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Abstract 

STOCHASTIC FINITE ELEMENT THERMAL ANALYSIS OF  

A BALL GRID ARRAY PACKAGE  

 

RAHUL UPRETI, MS  

 

The University of Texas at Arlington, 2018 

Supervising Professor: Brian Dennis 

This study provides an insight into the factors which have a major impact 

on the probability of failure of a Ball Grid Array package. A stochastic finite 

element analysis was done on the package using First-order reliability method 

(FORM). The effects of uncertainty in material thermal conductivities, heat source, 

heat transfer coefficient and ambient temperature were studied. The average 

temperature at the die-junction interface was selected as failure criterion because 

the excess temperature at the junction is often a cause of failure.  

The performance of Finite Difference Method(FDM) and Semi-Analytic 

Complex Variable Method(SACVM) in computing sensitivities are compared. 

Results show that for some parameters, the probability of failure is more sensitive 

to uncertainties than other parameters, which provides crucial information to select 

the manufacturing tolerance of material properties and tolerance for parameters 

which are controlled experimentally. For sensitive parameters, a tighter 

manufacturing tolerance will decrease the randomness and ultimately increase the 
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reliability. The parameters for which probability of failure show low sensitivity 

with respect to uncertainties, large tolerance for manufacturing could be selected 

which will drop down the cost. 
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 INTRODUCTION 

According to Moore’s law, computing speed doubles every two years. The increase 

in the speed of these chip, however, has slowed down during recent years. The main 

cause of this slowdown is the need for rigorous heat management to keep the chip 

from excessive failure temperatures. Efficient design and cooling solutions have 

become the most crucial factors in modern day chip design. The thermal 

conductivities of materials, cooling speed of fans, atmospheric temperature, and 

heat produced by the die, all have a significant role in determining the performance 

and reliability of the chip.  In this study, we analyze the effects of uncertainties 

present in these properties on the probability of failure of a Ball Grid Array(BGA) 

package.   

Almost every parameter in engineering systems has a certain degree of 

uncertainty. These uncertainties in parameters may result in outcomes which are 

misleading or unforeseen. The deterministic finite element approach, which is a 

norm in the industry, is incapable of incorporating the effects of uncertainty on the 

end results. Stochastic Finite Element Analysis is a tool which can use this 

uncertainty in data to make designs safer and more reliable. Stochastic Finite 

Element Method(SFEM) extends the conventional Finite Element Method to 

include problems which have randomness associated with input variables, making 

it a very powerful tool to produce highly reliable results. The gain in popularity of 

SFEM lately is because of the availability of abundant computational resources [4].  
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The probabilistic approach of SFEM, in which probability of failure is 

evaluated to determine the safety of the system, is widely used in marine industry. 

This calculation often involves a multidimensional integration of non-linear 

functions, which makes it very difficult to evaluate. First order reliability method 

(FORM) is used to linearize the performance function (also called limit state 

function), which determines the failure criterion for the system. Hasofer and Lind 

[18] developed Advanced First Order Second Moment method (AFOSM), which 

was applicable only for Gaussian distribution. Rackwitz et al. [9] discussed 

methods to use AFOSM for non-gaussian distributions. Over the years AFOSM 

evolved into what is currently known as FORM [1]. FORM has been widely used 

by researchers to determine the reliability of structures. Yanfang et al. [19] showed 

that FORM calculates the probability of failure and sensitivities of the probability 

of failure with low errors for both linear and non-linear limit state functions when 

compared to Monte-Carlo method. Parameswaran et al. [20] used FORM to 

evaluate the probability of failure of a one-dimensional heat transfer problem. They 

compared FORM with Monte-Carlo method and showed that FORM computes 

accurate results in few steps as compared to Monte-Carlo which required 100000 

runs to compute the probability of failure. They also presented that FORM 

calculates the probability of failure accurately when the probability of failure was 

very low, whereas, Monte-Carlo could not compute it accurately even though it 

took an enormous number of samples and processing time. Jin et al. [21] used Semi-
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Analytic Complex Variable Method (SACVM) to compute accurate sensitivities in 

reliability analysis of a 2-D heat transfer problem using FORM. Abubakar et al. 

[22] used FORM and Monte-Carlo method to evaluate the reliability of a counter 

flow heat exchanger and observed great agreement in the values of reliability index 

obtained by both the methods. They showed that net gain from the operation of heat 

exchanger calculated by deterministic approach had only 8.4% probability of 

occurrence, which demonstrated the need for stochastic performance analysis. 

Hirohata et al. [23] used FORM to perform multidisciplinary reliability analysis of 

CPU module packaging. Although there are only a few papers available in the 

literature which used FORM for heat transfer problems, the ones which are 

available show agreement in that FORM is computationally efficient than Monte-

Carlo method and produce reasonably accurate results when compared to Monte-

Carlo method.  

Because of its computational efficiency, we used FORM to analyze the 

probability of failure of a Ball Grid Array Package and study how the uncertainty 

in input parameters affect the probability of failure. This analysis requires defining 

a performance function (or limit state function) which defines the failure criterion 

for the BGA package. We defined the limit state function as the average 

temperature at the silicon die and heat spreader interface, 𝑔 = 𝑇𝑎𝑣𝑔 − 97, where 

Tavg is the average temperature at the interface of die and heat-spreader.  𝑇𝑎𝑣𝑔 

depends on a lot of factors such as thermal conductivities of materials, heat transfer 
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coefficient, ambient temperature, etc. The uncertainties in these parameters could 

affect the reliability of design. We studied the effect of uncertainties present in these 

parameters on the probability of failure of the package. 

Chapter 2 is a discussion of the underlying theory used in this study. Section 

2.1 discusses the Finite Element Method and its application in solving the 

governing equation. Section 2.2 discusses the Stochastic Finite Element Method, 

which incorporates the uncertainties present in the parameters to calculate the 

probability of failure of the system. Section 2.3 contains the details of sensitivities 

calculation using FDM and SACVM. 

Chapter 3 presents the details of the steps and methods used in this study. 

All the results are presented in chapter 4 in details. Chapter 5 presents the 

conclusion and future work. 
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 THEORY  

2.1. Finite Element Method 

Finite element method(FEM) is a very powerful tool used in the engineering 

industry for solving complex problems. The basic idea behind FEM is to divide the 

geometry into finite elements and generate a system of algebraic equations which 

can be solved to get the solution at nodes and generate a global function for the 

solution.  

2.1.1 Galerkin’s Finite Element Method 

This method is based on Galerkin’s method in which a strong form of the 

differential equation is transformed into a weak form and the solution is obtained 

using weighted-residual approach. In FEM, however, the domain is divided into 

finite elements instead of considering the whole geometry as one element. The steps 

in a finite element method analysis are shown in the flowchart below. 
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For steady-state heat transfer problems, the governing equation is  

 
𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) + 𝑄 = 0 (2.1) 

where 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are the thermal conductivities in the x, y, and z directions 

respectively and Q is the heat generation per unit volume. To solve this problem 

using FEM, first we need to divide the domain into finite elements and then T is 

approximated over each element using a set of basis functions. 

 𝑇𝑒(𝑥, 𝑦) =∑𝑇𝑖
𝑒𝜓𝑖

𝑒

𝑁

𝑖=1

 (2.2) 

where 𝑇𝑖
𝑒 represents the value of temperature at nodal points of the element and 𝜓𝑖

𝑒  

represents the basis function associated with the element and 𝑇𝑒(𝑥, 𝑦) is the 

temperature at any (x, y) location inside the element. These nodal temperatures 

must weakly satisfy the governing equation and boundary condition, meaning that 

the solution only need to satisfy C1 continuity at the nodes even though the 

governing equation is second order. The transformation of strong form to weak 

form, which is basically integration by-parts, reduces the C2 continuity requirement 

of T to C1 continuity. 

2.1.1.1 Weak form 

The weighted-residual statement of equation (1.1) is given by 

 ∫ 𝑤 (
𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) + 𝑄)𝑑Ω

Ω𝑒
= 0 (2.3) 
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The above expression represents the residual of error when we substitute Ti into the 

differential equation, where 𝑤 is the weight function and Ω𝑒 represents the domain 

of element e. Since the governing equation is second order, Ti should be C2 

continuous. However, if we use integration-by-parts on equation (2.3), this 

requirement is weakened to C1 continuity as shown in the equation (2.4), assuming 

𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are invariant with respect to space. 

∫ (𝑘𝑥
𝜕𝑤

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝑘𝑦

𝜕𝑤

𝜕𝑦

𝜕𝑇

𝜕𝑦Ω𝑒
+ 𝑘𝑧

𝜕𝑤

𝜕𝑧

𝜕𝑇

𝜕𝑧
− 𝑤𝑄)𝑑Ω

− ∮ 𝑤 (𝑘𝑥
𝜕𝑇

𝜕𝑥
𝑛𝑥 + 𝑘𝑦

𝜕𝑇

𝜕𝑦
𝑛𝑦 + 𝑘𝑧

𝜕𝑇

𝜕𝑧
𝑛𝑧)𝑑Γ = 0 

Γ𝑒
 

        (2.4) 

If we consider a general formulation including conductive heat flux as well 

convective heat flux at the boundary equation 2.4 can be written as following [13]. 

∫ (𝑘𝑥
𝜕𝑤

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝑘𝑦

𝜕𝑤

𝜕𝑦

𝜕𝑇

𝜕𝑦Ω𝑒
+ 𝑘𝑧

𝜕𝑤

𝜕𝑧

𝜕𝑇

𝜕𝑧
− 𝑤𝑄)𝑑Ω

− ∮ 𝑤(𝑞𝑛 − ℎ(𝑇 − 𝑇∞))𝑑Γ = 0 
Γ𝑒

 

        (2.5) 

where 𝑞𝑛 is the contribution of conductive heat flux, ℎ(𝑇 − 𝑇∞) is the contribution 

of convective heat flux, ℎ is the heat transfer coefficient, and 𝑇∞ is the ambient 

temperature. This formulation is called the weak statement. Here Ω represents the 

domain and Г represents the boundary of that domain. In Galerkin’s FEM, weight 

functions are also approximated using the same basis functions as T. 
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  𝑤𝑒(𝑥, 𝑦) =∑𝑣𝑖𝜓𝑖
𝑒

𝑁

𝑖=1

 (2.6) 

The basis functions must be linearly independent and must satisfy the requirement 

of C1 continuity. 

2.1.2 Library of Finite Elements 

2.1.2.1 Triangular Elements 

The most common triangular element contains three nodes at its vertices. The 

basis functions are given by the following expressions 

 Ψ1 =
1

2𝐴
[(𝑥2𝑦3 − 𝑥3𝑦2) + (𝑦2 − 𝑦3)𝑥 + (𝑥3 − 𝑥2)𝑦] (2.7) 

 Ψ2 =
1

2𝐴
[(𝑥3𝑦1 − 𝑥1𝑦3) + (𝑦3 − 𝑦1)𝑥 + (𝑥1 − 𝑥3)𝑦] (2.8) 

 Ψ3 =
1

2𝐴
[(𝑥1𝑦2 − 𝑥2𝑦1) + (𝑦1 − 𝑦2)𝑥 + (𝑥2 − 𝑥1)𝑦] (2.9) 

where A is the area of the triangular element and (x1, y1), (x2, y2), and (x3, y3) are 

the coordinates of the vertices.  

 

 

 

 

 

 

A3 

A1 

A2 

P 

1 

2 

3 

Figure 2.2 Triangular Element 
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These basis functions can also be expressed in area coordinates as 

 𝐿1 =
𝐴1
𝐴

 (2.10) 

 𝐿2 =
𝐴2
𝐴

 (2.11) 

 𝐿3 =
𝐴3
𝐴

 (2.12) 

where A1, A2, and A3 are the areas formed by nodes P-2-3, P-1-3, and P-1-2 

respectively. Here, P (x, y) represents any general point inside the triangle 123. Li 

has a value of 1 at the ith node and a value of 0 at every other node. The sum of L1, 

L2, and L3 always adds up to 1. The field variable inside the element is expressed 

as  

 𝑢(𝑥, 𝑦) = 𝑢1𝐿1 + 𝑢2𝐿2 + 𝑢3𝐿3 (2.13) 

where u1, u2, and u3 are the values at the nodes 1, 2, and 3 respectively. 

2.1.2.2 Rectangular Element 

The simplest kind of rectangular element has 4 nodes located at the vertices of the 

rectangle.  
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The rectangle in the global coordinates is reduced to normal coordinates (r, s) as  

 𝑟 =
𝑥 − 𝑥

𝑎
 (2.14) 

 𝑠 =
𝑦 − 𝑦

𝑏
 (2.15) 

Where (𝑥, 𝑦) is the centroid of the rectangle in the global coordinates and a and b 

are the length and width of the rectangle respectively. The basis functions are: 

 Ψ1(𝑟, 𝑠) =
1

4
(1 − 𝑟)(1 − 𝑠) (2.16) 

 Ψ2(𝑟, 𝑠) =
1

4
(1 + 𝑟)(1 − 𝑠) (2.17) 

 Ψ3(𝑟, 𝑠) =
1

4
(1 + 𝑟)(1 + 𝑠) (2.18) 

 Ψ4(𝑟, 𝑠) =
1

4
(1 − 𝑟)(1 + 𝑠) (2.19) 

 

1(x1, y1) 

4 (x4, y4) 3(x3, y3) 

2(x2, y2) 1(-1, -1) 

4 (-1, 1) 
3(1, 1) 

2(1, -1) 

s 

r 

(a) (b) 

Figure 2.3 Linear Rectangular Element (a) in 

original coordinate system (b) in reduced 

coordinate system 
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Ψi has a value of 1 at the ith node and value of zero at every other node. Basis 

functions for rectangle element with eight nodes can be defined in a similar manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ψ1(𝑟, 𝑠) =
1

4
(𝑟 − 1)(1 − 𝑠)(𝑟 + 𝑠 + 1) (2.20) 

 Ψ2(𝑟, 𝑠) =
1

4
(𝑟 + 1)(1 − 𝑠)(𝑠 − 𝑟 + 1) (2.21) 

 Ψ3(𝑟, 𝑠) =
1

4
(𝑟 + 1)(1 + 𝑠)(𝑠 + 𝑟 + 1) (2.22) 

 Ψ4(𝑟, 𝑠) =
1

4
(𝑟 − 1)(1 + 𝑠)(𝑟 − 𝑠 + 1) (2.23) 

 Ψ5(𝑟, 𝑠) =
1

4
(1 − 𝑟2)(1 − 𝑠) (2.24) 

 Ψ6(𝑟, 𝑠) =
1

4
(1 − 𝑠2)(1 + 𝑟) (2.25) 

 Ψ7(𝑟, 𝑠) =
1

4
(1 − 𝑟2)(1 + 𝑠) (2.26) 

7  

5  

6 

1 

4  
    3 

       2 

s 

r 

8  

Figure 2.4 Second Order Rectangular Element 
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 Ψ8(𝑟, 𝑠) =
1

4
(1 − 𝑠2)(1 − 𝑟) (2.27) 

The field variable anywhere inside the element is represented by the following 

expression, in which N is the number of nodes in the element and ui is the value at 

the ith node.  

 𝑢(𝑥, 𝑦) =∑𝑢𝑖Ψ𝑖

𝑁

𝑖=1

 (2.28) 

2.1.2.3 Tetrahedral Elements 

Just like the concept of area coordinates in the triangular element, a concept of 

volume coordinates can be used to represent the basis functions for a 4-node 

tetrahedral element. The figure below depicts a 4-node tetrahedral with a general 

point P inside it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P 

1 

2 

4 

3 

Figure 2.5 Tetrahedral Element 
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The volume coordinates are defined as 

 𝐿1 =
𝑉1
𝑉

 (2.29) 

 𝐿2 =
𝑉2
𝑉

 (2.30) 

 𝐿3 =
𝑉3
𝑉

 (2.31) 

 𝐿4 =
𝑉4
𝑉

 (2.32) 

where V1=Vol(P234), V2=Vol(P134), V3=Vol(P124), V4=Vol(P123), and V is the 

volume of the tetrahedral 1234. The field variables are then represented by the 

following expression. 

 𝑢 = 𝐿1𝑢1 + 𝐿2𝑢2 + 𝐿3𝑢3 + 𝐿4𝑢4 (2.33) 

where u1, u2, u3, and u4 are the values at the nodes 1, 2, 3, and 4 respectively. 

2.1.2.4 Hexahedral Elements (Brick Elements) 

The idea of a two-dimensional rectangular element can be extended to three-

dimensional brick elements.  The brick element in reduced coordinate is shown in 

figure 2.6. The reduced coordinates are defined as 

 𝑟 =
𝑥 − 𝑥

𝑎
 (2.34) 

 𝑠 =
𝑦 − 𝑦

𝑏
 (2.35) 

 𝑡 =
𝑧 − 𝑧

𝑐
 (2.36) 
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The domain of the element in reduced coordinates is -1 to +1 in every direction. 

The basis functions are expressed as 

 Ψ1 =
1

8
(1 − 𝑟)(1 − 𝑠)(1 + 𝑡) (2.37) 

 Ψ2 =
1

8
(1 + 𝑟)(1 − 𝑠)(1 + 𝑡) (2.38) 

 Ψ3 =
1

8
(1 + 𝑟)(1 + 𝑠)(1 + 𝑡) (2.39) 

 Ψ4 =
1

8
(1 − 𝑟)(1 + 𝑠)(1 + 𝑡) (2.40) 

 Ψ5 =
1

8
(1 − 𝑟)(1 − 𝑠)(1 − 𝑡) (2.41) 

 Ψ6 =
1

8
(1 + 𝑟)(1 − 𝑠)(1 − 𝑡) (2.42) 

 Ψ7 =
1

8
(1 + 𝑟)(1 + 𝑠)(1 − 𝑡) (2.43) 

 Ψ8 =
1

8
(1 − 𝑟)(1 + 𝑠)(1 − 𝑡) (2.44) 

8(-1, 1, -1) 
7(1, 1, -1) 

6(1, -1, -1) 

1(-1, -1, 1) 

4 (-1, 1, 1) 

3(1, 1, 1) 

2(1, -1, 1) 

s 

r 

5(-1, -1, -1) 

t 

 

Figure 2.6 Hexahedral Element 
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Each basis function has a value of 1 at its node and value of 0 at every other node. 

The field variable is finally expressed as 

 𝑢(𝑥, 𝑦, 𝑧) =∑Ψ𝑖𝑢𝑖

8

𝑖=1

 (2.45) 

where ui is the value at the ith node.  

2.1.3 Coordinate Transformation 

Although the elements discussed in previous sections can span the domain for 

simple geometries, they are not so useful for complex geometries with curved 

edges.  To overcome this shortcoming, geometry is usually meshed with elements 

that have curved edges which are then transformed to the simple known elements 

through coordinate transformation. This transformation does not actually change 

the elements or the domain, but it is only done to evaluate the integrals in the weak 

form as those integrals are easy to evaluate for elements discussed in section 2.1.2. 

The transformation between the actual element and the equivalent master element 

is represented by the following expression 

 𝑥 =∑Ψ𝑖(𝑟, 𝑠, 𝑡)𝑥𝑖

𝑛

𝑖=1

 (2.46) 

 𝑦 =∑Ψ𝑖(𝑟, 𝑠, 𝑡)𝑦𝑖

𝑛

𝑖=1

 (2.47) 

 𝑧 =∑Ψ𝑖(𝑟, 𝑠, 𝑡)𝑧𝑖

𝑛

𝑖=1

 (2.48) 
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where x and y represent the coordinate system in the original element; xi, yi are the 

coordinates of the ith node; and Ψi is the basis function of ith node in the transformed 

element. These kinds of FEM formulation in which same basis functions are used 

for geometric and field variable approximation are called as isoparametric 

formulations. Nevertheless, the field variable can now be expressed as 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑟, 𝑠, 𝑡) = ∑Ψ𝑖(𝑟, 𝑠, 𝑡)𝑢𝑖

𝑛

𝑖=1

 (2.49) 

To evaluate the weak form integral, we need to compute 
𝜕Ψ𝑖

𝜕𝑥
 , 

𝜕Ψ𝑖

𝜕𝑦
, and 

𝜕Ψ𝑖

𝜕𝑧
. 

However, Ψ𝑖 is a function of r, s, and t. To compute these derivatives, we must 

invert the following relations. 

 
𝜕Ψi
𝜕𝑟

=
𝜕Ψ𝑖
𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕Ψ𝑖
𝜕𝑦

𝜕𝑦

𝜕𝑟
+
𝜕Ψ𝑖
𝜕𝑧

𝜕𝑧

𝜕𝑟
 (2.50) 

 
𝜕Ψi
𝜕𝑠

=
𝜕Ψ𝑖
𝜕𝑥

𝜕𝑥

𝜕𝑠
+
𝜕Ψ𝑖
𝜕𝑦

𝜕𝑦

𝜕𝑠
+
𝜕Ψ𝑖
𝜕𝑧

𝜕𝑧

𝜕𝑠
 (2.51) 

 
𝜕Ψi
𝜕𝑡

=
𝜕Ψ𝑖
𝜕𝑥

𝜕𝑥

𝜕𝑡
+
𝜕Ψ𝑖
𝜕𝑦

𝜕𝑦

𝜕𝑡
+
𝜕Ψ𝑖
𝜕𝑧

𝜕𝑧

𝜕𝑡
 (2.52) 

 

{
  
 

  
 
𝜕Ψ𝑖
𝜕𝑥
𝜕Ψ𝑖
𝜕𝑦
𝜕Ψ𝑖
𝜕𝑧 }
  
 

  
 

=

[
 
 
 
 
 
𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕𝑧

𝜕𝑟
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

𝜕𝑧

𝜕𝑠
𝜕𝑥

𝜕𝑡

𝜕𝑦

𝜕𝑡

𝜕𝑧

𝜕𝑡]
 
 
 
 
 
−1

{
 
 

 
 
𝜕Ψ𝑖
𝜕𝑟
𝜕Ψ𝑖
𝜕𝑠
𝜕Ψ𝑖
𝜕𝑡 }
 
 

 
 

 (2.53) 

The 3×3 matrix on the right-hand side is called a Jacobian matrix. To obtain the 

solution it is imperative for the Jacobian matrix to be non-singular.  
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2.1.3 Assembly and Solution 

As discussed earlier, the field variable for a steady state heat transfer problem can 

be expressed in terms of basis functions as 𝑇𝑒(𝑥, 𝑦) = ∑ 𝑇𝑖
𝑒𝜓𝑖

𝑒𝑁
𝑖=1 . Substituting this 

equation along with the approximation of weight functions  𝑤𝑒(𝑥, 𝑦) = ∑ 𝑣𝑗𝜓𝑗
𝑒𝑁

𝑗=1  

into the weak form (eqn. 2.5) we get 

∑{∫ [
𝜕𝜓𝑗

𝑒

𝜕𝑥
(𝑘𝑥

𝜕𝜓𝑖
𝑒

𝜕𝑥
) +

𝜕𝜓𝑗
𝑒

𝜕𝑦
(𝑘𝑦

𝜕𝜓𝑖
𝑒

𝜕𝑦
) +

𝜕𝜓𝑗
𝑒

𝜕𝑧
(𝑘𝑧

𝜕𝜓𝑖
𝑒

𝜕𝑧
) ] 𝑑Ω

Ω𝑒

𝑛

𝑖=1

+∮ ℎ𝜓𝑗
𝑒𝜓𝑖

𝑒 𝑑Γ 
Γ𝑒

} 𝑣𝑗𝑇𝑖
𝑒 − ∫ 𝑣𝑗𝜓𝑗

𝑒𝑄 𝑑Ω
Ω𝑒

−∮ 𝑣𝑗𝜓𝑗
𝑒𝑞𝑛 𝑑Γ − 

Γ𝑒
∮ ℎ𝑇𝑐𝑣𝑗𝜓𝑗

𝑒  𝑑Γ = 0  
Γ𝑒

 

(2.54) 

 

The above expression must be satisfied for every value of w. Therefore, we need to 

remove the arbitrariness of w which can be done by making the above expression 

invariant with respect to w. In this case, the derivative of above expression with 

respect to 𝑣𝑗  should be equal to zero to make the expression invariant with respect 

to w, giving us the following equation 

∑{∫ [
𝜕𝜓𝑗

𝑒

𝜕𝑥
(𝑘𝑥

𝜕𝜓𝑖
𝑒

𝜕𝑥
) +

𝜕𝜓𝑗
𝑒

𝜕𝑦
(𝑘𝑦

𝜕𝜓𝑖
𝑒

𝜕𝑦
) +

𝜕𝜓𝑗
𝑒

𝜕𝑧
(𝑘𝑧

𝜕𝜓𝑖
𝑒

𝜕𝑧
) ] 𝑑Ω

Ω𝑒

𝑛

𝑖=1

+∮ ℎ𝜓𝑗
𝑒𝜓𝑖

𝑒 𝑑Γ 
Γ𝑒

} 𝑇𝑖
𝑒 − ∫ 𝜓𝑗

𝑒𝑄 𝑑Ω
Ω𝑒

−∮ 𝜓𝑗
𝑒𝑞𝑛 𝑑Γ − 

Γ𝑒
∮ ℎ𝑇𝑐𝜓𝑗

𝑒  𝑑Γ = 0  
Γ𝑒

 

 

(2.55) 

The above equation can be expressed in simplified form as 
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 ∑𝐾𝑖𝑗
𝑒𝑇𝑖 = 𝑄𝑗

𝑒

𝑛

𝑖=1

+ 𝑞𝑗
𝑒 (2.56) 

where 𝐾𝑖𝑗
𝑒 , 𝑄𝑗

𝑒, and 𝑞𝑗
𝑒 are: 

𝐾𝑖𝑗
𝑒 = ∫

𝜕𝜓𝑗
𝑒

𝜕𝑥
(𝑘𝑥

𝜕𝜓𝑖
𝑒

𝜕𝑥
) +

𝜕𝜓𝑗
𝑒

𝜕𝑦
(𝑘𝑦

𝜕𝜓𝑖
𝑒

𝜕𝑦
) +

𝜕𝜓𝑗
𝑒

𝜕𝑧
(𝑘𝑧

𝜕𝜓𝑖
𝑒

𝜕𝑧
)𝑑Ω

Ω𝑒

+∮ ℎ𝜓𝑗
𝑒𝜓𝑖

𝑒  𝑑Γ 
Γ𝑒

 

(2.57) 

 

 𝑄𝑗
𝑒 = ∫ 𝜓𝑗

𝑒𝑄 𝑑Ω
Ω𝑒

 (2.58) 

 𝑞𝑗
𝑒 = ∮ 𝜓𝑗

𝑒𝑞𝑛 𝑑Γ + 
Γ𝑒

∮ ℎ𝑇𝑐𝜓𝑗
𝑒 𝑑Γ  

Γ𝑒
 (2.59) 

In matrix notation equation 2.59 can be expressed as 

 [𝐾𝑒]{𝑇𝑒} = {𝑄𝑒} + {𝑞𝑒} (2.60) 

where 𝐾𝑒 is the element stiffness matrix and {𝑄𝑒} + {𝑞𝑒} collectively form the 

force vector. Numerical integration techniques like the Gauss-Legendre quadrature 

formulas are generally used to evaluate the integrals involved in above expressions, 

as it is very difficult to evaluate these integrals analytically. 

The element stiffness matrix is then assembled into a global matrix. 

Assembly is based on two basic rules: 

1. Continuity of primary variable must be maintained 

2. Secondary variable (flux) must be balanced 

According to the 1st rule if two elements share a node, then that node must have a 

unique temperature value. The second rule makes sure that the heat flux is balanced 
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throughout the domain. Global K, Q, and q are assembled using the element 

connectivity information. The initial differential equation is now transformed to a 

set of algebraic equations given by  

 [𝐾]{𝑇} = {𝐹} (2.61) 

where 𝐹 = 𝑄 + 𝑞 

After applying the proper boundary conditions, the above system of equations can 

be solved to get the solution vector {𝑇}. It can be solved using direct inversion of 

K matrix or by using iterative methods such as Gauss-Seidel method. For large 

meshes, the direct method is not feasible, as it requires a huge amount of memory 

as well as processing power.  

 

2.2. Stochastic Finite Element Method (SFEM) 

SFEM incorporates the uncertainty present in the design variables to perform a 

comprehensive analysis which is more reliable than tradition Finite Element 

Method. The advantage of SFEM over the conventional statistical method is that it 

requires information about only the first two moments of the distribution, which 

are mean and standard deviation respectively [10]. SFEM is computationally more 

efficient compared to statistical methods like Monte-Carlo simulation which 

require running a considerably large amount of simulations to study a response 

variation [4]. SFEM can be broadly categorized into three categories 
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2.2.1 Spectral Method 

Introduced by Ghanem and Spanos [5], the spectral approach represents responses 

using polynomial chaos expansions and discretize the input random variables using 

Karhunem-Loeve expansion [6]. The polynomial chaos of a random variable can 

be expressed as 

 𝑤(𝜃) =∑𝑤𝑗Ψ𝑗  ({Φ𝑗(𝜃)}𝑘=1
𝑁 ) 

𝑁

𝑗=0

 (2.62) 

where the polynomials {Φ𝑗(𝜃)}𝑘=1
𝑁  are the orthogonal chaos basis [2]. Because of 

its complexity and an enormous amount of computational time requirement, this 

method is not suitable for most practical problems and is generally restricted to 1-

D and 2-D linear problems [2,4].  

2.2.2 Perturbation Method 

The perturbation method employs Taylor series to expand the input random 

variables about their mean. For a finite element heat transfer problem with KU=F 

as a system of algebraic equations K, U, and F can be represented as  

 𝐾 = 𝐾0 +∑𝑎𝑖
𝜕𝐾

𝜕𝑎𝑖

𝑁

𝑖=1

|𝑎=0 +
1

2
∑∑𝑎𝑖𝑎𝑗

𝜕2𝐾

𝜕𝑎𝑖𝜕𝑎𝑗
|𝑎=0

𝑁

𝑗=1

𝑁

𝑖=1

+⋯ (2.63) 

 𝑈 = 𝑈0 +∑𝑎𝑖
𝜕𝑈

𝜕𝑎𝑖

𝑁

𝑖=1

|𝑎=0 +
1

2
∑∑𝑎𝑖𝑎𝑗

𝜕2𝑈

𝜕𝑎𝑖𝜕𝑎𝑗
|𝑎=0

𝑁

𝑗=1

𝑁

𝑖=1

+⋯ (2.64) 
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 𝐹 = 𝐹0 +∑𝑎𝑖
𝜕𝐹

𝜕𝑎𝑖

𝑁

𝑖=1

|𝑎=0 +
1

2
∑∑𝑎𝑖𝑎𝑗

𝜕2𝐹

𝜕𝑎𝑖𝜕𝑎𝑗
|𝑎=0

𝑁

𝑗=1

𝑁

𝑖=1

+⋯ (2.65) 

where 𝐾0, 𝐹0, and 𝑈0 are the mean values and 𝑎𝑖 are the random variables. The 

accuracy increases with the inclusion of higher order terms; however, it increases 

the computational cost [7]. 

2.2.3 Probabilistic Approach 

In this approach, the randomness of the input variables is characterized by their 

means, standard deviations, and corresponding probability density functions. The 

main focus is on computing the probability of failure using some performance 

criterion described by an equation called limit state equation. For example, the 

probability of failure of a system can be expressed as 

 𝑝𝑓 = ∫…∫ 𝑓𝑋(𝑥1, 𝑥2, … , 𝑥𝑛)𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛
𝑔( )<0

 (2.66) 

where 𝑓𝑋 is the joint probability density function (PDF) of the random variables 

𝑋1, 𝑋2, …𝑋𝑛 and g( ) is the limit state function for the system. Figure 2.7 shows the 

joint probability density function and failure and safe regions for a model involving 

two random variables. The net volume under the joint PDF is the total probability 

for the system. The volume covering the failure region is the probability of failure 

for the system. The PDF of a standard normal distribution is given by 

 𝑓𝑧(𝑧) =
1

√2𝜋
𝑒(−

1
2
𝑧2)

 (2.67) 
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If we assume that all the random variables are uncorrelated, then the joint PDF can 

be given by the following expression 

 𝑓𝑍(𝑧1, 𝑧2…𝑧𝑛) =∏
1

√2𝜋
𝑒(−

1
2
𝑧𝑖
2)

𝑛

𝑖=1
 (2.68) 

Assuming uncorrelated variables, the probability of failure can be expressed as 

 𝑝𝑓 = ∫…∫ ∏
1

√2𝜋
𝑒(−

1
2
𝑧𝑖
2)

𝑛

𝑖=1
𝑑𝑧1𝑑𝑧2…𝑑𝑧𝑛

𝑔( )<0

 (2.69) 

 

 

Figure 2.7 Joint PDF for a model with two random variables  
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2.3 Probabilistic Approach to Stochastic Finite Element Method 

As mentioned in the previous section, to determine the probability of failure we 

must define a proper limit state function and information of joint probability 

function is also required beforehand. In general, computing the integral in equation 

2.66 is very complicated especially for real-world problems with non-linear limit 

state function [1].   

2.3.1 Limit State Function 

Limit state function defines the criterion which needs to be satisfied for a reliable 

design. If S and R are the load and resistance distributions respectively, then limit 

state function is a function of S and R; i.e. g(R, S). Limit state function defines the 

failure and safe region within the design domain. It can be implicit or explicit, linear 

or non-linear in nature. Failure region and safe regions are mathematically defined 

by g( )<0 and g( )>0 respectively. The curve shown in figure 2.7 depicts the failure 

and safe region.  

 

Figure 2.8 Limit State Curve 
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 Limit state function provides constraint function for determining the 

probability of failure. Determining the integral in Eqn. 2.66 in is called the full 

distribution approach. Evaluating it requires the information of joint probability 

density function which is almost impossible to obtain for real-world problems [1]. 

Furthermore, it is very complicated to compute the integral even if the information 

of joint probability density function is available. Several methods exist to 

approximately compute the integral, which can be broadly grouped into two 

classes: First-Order Reliability Methods and Second-Order Reliability Methods. 

Only first-order reliability method is discussed in this thesis. 

2.3.2 First Order Reliability Method (FORM) 

First-order reliability method is developed from the second-moment method which 

uses information of first and second moment of the random variables [1]. The first 

and second moments are simply the mean and standard deviation of the distribution.

 Since for most real-life problems limit state function is non-linear, FORM 

can be used to linearize the limit state function and approximately compute the 

probability of failure. It linearizes the limit state function at the most probable point 

(MPP) of failure in the transformed standard normal space Z using Rosenblatt 

transformation [8].  

 𝑔(𝑋) = 𝑔(𝑍) ≅ 𝑔(𝑧∗) + ∇gT(𝑍 − 𝑧∗) (2.70) 

Where z* is the most probable point of failure. It is the nearest point from the origin 

that lies on the limit state curve. The distance of MPP from the origin is called 
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reliability index β. To find the MPP, we need to find the design points for which 

joint PDF is maximum on the limit state surface. In other words, we need to 

maximize the term ∏
1

√2𝜋
𝑒(−

1

2
𝑧𝑖
2)𝑛

𝑖=1  in equation 2.69 while satisfying the constraint 

g( )=0, which is same as minimizing the term ∑ √𝑧𝑖
2𝑛

𝑖=1 .  The term ∑ √𝑧𝑖
2𝑛

𝑖=1  

represents the distance of design point z, which lies on the limit state curve, from 

the origin. The MPP search now becomes the following optimization problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||𝑧|| 

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑍) = 0 

Where g(Z) is the limit state function in the transformed standard normal space. 

Rackwitz and Fiessler [9] developed a FORM algorithm which utilizes Newton-

Raphson method to find the design point. The steps in the algorithm are: 

1. Define limit state function.  

2. Assume initial reliability index 𝛽0 and initial values for design points 

𝑥𝑖 , 𝑖 = 1, 2, 3, …𝑛 and compute the limit state function 𝑔( ). 

3. Transform the design points to equivalent standard normal space by 

 𝑧𝑖 =
𝑥𝑖 − 𝜇𝑋𝑖

𝑁

𝜎𝑋𝑖
𝑁  (2.71) 

where 𝜇𝑋𝑖
𝑁  and 𝜎𝑋𝑖

𝑁  are the mean and standard deviation of ith design point 

in the normal space. 

4. Evaluate 
𝜕𝑔

𝜕𝑍𝑖
 at the design points. 

𝜕𝑔

𝜕𝑍𝑖
 can also be expressed as 

𝜕𝑔

𝜕𝑋𝑖
𝜎𝑋𝑖
𝑁   
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5. Evaluate new design points in equivalent standard normal space by 

 𝑧𝑘+1 =
1

|𝛻𝑔(𝑧𝑘)|2
[𝛻𝑔(𝑧𝑘)𝑇𝑧𝑘 − 𝑔(𝑧𝑘)] 𝛻𝑔(𝑧𝑘) (2.72) 

6. Compute reliability index using following equation and check for 

convergence 

 𝛽 = √∑𝑧𝑖
2

𝑛

𝑖=1

 (2.73) 

7. Update design points in original coordinate using  

 𝑥𝑖 = 𝑧𝑖 ∗ 𝜎𝑋𝑖
𝑁 + 𝜇𝑋𝑖

𝑁  (2.74) 

and compute limit state function using updated design points. Also, check 

for convergence of 𝑔( ) = 0  

8. Repeat steps 3 to 7 if converge criterion is not met for 𝑔( ) and 𝛽. 

 

2.4 Sensitivities Calculation 

The simplest method to calculate sensitivity is through finite-difference method 

(FDM). According to FDM, the sensitivity of a function f with respect to a variable 

x is given by 

 
𝜕𝑓

𝜕𝑥
=
𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥 − Δ𝑥)

2Δx
 (2.75) 

FDM is prone to cancellation errors that can arise if the step-size is too small or too 

big [11] [12]. It is very difficult to find the correct step size for FDM for complex 
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problems which include several parameters. Also, if the range of values of 

parameters is very large a single value of perturbation would not work. In that case, 

correct step size for every parameter would need to be found separately. 

In the Complex variable method (CVM) the results obtained are accurate, however, 

it requires a large amount of computational time and memory [2] [11] [12]. The 

sensitivity of a function 𝑓 using CVM is given by 

 
𝜕𝑓

𝜕𝑥
=
𝐼𝑚(𝑓(𝑥 + Δ𝑥))

Δ𝑥 
 (2.76) 

Semi-analytic method (SAM) has higher efficiency than FDM, however, it also 

suffers from cancellation error like FDM. In SAM, for a finite element 

formulation 𝐾𝑈 = 𝐹, the sensitivity of U with respect to a variable x is given by  

 
𝜕𝑈

𝜕𝑥
= 𝐾−1 (

𝜕𝐹

𝜕𝑥
− 𝑈

𝜕𝐾

𝜕𝑥
) (2.77) 

SACVM combines the efficiency of semi-analytic method and accuracy of the 

complex variable method. The only difference between SAM and SACVM is the 

way in which 
𝜕𝐾

𝜕𝑥
 and 

𝜕𝐹

𝜕𝑥
 are calculated. In SACVM 

𝜕𝐾

𝜕𝑥
 and 

𝜕𝐹

𝜕𝑥
 are calculated using 

complex-variable method by perturbing the force vector and stiffness matrix in 

the complex direction.  

 𝜕𝐾

𝜕𝑥
=
𝐼𝑚(𝐾(𝑥 + Δ𝑥))

Δ𝑥 
 

(2.78) 

 
𝜕𝐹

𝜕𝑥
=
𝐼𝑚(𝐹(𝑥 + Δ𝑥))

Δ𝑥 
 

 

(2.79) 
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Jin et al [12] have shown that SACVM is insensitive to step size and can provide 

accurate sensitivity information. Grisham et al [11] used SACVM to calculate 

sensitivities in heat transfer problems. Previous researchers have implemented 

SACVM for obtaining effective thermal conductivity [15,16,17]. In this study, 

SACVM and FDM are used to calculate the sensitivity of limit state function with 

respect to the random variables. 
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 METHODOLOGY 

3.1  BGA Package 

3.1.1 Geometry 

A simplified geometry was chosen to solve the problem. The dimension of printed 

wire board, package, and die are 30mm×30mm, 13mm×13mm, and 7.2mm×7.2mm 

respectively. This model does not include the intricate circuitry of the chip; 

however, it includes simplified regions which are reasonable enough to perform the 

thermal analysis. The geometry is symmetric about x and y-axis, therefore only 

1/4th of it is modeled to save computational time. The figure below depicts each 

region in the geometry. 

 

Figure 3.1 Cross-Sectional View of BGA Package [3] 
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The geometry is made of 9 different material domains. Information about the mean 

and standard deviation of their conductivities are listed in table 3.1. For 

convenience, standard deviations are chosen to be 10% of mean values for each 

material. 

Table 3.1 Mean and Standard Deviation of Material Thermal Conductivities 

Material 

Region 

Material Mean value of 

Conductivities 

Standard deviation 

of conductivities 

1 Printed Wire Board 1.0 0.1 

2 Copper Pads 393.0 39.3 

3 Solder Masks 0.2 0.02 

4 Polyimide Tape 0.3 0.03 

5 Solder Balls 250 25 

6 BT Substrate 1.0 0.1 

7 Die Attach 0.25 0.025 

8 Silicon Die 87.0 8.7 

9 Epoxy Mold Compound 0.71 0.071 

 

Die is treated as a heat source with a mean value of power density as Q= 7.65×107 

W/m3 and standard deviation of 7.65×106 W/m3. Heat transfer coefficient(h) and 

ambient temperature(Tamb) values are also uncertain. h has a mean value of 20 

W/m2-℃ and standard deviation value of 2 W/m2-℃, Tamb has a mean value of 25℃ 

and standard deviation value of 2.5℃. 
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3.1.2 Mesh 

As mentioned earlier, taking advantage of symmetry in geometry only 1/4th of the 

model is created to save computational time. Mesh is shown in fig. 3.2.  

 

(a)                                                       (b) 
Figure 3.2  (a) Mesh of the 1/4th BGA model (b) Close-up View of Mesh 

The summary of the number of nodes and types of elements is shown in table 3.2 

Table 3.2 Summary of Mesh 

Number of nodes 27417 

Number of boundary triangles 0 

Number of boundary quads 12608 

Number of tetrahedral cells 0 

Number of pyramid cells 0 

Number of prism cells 0 

Number of hexahedral cells 20728 

 

3.1.3 Stochastic Finite Element Formulation 

Galerkin’s Finite Element, as discussed in section 2.1.1 is used for this problem. 

Following assumptions are made to simplify the problem: 
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1. Thermal conductivities of all the materials are constant and same in all 

directions 

2. The solution is invariant with time (steady state) 

3. Source term is constant  

4. There is no thermal contact resistance between the interface of two materials 

5. All distributions are Gaussian distributions 

Governing equation for the problem is given by  

 
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘
𝜕𝑇

𝜕𝑧
) + 𝑄 = 0 (3.1) 

and the boundary conditions are: 

1. Convective BC on all sides of PWB with ℎ = 20
𝑊

𝑚2℃
 and 𝑇∞ = 25℃ 

2. Convective BC on top, bottom, and sides of the package with ℎ = 20
𝑊

𝑚2℃
 

and 𝑇∞ = 25℃ 

3. Symmetry BC on symmetric sides, 
𝑑𝑇

𝑑𝑛
= 0  

4. Zero heat flux on sides of solder balls, 
𝑑𝑇

𝑑𝑛
= 0 

Using the method discussed in chapter 2, the element stiffness matrix and force 

function for this problem can be written as 



 

34 

 

𝐾𝑖𝑗
𝑒 = ∫ 𝑘 (

𝜕𝜓𝑗
𝑒

𝜕𝑥

𝜕𝜓𝑖
𝑒

𝜕𝑥
+
𝜕𝜓𝑗

𝑒

𝜕𝑦

𝜕𝜓𝑖
𝑒

𝜕𝑦
+
𝜕𝜓𝑗

𝑒

𝜕𝑧

𝜕𝜓𝑖
𝑒

𝜕𝑧
)𝑑Ω

Ω𝑒

+∮ ℎ𝜓𝑗
𝑒𝜓𝑖

𝑒 𝑑Γ 
Γ𝑒

 

(3.2) 

 
𝐹𝑖𝑗
𝑒 = ∫ 𝜓𝑗

𝑒𝑄 𝑑Ω + ∮ ℎ𝑇∞𝜓𝑗
𝑒  𝑑Γ  

Γ𝑒Ω𝑒
 

 

(3.3) 

It must be noted that for inner elements second terms in both 𝐾𝑖𝑗
𝑒  and 𝐹𝑖𝑗

𝑒  goes to 

zero. It is only non-zero for boundary elements. Collectively these algebraic 

equations can be written as  

 𝐾𝑒𝑇𝑒 = 𝐹𝑒 (3.4) 

These stiffness matrices are then assembled into a global matrix to solve for nodal 

temperatures.  

 To perform stochastic analysis, we use FORM as discussed in section 2.3.2.  

The limit state function is chosen as 𝑔( ) = 𝑇𝑎𝑣𝑔 − 97, where Tavg is the average 

temperature at the interface of die and heat-spreader. This limit state function is 

chosen because the die-junction temperature is crucial in electronics design and 

excessive temperature at the interface is generally a cause of failure. To calculate 

reliability index, we need to compute sensitivity of limit state function with respect 

to random variables; material conductivities and source power density in this case. 

The flow chart of the algorithm for reliability analysis using SACVM is shown 

below 
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 No                                                                                                    Yes 

 

 

 

 

Input: Mesh, thermal 

conductivities, source & BC 

 

Formulate Ke and Fe 

 

Perturb Ke and Fe in complex 

space w.r.t. xi and assemble 

the global K and F 

 

𝑑𝑇𝑖 = 𝐾−1(𝑑𝐹𝑖 − 𝑇𝑖𝑑𝐾𝑖)  
 

𝑑𝑔

𝑑𝑥𝑖
=
𝑑𝑇𝑎𝑣𝑔

𝑑𝑥𝑖
=
𝑑𝑇𝑖
Δ𝑥𝑖

 

 

𝑑𝑔

𝑑𝑧𝑖
=
𝑑𝑔

𝑑𝑥𝑖
𝜎𝑥𝑖 

 

𝑧𝑘 =
1

|∇𝑔(𝑧𝑘−1)|2
[{∇𝑔(𝑧𝑘−1)}𝑇{𝑧𝑘−1} − 𝑔(𝑧𝑘−1)] ∇𝑔(𝑧𝑘−1) 

 

𝛽 = √∑𝑧𝑖
2

𝑛

𝑖=1

 

 

𝑥𝑖
𝑘 = 𝑧𝑖

𝑘 ∗ 𝜎𝑋𝑖
𝑁 + 𝜇𝑋𝑖

𝑁  

Calculate 𝑔( ) 
 

𝛽𝑘 − 𝛽𝑘−1 < 𝜖𝛽  

𝑔𝑘( ) < 𝜖𝑔  

 

𝛽, 𝑥𝑖 
 

Figure 3.3 Flowchart of FORM using SACVM 
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Where k is the iteration number, 𝜖𝛽 and 𝜖𝑔 are equal to 10-3, and x represents the 

random variable. While using FDM, the only difference is in calculating the 

sensitivities of limit state function. In FDM it can be calculated as   

 
𝜕𝑔

𝜕𝑥
=
𝑔(𝑥 + Δ𝑥) − 𝑔(𝑥 − Δ𝑥)

2Δ𝑥
 (3.5) 

The procedure mentioned above was used to study how the probability of failure 

changes with a change in standard deviation of random variables. The probability 

of failure can then be calculated using the following equation. 

 𝑝𝑓 = 1 − Φ(𝛽) (3.6) 

where β is the reliability index and Φ is the cumulative density function(CDF). For 

a standard normal distribution CDF can be calculated as 

 Φ(𝑠) = ∫
1

√2𝜋
𝑒(−

1
2
𝑠2)𝑑𝑠

𝑠

−∞

 (3.7) 
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 RESULTS 

The temperature contours of the package are shown in figure 4.1. The average 

temperature at the interface was calculated to be 88.14℃, which is below the 97℃ 

limit that we have chosen. Hence, our design is safe. But the question is, how safe? 

 

Figure 4.1 Temperature contours (℃) 

Two different cases were studied to see the trend of the probability of failure with 

respect to uncertainties present in the system. In case-1 all 9 material conductivities 

and heat source are uncertain, whereas in case-2 heat transfer coefficient and 

ambient temperature are also uncertain. All the uncertainties are assumed to have a 

Gaussian distribution.  
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4.1 Case-1: Heat Source and Material Thermal Conductivities are Uncertain 

In this case, only heat source and material thermal conductivities are treated as 

random variables in reliability index calculations. Finite-difference method and 

SACVM are used to calculate the sensitivity of the limit state function with respect 

to random variables. For our design values, the probability of failure of the package 

was calculated to be 0.0015% and the failure points are listed in table 4.1.  

Table 4.1 Failure points for Case 1 

k1 k2 k3 k4 k5 k6 k7 k8 k9 Q 

0.658 392.9 0.199 0.298 249.8 0.859 0.247 85.2 0.572 7.65E7 

 

The trends of the probability of failure with respect to the standard deviations of 

the random variables using SACVM and FDM are shown in figures below. 

 

(a) 
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(b) 

                                 

 

(c) 
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(d) 

 

(e) 
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(f) 

 

(g) 
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(h) 

 

(i) 
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 (j) 

Figure 4.2 For Case 1, Probability of failure Vs Standard Deviation of random variables 

(normalized with their original values (a) PWB (b) Copper Pads (c) Solder Mask (d) Polyimide 

Tape (e) Solder Balls (f) BT Substrate (g) Die Attach (h) Silicon Die (i) Epoxy Mold Compound 

(j) Heat Source 

It can be observed that the probability of failure is particularly sensitive to the 

thermal conductivity of PWB and a little sensitive to the thermal conductivity of 

BT substrate and Epoxy mold compound. For every other random variable, the 

probability of failure doesn’t show any sensitivity in the chosen range of standard 

deviation. Table 4.2 shows the values of probability of failure obtained by using 

SACVM and FDM using different step sizes. FDM performed similar to SACVM, 

except for step sizes below or equal to the value of 10-8 where convergence could 

not be obtained. 
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Table 4.2 Comparison of FDM and SACVM in calculating the probability of failure (CASE 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Size 
Probability of Failure  

SACVM FDM 

10-1 0.0015 0.0019 

10-3 0.0015 0.0015 

10-6 0.0015 0.0015 

10-8 0.0015 - 

10-10 0.0015 - 
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4.2 Case 2: Thermal Conductivities, Heat Source, Heat Transfer Coefficient and 

Ambient Temperature are Uncertain 

In this case, in addition to the heat source and thermal conductivities, heat transfer 

coefficient and ambient temperature are also considered as random variables and 

have uncertainties present in their values. The probability of failure of our design 

for this case was calculated to be 2.22% and the failure points are listed in table 4.3. 

Figure 4.3 shows the variation of 𝑝𝑓 with respect to standard deviations for different 

step sizes using FDM and SACVM. 

Table 4.3 Failure points for Case 2 

k1 k2 k3 k4 k5 k6 k7 k8 k9 Q h Tamb 

0.953         393 0.199 0.299 250 0.980 0.249 86.7 0.692 7.65E7 16.16 25.44 

 

 

(a) 
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(b) 

 
(c) 
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(d) 

 

 

 
(e) 
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(f) 

 

 

 
(g) 
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(h) 

 

 

 
(i) 
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(j) 

 

 

 

 
(k) 
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(l) 

Figure 4.3 For Case 2, Probability of failure Vs Standard Deviation of random 

variables(normalized with their original values) (a) PWB (b) Copper Pads (c) Solder Mask (d) 

Polyimide Tape (e) Solder Balls (f) BT Substrate (g) Die Attach (h) Silicon Die (i) Epoxy Mold 

Compound (j) Heat Source (k) Heat Transfer Coefficient (l) Ambient Temperature 

 

In this case probability of failure is most sensitive to the uncertainties present in 

heat transfer coefficient followed by PWB and Tamb. Randomness in BT substrate 

and Epoxy mold compound also have a little effect on the probability of failure. 

The rest of the random variables, on the other hand, has no effect on the probability 

of failure for the selected range of standard deviation whatsoever. From the plots, 

it is clear that SACVM performs better than FDM. SACVM calculated accurate 

values of sensitivities for every step size. FDM, on the other hand, produced an 

error in sensitivity calculations. Table 4.4 compares the performance of SACVM 
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and FDM for different step sizes in the calculation of the probability of failure. 

SACVM consistently calculated exact same values for every step size. However, 

FDM showed error compared to SACVM and also had convergence issues when 

step size is chosen below or equal to the value of 10-8.  

 It also worthwhile to notice that probability of failure for Case 2 is 

significantly more than Case1, which implies that uncertainties in heat transfer 

effect significantly affects the reliability of the package.  

 

Table 4.4 Comparison of FDM and SACVM in calculating the probability of failure (CASE2) 

 

 

 

 

 

 

 

 

 

 

 

Step Size 
Probability of Failure  

SACVM FDM 

10-1 2.2238 3.2713 

10-3 2.2238 3.2877 

10-6 2.2238 3.2877 

10-8 2.2238 - 

10-10 2.2238 - 
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 CONCLUSION AND FUTURE WORK 

A numerical study was done to find the probability of failure of a BGA model with 

known design parameters. Failure criterion was defined by the average temperature 

between the die and heat spreader. Galerkin’s finite element method was used to 

get the solution for temperature. The average temperature for the model was 

calculated to be 88.14℃. First order reliability method was used to calculate the 

probability of failure of the BGA package. 

Trends of the probability of failure with respect to uncertainties in random 

parameters were plotted.  Two cases were studied; one with uncertainties only in 

material conductivities and heat source; other with uncertainties in material 

conductivities, heat source, heat transfer coefficient and ambient temperature.  

For Case 1, the probability of failure increased the most compared to other 

parameters when the standard deviation of the conductivity of PWB was increased. 

For BT substrate and epoxy mold compound, it increased a little. For every other 

parameter, there was almost no change in the probability of failure. This implies 

that in order to get a highly reliable BGA package we need a tighter tolerance in 

manufacturing PWB so that the randomness in its thermal conductivity could be 

reduced. At the same time, other materials don’t need high tolerance in 

manufacturing which could be crucial in driving down the cost factors.  

For Case 2, the probability of failure is considerably greater than case 1. It 

increased from 0.0015% to 2.22%, which shows that uncertainties in heat transfer 
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coefficient and ambient temperature have a significant effect on the reliability of 

the package. Results of case 2 showed that probability of failure increased the most 

as compared to other parameters when the standard deviation of heat transfer 

coefficient is increased.  There is a minor increase in the probability of failure for 

PWB, BT substrate, epoxy mold compound, and ambient temperature. For every 

other parameter probability of failure does not change considerably. The results 

imply that we need a strong tolerance in setting the value of heat transfer 

coefficient, which in turns depends on the flow of the fluid and its thermal 

properties. Similarly, high manufacturing tolerance for PWB, BT substrate, and 

epoxy mold compound could help in removing the randomness in their 

conductivities, which in turn will improve the reliability of the package. Also, for 

those materials which did not impact probability of failure, low manufacturing 

tolerance can be chosen which will drive down the cost of the package.  

 Performance of SACVM and FDM in calculating sensitivities were also 

compared. It was observed that SACVM evaluated exact values for every step sizes 

and FDM showed error in calculations which could be attributed to cancellation 

and truncation error present in FDM. FDM is not suitable for problems involving a 

large number of variables with a huge range of values, as it becomes difficult to 

find perfect step sizes to calculate the accurate values of sensitivities. SACVM, on 

the other hand, does not depend on step size, which makes it perfect for such kind 

of problems. 
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Case 2 is a better representation of the probability of failure of the package 

because it also incorporates the uncertainties in heat transfer coefficient as well as 

ambient temperature. It should be noted however that the results are for the selected 

range of standard deviations. This study can be replicated to include a different 

range of standard deviations which suits the BGA manufacturers’ need. Effects of 

other parameters like geometry, thermal contact resistance, etc. could also be 

studied in the future studies.  

This study was based on the failure criterion defined by the limiting 

temperature at the interface of the die and heat spreader. Future studies could use a 

different failure criterion like thermal stress or a combination of different failures 

which could paint a clearer picture of the reliability of the package. The more 

rigorous future study could involve non-constant values of thermal conductivities 

and heat source. To get a complete picture a transient analysis could be done to 

evaluate the behavior of reliability with respect to time. 
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