout is in volts. Now, since the current pull from the

motors is known, the motor torque output can also be estimated. The servo motors

for the fingers are MG996R Tower-Pro2 and have a stall torque of 9.5 lb-in at 2.5

A. The running current for the motors are about 700 mA with no load. However,

the bias current needs to be eliminated in order to normalize the offset. Therefore

the relationship between the current pull, iP , and the motor output torque, τm, is

presented in Equation 5.2.

τm = (iP )× 5.3 (5.2)

The relationship between the output voltage and the motor torque output is given

by Equation 5.3.

τm = (vout − 2.5)× 21.2 (5.3)

The value of voltage output provided by the current sensor can be used to estimate

the torque output of the motor in real-time.

2Information about the servo motor can be found at the following URL:

http://www.electronicoscaldas.com/datasheet/MG996R Tower-Pro.pdf
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5.2 Sensor Fusion Feedback - Algorithm

A study was performed to observe the sensor values while grasping objects and

their resulting sensor values. All the objects, found in Table 1 in the Appendix, were

grasped at all the standard measuring heights and both sensor values (current and

force) were recorded. Note that the objects that were grasped were semi rigid and

their weight did not exceed 2 pounds.

Figure 5.2 presents the frequency in which the force sensor was activated during

grasping. The inset values are the number of times the sensor was detected (green)

or not detected (red). Among the different sensors on the fingers, the case where a

sensor was detected with most frequency was IndexL, however it was only activated

20% of the time3. Moreover, it was observed that the sensor values were either fully

on or off when activated, and rarely (5%) was there a gradation in force sensed.

Figure 5.2: Frequency of sensor activation based on experimentally grasping objects.

3Out of 101 occasions, only 21 of those occasions resulted in a reading from the sensor
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However, as opposed to the force sensors, the current sensors performed reliably

at every contact. Figure 5.3 presents a histogram of the output torques required for

each finger at various grasps. There are clear distinctions for the peak frequency

values for each finger. The average torque values required to grasp all objects, for

each finger, are presented in Table 5.1.

Figure 5.3: This is a histogram of the final torques required to grasp all the objects.
There were 112 grasps consisting of different grasp poses.

Table 5.1: Average and Standard deviation of torque values (lb-in) required for a
successful grasp, based on finger.

τI τM τR τP

Average 1.43 1.23 0.98 0.54
Standard Dev. 0.35 0.33 0.30 0.12

Based on observations of both sensors, it was determined that the current sensor

performed more reliably than the QTC sensor. This is due to the uncertainty of finger

contact area as well as contact dynamics during and after grasping. The sensors work
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best when the contact force is normal to the sensor, however, based on the geometry

of the object and under actuation of the finger, this scenario cannot be controllably

replicated. Moreover, once the finger contacts the object, based on the actuation

of the finger, the force direction vector changes, creating a sliding/slipping motion

between the object and the finger. This motion cannot be detected with the QTC

sensor and hence the non normal forces acting on the sensor surface are not captured

to activate the sensor. Careful attention was taken to address these issues in terms of

mounting and trying to optimize the normal contact force on the object, however, it

was concluded, that at this time, the QTC sensor would not be incorporated in the

closed loop controller due to its unreliable performance.

Figure 5.4: Decision making diagram for closed loop grasping algorithm

The proposed closed loop grasping algorithm is presented in Figure 5.4 with

the steps being as follows:

1. Identify the geometry of the object and input to the system the diameter, D,

length, L, and relative height, H.

2. Have the appropriate ANN (Cy, Sp, or CySp) predict the angular positions for

each joint in order for the hand to grasp the object.
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(a) Kinematic Stage - Activate the motors to controllably reach the predicted

angle in a given time, using Equation 3.12, for each finger

θi(t) = θ0 +
3

t2f
(θf − θ0)t2 −

2

t3f
(θf − θ0)t3

Where tf is the desired duration of the motion, and θ0 and θf are the

initial and ANN predicted final angle of each motor. However, an intro-

duction to the Kinematic Stage of control is the constant monitoring of

the motor toque. If the amount of motor torque output exceeds or equals

the torque threshold, then the control signal stops the motor. The reason

being that when the torque output exceeds the threshold, this will indicate

a resistance to the finger motion on the physical system, most probably

that the finger has made contact with the object. Therefore, to prevent ob-

ject/hand damage (overgrasping) a stopping control ( ˙theta = 0) signal is

sent to prevent the motors from reaching the ANN predicted final position

θf .

(b) Torque Stage - Once the fingers are at their predicted location, assuming

that the motion of the fingers have not been interrupted by precipitated

contact, the next control signal will be to continue motor motion until the

torque values surpass a threshold. The torque thresholds, τt, used are the

average values in Table 5.1. Hence, the control law for each finger, at every

time step, will be

while τm ≤ τt

θf (t)← θf (t− 1) +δθ

end

Where the subscript f indicates the different fingers on the hand that have

current sensors installed (index, middle, ring, pinky).
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The proposed controller is envisioned to perform in the following two ways to

address the issue of undergrasping and overgrasping. Figure 5.5 indicates how the

current sensor readings would ideally behave during an ideal grasping scenario with

respect to time. The top graph represents the angular position of the motor and the

bottom represents the sensor values of the torque output of the motor with respect

to time. At the initial motion state, the motor begins at a zero position, similarly

the torque value begins at a non-zero baseline torque value (based on the nature of

having the motors on). As the motor moves, according to Equation 3.12, to the final

predicted position, θf , there is a point of contact between the finger and object, as

shown in Figure 5.5. At the point of contact, there is a noticeable rise in torque value

from the sensor, due to the object/finger engagement. As the motor continues to

move towards the predicted final position, the torque value increases until it reaches

the torque threshold value. In an ideal scenario, the torque threshold value and the

final angular value will be reached at the same time. This will indicate that the finger

has reached a predicted position and that there is contact with an object surface.

It has been observed during the kinematic grasping experiments (Chapters 3

and 4), an issue arises when the finger does not make contact with the object based

on the predicted finial position of the motors, what was termed undergrasping. In the

scenario of undergrasping, the motor reaches the final position, however, the torque

values from the sensors have not reached the predetermined threshold. As presented

in Figure 5.6, at the predicted final angular position, the torque sensor value has not

changed from the base line torque value. This indicates that the finger has not come

into contact with an object and there is no resistance to motion. In this scenario
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Figure 5.5: Schematic of ideal scenario in terms of sensor data during grasping event.
The top graph is the angular position of the motors and on the bottom graph is the
torque values from the sensors on the motors.

of undergrasping, the control action, by the event based controller, is to increase the

motor angle value iteratively, hence 5.4.

θt ← θt−1 + ∆θ (5.4)

Keep in mind, that in process of iteratively increasing the anglular value of the motor,

if the value of the torque sensor is equal or surpasses the torque threshold value, then

the control action is to stop the motor values from increasing.

Another issue already experienced that needs to be addressed is overgrasp-

ing, where the prediction of the ANN is greater than required to contact the ob-

ject. In hardware, this can result in damaging the object or the hand, or indenta-

tion/perforation of the finger into the object. This overgrasping scenario is schemat-

ically presented in Figure 5.7. It is observed that the sensor value for torque exceeds
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Figure 5.6: Undergrasping scenario during grasping event. The top graph is the
angular position of the motors and on the bottom graph is the torque values from the
sensors on the motors.

the threshold before the motor arrives to its predicted final position. It can be in-

ferred that contact has been made and the finger is pressing firmly against the object,

therefore it is not recommended that the finger keep closing to its predicted final po-

sition. As a result, the control action in this case is to stop the motors before reaching

their final position.

These are the envisioned control methods by which both undergrasping and

overgrasping are addressed with the event based two-stage controller. The perfor-

mance of the proposed control algorithm was evaluated by performing test on previ-

ously grasped objects and comparing the grasps with the ANN predicted kinematic

and force feedback controllers.
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Figure 5.7: Overgrasping scenario during grasping event. The top graph is the angular
position of the motors and on the bottom graph is the torque values from the sensors
on the motors.

5.3 Grasp Comparison - Test Objects

Two objects were used for testing, cylinder C22 and sphere S1. The predictions

based on the ANNs identified for investigation. The purpose of this comparison

is to detail the observed improvements from the first iteration hand, H1, and the

second iteration hand, H2, and then the introduction of the multiple types of ANN

architectures.

5.3.1 Cylinder

The cylinder used for testing is C22. In Figure 5.8, the predicted grasp patterns

are plotted against the actual grasp pattern for C22 at heights 2.5” and 3.5”. The

predictions compared are those that were previously used such as the cylinder based

ANN (Cy-11/2400, Cy-13/4600), combined, (CySp-15/2000, CySp-13/5000) along
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with the two stage controller with each ANN (Cy-11/2400-EB, Cy-13/4600-EB, CySp-

15/2000-EB, CySp-13/5000-EB).

It is observed that for the fingers θI , θM , θR, and θP , the values for the closed

loop control scheme have higher final motor angle values than those without closed

loop control. The reason being that the control scheme torque values require the

fingers to close more to create a firm grasp on the object.

(a) C22 at 2.5” (b) C22 at 3.5”

Figure 5.8: Comparison of grasp pattern predictions and actual motor angles for
grasping C22.

Figure 5.9: Images of the final grasp of all the open and closed loop predictions (top
is at height 3.5” and bottom is at 2.5”).

Note Cy-13/4600 prediction of the grasp at height 2.5” results in the index

undergrasping (Figure 4.9). However, undergasping is eliminated with Cy-13/4600-

EB. It should also be noted that at height 3.5”, the resulting grasp pattern from
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Cy-11/2400 (Figure 4.9 d) and Cy-13/4600 (Figure 4.10 d) results in undergrasping

for the index and pinky. Final images of the various grasps are found in Figure 5.9,

where the figures on the right of the highlighted box include the use of the event based

two stage controller. It is clearly shown that the event based controller eliminates

the cases of undergrasping found when there was no controller and just using pure

kinematics grasping based on ANN predictions.

In Figure 5.10, images of the final position of the fingers resulting from various

grasping schemes are presented. The same test object, C22, is grasped with two

different hands, H1 and H2, and with different control algorithms. It is noted that

with H1 and H2, using pure kinematics to grasp the object, there are occasions when

at least one finger does not contact the object (Cy-9/2600 at 3.5”, Cy-12/4600 at 3.5”,

Cy-11/2400 at 3.5”, Cy-13/4600), but in general all grasps result in not dropping the

object. However, these issues are not present when the event based controller is used.

In summary, the event based two stage controller resulted in successful grasp

and addressed issues of undergrasping and overgrasping.

5.3.2 Sphere

The sphere used for testing is sphere S1, grasped from height 1.0” and 1.5”. The

comparison of the resulting grasps from the pure kinematic predictions and controller

at both heights are presented in Figure 5.11. A general trend observed in the non-

thumb joints is that the final angles with the event based controller result in higher

angular values compared to the purely kinematic predictions. Moreover, the resulting

grasps with the event based controller are firm and secure.

The images of the final grasps for all the tests are presented in Figure 5.12.

As previously, the images of the pure kinematic prediction are placed next to the
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Figure 5.10: The stages of progression, from left to right, of the improvement of the
development of the artificial hand (H1 and H2) as well as the control schemes utilized
for grasping C22.

final grasps with the addition of the event based controller. An overall perspective

of grasping sphere S1, with H1 and H2 and addition of the event based two-stage

controller is found in Figure 5.13. It can be noted that architectures that did not

use the controller, the finger would not come into contact with the object (such as in

Sp-11/300 at 3.5” and Sp-12/5000 at 3.5”). However, after the introduction of the

controller, the hand was able to securely grasp the object without any occasions of

undergrasping.

In conclusion, in grasping both test objects, C22 and S1, the event based two-

stage controller was able to securely grasp the objects. Moreover, issues observed

previously using pure kinematic grasping, such as undergrasping and not grasping,

were not present when the two stage controller was employed.
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(a) S1 at 1.0” (b) S1 at 1.5”

Figure 5.11: Comparison of grasp pattern predictions and actual motor angles for
grasping S1.

Figure 5.12: Images of the predicted grasps on object S1 for the open and closed loop
control schemes. On the top the grasps are made at a height of 1.0” and the bottom
row are made at 1.5”.

5.4 Grasp Comparison - Unknown Objects

Unknown objects refer to lack of knowledge of the actual grasp pattern required

to hold the object. Therefore, there cannot be a comparison with an experimental

benchmark to indicate the accuracy of the predictions made by the ANN. The same

objects, UC1, UC2, and US1, are with the event based two-stage controller.

5.4.1 Unknown Cylinders

When grasping objects UC1 and UC2, the predictions made by all ANNs are

tabulated in Table 2 and 3. In these tables, the numbers in bold indicate an active

finger that did not make contact with the object. For UC1, the finger that result

in undergrasping are θI and θP . Lower bounds are observed where the event of

undergrasping occurs, such as about 40◦ at 2.5” and 3.5” for θI and 46◦ at 3.5” for
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Figure 5.13: The stages of progression, from left to right, of the improvement of the
development of the artificial hand (H1 and H2) as well as the control schemes utilized
for grasping S1.

θP . Figure 5.14 presents all the grasps performed in the last major row in Table 2.

Note that all the open loop grasps are juxtaposed with the CL grasps, moreover,

there are no occasions of undergrasping for the grasps with event based controller.

Figure 5.14: Comparison of all the grasps that were performed with the various
control algorithms. Red dots indicate the location of undergrasping.

From Table 3, it is observed that undergrasping occurs more frequently at height

1.5”. Similar to Table 2, there are observable boundary angles that result in under-

grasping such as 52◦ for θI at all heights. Figure 3 presents the resulting grasps from
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all the ANN architectures at a relative height of 1.5”. Note that on two occasions,

the object fell from the hand (Cy-13/4600 and CySp-13/5000) due to insufficient fric-

tion and contact. The bottom of the object should be horizontally aligned near the

middle finger, nevertheless, after the actuators reached their final predicted position,

the tension line that keeps the object suspended was dropped and the object slipped

below the hand.

Figure 5.15: Comparison of all the grasps that were performed with the various
control algorithms. The red dots indicate the location of undergrasping.

In conclusion, some of the major observations are that the grasps from the event

based two-stage controller result in successful grasps. Also, the relative height that

results in the highest frequency of undergrasping occasions is 3.5” when the controller

was not used.

5.4.2 Unknown Spheres

The unknown sphere used is US1, and the final grasp pattern from the various

control algorithms is tabulated in Table 4. One of the initial observations is that at

relative height 3.5”, for the open loop kinematic grasps, the middle finger undergrasps

at all cases. Nevertheless, when introducing the event based controller, the middle

finger, as well as all the other fingers, make contact with the object.

The unknown sphere was able to be grasped successfully in all cases, however

in some cases, one or more active finger was not able to contact the object. This is
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Figure 5.16: Compared grasps on object US1 at a relative height 3.5”.

not the case with the event based controller. These results mimic those found when

grasping the unknown cylinders UC1 and UC2.

5.5 Grasping Near Cylinders/Spheres

Some objects to be grasped are neither perfect cylinders nor spheres. Two ob-

jects were used to test the robustness of the ANN predictions in being able to predict

a successful grasp. The objects selected for testing are UO1 and UO2, found in Fig-

ure 3.37. In this section, there will be a comparison between the grasps using pure

kinematic open loop control with ANN predictions, and the grasps resulting from the

event based two stage controller. It is worth noting that some of the kinematic grasps

were unsuccessful, hence the object dropped and was not held by the hand. Only the

first choice ANN architectures will be considered for each grasp, hence Cy-13/4600,

Sp-12/5000, CySp-13/5000, Cy-13/4600-EB, Sp-12/5000-EB, CySp-13/5000-EB. Fi-

nal images of the grasps are presented in Figures 5.17 and 5.18.

Figure 5.17 presents the comparison of the grasps on object UO1 at all relative

heights (1.0, 1.5, 2.5, 3.5”) with the various selected ANN architectures. It is noted

that all the grasps performed by the event based controller were successful. However,

for the cases where the algorithm for grasping did not include feedback for control,

only one of the cases resulted in the object dropping (Sp-12/5000 at 3.5” height). It

is also noted that the images contain green dots, which indicate that the active finger

for grasping did not make contact with the object. This is observed for the index
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Figure 5.17: Various images of the comparison for grasping object UO1. The green
dots indicate locations where there is undergrasping. The top row grasp is at height
1.0” and progresses down to the last row of 3.5”.

finger at 2.5” and then the middle finger at height 3.5”. Another observation is the

error in active finger prediction made by the ANN. At a relative height of 3.5”, the

index finger is not required because it is observed that the finger would not come into

contact with the object, however Cy-13/4600 predicts that the index finger should

actuate. As a result, the actuator for the index finger is set to the predicted position,

then the torque stage of the controller provides the actuator with a control signal to

increase until the torque sensor value has reached the predefined threshold. However,

it is observed that the torque sensor values would not increase because there would

be no object to oppose its motion. As a result, the finger closes all the way because

the torque sensor does not trigger to stop of the motors.
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Figure 5.18: Various images of the comparison for grasping object UO1. The red
dots indicate locations where there is undergrasping. The top row grasp is at 1.5”
and progresses down to the last row of 3.5”.

In Figure 5.18, the final images of the grasp of object UO2 performed with

various ANN architectures and controllers are presented. All the results gathered

from the pure kinematic grasp and the event based controller result in successful

grasps. However, the similar issues observed in grasping object UO1 were also present

here. For instance, in the open loop control grasps, in various occasions, as indicated

with a red dot, active fingers predicted for the grasp were unable to contact the

object, resulting in undergrasping. On the other hand, undergrasping is not present

with the closed loop controller, nonetheless, there is a issues with faulty prediction.

At relative height 3.5”, Cy-13/4600 predicts that the index finger should grasp the

object, however, this is a faulty prediction because the index finger does not make

contact be the object. At height 3.5” the other ANNs (Sp-12/5000-CL and CySp-
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13/5000-CL) are able to predict the correct number of fingers required for grasping,

however, this is not the case for Cy-13/4600-CL.

In conclusion, the closed loop controller is able to address the issues of under-

grasping found with the open loop control grasps. However, issues may arise with the

prediction by the ANN. In the first stage of the controller, the ANN predicts which

joints should be active and to what motor angle they should turn to adequately grasp

the object. At this stage, the ANN could falsely predict the activation of a finger

that in reality should not be active because it will not be able to make contact with

the object. Therefore, after the ANN has false predictions, the second stage of the

controller increases the motor angle until a preset torque threshold for grasping is

experienced by the motor. A feasible way to alleviate this issues is by improved pre-

dictions of the ANN by increasing training data. Another potential solution would

be to investigate additional sensors such as a proximity sensor, which could provide a

check or verification that indeed the active finger should move its predictive position.
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CHAPTER 6

Conclusions and Recommended Future Research

The goal of this research was to investigate a biomimetic hand could have the

ability to grasp an object successfully using an event based two-stage data driven

control method and to leverage machine learning algorithms for grasp pattern predic-

tion. In this research, two biomimetic hands (H1 and H2) have been developed and

the evolution and subsequent improvements have been discussed.

H1 was the first iteration hand that was manufactured and assembled in the

MARS Lab for research in Human-Robot Interaction. It is a 5-DOF hand driven

with tendons for actuating the fingers. Research was conducted to investigate and

improve grasping with the assumption that the objects to be grasped would be rigid

(non deforming) cylinders (21 count) and spheres (7 count) at 4 distinct heights of

the object relative to the hand. A methodology was developed that studied the ANN

architecture selection process for both shapes (discriminatory) and a non discrimi-

natory ANN. The training procedure as well as the testing procedure for this stage

of research as performed demonstrate the successful application of ANN machine

learning algorithms for the prediction of appropriate motor angles for grasping. The

predictions were tested in both software and hardware, on “known” and “unknown”

objects, as well as objects that are neither cylindrical or spherical. Issues observed

with this initial model, which included the contact area of the thumb as well as thumb

positioning for effective and successful grasping. Two of these drawbacks are inherent

of the system, therefore the second iteration of the artificial hand aimed to address

these issues.
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H2 was developed with the highlight of an improved thumb for grasping. Unlike

H1, the thumb in H2 was not tendon driven, instead each actuator used for finger

control was mounted at the joint. H2 is an 8-DOF hand, 4-DOF are from the tendon

driven fingers and 4 from the individual joints in the thumb. The user now has the

ability to control individual joints in the thumb for improved positioning. The same

procedures of training the hand with the same cylinders and spheres and then test-

ing were performed on “unknown” objects and objects that are neither cylindrical or

spherical. The results from the experiments in both software and hardware were suc-

cessful. The addition of a 4-DOF thumb improved the grasping process by providing a

geometric base to act as supporting reaction base for grasping. A drawback from the

thumb in H1 was that the contact area for the thumb was unorthodoxly positioned

for grasping, which would also risk resulting in an unsuccessful grasp. This issue was

ameliorated with the improved thumb since the user can train the thumb to position

at a desired pose for contact with the object in the process of grasping. However,

there was still an issue present in both versions of the hand, that was not addressed

was undergrasping, i.e. an active finger predicted for grasping not contacting the ob-

ject. This issue can lead to an unbalanced grasp or even dropping the object after the

grasping process. This issue is inherent of the system since the trained ANNs predict

the kinematic grasp pattern. Open loop control does not provide any information to

the control system about the issue of “under” grasping, hence this will always be a

challenge for the control system.

A event based two-stage data driven controller was then developed to mitigate

the issue of undergrasping by producing a successful and secure grasp. Two types of

sensors were investigated; force sensors at the finger tips to indicate contact with an

object and current sensors were incorporated to the actuators to indicate the amount

of current drawn by the motor. The current sensor readings were measured and
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correlated to torque values and used for grasp strength understanding. An algorithm

was developed to consider the stages of grasping, pre-hension and contact securely and

hold. The first stage would prioritize the use of the kinematic control of the predicted

motor angles and the second stage would use feedback from the two sensors to ensure

that the active fingers make contact with the object. Training was performed with

all the objects and sensor values were collected for every grasp to observe the sensor

performance during each grasps. It was noted that the current sensor was more

reliable than the force sensor in proving repeatable grasp information. After training,

it was noted that average torque values had very small standard deviation for all

objects, hence threshold values were used to indicate grasping of the object and an

algorithm was developed to prevent undergrasping. The resulting algorithm required

a two-stage controller ensured reliable grasps of all the objects both cylinders and

spheres, as well as unknown objects and non cylindrical/spherical objects. Given this

success, there are some issues observed during experimentation.

The system does not consider the weight of the object. Therefore, two objects

with exact geometric properties will have different grasp patterns if the weights are

significantly different. For a successful grasp, more torque will be required by the

actuators to grasp the heavier object because there is greater risk of slip. The current

control architecture does not have a way to detect slip nor to perform a control action

to prevent slip. Slip detection would require additional sensors that would be able to

capture relative motion between the object and the artificial hand. This is important

to consider after grasping is achieved, since slipping can occur when manipulating or

transporting an object. These challenges can be addressed in future research with

the addition of new sensors and control algorithms.
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6.1 Future Outlook

To improve the training process, more objects can be added. Furthermore,

grasping non cylinders and spheres is recommended for future research. Some of

the objects that grasped were not perfect cylinders or spheres, however they closely

resembled a cylinder or sphere. Future research should investigate how to grasp

objects that have non uniform geometries. If ANNs will be employed for grasp pattern

prediction, the inputs of the ANN would need to adequately capture relevant object

features for grasping. Therefore, a vision system would be recommended to investigate

the identification and extraction of relevant object features in order for an ANN to

predict grasp patterns for the desired object in real-time.

Another area of investigation are grasps other than power grasps. Throughout

all the research presented here, the only type of grasp investigated is power. However,

it is beneficial to investigate other grasps such as tripodal or later grasps based on

the size and geometry of different objects. In order to perform this, a similar training

process would be required for different types of grasps.

There is a high level of satisfaction with the progress made with this research

with the biomimetic artificial hands H1 and moreover with H2. The Human-Robot

Interaction research has been conveniently developed using NI LabVIEW, for ease

of expandability to various interaction modalities and visualization of environmental

signals. The following are areas which should be extensively researched, due to the

already established research platform:

• Voice recognition and command execution for cooperative grasping

• Object recognition and feature extraction for grasp pattern prediction

• Upper arm prosthetics for grasping

• Brain-machine interfacing for brain controlled robotics/grasping
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In summary, the Human-Robot Interaction platform is envisioned to expand

into different areas of robotics research. Moreover, the development of the event

based two-stage data driven controller will be used to further investigate different

sensors and data fusion schemes fo improved interaction.
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Appendix

Figure 1: Images of all the objects used for grasping. Dimensions of the objects are
presented in Table 1.
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Table 1: Objects, spheres and cylinders that were grasped by the mechanical hand.

Diameter and height of the object were give as well as its normalized dimension

relative to the height of the hand and the grasp space.

Object Description Height Dia. Norm. Norm.

(in) (in) Height

(in/in)

Dia.

(in/in)

C1 paper towel roll 7.76 2.03 2.069 0.549

C2 paper towel roll 7.95 1.59 2.120 0.430

C3 can koozie 4.00 3.23 1.067 0.873

C4 3D manufactured

cylinder

1.88 1.40 0.501 0.378

C6 paper towel roll 8.12 1.671 2.167 0.452

C7 pill storage cylinder 3.54 2.51 0.944 0.68

C8 air freshener 7.00 2.07 1.867 0.560

C9 shampoo container 5.00 1.13 1.333 0.305

C10 aluminum stand 5.00 1.10 1.333 0.298

C11 glue stick 4.19 1.15 1.117 0.310

C12 aluminum cylinder 2.50 1.87 0.667 0.507

C13 plastic cup 6.50 3.50 1.733 0.946

C14 paper towel roll 7.81 2.10 2.083 0.568

C15 juice bottle 7.00 2.16 1.867 0.584

C16 hair product bottle 6.37 2.20 1.700 0.596

C17 hair spray bottle 9.50 2.6 2.533 0.703

Continued on next page
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Table 1 – continued from previous page

Object Description Height Dia. Norm. Norm.

(in) (in) Height

(in/in)

Dia.

(in/in)

C18 pill container 4.50 2.37 1.200 0.642

C19 product container 6.25 2.60 1.667 0.703

C20 aluminum can 4.00 2.60 1.067 0.703

C21 sports drink bottle 6.75 2.82 1.800 0.762

C22 pill container 4.00 2.13 1.067 0.575

S1 3D printed sphere 2.25 2.25 0.600 0.608

S2 tennis ball 2.57 2.57 0.687 0.696

S3 3D printed sphere 2 2 0.533 0.541

S4 foam toy globe 2.91 2.91 0.776 0.786

S5 decorative apple 3.37 3.37 0.899 0.911

S6 3D printed spheres 2.75 2.75 0.733 0.743

S7 3D printed sphere 3.25 3.25 0.867 0.878
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Figure 2: Absolute difference between the ANN prediction and the actual values,
with respect to the number of iterations for optimization and number of nodes in the
hidden layer. This was performed with 76 data sets for training.
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Figure 3: Absolute Difference of the resulting architectures. Training was performed
with 24 data sets.
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Figure 4: Different resulting hand postures depending on objects and hand chosen
for study (program used is GraspIt! ) [3].
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(a) Height 1.0” (b) Height 1.5”

(c) Height 2.5” (d) Height 3.5”

Figure 5: Final grasp positions of the fingers for object UC 1. The ANN was trained
with an Cy-9/2600.
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(a) Height 1.0” (b) Height 1.5”

(c) Height 2.5” (d) Height 3.5

Figure 6: Final grasp positions of the fingers for object UC 2. The ANN was trained
with Cy-9/2600.
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(a) Height 1.0” (b) Height 1.5”

(c) Height 2.5” (d) Height 3.5”

Figure 7: Final grasp positions of the fingers for object US1 with Sp-9/3600.
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Figure 8: Absolute difference of the various ANN architectures. The ANN was trained
with 100 data sets.
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Figure 9: The average Absolute Difference across all data sets for the different archi-
tectures. These results were gathered from 76 training data sets.
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Figure 10: The average Absolute Difference across all data sets for the different
architectures. These results were gathered from 24 training data sets.
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Figure 11: The average Absolute Difference of each ANN architecture with 108 train-
ing sets. This set incorporated both spheres and cylinders for training.
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Figure 12: Comparison of grasps of objects OU2 at height 1.0”, with all 6 ANN
architectures.
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Figure 13: Comparison of grasps of objects OU2 at height 1.0”, with all 6 ANN
architectures.
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Figure 14: Comparison of grasps of objects OU2 at height 1.0”, with all 6 ANN
architectures.
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Figure 15: Comparison of grasps of objects OU2 at height 1.0”, with all 6 ANN
architectures.
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Figure 16: Comparison of grasps of objects OU2 at height 1.0”, with all 6 ANN
architectures.
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Figure 17: Comparison of grasps of objects OU2 at height 1.5”, with all 6 ANN
architectures.
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Figure 18: Comparison of grasps of objects OU2 at height 1.5”, with all 6 ANN
architectures.
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Figure 19: Comparison of grasps of objects OU2 at height 1.5”, with all 6 ANN
architectures.
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Table 2: ANN predictions by various architectures on unidentified object UC1. The
values in bold indicate when the finger has moved however, no contact was made with
the object.

Height Architecture θI θM θP θP θT1 θT2 θT3 θT4

1 Cy-11/2400 42 69 0 0 109 144 0 0
Cy-13/4600 43 72 0 0 108 146 0 0

CySp-15/2000 36 63 0 0 110 143 24 0
CySp-13/5000 40 69 0 0 101 143 26 0

Cy-11/2400-CL 52 84 0 0 120 140 30 2
Cy-13/4600-CL 55 89 0 0 115 139 30 2

CySp-15/2000-CL 46 80 0 0 113 142 29 3
CySp-13/5000-CL 50 88 0 0 110 141 31 0

1.5 Cy-11/2400 42 70 0 0 120 140 0 0
Cy-13/4600 45 73 0 0 115 139 0 0

CySp-15/2000 40 63 0 0 113 142 24 0
CySp-13/5000 42 62 0 0 110 141 26 0

Cy-11/2400-CL 63 95 0 0 120 140 0 0
Cy-13/4600-CL 59 96 0 0 115 154 34 10

CySp-15/2000-CL 62 97 0 0 112 153 35 9
CySp-13/5000-CL 64 97 0 0 113 153 33 13

2.5 Cy-11/2400 33 59 41 0 129 140 0 0
Cy-13/4600 39 61 42 0 125 139 0 0

CySp-15/2000 40 67 40 0 124 142 24 0
CySp-13/5000 42 65 42 0 120 141 26 0

Cy-11/2400-CL 49 82 42 0 129 139 34 8
Cy-13/4600-CL 53 94 56 0 125 139 35 10

CySp-15/2000-CL 43 81 40 0 124 142 30 3
CySp-13/5000-CL 53 91 54 0 120 141 34 1

3.5 Cy-11/2400 34 57 41 46 136 133 0 0
Cy-13/4600 40 59 40 48 135 134 0 0

CySp-15/2000 35 67 37 45 142 137 24 0
CySp-13/5000 44 77 45 45 135 135 26 0

Cy-11/2400-CL 50 89 48 63 137 133 45 13
Cy-13/4600-CL 52 89 47 71 135 134 45 17

CySp-15/2000-CL 57 94 51 70 142 137 32 7
CySp-13/5000-CL 54 94 54 72 135 135 40 6
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Table 3: ANN predictions by various architectures on unidentified object UC2. The
values in bold indicate when the finger has moved however, no contact was made with
the object.

Height Architecture θI θM θP θP θT1 θT2 θT3 θT4

1 Cy-11/2400 51 86 0 0 109 151 0 0
Cy-13/4600 48 83 0 0 110 152 0 0

CySp-15/2000 50 81 0 0 102 148 24 0
CySp-13/5000 51 91 0 0 110 151 26 0

Cy-11/2400-CL 62 94 0 0 109 151 33 6
Cy-13/4600-CL 63 103 0 0 110 152 32 4

CySp-15/2000-CL 75 115 0 0 102 148 40 10
CySp-13/5000-CL 73 116 0 0 110 151 27 8

1.5 Cy-11/2400 52 88 0 0 119 148 0 0
Cy-13/4600 50 85 0 0 120 147 0 0

CySp-15/2000 40 63 0 0 113 142 24 0
CySp-13/5000 52 84 0 0 115 149 26 0

Cy-11/2400-CL 68 109 0 0 119 148 34 9
Cy-13/4600-CL 73 109 0 0 120 147 34 9

CySp-15/2000-CL 71 110 0 0 106 147 43 9
CySp-13/5000-CL 73 110 0 0 115 149 31 10

2.5 Cy-11/2400 46 81 53 0 129 151 0 0
Cy-13/4600 47 80 51 0 130 151 0 0

CySp-15/2000 53 79 51 0 118 149 24 0
CySp-13/5000 49 79 46 0 119 150 26 0

Cy-11/2400-CL 74 114 70 0 129 151 34 13
Cy-13/4600-CL 73 113 69 0 130 151 34 13

CySp-15/2000-CL 71 115 67 0 118 149 44 9
CySp-13/5000-CL 73 116 72 0 119 150 35 12

3.5 Cy-11/2400 55 88 52 52 135 146 5 0
Cy-13/4600 49 88 51 51 138 146 5 0

CySp-15/2000 53 78 54 50 134 147 24 0
CySp-13/5000 53 84 52 49 132 145 26 0

Cy-11/2400-CL 74 116 71 80 135 146 40 11
Cy-13/4600-CL 77 118 73 80 138 146 40 10

CySp-15/2000-CL 74 119 72 80 134 147 46 16
CySp-13/5000-CL 77 118 75 80 132 145 42 17
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Table 4: ANN predictions by various architectures on unidentified object US1. The
values in bold indicate when the finger has moved however, no contact was made with
the object.

Height Architecture θI θM θP θP θT1 θT2 θT3 θT4

1 Sp-11/3000 37 65 0 0 101 146 28 0
Sp-12/5000 35 69 0 0 101 149 28 1

CySp-15/2000 41 69 0 0 101 145 24 0
CySp-13/5000 38 69 0 0 97 146 26 0
Sp-11/2000-CL 55 110 0 0 102 147 25 0
Sp-12/5000-CL 50 102 0 0 101 149 26 0

CySp-15/2000-CL 51 106 0 0 102 146 26 0
CySp-13/5000-CL 51 97 0 0 97 147 26 0

1.5 Sp-11/3000 41 69 0 0 109 147 28 0
Sp-12/5000 41 65 0 0 108 144 28 1

CySp-15/2000 42 70 0 0 104 145 24 0
CySp-13/5000 42 69 0 0 110 145 26 0
Sp-11/2000-CL 53 98 0 0 109 148 24 3
Sp-12/5000-CL 49 93 0 0 108 144 24 3

CySp-15/2000-CL 54 91 0 0 105 145 28 1
CySp-13/5000-CL 46 80 0 0 110 145 28 1

2.5 Sp-11/3000 37 65 45 0 121 142 28 0
Sp-12/5000 38 63 45 0 120 143 28 1

CySp-15/2000 30 67 43 0 117 142 24 0
CySp-13/5000 30 65 39 0 126 143 26 0
Sp-11/2000-CL 57 89 61 0 121 143 39 4
Sp-12/5000-CL 61 92 62 0 121 143 40 3

CySp-15/2000-CL 59 94 64 0 117 142 35 5
CySp-13/5000-CL 66 91 49 0 125 144 32 6

3.5 Sp-11/3000 0 54 36 57 139 133 28 0
Sp-12/5000 0 60 38 55 140 134 28 1

CySp-15/2000 0 54 39 53 137 131 24 0
CySp-13/5000 0 50 37 51 142 131 26 0
Sp-11/2000-CL 0 96 44 61 139 133 47 19
Sp-12/5000-CL 0 93 44 78 140 134 44 20

CySp-15/2000-CL 0 99 52 80 137 131 49 15
CySp-13/5000-CL 0 94 46 80 142 131 46 17
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[60] C. E. Ábrego, P. S. Shiakolas, and M. R. Sobhy, “Developing an educational and

research human robot interaction environment for a mechanical finger/hand,”

in ASME 2015 International Mechanical Engineering Congress and Exposition.

American Society of Mechanical Engineers, 2015.

[61] G. Langevin. (2016, October) open source 3d printed life size robot. [Online].

Available: http://inmoov.fr/

[62] E. S. Olson, “Analysis and design of a two-wheeled robot with mul-

tiple user interface inputs and vision feedback control,” p. 100,

2010. [Online]. Available: https://login.ezproxy.uta.edu/login?url=http:

//search.proquest.com/docview/753922467?accountid=7117

178

http://inmoov.fr/
https://login.ezproxy.uta.edu/login?url=http://search.proquest.com/docview/753922467?accountid=7117
https://login.ezproxy.uta.edu/login?url=http://search.proquest.com/docview/753922467?accountid=7117


[63] M. R. Cutkosky, “On grasp choice, grasp models, and the design of hands for

manufacturing tasks,” IEEE Transactions on robotics and automation, vol. 5,

no. 3, pp. 269–279, 1989.

[64] S. C. Jacobsen, J. E. Wood, D. Knutti, and K. B. Biggers, “The utah/mit dex-

trous hand: Work in progress,” The International Journal of Robotics Research,

vol. 3, no. 4, pp. 21–50, 1984.

[65] C. Loucks, V. Johnson, P. Boissiere, G. Starr, and J. Steele, “Modeling and

control of the stanford/jpl hand,” in Robotics and Automation. Proceedings. 1987

IEEE International Conference on, vol. 4. IEEE, 1987, pp. 573–578.

[66] G. A. Bekey, R. Tomovic, and I. Zeljkovic, “Control architecture for the bel-

grade/usc hand,” in Dextrous robot hands. Springer, 1990, pp. 136–149.

[67] M. Fischer, P. van der Smagt, and G. Hirzinger, “Learning techniques in a data-

glove based telemanipulation system for the dlr hand,” in Robotics and Automa-

tion, 1998. Proceedings. 1998 IEEE International Conference on, vol. 2. IEEE,

1998, pp. 1603–1608.

[68] H. Liu, J. Butterfass, S. Knoch, P. Meusel, and G. Hirzinger, “A new control

strategy for dlr’s multisensory articulated hand,” IEEE Control systems, vol. 19,

no. 2, pp. 47–54, 1999.

[69] J. Butterfaß, M. Grebenstein, H. Liu, and G. Hirzinger, “Dlr-hand ii: Next

generation of a dextrous robot hand,” in Robotics and Automation, 2001. Pro-

ceedings 2001 ICRA. IEEE International Conference on, vol. 1. IEEE, 2001,

pp. 109–114.

[70] C. Borst, M. Fischer, S. Haidacher, H. Liu, and G. Hirzinger, “Dlr hand ii:

experiments and experience with an anthropomorphic hand,” in Robotics and

Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on,

vol. 1. IEEE, 2003, pp. 702–707.

179



[71] C. Fantuzzi, C. Rossi, A. Tonielli, and G. Vassura, “A smart sensory and ac-

tuation system for the university of bologna robotic hand: Latest developments

and implementations,” in Proc. of Int. Symp. on Measurement and Control in

Robotics, 1992, pp. 515–522.

[72] A. Eusebi, C. Fantuzzi, C. Melchiorri, M. Sandri, and A. Tonielli, “The ub

hand ii control system: design features and experimental results,” in Industrial

Electronics, Control and Instrumentation, 1994. IECON’94., 20th International

Conference on, vol. 2. IEEE, 1994, pp. 782–787.

[73] F. Lotti, P. Tiezzi, G. Vassura, L. Biagiotti, G. Palli, and C. Melchiorri, “Devel-

opment of ub hand 3: Early results,” in Proceedings of the 2005 IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 2005, pp. 4488–4493.

[74] H. Kawasaki and T. Komatsu, “Mechanism design of anthropomorphic robot

hand: Gifu hand,” Journal of robotics and mechatronics, vol. 11, no. 4, pp.

269–273, 1999.

[75] H. Kawasaki, H. Shimomura, and Y. Shimizu, “Educational–industrial complex

development of an anthropomorphic robot hand’gifu hand’,” Advanced Robotics,

vol. 15, no. 3, pp. 357–363, 2001.

[76] T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, and S. Ito, “Anthropomorphic

robot hand: Gifu hand iii,” in Proc. Int. Conf. ICCAS, 2002, pp. 1288–1293.

[77] H. Kawasaki, T. Komatsu, and K. Uchiyama, “Dexterous anthropomorphic robot

hand with distributed tactile sensor: Gifu hand ii,” IEEE/ASME transactions

on mechatronics, vol. 7, no. 3, pp. 296–303, 2002.

[78] M. C. Carrozza, P. Dario, F. Vecchi, S. Roccella, M. Zecca, and F. Sebastiani,

“The cyberhand: on the design of a cybernetic prosthetic hand intended to be

interfaced to the peripheral nervous system,” in Intelligent Robots and Systems,

180



2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on,

vol. 3. IEEE, 2003, pp. 2642–2647.

[79] A. Bicchi, “Hands for dexterous manipulation and robust grasping: A difficult

road toward simplicity,” IEEE Transactions on robotics and automation, vol. 16,

no. 6, pp. 652–662, 2000.

[80] N. Wettels, A. R. Parnandi, J.-H. Moon, G. E. Loeb, and G. S. Sukhatme, “Grip

control using biomimetic tactile sensing systems,” IEEE/ASME Transactions On

Mechatronics, vol. 14, no. 6, pp. 718–723, 2009.

[81] A. Cranny, D. P. Cotton, P. H. Chappell, S. Beeby, and N. White, “Thick-film

force, slip and temperature sensors for a prosthetic hand,” Measurement Science

and Technology, vol. 16, no. 4, p. 931, 2005.

[82] D. J. Magee, Orthopedic physical assessment. Elsevier Health Sciences, 2014.

[83] N. D. Mansfield, P.J., Essentials of Kinesiology for the Physical Therapist As-

sistant, 2010.

[84] B. Kosko, Neural networks and fuzzy systems: a dynamical systems approach to

machine intelligence/book and disk. Prentice Hall, Upper Saddle River, 1992.

[85] E. Rich and K. Knight, Artificial intelligence. McGraw-Hill New York:, 1991,

vol. 199, no. 1.

[86] I. Steinwart and A. Christmann, Support vector machines. Springer Science &

Business Media, 2008.

[87] R. FUKUNAGA, Statistical pattern recognition. Academic Press., 1990.

[88] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley &

Sons, 2012.

[89] P. Ponce-Cruz and F. D. Ramı́rez-Figueroa, “Intelligent control for labview,”

Intelligent Control Systems with LabVIEW, pp. 1–8, 2010.

181



[90] J. C. John et al., “Introduction to robotics: mechanics and control,” Reading:

Addison-Wesley, 1989.

[91] D. Kanoulas, J. Lee, D. G. Caldwell, and N. G. Tsagarakis, “Center-of-mass-

based grasp pose adaptation using 3d range and force/torque sensing,” arXiv

preprint arXiv:1802.06392, 2018.

[92] G. Walck, R. Haschke, M. Meier, and H. J. Ritter, “Robot self-protection by

virtual actuator fatigue: Application to tendon-driven dexterous hands during

grasping,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ Interna-

tional Conference on. IEEE, 2017, pp. 2200–2205.

182



BIOGRAPHICAL STATEMENT

Christopher Abrego graduated locally from Euless Trinity High School in 2007.

That same year, he started his undergraduate education in mechanical engineering

at the University of Texas (UT) at Arlington. During his junior year as an un-

dergraduate, he found an interest in mathematics and began a second bachelors in

mathematics. In December of 2012, Christopher graduated with a Bachelors degree

in mechanical engineering and mathematics. A semester later, he joined the graduate

program at UT Arlington in the department of mechanical engineering as a masters

student. After two semesters, he joined the BS to Ph.D. program with a final aim to

achieve a doctoral degree in mechanical engineering. In May of 2018, he graduated

the doctoral program in mechanical engineering from UT Arlington.

Christopher performed all his research under the guidance of Professor Dr.

Panos Shiakolas in the Manufacturing Automation and Robotic Systems (MARS)

Laboratory. His main research interests are machine learning, Human-Robot Interac-

tion (HRI), and Mechatronics. He was involved in a variety of research projects both

in the lab and outside. Among one of the most distinguishable research endeavors

has been the development of a HRI system for grasping with two design iterations

of a biomimetic hand. The HRI platform has multiple modalities of interaction that

users can interact with the biomimetic hand. Moreover, the software platform used

for control is National Instruments LabVIEW, which provides a easily expandable

platform for the integration of new interaction modalities.

183


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction and Proposal
	Human-Robot Interaction
	Research Focus

	Grasp Learning

	Pre-Comprehensive Research
	Single Finger Platform
	Artificial Hand
	Grasp Learning

	Improved Biomimetic Thumb
	Machine Learning Object Recognition Sans Vision

	Grasp Analysis and Performance of First Iteration Hand, H1
	Grasping Objects
	Grasp Observations
	Artificial Neural Network Analysis
	Cylinder Prediction
	Sphere Prediction

	Artificial Neural Network Prediction
	Software Implementation
	Hardware Implementation - Grasping Known Objects
	Hardware Implementation - Grasping Unknown Objects
	Conclusion - Hardware Implementation

	Non Discriminatory Artificial Neural Network
	Sphere and Cylinder Predictions
	Software Implementation

	ANN Architecture Comparison
	Cy and CySp: Comparison of Predictive Performance
	Sp and CySp: Comparison of Predictive Performance
	Grasping Near-Cylinders and Near-Spheres


	Grasping Analysis and Verification with Improved Hand H2
	ANN Training
	Cylinder Prediction
	Sphere Prediction

	Artificial Neural Network Prediction
	Software Implementation
	Hardware Implementation - Grasping Known Objects
	Predicting Grasp Patterns of Unknown Objects

	Non Discriminatory ANN
	Software Implementation

	ANN Architecture Comparison
	Cy and CySp: Comparison of Predictive Performance
	Sp vs. CySp

	Grasping Unknown Near Spheres/Cylinders

	Event Based Grasp Controller
	Sensor Fusion Feedback - Hardware
	QTC Force Sensor
	Servo Motor Current Sensors

	Sensor Fusion Feedback - Algorithm
	Grasp Comparison - Test Objects
	Cylinder
	Sphere

	Grasp Comparison - Unknown Objects
	Unknown Cylinders
	Unknown Spheres

	Grasping Near Cylinders/Spheres

	Conclusions and Recommended Future Research
	Future Outlook

	REFERENCES
	BIOGRAPHICAL STATEMENT

