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Abstract 

 

INVESTIGATION OF FUNCTIONAL CONNECTIVITY AND NEUROVASCULAR COUPLING IN 

DIFFERENT VIGILANCE/BREATH-HOLD STATES OF THE BRAIN USING SIMULTANEOUS EEG-

fNIRS MEASUREMENTS 

 

Olajide Babawale, PhD 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Hanli Liu  

Functional connectivity and neurovascular coupling have been studied extensively in the 

neuroimaging literature. Insights gained from the knowledge of brain connectivity have provided 

a better understanding of how the brain organizes its subsystems in controlling different 

cognitive processes. In addition, knowledge gained from neurovascular coupling has been useful 

in understanding the relationship between cerebral blood flow and brain health. Further insights 

into brain connectivity and neurovascular coupling in different vigilance/breath-hold states are 

required to understand better on how the brain functions in these different states. Thus, my PhD 

research work attempted to understand the working of the brain in different vigilance 

states/breath-hold by analyzing both functional connectivity and neurovascular coupling. This 
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research work was subdivided into 3 specific aims. Aim 1 was to investigate functional 

connectivity of EEG in both resting-state and four different vigilance states from wakefulness to 

sleep. Graph theory analysis was used to quantify brain network characteristics in different 

vigilance states from wakefulness to sleep, while EEG source reconstruction coupled with 

machine learning algorithm was used to identify brain networks in resting-state.  4 brain 

networks (namely visual, sensorimotor, vision, and self-referential) were identified from EEG 

resting-state data, along with their oscillatory characteristics. Also, the functional characteristics 

of the default-mode network was found to be significantly altered across vigilance states from 

wakefulness to sleep. Aim 2 was to study neurovascular coupling in three different vigilance 

states from wakefulness to sleep. A recently developed method known as wavelet coherence was 

used to quantify neurovascular coupling in each of the vigilance states for different EEG 

frequency bands. Neurovascular coupling was analyzed in 3 separate frequency components 

which were endogenic component (0.01 – 0.02 Hz), neurogenic component (0.02 – 0.04 Hz), and 

myogenic component (0.04 – 0.15 Hz). Also, the analysis of neurovascular coupling was 

performed for four separate brain sites. The endogenic and myogenic component in coupling was 

shown to be significantly altered across vigilance states, with increased coupling reported in 

eyes-closed vigilance state (for 2 brain sites) and sleep state (one brain site). Aim 3 was to 

investigate neurovascular coupling in three different states of breath-hold namely normal 

breathing, short breath-holds, and long breath-holds. Wavelet coherence analysis was also 

applied here to quantify neurovascular coupling as in Aim 2. In addition, the three frequency 

components in neurovascular coupling (endogenic, neurogenic, and myogenic) were also studied 

in each of these separate states. Also, the same four brain sites used in Aim 2 were also used in 

Aim 3 for neurovascular coupling analysis. A significant increase in endogenic and neurogenic 
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components was reported for long breath-holds compared to normal breathing and short breath-

holds at 3 of the brain sites. In conclusion, both functional connectivity and neurovascular 

coupling were significantly altered across different vigilance states/breath-hold. 
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CHAPTER 1  

1. INTRODUCTION 

1.1 Functional connectivity 

            The brain is organized as a set of different networks, which include the default-mode 

network, sensorimotor network, salience network [1]. Each network is made up of specific brain 

regions which interact together at both the structural and functional level. The interaction of 

different brain regions/network elements at the functional level is known as functional 

connectivity. The aim of functional connectivity study is to identify functional brain networks 

from brain imaging recordings obtained from functional magnetic resonance imaging or FMRI, 

positron emission tomography or PET, and functional near infrared spectroscopy or FNIRS. 

Several brain networks have been identified in the resting-state condition of the brain, when no 

tasks are performed by the subject. These networks are commonly referred to as resting-state 

networks [1]. The study of resting-state networks of the brain has helped in the quicker diagnosis 

of different brain dementia such as Alzheimer’s disease[2] and schizophrenia[3]. In addition, 

with functional connectivity studies, researchers can investigate the working of the whole brain 

at once[4]. This way, multiple brain networks are viewed simultaneously, so that the functional 

architecture of the brain can be readily explored and analyzed [4] 

As the resting-state brain transitions from an awake restful state to a sleep state, the functional 

connectivity of different brain networks is altered, as shown in previous studies[5, 6]. In the 

neuroimaging literature, the changes in functional connectivity of brain networks during the 

transition from an awake, restful state to sleep state have not been studied using EEG imaging 

modality. EEG, or electroencephalography, is an imaging modality which records the electrical 

activity of neurons in the brain. Data obtained using EEG modality have a very high temporal 
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resolution compared to other imaging modalities such as functional magnetic resonance imaging 

(fMRI) and functional near infrared spectroscopy[7]. Also, EEG data contain frequencies 

between 2 – 60 Hz[8]. Thus, the relationship between functional architecture and different 

frequency bands of the brain can be readily studied using EEG modality. In addition, functional 

connectivity analyses of EEG data can be performed as either sensor-level analysis or source-

level analysis. At the sensor-level, brain networks are identified from time series recordings of 

EEG electrodes. At the source level, the electrode time series recordings are first inputted into a 

reconstruction algorithm to convert them to EEG source images. This method improves the poor 

spatial resolution of EEG time series data. Then, functional connectivity analysis is performed on 

these source images to identify brain networks.  Two common methods used in the literature for 

functional connectivity analysis are Independent Component Analysis, or ICA, and graph theory 

analysis, or GTA [9]. In addition, ELORETA is a well-developed algorithm used for EEG 

reconstruction analysis[10]. 

In Aim 1 of my doctoral dissertation, EEG modality was utilized to investigate functional 

connectivity of the brain using both EEG source-level and EEG sensor-level analysis. 

Specifically, in Chapter 2, I used ELORETA combined with ICA algorithm to investigate 

resting-state EEG functional connectivity in a source-level analysis across 15 healthy subjects. In 

addition, the functional connectivity at source-level was examined across five EEG frequency 

bands namely delta (1-4 Hz), theta (4 -8 Hz), alpha (8 – 12 Hz), beta (12 -30 Hz), and gamma 

(30 – 60 Hz). My work in Chapter 2 was a replication study of Aoki et al’s work [22] to establish 

the validity of ELORETA-ICA method as a tool for functional connectivity analysis of EEG data 

at the source level.  Also, in Chapter 3, I used graph theory analysis (GTA) to study EEG 

functional connectivity at the sensor-level in four different vigilance states which were, eyes-
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open (EO), eyes-closed (EC), sleep-stage 1 (SS1), and sleep-stage 2 (SS2). This analysis was 

performed for 18 healthy subjects for four EEG frequency bands which were delta, theta, alpha, 

and beta bands.   

1.2 Neurovascular coupling in different vigilance states 

In the brain, neurons transmit information through electrical oscillations. Also, it is well known 

that these electrical oscillations produced by neurons have some form of link with cerebral 

hemodynamic processes. This link is referred to as neurovascular coupling in the neuroimaging 

literature[11]. Put more succinctly, neurovascular coupling refers to the relationship between 

neural electrical activity and the corresponding changes in cerebral blood flow in the brain[12]. 

Neurovascular coupling is a phenomenon that underlies critical processes of the brain such as 

cerebral autoregulation[13]. The study of neurovascular coupling is very important for the 

understanding and determination of brain health. In addition, the study of neurovascular coupling 

of the brain sheds greater light on the pathology of certain brain-related cardiovascular diseases 

such as ischemic stroke, small vessel disease, and heart disease [11, 12] 

In the neuroimaging literature, the neurovascular coupling in the brain during the transition from 

awake, restful state to sleep state has not been well studied. Also, from previous studies, 

neurovascular coupling studies have been performed mainly using simultaneous EEG-fMRI 

instrumentation [14, 15]. However, EEG-fMRI is very expensive. Also, it lacks portability and 

ease of use. Simultaneous EEG-fNIRS is a less expensive set up for neurovascular coupling 

studies. EEG-fNIRS instrumentation can easily be used in a non-laboratory setting. Also, EEG-

fNIRS combines the high temporal resolution of EEG with the better spatial resolution of fNIRS 

to investigate brain dynamics[16]. In Aim 2 of my doctoral research, a simultaneous EEG-fNIRS 

instrumentation set up was used to investigate neurovascular coupling in the brain during the 
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transition from awake, restful state to sleep state. Specifically, in Chapter 4, a method known as 

wavelet coherence analysis was used to quantify neurovascular coupling in three different 

vigilance states which were eyes-open (EO), eyes-closed (EC), and sleep-stage 1 (SS1). In 

addition, 3 frequency components of neurovascular coupling were quantified for each vigilance 

state, which are the endogenic component (in a fNIRS frequency range of 0.01 – 0.02 Hz), the 

neurogenic component (in a fNIRS frequency range of 0.02 – 0.04 Hz), and the myogenic 

component (in a fNIRS frequency range of 0.04 – 0.15 Hz). These components were examined 

separately for three frequency bands of EEG which were theta (4-8 Hz), alpha (8 – 12 Hz), and 

beta (12 – 30 Hz). Also, the neurovascular coupling analysis across vigilance states was 

performed in four different sites located on the head, which were the left, right frontal, left 

occipital, and right occipital brain sites.  

1.3 Neurovascular coupling during voluntary breath-holding 

Neurovascular coupling is significantly altered in the brain for respiratory disease of hypoxia, 

like stroke[11]. An understanding of the neurovascular coupling in normal respiratory function 

can provide some insight into the link between respiratory pathologies and brain function. The 

neurovascular coupling in different states of voluntary apnea has not been studied using 

simultaneous EEG-fNIRS measurements. In Aim 3 of my doctoral research, the neurovascular 

coupling in different periods of voluntary breath-holding was investigated using EEG-fNIRS. 

Specifically, in Chapter 5, wavelet coherence method was used to quantify neurovascular 

coupling in three different states of voluntary breath-hold which were rest/normal breathing of 5 

minutes; 5 short breath-hold periods of 10 seconds each; and 5 long breath-hold periods of 20 

seconds each. Also, the endogenic, neurogenic, and myogenic frequency components of 
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neurovascular coupling were quantified in each breath-hold state for three different frequency 

bands of theta, alpha, and beta, in each of four different brain locations mentioned above.  

An outline of the research aims of my doctoral work is provided below in Section 1.3. 

1.4 Research aims 

Aim 1a:  To investigate functional connectivity of the brain at EEG source level in resting state 

using ELORETA-ICA method; 

Aim 1b: To investigate functional connectivity of the brain at EEG sensor-level in four different 

vigilance states (eyes-open, eyes-closed, sleep-stage 1, and sleep-stage 2) using graph theory 

analysis and EEG; 

Aim 2: To investigate neurovascular coupling of the brain in three different vigilance states 

(eyes-open, eyes-closed, and sleep-stage 1) using wavelet coherence analysis and simultaneous 

EEG-FNIRS; 

Aim 3: Investigating neurovascular coupling of the brain in two different breath-holding states 

(shorter breath-holding, and longer breath-holding) using wavelet coherence analysis and 

simultaneous EEG-FNIRS. 
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CHAPTER 2  

2 Resting state independent networks identified by EEG 

measurements and analyses using ELORETA-ICA: A replication 

study 

2.1 Background 

         Functional brain networks are defined as “sets of distant cerebral areas that are linked 

anatomically through white matter tracts, and functionally, through dynamics of coupled 

activities[17]”  Resting state functional connectivity (RS-FC) implies functional brain networks 

that are active when the brain is in a ‘no-task’ or resting state. Accurate identification of RS-FC 

enables neuroscientists to observe multiple cortical networks at the same time, thereby providing 

information about the functional organization of the brain[4]. High-quality quantification and 

good understanding of RS-FC are also helpful for studying the brain activity in patients who may 

not be able to perform certain task-related activities, for example, patients in vegetative or 

minimally conscious states and young children [4]. The disruption of RS-FC is implicated in 

cognitive disorders such as Alzheimer’s[2], schizophrenia[18], and dementia[19]. Thus, 

understanding and quantification of RS-FC can possibly be beneficial for early diagnosis of 

neurological disorders. 

To better understand functional brain networks, their oscillatory characteristics need to be 

considered. Most of RS-FC studies undertaken in the literature have been performed using 

functional magnetic resonance imaging (fMRI), which measures hemodynamic responses to 

neuronal activities. While fMRI has a high spatial resolution, it suffers from a low temporal 

resolution (1-2s); thus, the frequencies associated with cognitive processes at frequencies higher 

than 1 Hz cannot be detected in fMRI-derived functional networks. Furthermore, fMRI is an 
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indirect method of observing resting state neuronal networks in the brain since it measures only 

hemodynamic activities. Electroencephalography (EEG), on the other hand, is an inexpensive, 

portable, and non-invasive brain imaging modality, which directly records neural activities at a 

high temporal resolution.  It is well known that EEG signals are highly oscillatory in nature and 

comprise abundant information with multiple frequency bands (2-60Hz) that result directly from 

cognitive processes[8]. Understanding these frequency-dependent electrophysiological signals 

may shed light on important mechanisms of brain functions and operations.  

There are three popular methods used in functional connectivity analyses: seeding, graph 

connectivity analyses, and independent component analysis (ICA) [9]. Of the three methods, 

ICA is the most appropriate for the exploratory analysis of multiple brain networks [9]. ICA is a 

data-driven technique which decomposes multichannel brain activity into independent 

components (ICs) or networks. ICA can separate physiological components from artefactual 

ones[20]. Moreover, a method called functional ICA has been recently developed for EEG 

functional connectivity analyses[21], with which an EEG resting state network can be 

represented in a dimension of space-frequency. In other words, using functional ICA, an EEG 

resting state network is represented as an image of brain regions at specific EEG frequencies that 

function together across a group of subjects[22]. Therefore, functional ICA helps identify not 

only networks that are active in resting state but also the electrophysiological oscillatory 

frequencies within these networks. Furthermore, cross coupling of different EEG frequencies can 

be readily observed using functional ICA.  

In a recent study, an EEG source localization approach called exact low resolution 

electromagnetic tomography (eLORETA) has been combined with functional ICA to identify 

resting state networks and their interactions in five frequency bands (delta, theta, alpha, beta, and 



28 

gamma band) from EEG data obtained from 80 subjects [22]. They identified amongst others the 

“visual” network in alpha frequency band, “sensorimotor” network in beta and gamma bands, 

and “self-referential” network in alpha and beta bands [22].  There are several advantages of 

eLORETA-ICA over other network visualization methods, which are (i) to allow for 

decomposition of cortical electrical activity into independent components (ICs) in different 

frequency bands, (ii) to use all frequency information of EEG data in analysis, (iii) to obtain a 

complete set of EEG-based resting state independent networks across several frequency bands.  

Solid replication of scientific findings is critically important, as emphasized recently in several 

publications [23-25]. Robust replication (1) allows scientists to determine whether a particular 

method or tool is suitable for broad or specific uses; (2) help discover effects, if any, of 

additional variables, different experimental conditions, various types of instruments, or different 

groups of subjects on the method being studied; (3) provide the supporting validity to a 

particular, new, scientific tool under study. A replication study is thus a necessary step for any 

novel development of methodology, protocol, and/or algorithm to ensure its respective 

correctness, reliability, and reproducibility for future uses. 

In this study, a replication of recent work by Aoki et. al in ref. [22] was performed. The 

ELORETA-ICA procedure has been validated by a previous study by Marqui et al [21]. 

Specifically, the eLORETA-ICA method was utilized to identify EEG resting state functional 

networks and their activity in five EEG frequency bands based on 64-channel EEG data obtained 

from 15 healthy young subjects (mean age = 23.5 years; s.d = 2.7).  Note that the EEG 

measurements acquired by Aoki et. al used only 19 electrodes. For more quantitative 

comparison, temporal profiles of the 19 EEG channels, which corresponded to the international 

10-20 system, from the recorded 64-channel EEG data, were selected. Then, ELORETA-ICA 
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was used to identify EEG resting state networks at five specific frequency bands for 19-channel 

EEG. Then, the networks of the 64-channel and 19-channel EEG analyses were compared. Also, 

the networks determined using 19-channel EEG analysis were compared with those reported by 

Aoki et. al. The aims of this study were (1) to investigate the effect of increasing the number of 

EEG electrodes on results of EEG resting state functional networks, and (2) to assess the 

reproducibility of the eLORETA-ICA method as a general tool for EEG independent networks 

analyses. 

2.2 Methods 

       Figure 2.1 shows an overall flow of the study, consisting of four major parts, which will be 

described in several sub-sections below. This analysis flow was followed for both 64-channel 

and 19-channel EEG data processing. The first sections discuss the analysis of the 64-channel 

EEG, while the analysis of the 19-channel EEG is discussed under the section titled “eLORETA-

ICA analysis of data recorded from 10-20 EEG electrodes.” 

 

Figure 2.1: Flowchart of ELORETA-ICA study 
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2.2.1 Subjects  

A total of 15 healthy human participants (13 males, 2 females, mean age = 23.5 years, SD = 2.7 

years) were recruited from the local community of the University of Texas at Arlington. The 

inclusion criteria included: either sex, any ethnic background, and in an age range of 18−35 years 

old. The exclusion criteria included: diagnosed with a psychiatric disorder, history of a 

neurological condition, history of severe brain injury, history of violent behavior, have ever been 

institutionalized/ imprisoned, current intake of any medicine or drug, or currently pregnant. The 

study protocol was approved by the institutional review board (IRB) of the University of Texas 

at Arlington and complied with all applicable federal and NIH guidelines. Informed consent was 

obtained from each participant prior to the experiments. Subjects were instructed to minimize 

body movements during EEG data acquisition. The EEG recordings were monitored by the 

research assistant on duty. Phones, radios or other electromagnetic devices were not allowed in 

the laboratory or on the subject for the duration of the experiment. 

2.2.2 EEG Data Acquisition 

EEG recordings were taken in resting state (awake, eyes-closed, and sitting) for 5 minutes. Brain 

electrical activity was recorded using a 64-electrode EEG device (Biosemi Instruments, 

Netherlands). The electrodes were positioned according to the international 10-10 system 

montage, which requires 64 EEG electrodes. Electrooculogram (EOG) electrodes were placed on 

the outer canthi of both eyes.  Electromyogram (EMG) electrodes were placed on the facial 

muscles and earlobes. The sampling rate was set at 2048 Hz. A Biosemi active electrode system 

uses online referencing through a Common Mode Sense (CMS) electrode.  

2.2.3 EEG Data Preprocessing 

After data acquisition, the 64-channel (Ne=64) EEG temporal profiles were exported to 

EEGLAB toolbox [26] for preprocessing.  First, the data were down sampled to 500 Hz, in line 
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with the previous study by Aoki et al [22].  Second,  a band-pass filter of 0.53 – 120 Hz (with 

windowed sinc high and low pass filters) was applied to the EEG data [27]. Specifically, a 

Blackman window between the high-pass transition band at 0.5 Hz and the low-pass transition 

band at 5 Hz was used for band-pass filtering [27] Channels that were considered noisy had 

extremely large amplitudes, and they were corrected using spherical interpolation. Then , the 

data were subsequently average-referenced, followed by 60-Hz line noise removal using an 

EEGLAB plugin with default values [28]. Next, ICA [20] was applied to each subject’s multi-

channel EEG data to remove artifacts of eye blinks, eye movements and muscle noise. Finally, 

the first set of artifact-free 120-s epochs (sixty 2-secs epochs) were selected for each subject and 

converted to ASCII text files for EEG source localization using eLORETA. Figure 2.2 outlines 

the entire data processing steps/procedures from 64-channel EEG data acquisition to five 

frequency-dependent source localization images. 
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Figure 2.2: Steps of data processing of 64-channel EEG data to form frequency-dependent 

ELORETA images 

 

2.2.4 ELORETA  

ELORETA is publicly available free academic software (http://www.uzh.ch/keyinst/loreta.htm) 

and computes the cortical three-dimensional (3D) distribution of current density based on the 

scalp-recorded electric potential distribution. It offers a weighted minimum inverse solution with 

zero localization error under ideal conditions [10]. ELORETA uses a total of 6239 voxels at 5-

mm spatial resolution to localize electric activity in the cortex. In this study, Eloreta was used to 

calculate 3D cortical current distribution at each of the five frequency bands (i.e., delta, theta, 
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alpha, beta, and gamma band; Nf =5) from subjects’ EEG data. Figure 2.2 provides schematic 

illustration for the entire process. 

   

Specifically, each of 64 EEG curves across 120 secs were decomposed into delta (; 2-4 Hz), 

theta (; 4-8 Hz), alpha (; 8-12 Hz), beta (; 13-30 Hz), and gamma (; 30-60 Hz) bands; their 

respective power spectral densities were calculated for all 64 channels. By then, the processed 

EEG data became a space-frequency domain (i.e., 64 electrode locations with five power spectral 

densities per site). To obtain frequency-dependent 3D cortical current distributions, the data were 

regrouped and formed into five of 64-channel scalp topographic images for respective frequency 

bands. Next, by applying eLORETA to each of the 64-channel scalp topographic power density 

images, 3D cortical EEG sources for each frequency band were reconstructed, as demonstrated 

in Fig. 2.2(d). Each of the EEG cortical images had a total of 6239 cortical gray matter voxels.  

2.2.5 Functional ICA 

The process shown in Fig. 2.2 was performed for each subject; the 5 reconstructed images 

represented current sources active in respective frequency bands. Then, an ICA-based method 

known as functional ICA was used to perform group analysis of each subject’s source image 

solution to identify independent components (i.e., independent networks) and their respective 

EEG frequency bands across all subjects.  The overall principle is shown in Fig. 2.3. 

Specifically, the eLORETA-derived 5-frequency source images from each subject were 

expressed in a matrix format as voxel-by-frequency or NvNf, where Nv= total number of voxels 

given by eLORETA=6239 and Nf = 5. To identify networks across all subjects, each subject’s 

voxel-by-frequency matrix was transformed into a voxel-frequency vector (see the left panel) of 

Fig. 2.3. All subjects’ vectors were then concatenated, and functional ICA was applied to this 
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concatenated matrix to derive K independent components represented in space-frequency, as 

shown by the right panel of Fig. 2.3. In this way, common space-frequency features were 

emphasized and extracted across all (n=15) subjects. 

The number of independent components (K) in this study was estimated using the sphericity test, 

in accordance with the previous study [22]. Also, Non-Gaussianity was used to estimate 

independence between networks, and fourth-order cumulant was used to calculate non-

Gaussianity. For this study, the network maps were color-coded for visual representation using a 

z-score threshold of 2 (which corresponds to a significance level of 0.05). Voxels with positive 

values of cortical current density were coded yellow and those with negative values of cortical 

current density were coded blue. 

Weighted minimum-norm inverse solutions, such as ELORETA, have a regularization parameter 

() that needs to be optimally determined for final and accurate algorithm execution. This 

parameter is important for calculating the eLORETA transformation matrix (T-matrix). It is 

important to choose an optimal value for  to prevent both over-smoothing and spurious 

localization of EEG sources [29]. In this study, source localization was performed using 

eLORETA with four different values of  in decreasing orders of magnitude. These values were 

10000, 100, 1, and 0.01. Then, the respective source images obtained using four different  

values were compared by observing their corresponding source distributions. Based on the 

comparison and observation of the reconstructed images, the most appropriate value was selected 

as the regularization parameter in each respective case in this study. The criteria for selecting this 

value were based on (i) the observed posterior voxel activation of alpha frequency band for all 

subjects except one, which was excluded from further analysis, and (ii) the quality of 

reconstructed source images. ELORETA Images obtained using  = 0.01 had a very sparse 
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cortical current distribution with very few voxel activations. This showed that the value of 0.01 

was too stringent for reconstruction. ELORETA images obtained using  = 100 and  = 10000 

had voxel activations distributed across the brain surface, showing that these values may be too 

relaxed and may produce spurious cortical current source distributions. Because of this, 

ELORETA images obtained using  = 1 was used for functional ICA analysis.  

 

 

Figure 2.3: Functional ICA analysis of frequency-dependent images 

 

2.2.6 ELORETA-ICA Analysis Using 19 electrodes to simulate 10-20 EEG System 

A similar eLORETA-ICA analysis was performed on a subset of the original Biosemi 64-

channel EEG dataset obtained from all subjects. This subset contained the 5-minute recordings of 

19 channels which correspond to the international 10-20 system of EEG electrode placement. 

The processing steps were like the framework described in Sections 2.2.3-2.2.5, and illustrated in 
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Figs. 2.2 and 2.3.  The numbers of channels were different between the two analyses. The 

channels chosen in the19-channel subset were Fp1, F7, F3, T3/T7, C3, P3, T5/P7, O1, Fz, Cz, 

Pz, Fp2, F4, F8, C4, T4/T8, P4, P8/T6, and O2 from the original 64 channels for each subject. 

Also, the regularization value was set to  = 1 for the 19-channel EEG analysis, like in the 64-

channel EEG analysis. Choosing the same regularization value for both analyses helped to 

effectively compare the results obtained in both analyses.  Note that the regularization value is 

very important for reducing the effect of noise on the results of EEG source reconstruction.[29].    

Furthermore, the alpha source localizations in the posterior location were used as a landmark or 

reference to quality-check the reconstructed eLORETA images.  It is well accepted in the 

neuroimaging field that in resting state, alpha sources are in posterior areas of the human brain. If 

the reconstructed subject’s alpha sources were in posterior locations of the brain, functional ICA 

was performed by grouping all confirmed subjects’ images at 5 frequency bands together for a 

simultaneous, subject-based ICA analysis (see Fig. 2.3). Two subjects’ data were excluded from 

further analysis because their alpha sources were not localized in posterior locations, and this 

was probably due to noisy artifacts. Then, functional ICA was performed on the remaining 13 

subjects’ frequency-dependent eLORETA images. 

2.3 Results 

2.3.1 ELORETA-ICA Analysis of 64-channel EEG Data 

Using the sphericity test [22], the number of independent networks (K) was calculated as 7.8. 

Consequently, eLORETA-ICA analysis was performed with K = 7. Of the 7 components, four 

resting state networks were identified with their respective frequency bands, based on 

comparison of their spatial current distributions to well-known RSNs in the neuroimaging 

literature. Specifically, independent component 2 (IC2) was identified as the “visual” network, 
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and it had activation in all five frequency bands (see Figs. 2.4A-4E). Independent component 5 

(IC5) was identified as the “dual-process of vision perception” network, and it was active in four 

frequency bands (all bands except delta), as shown in Figs. 2.5A-5G. Independent component 6 

(IC6) was identified as the “sensorimotor” network, and it had activation in four (delta, theta, 

alpha, and gamma) bands, as marked in Figs. 2.6A-6D. Independent Component 7 (IC7) was 

identified as “self-referential” network (see Figs. 2.7A-7D); it was active also in four frequency 

bands (all bands except delta).  

 

Figure 2.4: Visual Network for 64-channel and 19-channel analysis. In 64-channel, this network 

was identified in (A) delta, (B) theta, (C) alpha, (D), beta, and (E) gamma bands. In 19-channel, 

this network was identified only in (F) beta, and (G) gamma bands. 
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Figure 2.5: Dual-process of vision perception network, identified in both 64-channel and 19-

channel EEG. In 64-channel, this network was identified in (A) theta, (B) alpha, (C) beta, and 

(D) gamma bands. While in 19-channel, it was identified in (E) delta, (F) alpha, (G) beta, and 

(H) gamma bands 

 

 

 

 Figure 2.6: Sensorimotor network, identified in only 64-channel EEG. This network was 

identified in (A) delta, (B) theta, (C) alpha, and (D) gamma bands 

. 
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Figure 2.7: Self-referential network, identified in only 64-channel EEG. This network was 

identified in (A) theta, (B) alpha, (C) beta, and (D) gamma bands. 

 

. 

2.3.2 ELORETA-ICA Analysis of 19-channel EEG Selected from 64-channel Data 

The sphericity test calculated the number of components as 6.568. Consequently, the value of 6 

was chosen as the number of components, K.  From the 6 components, only 2 EEG networks and 

their activity in different EEG frequency bands were identified.  The identified EEG networks 

were: IC2 as the “visual” network in beta and gamma bands (Fig. 2.4F & 2.4G); and IC3 as the 

“dual-process of vision perception” network in delta, alpha, beta, and gamma bands (Figs.2.5H-

L).  

2.4 Discussion 

In this study, a replication of a previous EEG-resting state independent networks study by Aoki 

et al was performed. The study was conducted in a two-part analysis.  First, the eLORETA-ICA 

method was utilized to analyze 64-channel EEG resting state data obtained from 15 subjects and 

to identify EEG resting state networks at respective frequency bands. The international 10-10 

system for data acquisition with 64 EEG electrodes was used, while the previous work by Aoki 

et al. utilized the international 10-20 system with 19 electrodes. For better comparison with the 

results by Aoki et al, the second part of the analysis was to carry out eLORETA-ICA on time 
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series of 19 channels (those used in the 10-20 system) selected from the original 64-channel EEG 

data.  Electrophysiological data was collected from a much smaller sample size (n=15) with a 

much smaller age span (23.5±2.7 years of age) compared to the previous study (n=80; an 

estimated mean age=45 with an age range from 18-87 years). The aim of this study was two-

fold: (i) To compare EEG independent networks identified with a denser electrode system (64 

channels) versus a sparse electrode system (19 channels), and (ii) to examine the reproducibility 

and possible generalization of the eLORETA-ICA method as a tool for analyzing frequency-

dependent EEG resting state independent networks.  

 

In the analysis of the 64-channel EEG data, four EEG resting state independent networks and 

their respective neural oscillations were identified. Analysis of 19-channel EEG identified only 

two EEG resting-state networks with their respective oscillations. All of these networks found in 

both analyses were in good agreement with the previous study by Aoki et al [22]; however, 

fewer networks were identified in the 19-channel EEG analysis compared to the previous study 

by Aoki et al [22]. For clear and detailed comparison, Table 2.1 summarizes the EEG 

independent networks and their respective frequency bands that were identified in this study and 

the previous work [22]. Crosses ‘X’ indicate the frequency bands that were found to be active 

within the networks, and spaces left blank indicate that the frequency band was absent or 

inactive. In the following sub-sections, each of the networks are discussed in more detail, and the 

similarities and differences between the results obtained in the two studies. 
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Table 2.1: Resting-state networks and their respective neural oscillations, identified in 64-

channel and 19-channel for this study (columns 1 and 2) and the previous study by Aoki et al 

(column 3). Places marked ‘X’ show that the corresponding neural oscillation was identified in 

this network. Places shown as blank indicate that the corresponding neural oscillation was not 

identified in this network.  

EEG networks in 5 

frequency bands  

64-channel analysis 

in this study 

19-channel analysis 

in this study 

19-channel analysis 

by Aoki et al. 

Visual network    

Delta X   

Theta X   

Alpha X  X 

Beta X X  

Gamma X X  

Dual-process of 

vision perception 

   

Delta  X  

Theta X   

Alpha X X X 

Beta X X X 

Gamma X X  

Sensorimotor    

Delta X   

Theta X   

Alpha X   

Beta   X 

Gamma X  X 

Self-referential     

Delta    

Theta X   

Alpha X  X 

Beta X  X 

Gamma X   
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2.4.1 Visual Network  

IC2 was identified as the “visual” network in the 64-channel EEG data (Figure 2.4A-4E), and as 

IC2 in the 19-channel EEG data (Figure 2.4F-4G).  This network was characterized by activation 

of voxels in the occipital region, specifically BA 17 and 18 (Figs. 2.4A-2.4G). In the 64-channel 

EEG, this component had activation in all five frequency bands that were identified in this study 

(Figs. 2.4A-E). However, in the 19-channel EEG, this network had activation in only two 

frequency bands (Figs. 2. 4F-G). The visual network consists of brain regions that are involved 

in the processing and interpretation of visual stimuli. These brain regions include the primary 

visual cortex (V1, located in BA 17) and the secondary visual cortex (V2, located in BA 18). 

Numerous neuroimaging studies have shown that V1 and V2 are in the occipital lobe of the 

brain. 

 

In the previous study by Aoki et al, the visual network was also identified at only the alpha 

frequency band [IC4 in [22]]. While some neuroimaging studies have shown that the alpha band 

plays a major role in visual processing, other studies have also reported that the visual network 

may employ more than one neural oscillation to perform its tasks. For example, an EEG-fMRI 

study by Mantini et al [30] identified the five major cerebral oscillations (delta, theta, alpha, beta, 

gamma) to be active in this network, with all of them except one (gamma) having statistically 

significant correlations with the network’s BOLD time course. Some other studies have shown 

that the gamma frequency band may be involved in a neural phenomenon known as “visual 

feature binding” [31]. The studies are consistent with this study’s findings of multiple EEG 

frequency bands within the visual network. In addition, the identification of visual network at 

multiple frequency bands by both 19-channel and 64-channel EEG analyses show good 
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reliability and reproducibility of the eLORETA-ICA method as an excellent tool for identifying 

resting-state independent networks in EEG data. 

 

2.4.2 “Dual-process of vision perception” Network  

IC5 was identified in the 64-channel EEG data as the “dual-process of vision perception” 

network in four frequency bands (Figs 2.5A-5G), which was also recognized as IC3 in the 19-

channel EEG with four frequency bands. Based on the 64-channel EEG analysis, this network 

was characterized by activations in right occipitotemporal cortex (Fig. 2.5A) and left occipito-

parietal cortex (Fig. 2.5B) in theta band; activations in right occipitotemporal cortex (Fig.2.5C) 

and left posterior parietal cortex (Fig. 2.5D) in alpha band; activation in right temporal cortex in 

beta band (Fig. 2.5E); and activations in right temporal cortex and middle temporal area (Fig. 

2.5F) and activation in left occipital cortex (Fig. 2.5G), both in gamma band. In the 19-channel 

EEG, this network was characterized by activation in right posterior parietal cortex (Fig. 2.5H) in 

delta band; activation in right temporal cortex (Fig. 2.5I) in alpha band; activation in right 

occipitotemporal cortex (Fig. 2.5J) in beta band; activations in right occipitotemporal cortex 

(Fig. 2.5K) and in left posterior parietal cortex (Fig. 2.5L), both in gamma band.   

 

The dual-process of vision perception network consists of brain regions that are actively 

involved in the flow of visual information from the visual cortex to other parts of the brain for 

further cognitive processing. Specifically, this network consists of two pathways; one, a dorsal 

visual pathway (DVP), is involved in automatic visual guidance of spatial movements [22], and 

another, a ventral visual pathway (VVP), compares visual information from occipital lobe to 

spatial memory in right temporal cortex. Together, these two separate visual pathways are 

necessary for both visual perception and action [32]. 
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In the previous study by Aoki et al, this network was also identified with two frequency bands 

[IC5 in [22]]. The DVP in the previous study comprised the left posterior occipitoparietal cortex, 

the caudal intraparietal sulcus (cIPS) and middle temporal (MT+) in alpha band, while the VVP 

comprised the right occipitotemporal cortex, temporo-parietal junction (TPJ), parahippocampal 

gyrus, fusiform gyrus, and ventral pre-frontal cortex (vPFC). Furthermore, the VVP linked the 

occipitotemporal cortex in alpha band to vPFC in beta band, and it was negatively correlated 

with the DVP [22]. In this study, similar areas were identified for the DVP, specifically the MT+ 

(Fig. 2.5F) and left occipitoparietal cortex (Fig. 2.5B). Similarly, for VVP, the right 

occipitotemporal cortex (Figs. 2.5A, J & K) and the right temporal cortex (Figs. 2.5E, F& I) were 

identified. Also, the DVP was negatively correlated with VVP (Figs. 2.5A-B, C-D, & K-L), like 

that seen in the previous study [22]. However, the posterior parietal cortex (BAs 3, 5&7) was 

also identified for this network (Figs. 2.5D, H, & L), which was not identified in the previous 

study.  The posterior parietal cortex is a brain region that is also a part of the dorsal visual 

pathway [32]. This study’s identification of this network in both 19-channel and 64-channel EEG 

analyses show the reproducibility of the eLORETA-ICA method in EEG connectivity analyses. 

2.4.3 Sensorimotor Network 

IC6 was identified as the “sensorimotor” network in the 64-channel data (see Fig. 2.6). However, 

this network was not identified in the 19-channel EEG data.  Based on the 64-channel analysis, 

this network was active in four frequency bands.  It was characterized by activation in areas of 

the frontal cortex (BAs 4, 6, 8, 9, &10) in delta band (Fig. 2.6A); activation in frontal cortex 

(BAs 6 & 8) and medial post central region in theta band (Fig. 2.6B); activation in right 
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postcentral gyrus (BAs 3&5) in alpha band (Fig. 2.6C); and activation in premotor cortex (BA 6) 

in gamma band (Fig. 2.6D).  

 

In the previous study, the sensorimotor network was characterized by activation in medial 

postcentral region in beta band and pre-supplementary motor area (SMA) in gamma band [IC10 

in [22]]. Similar regions for the sensorimotor network were also identified in this study. 

Specifically, the post central region in alpha band was identified (Fig. 2.6C) and pre-SMA in 

delta, theta, and gamma bands (Figs. 2.6A, 2.6B, 2.6D) in the 64-channel EEG. The primary 

somatosensory cortex is located on the postcentral gyrus. In addition, the premotor cortex helps 

in motor planning. Furthermore, the alpha oscillation was identified within this network (Fig. 

2.6C). Alpha rhythm is one of the resting state oscillations observed in sensorimotor network 

[33].  

2.4.4 Self-referential Network 

IC7 was identified in the 64-channel EEG as “self-referential” network (Fig. 2.7). This network 

was not identified in the 19-channel EEG data. In the 64-channel EEG, IC7 had activation in 

posterior cingulate cortex (BA 30) in theta band (Fig. 2.7A); activation in the prefrontal cortex 

(PFC; BAs 8 & 10) which was negatively correlated with activation in precuneus (BA 31) and 

posterior cingulate (BA 30) in alpha band (Fig. 2.6B); activation in precuneus/posterior cingulate 

(BA 31) in beta frequency band (Fig. 2.7C); and activation in right TPJ (BA 39) in gamma band 

(Fig. 2.7D).  

 

In the previous study, activation in right TPJ and in PFC was also reported [22], but in only alpha 

and beta frequency bands. The previous study did not report activation in precuneus and 

posterior cingulate cortex for this network, which this study revealed. The precuneus is a major 
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hub of the default-mode network and is implicated in several self-referential processes [34]. 

Furthermore, the posterior cingulate cortex is also involved in self-referential processing [35].  

 

2.4.5 Comparison of Networks Identified by 64- and 19-channel Analyses in this study 

Both 64- and 19-channel analyses identified the “visual” network, but this network was active in 

different frequency bands in both studies. Specifically, the visual network derived from the 64-

channel analysis was active in all five frequency bands (IC2; Figure 2.4A-E), while the same 

network was active in only two bands based on the 19-channel analysis (IC2; Figure 2.4F-G). 

Mantini et al [30] conducted an EEG-fMRI study of functional brain networks and showed that 

brain networks could be active in more than one EEG frequency band. This study also found that 

the visual network had 4 significantly active bands [30], which supports the observations of 

multiple oscillations within the visual network derived from the 64-channel EEG and 19-channel 

EEG analysis conducted in this study. Due to the increased number of channels, the 64-channel 

EEG may have helped or enhanced capture of more information about the temporal 

characteristics of the visual network compared to the 19-channel data analysis.  

 

In addition, the 64-channel EEG analysis allowed to identify more EEG networks than the 19-

channel EEG analysis. Specifically, two more networks were identified in 64-channel EEG, 

which were the sensorimotor network (Figs. 2.6A-D) and the self-referential network (Figs. 

2.7A-D). These networks were not identified in the 19-channel EEG analysis. Studies have 

shown that an increased number of EEG electrodes leads to more improved EEG source 

reconstruction [36]. The improved source localization of the 64-channel EEG could therefore 

have been a factor in identifying these two additional brain networks. Also, multiple frequency 

bands within these two networks were identified. Mantini’s study of these two networks also 
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identified multiple frequency bands within these two networks [30]. Thus, in addition to 

identifying other brain networks active within EEG data, the 64-channel EEG measurement and 

analysis could help identify other neural oscillations that are active within these EEG networks. 

This added information provides researchers with a better understanding of the brain’s 

organizational structure. 

 

The dual-process of vision perception network was identified in four frequency bands (with three 

overlapped) in both 19-channel data (IC3; Figure 2.4H-2.4L) and in 64-channel data (IC5; Figure 

2.4A-G). The previous study by Aoki et al [22] identified two of the four bands (alpha and beta) 

that this study identified in this network. The findings of gamma in this network in both 19-

channel and 64-channel EEG analyses suggest that the gamma band may also play an active role 

within this network. It is suggested that an EEG-FMRI study of this network could be performed 

to properly identify the neural oscillations that are present within this network. 

 

Taken together, this study shows or confirms that multiple neural oscillation frequencies can 

coexist within brain independent networks and can be detected or identified by multi-channel 

EEG measurements. Furthermore, this study clearly demonstrates that more EEG channels can 

help identify other brain networks that are represented in EEG data and improve detection 

sensitivity to other frequency bands that are active within these networks. 

 

2.4.6 Comparison between Results of current study and Those by Aoki et al. Using 19-channel 

Analysis 

It would be more appropriate to compare results with 19-channel EEG analysis obtained in this 

study with those by Aoki et al. who utilized only 19 electrodes in their EEG measurements. As 
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shown in Table 2.1, the previous study identified more EEG networks compared to this study. In 

addition, more active frequency bands were identified in the two networks that were identified in 

this study compared to the previous study. 

There are several possible reasons for the differences between the two studies. First, the 

demography of the subjects in both studies was quite different. The subjects in this study were all 

young adults (mean age = 23.5 ± 2.7 years), while the subjects in the study by Aoki et al. were 

older with an extremely large range from 18-87 years of age. Studies have shown that brain 

networks change along aging, which have been documented by previous studies[37] ([38], [39], 

[40]). Thus, the large difference in subjects’ age between the two studies could be an important 

contribution to the disparity between the oscillation bands of the identified independent 

networks. In other words, an aging brain may reduce its brain network connections across its 

oscillation frequencies, resulting in fewer frequency bands observed by the 19-channel EEG 

measurements. This speculation needs further investigation, possibly using a denser EEG (such 

as a 10-10 system) device.  A second reason could attribute to the lower z- score (z = 2) that was 

used as a network imaging threshold in this study. A low threshold for the networks could have 

resulted in larger-area network images with more frequency bands, but with a lower statistical 

power. Since the sample size here (n=15) was much smaller than the other study (n=80), this 

study could not select the same threshold as theirs (z=3).  Thus, it is possible that some 

frequency bands with low significance were shown as active in the results of this study, whereas 

those frequency bands would not be significant under a higher threshold. Last, the small sample 

size (n=15) in this study may have made it difficult to identify other networks which were 

identified in Aoki et al.; for example, the dual-process of memory perception network was not 
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seen using either 19- or 64-channel data analysis. The low sample size of this study could also be 

responsible for identifying only two networks in the 19-channel EEG data analysis. 

2.4.7 Limitations of Study 

The eLORETA-ICA study was performed under some limitations. First, the sample size of 

subjects (n=15) was quite small compared to the previous study (n=80). However, this study was 

still able to identify four networks in the 64-channel EEG data that were consistent with those 

reported by Aoki et al. Second, a z score of 2 was utilized as statistical threshold for network 

images because of limited sample size, which could overestimate independent networks with 

more frequency bands than the actual ground truth. Third, the age spans of the subjects were 

quite different between the two studies, which was a confounding factor and made it difficult to 

directly compare the results of this study with those of the other study. It could also be the reason 

why the networks observed in the 19-channel data analysis had different frequency 

characteristics to those obtained in the previous study. 

2.5 Conclusion 

In this study, a previous investigation by Aoki et. al in ref. [22] was replicated, which utilized an 

independent networks analysis tool known as eLORETA-ICA to identify EEG resting state 

networks and their interactions in different frequency bands. Additional variables were included 

in this replication study, such as an increase in the number of EEG electrodes (from 19 to 64) 

and the use of a younger group of subjects (mean age = 23.5 years). A limitation of this study 

was the small sample size (n=15).  The analysis identified 4 resting state independent networks 

that were also identified in the previous study. In addition, the results revealed that each of these 

resting state networks had electrophysiological activities with more frequency bands than those 

found in the other study. This difference was discussed and attributed majorly to a large age 
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difference between the study groups and possibly the small sample size.  Overall, this study was 

in good agreement with the findings by Aoki et al. that multiple neural oscillation frequencies 

coexist within brain independent networks and can be detected or identified by multi-channel 

EEG measurements. Furthermore, this study clearly demonstrates that more EEG channels can 

help identify other active brain networks that are represented in EEG data and improve detection 

sensitivity to more frequency bands that are active within these networks.  Also, this replication 

study proves that eLORETA-ICA is a valid and reliable methodology for investigating EEG 

resting state networks 
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CHAPTER 3  

3. Alterations in functional connectivity of EEG brain networks during 

transition from wakeful to sleep state quantified by graph theory analysis 

3.1 Background 

             Functional connectivity studies the functional relationship between different regions of 

the brain. Functional connectivity analysis is obtained from time series recordings of brain 

imaging data and it describes patterns of statistical dependence among neural elements[41]. The 

study of functional connectivity of the brain helps neuroscientists to identify brain regions that 

have some functional relationship.  These brain regions are known as a brain network. Research 

has shown that certain brain networks are active during rest, while some others are active when 

the brain is engaged in an active task [1, 42].  The study of functional connectivity and brain 

networks is helpful in the early detection of cognitive disorders like Alzheimer’s disease [43], 

schizophrenia [44], and other dementia [2]. Also, the study of brain networks has been 

performed using different neuroimaging modalities which include functional magnetic resonance 

imaging or FMRI[45], positron emission tomography or PET[46], functional near-infrared 

spectroscopy or FNIRS[47], and electroencephalography or EEG[48]. In functional connectivity 

analyses, functional coupling between different brain regions does not signify a causal 

relationship between these regions[41]. In a nutshell, functional connectivity analyses give 

insight into the functional organization and architecture of the brain and enables researchers to 

observe activity of multiple brain networks at the same time [4] 

Brain networks are known to undergo changes in functional connectivity as the brain goes from a 

wakeful rest state to sleep state.  These changes have been studied mainly in fMRI data. For 

example, a FMRI study found a significant difference in default mode connectivity between 
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wakeful rest and sleep[5]. Specifically, there was a loss of connectivity between the frontal 

cortex and the posterior cingulate cortex in sleep [5]. In addition, Monti et al [49] reported a 

decrease in global information-processing capacity of the brain during a state of anesthesia-

induced unconsciousness. Furthermore, Spoormaker et al [6] showed in an FMRI study that 

frontoparietal connectivity disintegrated in stage 1 of sleep, and was completely absent in deeper 

sleep stages. In another fMRI study, thalamocortical connectivity was reduced during the 

transition from wakefulness to light sleep; while corticocortical connectivity was increased, 

which subsequently disintegrated in deeper sleep[50].  Taken together, these studies show that 

functional brain networks experience changes in functional connectivity as the brain goes from 

wakeful consciousness to an unconscious state or sleep. 

However, these changes have not been studied directly from neuronal recordings. EEG is a non-

invasive brain imaging modality that directly captures neural activity at a very high temporal 

resolution[8] EEG measurements contain abundant information about frequencies (2-60 Hz) that 

mediate various cognitive processes [22]. In addition, EEG is portable and easy to use compared 

to other imaging modalities such as fMRI. Using EEG to study functional connectivity of the 

brain along different vigilance states will help researchers to better understand the neuronal 

characteristics of functional brain networks. Furthermore, neuroscientists can better understand 

how the neuronal characteristics of brain networks are altered in different vigilance states. Also, 

neuroscientists would be able to better relate the neuronal characteristics of these brain networks 

to their hemodynamic characteristics. This extends the understanding of the changes in 

functional connectivity of the brain that occur in different vigilance states. 

Graph theory analysis, or GTA,  is a mathematical tool that is used for the analysis of complex 

networks [51]. In neuroscience, GTA is one of the three major methods that is used to investigate 
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the functional connectivity of the brain.[9]. GTA has been used to study brain networks in fMRI  

[52], FNIRS  [53], and EEG datasets [54]. In GTA, a brain network is characterized as either a 

graph or a connectivity matrix with nodes and edges [55]. For EEG-GTA analyses, the nodes 

correspond to EEG electrodes. Also, edges represent the magnitude or strength of the functional 

coupling between signals from pairs of EEG electrodes. The correlation coefficient has been 

used to quantify edges in a brain network[56]. Furthermore, graph theory parameters can 

quantify both functional segregation and functional integration properties of brain networks. 

Functional segregation refers to the separation of a brain network into different modules or 

clusters[57]. Two graph parameters that describe functional segregation are global clustering 

coefficient and nodal clustering coefficient [57].  Functional integration, on the other hand, refers 

to the interaction of several brain regions for information transfer[57]. Also, two graph theory 

metrics that quantify functional integration are global efficiency and nodal efficiency [57]. Graph 

theory analyses utilize different network thresholds to give a comprehensive picture of brain 

connectivity. In short, graph theory analyses provide a quantitative analysis of brain 

connectivity. Also, graph theory analyses can measure both global and local metrics of brain 

connectivity. Finally, graph theory parameters provide physiological interpretation of the 

characteristics of brain networks.  

In this study, GTA was used to analyze brain networks in EEG data during the transition from 

wakeful rest to sleep state. Resting-state EEG data was acquired from eighteen subjects (mean 

age = 23.5 years; standard deviation = 2.7) in both eyes-open state (EO) and eyes-closed state 

(EC).  Furthermore, sleep scoring of the eyes-closed EEG data was performed to separate the 

data into both sleep stage 1 (SS1) data and sleep stage 2 (SS2) data for each subject according to 

the American Association of Sleep Medicine (AASM) standard [94]. Then, the EEG data was 
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processed in each of the different vigilance states and transformed into power in four different 

EEG frequency bands (delta, theta, alpha, and beta) for each state. Then, using graph theory 

analysis (GTA) and statistical analyses, the changes in EEG functional brain networks across 

different vigilance states for different frequency bands were analyzed and observed.   

3.2 Methods 

3.2.1 Subjects 

18 young subjects (fifteen males and three females) with a mean age of 23.5 years (standard 

deviation = 2.5 years) were recruited for this study. These subjects were chosen from the student 

population of University of Texas at Arlington. The inclusion criteria were as follows: either sex 

(male or female), and in an age range of 18 – 29 years old. The exclusion criteria were as 

follows: (1) diagnosed with a psychiatric or sleeping disorder, (2) history of a neurological 

condition, or severe brain injury, or violent behavior, (3) have ever been 

institutionalized/imprisoned, (4) current intake of any medicine or drug, or (5) currently 

pregnant. In addition, none of the participants were smokers or had diabetes. The study protocol 

was approved by the institutional review board (IRB) at The University of Texas at Arlington 

and complied with all applicable federal and NIH guidelines. Informed consent was obtained 

from each participant prior to the experiments. 

3.2.2 Simultaneous EEG-fNIRS Instrumentation 

Resting-state brain activity was acquired using a dual-modality instrumentation set up. 

Specifically, the data were collected using both a 64-channel EEG instrument (Biosemi, 

Netherlands) and a 133-channel fNIRS instrument (Shimadzu corporation, Japan). Furthermore, 

a dual-modality cap (Shimadzu corporation, Japan) was used to acquire both EEG and fNIRS 

measurements from each subject. The dual-modality cap positioned the 133 fNIRS channels 
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according to a standard whole-head layout which was already designed in the Shimadzu fNIRS 

machine. In addition, the 64 EEG electrodes were inserted into cap holes that covered specific 

FNIRS channels.  The FNIRS machine uses three wavelengths of 780nm, 805nm, and 830nm to 

calculate oxy-, deoxy-, and total hemoglobin concentrations at each channel location. 

Furthermore, the sampling rate for the EEG data acquisition was 1 kHz, while the sampling rate 

for the fNIRS data acquisition was 8Hz. In addition, the simultaneous EEG-FNIRS acquisition 

was controlled by a desktop computer which was connected to both the EEG instrument and 

fNIRS instrument via a USB port. Figure 3.1 shows the instrumentation setup which was used 

for this study. 

 

Figure 3.1: Instrumentation setup used for functional connectivity study. The simultaneous EEG-

FNIRS acquisition was carried out on a subject using a dual-modality (10-10) head cap worn on 

the subject’s head as shown in (a). The simultaneous EEG-FNIRS acquisition was performed 

using (b) 64-channel EEG instrument and (c) 133-channel FNIRS measurement. The 133 

channels of FNIRS were positioned according to the channel layout shown in (d). Red circles in 

the channel layout correspond to FNIRS sources (40 sources), while blue circles correspond to 

FNIRS detectors (40 detectors). 

 

3.2.3 Experiment and Protocol 

Each subject was seated in a comfortable chair for the whole duration of the experiment. 

Simultaneous EEG-fNIRS acquisition of resting-state brain activity was performed in two 
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separate stages. In the first stage of data acquisition, each subject was asked to keep his or her 

eyes open for five minutes. Then, resting-state brain activity of each subject under this condition 

was acquired.  In the second stage, each subject was asked to close his or her eyes and fall asleep 

for ten minutes. Then, resting-state brain activity of each subject under this condition was also 

acquired. In addition, the measurements were conducted in a well-ventilated room with minimal 

noise. Also, phones and other electromagnetic devices were not allowed in the lab or on the 

person of the subject during the whole duration of the experiment. In addition, each subject was 

positioned away from electrical sources to prevent contamination of the data by 60 Hz power 

line noise.  

3.2.4 EEG Data preprocessing 

Data preprocessing of EEG data in both eyes-open and eyes-closed resting states was performed 

using the EEGLAB toolbox. EEGLAB is a well-known electrophysiological toolbox that has 

been developed for EEG data analysis [26]. Firstly, all the EEG datasets were imported into the 

EEGLAB toolbox which was installed in MATLAB 2016 software.  Next, the EEG data for each 

subject was down-sampled to 256Hz. Next, a FIR bandpass filter with a frequency range of 1 – 

80 Hz was applied to each EEG dataset to remove unwanted signals. Furthermore, each subject’s 

EEG data channel locations was set to match standard MNI coordinates in EEGLAB. Then, the 

EEG time series signal at each EEG electrode was inspected for extremely large amplitudes and 

electromyographic (EMG) artifacts. Such electrodes were corrected using spherical interpolation 

method which was implemented using the EEGLAB toolbox. After channel interpolation, the 

EEG data for each subject was re-referenced to an average reference. Furthermore, power line 

noise in the data was removed using the Clean line algorithm in EEGLAB, with the parameters 

set to default values. Finally, an Independent Component Analysis (ICA) algorithm was applied 
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to the EEG data for each subject to remove eye movement artifacts, muscle noise, and eye blink 

artifacts. This algorithm was also implemented in the EEGLAB toolbox using the command 

“runica”. 

3.2.5 Sleep scoring of eyes-closed EEG data 

For each of the EEG datasets in the eyes-closed (EC) state, they were further examined for sleep 

stages with the help of a qualified medical doctor. Specifically, the whole ten-minute resting-

state eyes-closed EEG data for each subject was first segmented into separate thirty-second (30 

s) epochs. Then, with the help of the doctor, each thirty-second (30 s) epoch was assigned to 

either stage 0 (eyes-closed and awake, or EC), stage 1 (sleep stage 1 or SS1), or stage 2 (sleep 

stage 2 or SS2). into either eyes-closed (EC), sleep-stage 1 (SS1), or sleep-stage 2 (SS2) data. 

This step was performed in accordance with the American Association of Sleep Medicine 

(AASM) guidelines for sleep scoring. After sleep scoring, each subject’s resting-state eyes-

closed EEG dataset was separated into both sleeping-stage 1 EEG dataset and sleeping-stage 2 

EEG dataset, in preparation for functional connectivity analysis. Table 3.1 shows the total 

duration (in minutes) of each subject’s EEG dataset in the eyes-opened state (EO), eyes-closed 

state (EC), sleeping-stage 1 (SS1), and sleeping-stage 2 (SS2). In addition, Figure 3.2 shows the 

flowchart for EEG data preprocessing of all EEG datasets in Table 3.1. 
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Table 3.1: The table shows the total duration (in minutes) of eyes-opened (EO), eyes-closed 

(EC), sleep-stage 1 (SS1), and sleep-stage 2 (SS2) EEG datasets for each of the eighteen subjects 

that were recruited for functional connectivity study.  

 

. 

 

  

Figure 3.2: Flowchart of EEG data processing for functional connectivity study. A bandpass 

filter of range 1 – 80 Hz was used to filter the EEG signal into four separate EEG bands of delta, 

theta, alpha, and beta. 

 

FIR bandpass filter (1-80 Hz) 
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3.2.6 Functional connectivity analysis of EEG data in different vigilance states 

Firstly, bandpass filtering into separate EEG frequency bands was performed for each subject. 

Specifically, each subject’s EEG dataset in each vigilance state was sectioned into four separate 

EEG frequency bands which were delta band (1-4Hz); theta band (4-8Hz); alpha band (8-12Hz); 

and beta band (13-30Hz). Furthermore, the bandpass filtering was performed using the FIR filter 

in EEGLAB. Next, each subject’s EEG dataset in a specific frequency band was transformed into 

a 64-channel power dataset using the Hilbert transform. This procedure was done for each 

vigilance state.  The Hilbert transform is a well-known method used for calculating the power of 

EEG signals[58, 59]. Then, for each frequency band, each subject’s 64-channel time series of 

power data was then converted into a 64-by-64 power connectivity matrix. To get this 

connectivity matrix, the Spearman correlation coefficient for each possible pair of electrodes was 

calculated. This step was done for all the 64 EEG electrodes. This step yielded a 64-by-64 matrix 

of correlation coefficients. Again, this procedure was performed separately for each vigilance 

state. The Spearman correlation coefficient is more suitable for calculating the correlation of 

power time series data [58]. Figure 3.3 shows the steps in performing functional connectivity 

analysis of all the EEG datasets in Table 1 
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Figure 3.3: Functional connectivity analysis of all EEG data for each subject in Table 1. The 

preprocessed 64-channel EEG data in (a) was filtered into four separate bands which were delta 

(δ), theta (θ), alpha(α), and beta(β). Then, each of the frequency-band time series data in (b) was 

converted to 64-channel power signal in each frequency band, using Hilbert transform. Then, the 

power series for each frequency band in (c) was transformed into a 64*64 connectivity matrix in 

each frequency band, shown in (d). The rows and columns of the connectivity matrix represent 

the 64 EEG electrodes, while the colored pixels in the matrix represent the calculated Spearman 

correlation coefficient between the power signal from one EEG electrode and power signal from 

another EEG electrode. The correlation approach was performed between all possible pairs of 

EEG electrodes, and for each vigilance state. 

 

3.2.7 Graph theory analysis (GTA) 

To perform graph theory analyses, a graph theory analysis software known as GRETNA was 

used [60]. GRETNA is a freely downloadable tool that is used for imaging network 

connectomics in fMRI, fNIRS, and EEG data [60]. For each frequency band, all the 64*64 power 

connectivity matrices for each subject were fed into GRETNA to calculate graph theory 
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parameters. This procedure was performed separately for power connectivity matrices in each 

vigilance state.  In the Network Analysis module of GRETNA, network metrics were set as 

follows: Network Type: binary; Network Member: absolute; Threshold Type: sparsity; 

Threshold Range: 0.1:0.01:0.9; Random Networks: 100; Selected Mode: Network-Small 

World, Network-Efficiency.  Then, the GRETNA graph theory algorithms were run on these 

matrices to calculate both global and local network metrics of brain connectivity in each 

vigilance state, for all frequency bands.       

3.2.8 Statistical analysis of both global and local network metrics 

Statistical analysis was performed for both global and local network metrics as follows: four 

graph theory metrics were calculated, which were the global clustering coefficient, global 

efficiency, nodal clustering coefficient and nodal efficiency. The global clustering coefficient 

and global efficiency represent global network metrics, while the nodal clustering coefficient and 

the nodal efficiency represent local network metrics. For global network metrics, the clustering 

coefficient and global efficiency values at each threshold were first averaged across all subjects.  

This was done in each vigilance state and for each frequency band. Then, a repeated ANOVA 

test using Greenhouse-Geiser correction (p < 0.05) was calculated on both mean clustering 

coefficient and mean global efficiency values across all vigilance states. Specifically, the 

ANOVA test was performed for values of clustering coefficient and global efficiency at each of 

nine separate network thresholds from 0.1 to 0.9 in increments of 0.1. This step was performed 

for each frequency band. 

For the local network metrics, the values of both nodal clustering coefficient and nodal 

efficiency at each EEG electrode in each of four separate network thresholds of 0.1, 0.3, 0.5, and 

0.7 were extracted for each subject, in each vigilance state. Then, a repeated ANOVA test using 
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Greenhouse-Geiser correction (p < 0.05) was performed on values of nodal clustering coefficient 

and nodal efficiency at each of 64 electrodes across all vigilance states. This step was performed 

for each threshold of 0.1, 0.3, 0.5, and 0.7 respectively, and for each frequency band. After 

ANOVA test, a post-hoc test using the Tukey-Kramer method was performed for electrodes that 

showed a significant p-value from ANOVA.  For the posthoc tests, only three pairwise 

comparisons were considered for statistical evaluation: eyes-open and eyes-closed (EO-EC); 

eyes-closed and sleep-stage 1 (EC-SS1); and, sleep-stage 1 and sleep-stage 2 (SS1-SS2).  If there 

were any significant pairwise comparisons at a specific electrode as revealed by Tukey posthoc 

test, we reported the t-value for the electrode. Then, the t-values were then plotted on a two-

dimensional topographic map for each of the pairwise comparisons considered. This step was 

performed at each threshold of 0.1, 0.3, 0.5, and 0.7 respectively. Furthermore, this step was 

performed for each frequency band. All statistical tests were performed using MATLAB 2016 

software. 

3.3 Results 

3.3.1 Clustering coefficient in four frequency bands 

The mean clustering coefficient in each vigilance state increased as the network threshold 

increased from 0.1 to 0.9, for all frequency bands (Figure 3.4). Also, the mean clustering 

coefficient were higher for wakeful states (both eyes-opened and eyes-closed) than sleep states 

(both sleep-stage 1 and sleep-stage 2), for all frequency bands (Figure 3.4).  In delta band, the 

mean clustering coefficient in the eyes-opened vigilance state (EO) was the highest among all 

vigilance states for thresholds from 0.3 to 0.6 (Figure 3.4a). Also, the mean clustering coefficient 

in delta band was lowest in sleep-stage 2 vigilance state (SS2) for thresholds from 0.3 to 0.6 

(Figure 3.4a). In addition, ANOVA test reported a significant difference (p < 0.05) in mean 
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clustering coefficient in delta band across all vigilance states only at a threshold of 0.4 (Figure 

3.4a).  In theta band, the mean clustering coefficient in the eyes-opened vigilance state (EO) was 

the highest among all vigilance states for thresholds from 0.3 to 0.5 (Figure 3.4b). Also, the 

mean clustering coefficient in the eyes-closed vigilance state (EC) was the highest among 

vigilance states for thresholds of 0.1 and 0.6 for theta band (Figure 3.4b). The mean clustering 

coefficient in SS2 vigilance state for theta band was the lowest among vigilance states for 

thresholds from 0.1 to 0.6 in increments of 0.1 (Figure 3.4b). ANOVA test reported a significant 

difference (p < 0.05) in mean clustering coefficient in theta band across all vigilance states at 

thresholds of 0.3 and 0.5 only (Figure 3.4b). In the alpha band, the mean clustering coefficient in 

eyes-closed vigilance state (EC) was the highest among vigilance states from thresholds of 0.3 to 

0.8 (Figure 3.4c). Also, the mean clustering coefficient in sleep-stage 2 (SS2) for the alpha band 

was the lowest among vigilance states from thresholds of 0.3 to 0.9 (Figure 3.4c). In addition, 

ANOVA test reported a significant difference (p < 0.05) in mean clustering coefficient in alpha 

band across all vigilance states for threshold of 0.1, and thresholds from 0.3 to 0.9, in increments 

of 0.1 (Figure 3.4c). Finally, in beta band, the mean clustering coefficient in eyes-closed 

vigilance state (EC) was highest among vigilance states from thresholds of 0.3 to 0.7 (Figure 

3.4d). Also, the mean clustering coefficient in sleep-stage 2 (SS2) was lowest for thresholds from 

0.3 to 0.7 (Figure 3.4d).  In addition, ANOVA test reported a significant difference (p < 0.05) in 

mean clustering coefficient in beta band across all vigilance states for threshold of 0.1, and 

thresholds from 0.3 to 0.6, in increments of 0.1 (Figure 3.4d). 
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Figure 3.4: The mean clustering coefficient for each of eyes-open (EO), eyes-closed (EC), sleep-

stage 1 (SS1), and sleep-stage 2 (SS2) in (a) delta, (b) theta, (c) alpha, and (d) beta bands. Blue 

crosses marked ‘*’ on the plots indicate significant difference (p < 0.05) in mean clustering 

coefficient across the four vigilance states as revealed by repeated ANOVA test with 

Greenhouse-Geiser correction. 

 

3.3.2 Global efficiency in four frequency bands 

The mean global efficiency in each vigilance state increased as the network threshold increased 

from 0.1 to 0.9 in increments of 0.1, for all frequency bands (Figure 3.5). Also, the mean global 

efficiency values showed an increase from a wakeful state to sleep state in all bands (Figure 3.5). 

In delta band, ANOVA test reported a significant difference (p < 0.05) in mean global efficiency 
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across all vigilance states at thresholds of 0.1 and 0.2 (Figure 3.5a). In theta band, ANOVA test 

reported a significant difference (p < 0.05) in mean global efficiency across all vigilance states at 

the threshold of 0.3 only (Figure 3.5b). In alpha band, the mean global efficiency in sleep-stage 2 

(SS2) vigilance state was the highest among vigilance states from thresholds of 0.1 to 0.4 (Figure 

3.5c). Also, the mean global efficiency in eyes-closed vigilance state (EC) was the lowest among 

vigilance states from thresholds of 0.1 to 0.4 (Figure 3.5c) In addition, ANOVA test reported a 

significant difference (p < 0.05) in mean global efficiency in alpha band across all vigilance 

states for thresholds of 0.1 to 0.4 (Figure 3.5c). Finally, in beta band, the mean global efficiency 

in SS2 vigilance state was highest among vigilance states from thresholds of 0.1 to 0.3 (Figure 

3.5d). Also, the mean global efficiency in EC vigilance state was lowest for thresholds from 0.1 

to 0.3 (Figure 3.5d). In addition, ANOVA test reported a significant difference (p < 0.05) in 

mean global efficiency in beta band across all vigilance states for thresholds of 0.1 and 0.2 

(Figure 3.5d). 
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Figure 3.5: The mean global efficiency for each of eyes-open (EO), eyes-closed (EC), sleep-

stage 1 (SS1), and sleep-stage 2 (SS2) in (a) delta, (b) theta, (c) alpha, and (d) beta bands. Blue 

crosses marked ‘*’ on the plots indicate significant difference (p < 0.05) in mean global 

efficiency across the four vigilance states as revealed by repeated ANOVA test with 

Greenhouse-Geiser correction. 

 

3.3.3 Nodal clustering coefficient in alpha and beta bands 

Significant differences in nodal clustering coefficient were reported for both alpha and beta 

bands (Figure 3.6). In alpha band, significant differences in nodal clustering coefficient were 

reported in the transition from eyes-opened state to eyes-closed state (EO-EC), and in the 

transition from eyes-closed state to sleep-stage 1 (Figure 3.6a). Also, no significant differences in 
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the transition from sleep-stage 1 to sleep-stage 2 (SS1-SS2) were reported for alpha band (Figure 

3.6a). The significant differences in nodal clustering coefficient were situated at frontal locations 

for thresholds of 0.1, 0.3, 0.5, and 0.7 in both EO-EC and EC-SS1 transitions; and parietal 

locations for thresholds of 0.5 and 0.7 in EC-SS1 (Figure 3.6a). In beta band, significant 

differences in the nodal clustering coefficient were reported only in the transition from eyes-

closed state to sleep-stage 1 (Figure 3.6b). For beta band, the significant differences in nodal 

clustering coefficient were located at frontal sites for thresholds of 0.1, 0.3, 0.5, and 0.7; and 

parietal sites for only the threshold of 0.5 (Figure 3.6b). 

 

Figure 3.6: EEG topographical plots showing nodal clustering coefficient changes in eyes-

opened to eyes-closed transition (EO - EC); eyes-closed to sleep-stage 1 transition (EC – SS1); 

and sleep-stage 1 to sleep-stage 2 transition (SS1 – SS2) in (a) alpha band and (b) beta band. The 

color bars represent significant t-values (uncorrected, p < 0.05). The EEG topographical maps 

were constructed using EEGLAB software. 

 



68 

3.3.4 Nodal efficiency in alpha and beta bands 

Significant differences in nodal efficiency were reported for both alpha and beta bands (Figure 

7). In alpha band, significant differences in the nodal efficiency were reported in the transition 

from eyes-opened state to eyes-closed state (EO-EC), and in the transition from eyes-closed state 

to sleep-stage 1 (Figure 3.7a).  No significant differences were reported in the transition from 

sleep-stage 1 to sleep-stage 2 (Figure 3.7a).  The significant differences in nodal efficiency were 

situated at temporoparietal locations for thresholds of 0.1, 0.3, 0.5, and 0.7 in both EO-EC and 

EC-SS1 transitions (Figure 3.7a).  In beta band, significant differences in the nodal efficiency 

were reported in the transition from eyes-open state to eyes-closed state (EO-EC), and in the 

transition from eyes-closed state to sleep-stage 1 (Figure 3.7b). These significant differences 

were located at temporoparietal sites for thresholds of 0.1, 0.3, 0.5, and 0.7 in EO-EC transition, 

and in temporoparietal sites for thresholds of 0.1, 0.3, and 0.5 in EC-SS1 transition (Figure 3.7b). 

Also, no significant differences were reported in the transition from sleep-stage 1 to sleep-stage 2 

(SS1-SS2) for beta band (Figure 3.7b). 



69 

 

Figure 3.7: EEG topographical plots showing nodal global efficiency changes in eyes-opened to 

eyes-closed transition (EO - EC); eyes-closed to sleep-stage 1 transition (EC – SS1); and sleep-

stage 1 to sleep-stage 2 transition (SS1 – SS2) in (a) alpha band and (b) beta band. The color bars 

represent significant t-values (uncorrected, p < 0.05). The EEG topographical maps were 

constructed using EEGLAB software. 

 

3.4 Discussion 

In this chapter, I investigated EEG functional connectivity in four separate vigilance states from 

wakefulness to sleep using graph theory analysis. Metrics of both functional segregation (which 

were global clustering coefficient and nodal clustering coefficient) and functional integration 

(which were global efficiency and nodal efficiency) were compared across vigilance states in 

four EEG frequency bands of delta, theta, alpha, and beta, by using appropriate statistical 

analyses. 
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3.4.1 Changes in clustering coefficient across vigilance states 

Firstly, the study reported higher values of the global clustering coefficient of EEG brain 

network in wakeful states of both eyes-open and eyes-closed, compared to sleep states of both 

sleep-stage 1 and sleep-stage 2, for all frequency bands (Figure 3.4). This occurred 

predominantly/very significantly in both alpha and beta bands (Figures 3.4c&d). In addition, 

frontal nodes mostly showed significant differences (p < 0.05, uncorrected) in nodal clustering 

coefficient across vigilance states (Figure 3.6). This finding was also reported also in both alpha 

and beta bands (Figures 3.6a&b). Taken together, the results indicate that frontal EEG brain 

network becomes more clustered or segregated as the brain transitions from eyes-open state to 

eyes-closed state, and this clustering disintegrates during sleep state. This finding could represent 

the activity of the well-known default mode network (DMN) of the brain across different 

vigilance states. The default-mode network is preferentially activated when the brain is in eyes-

closed state [34]. In addition, the DMN is composed of two major subsystems, which are the 

anterior subsystem and the posterior subsystem [62]. Parts of the anterior subsystem of DMN 

include the prefrontal cortex and superior frontal gyrus, which are located within the frontal lobe 

of the brain [62].  In a previous study, Ward et al [90] has linked daytime sleepiness to reduced 

functional connectivity of the DMN in both young and elderly subjects. In addition, Horovitz et 

al’s study [5] has reported a reduction in frontal DMN connectivity during sleep. These studies 

corroborate our findings of reduced clustering/connectivity during sleep.  A previous study has 

also linked alpha rhythm activity with default mode network in the brain [95]. This finding also 

agrees with the results of significant alpha activity within DMN observed here. Together, the 

results here suggest that the anterior subsystem of the DMN is significantly altered in clustering 

connectivity during the brain’s transition from wakeful state to sleep state in the brain. 
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3.4.2 Changes in global efficiency across vigilance states 

Secondly, this study reported higher values of global efficiency in sleep states of both sleep-stage 

1 and sleep-stage 2, compared to wakeful states of both eyes-open and eyes-closed, in all 

frequency bands (Figure 3.5). This finding was quite prominent in alpha and beta bands (Figures 

3.5c&d). In addition, the study also reported significant changes (p < 0.05, uncorrected) in nodal 

efficiency for temporo-parietal nodes of the brain (Figure 3.7). This finding was also reported for 

both alpha and beta bands (Figures 3.7a&b).  In other words, the results here indicate that the 

efficiency of posterior EEG brain network is reduced as the brain goes into an eyes-closed state, 

and it is increased when the brain proceeds to the sleep state. In the DMN, there is a posterior 

subsystem. Parts of the posterior subsystem include the temporoparietal junction and the parietal 

lobule [62].  A FMRI study has shown changes in nodal efficiency during stage 1 sleep in nodes 

of the posterior DMN [93]. Therefore, the results here indicate/suggest that the posterior 

subsystem of the DMN is significantly altered in functional connectivity of integration during the 

brain’s transition from a state of wakeful rest to sleep. However, a discrepancy between results 

of nodal efficiency in this study and that of the previous FMRI study is that while the FMRI 

study reported a significant decrease in nodal efficiency during sleep-stage 1, the current study of 

EEG reported an increase in nodal efficiency in stage 1 sleep (Figure 3.7a). This discrepancy 

could be because the t-values reported for nodal efficiency in this study were not corrected for 

multiple comparisons; hence they could be prone to statistical error of false positives.  

Overall, the results of this study suggest that the functional connectivity of the DMN plays an 

important role in determining the state of consciousness within the brain. According to 

Guldenmund et al [61], it is expected that the network integrity of the DMN is significantly 

affected during an altered state of consciousness like sleep or anesthesia. This notion is observed 
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in the current study. Furthermore, other studies have shown that the connectivity of the default-

mode network is altered along different states of consciousness [91,92]. Therefore, this study 

extends our understanding of the changes in functional connectivity of the DMN during different 

states of consciousness. 

3.4.3 Limitations 

The limitations of the current study were as follows: Firstly, the statistical analyses of the nodal 

metrics of functional connectivity (nodal clustering coefficient and nodal efficiency) did not 

correct for multiple comparisons. Hence, the t-values reported for the analyses of nodal metrics 

are prone to statistical error. Secondly, it is possible that a generalized statistical model may be 

more appropriate for the statistical analysis of EEG data for the different frequency bands. Also, 

it is unclear whether the short thirty-second epoch of sleep-stage 1 is enough to perform 

functional connectivity analysis in. sleep state, although thirty second epoch is sufficient to 

identify sleep stages according to the AASM standard [94]. Lastly, the results could be affected 

by volume conduction, due to use of correlation coefficient. However, the Spearman correlation 

coefficient gives a less biased estimate of EEG connectivity [58] 

3.5 Conclusion 

In this study, EEG instrument was used to quantify changes in functional connectivity of brain 

network across vigilance states of wakefulness and sleep. This study shows that the EEG 

modality can be used along with other imaging modalities to explain the changes in functional 

architecture and organization of the brain during different states of consciousness. This study 

will prove helpful to explain disorders of consciousness from a functional connectivity 

perspective.  Furthermore, the study was able to show that the default mode network is greatly 

involved in consciousness processes of the brain, which agrees with previous studies. 
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CHAPTER 4  

4. Wavelet coherence analysis of neurovascular coupling during transition 

from wakeful to sleep states 

4.1 Background 

Neurovascular coupling in the brain refers to the tight coupling between neuronal fluctuations 

and the corresponding hemodynamic response in the brain [66]. The brain requires a continuous 

supply of blood to provide energy for its many activities; this continuous supply of blood to the 

brain is induced by coupling between neuronal activity, cerebral blood flow, and metabolism 

[67]. According to previous studies, neurovascular coupling is necessary to maintain the cerebral 

autoregulation in the brain [68]. Also, the impairment of neurovascular coupling in the brain has 

been linked to some diseases such as ischemic stroke, hypertension, and Alzheimer’s 

disease[11].  In addition, neurovascular coupling may also be impaired in small vessel disease 

[12]. 

The exact mechanism of neurovascular coupling in the brain is still an ongoing study in the 

neuroimaging literature. A study has shown that that neurovascular coupling in awake animals 

occurs differently when compared to neurovascular coupling in anaesthetized animals [69]. Also, 

Willie et al have shown that neurovascular coupling in humans remained unaltered during 

exercise, even though there was an increase in cerebral blood velocity in both the posterior and 

middle cerebral arteries [70]. Furthermore, an fMRI study of neurovascular coupling in rats 

showed that it is brain region-dependent; whereas local field potentials in the cortex showed a 

linear positive relationship with BOLD signals, local field potentials in the brain stem and 

thalamus showed a different relationship with BOLD signals [15]. In addition, Zanatta et al have 

proposed a subcortical pacemaker in the brain that drives synchronized neurovascular coupling 
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[71]. Furthermore, different studies have shown that the gamma-band activity is tightly coupled 

with hemodynamic signals in both non-pathological brain states [72, 73] and pathological brain 

states [74] . 

Neurovascular coupling in the brain is controlled by several processes. Some of these processes 

include endogenic, neurogenic, and myogenic processes [66]. The endogenic processes refer to 

the processes of neurovascular coupling that take place in endothelial cells surrounding the brain. 

Also, the neurogenic processes take place in the nerves of the brain, while the myogenic 

processes occur due to contractions of the smooth muscle cells and fibers in the brain. According 

to an fNIRS study, the endogenic component of neurovascular coupling in fNIRS signals occurs 

within a frequency range of 0.003-0.02 Hz [75]. Also, the neurogenic component of 

neurovascular coupling in FNIRS signals occurs within a frequency range of 0.02-0.04 Hz [75], 

and the myogenic component of neurovascular coupling in FNIRS signals occurs within a 

frequency range of 0.04-0.15 Hz [75].  

Wavelet coherence analysis is a recently developed method that has been used to quantitatively 

investigate neurovascular coupling [76]. It  provides a time-frequency quantitative analysis of the 

tight coupling between neuronal and hemodynamic signals in real-time [76]. Moreover, wavelet 

coherence method serves as a potential clinical tool for quick and easy diagnosis of 

neurovascular pathologies [13]. In wavelet coherence method, coupling between neuronal and 

hemodynamic signals is calculated/computed using values from zero to one. Zero represents a 

complete independence of both neuronal and hemodynamic signals, while one represents a 

complete coherence of neuronal and hemodynamic signals [58].  

However, the changes in neurovascular coupling of the human brain during the transition from 

resting (wakeful) state to sleep states are not well discovered. Studies of neurovascular coupling 
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in neonates are mostly done during sleep state [13, 77]. In addition, the endogenic, neurogenic, 

and myogenic processes that underlie neurovascular coupling have not been studied in different 

vigilance states of the human brain. In the neuroimaging literature, no study has used wavelet 

coherence method to study neurovascular coupling during the transition from wakeful rest to 

sleep states by simultaneous EEG-fNIRS data. Study on the changes in neurovascular coupling 

across the different vigilance states of the brain would provide researchers with better 

understanding of how human brain organizes its processes in the different vigilance states. Also, 

understanding of neurovascular coupling across different vigilance states might be able to 

enlighten clinicians on how to make earlier diagnosis of certain brain pathologies which have 

neurovascular origin such as stroke. 

In this study, the neurovascular coupling of the brain was investigated in eighteen subjects (mean 

age =23.5 years, standard deviation = 2.7 years) in three different vigilance states, including 

eyes-open state (EO), eyes-closed state (EC), and sleep-stage 1 state (SS1). Whole-head resting-

state brain activity from all subjects was collected under both eyes-open and eyes-closed 

conditions using a dual-modality EEG-FNIRS instrumentation setup. Furthermore, sleep scoring 

[94] of the EEG data during eyes-closed state was performed to define sleep-stage 1 and sleep-

stage 2 from eyes closed state and separate/split simultaneous EEG-fNIRS data in eyes-closed 

state into three different states. Four regions of interest on the head were selected to analyze 

EEG-fNIRS coupling; the left frontal location (EEG channel ‘Fp1’ and corresponding FNIRS 

channel ‘5’), the right frontal location (EEG channel ‘Fp2’ and corresponding FNIRS channel 

‘7’), the left occipital location (EEG channel ‘O1’ and corresponding FNIRS channel ‘124’), and 

the right occipital location (EEG channel ‘O2’ and corresponding channel ‘126’). Wavelet 

coherence analysis was then applied to the simultaneous EEG-fNIRS data in each vigilance state 
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at each region of interest. Specifically, three separate frequency bands of EEG time series [ i.e., 

theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz)] were used to analyze coupling with the 

simultaneous fNIRS time series of oxyhemoglobin; and the neurovascular coupling calculation 

covered all vigilance states (eyes-open, eyes-closed, sleep-stage 1 & sleep-stage 2). Furthermore, 

the endogenic (0.01-0.2 Hz), neurogenic (0.02-0.04 Hz), and myogenic (0.04-0.15 Hz) 

components of EEG-fNIRS coupling were assessed in each vigilance state separately in the three 

EEG frequency bands. By using wavelet coherence approach, the aim of this study was to make 

the first step in quantitatively understanding the changes in EEG-fNIRS coupling as the brain 

transitions from awake to sleep state.  

4.2 Methods 

4.2.1 Subjects 

         18 young subjects (15 males and 3 females) with a mean age of 23.5 years (standard 

deviation = 2.5 years) were recruited for this study.  These subjects were chosen from the student 

population of University of Texas at Arlington. The inclusion criteria were as follows: either sex 

(male or female), and in an age range of 18 – 29 years old. The exclusion criteria were as 

follows: (1) diagnosed with a psychiatric or sleeping disorder, (2) history of a neurological 

condition, or severe brain injury, or violent behavior, (3) have ever been 

institutionalized/imprisoned, (4) current intake of any medicine or drug, or (5) currently 

pregnant. In addition, none of the participants were smokers or had diabetes. The study protocol 

was approved by the institutional review board (IRB) at The University of Texas at Arlington 

and complied with all applicable federal and NIH guidelines. Informed consent was obtained 

from each participant prior to the experiments. 
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4.2.2 EEG-fNIRS Instrumentation 

Resting-state brain activity from all subjects was acquired using a dual-modality instrumentation 

set-up. Specifically, the data were collected using both a 64-channel EEG instrument (Biosemi, 

Netherlands) and a 133-channel fNIRS instrument (Shimadzu corporation, Japan). Furthermore, 

a dual-modality cap (Shimadzu corporation, Japan) was used to acquire both EEG and fNIRS 

measurements from each subject. The dual-modality cap positioned the fNIRS optodes according 

to a whole-head layout which was already designed in the Shimadzu FNIRS machine. 

Furthermore, the 64 EEG channels were inserted into the holes of the dual-modality cap to cover 

specific fNIRS channels. The fNIRS machine uses three wavelengths of 780nm, 805nm, and 

830nm to calculate oxy-, deoxy-, and total hemoglobin concentrations at each channel location. 

Furthermore, the sampling rate for the EEG data acquisition was 1 kHz, while the sampling rate 

for the fNIRS data acquisition was 8 Hz. In addition, the simultaneous EEG-fNIRS acquisition 

was controlled by a desktop computer which was connected to both the EEG instrument and 

fNIRS instrument via a USB port. Figure 4.1 shows the instrumentation setup which was used in 

this study. 
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Figure 4.1: Instrumentation setup used for neurovascular coupling study. The simultaneous EEG-

FNIRS acquisition was carried out on a subject using a dual-modality head cap which was placed 

on the subject’s head as shown in (a). The simultaneous EEG-FNIRS acquisition was performed 

using (b) 64-channel EEG instrument and (c) 133-channel FNIRS measurement. The 133 

channels of FNIRS were positioned according to the channel layout shown in (d). Red circles in 

the channel layout correspond to FNIRS sources (40 sources), while blue circles correspond to 

FNIRS detectors (40 detectors). 

 

4.2.3 Simultaneous EEG-fNIRS Data acquisition 

Each subject was seated in a comfortable chair for the whole duration of the experiment. 

Simultaneous EEG-fNIRS acquisition of resting-state brain activity was acquired in two separate 

stages. In the first stage of data acquisition, each subject was asked to keep his or her eyes open 

for five minutes. Then, the resting-state brain activity of each subject under this condition of 

eyes-open was acquired. In the second stage of data acquisition, each subject was then asked to 

close his or her eyes and fall asleep for ten minutes. Then, the resting-state brain activity of each 

subject under this condition of eyes-closed was also acquired. In addition, the measurements 

were conducted in a well-ventilated room with minimal noise. Also, phones and other 

electromagnetic devices were not allowed in the lab or on the subject during the whole duration 

of the experiment. Furthermore, each subject was positioned away from electrical sources to 

prevent contamination of data by 60 Hz power line noise. 
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4.2.4 EEG data processing 

Data preprocessing of EEG data in both eyes-open and eyes-closed resting states was performed 

using the EEGLAB toolbox. EEGLAB is a well-known electrophysiological toolbox that has 

been developed for EEG data analysis [26]. Firstly, all the EEG datasets were exported into the 

EEGLAB toolbox which was installed in MATLAB 2017 software.  Next, the datasets were 

down-sampled to 256 Hz. Next, a bandpass filter with a frequency range of 1 – 80 Hz was 

applied to each EEG dataset to remove unwanted signals. Furthermore, each subject’s EEG data 

channel locations were set to match standard MNI coordinates in EEGLAB. Then, the EEG time 

series signal at each EEG electrode was inspected for extremely large amplitudes and 

electromyographic artifacts. Such noisy electrodes were corrected using spherical interpolation 

method in EEGLAB toolbox. After channel interpolation, the EEG data were re-referenced to an 

average reference for each subject.  Furthermore, power line noise in the data was removed using 

the Clean line algorithm in EEGLAB, with the parameters set to default values. Finally, an 

Independent Component Analysis (ICA) algorithm was applied to the cleaned EEG data for each 

subject to remove eye movement artifacts, muscle noise, and eye blink artifacts [20]. This 

algorithm was also implemented using the EEGLAB toolbox. 

4.2.5 Sleep scoring of dual-modality data in eyes-closed vigilance state 

For each of the EEG datasets in the eyes-closed state, they were further examined for different 

sleep stages with the help of a qualified medical doctor. Specifically, the eyes-closed EEG data 

for each subject was first segmented into separate thirty-second (30 s) epochs. Then, with the 

help of the doctor, each thirty-second (30 s) epoch was assigned to either stage 0 (eyes-closed 

and awake, or EC), stage 1 (sleep stage 1 or SS1), or stage 2 (sleep stage 2 or SS2). The sleep 

scoring was performed in accordance with the American Association of Sleep Medicine (AASM) 

guidelines[78]. After sleep scoring, each subject’s resting-state eyes-closed EEG dataset was 
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separated into both sleeping-stage 1 EEG dataset and sleeping-stage 2 EEG dataset, in 

preparation for EEG-fNIRS wavelet coherence analysis. Table 1 shows the total duration (in 

minutes) of each subject’s EEG dataset in the eyes-opened state (EO), eyes-closed state (EC), 

sleeping-stage 1 (SS1) state, and sleeping-stage 2 (SS2) state.  

Table 4.1: The table shows the total duration (in minutes) of eyes-opened (EO), eyes-closed 

(EC), sleep-stage 1 (SS1), and sleep-stage 2 (SS2) EEG datasets for each of the eighteen subjects 

that were recruited for neurovascular coupling study. EEG data in EO, EC, and SS1 states were 

then used for wavelet coherence analysis 

 

 

4.2.6 Calculation of EEG power from aEEG in all vigilance states 

Amplitude-integrated EEG, or aEEG, is a recent method used for analyzing EEG to provide a 

more precise interpretation of neuronal signals originating from the scalp [28]. From the raw 

EEG signals, the data are first preprocessed (filtering for noise removal), before calculating the 

envelope of the signal. The envelope of the signal is referred to as the aEEG signal, which can 

then be used for other forms of analysis. In this study, aEEG analysis was used to calculate EEG 

power signal in three different EEG frequency bands (theta, alpha, and beta). After preprocessing 

of all EEG datasets in EEGLAB, each subject’s cleaned EEG data in each vigilance state (eyes-

opened or EO; eyes-closed or EC; sleep-stage 1 or SS1; and sleep-stage 2 or SS2) was further 

separated into three EEG frequency bands which were theta (4-8 Hz), alpha (8-12 Hz), and beta 

(12-30 Hz). The bandpass filtering was performed using an FIR bandpass filter implemented in 



81 

EEGLAB. Then, each subject’s 64-channel EEG data in each vigilance state was transformed 

into 64-channel power data by first calculating the envelope of the signal at each EEG electrode 

using the Hilbert transform. Then, power in each frequency band was calculated by squaring the 

complex-magnitude envelope. This step was performed for each frequency band in each 

vigilance state. The Hilbert transform is a well-known method for calculating power in different 

frequency bands [58, 59]. Then, the power at each EEG electrode was down-sampled to 8 Hz 

using a window-averaging process for each frequency band. Specifically, a moving window of 

length 0.5s with a step size of length 0.125s was used to perform the down-sampling to 8 Hz. 

The down-sampling was performed to match the sampling rate of EEG data to that of the fNIRS 

data, in preparation for wavelet coherence analysis. These down-sampled EEG power signals 

were then used for wavelet coherence analysis.  Fig. 4.2 shows a flowchart which outlines the 

procedure of EEG data processing used in this study. Also, section A2 in the appendix shows the 

mathematical procedure of the Hilbert transform. 

 

Figure 4.2: Flowchart of EEG data processing for neurovascular coupling study. This procedure 

was performed for all the EEG datasets shown in Table 4.1 
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4.2.7 FNIRS data preprocessing 

The fNIRS raw files of oxy-, deoxy, and total hemoglobin concentrations for each subject in both 

eyes-open (EO) and eyes-closed state (EC) were exported to MATLAB 2017 software for further 

analysis. In MATLAB 2017, an FIR bandpass filter with a frequency range of 0.01-0.2 Hz was 

applied to the fNIRS oxy-hemoglobin time series data for each subject in both EO and EC state. 

This filtering operation was implemented to remove unwanted physiological signals such as 

cardiac signals and respiratory artifacts from the data. Next, the preprocessed fNIRS files in the 

eyes-closed state were sectioned into both sleep-state 1 (SS1) and sleep-stage 2 (SS2) data, using 

the information gathered from the sleep scoring of the eyes-closed EEG data for each subject.   

4.2.8 Wavelet coherence analysis of simultaneous EEG-FNIRS data 

To perform wavelet coherence analysis of simultaneous EEG-FNIRS data, four locations or 

regions of interest were selected on the head. These four regions of interest were; the left frontal 

location, which was covered by EEG electrode ‘Fp1’, and corresponding FNIRS channel ‘5’; the 

right frontal location, which was covered by EEG electrode ‘Fp2’, and corresponding FNIRS 

channel ‘7’; the left occipital location, covered by EEG electrode ‘O1’, and corresponding 

FNIRS channel ‘124’; and the right occipital location, covered by EEG electrode ‘O2’, and 

corresponding FNIRS channel ‘126’. Figure 4.3 shows the four regions of interest that were 

selected for wavelet coherence analysis of simultaneous EEG-FNIRS data. 

The wavelet coherence analysis of simultaneous EEG-FNIRS data was performed using the 

‘wcoherence’ function in MATLAB 2017 software. For each region of interest, the wavelet 

coherence between the window-averaged envelope from the EEG electrode and the oxy-

hemoglobin time series signal from the corresponding fNIRS channel was calculated. This 

procedure was performed in three vigilance states (EO, EC, and SS1) for each frequency band 
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seperately. This step yielded a wavelet time-frequency coherence map for each subject in each 

vigilance state and for each frequency band. In addition, the wavelet coherence calculation was 

performed over a five-minute period. Subsequently, all the time-frequency coherence maps in 

each vigilance state were averaged across all subjects for each frequency band. This step formed 

an averaged time-frequency coherence map in each vigilance state for each frequency band 

across all subjects.  

 

 

Figure 4.3:  The four regions of interest on the head used for wavelet coherence of simultaneous 

EEG-FNIRS data in neurovascular coupling study. The left frontal location was covered by EEG 

channel ‘Fp1’ and corresponding FNIRS channel ‘5’. The right frontal location was covered by 

EEG channel ‘Fp2’ and corresponding FNIRS channel ‘7’. The left occipital location was 

covered by EEG channel ‘O1’ and corresponding FNIRS channel ‘124’. The right occipital 

location was covered by EEG channel ‘O2’ and corresponding FNIRS channel ‘126’ 

 

4.2.9 Analysis of endogenic, neurogenic, and myogenic components of EEG-fNIRS coherence 

Each subject’s wavelet time-frequency coherence map yielded a set of separate wavelet 

frequencies from 0.004 Hz up to 3.8 Hz. Then, from each subject’s time-frequency map, all 



84 

coherence values in the endogenic component band (0.01-0.02 Hz) which were outside the cone 

of influence (COI) were extracted and averaged. This step was performed in each vigilance state 

(EO, EC, and SS1) and for each frequency band. The cone of influence is shown as a white 

dashed line on the coherence maps generated in this study. Coherence values inside the dashed 

line are free of edge artifacts. All the averaged coherence values of the endogenic component 

were then grouped together across all subjects to form a bar plot of average coherence in each 

vigilance state and for each frequency band. Thus, for the endogenic component (0.01-0.02 Hz) 

of EEG-fNIRS coherence, there were three (3) separate bar plots of averaged coherence values 

for each of eyes-opened (EO), eyes-closed (EC), and sleep-stage 1 (SS1) respectively in each of 

theta, alpha, and beta frequency bands. Then, a one-way ANOVA test (p < 0.05) was performed 

on the averaged coherence values of the endogenic component in eyes-open, eyes-closed, and 

sleep-stage 1 to test for statistical significance. This was performed separately for each frequency 

band. If the ANOVA test showed significance, a subsequent post-hoc analysis using Tukey-

Kramer method was performed to detect the significant differences. Following the procedure just 

described, the neurogenic (0.02-0.04 Hz) and the myogenic components (0.04-0.15 Hz) of EEG-

fNIRS coherence were also analyzed separately for each region of interest shown in Figure 4.3. 

Figure 4.4 shows a flowchart which outlines the steps of the procedure described here. 

 



85 

 

Figure 4 4: Flowchart of steps for analysis of components of EEG-FNIRS coherence 

 

4.3 Results 

4.3.1 EEG-fNIRS coherence/coupling in left frontal location for alpha band 

For the alpha band, EEG-fNIRS coherence/coupling in the left frontal location occurred in all 

three vigilance states (Figure 4.5). In the eyes-open state, EEG-fNIRS coherence/coupling 

occurred predominantly within a frequency range of 0.016-0.25 Hz (Figure 4.5a). In the eyes-

closed state, EEG-fNIRS coherence/coupling also occurred at a frequency range of 0.016 – 0.25 

Hz (Figure 4.5b), In the sleep state (SS1), the predominant frequency range of EEG-fNIRS 

coherence/coupling also remained within 0.016-0.25 Hz (Figure 4.5c).  
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Figure 4.5 Averaged time-frequency coherence maps of EEG-FNIRS coherence in the left 

frontal location for the alpha-band envelope for (a) eyes-open (EO), (B) eyes-closed (EC); and 

(c) sleep-stage 1. The cone of influence is shown as areas on the maps that are outside the white-

colored dashed line. The blacked-out area covers coherence values of noisy origin. The color bar 

represents averaged coherence values across all subjects. 

 

4.3.2 EEG-fNIRS coherence/coupling in left frontal location for theta band 

For the theta band, EEG-fNIRS coherence/coupling in the left frontal location occurred in all 

three vigilance states (Figure 4.6). In the eyes-open state, EEG-fNIRS coherence/coupling 

occurred predominantly within a frequency range of 0.016-0.2 Hz (Figure 4.6a). In the eyes-

Envelope of α band  
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closed state, EEG-fNIRS coherence/coupling also occurred at a frequency range of 0.016 – 0.2 

Hz (Figure 4.6b). In the sleep state (SS1), the predominant frequency range of EEG-fNIRS 

coherence/coupling also remained within 0.016-0.2 Hz (Figure 4.6c)  

 

Figure 4.6: Averaged time-frequency coherence maps of EEG-FNIRS coherence in the left 

frontal location for the theta band envelope in (a) eyes-open (EO); (b) eyes-closed (EC); and (c) 

sleep-stage 1 (SS1). The cone of influence is shown as areas on the map that are outside the 

white-colored dashed line. The blacked-out region covers coherence values generated by noise. 

The color bar represents averaged coherence values across all subjects. 

 

Envelope of ϴ band  



88 

4.3.3 EEG-FNIRS coherence in left occipital location for alpha band 

For the alpha band, EEG-fNIRS coherence in the left occipital location occurred in all three 

vigilance states (Figure 4.7). In the eyes-open state, EEG-fNIRS coherence/coupling occurred 

predominantly within a frequency range of 0.016-0.2 Hz (Figure 4.7a). In the eyes-closed (EC) 

state, EEG-fNIRS coherence/coupling also occurred at a frequency range of 0.016 – 0.2 Hz 

(Figure 4.7b). In addition, the coherence values in the eyes-closed (EC) state were much stronger 

compared to values in the eyes-open (EO) state. In the sleep state (SS1), the EEG-fNIRS 

coherence/coupling remained within a frequency range of 0.016-0.2 Hz (Figure 4.7c). In sleep-

stage 1, the EEG-fNIRS coherence persisted over the whole-time period, and its coherence 

values appeared very brightly compared to all other vigilance states (Figure 4.7c).  
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Figure 4.7: Averaged time-frequency coherence maps of EEG=FNIRS coherence in the left 

occipital location for the alpha band envelope in (a) eyes-open (b)eyes-closed, and (c) sleep-

stage 1. The color bar represents averaged coherence values. The cone of influence is shown as 

areas on the map outside the white-dashed line. The blacked-out region covers coherence values 

generated by noise 

 

4.3.4 EEG-fNIRS coherence/coupling in right occipital location for alpha band 

For the alpha band, the EEG-fNIRS coherence in the right occipital location occurred in each 

vigilance state (Figure 4.8). In the eyes-open (EO) state, EEG-fNIRS coherence occurred within 

a frequency range of 0.06-0.2 Hz (Figure 4.8a). In the eyes-closed (EC) state, EEG-fNIRS 

coherence occurred within a frequency range of 0.016-0.2 Hz (Figure 4.8b). In sleep state (SS1), 

Envelope of α band  
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EEG-fNIRS coherence occurred within a frequency range of 0.016-0.2 Hz, and the coherence 

values showed greater intensity than other vigilance state (Figure 4.8c).  

 

 

Figure 4.8: Averaged time-frequency coherence maps of EEG=FNIRS coherence in the right 

occipital location for the theta- band envelope in (a) eyes-open (b)eyes-closed, and (c) sleep-

stage 1. The color bar represents averaged coherence values. The cone of influence is shown as 

areas on the map outside the white-dashed line. The blacked-out region covers coherence values 

generated by noise 

 

. 

 

Envelope of α band  
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4.3.5 Endogenic component of EEG-FNIRS coherence for alpha band in left frontal location. 

The maps shown in Figure 4.5 were further analyzed using the method shown in Figure 4.4. The 

analysis revealed that, in the left frontal location, the endogenic component of EEG-FNIRS 

coherence for the alpha frequency band was highest in eyes-closed (EC) state and was lowest in 

eyes-open (EO) state (Figure 4.9). Furthermore, ANOVA test showed a significant difference in 

average coherence values of the endogenic component across all vigilance states, and post-hoc 

analysis (Tukey-Kramer method) revealed a significant difference in average coherence of 

endogenic component between EO and EC states (Figure 4.9).  

 

Figure 4.9 : Bar plot showing the average coherence in endogenic component (0.01 – 0.02 Hz) of 

EEG-FNIRS coherence for alpha band envelope in the left frontal location, in three vigilance 

states of eyes-open (EO), eyes-closed (EC), and sleep-stage 1 (SS1). The plots marked ‘*’ 

represent a significant difference (p < 0.05, corrected using Tukey-Kramer post-hoc) in 

endogenic component of coherence between EO and EC states 

 

4.3.6 Myogenic component of EEG-FNIRS coherence for theta band in left frontal location 

The maps shown in Figure 4.6 were further analyzed using the method shown in Figure 4.4. The 

analysis revealed that, in the left frontal location, the myogenic component of EEG-FNIRS 

coherence/coupling for the theta frequency band was highest in sleep-stage 1 (SS1) state and was 
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lowest in eyes-open (EO) state (Figure 4.10). Furthermore, ANOVA test showed a significant 

difference in average coherence values of the myogenic component across all vigilance states, 

and post-hoc analysis (Tukey-Kramer method) revealed a significant difference in myogenic 

component between EO and SS1 states (Figure 4.10). 

 

Figure 4.10 : Bar plot showing the average coherence in myogenic component (0.01 – 0.02 Hz) 

of EEG-FNIRS coherence for theta band envelope in the left frontal location, in three vigilance 

states of eyes-open (EO), eyes-closed (EC), and sleep-stage 1 (SS1). The plots marked ‘*’ 

represent a significant difference (p < 0.05, corrected using Tukey-Kramer post-hoc) in 

myogenic component of coherence between EO and SS1 states. 

 

4.3.7 Endogenic component of EEG-FNIRS coherence for alpha band in left occipital location 

The maps shown in Figure 4.7 were further analyzed using the method shown in Figure 4.4. The 

analysis revealed that, in the left occipital location, the endogenic component of EEG-FNIRS 

coherence/coupling for the alpha frequency band was highest in sleep-stage 1 (SS1) state and 

was lowest during eyes-open (EO) state (Figure 4.11). Furthermore, ANOVA test showed a 

significant difference in average coherence values of the endogenic component across all 
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vigilance states, and post-hoc analysis (using Tukey-Kramer method) revealed a significant 

difference between EO and SS1 states, and between EC and SS1 states (Figure 4.11).  

 

Figure 4.11: Bar plot showing the average coherence in endogenic component (0.01 – 0.02 Hz) 

of EEG-FNIRS coherence for alpha band envelope in the left occipital location, in three 

vigilance states of eyes-open (EO), eyes-closed (EC), and sleep-stage 1 (SS1). The plots marked 

‘*’ represent a significant difference (p < 0.05, corrected using Tukey-Kramer post-hoc) in 

endogenic component of coherence between EO and SS1 states, and between EC and SS1 states. 

 

4.3.8 Endogenic component of EEG-FNIRS coherence for alpha band in right occipital location 

The maps shown in Figure 4.8 were further analyzed using the method shown in Figure 4.4. The 

analysis revealed that, in the right occipital location, the endogenic component of EEG-FNIRS 

coherence/coupling in the alpha frequency band was highest in eyes-closed (EC) state and was 

lowest during eyes-open (EO) state (Figure 4.12). Furthermore, ANOVA test showed a 

significant difference in average coherence values of the endogenic component across all 

vigilance states, and post-hoc analysis (Tukey-Kramer method) revealed a significant difference 

between EO and EC states (Figure 4.12).  
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Figure 4.12: Bar plot showing the average coherence in endogenic component (0.01 – 0.02 Hz) 

of EEG-FNIRS coherence for alpha band envelope in the right occipital location, in three 

vigilance states of eyes-open (EO), eyes-closed (EC), and sleep-stage 1 (SS1). The plots marked 

‘*’ represent a significant difference (p < 0.05, corrected using Tukey-Kramer post-hoc) in 

endogenic component of coherence between EO and EC states. 

 

4.4 Discussion 

In this study, analytic envelopes of EEG signals in three different frequency bands (theta, alpha, 

and beta) were first down sampled to FNIRS sampling rate (8 Hz). Then, wavelet coherence 

analysis was used to calculate the coherence/coupling in time-frequency between the down 

sampled EEG signals and FNIRS signals at four different brain locations as shown in Figure 4.3. 

In addition, statistical analyses were performed to investigate the endogenic, neurogenic, and 

myogenic components of neurovascular coupling in each of the three separate frequency bands.  

4.4.1 Low-frequency oscillations in EEG-FNIRS coherence for three vigilance states 

At each of three brain locations (left frontal, left occipital, and right frontal), the EEG-FNIRS 

coherence occurred in an extremely low frequency range of 0.016 – 0.2 Hz (Figs 4.5-4.8). This 

finding suggests that EEG-FNIRS coherence/coupling is dominated mainly by low-frequency 

oscillations. Low-frequency oscillations in brain signals are known as infra-slow oscillations in 
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the neuroimaging literature. These oscillations have been severally linked with neurovascular 

coupling processes from previous studies. For example, a study by Nikulin et al detected the 

occurrence of infra-slow oscillations in EEG signals, with the frequencies in the 0.01 – 0.14 Hz 

range [79]. In addition, the infra-slow frequencies in EEG showed a strong coherence with NIRS 

signals in eight subjects [79], which suggests that the infra-slow oscillations in EEG signals have 

some close relationship with hemodynamic processes. In another study, Roche-Labarbe et al [80] 

showed that EEG-fNIRS coupling/coherence during quiet sleep in neonates occurred within a 

frequency range of 0.05-0.1 Hz, which is in the range of infra-slow oscillations. Also, Zanatta et 

al [71] observed coupling between EEG power and blood flow velocity in the middle cerebral 

artery (MCA) occurred at a mean frequency of 0.06 Hz in subjects under both moderate and deep 

anesthesia. The occurrence of infra-slow oscillations during neurovascular coupling in sleep has 

also been reported in a combined EEG-fMRI study [81]. Infra-slow oscillations in hemodynamic 

signals are thought to reflect arterial vasomotion, which occurs during neurovascular coupling in 

the brain [75]. The findings in this study provide strong evidence to support the role of infra-

slow oscillations in neurovascular coupling. Furthermore, this finding indicates that the infra-

slow frequencies for neuronal signals are found in analytic envelopes of EEG signals in each of 

the different EEG frequency bands.  

Furthermore, the infra-slow oscillations that control EEG-fNIRS coherence/coupling did not 

occur at just one location; their occurrence was reported at three separate locations on the head 

(Figures 4.5-4.8). Infra-slow oscillations in EEG signals were also reported at several locations 

in a previous study, indicating that they are not affected by volume conduction [79]. This finding 

gives further proof that infra-slow oscillations is tightly linked to neurovascular coupling. Also, 

wavelet coherence analysis was used to study EEG-fNIRS coupling/coherence during the 
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transition from wakeful rest to a sleep state in this study.  Wavelet coherence analysis has been 

previously used to show that coupling between amplitude-integrated EEG (aEEG) and NIRS 

signal occurs within slow frequencies in neonates [76]. Therefore, this study also validates the 

use of wavelet coherence method as a tool for quantitatively measuring neurovascular coupling 

in different vigilance states of the brain. 

4.4.2 Changes in endogenic component of neurovascular coupling across three vigilance states 

The endogenic component of neurovascular coupling changed significantly across vigilance 

states at three different brain sites (Figs 4.9, 4.11-12). In two locations, there was a significant 

difference (p < 0.05, corrected) between endogenic component in eyes-open state and eyes-

closed state only, and both for alpha band (Figs 4.9, 4.12). In another separate brain site, the 

endogenic component in eyes-open state and in sleep-stage 1 state were significantly different 

for alpha band, while the endogenic component in eyes-open state and eyes-closed state were 

significantly different, also for alpha band (Fig. 4.11). A previous fNIRS study has shown 

predominant endothelial vasomotor activity in the brain during sleep, with higher vasomotor 

activity during light non-REM sleep compared to deeper non-REM sleep [82]. This finding, 

coupled with the results from our study, suggests that the transition from an awake to sleep state 

in the brain may be associated with a gradual increase in endothelial activity of neurovascular 

activity from eyes-open state to sleep state. In this study, the left occipital location shows a 

gradual increase in endothelial component activity from eyes-open state to sleep-state 1 

(Fig.4.11). This finding points to an important role of endothelial activity within the occipital 

area during the brain’s transition from awake to sleep state. Endothelial activity is causally 

linked to nitric oxide (NO) release, which is necessary for vasodilation [82]. So, it is possible 
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that during the brain’s transition to sleep state, more NO is released in the occipital area to 

induce increased blood flow which corresponds to increased neurovascular coupling. 

4.4.3 Changes in myogenic component of neurovascular coupling across vigilance states 

During the brain’s transition from an awake to sleep state, the myogenic component in sleep-

state 1 increased significantly compared to that of eyes-open state (Fig.4.10).  Myogenic 

processes refer to activity of smooth muscle cells underlying vessel walls in the brain. The 

smooth muscle cells undergo contraction and relaxation as blood flow increases or decreases in 

the brain. Myogenic vasomotor activity in the brain during sleep has also been reported by Zhang 

et al [25].  In addition, Rosas et al have shown that there is high coherence/coupling  between 

EEG signals in theta band and cerebral blood flow during quiet sleep in neonates [77]. The 

findings here show that the brain’s transition to sleep may also affect myogenic processes of 

coupling in the brain.  

4.4.4 Further work 

This study should be considered as a first step in quantitatively measuring neurovascular 

coupling of the brain in different vigilance states. In further studies, the analysis of EEG-FNIRS 

coherence in different vigilance states could be extended to more locations or sites on the brain. 

Furthermore, the coupling between EEG signals in different EEG frequency bands and 

deoxyhemoglobin or total hemoglobin concentrations could also be examined in each vigilance 

state using wavelet coherence analysis. Furthermore, the direction of the coupling between EEG 

signals in different frequency bands and hemodynamic signals from FNIRS could also be 

investigated using other methods such as Granger causality analysis [83] or phase transfer 

entropy[84]. Finally, the other components that affect neurovascular coupling could also be 

studied for a richer understanding of neurovascular coupling in the brain.  
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4.5 Limitations 

A previous study has shown weak correlations between neuronal and hemodynamic signals in 

resting state of the brain [89]. Therefore, our hypothesis of neurovascular coupling during 

different vigilance states may be limited by weak interactions between neuronal and 

hemodynamic signals. Another limitation of this study could be the placement of the EEG 

electrodes on the scalp; they were not placed according to the standard 10-10 or 10-20 system of 

EEG electrode placement. In addition, the thirty-second (30 s) sleep data for some subjects may 

be insufficient for data analysis during sleep. Finally, the maps provide a qualitative result of 

EEG-FNIRS coherence and may need to be subjected to more rigorous statistical analysis, such 

as described in ref. 76. 

4.6 Conclusion 

Overall, this study has demonstrated the use of the simultaneous EEG-FNIRS instrumentation 

for investigating the coupling between neuronal and hemodynamic signals of the brain during the 

transition from wakeful resting state to sleep state. In addition, this study shows that the coupling 

of neuronal and hemodynamic signals occurs within infra-slow oscillations (~0.1 Hz), which 

corroborates other studies using EEG-FMRI and/or transcranial Doppler flowmetry methods. 

Also, the brain’s transition from an awake state to sleep state was shown to be associated with 

changes in neurovascular coupling strength. Specifically, the endogenic component of coupling 

varied significantly across vigilance states from eyes-open to sleep-stage 1, suggesting that the 

endogenic processes during neurovascular coupling are important signatures of consciousness in 

the brain. 

.  
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CHAPTER 5  

5. Neurovascular coupling in voluntary breath-holding quantified by wavelet 

coherence analysis  

5.1 Background 

           Neurovascular coupling in the brain refers to the tight coupling between neuronal 

fluctuations and the corresponding hemodynamic response in the brain [66]. The brain requires a 

continuous supply of blood to provide energy for its many activities; this continuous supply of 

blood to the brain is induced by coupling between neuronal activity, cerebral blood flow, and 

metabolism [67]. According to previous studies, neurovascular coupling is necessary to maintain 

the cerebral autoregulation in the brain [68]. Also, the impairment of neurovascular coupling in 

the brain has been linked to some diseases such as ischemic stroke, hypertension, and 

Alzheimer’s disease[11].  In addition, neurovascular coupling may also be impaired in small 

vessel disease [12]. 

During apnea, cerebral blood flow to the brain is severely affected due to hypoxia[85]. Hypoxia 

in turn causes cerebral vasodilation which increases cerebral blood flow to the brain[86]. 

Hypothetically, the increase in cerebral blood flow should influence neurovascular coupling in 

the brain. However, the neurovascular coupling in the brain during voluntary apnea has not been 

previously studied. A core component of neurovascular coupling is the endothelial component or 

process[75]. The endothelial component of neurovascular coupling occurs within a frequency 

range of 0.01 – 0.02 Hz.[75]. Endothelial dysfunction has been linked to obstructive sleep apnea 

disease[85] Thus, knowledge of neurovascular coupling in different conditions of voluntary 

apnea will provide some insight into how respiratory diseases alter neurovascular coupling in the 

brain. 
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The neurovascular coupling in different states of voluntary breath-holding has not been 

investigated using simultaneous EEG-fNIRS measurement. In this study, a whole-head EEG-

FNIRS instrumentation set up was used to collect brain data in three different conditions of 

voluntary apnea: rest/normal breathing (EO), short breath-hold (BR1), and long breath-hold 

(BR2). The data were collected from a sample of 8 subjects at the University of Texas at 

Arlington. Furthermore, envelopes of EEG power in theta, alpha, and beta bands were calculated 

and then down sampled to match FNIRS sampling frequency (8 Hz). Then, wavelet coherence 

analysis was used to quantify neurovascular coupling in the brain for each condition of apnea. 

The analysis was performed at four different locations of the brain: left frontal, left occipital, 

right frontal, and right occipital locations. The left frontal location was covered by EEG channel 

‘Fp1’ and corresponding channel ‘5’. The right frontal location was covered by EEG channel 

‘Fp2’ and corresponding channel ‘7’. Also, the left occipital location was covered by EEG 

channel ‘O1’ and corresponding channel ‘124’. Lastly, the right occipital location was covered 

by EEG channel ‘O2’ and corresponding channel ‘126’. 

5.2 Methods 

5.2.1 Subjects 

         8 young subjects (6 males and 2 females) with a mean age of 23.5 years (standard deviation 

= 2.5 years) were recruited for this study.  These subjects were chosen from the student 

population of University of Texas at Arlington. The inclusion criteria were as follows: either sex 

(male or female) and in an age range of 18 – 29 years old. The exclusion criteria were as follows: 

(1) diagnosed with a psychiatric or sleeping disorder, (2) history of a neurological condition, or 

severe brain injury, or violent behavior, (3) have ever been institutionalized/imprisoned, (4) 

current intake of any medicine or drug, or (5) currently pregnant. In addition, none of the 



101 

participants were smokers or had diabetes. The study protocol was approved by the institutional 

review board (IRB) at The University of Texas at Arlington and complied with all applicable 

federal and NIH guidelines. Informed consent was obtained from each participant prior to the 

experiments. 

5.2.2 EEG-FNIRS Instrumentation 

Brain activity in all subjects was acquired using a dual-modality instrumentation set-up. 

Specifically, the data were collected using both a 64-channel EEG instrument (Biosemi, 

Netherlands) and a 133-channel fNIRS instrument (Shimadzu corporation, Japan). Furthermore, 

a dual-modality cap (Shimadzu corporation, Japan) was used to acquire both EEG and fNIRS 

measurements from each subject. The dual-modality cap positioned the fNIRS optodes according 

to a whole-head layout which was already designed in the Shimadzu fNIRS machine. 

Furthermore, the 64 EEG channels were inserted into the holes of the dual-modality cap to cover 

specific fNIRS channels. The fNIRS machine uses three wavelengths of 780nm, 805nm, and 

830nm to calculate oxy-, deoxy-, and total hemoglobin concentrations at each channel location. 

Furthermore, the sampling rate for the EEG data acquisition was 1 kHz, while the sampling rate 

for the fNIRS data acquisition was 8 Hz. In addition, the simultaneous EEG-fNIRS acquisition 

was controlled by a desktop computer which was connected to both the EEG instrument and 

fNIRS instrument via a USB port. Figure 5.1 shows the instrumentation setup which was used in 

this study. 
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Figure 5.1: Instrumentation setup used for breath hold study. The simultaneous EEG-FNIRS 

acquisition was carried out on a subject using a dual-modality head cap which was placed on the 

subject’s head as shown in (a). The simultaneous EEG-FNIRS acquisition was performed using 

(b) 64-channel EEG instrument and (c) 133-channel FNIRS measurement. The 133 channels of 

FNIRS were positioned according to the whole- head channel layout shown in (d). Red circles 

correspond to 40 FNIRS sources, while blue circles correspond to 40 FNIRS detectors. The 

numbers shown in the channel layout represent the FNIRS channels.  

 

5.2.3 Simultaneous EEG-fNIRS Data acquisition 

Each subject was seated in a comfortable chair for the whole duration of the experiment. The 

experimental protocol consisted of, first, a 5-minute period of continuous resting-state data, and 

then, 10 separate blocks of data acquisition in the breath-hold state. Specifically, in the 5-minute 

period, simultaneous EEG-fNIRS data was collected in eyes-open (EO) resting state condition. 

Then, for the first set of 5 blocks, each subject alternated between a 40s period of rest and 10s 

period of breath-hold in each block (Figure 5.2A). Also, simultaneous EEG-fNIRS data was 

collected for each block. For the second set of 5 blocks, each subject alternated between a 50s 

period of rest and 20s period of breath-hold in each block (Figure 5.2B). Simultaneous EEG-

fNIRS data was also collected for each block. The total time for the experiment protocol was 900 

seconds (15 minutes). The experimental protocol for the study was programmed on a computer 

screen which the subject viewed and followed the instructions. In addition, the simultaneous 
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EEG-fNIRS measurements were conducted in a well-ventilated room with minimal noise. Also, 

phones and other electromagnetic devices were not allowed in the lab or on the subject during 

the whole duration of the experiment. Furthermore, each subject was positioned away from 

electrical sources to prevent contamination of data by 60 Hz power line noise. 

 

 

Figure 5.2: Block-type stimulus protocol used for breath-hold study. For the first stage of data 

acquisition shown in (A), each subject had a 10 second period of rest which was followed by a 

40 second period of voluntary breath-holding. This block paradigm was repeated 5 times. For the 

second stage of data acquisition shown in (B), each subject had a 20 second period of rest which 

was followed by a 50 second period of voluntary breath-holding. This was also repeated 5 times 

 

5.2.4 EEG data processing 

Data preprocessing of EEG data was performed using the EEGLAB toolbox. EEGLAB is a well-

known electrophysiological toolbox that has been developed for EEG data analysis [26]. Firstly, 

all the EEG datasets were exported into the EEGLAB toolbox which was installed in MATLAB 

2017 software.  Next, the datasets were down-sampled to 256 Hz. Next, a bandpass filter with a 

frequency range of 1 – 80 Hz was applied to each EEG dataset to remove unwanted signals. 

Furthermore, each subject’s EEG data channel locations were set to match standard MNI 
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coordinates in EEGLAB. Then, the EEG time series signal at each EEG electrode was inspected 

for extremely large amplitudes and electromyographic artifacts. Such noisy electrodes were 

corrected using spherical interpolation method in EEGLAB toolbox. After channel interpolation, 

the EEG data were re-referenced to an average reference for each subject.  Furthermore, power 

line noise in the data was removed using the Clean line algorithm in EEGLAB, with the 

parameters set to default values. Finally, an Independent Component Analysis (ICA) algorithm 

was applied to the cleaned EEG data for each subject to remove eye movement artifacts, muscle 

noise, and eye blink artifacts [20]. This algorithm was also implemented using the EEGLAB 

toolbox. 

5.2.5 Envelope signal calculation 

After preprocessing of all EEG datasets in EEGLAB, each subject’s cleaned EEG data for each 

state (eyes-open or EO, shorter breath-hold or BR1 and longer breath-hold or BR2) was further 

separated into three EEG frequency bands which were theta (4-8 Hz), alpha (8-12 Hz), and beta 

(12-30 Hz). The bandpass filtering was performed using an FIR bandpass filter implemented in 

EEGLAB. Then, each subject’s 64-channel EEG data in each breath-hold state was transformed 

into 64-channel power data by first calculating the envelope of the signal at each EEG electrode 

using the Hilbert transform, and then squaring the envelope. This step was performed for each 

frequency band. The Hilbert transform is a well-known method for calculating power in different 

frequency bands [58, 59]. Then, the power at each EEG electrode was down-sampled to 8 Hz 

using a window-averaging process for each frequency band. Specifically, a moving window of 

length 0.5s and a step size of length 0.125s was used to perform the down-sampling. The down-

sampling was performed to match the sampling rate of EEG data to that of the fNIRS data, in 

preparation for wavelet coherence analysis. These down-sampled EEG power signals were then 
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used for wavelet coherence analysis.  Figure 5.3 shows a flowchart which outlines the procedure 

of EEG data processing used in this study. Also, section A2 in the appendix shows the 

mathematical explanation of the Hilbert transform. 

 

Figure 5.3: Flowchart of EEG data processing pipeline for breath-holding study.  

5.2.6 FNIRS data preprocessing 

The fNIRS raw files of oxy-, deoxy, and total hemoglobin concentrations for each subject in both 

eyes-open (EO), shorter breath-hold (BR1), and longer breath-hold (BR2) were exported to 

MATLAB 2017 software for further analysis. Firstly, the fNIRS oxyhemoglobin data in each 

condition was detrended to remove trends in the data. Then, an FIR bandpass filter with a 

frequency range of 0.01-0.2 Hz was applied to the fNIRS oxy-hemoglobin time series data for 

each subject in the three conditions. This filtering operation was implemented to remove 

unwanted physiological signals such as cardiac signals and respiratory artifacts from the data.  
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5.2.7 Wavelet coherence analysis of simultaneous EEG-fNIRS data 

To perform wavelet coherence analysis of simultaneous EEG-fNIRS data, four locations or 

regions of interest were selected on the head. These four regions of interest were; the left frontal 

location, which was covered by EEG electrode ‘Fp1’, and corresponding fNIRS channel ‘5’; the 

right frontal location, which was covered by EEG electrode ‘Fp2’, and corresponding fNIRS 

channel ‘7’; the left occipital location, covered by EEG electrode ‘O1’, and corresponding fNIRS 

channel ‘124’; and the right occipital location, covered by EEG electrode ‘O2’, and 

corresponding fNIRS channel ‘126’. Figure 5.4 shows the four regions of interest that were 

selected for wavelet coherence analysis of simultaneous EEG-fNIRS data. 

For each region of interest, the wavelet coherence between the window-averaged envelope from 

the EEG electrode and the oxy-hemoglobin time series signal from the corresponding fNIRS 

channel was calculated. This procedure was performed under the three different conditions (EO, 

BR1, and BR2) for each frequency band seperately. This step yielded a wavelet time-frequency 

coherence map for each subject in each condition and for each frequency band. Subsequently, all 

the time-frequency coherence maps for each condition were averaged across all subjects for each 

frequency band to form a single time-frequency coherence map in each condition for each 

frequency band. The wavelet coherence analysis of simultaneous EEG-fNIRS data was 

performed using the ‘wcoherence’ function in MATLAB 2017 software. 
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Figure 5.4: The four regions of interest on the human head used for wavelet coherence of 

simultaneous EEG-FNIRS data in voluntary breath-holding. The left frontal region was covered 

by EEG channel ‘Fp1’ and corresponding FNIRS channel ‘5’. The right frontal region was 

covered by EEG channel ‘Fp2’ and corresponding FNIRS channel ‘7’. The left occipital region 

was covered by EEG channel ‘O1’ and corresponding FNIRS channel ‘124’. The right occipital 

region was covered by EEG channel ‘O2’ and corresponding FNIRS channel ‘126’. 

 

5.2.8 Analysis of endogenic, neurogenic, and myogenic components of EEG-fNIRS coherence 

Each subject’s wavelet time-frequency coherence map yielded a set of separate wavelet 

frequencies from 0.004 Hz up to 3.8 Hz. Then, from each subject’s time-frequency map, all 

coherence values for the endogenic component band (0.01-0.02 Hz) which were outside the cone 

of influence (COI) were extracted and averaged. This step was performed in each condition (EO, 

BR1, and BR2) and for each frequency band. Then, all the averaged coherence values of the 

endogenic component for each condition were grouped together across all subjects to form bar 

plots of average coherence. This was done for each frequency band. Thus, for the endogenic 

component (0.01-0.02 Hz) of EEG-fNIRS coherence, there were three (3) separate bar plots of 

averaged coherence values for each of eyes-opened (EO), shorter breath-hold (BR1), and longer 

breath-hold (BR2) respectively in each of theta, alpha, and beta frequency bands. Then, a one-
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way ANOVA test (p < 0.05) was performed on the averaged coherence values of the endogenic 

component in EO, BR1, and BR2 to test for statistical significance. This was performed 

separately for each frequency band. If the ANOVA test showed significance, a subsequent post-

hoc analysis using Tukey-Kramer method was performed to detect the significant differences. 

Following this procedure just described, the neurogenic (0.02-0.04 Hz) and the myogenic 

components (0.04-0.15 Hz) of EEG-fNIRS coherence/coupling were also analyzed separately for 

each region of interest shown in Figure 3. Figure 5.5 shows a flowchart which outlines the steps 

of the procedure described here. 

 

Figure 5.5: Flowchart of the steps in analyzing endogenic, myogenic, and neurogenic 

components of EEG-FNIRS coherence/coupling. 

 

5.3 Results 

5.3.1 EEG-fNIRS coherence in left frontal location for beta band 

For beta band, the EEG-FNIRS coherence/coupling in the left frontal location occurred within a 

frequency range of 0.016 – 0.25 Hz in all three states of voluntary breath-holding (Figure 5.6). 

For the normal breathing or EO state, the coherence amplitude values showed some intensity 



109 

during the time duration (Figure 5.6a). For the short breath-hold or BR1 state, the coherence 

amplitude values showed less intensity during the time duration (Figure 5.6b). For the longer 

breath-hold or BR2 state, the coherence amplitude showed greater intensity during the time 

duration (Figure 5.6c) 

 

 

 

Figure 5.6: Averaged time-frequency coherence maps of beta-band envelope in the left frontal 

location for (A) normal breathing EO state, (B) short breath-hold or BRI state, and (c) longer 

breath-hold or BR2 state. The color bar represents the averaged EEG-FNIRS coherence. The 

cone of influence is shown as areas on the map that are outside the white-colored dashed line. 

The blacked-out region covers the coherence values generated by noise. 

Envelope of β band  
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5.3.2 EEG-fNIRS coherence in right occipital location for theta band 

For theta band, the EEG-FNIRS coherence in the right occipital location occurred within a 

frequency range of 0.016 – 0.25 Hz in all three states of voluntary breath-holding (Figure 5.7). 

For the normal breathing or EO state, the coherence amplitude values showed some bright spots 

of intensity during the time duration (Figure 5.7a). For the short breath-hold or BR1 state, the 

coherence amplitude values showed more bright spots of intensity during the time duration 

(Figure 5.7b). For the longer breath-hold or BR2 state, the coherence amplitude also showed 

more bright spots of intensity during the time duration (Figure 5.7c)  
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Figure 5.7:  Averaged time-frequency coherence maps of theta-band envelope in the right 

occipital location for (A) normal breathing EO state, (B) short breath-hold or BRI state, and (c) 

longer breath-hold or BR2 state. The color bar represents the averaged EEG-FNIRS coherence. 

The cone of influence is shown as areas on the map that are outside the white-colored dashed 

line. The blacked-out region covers the coherence values generated by noise. 

 

5.3.3 EEG-fNIRS coherence in right occipital location for alpha band 

For theta band, the EEG-FNIRS coherence/coupling in the right occipital location occurred 

within a frequency range of 0.016 – 0.25 Hz in all three states of voluntary breath-holding 

(Figure 5.8). For normal breathing state, the coherence map showed few bright spots of intensity 

during the time duration (Figure 5.8a). For the short breath-hold, the coherence map also showed 

some few bright spots of intensity during the time duration (Figure 5.8b). For the long breath-

Envelope of ϴ band  
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hold, the coherence map showed more bright spots of intensity during the time duration (Figure 

5.8c). 

 

 

Figure 5.8: Averaged time-frequency coherence maps of alpha-band envelope in the right 

occipital location for (A) normal breathing EO state, (B) short breath-hold or BRI state, and (c) 

longer breath-hold or BR2 state. The color bar represents the averaged EEG-FNIRS coherence. 

The cone of influence is shown as areas on the map that are outside the white-colored dashed 

line. The blacked-out region covers the coherence values generated by noise. 

 

Envelope of α band  
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5.3.4 Endogenic component in left frontal location for beta band 

The maps shown in Figure 5.6 were further analyzed using the method shown in Figure 5.5. The 

analysis revealed that the endogenic component of EEG-fNIRS coherence in the left frontal 

location for beta band was highest in BR2 state and lowest in EO state (Figure 5.9). Furthermore, 

ANOVA analysis and subsequent post-hoc test showed that the endogenic component was 

significantly different between these two states (Figure 5.9) 

 

Figure 5.9: Bar plot showing average coherence in endogenic component for beta-band envelope 

in left frontal location, in three states of eyes-open (EO), short breath-holding (BR1), and longer 

breath-holding (BR2). The plots marked ‘*’ indicate a significant difference between EO and 

BR2 states (p < 0.05, corrected) 

 

5.3.5 Endogenic component in right occipital location for theta band 

The maps shown in Figure 5.7 were further analyzed using the method shown in Figure 5.5. The 

analysis revealed that the endogenic component of EEG-fNIRS coherence/coupling in the right 

occipital location for theta band was highest in BR2 state and lowest in BR1 state (Figure 5.10). 

Furthermore, ANOVA analysis and subsequent post-hoc test showed that the endogenic 

component was significantly different between the two states (Figure 5.10) 
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Figure 5.10: Bar plot showing average coherence in endogenic component for theta-band 

envelope in right occipital location, in three states of eyes-open (EO), short breath-holding 

(BR1), and longer breath-holding (BR2). The plots marked ‘*’ indicate a significant difference 

between BR1 and BR2 states (p < 0.05, corrected). 

 

5.3.6 Neurogenic component in right occipital location for theta band 

The maps shown in Figure 5.7 were further analyzed using the method shown in Figure 5.5. The 

analysis revealed that the neurogenic component of EEG-fNIRS coherence/coupling in the right 

occipital location for theta band was highest in BR2 state and lowest in EO state (Figure 5.11). 

Furthermore, ANOVA analysis and subsequent post-hoc test showed that the neurogenic 

component was significantly different between these two states (Figure 5.11). 
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Figure 5.11: Bar plot showing average coherence in neurogenic component for theta-band 

envelope in right occipital location, in three states of eyes-open (EO), short breath-holding 

(BR1), and longer breath-holding (BR2). The plots marked ‘*’ indicate a significant difference 

between EO and BR2 states (p < 0.05, corrected) 

5.3.7 Endogenic component in right occipital location for alpha band 

The maps shown in Figure 5.8 were further analyzed using the method shown in Figure 5.5. The 

analysis revealed that the endogenic component of EEG-fNIRS coherence in the right occipital 

location for alpha band was highest in BR2 state and lowest in EO state (Figure 5.12). 

Furthermore, ANOVA analysis and subsequent post-hoc test showed that the endogenic 

component was significantly different between these two states (Figure 5.12). 
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Figure 5.12: Bar plot showing average coherence in endogenic component for alpha-band 

envelope in right occipital location, in three states of eyes-open (EO), short breath-holding 

(BR1), and longer breath-holding (BR2). The plots marked ‘*’ indicate a significant difference 

between EO and BR2 states (p < 0.05, corrected). 

 

5.4 Discussion 

The aim of this study was to investigate neurovascular coupling in three different states of 

breath-hold using simultaneous EEG-FNIRS measurements. Data were collected from 8 subjects 

in three different states of breath-hold namely, normal breathing in eyes-open state (EO), short 

breath-hold or BR1, and long breath-hold or BR2. Furthermore, the study used wavelet 

coherence analysis to quantify EEG-FNIRS coupling for each state in four different regions of 

interest, as shown in Figure 5.4. The study was carried out in compliance with NIH guidelines. 

5.4.1 Difference in EEG-fNIRS coupling between EO and BR2 states 

A significant difference in EEG-fNIRS coupling between EO and BR2 states was reported in this 

study. Specifically, the endogenic component of neurovascular coupling was different between 

these two states in the left frontal location, for beta band (Figure 5.9); and in the right occipital 

location, for alpha band (Figure 5.12). Also, the neurogenic component of neurovascular 

coupling was different in these two states at the right occipital location, in theta band (Figure 
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5.11). These findings of significant difference in EEG-fNIRS coupling between EO and BR2 

states indicate that the neurovascular coupling in the brain is significantly altered during longer 

breath-hold. Specifically, the results show that the neurovascular coupling during the longer 

breath-hold is increased. A possible explanation for this finding is that during the longer breath-

hold, the blood flow to the brain is significantly disrupted, and when normal breathing resumes 

after the longer breath-hold, the heart supplies a great volume of blood to the brain to 

compensate for the previous disruption. Because cerebral blood flow is tightly linked to 

neurovascular coupling, this increased blood flow results in a significant increase in 

neurovascular coupling.  A previous study has shown that there is indeed an increased cerebral 

blood flow after a period of apnea[86]. Specifically, the study showed that during apnea (long 

breath-hold), the arterial oxygen content is decreased, hence the need for the body to compensate 

for this decrement by increasing cerebral blood flow to maintain cerebral delivery of oxygen to 

the neurons in the brain[86]. Furthermore, from the findings of this study, it is speculated that the 

endogenic component of neurovascular coupling is significantly altered during voluntary breath-

holding. A previous study has shown that there is significant endothelial dysfunction in 

obstructive sleep apnea disease[85]. The findings here therefore show the significance of 

endothelial function in neurovascular coupling during breath-holding. The change in neurogenic 

component should be interpreted with caution, as it was reported in only one site (Figure 5.11). 

Also, the findings show that the changes in coupling between EO and BR2 are in theta, alpha, 

and beta frequency bands (Figures 5.9-5.12). A study has reported changes in beta rhythm for 

sleep apnea patients[87]. Theta and alpha bands are active in wakeful resting-states of the brain, 

which was the condition of the subjects when the study was conducted. Hence, the theta and 

alpha bands may indicate that the subjects were in resting-state condition. 
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5.4.2 Difference in EEG-fNIRS coupling between BR1 and BR2 states 

A significant difference of neurovascular coupling strength between BR1 and BR2 state was also 

reported in this study. This was reported in only one location in theta band (Figure 5.10). This 

finding could be explained as follows: during short voluntary breath-hold, the amount of 

compensation needed in the form of increased blood flow is not as much as during longer breath-

hold. So, there is more blood flow to the brain after a period of long breath-hold compared to a 

period of short breath-hold. This results in a higher neurovascular coupling for longer breath-

hold than for shorter breath-hold. However, the findings here should also be interpreted with 

some caution, as this result was not obtained at the other three brain sites.  

5.4.3 Limitations 

A possible limitation of this study could be the placement of the EEG electrodes on the scalp; 

they were not placed according to the standard 10-10 or 10-20 system of EEG electrode 

placement. Also, it is possible that repeated measures ANOVA may provide better statistical 

results than the one-way ANOVA test that was used in this study. 

5.5 Conclusion 

Conclusively, this study has reported a significant increase in neurovascular coupling strength in 

longer periods of voluntary breath-holding compared to periods of normal breathing/rest. This is 

because, after a longer period of breath-hold, there is a resulting increase in cerebral blood flow 

to compensate for the decrease in oxygen in the brain, and this result in an increased 

neurovascular coupling.  
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CHAPTER 6  

6. SUMMARY AND FUTURE WORK 

6.1 Summary 

      My doctoral research work was divided into 3 aims. In Aim 1a, I investigated resting-state 

EEG functional connectivity at the source level using ELORETA-ICA method. This study was 

performed to replicate the results of previous work by Aoki et al, and to show the feasibility of 

ELORETA-ICA method as a tool for EEG functional connectivity analyses. The results of this 

study were reported in Chapter 2. For Aim 1b, I investigated EEG functional connectivity at the 

sensor-level in four different vigilance states (eyes-open, eyes-closed, sleep-stage 1, and sleep-

stage 2) using graph theory analysis. The results of this study were reported in Chapter 3. In Aim 

2, I investigated neurovascular coupling in three different vigilance states (eyes-open, eyes-

closed, and sleep-stage 1) using wavelet coherence method. In Aim 3, I investigated 

neurovascular coupling in three separate periods of voluntary breath-holding (normal breathing, 

short-period breath-holding, and long-period breath-holding). In addition, 3 frequency 

components of neurovascular coupling, which were the endogenic (0.01 – 0.02 Hz), neurogenic 

(0.02 – 0.04 Hz), and myogenic components (0.04 – 0.15 Hz) were quantified for each vigilance 

state/breath-hold state in each of three EEG frequency bands of theta, alpha, and beta. 

Furthermore, the neurovascular coupling of the brain for each vigilance state/breath-hold was 

investigated in four separate brain locations (Figs. 4.3 & 5.4). The study on neurovascular 

coupling in different vigilance states and in voluntary breath-holding are reported in Chapters 4 

& 5 respectively. 

In the study of functional connectivity in resting-state, I identified four separate resting state 

networks and their associated frequency bands from 64-channel EEG data (Figs. 2.4 – 2.7). In 
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addition, I identified two resting-state networks and their associated frequency bands from 19-

channel EEG (Figs. 2,4 – 2.7). The results here indicated that more resting-state networks can be 

identified from EEG data obtained using many channels (64 channels) compared to EEG data 

obtained using fewer channels (19 channels). In addition, the results here indicated that EEG 

modality provides a cheaper and easier alternative of investigating functional connectivity 

compared to other conventional methods such as FMRI. In the study of functional connectivity 

in different vigilance states, I reported a decrease in functional segregation (global clustering 

coefficient) from wakeful states (both eyes-open and eyes-closed state) to sleep states (both 

sleep-stage 1 and sleep-stage 2) majorly in alpha and beta bands (Fig. 3.4c&d).  Also, I reported 

an increase in functional integration (global efficiency) from wakeful states (both eyes-open and 

eyes-closed state) to sleep state (both sleep-stage 1 and sleep-stage 2), majorly in alpha and beta 

bands (Figs 3.5c&d). Also, I reported an increase in nodal clustering coefficient at frontal 

electrodes from eyes-open to eyes-closed state for alpha and beta bands, with no significant 

change reported in sleep-stage 1 (Figs 3.6a&b); and a decrease in nodal global efficiency from 

eyes-open to eyes-closed state for alpha and beta bands, with no significant change reported in 

sleep-stage 1 (Figs 3.7a&b). Overall, the results here indicated significant alterations in 

functional connectivity for both the anterior and posterior portions of the default mode network 

during the transition from awake to sleep states. Thus, this study provides some evidence to 

support the role of the default-mode brain network in regulating consciousness in the brain.  

For neurovascular coupling study in different vigilance states, I reported a significant increase (p 

< 0.05, Tukey-corrected) of endogenic frequency component for alpha band envelope in eyes-

closed state compared to eyes-open state at two separate regions of interest (Figs.4.9 & 4.12). 

Also, I reported a significant increase (p < 0.05, Tukey-corrected) of endogenic frequency 
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component for alpha band envelope in sleep-stage 1 compared to both eyes-open and eyes-closed 

state at one region of interest (Fig. 4.11). In addition, I reported a significant increase (p < 0.05, 

Tukey-corrected) of myogenic frequency component for theta-band envelope in sleep-stage 1 

compared to eyes-open state (Fig. 4.10). These results indicated a significant increase of 

neurovascular coupling strength during sleep states compared to wakeful/awake state. Also, the 

results here indicated/suggested that endogenic and myogenic oscillations during neurovascular 

coupling are significant biomarkers of consciousness in the brain. For neurovascular coupling 

during voluntary breath-holding, I reported a significant increase (p < 0.05, Tukey-corrected) of 

endogenic component for beta band envelope in long-period breath-hold compared to normal 

breathing at one region of interest (Fig. 5.9). Also, I reported a significant increase (p < 0.05, 

Tukey-corrected) of neurogenic component for theta-band envelope in long-period breath-hold 

compared to normal breathing at another location (Fig. 5.11). At this same location, I reported a 

significant increase (p < 0.05, Tukey-corrected) of endogenic component for theta band envelope 

in long-period breath-hold compared to short-period breath-hold (Fig. 5.10). Finally, I reported a 

significant increase (p < 0.05, Tukey-corrected) of endogenic component for alpha band 

envelope in long-period breath-hold compared to normal breathing at the same location as the 

previous two just mentioned (Fig 5.12). These results indicated/suggested a significant increase 

of neurovascular coupling strength in long periods of breath-holding compared to short breath-

holding and normal breathing. This may be indicative of higher metabolic demand during longer 

breath-hold which causes an increase of blood flow thereby resulting in stronger neurovascular 

coupling.  
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6.2 Limitations and Future work 

 

6.2.1 ELORETA-ICA study 

For the ELORETA-ICA study, my results did not fully match shown by the previous study of 

ELORETA-ICA by Aoki et al (see Table 2.1). This could be due to the low sample size; the 

previous study used 80 subjects. In addition, a lower statistical threshold (z-score of 2) was used 

in my ELORETA-ICA study, which may have significantly impacted the results. Therefore, 

future work is suggested to: 

(i) collect data from a larger number of subjects to improve the statistical power of the 

results of ELORETA-ICA analysis. A sample size of 80 is suggested to match the 

methods of the previous work,  

(ii) implement a proper cross validation of the ELORETA regularization parameter to 

establish an optimal value for meaningful EEG source reconstruction before 

implementation of ELORETA-ICA method. 

6.2.2 Neurovascular coupling study 

The study on neurovascular coupling did not yield completely satisfactory results. Specifically, 

for the study of neurovascular coupling in different vigilance states, I reported only 5 positive 

results out of a possible 108 cases (Fig A.3). In addition, for the study of neurovascular coupling 

in breath-holding, I reported only 4 positive results out of a possible 108 cases (Fig A.4). These 

results could be attributed to the small duration of the data used for the neurovascular coupling 

study. In previous studies, wavelet coherence method was applied to data with a much longer 

duration [13]. Hence, in future work, 
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(i) Simultaneous EEG-FNIRS data should be collected for a much longer duration, 

especially for sleep study. In sleep studies, a longer duration of data may be required 

to properly observe brain dynamics during sleep [13].  

(ii) a proper statistical model such as a generalized linear model may be more appropriate 

for the analysis of the time-frequency results of neurovascular coupling. 

(iii) the neurovascular coupling analysis could be performed using a source-level analysis 

to improve the localization accuracy of the simultaneous EEG-fNIRS measurements. 

For this, an EEG reconstruction algorithm such as ELORETA could be combined 

with diffuse optical tomography algorithm and digitizer measurements to accurately 

reconstruct the simultaneous EEG-fNIRS data, before performing neurovascular 

coupling analysis. 
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A. Appendix 

 

A1. Graph Theory Analysis: Definition 

Graph Theory Analysis is a mathematical method that is used to describe functional connectivity 

of brain networks. In graph theory analysis, a network is comprised of vertices and edges (Fig. 

A1). For EEG functional connectivity analyses, nodes represent EEG electrodes and edges 

represent connectivity strengths between different pairs of EEG electrodes [58]  

 

Figure A.1: A diagram of a network represented as a graph containing vertex and edge. 

 

Graph theory analysis uses several metrics to quantify functional connectivity. Four of these 

metrics were utilized in the analysis of EEG functional connectivity in different vigilance states 

from wakeful state to sleep state. The subsequent subheadings describe each of these metrics and 

their mathematical formula. 

A1.1 Nodal clustering coefficient 

The nodal clustering coefficient of a specific EEG electrode describes how that electrode is 

connected to its neighbors. For example, an electrode with a high nodal clustering coefficient 
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indicates that this electrode and its neighbors form a cluster within the whole network. Likewise, 

an electrode with a low clustering coefficient indicates that this electrode is not well connected 

with its neighboring electrodes. In addition, a nodal clustering coefficient map shows the 

clustering coefficient of each node. 

For an EEG electrode i, the nodal clustering coefficient is the proportion of electrodes that are 

connected to i which are also connected with each other. It is represented as a fraction: the 

denominator is the number of vertices which have edges to electrode i, while the numerator is the 

number of these vertices that are connected to each other. Mathematically, the nodal clustering 

coefficient, Ci is given by [62]: 

                             𝑪𝒊 =
𝒏𝒐 𝒐𝒇 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅 𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔 𝒐𝒇 𝒏𝒐𝒅𝒆 𝒊

𝒕𝒐𝒕𝒂𝒍 𝒏𝒐 𝒐𝒇 𝒆𝒅𝒈𝒆𝒔 𝒐𝒇 𝒏𝒐𝒅𝒆 𝒊
      (I)                  

Where i refers to each EEG electrode,  

Ci is the nodal clustering coefficient for EEG electrode i, 

 

A1.2 Global clustering coefficient 

The global clustering coefficient is the average of the nodal clustering coefficients for all vertices 

of a network. Mathematically, it is given as [62] 

𝐂 =  
𝟏

𝑵
 ∑ 𝑪𝒊

𝑵
𝒊=𝟏         (II) 

Where Ci is the nodal clustering coefficient for each electrode; 

N is the number of electrodes 
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A1.3 Global efficiency  

Global efficiency is a measure of the functional integration within a network. An electrode with a 

high global efficiency indicates that information is readily passed across the network, and vice 

versa. In addition, a global efficiency map displays hubs of information flow within a network. 

Global efficiency is calculated from path length. The path length between two vertices is defined 

as the minimum number of edges that must be passed through from one vertex to another [58]. 

The global efficiency is the inverse of the minimum path length between each pair of nodes. 

Mathematically, the global efficiency is calculated as follows [62]: 

𝑬𝒈 =  
𝟏

𝑵(𝑵−𝟏)
 ∑

𝟏

𝒅𝒊,𝒋
𝒊,𝒋∈ 𝑵,𝒊≠𝒋             (III) 

Where Eg is the global efficiency, 

N is the number of electrodes, 

dij is the path length between electrode pairs i and j  

 

A1.4 Nodal efficiency  

The nodal efficiency is the global efficiency at each vertex or electrode i. It is defined as the 

inverse of the path length between a vertex i and all other vertices in the network.  

Mathematically, this is given as [62]: 

𝑬𝒏𝒐𝒅𝒂𝒍 =
𝟏

(𝑵−𝟏)
 ∑

𝟏

𝒅𝒊,𝒋
𝑱∈𝑵                (IV) 

Where N is number of electrodes 

dij is the path length distance between electrode pairs i and j  
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A1.5 Graph Theory Example 

Consider the network shown in Fig.A2. It has 5 nodes or vertices which are labelled A, B, C, D, 

and E.  Also, it has 6 edges or links (number of blue lines) 

 

Figure A.2: A network graph consisting of 5 vertices A, B, C, D, and E. The edges of the 

network are represented as blue lines which connect one vertex to another. Numbers on the edges 

represent the distance (path length) from one vertex to another. 

 

Graph metrics of the network shown in Fig. A2 are obtained using equations 1 to IV as follows: 

Nodal clustering coefficient CA= 𝟐 𝟑⁄  

Nodal clustering coefficient CB = 𝟐 𝟐⁄  = 1 

Nodal clustering coefficient CC = 𝟐 𝟒⁄  

Nodal clustering coefficient CD= 𝟐 𝟐⁄  = 1 

Nodal clustering coefficient CE = 0 

Global clustering coefficient of whole network, C = 
𝟐

𝟑⁄ +𝟐
𝟐⁄ +𝟐

𝟒⁄ +𝟐
𝟐⁄ +𝟎

𝟓
= 𝟎. 𝟔𝟑 

Nodal efficiency for node A = 

𝟏

𝟔
+

𝟏

𝟔
+

𝟏

𝟑
+

𝟏

𝟔
𝟒

⁄
    = 0.69 

Nodal efficiency for node B = 

𝟏

𝟔
+

𝟏

𝟒
+

𝟏

𝟕
+

𝟏

𝟖
𝟒

⁄
      = 0.17 
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Nodal efficiency for node C = 

𝟏

𝟑
+

𝟏

𝟑
+

𝟏

𝟒
+

𝟏

𝟒
𝟒

⁄        = 0.29 

Nodal efficiency for node D = 

𝟏

𝟒
+

𝟏

𝟔
+

𝟏

𝟕
+

𝟏

𝟖
𝟒

⁄
     = 0.17 

Nodal efficiency for node E = 

𝟏

𝟑
+

𝟏

𝟔
+

𝟏

𝟕
+

𝟏

𝟕
𝟒

⁄
     = 0.19 

Global efficiency of network =  
𝟎.𝟖𝟏+𝟎.𝟔𝟕𝟓+𝟏.𝟏𝟔+𝟎.𝟔𝟕𝟓+𝟎.𝟕𝟕

𝟓(𝟓−𝟏)
 = 𝟎. 𝟐𝟎𝟒𝟓 

 

A1.6 Statistical analysis of binary thresholds 

The statistical significance of each of the binary thresholds used in the graph theory analysis 

study (Chapter 3) was tested for each frequency band that was analyzed. Firstly, the correlation 

maps in each frequency band were averaged across all subjects. Then, the averaged correlation 

map in each frequency band was thresholded in a binary form using each of the thresholds from 

0.1 to 0.9 in increments of 0.1. At each threshold, the remaining edges were normalized using 

Fisher transform. Then, the normalized edges were tested for statistical significance using a one-

sample t-test (p < 0.05). Table A.1 shows the results of the significance testing for each threshold 

in each of the frequency bands. This analysis was performed for the maps in the eyes-open 

resting state condition (EO) only. 
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Table A.1: Significance testing of binary thresholds from 0.1 to 0.9 in graph theory analysis 

study. Spaces marked ‘*’ indicate retention of significant edges/connections (p < 0.05) for the 

associated frequency band. Spaces marked blank indicate no significant edges were retained at 

this threshold. Numbers enclosed in brackets indicate the number of surviving edges/connections 

after binary thresholding. The frequency bands are delta (δ), theta (ϴ), alpha (α), and beta (β). 
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A1.7 MATLAB code for repeated measures ANOVA analysis of graph theory metrics 

%% Global Clustering coefficient: repeated anova model 

clear; 

clc; 

load ('beta_gta.mat','Cp_eo','Cp_ec','Cp_ss1','Cp_ss2'); 

x = [1,11,21,31,41,51,61,71,81]; 

for i = 1:length(x) 

    group = [Cp_eo(:,x(i)); Cp_ec(:,x(i));Cp_ss1(:,x(i));Cp_ss2(:,x(i))]; 

    COND = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';... 

    'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';... 

    

'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS2';'SS2';'SS2';'SS2';'

SS2';'SS2';'SS2'}; 

  

t = table(COND, group,group,group,group,'VariableNames',[88'group3','group4']); 

  

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'}); 

  

rm = fitrm(t,'group1-group4~condition','WithinDesign',Meas); 

ranovatb1 = ranova(rm); 

  

tbl = multcompare(rm,'condition'); 

  

save([num2str(x(i)) 'cp'],'ranovatb1','tbl'); 

end 

  

%% Global efficiency: repeated anova model 

clear; 

clc; 

load ('beta_gta.mat','Eg_eo','Eg_ec','Eg_ss1','Eg_ss2'); 

x = [1,11,21,31,41,51,61,71,81]; 

for i = 1:length(x) 

group = [Eg_eo(:,x(i)); Eg_ec(:,x(i));Eg_ss1(:,x(i));Eg_ss2(:,x(i))]; 

%group = group'; 

     

COND = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';... 

    'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';... 

 

'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS2';'SS2';'SS2';'SS2';'

SS2';'SS2';'SS2'}; 
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t = 

table(COND,group,group,group,group,'VariableNames',{'condition','group1','group2','group3','

group4'}); 

  

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'}); 

  

rm = fitrm(t,'group1-group4~condition','WithinDesign',Meas); 

ranovatb1 = ranova(rm); 

  

tbl = multcompare(rm,'condition'); 

  

save([num2str(x(i)) 'eg'],'ranovatb1','tbl'); 

end 

%% fitting the repeated anova model 

for j = 1:64 

    group = [EO(j,:), EC(j,:), SS1(j,:), SS2(j,:)]; 

    group = group'; 

     

COND = 

{'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';'EO';... 

    'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';'EC';... 

    

'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS1';'SS2';'SS2';'SS2';'SS2';'

SS2';'SS2';'SS2'}; 

  

  

t = 

table(COND,group,group,group,group,'VariableNames',{'condition','group1','group2','group3','

group4'}); 

  

Meas = dataset([1 2 3 4]','VarNames',{'Measurements'}); 

  

rm = fitrm(t,'group1-group4~condition','WithinDesign',Meas); 

ranovatb1 = ranova(rm); 

  

tbl = multcompare(rm,'condition'); 

  

save([num2str(j) 'nodalEg_0.7.mat'],'ranovatb1','tbl'); 

end 
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A1.8 MATLAB code for detecting statistical significance of graph network thresholds 

%% 

clear; 

clc; 

  

rho_delt =zeros(64,64,18); 

rho_thet =zeros(64,64,18); 

rho_alph =zeros(64,64,18); 

rho_beta =zeros(64,64,18); 

  

for j = 1:18 

    load (['delta' num2str(j) '_eo']); 

    load (['theta' num2str(j) '_eo']); 

    load (['alpha' num2str(j) '_eo']); 

    load (['beta' num2str(j) '_eo']); 

     

    rho_delt(:,:,j) = rho_d; 

    rho_thet(:,:,j) = rho_t; 

    rho_alph(:,:,j) = rho_a; 

    rho_beta(:,:,j) = rho_b; 

end 

  

avg_delt_eo = mean(rho_delt,3); 

avg_thet_eo = mean(rho_thet,3); 

avg_alph_eo = mean(rho_alph,3); 

avg_beta_eo = mean(rho_beta,3); 

%% 

clear 

load avg_eo_corr avg_beta_eo 

  

thr = 0.1:0.1:0.9; 

  

for x = 1:64 

    for y = 1:64 

        if avg_beta_eo(x,y) < thr(9) 

            avg_beta_eo(x,y) = 0; 

        end 

    end 

end 

  

X = triu(avg_beta_eo,1); 

X = X(:); 

X = nonzeros(X); 

X_fz = 0.5 .* log((1+X)./(1-X)); 

h = ttest(X_fz); 
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A2 Hilbert Transform calculation for envelope 

 

The Hilbert transform can be used to calculate the envelope of a signal. The envelope of a signal 

contains the slowly varying features of the signal. The Hilbert transform calculates the analytic 

signal, from which the envelope can be derived. 

For EEG data, an EEG signal has the following mathematical representation [58]: 

𝑬 = 𝑴 𝐜𝐨𝐬(𝟐𝝅𝒇𝒕)     (V) 

Where M is amplitude, f is frequency in Hertz, and t is time in seconds. Equation (V) indicates 

that EEG signals contain only a cosine component. The cosine component is a real number with 

no imaginary part. Hilbert transform adds a quarter-cycle component to the cosine component to 

form a complex signal. Thus, using Hilbert transform, equation (v) becomes [58]: 

𝑬𝒂 = 𝑴 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝒋𝑴 𝐬𝐢𝐧 𝟐𝝅𝒇𝒕         (VI) 

In equation (VI), a complex imaginary component is added to the real signal to form a complex 

signal. The resulting complex signal is known as the analytic signal. Then, the analytic envelope, 

Ev, is calculated from the analytic signal as follows [58]: 

𝑬𝒗 = 𝒂𝒃𝒔(𝑬𝒂)       (VII) 

The function “abs” returns the magnitude of the analytic signal. The Hilbert transform of EEG 

signals was calculated using the “Hilbert” function in MATLAB software. 
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A3.1 Results of neurovascular coupling in different vigilance states 

 

 

Figure A.3: Results of neurovascular coupling in vigilance states. Spaces marked ‘x’ indicate 

that no change was reported between vigilance states for the specific frequency component. 

Spaces marked ‘✓’ indicate that a significant difference was reported between vigilance states 

for the specific frequency component. The frequency components are labelled as ‘Endo’ for 

endogenic component; ‘Neuro’ for neurogenic component; and ‘Myo’ for myogenic component. 

The vigilance states are labelled as ‘EO-EC’ for eyes-open compared with eyes-closed state; 

‘EO-SS1’ for eyes-open compared with sleep-stage 1; and ‘EC-SS1’ for eyes-closed state 

compared with sleep-stage 1. The four separate regions of interest are (a) left frontal (b) right 

frontal; (c) left occipital; and (d) right occipital. Also, EEG frequency bands are represented as 

‘ϴ’ for theta band envelope; ‘α’ for alpha band envelope; and ‘β’ for beta band envelope. 
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A3.2 Results of neurovascular coupling in different breath-holding states 

 

 

Figure A.4: Results of neurovascular coupling in breath-hold states. Spaces marked ‘x’ indicate 

that no change was reported between breath-holding states for the specific frequency component. 

Spaces marked ‘✓’ indicate that a significant difference was reported between breath-holding 

states for the specific frequency component. The frequency components are labelled as ‘Endo’ 

for endogenic component; ‘Neuro’ for neurogenic component; and ‘Myo’ for myogenic 

component. The breath-holding states are labelled as ‘EO – BR1’ for eyes -open compared with 

short-period breath-hold; ‘EO – BR2’ for eyes-open compared with long-period breath-hold; and 

‘BR1 – BR2’ for short-period breath-hold compared with long-period breath-hold. The four 

regions of interest are (a) left frontal (b) right frontal (c) left occipital, and (d) right occipital. 

Also, EEG frequency bands are represented as ‘ϴ’ for theta-band envelope; ‘α’ for alpha-band 

envelope; and ‘β’ for beta-band envelope.  
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A3.3 Neurovascular coupling in different vigilance states (more results) 

 

Figure A.5: Values of average coherence amplitude for eyes-open (EO), eyes-closed (EC), and 

sleep-stage 1 (SS1) vigilance states in endogenic, neurogenic, and myogenic components of 

neurovascular coupling, for each of theta (δ), alpha (α), and beta (β) bands, at (a) left frontal, (b) 

right frontal, (c) left occipital, and (d) right occipital locations 
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A3.4 Neurovascular coupling in breath-holding (more results) 

 

Figure A.6: Values of average coherence amplitude for eyes-open (EO), short-breathing (BR1), 

and long breath-hold(BR2) breath-hold states in endogenic, neurogenic, and myogenic 

components of neurovascular coupling, for each of theta (δ), alpha (α), and beta (β) bands, at (a) 

left frontal, (b) right frontal, (c) left occipital, and (d) right occipital locations 
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