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ABSTRACT 

T-CELL MEMBRANE CAMOUFLAGED NANOPARTICLES  

FOR TREATMENT OF MELANOMA  

Gizem Oter, MS  

 

The University of Texas at Arlington, 2017 

 

Supervising Professor: Kytai Truong Nguyen, Jon Weidanz 

Melanoma is one of the most aggressive skin cancers. The American Cancer Society reports 

that every hour, one person dies from melanoma. While there are a number of treatments currently 

available for melanoma (e.g. surgery, chemotherapy, immunotherapy, radiation therapy), these 

therapies face several problems, including inadequate response rates, high toxicity, and severe side 

effects due to non-specific delivery of anti-cancer drugs. To improve therapeutic efficiency and 

reduce these limitations, a multifunctional nanoparticle has been developed. Specifically, poly 

(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were coated with a cellular membrane derived 

from the T cell hybridoma, 19LF6 endowed with a melanoma-specific anti-gp100/ HLA-A2 T-cell 

receptor (TCR) and loaded with an FDA-approved melanoma chemotherapeutic drug Trametinib. 

These NPs were hypothesized to have improved stealth and targeting capabilities against skin cancer 

cells.     

T-cell membrane camuflaged trametinib loaded PLGA NPs displayed a negative average zeta 

potential of -36 mV and an average size of 246 nm. The particles were found to be stable for at 

least 2 days in 90% saline. Trametinib release profiles were affected by the amount of membrane 

coated onto the NPs, with the most sustained release from the NPs proportional with the highest 

amount of membrane used. The cytotoxicity result showed that membrane coated PLGA 
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nanoparticles were cyto-compatible in human dermal fibroblast cells up to a concentration of 1000 

µg/mL. They were also hemo-compatible, with hemolysis less than 5%. In binding and cellular 

uptake studies, 19LF6 membrane-coated NPs displayed a significantly greater binding capacity 

than that of the negative controls (NPs coated with membranes from T-cells not specific to 

melanoma). Moreover, the binding kinetics and  cellular uptake of these particles were shown to 

be membrane/TCR concentration dependent. Their cancer killing efficiencies were significant and 

aligned with binding and uptake characteristics. Particles with the higher membrane content 

(greater anti-gp100 TCR content) were shown to be more effective when compared to free drug 

and  the negative controls. Based on these in vitro studies, these T-cell membrane cloaked NPs 

could potentially be used to improve the chemotherapeutic treatment of melanoma.   
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Chapter 1  

Introduction 
 

1.1. Background and statistics of melanoma 

 
The skin is the largest organ of the body and serves several key functions such as protection from 

infection and injury and regulation of body temperature (1, 2). The skin itself has three layers: 

epidermis, dermis, and hypodermis (Figure 1). Melanocytes are cells of the epidermis that serve 

in producing the pigment melanin, which gives skin its color. Skin cancer is characterized by the 

uncontrollable growth of abnormal cells in a layer of the skin (3,4). It has three common forms: 

basal carcinoma, squamous cell carcinoma, and melanoma (5,6,7). Melanoma is one of the less 

common skin cancers, and despite this, it is the most malignant/metastatic skin tumor which 

originates from melanocytes (8,9). Melanoma is the fifth most common cancer type in the United 

States. The American Cancer Society estimates that in 2017, approximately 87,110 new cases 

(52,170 men, 34,490 women) will be diagnosed and about 9,730 individuals (6,380 men, 3,350 

women) will die from the disease (2).  

1.2. The risk factors and incidence   

There are many risk factors associated with melanoma, including skin color, sun exposure and 

family history (Figure 1). The incidence of melanoma does have a large dependence on physical 

features like hair color, eye color, and skin color of the individual (10,11). Individuals with lighter 

skin appear to be more affected. Although, it can arise in any part of the body, the neck and face 

remain the more common sites for melanoma. The most common risk factor is ultraviolet radiation 

(UV) from the sun (12, 13). Other risk factors include acute sunburns, precancerous lesions, 

exposure to carcinogens, presence of moles on the body, family history of skin cancer, and adverse 
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environmental conditions. 

 

Figure 1: Melanoma symptoms, risk factors and available treatments: A) Signs and 

symptoms. B) Risk factors. C) Prevention and treatment. D) Representative anatomy [14]. 

 

1.3. Current treatment and limitation 

Treatment methods are dependent on the stage of melanoma. The 5-year survival rates for patients 

diagnosed with early-stage melanoma are estimated to be 98% as opposed to 62% with melanoma 

that has spread to nearby lymph nodes. In the situations where the malignant cells have spread to 

other parts of the body (Figure 2), the survival is estimated to be 18% (15). Melanoma levels can 

be classified based on the degree of invasion. All classes have different treatment options and with 

different the survival rates (Table 1).  
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Table 1: Melanoma stages and their respective treatments (16). 

 

 

Figure 2: Growth mechanism and stages of melanoma: A) early stage of melanoma, B) 

migration of melanoma into deeper tissues and C) metastasis to other parts of the body through 

lymphatic and blood vessel [17]. 
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Early stages of melanoma are often treatable with surgery; however, the tumor thickness and 

location are important. The acceptable size of a tumor to be effectively treated with surgery is 

within 0.5 cm with about a 0.2 cm margin (18). In the case of larger and more advanced 

melanomas, surgery is often not effective. The advantage of surgery is that tumors of acceptable 

size are easily removed, while avoiding the side effects of radiation and toxic chemotherapy. It is, 

however, important to know whether the tumor has spread to any lymph nodes. Thus, a biopsy of 

the regional lymph nodes should be included if surgery is elected. If a cancerous growth is found, 

the lymph nodes are also dissected surgically along with the tumors. However, surgery itself has a 

variety of complications, including long-term swelling of organs and slow recovery. 

Many advances have been made for the treatment of more aggressive melanoma stages, including 

improved chemotherapy, targeted therapy, immunotherapy, radiotherapy, and the combinations of 

the two (19). Chemotherapy and targeted therapy involve the administration of drugs that often 

stop DNA transcription or block intracellular signaling pathways in the hope of inhibiting cell 

growth and replication. Radiation therapy utilizes high-energy rays to damage cellular DNA, and 

immunotherapy focuses on activation of one’s immune cells against the cancerous cells (20). 

Radiation therapy is useful for shrinking tumor size and reducing the symptoms of cancer, but does 

not significantly treat the tumor.  In chemotherapy, drugs, such as dacarbazine, cisplatin, 

vinblastine, and temozolomide are widely used.  A novel mitogen-activated extracellular signal-

regulated kinase (MEK) inhibitor, Trametinib, was approved by the US Food and Drug 

Administration in May 2013 as a single agent for the treatment of BRAF V600E/K mutant 

metastatic melanoma (21). While there are a wide number of therapies and drug combinations 

available for the treatment of melanoma, a key limitation in the efficacy of chemotherapy is the 

severe side effects and the development of multidrug resistance during prolonged treatment.  
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Radiotherapy or immunotherapy can often be combined with chemotherapy for a more effective 

outcome (5). Chemotherapy and the listed traditional treatments, however, are often accompanied 

with insufficient response rates and numerous severe side effects owing to the low efficacy and 

non-specific mechanisms of drug delivery (21). 

One particular focus of interest in immunotherapy encompasses technologies such as cell therapy. 

Immune cells are isolated from immunosuppressed cancer patients and reprogrammed in vitro 

against cancer antigens (specific to the cancer present in the patient). Current research has mostly 

focused on the modification of dendritic cells and T-cells, with T-cell based cancer immunotherapy 

having been used effectively in cancer treatment (22). T-cells are collected from patient’s own 

body and engineered to generate specific receptors on their surface. These receptors are referred 

to as chimeric antigen receptors (CARs) which are a specific type of protein located on tumor cells, 

and provide the T-cells with a way to recognize and kill cancer cells (23). Although these methods 

have been proven to be effective, they are accompanied by several limitations. Along the high 

costs and complexities of isolation, the long-term presence of re-programmed cells in the body 

poses some major concerns (23). The possible risks of long term survival of re-programmed cells 

have included the development of autoimmune disease and can subsequently lead to death. To 

overcome the limitations of current chemotherapy and immunotherapy methods, novel nano-

technological advances have been introduced.    

 

1.4. Nanoparticles in melanoma treatment 

Nanoparticle-based drug delivery systems have recently been used for cancer treatments. 

Nanoparticles possess several advantages, including increased stability, enhanced carrier capacity, 

varied feasible methods of administration and the ability to incorporate both hydrophilic and 
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hydrophobic types of drugs (24). Nano-vehicles often serve to protect the drug and can be 

customized to release the drug in a sustained fashion.  Sustained kinetics could lead to enhance 

drug bioavailability at the cancer site and reduce its toxicity to healthy tissues. Additionally, 

nanoparticles can be designed to deliver and monitor multiple agents simultaneously. For instance, 

nanoparticles have loaded with both diagnostic and therapeutic capabilities reagents for theranostic 

applications. In these applications, imaging and treatment can be monitored at the same time (25). 

Several currently studied, nano-based drug delivery platforms for melanoma include liposomes, 

dendrimers, polymersomes, carbon-based nanoparticles, and protein-based nanoparticles (26).  

Polymerosomes are widely studied due to their long-term stability and ability to provide a 

sustained drug release over prolonged periods of time. Current FDA approved examples of 

polymers include PLGA (polylactic-co-glycolic acid) and PLA (polylactic acid). Even though such 

polymers are considered to be biocompatible, they are still far from complete immune evasion 

(27). Numerous modifications have been studied over the last few decades in the hopes of giving 

polymeric nano-carriers the ability to escape the immune surveillance. Several of these 

modifications include PEGylation, plasma-surface modification and lipid-based masking (Table 

2). Of those lipid masking has raised an interest due to the ability of lipids to provide better 

“stealth” properties for foreign biomaterial-based vehicles to remain unnoticed in the face of 

immune cells. 

 

1.5. Biomimetic nanoparticles in cancer treatments 

Several of the stealth functionalities of synthetic and biopolymers are used to enable prolonged 

pharmacokinetics and improve bio-distribution of the particles. Table 2 provides some of the 

current strategies for use in nano-carriers used in cancer treatments.  
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Table 2: Current nano-carriers in cancer treatments (26). 

 

The biomembrane-coated nanoparticles present a comprehensive evasion strategy against the 

multi-faceted nature of immune clearance. Cell membrane coated biomimetic nanoparticles have 

made an impressive contribution to the improvement of cancer therapy (28). Due to cell membrane 

structure and retained cellular antigens, biomimetic NPs carry special advantages, such as long 

blood circulation, ligand recognition, immune escape, homotypic targeting, and the ability for a 

sustained drug delivery (29). Recently, cell membrane coated nano-systems with unique features 

and functions have been created by coating synthetic nanoparticles with cell membranes isolated 

from different cell types, such as red blood cells, platelets, and leukocytes. Parodi et al. (30) 

created leukocyte-membrane-cloaked silica micro particles which possessed endothelium-

traversing properties, and these particles achieved receptor ligand interaction and enhanced their 

circulation time. Studies performed by Hu et al. (31) focused on creating platelet membrane-coated 

nano-vehicles with cancer targeting capabilities. Frank et al. (28) reported that cancer cell 
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membrane-coated nanoparticles were suitable for homotypic cancer targeting and effective cancer 

immunotherapy. 

1.6.Overview of research project 

The overall goal of this project is to develop hybridoma T-cell membrane-coated PLGA 

nanoparticles (T-MNPs) for targeted chemotherapeutic treatment of melanoma (Figure 3). 

Melanoma cells carry various biomarkers, including gp100 antigen (32). The 19LF6 hybridoma 

T-cell line was genetically engineered to express and present anti-gp100 antigen T-cell receptor 

(TCR). In this project, a 19LF6 membrane was used for coating PLGA NPs in the hopes of 

establishing a targeted chemotherapeutic drug delivery platform to gp100-presenting melanoma 

cell lines, such as 1520 and DM-6. Mechanism of TCR interaction with tumor-specific antigens is 

represented in Figure 4. A549 (lung cancer line) and DO11.10 (T-cell line; non-specific to gp100) 

membrane coated PLGA NPs were also formulated (A-MNPs and D-MNPs, respectively). These 

particles were used as negative controls due to their lack of specificity to gp100 antigens.   

Overall, three types of membrane-coated NPs were created, as shown below: 

• 19LF6 cell line (T-cell) coated NPs (T-MNPs) – positive control 

• DO11.10 cell line (T-cell) coated NPs (D-MNPs) – negative control  

• A549 cell line (lung cancer) coated NPs (A-MNPs) – negative control   

PLGA polymer was chosen due to its below advantages:  

• Bio-compatibility and bio-degradability (24) 

• FDA and European Medicine Agency approval (24) 

• Adaptability to hydrophobic and hydrophilic drugs (24) 

• Sustained drug release kinetics (24) 
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Chemotherapeutic drug Trametinib was selected due to its effectiveness against cancer cell lines 

carrying a V600E BRAF oncogenic mutation such as DM-6 and 1520 cell lines (33). Trametinib 

is an FDA approved MEK (MEK 1 and 2) that can also be used in combination with other approved 

anti-melanoma drugs, such as drafatenib. Specific cell signaling mechanism affected by 

Trametinib is represented in Figure 5. 

Figure 3: Design of membrane coated nanoparticles (MNPs)   
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Figure 4: Mechanism of tumor cell recognition by tumor specific TCR [33].  
 

Figure 5: Cell signaling mechanism associated with Trametinib. MEK shown here as a downstream target 
of BRAF [34].  
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It was hypothesized that the presence of anti-gp100 TCR on T-MNPs would specifically target 

gp100 presenting melanoma cells and enhance cellular uptake of T-MNPs. Proposed uptake 

kinetics and T-MNP effect on cancer cells are illustrated in Figure 6. Chemotherapeutic drug 

Trametinib is predicted to inhibit MEK activity in b-RAF mutate melanoma cells and inhibit cell 

survival and proliferation. Therapeutic efficiency of T-MNPs was predicted to be significantly 

enhanced when compared to that of non-specific membrane coated (A-MNPs and D-MNPs) and 

naked PLGA NP.  

Three specific aims to test on hypothesis and to reach our goals are: 

Aim 1 - Develop membrane coated MNPs 

v Synthesis of naked PLGA NPs (NNPs) 
 

v Extraction of 19LF6, DO11.10 and A549 cellular membranes  
 

v Extrusion of PLGA NPs with cellular membranes  

Aim 2 – Characterize T-MNPs  

v Determine MNP size and morphology 
 

v Examine the functionality and binding efficiency of TCR in T-MNPs   

v Validate TCR presence on T-MNPs   

Aim 3 - Investigate targeting capability and therapeutic efficiency of T-MNPs in vitro. 

v Evaluate melanoma cell uptake of T-MNPs in comparison to that of non-specific MNPs 

v Test the therapeutic efficiency of T-MNPs in comparison to non-specific MNPs 

v Determine MNP cyto- and hemo-compatibilities of T-MNPs 
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The novelty of this project encompasses the development of cell membrane-coated NPs that are 

able to retain high integrity and functionality of cell receptors such as TCR. These particles are 

predicted to be superior due to the incorporation of T-cell membranes consisting of anti-cancer 

TCR. A successful outcome of this project could avoid the necessity and complexity of cell therapy 

techniques as described above.  

 

Figure 6: Proposed uptake and therapeutic mechanisms of T-MNPs 
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CHAPTER 2: Material and methods  

Experimental Methods 
 

2.1. Materials 

Poly (D, L lactide-co-glycolide) (PLGA) (inherent viscosity 50:50 with carboxyl end groups) was 

purchased from Akina (PolySciTech, West Lafayette, IN). Poly (vinyl alcohol) (PVA, mw 30,000-

70,000) and DCM (Dichloromethane) were obtained from Sigma Aldrich (MO, USA). Trametinib, 

coumarin-6, Tris-HCL, D-glucose, B-Mercaptoethanol, Phenylmethylsulfonyl fluoride (PMSF), 

Protease inhibitor cocktail, Triton® X-100, Dimethyl sulfoxide (DMSO) and RPMI-1640 were 

received from Sigma Aldrich. The Avanti Polar Lipids Mini Extruder Kit was gotten from Avanti 

Polar Lipids. RIPA buffer was purchased from Alfa Aesar. SDS-PAGE gel, and Mini PVDF 

transfer pack were received from Bio-rad. TCR	ᵝ chain (Armenia Hamster IgG) - antibody and its 

isotype antibody were bought from BD Biosciences. NuetrAvidin biotin binding protein, 

Superblock solution, BCA assay kit and DNAse were obtained from Thermofisher Scientific.  

Foamvar coated-copper TEM grids were purchased from Electron Microscopy Sciences. Fetal 

bovine serum (FBS), 1X trypsin EDTA, Dulbecco’s Modified Eagle’s Medium (DMEM) and 

penicillin-streptomycin were received from Invitrogen.  

Biotinylated gp100-HLA-A2/B2M (gp100 refold) and biotinylated GIGL peptide-HLA-

A*201/B2M complexes were synthesized and contributed by Dr. Jon Weidanz’s laboratory. gp100 

refold: heavy chain and Beta2Microglobulin chain were expressed in and harvested from E. coli 

in the form of inclusion bodies. The complex was biotinylated using Avidin Biotinylation kit [Bulk 

BirA: BirA biotin-protein ligase bulk reaction kit]. g100-2M (209-217) peptide was purchased 

from Genscript.  bGIGL complex was synthesized in a similar fashion. 19LF6, DO11.10, DM-6, 
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and 1520 cell lines were obtained from Dr. Jon Weidanz’s lab. 

 

2.2. Synthesis of PLGA nanoparticles 

PLGA nanoparticles (naked NPs; NNP) were synthesized via a standard single emulsion (O/W) 

technique. Briefly, 90 mg of PLGA 50:50 and 4.5 mg of Trametinib were dissolved in 3 mL of 

DCM and sonicated at 30 W for 2 minutes to allow dispersion of PLGA and Trametinib in the 

solvent. The resulting solution was added in a dropwise to 15 mL of filtered 5% (w/v) PVA under 

stirring conditions. The suspension was then sonicated at 30 W for 10 minutes (1 min ON, 30 sec. 

OFF). The solution was allowed stirring overnight to evaporate the organic solvent.  After 24 

hours, the obtained nanoparticle solution was centrifuged at 15,000 rpm for 30 minutes. The 

supernatant was saved for drug loading evaluations and the PLGA NP pellet was re-suspended in 

3 mL of DI water followed by freeze-drying for 24 hours. PLGA NPs loaded with coumarin-6 for 

cellular uptake studies were performed using similar procedure. 

 

2.3. Cell lines and culture conditions 

DM-6, 1520, A549 and 19LF6 cell lines were maintained in RPMI-1640, supplemented with 10% 

(v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin streptomycin. DO11.10 and HDF cell lines 

were maintained in high glucose DMEM, supplemented as described for RPMI-1640. All cells 

were incubated at 37 ̊ C, 5% CO2. 
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2.4. Cell membrane extraction 

To harvest the cell membrane, cells were first grown to confluency in T-225 cell culture flasks. 

Cells were isolated by trypsinization and centrifuged at 1000 rpm for 5 minutes. To remove any 

remaining media contents, the cells were washed with cold 1X PBS and centrifuged at 1000 g for 

10 minutes. The resulting pellet was re-suspended in hypotonic lysis buffer (10 mM Tris-HCL, 

pH= 7.5) supplemented with the ready-to-use protease inhibitor cocktail. The solution was kept on 

ice for 20 minutes and then centrifuged at 1000 g for 10 minutes. The pellet was re-suspended in 

cold 0.25 X PBS and kept on ice for 20 minutes followed by centrifugation at 800 g for 5 minutes. 

The final pellet was collected in cold 1X PBS. The cell membrane mix was analyzed for the DNA 

and protein content using Nano-Drop 1000 Spectrophotometer (Thermofisher Scientific) and BCA 

assay kits, respectively. To eliminate any remaining DNA contents, DNAse reaction was 

performed on the cell extract (amount of DNAse added varied with DNA content) by incubation 

with DNAase for least one hour at 37°C.  

 

2.5. Preparation of membrane coated NPs (MNPs) 

Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (naked NPs; NNPs) were coated with various 

cell membranes (MNPs). These particles were loaded with an FDA-approved chemotherapeutic 

drug Trametinib, suitable for treatment of melanoma cell lines containing V600E BRAF mutation. 

Briefly, NNPs were re-suspended in cell membrane solution at different NNP weight to membrane 

protein weight ratios (w/w): 1:0.5, 1:1, 1:2 and 1:3. The mixture was then extruded 22 times using 

a pre-heated Avanti Polar Lipids Mini Extruder (37°C). The extrusion was performed using a 200-

nm polycarbonate membrane. The resulting membrane coated NPs (MNPs) were dialyzed with a 
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100 kDa MWCO dialysis membrane for 2 hours. Prior to freeze-drying, dialyzed MNP solution 

was supplemented with D-glucose at a final concentration of 1mg/mL.  

Three types of membrane-coated NPs were created. As shown below: 

• 19LF6 cell line (T-cell) coated NPs (T-MNPs) – positive control 

• DO11.10 cell line (T-cell) coated NPs (D-MNPs) – negative control  

• A549 cell line (lung cancer) coated NPs (A-MNPs) – negative control   

 

2.6. Characterization of MNPs 

2.6.1. Particle size, zeta potential, and morphology 

Nanoparticle size, polydispersity index, and zeta potential were measured using Dynamic Light 

Scattering (DLS). Briefly, to measure the size of NNPs, NNP suspension (10 µL of 500 µg/mL) 

was added to 3 mL of deionized water and inserted into the DLS in a compatible cuvette. MNPs 

sample was prepared in a similar fashion, but in 1X PBS (pH 7.4). To generate TEM images of 

MNPs, 10 µL of 250 µg/mL MNP suspension was added to plasma-treated Formavar Square Mesh 

Copper Grids for 20 mins. Then suspension 10 µL of 0.5% uranyl acetate solution was applied 

onto the same grid for 20 min. The uranyl acetate solution was removed and the grid was dried 

overnight in a vacuum desiccator. 

 

2.6.2. Identification of TCR in T-MNPs 

Flow cytometric staining was used to identify anti-gp100 T-cell receptor (TCR) on T-MNPs. First, 

the particles were stained with TCR- β chain to evaluate the presence of any TCR or TCR 

components on synthesized MNPs. Briefly, 1mg/mL of MNP solution was prepared in staining 

buffer (0.5 % BSA, 1mM EDTA in 1X PBS). Then 200 µL of the solutions were aliquoted into 3 
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separate tubes for “stained”, “unstained” and “isotype control” groups. “Stained” and “isotype 

control” groups were mixed with Armenia Hamster anti-TCRᵝ and Armenia Hamster IgG 

antibodies at 1:100 dilution, respectively. “Unstained” group contained MNPs and NNPs in 

staining buffer only. The solutions were vortexed, incubated for 30 minutes, and protected from 

light. The samples were then washed with the staining buffer 3 times and centrifuged at 14,000 

rpm for 20 minutes each time. Each of the groups was then analyzed using a BD Biosciences FACS 

Diva Flow cytometer. 

After validation of TCR- β chain presence, 1 mg/mL of MNP solution was aliquoted into 2 separate 

tubes for “stained” and “unstained” groups. “Stained” group was mixed with a custom-made APC-

gp100/HLA-A2 complex (described in section 2.1) at 1:100 dilution. “Unstained” group only 

contained MNPs staining buffer. The solutions were vortexed, incubated for 30 minutes, and 

protected from light. The samples were then washed with the staining buffer 3 times and 

centrifuged at 14,000 rpm for 20 minutes each time. Each of the groups was then analyzed using 

a BD Biosciences FACS Diva Flow cytometer. 10,000 events were collected per sample, gated 

and reference by unstained NPs. Histograms were plotted with fluorescence intensity on the x- 

axis using a biexponential scale. 

2.6.3. Binding kinetics of MNPs 

The binding characteristics of T-MNPs were studied using ResoSens label-free optical detection. 

In this study, T-MNPs with highest and lowest NP weight to membrane weight ratios, 1:0.5 and 

1:2, were chosen. These nanoparticles were then tested at varying concentrations. D-MNPs were 

tested at the highest NP to membrane protein ratio (w/w) (1:2) and at a concentration 2-fold higher 
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than the highest concentration used for T-MNPs. All samples were tested against specific gp100-

refold and non-specific refold bGIGL (described in 2.1. section).  

 

2.6.4. T-MNP stability studies 

Stability of T-MNPs with varying NP weight to membrane protein weight ratios (w/w) was 

evaluated by monitoring particle size at pre-determined time-points using Dynamic Light 

Scattering. To observe the stability of T-MNPs, particles of different ratios were incubated in 0.9% 

saline over 48 hrs. T-MNP solutions were prepared as described in section 2.6.1, and the size of 

particles was measured at pre-determined time points (0, 0.5, 1, 3, 6, 12, 24, and 48 hours).  

2.6.5. Drug loading and drug release kinetics of T-MNPs 

The supernatant collected in the nanoparticle synthesis was used to determine the drug loading 

efficiency by an indirect method. The Trametinib loading efficiency was calculated using the 

following formula:  

 
%	Loading	Efficiency = 234567	48	9:5;	5<=9>234567	48	9:5;	?6	<5@=:627267

234567	48	9:5;	5<=9
 x100 

 
  
The drug release study was carried out for a period of 28 days. Briefly, 1 mg of NNPs and T-MNPs 

(NP: membrane protein weight (w/w) ratios of 1:0.5, 1:1 and 1:2) were measured.  Each of the 

samples (1mg/mL) was incubated at 37°C. At each pre-determined time-point, the samples were 

centrifuged at 14000 rpm for 30 minutes, and supernatants were collected and stored at -20 °C for 

later analysis.  The pellets were re-suspended in fresh 1X PBS and incubated for further time 

points. Each of the drug release aliquots was analyzed using a UV-vis Spectrophotometer at 330 

nm. The amount of drug released was determined against a standard curve for Trametinib. 
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2.7. In vitro studies of T-MNPs 

2.7.1. SDS-PAGE protein analysis and Western blotting 

Three cell lines were used to analyze gp100 protein content: A549,1520, and DM-6. Cells were 

first washed with 1X PBS and isolated by trypsinization. The cell suspensions were then 

centrifuged at 1000 rpm for 5 minutes.  The cell pellet was re-suspended in 1X PBS and centrifuged 

at 1000 rpm for 5 minutes.  2 million cells were re-suspended in 200 µl of 1X RIPA buffer with 1 

mM PMSF and incubated for 20 minutes on ice. The solution was centrifuged for 20 minutes at 

14000 rpm at 4°C. Supernatant was collected and a BCA assay was performed to determine the 

protein concentration. 4X Laemeili buffer with Beta-Mercaptoethanol were used to prepare 10% 

final concentration buffer. 8 µg of protein was mixed with 7.5 µL of 4X Laemeili Buffer/Beta-

Mercaptoethanol, 2 µL of protein solution and 20.5 µL of Proteinase-free water. The sample was 

heated at 90°C for 10 minutes. The samples were quickly centrifuged to bring down the 

condensation and cooled to room temperature. 20 µL of the samples was applied into a ready-to-

use SDS-PAGE gel.  The electrophoresis assembly was connected to a power supply set at 150 V, 

400 mA and the samples were run for about 30 minutes or until the dye reached to the bottom of 

the gel.  The gel was placed into a ready-to-use Mini PVDF transfer pack. The experiment was run 

about 7 minutes for 2 gels using Trans® TurboTM Transfer System. After protein transfer, blotted 

membrane was placed into a small container containing 5% BSA/TBST (1X .05% Tween/Tris-

buffered Saline) blocking solution. The membrane protein was placed side up for 1.5 hours at room 

temperature. Blocking the membrane prevents non-specific background binding of the primary 

and/or secondary antibodies to the membrane. Primary antibody against gp100 was prepared in 

2.5 % BSA in TBST and the membrane was incubated with primary antibody for overnight at 4°C 
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with shaking. The membrane was washed 3 times thoroughly with adequate volume of TBST 

solution to remove any unbound, excess antibody. The unconjugated primary anti-body was 

incubated with a conjugated secondary anti-body in 2.5% BSA/TBST for 1-2 hours and washed 3 

times with TBST. The membrane was also blotted with β-actin and served as a control. The blotted 

membrane was imaged using ChemidocTM Imaging System.  

2.7.2. Real-time PCR 

Melanoma cell lines DM-6 and 1520 and A549 human lung carcinoma cells were used.  Cells were 

detached by trypsinization and centrifuged at 500 g for 5 minutes. Total RNA was isolated from 

cell pellets by using an RNeasy Plus Mini kit according to the manufacturer’s instruction. To 

reduce contaminating genomic DNA from RNA, proper RNA isolation and cDNA synthesis 

procedures were followed. cDNA synthesis was performed using High-Capacity cDNA Reverse 

Transcription Kit by T100TM Thermal Cycler. The cDNA reaction was run using the following 

setting in sequence: 

1. 25°C for 10 min 
2. 37°C for 2 hrs.  
3. 85°C for 5 min 
4. 4°C  at ∞ 

After the reaction was competed the samples were prepared by the following mix: 2.5 µL of 

sample, 12.5 µL of PowerUpTM SYBRTM Green Master, 8 µL of Nuclease-free water, 1µL of sense 

primer, and 1µL of anti-sense primer. PCR reaction was run using the following setting in 

sequence:  
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1. 96°C for 1 min 
2. 96°C for 15 sec.  
3. 57°C for 30 sec. 
4. 68°C for 1 min 
5. 32 X go to step 2  
6. 68°C for 10 min 
7. 12°C for ∞ 

 

2.7.3. Cellular uptake of T-MNPs 

To determine cellular uptake of nanoparticles, 1520 (gp100 positive), DM-6 (gp100 positive) and 

A549 (gp100 negative) cell lines were seeded and allowed to grow for 24 hours. Coumarin-6 (C-

6; fluorescent dye) loaded T-MNPs (gp100 refold specific) and D-MNPs (non-specific to gp100 

refold) at varying NP to membrane weight ratios: 1:0.5, 1:1 and 1:2, were utilized for the uptake 

study.  Cells grown in media without nanoparticles served as a negative control. To study cellular 

uptake of MNPs, serially diluted MNP concentrations (100 µg/mL, 250 µg/mL, 500 µg/mL, 1000 

µg/mL) at different NP to membrane ratios were prepared. The cells were exposed to different 

MNPs groups for approximately 2 hours, subsequently washed with 1X PBS and lysed with 250 

µl/well of 1% Triton® X-100 (approximately 30 min incubation). Cell lysis extracts were then 

analyzed for the protein content using the Pierce BCA protein assay kit (Thermo Scientific, 

Rockford, IL) and C-6 fluorescent intensity (emitted from particles uptaken inside the cell) using 

a UV-vis Spectrophotometer (458/540 em/ex). Total protein concentration in each lysate was 

determined using a BSA standard curve. The uptake of the nanoparticles was calculated by 

normalizing the particle concentration (determined from fluorescence intensity in a lysate) in each 

sample with total cell protein, which correlated to the number of cells in the sample. 
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2.7.4. Pharmacokinetic and therapeutic study 

The cells used in this study were melanoma DM-6 and 1520 cell lines. Firstly, the cells were 

exposed to free drug in known concentrations (1.2, 2.5, 5, 10, 15, 20, 25, 50, 75, and 100 µg/mL) 

for a period of 72 hours to determine the IC50 value of Trametinib. After IC50 values were 

obtained in both cell lines, the therapeutic study was performed. Therapeutic efficiency was tested 

with 1:2 NP weight to membrane weight ratio T-MNPs (specific), A-MNPs (non-specific), and D-

MNPs (non-specific) as well as free drug and NNPs. Three different NP concentrations (0.83 

µg/mL, 1.66 µg/mL, and 2.5 µg/mL for DM-6; 15 µg/mL, 29 µg/mL, 44 µg/mL for 1520) were 

used. The cells were exposed to the described groups over 72 hrs. After 72 hours of incubation, 

the cell death was analyzed using MTS assays.  

2.8. Safety of T-MNPs 

2.8.1. Cyto-compatibility study 

Cyto-compatibility study was performed on human dermal fibroblast cells (HDF). Upon reaching 

80-90% cell confluency, T-MNPs and NNPs were re-suspended in media, added to cells at various 

concentrations (50, 100, 250, 500, and 1000 µg/mL) and incubated for 24 hours at 37°C. At the 

end of the incubation time, the nanoparticle suspensions were removed, and the cells were washed 

twice with 1X PBS. Cell viability was evaluated using MTS assays. Cells not exposed to any 

nanoparticles and the cells treated with 1% Triton® X-100 served as control samples, positive and 

negative, respectively.  

2.8.2. Hemolysis and blood clotting studies 

Blood clotting and hemolysis T-MNPs were evaluated using fresh human blood. Briefly, for 

hemolysis, 200 µL of blood was added into either 10 mL of 0.9% saline as a positive control or 10 
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ml of DI water as a negative control. Stock suspensions of T-MNPs were prepared in 0.9% saline 

at varying concentrations (50 µg/mL, 100 µg/mL, 250 µg/mL, 500 µg/mL, and 1000 µg/mL). The 

T-MNPs suspension (10 µL) was added into 1.5 mL centrifuge tubes. Then, 200 µL of saline 

diluted blood was placed into T-MNPs, saline and water samples. The tubes were incubated at 

37˚C for 2 hours under gentle agitation and then were centrifuged at 1000 g for 10 minute. The 

absorbance of sample supernatants was monitored at 545 nm using a UV-vis Spectrophotometer.  

For the blood clotting assay, T-MNP stock suspensions were prepared in 0.9% saline at different 

concentrations (50 µg/mL, 100 µg/mL, 250 µg/mL, 500 µg/mL, and 1000 µg/mL). T-MNPs at 

each concentration (10 µL) was added into 1.5 mL centrifuge tubes. Similarly, 0.9% saline and 

water samples were prepared as control groups. 0.85 mL of CaCI2 (0.1M) was added into 8.5 mL 

of ACD blood to activate the blood clotting. Immediately after activating the blood, 50 µL of the 

blood was added to all samples. At a pre-determined time-points (10, 20, 30, and 60 min), 1.5 mL 

of DI water was added to all samples to inactivate blood clotting, and the samples were incubated 

for 5 minutes at room temperature. Supernatants were collected and monitored at 540 nm using a 

UV-vis Spectrophotometer. 

 

2.9. Statistical analysis 

All results were expressed as mean ± SD performed with n=3. Results obtained were analyzed 

using one way ANOVA with p < 0.05 and the student’s t-test was used to identify differences 

between groups. P < 0.05 was considered to be statistically significant. 
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CHAPTER-3 

RESULTS AND DISCUSSION 

3.1. Results 

 
3.1.1. Particle size, zeta potential, and morphology 

The size of 1:2 NP to membrane ratio of T-MNPs was found to be 193±56 nm with the 

polydispersity of 0.265 nm size of naked NPs (NNPs) was 171.7±76 nm with polydispersity of 

0.109. The size of membrane alone was 590.4±29 nm. The particles size was confirmed with 

Transmission Electron Microscopy (Figure 7A). Furthermore, TEM images of T-MNPs displayed 

a layer-by-layer structure for T-MNPs.  

 

3.1.2. Identification of TCR in T-MNPs 

First the presence of TCR	 β	 chain was evaluated (Figure 8A). TCR β chain stain showed a 

significant shift in mean fluorescent intensity 88.9 of T-MNPs when compared to that of the 

isotype and unstained controls (25; 27, respectively). Such result confirmed the presence of the 

TCR β chain component in the T-MNP formulation. The presence of a specific, anti-gp100 TCR 

receptor was also evaluated. The 1:2 NP weight to membrane protein weight T-MNPs were stained 

with APC- gp100/HLA-A2 complex (described in 2.1. section). T-MNPs showed a significant 

shift in fluorescence (Mean fluorescence intensity 4268 OD) when compared to the unstained 

control (mean fluorescence intensity 283 OD), confirming the presence a specific anti-gp100 TCR 

in T-MNPs (Figure 8B).  
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Figure 7:  Characterization of T-MNPs. A) TEM images of T-MNPs at 1:2 NP to membrane 

protein weight ratio. B) Size, polydispersity and zeta potential of PLGA NPs and T-MNPs analyzed 

using Dynamic Light Scattering (DLS). C) Stability of T-MNPs in 0.9% saline (at varying NP to 

membrane protein weight ratios: 1:0.5, 1:1, 1:2, and 1:3) evaluated by change in NPs size over a 2-

day period using DLS. D) Cumulative % drug release from T-MNPs (varying NP to membrane 

protein ratios of 1:0.5, 1:1, 1:2 versus PLGA NPs) performed in phosphate buffered saline over 28 

days. Samples were analyzed using UV-vis spectrophotometer (n=3).   
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3.1.3. Binding kinetics of MNPs 

As shown in Figure 9, T-MNPs bound onto gp100 as dose-dependent manner with higher binding 

strength observed in samples with higher concentration and higher ratio. In addition, T-MNPs at 

concentrations 500 µg/mL and 250 µg/mL were significantly higher when compared to the binding 

kinetics of 1:2 D-MNPs at 1000 µg/mL concentration.  

 

Figure 8: Validation of TCR on T-MNPs: A) Histogram curves demonstrated that T-MNPs expressed 

the TCR β chain (stained, unstained, isotype groups are represented as red, blue, orange curves, 

respectively). B) T-MNPs also consisted of APC-gp100/HLA-A2 complex (stained and unstained groups 

are represented as red and blue curves, respectively).  
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3.1.4. Stability studies of T-MNPs 

The size of particles was monitored at predetermined time-points throughout the 48 hrs. 

Statistically, all the ratios examined (1:0.5, 1:1, 1:2 and 1:3) showed similar stability characteristics 

over the incubation period. The particles did not display a significant increase in size and, 

therefore, there was no sign of significant aggregation (Figure 7C).  

 

3.1.5. Drug loading and drug release kinetics of T-MNPs 

Drug loading efficiency of Trametinib from PLGA NPs was calculated by using the equation in 

section “Drug loading and drug release kinetics of T-MNPs”. Loading efficiency was found to be 

61%. To analyze how different membrane coating ratios would affect Trametinib release from T-

MNPs, the drug release kinetics of T-MNPs with different NP: membrane weight ratios (1:0.5, 1:1 

Figure 9: Binding kinetics of MNPs:  Binding kinetics of D-MNPs (negative control), T-

MNPs (positive control) and NNPs (negative control) at varying concentrations and NP to 

membrane protein (w/w) ratios; Kinetics were measured in terms of resonance shift over a 

period of time using ResoSens label-free optical detection. (n=3)   
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and 1:2) and naked NPs were evaluated over 21 days. Trametinib release rate was significantly 

slower for all ratios of T-MNPs when compared to MNPs, with lowest rate of release for 1:2 T-

MNPs (Figure 7D).  

 

3.1.6. Western blot and real time PCR 

To verify gp100 expression profiles in DM-6, 1520, and A549 cell lines, western blot and RT-

PCR experiments were performed. Both techniques used β-actin as a control (42 kDa, 157 bp). In 

Western blotting, 2 concentrations of protein lysates were tested for each cell lines: 6 ug and 12 

ug (right to left, Figure 10) DM-6 and 1520 cell lines showed a significant composition of the 

gp100 protein (70 kDa). The relative quantity of protein in the DM-6 cell line was found to be 

approximately 2-fold higher than that expressed in the 1520 cell line. While, A549 showed no 

apparent gp100 protein composition. RT-PCR identified gp100 gene expression (751 bp) in all 3 

cell lines. However, A549 expression of the gene was very low (approximately 4-fold lower) 

compared to those of DM-6 and 1520 cell lines. (Figure 10).  

 

Figure 1: gp100 expression: A) Western blot B) RT-PCR 

 

Figure 10: gp100 expression: A) Western blot for assessing of gp100 protein content in 3 cancer 

cell lines: DM-6, 1520 and A549. β-actin was served as a control (42 kDa). Proteins are 

represented at two concentrations: 6 (right) and 12 µg (left) for each cell line. B) RT-PCR: gp100 

(751 bp) expression presented in 1520, DM-6 and A549 cell lines, β-actin served as a control 

(157 bp). 
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3.1.7. Cellular uptake of T-MNPs 

The cellular uptake of nanoparticle was evaluated on DM-6 (gp100-containing melanoma), 1520 

(gp100-containing melanoma), A549 (lung cancer, no gp100 antigen) cell lines. For uptake 

studies, fluorescent dye (Coumarin 6) loaded NPs were used.  PLGA-Coumarin-6 NPs were 

prepared using a standard single emulsion (O/W) technique and were further used to prepare 

MNPs. To analyze how different NP to membrane weight ratio would affect uptake of MNPs with 

1:0.5, 1:1, and 1:2 ratios were utilized. Such ratios were prepared for D-MNPs and T-MNPs. The 

results demonstrated that T-MNPs displayed significantly higher uptake compared to the negative 

control, D-MNPs (Figure 11) in gp100-presenting melanoma cell lines. Moreover, D-MNPs and 

T-MNPs showed no difference in uptake by lung cancer cell line A549 (no gp100 antigen). 

 

 

 

 

 

 

Figure 11: Cellular uptake: Uptake of D-MNPs, T-MNPs and PLGA NPs (PLGA-C6) are presented 

at varying NP to membrane protein weight ratios. MNPs were loaded with a fluorescent dye, 

Coumarin 6. DM-6, 1520 and A549 cell lines were treated with MNPs for 2 hours. Cell lysates were 

analyzed for MNP content using a UV-vis Spectrophotometer and cellular uptake was normalized 

with total cellular protein. Uptake by: A) DM-6 B) 1520 C) A549 cell lines (n=3).      
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3.1.8. Therapeutic and pharmacokinetics study 

The IC50 values of Trametinib were calculated to be approximately 29.3 µg/mL and 1.66 µg/mL 

for 1520 and DM-6 cell lines, respectively (Figure 12). The therapeutic potential of the Trametinib-

loaded T-MNPs was evaluated on both 1520 and DM-6 cell lines. It was shown that T-MNPs had 

a significantly higher therapeutic efficiency on both melanoma cell lines when compared to the 

negative controls, specifically at IC50 and IC75 drug concentrations (Figure 13). 

 

 

 

 

 

 

Figure 12: Pharmacokinetic of trametinib: % Viability of DM-6 and 1520 cell lines 

after 72-hour exposure to free trametinib at ranging concentrations: 1.2 µg/mL -100 

µg/mL. Cell viability was measured using MTS assays (n=3).  
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3.1.9. Cyto-compatibility study 

The viability of HDF cells was evaluated after interaction with the T-MNPs and PLGA NPs (naked 

NPs, NNPs) at various concentrations for 24 hours. Since PLGA is FDA approved and 

biocompatible polymer, T-MNPs were compared to NNPs. The result illustrated that T-MNPs 

maintained cyto-compatibility up to 1000 µg/mL, similarly to PLGA NPs (NNPs) (Figure 14).  

 

Figure 13:  Therapeutic efficiency: Therapeutic capabilities of T-MNPs, D-MNPs, A-MNPs, 

NNPs and free Trametinib on A) 1520 and B) DM-6 melanoma cell lines. Cell were exposed to 

these nanoparticle suspensions for 72 hours, and cell viability was evaluated using MTS assays 

(n=3). 
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Figure 2: Cyto-compatibility of T-MNPs 

 

 

3.1.10. Hemolysis and blood clotting studies 

 Blood clotting assay was performed to elucidate potential blood clotting interferences by 

19LF6 T-MNPs. The coagulation time of blood in presence of 19LF6 T-MNPs was examined at 

different time-points: 10, 20, 30 and 60 min. Blood coagulation initiates by activation of a cascade 

of coagulation factors and surface mediated reactions (36).  At all the tested time-points 19LF6 T-

MNPs did not display a significantly different blood clotting pattern when compared to that of the 

saline control (Figure 15.A).  

Hemolysis study was also performed to test 19LF6 T-MNPs against potential negative effects on 

red-blood cells. According to the criterion in the ASTM E2524-08 standard, the test material will 

cause damage to the red blood cells when the hemolysis is more than 5% percentage. 19LF6 T-

Figure 14: Cyto-compatibility of T-MNPs: Cyto-compatibility of T-MNPs was analyzed on 

human dermal fibroblast (HDF) at varying NPs concentrations (50 µg/mL -1000 µg/mL) for 24 

hours and quantified using MTS assays (n=3).   
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MNPs showed hemolysis properties lower than 5% up to 1000 µg/mL concentration (Figure 15.B). 

Thus, T-MNPs were considered as hemo-compatible.   

 

 

3.2. Discussion 

Characterization of the T-MNPs. The zeta potential of the T-MNPs was approximately -36 mV. 

The size of the T-MNP particles was monitored using DLS and was found to be 193 ± 56 nm 

(Figure 7B), with approximately a 20-nm increase compared to the NNPs (172±76 nm). Moreover, 

transmission electron microscope images of T-MNPs revealed a clear core-shell appearance of the 

nanostructures (Figure 7A). The stability of the T-MNPs in 0.90% saline solution was found to be 

Figure 15: Hemo-compatibility: A) T-MNP influence on blood clotting kinetics; Clotting efficiency 

was measured in absorbance units (OD) of the supernatants collected from T-MNP-  blood samples 

at pre-determined time-points: 10, 20, 30 and 60 min. The absorbances were quantified using a UV-

vis Spectrophotometer. B) Hemolysis of blood cells by T-MNP particles was quantified often by 

measuring sample absorbance at 540 nm. T-MNP nanoparticles were incubated with blood samples 

for 2 hrs. at 37 C. (n=3)  
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similar across different NP weight to membrane protein weight (w/w) ratios up to two days (Figure 

7C). Ronnie et al. (28) reported a similar observation. In this study, B16-F10 cancer-coated PLGA 

nanoparticles were formulated and used for homotypic targeting of breast cancer cells and antigen 

presentation to immune cells simultaneously. These cancer cell membrane-coated PLGA 

nanoparticles were found to be approximately 110 nm in size when compared to 80-90 nm naked 

PLGA NPs. Similar to results of our stability study, they found the stability of the cancer cell 

membrane coated particles remained constant up to 15 days across a wide range of NP to 

membrane protein weight ratios: from 1:0.5 to 1:4.  

T-MNPs were predicted to retain cell membrane antigens and receptors extracted from 19LF6 cell 

line. Zhong et al. (35) previously defined the 19LF6 cell line to contain a metastatic melanoma 

antigen, gp100 (209-217)- specific T-cell receptor. Compared to the unstained and isotype 

controls, stained T-MNP samples with anti-TCR β chain antibody showed a significant, 3-fold 

higher mean fluorescence intensity (Figure 8A). Such result confirmed the presence of TCR β 

chain in the T-MNP formulation. To identify the specific anti-gp100 TCR receptor in the T-MNPs 

formulations, the particles were stained with a custom-made APC-gp100/HLA-A2 

complex/refold. Compared to the unstained control, stained T-MNP samples displayed a 

significant, 15-fold higher mean fluorescence intensity (Figure 8B). These results not only 

confirmed the presence of the specific TCR, but also its ability to bind to its specific target, 

previously described by Zhong et al (35).  

Following the identification of anti-gp100 TCR receptor presence on T-MNPs, its binding kinetics 

with gp100 were also observed. Zhong et al. (35), similarly described the kinetics of these TCR-

receptors and defined their affinity constant (KD= 1.4 µM) against a gp100/HLA-A2 tetramer 
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complex. Using ResoSens label-free optical system, the particles were tested on two different 

complexes: specific gp100/HLA-A2 and non-specific bGIGL/ HLA-A2 complexes. D-MNPs (1:2 

NP to membrane protein ratio weight), was used as a negative control.  The binding kinetics were 

evaluated at 1 min, 30 min and post-wash. Post-wash was performed by washing out the MNP 

samples and observing the kinetics of bound-only nanoparticles. At post-wash, 250 µg/mL and 

500 µg/mL T-MNPs (at 1:2 ratio of NP to membrane protein weight) displayed a statistically 

significant resonance shift compared to the negative control. Moreover, none of the groups showed 

significantly different binding characteristics with the bGIGL/ HLA-A2 complex.  

The loading efficiency of the T-MNPs was observed to be approximately 61%, and the drug release 

kinetics displayed an initial burst release followed by a sustained release up to 28 days. The rate 

of release kinetics differed across the three ratios of NP to membrane protein (w/w) T-MNPs. 

When comparing T-MNPs and NNPs, it can be clearly seen that cloaking of drug loaded PLGA 

nanoparticles with T-cell membrane reduced the drug release rates, especially those coated with 

higher amounts of the cell membrane. This reduction has also been observed in nanoparticles 

cloaked with membranes from erythrocytes (39). In this study, erythrocyte membrane-coated 

nanoparticles showed slow release compared to bare nanoparticles. Aryal et al. (39) attributed this 

effect to the membrane’s ability to act as a diffusion barrier to provide better sustained drug release, 

as compared with PEG-based nanoparticles, thereby enhancing the therapeutic efficacy of the drug 

in acute myeloid leukemia cells. 

In vitro properties of T-MNPs. To verify and quantify the presence of gp100 antigen on the DM-

6 and 1520 melanoma cell lines, as well as A549, western blotting and RT-PCR studies were 

carried out. For DM-6 cell line, % relative quantity of the gp100 antigen was found to be almost 
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2-fold more than the 1520 cell line (Figure 10A). The difference in expression level of the gp100 

gene between the two cell lines was not found to be significant (Figure 10B). A549, portrayed a 

low gp100 expression, approximately 4-fold lower than that of DM-6 and 1520, and no apparent 

protein presence. However, as it was previously described by Weidanz et al. (40), the antigen 

expression and presentation/lifetime are not always directly related. 

Anti-gp100 TCR influence on T-MNP cellular uptake was observed in DM-6 and 1520 melanoma 

cell lines. Since A549 lung cell lines did not show any apparent gp100 presentation, A549 was 

used as a negative control cell line. The uptake of T-MNPs at all ratios was significantly higher 

than that of D-MNPs, the negative control nanoparticles (Figure 11). The uptake of the T-MNPs 

increased with increasing concentration and was enhanced in the 1520 cell line when compared to 

that of DM-6 cell line. On the other hand, A549 did not show any selectivity toward T-MNPs or 

D-MNPs when compared to that of PLGA NPs (NNP) control. Such result was expected due to 

the absence of the gp100 antigen on A549 cells. The enhanced 1520 uptake of the T-MNPs might 

have been due to its ability to a better present gp100/ HLA-A2 complex protein compared to that 

of the DM-6 cell line (40).   

Therapeutic efficiency of T-MNPs was then evaluated. Roller et al. (16) previously defined the 

IC50, or the inhibitor concentration at 50% cell viability, for trametinib in the DM-6 cell line. Our 

result for IC50 values of trametinib for DM-6 and 1520 were found to be approximately 29 µg/mL 

and 1.6µg/mL, respectively. These values were similar to the previous study from Roller et al. 

(16); however, the IC values often depend on numerous human and in-house factors, therefore, 

they must be performed for each study. To test the therapeutic efficiency of T-MNPs, DM-6 and 

1520 melanoma cancer cells were used. T-MNPs were found to be significantly more efficient 
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than any of other groups; D-MNPs, A-MNPs, NNPs and free trametinib at the same concentration. 

Recent studies showed that bare PLGA NPs have limitations owing to nonspecific targeting, and 

result in uncontrolled tissue distribution of the drug (27). Cell membrane derived ghosts can be 

used to improve immune evasion, target specificity and drug efficacy (39). Fang et al., surface 

engineered PLGA NPs with platelet-membrane-derived vesicles since platelet cells have a natural 

ability to adhere to injured blood vessels as well as circulating pathogens. Such membrane coating 

provided the particles with a natural platelet-like targeting functions (31). In another study, 

Krishnamurthy et al.  showed that the monocyte-membrane vesicle surface engineering of DOX-

loaded PLGA NPs resulted in higher cytotoxicity in MCF-7 breast cancer cells compared to that 

of bare NPs. 

Safety of T-MNPs. The T-MNPs were cyto-compatible up 1000 µg/mL concentration. T-MNP 

cyto-compatibility was compared the cyto-compatibility of NNPs.  Overall, T-MNPs were shown 

to be at least as cyto-compatible as NNPs, or bare PLGA NPs. Similar to our studies, Guo et al. 

(42), likewise, demonstrated that erythrocyte-membrane coated PLGA nanoparticles possessed a 

similar cyto-compatibility compared to bare PLGA nanoparticles.  

T-MNPs were also tested for blood clotting and hemolytic properties. T-MNPs blood clotting 

characteristics were compared to the saline control and found to have no significant effect on the 

blood clotting cascade up to 1000 µg/mL. According to the criterion in the ASTM E2524-08 

standard, percent hemolysis > 5% is considered toxic to red blood cells (43). T-MNPs-induced 

blood hemolysis was observed to be < 5% up to 500 µg/mL.  Although T-MNPs were found to be 

toxic to red blood cells at a concentration of 1000µg/mL, such high concentrations of the particles 

were not used for these studies. 
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CHAPTER 4 

 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

In brief, Trametinib loaded PLGA nanoparticles coated with T cell membrane were successfully 

synthesized. These membranes coated NPs displayed a high drug encapsulation efficiency of 61% 

and could release the drug in a sustained fashion over a period of 28 days. The drug release kinetics 

were found to be dependent on the NP to membrane ratio with the highest membrane content 

providing the slowest release. It was proposed that the membrane acted as a diffusion barrier. 

These T-MNPs were promising in terms of optimal size (< 200 nm), stability at physiological 

conditions, cyto-compatibility (up to 1000 µg/mL) and hemo-compatibility (up to 500µg/mL).  

Moreover, the data collected from binding and cellular uptake studies showed that T-MNPs 

illustrated superior binding and uptake kinetics attributed to their anti-gp100 TCR. These particles 

showed selective and effective binding to gp100 carrying melanoma cells when compared to that 

of D-MNPs made from negative T-cell control. Such findings also correlated with enhanced 

therapeutic efficiencies of T-MNPs. Their cancer killing efficiencies were alignment with binding 

and uptake characteristics. Particles with the higher membrane content (greater anti-gp100 TCR 

content) showed to be more effective when compared to that of the lower NP to membrane ratio. 

Therefore, membrane coated NP system could be a promising carrier that may improve the 

therapeutic outcomes of melanoma cancer treatments.  

In conclusion, the successfully formulated, trametinib-loaded T-MNPs showed superior targeting 

capabilities towards skin cancer cells and increased the therapeutic efficiency. Based on in vitro 

studies, they could potentially be used to improve chemotherapeutic treatment of melanoma.  

Even though the characterization and in vitro studies displayed positive results, we do recognize 
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certain limitations.  

v In preparation of these particles, large amount of cells were necessary to provide enough 

membrane protein for each type of NPs.  

v Due to multiple washes of the cell extracts, much of the target proteins could have been 

lost in the process. Future studies will involve with the optimization of cell extraction 

protocols.   

Future work for this project will include the following studies   

v The therapeutic potential of T-MNPs in in vivo will be evaluated using animal models 

(mice).  

v T-MNPs will be formulated using T-cells isolated from melanoma patients.   
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