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ABSTRACT

EFFICIENT EVALUATION OF CONTEXTUAL AND REVERSE

PARETO-OPTIMALITY QUERIES

AFROZA SULTANA, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Dr. Chengkai Li

Many real-world applications analyze data to find objects that “stand out” with

regard to various contexts and ways of valuing the objects. Examples of such application

scenarios include vendors recommending products to potential customers, social networks

improving content selection for users, and Google Scholar notifying newly published ar-

ticles based on profiles. Besides, journalists identify conditions to substantiate the signif-

icance of an event or the interestingness of an object. Interesting events can be retrieved

from stock data, weather data, and criminal records. Apart from journalists, those events

convey significant information for financial analysts, scientist, and citizens.

The aforementioned application needs can be modeled as contextual and reverse

Pareto-optimality queries. Given a set of objects and a way of valuing them, a Pareto-

optimality query results in a set of objects of which each resulting object is not worse than

any other object in the set. The resulting objects are called Pareto-optimal objects or Pareto

frontier. A “contextual” Pareto-optimal object stands out against other objects in a context.

A reverse Pareto-optimality query finds contexts where a given object belongs to the Pareto

frontiers.
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We formalize the real-world problem of finding outstanding objects as finding Pareto

frontiers. In an ever-growing database, a straightforward brute-force approach to answering

the contextual and reverse Pareto-optimal queries would compute Pareto frontiers in every

context with regard to each existing object, separately. To resolve this drawback, we pursue

object reduction, context pruning, and sharing computation across ways of valuing. In

this dissertation, we study efficient evaluation of contextual and reverse Pareto-optimality

queries.

We first discuss methods for efficient evaluation of contextual and reverse Pareto-

optimality queries in the context of modeling and satisfying user preferences. Specifically,

we study the problem of continuous object dissemination—given a large number of users

and continuously arriving new objects, deliver an incoming object to all users who prefer

the object. Many real-world applications analyze users’ preferences for effective object dis-

semination. For continuously arriving objects, timely finding users who prefer a new object

is challenging. We consider an append-only table of objects with multiple attributes and

users’ preferences on individual attributes are modeled as strict partial orders. An object

is preferred by a user if it belongs to the Pareto frontier with respect to the user’s partial

orders. Users’ preferences can be similar. Exploiting shared computation across similar

preferences of different users, we design algorithms to find target users of a new object. In

order to find users of similar preferences, we study the novel problem of clustering users’

preferences that are represented as partial orders. We also present an approximate solution

to the problem which is more efficient than the exact one while ensuring sufficient accuracy.

Furthermore, we extend the algorithms to operate under the semantics of sliding window.

We present the results from comprehensive experiments for evaluating the efficiency and

effectiveness of the proposed techniques.

We further discuss efficient evaluation of contextual and reverse Pareto-optimality

queries in the form of finding new, prominent situational facts, which are emerging state-
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ments about objects that stand out within certain contexts. Many such facts are newsworthy—

e.g., an athlete’s outstanding performance in a game, or a viral video’s impressive popular-

ity. Automated identification of these facts assists journalists in reporting. More specifi-

cally, we consider an ever-growing table of objects with dimension and measure attributes.

A situational fact is a “contextual” skyline tuple that stands out against historical tuples

in a context specified by a conjunctive constraint involving dimension attributes, while

the objects are being compared on a set of measure attributes. New tuples are constantly

added to the table, reflecting events happening in the real world. Our goal is to discover

constraint-measure pairs that qualify a new tuple as a contextual skyline tuple and discover

them quickly before the event becomes yesterday’s news. A brute-force approach requires

exhaustive comparison of the new tuple with every existing tuple, under every constraint,

and in every measure subspace. We design algorithms in response to these challenges

using three corresponding ideas—tuple reduction, constraint pruning, and sharing compu-

tation across measure subspaces. We further extend the algorithms to allow for updates on

data. We also adopt a simple prominence measure to rank a large number of discovered

facts. Experiments over three real datasets validate the effectiveness and efficiency of our

techniques.
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CHAPTER 1

Introduction

Nowadays, many real-world applications analyze data in order to find objects that

“stand out” with regard to various contexts and ways of valuing the objects. Examples

of such application scenarios are not limited to vendors recommending products to target

markets and journalists identifying conditions to substantiate the significance of an event or

the prominence of an object. Such application needs can be interpreted as contextual and

reverse Pareto-optimality queries. Pareto-optimization [1] is a well-studied term named

after Vilfredo Pareto, since the concept was applied in economic efficiency and income

distribution. After that, it has been explored in other academic fields including computer

science. Given a set of objects and a way of valuing them, a Pareto-optimality query finds

a set of objects of which each resulting object is not worse than any other object in the

set [1]. The query result set is known as Pareto-optimal objects or Pareto frontier [1].

A contextual Pareto-optimal object is not worse than any other object in a context

when a way of valuing is considered. Consider a set of contexts C and a table of ob-

jects O that are described by a set of attributes D. An object o is Pareto-optimal with

respect to c ∈ C, if no other object in O is better than it. In this dissertation, we define

reverse Pareto-optimality query as finding the contexts where a certain object belongs to

the Pareto frontier. Formally, given an object o, the reverse Pareto-optimality query results

in C ⊆ C such that o belongs to the Pareto frontiers for all c ∈ C. To compute reverse

Pareto-optimality query, we further study contextual Pareto-optimality query which finds

the contextual Pareto-optimal objects under a context c ∈ C.
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In an ever-growing database table, new objects are constantly appended to the table

and thus Pareto-optimal objects are updated frequently. We aim at finding contexts where a

new object acquires Pareto-optimality. A straightforward brute-force approach to answer-

ing the contextual and reverse Pareto-optimal queries would compute Pareto frontier under

every context with regard to each object, separately. In case of large number of contexts

along with streaming objects, the challenge lies in efficient computation. To resolve this

issue, we pursue object reduction, context pruning, and sharing computation across ways of

valuing. In this dissertation, we study efficient evaluation of contextual and reverse Pareto-

optimality queries with regard to two types of queries, namely preference query [25, 12]

and skyline query [9].

1.1 Pareto-optimality with Regard to Preference Query

Most of the existing studies on Pareto-optimality queries assume numeric attributes

only. Kießling [25] defined preferences as strict partial orders where preference query

returns the best matches. Given a preference, a Pareto-optimal object is not preferred over

by any other object. Formally, given a set of attributes d ∈ D, a preference c on d ∈ D

is a strict partial order ≻d
c , where ≻d

c is a binary relation over dom(d)—the domain of d.

“(x, y) ∈≻c” is interpreted as “c prefers x to y”. Given a table of objects O, with regard to

c, any object o in the preference query result tells the absence of o′ such that “c prefers o′ to

o”. With this schema, a preference corresponds to a context. Therefore, a reverse Pareto-

optimality query finds the preferences where a certain object acquires Pareto-optimality. In

addition, a contextual Pareto-optimality query results in Pareto frontier with regard to the

corresponding preference.

In Chapter 2, we study the problem of continuous object dissemination and formalize

it as finding Pareto-optimal objects regarding strict partial orders. Given a large number of

2



users and continuously arriving objects, our goal is to swiftly disseminate a newly arrived

object to a user if the user’s preferences—modeled as strict partial orders on individual

attributes—approve the object as Pareto-optimal. We devise efficient solutions exploiting

shared computation across similar preferences of different users. We study the novel chal-

lenge of clustering user preferences represented as strict partial orders. Particularly we de-

sign similarity measures for such preferences. To address performance degradation due to

small clusters, we present an approximate similarity measure that achieves high efficiency

and accuracy of answers. We extend our proposed solutions to deal with Pareto frontier

maintenance under sliding window. We conduct extensive experiments using simulations

on two real datasets (a movie dataset and a publication dataset). The results demonstrate

clear strengths of our solutions in comparison with baselines, in terms of execution time

and efficacy.

1.2 Pareto-optimality with Regard to Skyline Query

In recent years, skyline query becomes a well-explored perspective of Pareto-optimality

query, since Börzsönyi et al. [9] brought the concept to the database field. Given a set of tu-

ples R as well as a set of measure attributes M ⊆M describing them, a tuple t′ dominates

t if t′ is better than or equal to t on every measure attribute in that combination and better

than t on at least one of the attribute. A tuple t is a skyline tuple in M , if it is not dominated

by any other tuple in R. In this case, each tuple represents an object and the combina-

tion of measure attributes interprets the way of valuing the objects. Let incorporate a set

of dimension attributes with this schema. Thereafter, a context is a conjunctive constraint

defined on a subset of the dimension attributes D ⊆ D. A contextual skyline tuple t is not

dominated by any other tuple in that context. In this scenario, a reverse Pareto-optimality

3



query finds the contexts where a given tuple belongs to the skyline. Besides, a contextual

Pareto-optimality query results in skyline tuples under the constraint.

In Chapter 3, we study the novel problem of finding situational facts and formalize

it as discovering constraint-measure pairs that qualify a tuple as a contextual skyline tuple.

We devise efficient algorithms based on three main ideas—tuple reduction, constraint prun-

ing and sharing computation across measure subspaces. We further extend the algorithms

to consider an instant dataset as input and thus allow live news streaming. We use a sim-

ple prominence measure for ranking situational facts and discovering prominent situational

facts. We conduct extensive experiments on three real datasets (two NBA datasets and

weather dataset) to investigate their prominent situational facts and to study the efficiency

of various proposed algorithms and their tradeoffs.
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CHAPTER 2

Continuous Object Dissemination

2.1 Overview

Many applications serve users better by disseminating objects to the users accord-

ing to their preferences. User preferences can be modeled via a variety of means includ-

ing collaborative filtering [33], top-k ranking [16, 17], skyline [9], and general preference

queries [25, 12]. In various scenarios, users’ preferences stand or only change occasionally,

while the objects keep coming continuously. Such scenarios warrant the need for a capa-

bility of continuous monitoring of preferred objects. While previous studies have made

notable contributions on continuous evaluation of skyline [44, 27] and top-k queries [49],

we note that two important considerations are missing from prior works:

• Many users: There may be a large number of users and the users may have similar

preferences. Prior studies focus on the query needs of one user and thus their algorithmic

solutions can only be applied separately on individual users. A solution can potentially

attain significant query performance gain by leveraging users’ common preferences.

• Partially ordered attributes: Prior works focus on top-k and skyline queries. In multi-

objective optimization, a more general concept than skyline is Pareto frontier. Consider

a table of objects with a set of attributes. An object is Pareto-optimal (i.e., it belongs to

the Pareto frontier) if and only if it is not dominated by any other object [6, 26]. Object y

dominates x if and only if y is better than or equal to x on every attribute and is better on at

least one attribute. In defining the better-than relations, most studies on skyline queries

assume a total order on the ordinal or numeric values of an attribute, except for [31, 52]

which consider strict partial orders. The psychological nature of human’s preferences
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determines that it is not always natural to enforce a total order. Oftentimes real-world

preferences can only be modeled as strict partial orders [25, 12, 31].

Consider the following motivating applications which monitor Pareto frontiers on

partially ordered attributes for many users.

• Social network content and news delivery: It is often impossible and unnecessary for a

user to keep up with the plethora of updates (e.g., news feeds in Facebook) from their

social circles. When a new item is posted, if the item is Pareto-optimal with respect to

a user, it can be displayed above other updates in the user’s view. Similar ideas can be

adopted by mass media to ensure their news reaches the right audience. User preferences

can be modeled on content creator, topic, location, and so on. Enforcing total orders on

such attributes is both cumbersome and unnatural.

• Publication alerts: Bibliography servers such as PubMed and Google Scholar can notify

users about newly published articles matching their preferences on venues and keywords.

Such attributes do not welcome total orders either.

• Product recommendation: When a new product becomes available, a retailer can notify

customers who may be interested. It can distill customers’ preferences on product spec-

ifications (e.g., brand, display and memory for laptops) from profiles, past transactions

and website browsing logs. Example 1 discusses this application more concretely.

Example 1. Consider an inventory of laptops in Table 2.1 and customers’ preferences on

individual product attributes (display, brand and CPU) modeled as strict partial orders in

Table 2.2. For an attribute, the corresponding strict partial order is depicted as a directed

acyclic graph (DAG), more specifically a Hasse diagram. Given two values x and y in the

attribute’s domain, the existence of a path from x to y in the DAG implies that x is preferred

to y. With respect to customer c1 and attribute brand, the path from Lenovo to Toshiba
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implies that c1 prefers Lenovo to Toshiba. There is no path between Toshiba and Samsung,

which indicates c1 is indifferent between the two brands.

The strict partial orders on various attributes together represent a customer’s prefer-

ences on objects. For instance, c1 prefers o2=〈14, Apple, dual〉 to o1=〈12, Apple, single〉,

since they prefer 13−15.9 to 10−12.9 on display and dual to single on CPU. With regard to

o1 and o3=〈15, Samsung, dual〉, c1 does not prefer one over the other because, though they

prefer 13−15.9 to 10−12.9 and dual to single, they prefer Apple to Samsung on brand.

According to the data in Tables 2.1 and 2.2, if the existing products are o1 to o14

(ignore o15 and o16 for now), the Pareto frontiers of c1 and c2 are {o2} and {o2, o3}, re-

spectively. Suppose o15=〈16.5, Lenovo, quad〉 just becomes available. For c1, o15 does not

belong to the Pareto frontier. It is dominated by o2, because c1 prefers 14-inch display over

16.5-inch, Apple over Lenovo, and dual-core CPU over quad-core CPU. However, o15 is a

Pareto-optimal object for c2 since it is not dominated by any other object according to c2’s

preferences. It is thus recommended to c2, and the Pareto frontier of c2 is updated to {o2,

o3, o15}. △

This chapter formulates the problem of continuous monitoring of Pareto frontiers:

given a large number of users and continuously arriving new objects, for each newly arrived

object, discover all users for whom the object is Pareto-optimal. Users’ preferences are

modeled as strict partial orders, one for each attribute domain of the objects.

It is key to devise an efficient approach to this problem. The value of a Pareto-

optimal object diminishes quickly; the earlier it is found to be worth recommendation, the

better. For instance, a status update in a social network keeps getting less relevant since the

moment it is posted; a customer’s need for a product may be fulfilled by a less preferred

choice, if an even better option was not shown to the customer in time.

A simple, brute-force approach is to, given a newly arrived object, compute for every

user if the object belongs to the Pareto frontier with respect to the user’s preferences. This
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display brand CPU

o1 12 Apple single

o2 14 Apple dual

o3 15 Samsung dual

o4 19 Toshiba dual

o5 9 Samsung quad

o6 11.5 Sony single

o7 9.5 Lenovo quad

o8 12.5 Apple dual

o9 19.5 Sony single

o10 9.5 Lenovo triple

o11 9 Toshiba triple

o12 8.5 Samsung triple

o13 14.5 Sony dual

o14 17 Sony single

o15 16.5 Lenovo quad

o16 16 Toshiba single

Table 2.1: Product table.

entails continuous maintenance of Pareto frontier for each and every user. The brute-force

approach is subject to a clear drawback—repeated and wasteful maintenance of Pareto

frontier for every user.

Sharing computation across users To tackle the aforementioned drawback, we

partly resort to sharing computation across users. The challenge lies in the diversity of

corresponding partial orders—a Pareto-optimal object with respect to one user may or may

not be in the Pareto frontier for another user. Nonetheless, users have common prefer-

ences. In Table 2.2, both c1 and c2 prefer 13 − 15.9 inch display the most. Both prefer

Apple and Lenovo to Toshiba and Sony, and they both prefer single-core CPU the least. In

Table 2.2, U is a virtual user whose partial orders depict the common preferences of c1 and

c2. Intuitively, users having similar preferences can be clustered together.

We thus design algorithms to mitigate repetitive computation via sharing computa-

tion across similar preferences of users. To intuitively understand the idea, consider two
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display brand CPU

c1

13−15.9

10−12.9

16−18.9 19−up

9.9−under

Apple

Lenovo

Sony

Toshiba Samsung

dual

triple quad

single

c2

13−15.9

10−12.916−18.9

19−up

9.9−under

Apple

Lenovo

Sony

Toshiba

Samsung

dual

triple

quad

single

U

13−15.9

10−12.916−18.9

19−up

9.9−under

Apple Lenovo

SonyToshiba Samsung

dual triple quad

single

Û

13−15.9

10−12.9

16−18.9

19−up

9.9−under

Apple Lenovo

Sony Toshiba

Samsung

dual

triple

quad

single

Table 2.2: User preferences. U={c1,c2}.

example scenarios. i) If o is dominated by o′ with respect to the common preferences of a

set of users, then o is disqualified in Pareto-optimality for all users in the set. In Example 1,

consider o16=〈16, Toshiba, single〉 as the new object. With respect to U , o16 is dominated

by both o2=〈14,Apple, dual〉 and o15=〈16.5, Lenovo, quad〉. Therefore, o16 belongs to the

Pareto frontier of neither c1 nor c2. ii) Before the arrival of o2, obviously o1=〈12, Apple,

single〉 is the only Pareto-optimal object for U , c1 and c2. Now consider the entrance of o2.

As o1 is dominated by o2 with respect to U , o1 is replaced by o2 in the Pareto frontier. This

comparison is sufficient to decide that o1 is dominated by o2 for both c1 and c2.

Clustering users To find users sharing similar preferences, we study the novel prob-

lem of clustering strict partial orders, which are used to model the preferences of both users

and clusters. We measure the similarity between clusters and users by their common pref-

erences. Such similarity measures factor in the different significance of preferences at

9



Apple

Lenovo

Samsung

Toshiba Apple

Lenovo

Samsung

Toshiba Apple

Lenovo

Samsung

Toshiba

c1 c2 U1

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

c3 c4 U2
Lenovo

Apple Toshiba

Samsung

Lenovo

Apple

Toshiba Samsung

Lenovo

Apple Toshiba

Samsung

c5 c6 U3

Table 2.3: User preferences with respect to brand. U1={c1,c2}, U2={c3,c4}, U3={c5,c6}.

various levels of the partial orders. Table 2.3 depicts six customers’ preferences on brand,

in which c4, c5, and c6 prefer Lenovo to all other brands except that c4 prefers Samsung over

Lenovo. Consider the objects in Table 2.1. For both c5 and c6, the Pareto frontiers contain

{o7, o10, o15}, while c4 has {o3, o5, o12} as its Pareto frontier. We can say that c5 and c6 are

more similar than c4 and c5 or c4 and c6.

Approximation The clustering algorithm may produce clusters that comprise few

users, due to diverse preferences. With small clusters, the shared computation mentioned

above may not pay off its overhead. Our response to this challenge is to use approximation.

As in many data retrieval scenarios, insisting on exact answers is unnecessary and answers

in close vicinity of the exact ones can be just good enough. Specifically, given a set of users,

if a sizable subset of the users agree with a preference, the preference can be considered

an approximate common preference. This relaxation eases the aforementioned concern

regarding small clusters as more approximate common preferences lead to larger clusters.

As an example, in Table 2.2, while c2 does not share with c1 the preference of Apple over

Samsung, its preference does not oppose it either. We can consider “Apple over Samsung”
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as an approximate common preference. A possible set of approximate common preferences

of c1 and c2 form the strict partial orders in the row for virtual user Û .

Alive objects Objects can have limited lifetime. The trends in social networks

and news media change rapidly. Similarly, in any inventory, products become unavailable

over time. In these scenarios users look for alive objects only. To meet this real-world

requirement, we further extend our algorithms to operate under the semantics of a sliding

window and thus to disseminate an object only during its lifespan.

In summary, the contributions of this chapter are as follows:

• We study the problem of continuous object dissemination and formalize it as finding

Pareto-optimal objects regarding partial orders. Given a large number of users and con-

tinuously arriving objects, our goal is to swiftly disseminate a newly arrived object to a

user if the user’s preferences—modeled as strict partial orders on individual attributes—

approve the object as Pareto-optimal (Section 2.3).

• We devise efficient solutions exploiting shared computation across similar preferences

of different users (Section 2.4).

• We study the novel challenge of clustering user preferences represented as strict partial

orders. Particularly we design similarity measures for such preferences (Section 2.5).

• To address performance degradation due to small clusters, we present an approximate

similarity measure that achieves high efficiency and accuracy of answers (Section 2.6).

• We extend our proposed solutions to deal with Pareto frontier maintenance under sliding

window (Section 2.7).

• We conduct extensive experiments using simulations on two real datasets (a movie dataset

and a publication dataset). The results demonstrate clear strengths of our solutions in

comparison with baselines, in terms of execution time and efficacy (Section 2.8).
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2.2 Related Work

Pareto-optimality is a subject of extensive investigation. Its study in the computing

fields can be dated back to admissible points [6] and maximal vectors [26]. Börzsönyi

et al. [9] introduced the concept of skyline—a special case of Pareto frontier—in which

all attributes are numeric and amenable to total orders. Kießling [25] defined preferences

as strict partial orders on which preference queries operate. After that, several studies

specialized on skyline query evaluation over categorical attributes [10, 32, 31, 52], among

which [32, 31, 52] particularly considered query answer maintenance and only [31, 52]

allow partial orders on attribute values. Nevertheless, they all consider only one user and

none utilizes shared computation across multiple users’ partial orders.

Given a set of objects, Wong et al. [42, 41, 43] identify the minimum set of preference

relations that preclude an object from being in the Pareto frontier. This minimum set is the

combination of each possible preference relation with regard to the values of all unique

objects in the set. In case of any update in the object set, the minimum disqualifying

condition must be recomputed. Hence, it is not designed for continuously arriving objects.

Vlachou et al. [38, 39] and Yu et al. [49] aimed at finding all users who view a given

object as one of their top-k favourites, i.e., the results of a reverse top-k query. Dellis et

al. [15] studied reverse skyline query—selecting users to whom a given object is in the

skyline. These works consider only numeric attributes. There is no clear way to extend

them for categorical attributes or even partial orders.

All these studies, while about object dissemination, focused on different aspects of

the problem than ours. In this chapter, we study Pareto frontier maintenance while exploit-

ing shared computation across users’ preferences. Besides, as explained in [35], no prior

work studied similarity measures for partial orders or how to cluster partial orders.

12



2.3 Problem Statement

O set of objects

d ∈ D attribute

c ∈ C user

≻d
c binary relation over dom(d) with regard to c’s preference

o′ ≻c o c prefers o′ to o
Pc the Pareto frontier with regard to c
Co the target users of o

U ⊆ C set of users

sim(U1, U2) the similarity measure between two clusters U1 and U2

Sd
U the maximal values of ≻d

U

h branch cut in dendrogram

Table 2.4: Notations.

This section provides a formal description of our data model and problem statement.

Table 3.3 lists the major notations. Consider a set of users C and a table of objects O that

are described by a set of attributes D. For each user c ∈ C, their preference regarding

O is represented by strict partial orders. For each attribute d ∈ D, the strict partial order

corresponding to c’s preference on d is a binary relation over dom(d)—the domain of d, as

follows.

Definition 1 (Preference Relation and Tuple). Given a user c ∈ C and an attribute d ∈

D, the corresponding preference relation is denoted ≻d
c . For two attribute values x, y ∈

dom(d), if (x, y) belongs to ≻d
c (i.e., (x, y) ∈≻d

c , also denoted x ≻d
c y), it is called a

preference tuple. It is interpreted as “user c prefers x to y on attribute d”. A preference

relation is irreflexive ((x, x) /∈≻d
c) and transitive ((x, y) ∈≻d

c ∧(y, z) ∈≻
d
c⇒ (x, z) ∈≻d

c),

which together also imply asymmetry ((x, y) ∈≻d
c⇒ (y, x) /∈≻d

c). △

Definition 2 (Object Dominance). A user c’s preferences regarding all attributes induce

another strict partial order ≻c that represents c’s preferences on objects. Given two objects

o, o′ ∈ O, c prefers o′ to o if o′ is identical or preferred to o on all attributes and o′ is
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preferred to o on at least one attribute. More formally, o′ ≻c o (called o′ dominates o),

if and only if (∀d ∈ D : o.d = o′.d ∨ o′.d ≻d
c o.d) ∧ (∃d ∈ D : o′.d ≻d

c o.d). If

(∀d ∈ D : o.d = o′.d), we say that o and o′ are identical, denoted as o = o′. △

Definition 3 (Pareto Frontier). An object o is Pareto-optimal with respect to c, if no other

object in O dominates it. The set of Pareto-optimal objects (i.e., the Pareto frontier) in O

for c is denotedPc, i.e.,Pc = {o ∈ O|∄o′ ∈ O s.t. o′ ≻c o}. Note that the concept of skyline

points [9] is a specialization of the more general Pareto frontier, in that the preference

relations for skyline points are defined as total orders (with ties) instead of general strict

partial orders. △

Definition 4 (Target Users). Given an object o, the set of all users for whom o belongs to

their Pareto frontiers are called the target users. The target user set is denoted Co, i.e., Co =

{c ∈ C|o ∈ Pc}. △

Example 2. Consider Table 2.1 and Table 2.2. O = {o1, o2, . . ., o15} (ignore o16 for now),

C = {c1, c2}, and D = {display, brand, CPU}. With respect to c1, (10−12.9, 16−18.9),

(Apple, Samsung) and (dual, triple) are some of the preference tuples on attributes display,

brand and CPU, respectively. Similarly, for c2, (16−18.9, 19−up), (Toshiba, Sony) and

(triple, dual) are some sample preference tuples.

Pc1 = {o2}, since all other objects are dominated by o2 with respect to c1. Pc2 = {o2,

o3, o15}, as o2, o3 and o15 dominate {o1, o4, o6, o8, o9, o13}, {o4, o6, o8, o13} and {o4, o5, o7,

o10, o11, o12, o14}, respectively. Therefore, Co2 = {c1, c2} and Co3 = Co15 = {c2}. Objects

other than o2, o3, o15 do not have target users in C, i.e., Co = φ, ∀o ∈ O−{o2, o3, o15}. △

Problem Statement The problem of continuous monitoring of Pareto frontiers is,

given a set of users C, their preference relations on attributes D, and a set of continuously

growing objects O with the latest object o, find Co—the target users of o.

In this problem setting, we assume a sizable preference relation is available for each

user. In reality, we have insufficient information about the preferences of a less active
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user, i.e., the corresponding partial orders may contain very few preference tuples. In the

extreme case, a new user, for whom we have no information regarding their preferences,

admits all objects as Pareto-optimal. Such less active users and new users are the subject

of the well-known cold-start problem in recommendation systems, which is outside of the

scope of this work.

2.4 Sharing Computation across Users

Algorithm Baseline A simple method to our problem will check, for every user,

whether a new object belongs to the corresponding Pareto frontier. The pseudo code of this

approach, named Baseline, is shown in Algorithm 1. Upon the arrival of a new object o,

for every user c, it sequentially compares o with the current Pareto-optimal objects in Pc.

1) If o is dominated by any o′ or o is identical to o′, further comparison with the remaining

objects in Pc is skipped. In the case of o being dominated by o′, o is disqualified from being

a Pareto-optimal object; if o is identical to o′, then o is Pareto-optimal, i.e., it is inserted

into Pc. 2) If o dominates any o′, o′ is discarded from Pc. It can be concluded already that

o belongs to Pc, but the comparisons should continue since o may dominate other existing

objects in Pc. 3) If o is not dominated by any object in Pc, it becomes an element of Pc.

Readers familiar with the literature on skyline queries may have realized that the gist of

the algorithm is essentially the basic skyline query algorithm [9]. The crux of its operation

is based on an important property, that it suffices to compare new objects with only the

Pareto-optimal objects, since any new object dominated by a non Pareto-optimal object

must be dominated by some Pareto-optimal objects too.

With regard to a user c, the complexity of finding the Pareto frontier among n objects

is O(n2). Algorithm 1 needs O(n2 · |C|) time to compute the Pareto frontiers for all users in

C. The drawback of Baseline is it repeatedly applies the same procedure for every user. In
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Algorithm 1: Baseline

Input: C: all users; O: existing objects; o: a new object

Output: Co: target users of o

1 Co ← ∅;

2 foreach c ∈ C do

3 updateParetoFrontier(c, o);

4 return Co;

Procedure: updateParetoFrontier (c, o)

1 isPareto ← true;

2 foreach o′ ∈ Pc do

3 if o ≻c o
′ then

4 Pc ← Pc − {o
′}; Co′ ← Co′ − {c};

5 else if o′ ≻c o then isPareto ← false;break ;

6 else if o′.D = o.D then isPareto ← true;break ;

7 if isPareto then

8 Pc ← Pc ∪ {o}; Co ← Co ∪ {c};

terms of computation efficiency, the approach may become particularly unappealing when

there are a large number of users and new objects constantly arrive. To counter this draw-

back, our idea is to share computations across the users that exhibit similar preferences. To

this end, our method is simple and intuitive. If several users share a set of preference tuples,

it is only necessary to compare two objects once, if they attain the attribute values in the

preference tuples. If an object is dominated by another object according to these common

preference tuples, it is dominated with respect to all users sharing the same preferences.

This idea guarantees to filter out only “true negatives” for these users, and it only needs to

further discern “false positives” for each individual user.

Definition 5 (Common Preference Tuple and Relation). Given a set of users U ⊆ C, an

attribute d ∈ D, and two values x, y ∈ dom(d), if (x, y) belongs to preference relation ≻d
c
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for all c ∈ U , then it is called a common preference tuple. The set of common preference

tuples of U on attribute d is denoted ≻d
U , i.e., ≻d

U=
⋂

c∈U ≻
d
c . By definition, ≻d

U also

represents a strict partial order (Theorem 1, proof omitted). We call it a common preference

relation. It can be viewed as the preference of a virtual user that is denoted U . △

Theorem 1. ≻d
U is a strict partial order. △

Since, for each d, ≻d
U is a strict partial order, the set of users’ preferences (i.e., the

virtual user U ’s preferences) regarding all attributes in D induce another strict partial order

≻U on objects.

Definition 6 (Pareto Frontier for U ). An object o is Pareto-optimal with respect to U if no

other object dominates it according to ≻U . The Pareto frontier of O for U is denoted PU ,

i.e., PU = {o ∈ O|∄o′ ∈ O s.t. o′ ≻U o}. △

Example 3. From Table 2.2, ≻CPU
c1

= {(dual, single), (dual, quad), (dual, triple), (triple,

single), (quad, single)} and≻CPU
c2

= {(dual, single), (triple, single), (quad, single), (triple,

dual), (quad, dual), (quad, triple)}. According to Definition 5, the common preference

relation of c1 and c2 is≻CPU
{c1,c2}

= {(dual, single), (triple, single), (quad, single)}. Similarly

we can derive ≻display

{c1,c2}
and ≻brand

{c1,c2}
. In Table 2.2, the three partial orders are depicted in a

row labeled as a virtual user U . The Pareto frontier of U is PU = {o2, o3, o10, o15}. △

Theorem 2. Given any set of users U , for all c ∈ U , PU ⊇ Pc and PU ⊆
⋂

c∈U Pc. △

Proof: We prove by contradiction. Suppose that there exists c ∈ U such that PU +

Pc, which would mean there exists o ∈ O such that o ∈ Pc and o /∈ PU . That implies the

existence of an o′ ∈ O such that o′ ≻U o and o′ ⊁c o. However, by Definition 5, o′ ≻U o

implies o′ ≻c o. Therefore, the existence of o′ is impossible. This contradiction eventually

leads to that PU ⊇ Pc. Hence, PU ⊇
⋃

c∈U Pc, which implies PU ⊆
⋂

c∈U Pc according to

De Morgan’s laws.

Lemma 1. Given any set of users U , for all c ∈ U , Pc = {o ∈ PU |∄o′ ∈ PU s.t. o′ ≻c

o}. △
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Example 4. In Table 2.2, PU = {o2, o3, o10, o15} and Pc1 ∪ Pc2 = {o2, o3, o15}. PU ⊇ Pc1

∪ Pc2 . Moreover, PU = {o1, o4, o5, o6, o7, o8, o9, o11, o12, o13, o14} and Pc1 ∩ Pc2 = {o1,

o4, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14, o15}. PU ⊆ Pc1 ∩ Pc2 . △

Theorem 2 suggests an appealing quality of the common preference relations of U .

By PU ⊇ Pc, the Pareto frontier of U subsumes the Pareto frontier of every user member

in U . What it means is that, if we simply compute the Pareto frontier of U , we get to retain

all the objects that we eventually look for. Consider Pc as the ground truth and PU as the

predictions. The objects that are filtered out (PU ) are all “true negatives” and there are no

“false negatives”. The set PU may contain “false positives”, which we just need to throw

out after further verification, as Lemma 1 suggests.

This approach’s merit is the potential saving on object comparisons. For a cluster

of users, many non Pareto-optimal objects may be filtered out altogether for all the users,

without incurring the same comparisons repeatedly for each user.

To capitalize on the above ideas, our method must answer three questions. (1) How

to find users sharing similar preferences? (2) For a set of similar users U , how to maintain

the corresponding Pareto frontier PU based on their common preference relations ≻d
U for

different attributes d? (3) For each user c in U , how to discern the “false positives” in PU

and thus find Pc. Note that the second and the last challenges need to be addressed for

constantly arriving new objects.

For (1), our method is to cluster users based on the similarity between their prefer-

ence relations. While many clustering methods have been developed for various types of

data, none is specialized in clustering partial orders. Our clustering method is discussed in

Section 2.5. For (2) and (3), our algorithm takes a filter-then-verify approach and is thus

named FilterThenVerify, of which the pseudo code is displayed in Algorithm 2.

Algorithm FilterThenVerify Upon the arrival of a new object o, for every cluster

U , FilterThenVerify compares o with the current members of PU based on the preference
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relations of the virtual user U . Various actions are taken, depending on the comparison

outcomes, as follows:

I) If o dominates any o′ in PU according to ≻d
U of all relevant d, o′ is removed from

PU (Line 7 of Procedure updateParetoFrontierU in Algorithm 2). For every c ∈ C such that

o′ ∈ Pc, o
′ is also discarded from Pc (Line 6 of Procedure updateParetoFrontierU).

II) If o is dominated by any o′ in PU , then o does not occupy the Pareto frontier

of any user in U (Theorem 2). Further operations involving o are unnecessary (Line 8 of

Procedure updateParetoFrontierU).

III) After comparing o with all current objects in PU , if it is realized that o is not

dominated by any o′, then o becomes a member of PU (Line 9 of updateParetoFrontierU).

Furthermore, for each c ∈ U , o is further compared with the members of Pc based on the

preference relations of c, by using Procedure updateParetoFrontier of Algorithm1 (Line 6

of Algorithm2).

Example 5. In this example we explain the execution of FilterThenVerify on Table 2.1 and

Table 2.2. Suppose users c1 and c2 form a cluster U , of which the preference relations

are depicted in Table 2.2. The existing objects are o1 to o14, and o15 = 〈16.5′′, Lenovo,

quad〉 is the object that just becomes available. Before o15 arrives, the Pareto frontier of

U is PU = {o2, o3, o7, o10}. The algorithm starts by comparing o15 with each element in

PU . As o15 dominates o7 = 〈9.5
′′, Lenovo, quad〉 according to U ’s preference relations, o7

is discarded from PU . Before o15 arrives, o7 belongs to Pc2 and Co7={c2}. Hence, o7 is

removed from Pc2 and Co7 becomes empty. o15 does not dominate any other object in PU .

It is not dominated by any either. Therefore, it is inserted into PU .

o15 is further compared with the existing members of Pc1 and Pc2 . It is dominated

by o2=〈14
′′, Apple, dual〉 according to c1’s preference relations. Thus it is not part of Pc1 .

According to c2’s preferences, o15 does not dominate any existing Pareto optional object
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Algorithm 2: FilterThenVerify

Input: U1, U2,..., Un: clusters of users; O: existing objects; o: a new object

Output: Co: target users of o

1 Co ← ∅;

2 foreach U ∈ {U1, U2, ..., Un} do

3 isPareto← updateParetoFrontierU(U, o);

4 if isPareto then

5 foreach c ∈ U do

6 updateParetoFrontier(c, o); //Algorithm 1

7 return Co;

Procedure: updateParetoFrontierU (U, o)

1 isPareto← true;

2 foreach o′ ∈ PU do

3 if o ≻U o′ then

4 foreach c ∈ U do

5 if o′ ∈ Pc then

6 Pc ← Pc − {o
′}; Co′ ← Co′ − {c};

7 PU ← PU − {o
′};

8 else if o′ ≻U o then isPareto ← false; break ;

9 if isPareto then PU ← PU ∪ {o} ;

10 return isPareto;

(except the aforementioned o7 which by now is already discarded). Therefore Pc2 is not

further changed and o15 becomes part of Pc2 . Overall, Co15={c2}.

Moreover, consider the arrival of o16 = 〈16
′′, Toshiba, single〉 after o15. In the pro-

cess of comparing o16 with PU = {o2, o3, o10, o15}, it is realized that o16 is dominated by

o2 according to U ’s preference relations. Therefore, it does not belong to PU . It is thus un-

necessary to further compare o16 with Pc1 or Pc2 . Co16=∅. Thereby, updateParetoFrontierU
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acts as a sieve to filter out non Pareto-optimal objects such as o16. In this way FilterThen-

Verify reduces computation cost by avoiding repeated comparisons with such objects. △

Complexity Analysis of Algorithm 2 As we discussed earlier, given a user c, the

complexity of finding Pareto frontier among the n objects is O(n2). Assume k is the num-

ber of clusters. With regard to the virtual user for each cluster U , the complexity of finding

Pareto frontier PU among the n objects is O(n2 · k) (calling Procedure updateParetoFron-

tierU in Line 3 of Algorithm 2). Assume each PU on average has m objects. In Lines 4-6,

Algorithm 2 finds Pc from PU for each user c in U (recall that PU ⊇ Pc). As Lines 4-6

iterate for each cluster (Line 2), the algorithm eventually computes Pc for each c ∈ C.

Therefore, the complexity of finding Pareto frontier Pc among the m objects is O(m2 · |C|).

Overall, FilterThenVerify needs O(n2 · k +m2 · |C|) time to find the target users for all ob-

jects. We compare FilterThenVerify and Baseline in terms of time complexity. Apparently

k < |C| and m < n. Thus, n2 · k < n2 · |C| and m2 · |C| < n2 · |C|.

2.5 Similarity Measures for Clustering User Preferences

This section discusses how to cluster users based on their preference relations. Our

focus is on the similarity measures rather than the clustering method. The method we adopt

is the conventional hierarchical agglomerative clustering algorithm [19]. The pseudo code

is described in Algorithm 3. At every iteration, the method merges the two most similar

clusters. The common preference relation of the merged cluster U on each attribute d, i.e.,

≻d
U , is computed. It then calculates the similarity between U and each remaining cluster.

Given two clusters U1 and U2, their similarity sim(U1, U2) is defined as the summation of

the similarities between their preference relations on individual attributes, as follows. This

resembles the high-level idea of using L1 norm distance between centroids for measuring

inter-cluster similarity in conventional hierarchial clustering.
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Algorithm 3: Hierarchical Clustering of Users’ Preference Relations

Input: C: all users

1 N ← |C|;

2 for i = 1 to N do

3 for j = 1 to N do

4 Compute sim(ci, cj);

5 repeat

6 Merge two closest clusters of maximum similarity measures as U ;

7 N ← N − 1;

8 foreach d ∈ D do

9 Compute ≻d
U ;

10 for i = 1 to N do

11 Compute sim(U,Ui);

12 until N 6= 1;

sim(U1, U2) =
∑

d∈D

simd(U1, U2) (2.1)

Individual users’ and clusters’ preference relations on attributes are strict partial or-

ders. No prior work studied clustering approaches or similarity measures for partial orders.

Similarity measures commonly used in clustering algorithms assume numeric or categori-

cal attributes. Kamishima et al. [24, 23] and Ukkonen et al. [37] cluster total orders but not

partial orders. Given two totally ordered attributes, these works use the comparative ranks

of the corresponding values to measure similarity. Clearly, such similarity measures are not

applicable for partially ordered attributes.

In this section, we propose four different similarity functions for defining simd(U1,

U2).
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1) Intersection size This is simply the size of the intersection of ≻d
U1

and ≻d
U2

, i.e.,

the number of common preference tuples of all users in the two clusters U1 and U2. It is

defined as

simd
i (U1, U2) = | ≻

d
U1
∩ ≻d

U2
| (2.2)

Example 6. Table 2.3 shows three clusters U1 ({c1, c2}), U2 ({c3, c4}), and U3 ({c5,

c6}) and the common preference relation associated with each cluster on attribute brand.

U1 and U2 do not share any preference tuple and thus simbrand
i (U1, U2) = 0. U1 and

U3 have (Apple, Samsung) and (Lenovo, Samsung) as common preference tuples, i.e.,

simbrand
i (U1, U3) = 2. Similarly, U2 and U3 share (Lenovo, Apple) and (Lenovo, Toshiba),

i.e., simbrand
i (U2, U3) = 2. △

2) Jaccard similarity The measure simi captures the absolute size of the intersec-

tion of two preference relations. It does not take into account their differences. Consider

three clusters U1, U2 and U3 such that simd
i (U1, U2) = simd

i (U1, U3) (i.e., | ≻d
U1
∩ ≻d

U2
|

= | ≻d
U1
∩ ≻d

U3
|) and | ≻d

U1
∪ ≻d

U2
| < | ≻d

U1
∪ ≻d

U3
|. We can argue that the similarity

between U1 and U2 should be higher than (instead of equal to) that between U1 and U3,

because U1 and U2 have a larger percentage of common preference tuples than U1 and U3.

To address this limitation of simi, we define the Jaccard similarity between two preference

relations as their intersection size over their union size, i.e., the ratio of common preference

tuples to all preference tuples in the two preference relations. Formally,

simd
j (U1, U2) =

| ≻d
U1
∩ ≻d

U2
|

| ≻d
U1
∪ ≻d

U2
|
=

simd
i (U1, U2)

| ≻d
U1
∪ ≻d

U2
|

(2.3)

Example 7. Continue Example 6. ≻brand
U1

and≻brand
U3

have 6 preference tuples in total while

≻brand
U2

and ≻brand
U3

have 7. Thus, simbrand
j (U1, U3) = 2/6 and simbrand

j (U2, U3) = 2/7. △

3) Weighted intersection size Intersection size and Jaccard similarity are based on

the cardinalities of intersection and union sets of preference relations. In counting the car-

dinalities, they both treat all preference tuples equal. We argue that this is counter-intuitive.
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Values at the top of a partial order matter more than those at the bottom, in terms of their

impact on which objects belong to the Pareto frontier. Accordingly we introduce weighted

intersection size, a modified version of intersection size simi. In counting the common

preference tuples of two preference relations, it assigns a weight to each preference tuple.

Formally,

simd
wi(U1, U2) =

∑

(v,v′)∈≻d
U1

∩≻d
U2

1

2
× (

1

min
s∈Sd

U1

D(s, v)+1
+

1

min
s∈Sd

U2

D(s, v)+1
) (2.4)

In the above equation, with regard to an attribute d, the similarity between two clus-

ters’ preference relations is a summation over their common preference tuples. For each

common preference tuple (v, v′), it computes the average weight of the better value v with

respect to U1 and U2, respectively. Given a cluster U , Sd
U is the set of maximal values in

the partial order ≻d
U and D(s, v) for each s ∈ Sd

U is the shortest distance from s to v in≻d
U .

The weight of v in U is the inverse of the minimal distance from any maximal value to v

(plus 1, to avoid division by zero). The concept of maximal value is defined as follows.

Definition 7 (Maximal Value). With regard to≻d
U , value x ∈ dom(d) is a maximal value if

no other value in dom(d) is preferred over x. The set of maximal values for ≻d
U is denoted

Sd
U . Formally, Sd

U = {x ∈ dom(d) | ∄y ∈ dom(d) s.t. (y, x) ∈ ≻d
U}. △

Example 8. Continue Example 6. The maximal values in ≻brand
U1

, ≻brand
U2

and ≻brand
U3

are

Sbrand
U1

={Apple, Toshiba}, Sbrand
U2

= {Samsung} and Sbrand
U3

={Lenovo}, respectively. In

the partial order corresponding to ≻brand
U1

, the minimal shortest distances to Apple, Lenovo,

Samsung, and Toshiba from the maximal values {Apple, Toshiba} are 0, 1, 1 and 0, respec-

tively. The corresponding weights are 1, 1/2, 1/2 and 1. Similarly, in ≻brand
U2

, the weights

of Apple, Lenovo, Samsung and Toshiba are 1/3, 1/2, 1 and 1/3, respectively. In ≻brand
U3

,

the corresponding weights are 1/2, 1, 1/3 and 1/2, respectively.
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U1 and U3 have (Apple, Samsung) and (Lenovo, Samsung) as common preference

tuples. For the two better-values in these preference tuples—Apple and Lenovo, the average

weights are both 3/4. The similarity simbrand
wi (U1, U3) =

1+ 1

2

2
+

1

2
+1

2
= 3

2
. Similarly, U2 and

U3 have (Lenovo, Apple) and (Lenovo, Toshiba) as common preference tuples. In U2 and

U3, the average weight of Lenovo—the better-value in both common preference tuples—is

3/4. The similarity simbrand
wi (U2, U3) =

1

2
+1

2
+

1

2
+1

2
= 3

2
. △

4) Weighted Jaccard similarity This measure is a combination of the last two

ideas—Jaccard similarity and weighted intersection size. As in Jaccard similarity, weighted

Jaccard similarity computes the ratio of intersection size to union size. Similar to weighted

intersection size, the values in a preference relation are assigned weights corresponding to

their minimal shortest distances to the preference relation’s maximal values. The measure’s

definition is as follows.

simd
wj(U1, U2) =

∑

(v,v′)∈≻d
U1

∩≻d
U2

1

2
× (

1

min
s∈Sd

U1

D(s, v)+1
+

1

min
s∈Sd

U2

D(s, v)+1
)

/ ∑

(v,v′)∈≻d
U1

∪≻d
U2

1

2
× (

1

min
s∈Sd

U1

D(s, v)+1
+

1

min
s∈Sd

U2

D(s, v)+1
)

= simd
wi(U1, U2)

/ [
simd

wi(U1, U2) +
∑

(v,v′)∈≻d
U1

−≻d
U2

1

min
s∈Sd

U1

D(s, v) + 1

+
∑

(v,v′)∈≻d
U2

−≻d
U1

1

min
s∈Sd

U2

D(s, v) + 1

]
(2.5)

Example 9. Continue Example 8. Now simbrand
wj (U1, U3) =

3

2

(1+1)+(1+1)+ 3

2

= 3
11

, since

≻d
U1
−≻d

U3
= {(Apple, Lenovo), (Toshiba, Samsung)} and≻d

U3
− ≻d

U1
= {(Lenovo, Apple),

(Lenovo, Toshiba)}. Similarly, simbrand
wj (U2, U3) =

3

2

(1+1+1)+(1+ 1

2
)+ 3

2

= 3
12

, as≻d
U2
− ≻d

U3
=

{(Samsung, Lenovo), (Samsung, Apple), (Samsung, Toshiba)} and ≻d
U3
−≻d

U2
={(Lenovo,
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Samsung), (Apple, Samsung)}. Note that simbrand
wj (U1, U3) > simbrand

wj (U2, U3) although

simbrand
wi (U1, U3) =simbrand

wi (U2, U3). △

2.6 Approximate User Preferences

Two conflicting factors have crucial impacts on the effectiveness of FilterThenVerify.

One is the size of the common preference relations. The other is the size of the clusters.

Specifically, the more preference tuples a cluster’s users share, the more objects can be

filtered out and thus the less verifications need to be done for individual users. On the

contrary, the more users a cluster contains, the more repeated comparisons are avoided for

these individual users. There is a clear tradeoff between these two factors, since larger

clusters (i.e., more users in each cluster) naturally leads to smaller common preference

relations.

Our approach to this challenge is approximation. As discussed in Section 2.1, it suf-

fices for many applications to approximately identify target users. In this section, we show

that we can find such approximation through a relaxed notion of common preference tuple,

namely approximate common preference tuple. For a set of users, it allows a preference

tuple to be absent from a tolerably small subset. If a sizable subset of the users agree with

the preference tuple, it is considered an approximate common preference tuple. This relax-

ation addresses the aforementioned concern, since more approximate common preferences

lead to larger clusters.

2.6.1 Approximate Common Preference Tuples and Relations

Based on the aforementioned objective, we procedurally construct approximate com-

mon preference relations. Before we provide its formal definition, we explain the intuition,

as follows. Given a cluster of users, the resulting approximate common preference relation
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always includes the common preference tuples. The remaining possible preference tuples

are considered in descending order of their frequencies, since preference tuples with higher

frequencies are shared by more users. A preference tuple is included into the approxi-

mate common preference relation only if its reverse tuple is not included. This guarantees

asymmetry. Furthermore, when a preference tuple is included, the transitive closure of the

updated approximate common preference relation is also included. This guarantees transi-

tivity. Irreflexivity is guaranteed too since this procedure never considers preference tuples

in the form of (x, x). These altogether assure the constructed preference relation is a strict

partial order. Given an append-only database of objects, a strict partial order ensures that

preference query results are independent of the order by which objects are appended to the

database. We denote the approximate common preference relation by ≻̂
d

U . It can be viewed

as the preference of a virtual user (denoted Û ) on attribute d. Moreover, we denote the

Pareto frontier of O for Û as U .

Definition 8 (Approximate Common Preference Tuple and Relation). Given a set of users

U⊆C, an attribute d∈D of which |dom(d)|=m, consider A1...m2 which is an ordered per-

mutation of all possible preference tuples {(x, y) ∈ dom(d) × dom(d) | x 6= y} such that

freq(Ai)≥freq(Ai+1) for i ∈ [1,m2 − 1], in which freq(Ai) denotes the percentage of

users in U whose preference relations contain preference tuple Ai. The approximate com-

mon preference relation ≻̂
d

U is defined as Rj in which j is the largest index i ∈ [1,m2] that

satisfies the condition (|Ri| < θ1 ∧ freq(Ai) > θ2) ∨ freq(Ai) = 1 where Ri is defined as

Ri =





{A1} if i = 1

(Ri−1 ∪ {Ai})
+ if Ri−1 ∪ {Ai} is a strict partial order

Ri−1 otherwise
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and θ1 and θ2 are two given thresholds. θ1 limits the size of the resulting ≻̂
d

U while

θ2 excludes infrequent preference tuples from ≻̂
d

U . △

θ1 and θ2 regulate the size of ≻̂
d

U . A pair of large θ1 and small θ2 allows ≻̂
d

U to include

infrequent preference tuples. In such a case the approximate common preference relation

becomes ineffective, since Procedure updateParetoFrontierU in Algorithm2 may retain a

large number of candidates that must be verified for each c ∈ U . On the other hand, a

pair of small θ1 and large θ2 may limit ≻̂
d

U to contain only ≻d
U , in which case the concern

regarding small common preference relation remains.

As Definition 8 itself is procedural, it naturally corresponds to a greedy algorithm for

constructing approximate preference relation ≻̂
d

U . The pseudo code GetApproxPreference-

Tuples is in Algorithm 4. First, all the common preference tuples are included (Lines 2-3).

After that, preference tuples are considered in the order of frequency, as long as the two

thresholds are satisfied (Line 4). For each preference tuple in consideration, if it together

with all chosen tuples hitherto do not violate the properties of a strict partial order, their

transitive closure is included into the approximate preference relation (Lines 6-7).

Example 10. We use Figure 2.1 to explain the execution of GetApproxPreferenceTuples.

Figure 2.1a depicts three users’ preference relations on brand. Suppose together these three

users form a cluster. Assume θ1 = 7 and θ2 = 60%.

Table 2.5 shows the frequencies of all possible preference tuples after sorting. For in-

stance, since all users prefer Apple to Toshiba, the corresponding frequency is 3/3; the fre-

quency of (Apple, Samsung) is 2/3 as two of these three users prefer Apple to Samsung. At

first GetApproxPreferenceTuples includes the common preference tuple (Apple, Toshiba)

into ≻̂
d

U . It then includes (Apple, Samsung), (Lenovo, Toshiba), and (Toshiba, Samsung) as

approximate preference tuples too. Furthermore, upon the addition of (Toshiba, Samsung),

GetApproxPreferenceTuples includes (Lenovo, Samsung) as well since (Lenovo, Toshiba)

28



Algorithm 4: GetApproxPreferenceTuples

Input: Ai: ordered permutation of all possible preference tuples, defined on dom(d), in

descending order of their frequencies among users U , θ1 and θ2: thresholds

Output: ≻̂
d

U : approximate common preference relation of U on attribute d

1 for i = 1 to |dom(d)|2 do

2 if freq(Ai) = 1 then

3 ≻̂
d

U ← ≻̂
d

U ∪ {Ai}; continue;

4 if |≻̂
d

U | ≥ θ1 or freq(Ai) ≤ θ2 then

5 break;

6 if (≻̂
d

U ∪ {Ai}) is a strict partial order then

7 ≻̂
d

U ← (≻̂
d

U ∪ {Ai})
+;

8 return ≻̂
d

U ;

Apple Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

(a)

Apple Lenovo

Toshiba

Samsung

1

2

3

4
4

(b)

Apple Lenovo

Toshiba

Samsung

(c)

Figure 2.1: Execution of GetApproxPreferenceTuples. a) Input: the preferences of 3 users w.r.t.

brand. b) The sequence of included approximate preference tuples. c) Output: the final Hasse

diagram representation of the partial order.

and (Toshiba, Samsung) transitively induce it. The algorithm then considers (Samsung,

Lenovo), which is disqualified since its reverse tuple (Lenovo, Samsung) is already in-

cluded. Otherwise the tuples will not form a strict partial order. The algorithm stops at

(Apple, Lenovo) because its frequency is below the threshold 60%. Figure2.1b illustrates
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(A, T) (A, S) (L, T) (T, S) (S, L) (A, L) (L, S) (T, L) (S, T) (L, A) (T, A) (S, A)

3/3 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 0/3 0/3 0/3

Table 2.5: All possible preference tuples in order of frequency. (A, L, S and T stand for Apple,

Lenovo, Samsung and Toshiba.)

the sequence of the included tuples and Figure2.1c depicts the output approximate prefer-

ence relation in the form of a Hasse diagram. △

2.6.2 False Positives and False Negatives due to Approximation

FilterThenVerify (Algorithm2) is extended to use approximate preference tuples and

thus we rename it FilterThenVerifyApprox. The algorithm itself remains the same. Proce-

dure updateParetoFrontierU maintains U as the candidate Pareto frontier. The algorithm

eventually returns c for each user c ∈ U , in which c = {o ∈ U |∄o′ ∈ U s.t. o′ ≻c o}, i.e.,

U ⊇ c. Thus, Ĉo = {c ∈ C|o ∈ c}. We use the example below to explain its execution over

approximate preference relations.

Example 11. Reconsider Example 5, but use the approximate preference relations asso-

ciated with virtual user Û in Table 2.2. Upon the arrival of o15, it is compared with the

elements in U = {o2, o7}. U becomes {o2, o15} since o15 dominates o7. o7 is then also re-

moved from c2. o15 is further compared with c1 = {o2} and c2 = {o2}, which does not lead

to any further change. Overall, Ĉo15 = {c2}. The target users using approximate preference

relations remain identical to the exact ones, i.e., no loss of accuracy in this case. △

The rest of this section focuses on the accuracy of FilterThenVerifyApprox. It pro-

duces false positives if there exists such an o that o ∈ c but o /∈ Pc. It produces false

negatives if there exists such an o that o /∈ c but o ∈ Pc. Below we present Theorems 3 and

4 to analyze how U and c relate to PU and Pc.

Lemma 2. Given a set of users U and an attribute d, the common preference relation ≻d
U

and an approximate common preference relation ≻̂
d

U satisfy the following properties:
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III IV

V

VI

I
II

Figure 2.2: Venn diagram depictingO, PU , U ,

Pc and c.

Set Area Covered

O I,II,III,IV,V,VI

PU II,III,IV,V,VI

U IV,V,VI

Pc III,IV

c IV,V

Table 2.6: Areas covered byO, PU , U , Pc and

c in Figure2.2.

Exact

Approx.

Pareto frontier Non Pareto frontier

Pareto frontier IV V

Non Pareto frontier III I,II,VI

Table 2.7: Confusion matrix w.r.t. c.

1) The approximate preference tuples are a superset of the common preference tuples,

i.e., ≻̂
d

U ⊇≻
d
U .

2) If any preference tuple along with its reverse tuple do not belong to the approxi-

mate common preference relation, neither of them belongs to the common preference rela-

tion either, i.e., (x, y)/∈ ≻̂
d

U ∧ (y, x)/∈ ≻̂
d

U ⇒ (x, y) /∈ ≻d
U ∧ (y, x) /∈ ≻d

U . △

Theorem 3. Given objects O and users U , the Pareto frontier with regard to approximate

common preference relations is a subset of the Pareto frontier with regard to common pref-

erence relations, i.e., U ⊆ PU . △

Proof: We prove by contradiction. Suppose U * PU , which would mean there exists

o ∈ O such that o ∈ U and o /∈ PU . That leads to the existence of an o′ such that o′ ≻U o

and o′ ⊁Û o. However, o′ ≻U o implies o′ ≻Û o because ≻̂
d

U ⊇≻
d
U for every d (Lemma 2).

Therefore, the existence of o′ is impossible. This contradiction proves that U ⊆ PU .

Lemma 3. Given any set of users U , for all user c ∈ U , U ⊇ c. △

Theorem 4. Given any set of users U , for all user c ∈ U , U ∩ Pc ⊆ c. △

Proof: We prove by contradiction. Suppose U ∩ Pc * c, which would mean there

exists o ∈ O such that o ∈ U ∩Pc and o /∈ c. o /∈ c implies the existence of an o′ ∈ O such
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that o′ ∈ c and o′ ≻c o (since o ∈ U ∩ Pc and thus o ∈ U which means o′ ⊁Û o). Since

o′ ≻c o, o /∈ Pc (Definition 3) and thus o /∈ U ∩ Pc. In other words, the existence of o′ is

impossible. This contradiction proves that U ∩ Pc ⊆ c.

Consider a cluster U and a user c ∈ U . The Venn diagram in Figure 2.2 shows the

effect of approximation through depicting O (rectangle), PU (outer blue circle), U (outer

red ellipse), Pc (inner blue circle), and c (inner red ellipse). Besides, Table 2.6 elaborates

the area covered by these sets while Table 2.7 shows the confusion matrix for c. Note that

using approximate common preference relations results in false negatives (III). Mistakenly

declaring III as not Pareto-optimal further allows false positives (V) to sneak in.

With these notations in place, we are ready to quantify the accuracy of FilterThenVer-

ifyApprox using standard evaluation measures in information retrieval. Specifically, preci-

sion is the fraction of objects found by FilterThenVerifyApprox that are truly Pareto-optimal,

i.e.,
∑

c∈C
c∩Pc∑

c∈C
c

. Recall is the fraction of Pareto-optimal objects that are correctly found by

FilterThenVerifyApprox, i.e.,
∑

c∈C
c∩Pc∑

c∈C
Pc

. With regard to a specific user c, the algorithm’s

precision, recall and accuracy can be represented using the areas in Figure 2.2, as follows.

precision =
| IV |

| IV ∪ V |
(2.6)

recall =
| IV|

| III ∪ IV |
(2.7)

accuracy =
| I ∪ II ∪ IV ∪ VI |

| I ∪ II ∪ III ∪ IV ∪ V ∪ VI |
(2.8)

32



2.6.3 Similarity Functions

To make the clustering solution in Section 2.5 compatible with approximate pref-

erence relations, we extend the similarity measures, using ideas inspired by the Jaccard

similarity for non-negative multidimensional real vectors [11].

1) Jaccard Similarity Consider an attribute d with |dom(d)| = m. For each cluster

U , construct a vector U = (U(1), U(2), . . ., U(m2)). For i ∈ [1,m2], U(i) represents the

frequency of Ai (Definition 8) in U . Given two clusters U and V , their Jaccard similarity

on attribute d is

simd
j (U, V ) =

∑
i min(U(i),V(i))∑
i max(U(i),V(i))

(2.9)

Example 12. Consider U1 and U3 in Table 2.3. Suppose A(i) for i ∈ [1,m2] are ((Ap-

ple, Lenovo), (Apple, Samsumg), (Apple, Toshiba), (Lenovo, Apple), (Lenovo, Samsung),

(Lenovo, Toshiba), (Toshiba, Apple), (Toshiba, Lenovo), (Toshiba, Samsung), (Samsung,

Apple), (Samsung, Lenovo), (Samsung, Toshiba)). The two vectors are U1 = (2/2, 2/2,

0/2, 0/2, 2/2, 0/2, 0/2, 1/2, 2/2, 0/2, 0/2, 0/2) and U3 = (0/2, 2/2, 1/2, 2/2, 2/2, 2/2,

0/2, 0/2, 1/2, 0/2, 0/2, 0/2). For instance, U1 has 1/2 on the 8th-dimension since only one

of the two users’ preference relations contains (Toshiba, Lenovo). Hence, simbrand
j (U1,U3)

= 0.36. △

2) Weighted Jaccard Similarity This measure, denoted as simd
wj , extends the

namesake measure in Section 2.5 with the idea above. Its definition is the same as Eq. 2.9

except that a value U(i) in a vector represents the frequency of Ai in U that takes into

consideration the weights explained in Section 2.5. Consider Ai as the preference tuple

(Ai(x), Ai(y)). This similarity measure is defined as follows.
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simd
wj(U, V ) =

∑

i

(min(
1

|U |
×

∑

c∈U

1

min
s∈Sd

c

D(s,Ai(x))+1
,

1

|V |
×

∑

c∈V

1

min
s∈Sd

c

D(s,Ai(x))+1
))

/ ∑

i

(max(
1

|U |
×

∑

c∈U

1

min
s∈Sd

c

D(s,Ai(x))+1
,

1

|V |
×

∑

c∈V

1

min
s∈Sd

c

D(s,Ai(x))+1
)) (2.10)

Example 13. In Table 2.3, in the partial order depicting ≻brand
c6

, the distance to Apple from

the maximal value Lenovo is 1, i.e., the weight of Apple is 1/2. Since only one of the

two users in U3 has (Apple, Toshiba) in their preference relation, U3 has
1

2
+0

2
= 1

4
on the

3rd-dimension. In this way, we get U1 = (2/2, 2/2, 0/2, 0/2, 1/2, 0/2, 0/2, 1/2, 2/2,

0/2, 0/2, 0/2) and U3 = (0/2, 1/2, 1/4, 2/2, 2/2, 2/2, 0/2, 0/2, 1/4, 0/2, 0/2, 0/2).

Therefore, simbrand
wj (U1,U3) = 0.19. △

2.7 Alive Object Dissemination

In Section 2.1, we discussed motivating applications such as social network content

dissemination, news delivery and product recommendation. The significance of a particular

social network content (e.g. a post in Facebook) or a piece of news diminishes eventually.

Similarly, in any inventory, products are consumed and perishable products expire over

time. In other words, objects can have limited lifetime. Thus, upon the arrival of a new

object, it needs to compete only with the alive objects. To meet this requirement, we extend

our problem as continuous monitoring of Pareto frontiers over alive objects for many users

and formalize it as finding Pareto frontiers over sliding window.

Suppose O = {o1, o2, . . ., oN} is a stream of objects, in which the subscript of

each object is its timestamp. We consider a sliding window as a sequence of W recent
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objects. Upon the arrival of an incoming object oin, an object oout expires if in−out = W .

Specifically, the sliding window contains objects whose timestamps are in (out, in], i.e., an

object oi ∈ O is alive during (out, in] if i ∈ (out, in]. Given the concept of sliding window,

we extend the definition of Pareto frontier in Definition 3 and the problem statement in

Section 2.3.

Definition 9 (Pareto Frontier). An alive object o is Pareto-optimal with respect to c, if no

other alive object dominates it. Pc = {oi ∈ O|∄oj ∈ O s.t. oj ≻c oi∧ i, j ∈ (out, in]}. The

target users of oin is Coin = {c ∈ C|oin ∈ Pc} (Definition 4). △

Problem Statement The problem of continuous monitoring of Pareto frontiers over

sliding window is, given a set of users C, their preference relations on attributes D, and a

stream of objects O with the incoming object oin as well as the outgoing object oout, find

Coin—the target users of oin.

Algorithms BaselineSW and FilterThenVerifySW We extend Baseline and Fil-

terThenVerify to BaselineSW and FilterThenVerifySW, respectively, to accommodate slid-

ing window. The pseudo codes are described in Algorithm 5 and Algorithm 6, respectively.

We note that no prior work studied Pareto frontier maintenance with regard to strict partial

orders over sliding window. [28, 36, 29] studied skyline maintenance over sliding win-

dow, assuming numeric attributes. [32] considered total orders (with ties) on categorical

attributes instead of general partial orders. There is no clear way to extend these works for

partially ordered attributes.

Under the constraint of having a sliding window, an object can be excluded from

Pareto frontier forever if it is dominated by any succeeding object. This observation is

formalized as Theorem 5.

Theorem 5. Consider a user c ∈ C and two objects oi, oj ∈ O such that oi ≺c oj and

i < j. After the arrival of oj , oi can never be part of Pc in its remaining lifetime. △
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Algorithm 5: BaselineSW

Input: C: all users; P: Pareto frontier; PB: Pareto frontier buffer; oin: incoming object; oout:

outgoing object

Output: Coin : target users of oin

1 foreach c ∈ C do

2 if oout ∈ Pc then

3 foreach o ∈ PBc do

4 if oout ≻
c o then

5 mendParetoFrontierSW(c, o);

6 PBc ← PBc − {oout};

7 if oin not dominated by Pc then

8 updateParetoFrontierSW(c, o);

9 refreshParetoBufferSW(c, oin);

10 return Coin ;

Procedure: mendParetoFrontierSW (c, o)

1 isPareto ← true;

2 foreach o′ ∈ Pc do

3 if o′ ≻c o then isPareto ← false; break ;

4 if isPareto then Pc ← Pc ∪ {o}; Co ← Co ∪ {c} ;

Procedure: updateParetoFrontierSW (c, oin)

1 Pc ← Pc ∪ {oin}; Coin ← Coin ∪ {c};

2 foreach o ∈ Pc do

3 if oin ≻
c o then

4 Pc ← Pc − {o}; Co ← Co − {c}

Procedure: refreshParetoBufferSW (c, oin)

1 PBc ← PBc ∪ {oin};

2 foreach o ∈ PBc do

3 if oin ≻
c o then PBc ← PBc − {o} ;

Proof: Since i < j, oi expires before oj and the sliding window always includes oj

if it includes o. Since oj dominates oi, oi will never get into Pc after the arrival of oj .

Example 14. Consider Table 2.1 and Table 2.2. Consider W , in and out as 5, 10 and 5,

respectively. Upon the arrival of o10 = 〈9.5, Lenovo, triple〉 and the expiration of o5 = 〈9,

Samsung, quad〉, we get Pc1 = {o8} and Pc2 = {o7, o8}. △
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Algorithm 6: FilterThenVerifySW

Input: {U1, U2,..., Un}: all clusters; P: Pareto frontier; PB: Pareto frontier buffer; oin:

incoming object; oout: outgoing object

Output: Coin : target users of oin

1 foreach i = 1 to n do

2 if oout ∈ PUi
then

3 foreach o ∈ PBUi
do

4 if oout ≻ o then

5 isPareto←mendParetoFrontierUSW(Ui, o);

6 if isPareto then

7 foreach c ∈ Ui do

8 mendParetoFrontierSW(c, o)

9 PBUi
← PBUi

− {oout};

10 if oin not dominated by PUi
then

11 updateParetoFrontierUSW(Ui, o);

12 foreach c ∈ Ui do

13 if oin not dominated by Pc then

14 updateParetoFrontierSW(c, o);//Algorithm 5

15 refreshParetoBufferSW(Ui, oin); //Algorithm 5

16 return Coin ;

Procedure: mendParetoFrontierUSW (U, o)

1 isPareto ← true;

2 foreach o′ ∈ PU do

3 if o′ ≻U o then return false ;

4 if isPareto then PU ← PU ∪ {o} ;

5 return isPareto;

Procedure: updateParetoFrontierUSW

(U, oin)

1 PU ← PU ∪ {oin};

2 foreach o ∈ PU do

3 if oin ≻
U o then Pc ← Pc − {o} ;
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By Theorem 5, we extend our algorithms to maintain a Pareto frontier buffer which

stores at most W recent objects that are not dominated by any succeeding object. Clearly,

oin is part of the Pareto frontier buffer.

Definition 10 (Pareto Frontier Buffer). With regard to user c and the sliding window (out,

in], an alive object o belongs to the Pareto frontier buffer if it is not dominated by any

succeeding object. The Pareto frontier buffer is PBc = {oi ∈ O|∄oj ∈ O s.t. oj ≻c

oi ∧ i, j ∈ (out, in] ∧ i < j}. By definition, PBc ⊇ Pc (Definition 9). △

Theorem 6. Given a set of users U , for all c ∈ U , i) PBU ⊇ PU and ii) PBU ⊇ PBc . △

Proof: i) Together Definition 9 and 10 imply that PBU ⊇ PU .

ii) We prove by contradiction. Suppose that there exists c∈U such thatPBU + PBc,

which would mean there exists o ∈ O such that o ∈ PBc and o /∈ PBU . That implies the

existence of an o′ ∈ O such that o′ ≻U o and o′ ⊁c o. However, by Definition 5, o′ ≻U

o implies o′ ≻c o. Therefore, the existence of o′ is impossible. In conclusion, PBU ⊇

PBc.

Note that, BaselineSW needs to maintain an exclusive Pareto frontier buffer for each

user (PBc) while a Pareto frontier buffer per cluster (PBU ) is sufficient for FilterThenVeri-

fySW.

Example 15. Continue Example 14. We get PBc1={o8, o9, o10}. In this case, o8 is the only

element of Pc1 . Since o6 or o7 could never been qualified in Pareto-optimality as they arrive

before o8, we do not need to store them. Nevertheless, upon the expiration of o8, either o9

or o10 could attain Pareto-optimality during their lifetime if they are not dominated by any

following object. Therefore, o9 and o10 are stored in PBc1 . For instance, o10 acquires

Pareto-optimality during (8, 13] as it does not dominated by any following object. △

In our sliding window framework, upon the expiration of an outgoing object oout, for

all c ∈ C, at first BaselineSW calls Procedure mendParetoFrontierSW to mend Pc. Because

at this point, the alive objects those are exclusively dominated by oout, acquire Pareto-
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display brand CPU

o1 17 Lenovo dual

o2 9.5 Sony single

o3 12 Apple dual

o4 16 Lenovo quad

o5 19 Toshiba single

o6 12.5 Samsung quad

o7 14 Apple dual

Table 2.8: Product Table

W Pc1 Pc2 PBc1 PBc2

[1, 6] {o1, o3}{o3, o4}{o1, o3, o4, o6}{o3, o4, o5, o6}
(1, 6] {o3} {o3, o4} {o3, o4, o6} {o3, o4, o5, o6}
(1, 7] {o7} {o4, o7} {o4, o7} {o4, o7}

Table 2.9: Content of Pareto Frontiers and Pareto Buffers During 3 Different Phases of Window of

BaselineSW

W PU Pc1 Pc2 PBU

[1, 6] {o1, o3, o4}{o1, o3}{o3, o4}{o1, o3, o4, o5, o6}
(1, 6] {o3, o4} {o3} {o3, o4} {o3, o4, o5, o6}
(1, 7] {o4, o7} {o7} {o4, o7} {o4, o7}

Table 2.10: Content of Pareto Frontiers and Pareto Buffers During 3 Different Phases of Window

of FilterThenVerifySW

optimality. While oin arrives, if oin belongs to Pc, then Procedure updateParetoFrontierSW

in BaselineSW discards objects that are dominated by oin, thereby updates Pc (Line 8).

After that, Procedure refreshParetoBufferSW in BaselineSW repairs PBc. Specifically,

oin replaces the alive objects from PBc that it dominates (Line 9). Thus PBc remains

concurrent with Definition 10.

On the contrary, in case of FilterThenVerifySW, upon the expiration of an outgo-

ing object oout, Procedures mendParetoFrontierUSW and mendParetoFrontierSW together

mend PU and Pc for all U ⊆ C, for all c ∈ U . While oin arrives, if oin belongs to PU ,

then Procedure updateParetoFrontierUSW discards objects from PU that are dominated by
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Pc1 Pc2

PU

PBU

O

Figure 2.3: Venn diagram depicting Pc1 , Pc2 , PU , PBU and O

oin (Line 11). Now for all c ∈ U , if c approves oin as a Pareto-optimal object, then Pro-

cedure updateParetoFrontierSW finds out the objects in Pc dominated by oin and thereby

removes them (Line 14). Lastly, Procedure refreshParetoBufferUSW repairs PBU so that

it includes only the objects which have the potentiality to acquire Pareto-optimality over

time with regard to U (Definition 10 and Theorem 6) (Line 15).

Example 16. The executions of BaselineSW and FilterThenVerifySW on Table 2.8 and

Table 2.2 are briefly explained here. Consider W , in and out as 6, 7 and 1, respectively.

While the sliding window is at [1, 6], Pc1 = {o1, o3}, Pc2 = {o3, o4}, PBc1 = {o1,

o3, o4, o6} and PBc2 = {o3, o4, o5, o6}. Upon the expiration of o1 = 〈17, Lenovo, dual〉,

the window is at (1, 6]. Now BaselineSW checks whether o1 belongs to Pc1 and Pc2 . Since

o1 belongs to Pc1 , Pc1 is mended to {o3}. Upon the arrival of o7 = 〈14,Apple, dual〉, the

window includes objects correspond to (1, 7]. At this point BaselineSW starts checking

whether o7 is qualified as an element of Pc1 and Pc2 , sequentially. In both Pc1 and Pc2 ,

o7 takes the place of o3 (Line 8). After that, o7 is stored to PBc1 and PBc2 . Furthermore,

for both PBc1 and PBc2 , BaselineSW finds out the objects dominated by o7 and discards

them, i.e., {o3, o6} and {o3, o5, o6}, respectively. As these dominated objects arrives before

o7, they could never acquire Pareto-optimality. Now PBc1 = {o4, o7} and PBc2 = {o4, o7}

(Line 9) (Definition 10). We get that Co7 = {c1, c2}. The content of Pareto frontiers and

Pareto buffers at 3 phases of window of BaselineSW is shown in Table 2.9.
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In case of FilterThenVerifySW, while the sliding window is at [1, 6], Pc1 = {o1, o3},

Pc2 = {o3, o4}, PU = {o1, o3, o4} and PBU = {o1, o3, o4, o5, o6}. Upon the expiration of

o1, the algorithm checks whether o1 belongs to PU . Therefore, PU becomes {o3, o4} while

the window is at (1, 6]. Upon the arrival of o7, the window includes objects correspond to

(1, 7]. Now FilterThenVerifySW starts checking whether o7 can occupy PU . With respect

to U , o7 dominates o3, i.e., o7 replaces of o3 in PU (Line 11) as well as in both Pc1 and Pc2

(Line 14). After that, o7 is stored in PBU . Moreover, o7 dominates o3, o5 and o6 in PBU .

Since each of these dominated objects in PBU arrives before o7, they could never been

qualified in Pareto-optimality. Therefore, FilterThenVerifySW discards them from PBU ,

i.e., PBU = {o4, o7} (Line 15) (Definition 10). Finally we get Co7 = {c1, c2}. The con-

tent of Pareto frontiers and Pareto buffers at 3 phases of window of FilterThenVerifySW are

shown in Table 2.10. The Venn diagram in Figure2.3 depicts Pc1 , Pc2 , PU and PBU . Note

that, while BaselineSW needs to maintain individual Pareto frontier buffer per user (PBc1

and PBc2), a shared Pareto frontier buffer per cluster (PBU ) suffices for FilterThenVeri-

fySW. In conclusion, along with Pareto frontier maintenance, FilterThenVerifySW prunes

comparisons in terms of Pareto buffer maintenance. △

2.8 Experiments

Dataset |O|
h = 0.70 h = 0.65 h = 0.60 h = 0.55

P R F P R F P R F P R F

Movie 12, 749 100 95.43 97.67 100 93.93 96.87 99.99 93.28 96.52 99.99 90.46 94.99
Publication 17, 598 100 96.59 98.27 100 95.85 97.88 100 95.54 97.72 100 95.13 97.51

Table 2.11: The precision, recall and F-measure (in percentage) of FilterThenVerifyApprox. Vary-

ing h, d=4. (P, R, and F stand for Precision, Recall, and F-measure.)
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Figure 2.4: Comparison of Baseline, FilterThenVerify and FilterThenVerifyApprox on the

movie dataset. Varying |O|, h = 0.55, d = 4.
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Figure 2.5: Comparison of Baseline, FilterThenVerify and FilterThenVerifyApprox on the pub-

lication dataset. Varying |O|, h = 0.55, d = 4.

2.8.1 Experiment Setup

The algorithms were implemented in Java. The maximal heap size of Java Virtual

Machine (JVM) was set to 16 GB. The experiments were conducted on a computer with

2.0 GHz Quad Core 2 Duo Xeon CPU running Ubontu 8.10.

Datasets Currently there exists no publicly available dataset that captures real users’

preferences in partial orders. We thus simulated such partial orders using two real datasets

of users’ preferences.
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Figure 2.6: Comparison of Baseline, FilterThenVerify and FilterThenVerifyApprox on the

movie dataset. Varying d, |O| = 12, 749, h = 0.55.
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Figure 2.7: Comparison of Baseline, FilterThenVerify and FilterThenVerifyApprox on the pub-

lication dataset. Varying d, |O| = 17, 598, h = 0.55.

Movie Dataset We joined the Netflix dataset (netflixprize.com) with data from

IMDB (imdb.com). The Netflix dataset contains the ratings (ranging from 0 to 5) given

by users to movies. From IMDB we fetched the movies’ attribute values, including actors,

directors, genres, and writers. In this way, we found the attributes of 12, 749 Netflix movies.

The goal is to, for each particular movie, identify users who may like it according to their

preferences on those attributes. The mapping from our problem formulation to this dataset

is the following: (i) O is the set of 12, 749 movies. (ii) C is the set of users. It includes

the 1, 000 most active users based on how many movies they have rated. (iii) D = {actor,
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director, genre, writer}. (iv) Given the lack of user preference data, for each attribute,

the partial order corresponding to a user’s preferences is simulated as follows. For two

attribute values, the user’s preference is based on the average rating and the count of movies

satisfying these attribute values. More specifically, consider a user c who has rated m

movies featuring actor a. Suppose the ratings of these movies are r1, r2, . . ., rm. Given c

and a, the average rating is Ra =
∑

i ri
m

and the count is Ma = m. Consider another actor

b. If (Ra > Rb ∧Ma ≥ Mb) ∨ (Ra ≥ Rb ∧Ma > Mb), then (a, b) ∈≻actor
c . Intuitively, if

user c watches more movies featuring a than b and gives them higher ratings, our simulation

assumes the user prefers a to b.

Publication Dataset We collected from the ACM Digital Library (dl.acm.org)

17, 598 publications and their attributes, including affiliations, authors, conferences and

topic keywords. The users are the authors themselves. The goal is to notify them about

newly published articles. The recommendations are based on the users’ preference rela-

tions on the attributes. The mapping from our problem formulation to this dataset is the

following: (i) O is the set of papers. (ii) C is the set of authors. It includes the 1, 000

most prolific authors based on how many publications they have, similar to the 1, 000 most

active users in the movie dataset. (iii) D = {affiliation, author, conference, keyword}. The

domain of attribute author is the same 1, 000 authors in C. (iv) Given a user, the partial

order on each attribute is simulated based on their preferences on the attribute values. The

preference between two values on affiliation (and similarly author) is based on the number

of collaborations between the user and the affiliation/author and the number of citations.

For conference and keyword, the preference between two values is based on number of

publications and number of citations. More specifically, consider a user c and an affiliation

(or similarly another author) a. Suppose c has pa collaborations with a and has cited articles

from a qa times. If (pa > pb ∧ qa ≥ qb) ∨ (pa ≥ pb ∧ qa > qb), then (a, b) ∈≻affiliation
c (or

(a, b) ∈≻author
c ). With regard to a conference (keyword) x, suppose c has rx publications

44



associated with x and has cited publications associated with x sx times. If (rx > ry ∧

sx ≥ sy) ∨ (rx ≥ ry ∧ sx > sy), then (x, y) ∈≻conference
c (or (x, y) ∈≻keyword

c ).

2.8.2 Baseline, FilterThenVerify, and FilterThenVerifyApprox

We conducted experiments to compare the performance of Baseline, FilterThenVerify

and FilterThenVerifyApprox. For FilterThenVerify (resp. FilterThenVerifyApprox), users are

clustered by the conventional hierarchical agglomerative clustering algorithm [19] using

the similarity functions in Section 2.5 (resp. Section 2.6.3) and, for each cluster, it extracts

the common preference relation (resp. approximate common preference relation). The

experiments use three parameters which are number of objects (|O|), number of attributes

(d), and branch cut (h). In hierarchical clustering, the branch cut h is a threshold that

controls the number of clusters by governing the minimum pairwise similarity that two

clusters must satisfy in order to be merged into one cluster. The sequential order of merging

clusters is depicted as a tree called dendrogram. The branch cut thus controls where to

cut the dendrogram. In Example 9, the set of clusters are {{c1, c2, c5, c6}, {c3, c4}}

for h ∈ (0, 3
11
]. This is because sim(U4,U2)=0 where U2={c3,c4} and U4 is the cluster

composed of c1, c2, c5, and c6.

Figure 2.4a shows, for each of the three methods on the movie dataset, how its cu-

mulative execution time (by milliseconds, in logarithmic scale) increases while the objects

(i.e., movies) are sequentially processed. Figure 2.5a depicts similar behaviours of these

methods on the publication dataset. Figure 2.4b and Figure2.5b, for the two datasets sep-

arately, further present the amount of work done by these methods, in terms of number of

pairwise object comparisons (in logarithmic scale) for maintaining Pareto frontiers. The

figures show that FilterThenVerify and FilterThenVerifyApprox beat Baseline by 1 to 2 or-

ders of magnitude. The reason is as follows. With regard to a user c, Baseline considers

all objects as candidate Pareto-optimal objects and compares all pairs. On the contrary,
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FilterThenVerify eliminates an object o if the corresponding common preference tuples dis-

qualify o. FilterThenVerifyApprox incurs even less comparisons by benefiting from shared

computations for clusters of users.

Figure 2.6a (Figure 2.7a) shows that the execution time of all these methods increased

super-linearly by number of attributes (d). Figure 2.6b (Figure 2.7b) further reveals that

the number of object comparisons also increases similarly. This is not surprising because

more attributes result in larger Pareto frontiers, which makes it necessary for objects to be

compared with more existing Pareto-optimal objects.

Table 2.11 reports the precision, recall and F-measure of FilterThenVerifyApprox on

varying h. We can observe that, when h got smaller, the recall slowly decreased. This

is expected because smaller h results in larger clusters and potentially more approximate

common preference tuples for each cluster. Those approximate common preference tu-

ples cause false negatives—the domination and elimination of objects that are instead in

the Pareto frontier under the true common preference tuples, which are a subset of the ap-

proximate common preference tuples. What can be more surprising is the almost perfect

precision under the various h values in Table 2.11, i.e., almost no false positives were in-

troduced into the results. For a user c, an object o becomes a false positive if every single

Pareto optimal object that dominates o becomes a false negative. As long as one of its

dominating objects is not mistakenly filtered out, o will not be mistakenly introduced into

the Pareto frontier. Therefore, an object is much less likely to become a false positive than

a false negative. Overall, under the h values in Table 2.11, both precision and recall remain

high. This may suggest that the thresholds θ1 and θ2 (Section 8) effectively ensure that

the approximate common preference relation only includes frequent preference tuples and

does not overgrow in size.
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Figure 2.8: Effect of window size on the movie dataset. Varying W , |O| = 1M, h = 0.55, d = 4.
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Figure 2.9: Effect of window size on the publication dataset. Varying W , |O| = 1M, h = 0.55, d =

4.

Data stream W
h = 0.70 h = 0.65 h = 0.60 h = 0.55

P R F P R F P R F P R F

Movie

400 100 89.36 94.38 100 87.33 93.24 100 85.94 92.44 100 81.95 90.08
800 100 87.87 93.54 100 85.78 92.34 100 84.04 91.33 100 80.10 88.95
1600 100 88.65 93.98 100 86.58 92.81 100 85.01 91.90 100 81.10 89.56
3200 99.99 94.80 97.33 100 93.08 96.41 100 92.29 95.99 100 88.99 94.17

Publication

400 100 94.58 97.21 100 93.57 96.68 100 92.98 96.36 100 92.06 95.87
800 100 94.79 97.32 100 93.60 96.70 100 93.01 96.38 100 91.98 95.82
1600 100 94.62 97.24 100 93.44 96.61 100 92.85 96.29 100 91.81 95.73
3200 100 96.71 98.33 100 95.98 97.95 100 95.67 97.79 100 95.27 97.58

Table 2.12: The precision, recall and F-measure (in percentage) of FilterThenVerifyApproxSW.

Varying W and h, |O|=1M, d=4. (P, R, and F stand for Precision, Recall, and F-measure.)

2.8.3 BaselineSW, FilterThenVerifySW, and FilterThenVerifyApproxSW

We further compare the performance of FilterThenVerifySW and FilterThenVerifyAp-

proxSW with BaselineSW. In this regard, we simulated two data streams—movie and pub-
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Figure 2.10: Comparison of BaselineSW, FilterThenVerifySW and FilterThenVerifyAp-

proxSW on the movie dataset. Varying d, W = 3,200, |O| = 1M, h = 0.55.
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Figure 2.11: Comparison of BaselineSW, FilterThenVerifySW and FilterThenVerifyAp-

proxSW on the publication dataset. Varying d, W = 3,200, |O| = 1M, h = 0.55.

lication whereO is composed of duplicated sequence of the corresponding dataset such that

|O|=1 million. Following [36], we experimented with windows of size 400, 800, 1,600, and

3,200, as well as report the cumulative execution times in milliseconds. In this direction,

Figure2.8a demonstrates the cumulative execution times (by milliseconds, in logarithmic

scale) of the aforementioned methods on the movie stream. Figure2.8a shows that the cu-

mulative execution times increase super-linearly by W as wider window broadens the size

of Pareo frontiers. These figures illustrate that both FilterThenVerifySW and FilterThenVeri-

fyApproxSW outperformed BaselineSW by 1 to 2 orders of magnitude, which concurs with
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the comparative behaviours of FilterThenVerify, FilterThenVerifyApprox and Baseline. This

concurrence is also applicable for the publication stream (Figure 2.9a).

Figure 2.8b (Figure 2.9b) further reveals the amount of work done by these solu-

tions, in aspect of compared objects (in logarithmic scale) to maintain Pareto frontiers over

sliding window. Moreover, Figure 2.10a (Figure 2.11a) depicts the effectiveness of Fil-

terThenVerifySW (FilterThenVerifyApproxSW) on varying d. Figure 2.10b (Figure 2.11b)

clarifies Figure 2.10a (Figure 2.11a) through illustrating the number of compared objects.

The reason behind the comparative behaviour of Baseline, FilterThenVerify and FilterThen-

VerifyApprox is also applicable in this case. In addition, BaselineSW maintains exclusive

Pareto buffer for each user (PBc) while FilterThenVerifySW shares a Pareto buffer across

users in a cluster (PBU ). Therefore, in sliding window protocol, the filter-then-verify ap-

proach attains the benefit of clustering in greater extent.

Table 2.12 demonstrates the precision, recall and F-measure of FilterThenVerifyAp-

proxSW on varying W and h. We can observe that the recall declines slowly by h. Yet

h does not have significant impact on the efficacy of FilterThenVerifyApproxSW. Besides,

the loss of accuracy is due to false negatives rather than false positives. These behaviors

concur with FilterThenVerifyApprox and the reasons behind are same as before. In addition,

Table 2.12 reveals that W does not have noticeable impact on efficacy and FilterThenVeri-

fyApprox remains effective on varying W .

2.9 Summary

We studied the problem of continuous object dissemination, which is formalized as

finding the users who approve a new object in Pareto-optimality. We designed algorithm for

efficient finding of target users based on sharing computation across similar preferences.

To recognize users of similar preferences, we studied the novel problem of clustering users
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where each user’s preferences are described as strict partial orders. We also presented an

approximate solution of the problem of finding target users, further improving efficiency

with tolerable loss of accuracy. Experimental evaluation validated the efficiency and effec-

tiveness of our proposed solutions.
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CHAPTER 3

Prominent Situational Facts

3.1 Overview

Computational journalism emerged recently as a young interdisciplinary field [13]

that brings together experts in journalism, social sciences and computer science, and ad-

vances journalism by innovations in computational techniques. Database and data mining

researchers have also started to push the frontiers of this field [14, 21, 46, 50, 34, 20, 40, 47,

18]. One of the goals in computational journalism is newsworthy fact discovery. Reporters

always try hard to bring out attention-seizing factual statements backed by data, which may

lead to news stories and investigation. While such statements take many different forms,

we consider a common form exemplified by the following excerpts from real-world news

media:

• “Paul George had 21 points, 11 rebounds and 5 assists to become the first Pacers player

with a 20/10/5 (points/rebounds /assists) game against the Bulls since Detlef Schrempf

in December 1992.” (http://espn.go.com/espn/elias?date=20130205)

• “The social world’s most viral photo ever generated 3.5 million likes, 170,000 comments

and 460,000 shares by Wednesday afternoon.” (http://cnbc.com/id/49728455/

President_Obama_Sets_New_Social_Media_Record)

What is common in the above two statements is a prominent fact with regard to a

context and several measures. In the first statement, the context includes the performance

of Pacers players in games against the Bulls since December 1992 and the measures are

points, rebounds, assists. By these measures, no performance in the context is better

than the mentioned performance of Paul George. For the second statement, the measures
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tuple id player day month season team opp team points assists rebounds

t1 Bogues 11 Feb. 1991-92 Hornets Hawks 4 12 5

t2 Seikaly 13 Feb. 1991-92 Heat Hawks 24 5 15

t3 Sherman 7 Dec. 1993-94 Celtics Nets 13 13 5

t4 Wesley 4 Feb. 1994-95 Celtics Nets 2 5 2

t5 Wesley 5 Feb. 1994-95 Celtics Timberwolves 3 5 3

t6 Strickland 3 Jan. 1995-96 Blazers Celtics 27 18 8

t7 Wesley 25 Feb. 1995-96 Celtics Nets 12 13 5

* Attribute opp team is the short form of opposition team.

Table 3.1: A Mini-world of Basketball Gamelogs

are likes, comments, shares and the context includes all photos posted to Facebook. The

story is that no photo in the context attracted more attention than the mentioned photo

of President Barack Obama, by the three measures. In general, facts can be put in many

contexts, such as photos posted in 2012, photos posted by political campaigns, and so on.

Similar facts can be stated on data from domains outside of sports and social me-

dia, including stock data, weather data, and criminal records. For example: 1) “Stock A

becomes the first stock in history with price over $300 and market cap over $400 billion.”

2) “Today’s measures of wind speed and humidity are x and y, respectively. City B has

never encountered such high wind speed and humidity in March.” 3) “There were 35 DUI

arrests and 20 collisions in city C yesterday, the first time in 2013.” Some of these facts are

not only interesting to reporters but also useful to financial analysts, scientists, and citizens.

In technical terms, a fact considered in this chapter is a contextual skyline object that

stands out against other objects in a context with regard to a set of measures. Consider

a table R whose schema includes a set of measure attributes M and a set of dimension

attributes D. A context is a subset of R, resulting from a conjunctive constraint defined on

a subset of the dimension attributes D ⊆ D. A measure subspace is defined by a subset of

the measure attributes M ⊆ M. A tuple t is a contextual skyline tuple if no other tuple

in the context dominates t. A tuple t′ dominates t if t′ is better than or equal to t on every
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attribute in M and better than t on at least one of the attributes. Such is the standard notion

of dominance relation adopted in skyline analysis [9].

We study how to find situational facts pertinent to new tuples in an ever-growing

database, where the tuples capture real-world events. We propose algorithms that, when-

ever a new tuple t enters an append-only table R, discover constraint-measure pairs that

qualify t as a contextual skyline tuple. Each such pair constitutes a situational fact perti-

nent to t’s arrival.

Example 17. Consider the mini-world of basketball gamelogs R in Table 3.1, where D =

{player, month, season, team, opp team} andM={points, assists, rebounds}. The

existing tuples are t1 to t6 and the new tuple is t7. If the context is the whole table (i.e., no

constraint) and the measure subspace M=M, t7 is not a skyline tuple since it is dominated

by t3 and t6. However, with regard to context σmonth=Feb.(R) (corresponding to constraint

month=Feb.) and the same measure subspace M , t7 is in the skyline along with t2. In

yet another context σteam=Celtics∧ opp team=Nets(R) under measure subspace M={assists,

rebounds}, t7 is in the skyline along with t3. Tuple t7 is also a contextual skyline tuple for

other constraint-measure pairs, which we do not further enumerate.

Discovering situational facts is challenging as timely discovery of such facts is ex-

pected. In finding news leads centered around situational facts, the value of a news piece

diminishes rapidly after the event takes place. Consider NBA games again. Sports media

need to identify and discuss sensational records quickly as they emerge; any delay makes

fans less interested in the records and risks losing them to rival media. Timely identifi-

cation of situational facts is also critical in areas beyond journalism. To make informed

investment decisions, investors want to know facts related to stock trading as soon as possi-

ble. Facts discovered from weather data can assist scientists in identifying extreme weather

conditions and help government and the public in coping with the weather.
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Simple situational facts on a single measure and a complete table, e.g., the all-time

NBA scoring record, can be conveniently detected by database triggers. However, general

and complex facts involving multiple dimension and measure attributes are much harder

to discover. Exhaustively using triggers leads to an exponential explosion of constraint-

measure pairs to check for each new tuple. In reality, news media relies on instincts and

experiences of domain experts on this endeavor. The experts, impressed by an event such

as the outstanding performance of a player in a game, hypothesize a fact and manually

craft a database query to check it. This is how Elias Sports Bureau tackles the task and

provides sports records (such as the aforementioned one by Paul George) to many sports

media [2]. With ever-growing data and limited human resources, such manual checking is

time-consuming and error-prune. Its low efficiency not only leads to delayed and missing

facts, but also ties up precious human expertise that could be otherwise devoted to more

important journalistic activities.

The technical focus of this chapter is thus on efficient automatic approach to discov-

ering situational facts, i.e., finding constraint-measure pairs that qualify a new tuple t as

a contextual skyline tuple. A straightforward brute-force approach would compare t with

every historical tuple to determine if t is dominated, repeatedly for every conjunctive con-

straint satisfied by t under every possible measure subspace. The obvious low-efficiency

of this approach has three culprits—exhaustive comparison with every tuple, under every

constraint, and over every measure subspace. We thus design algorithms to counter these

issues by three corresponding ideas, as follows:

1) Tuple reduction Instead of comparing t with every previous tuple, it is sufficient

to only compare with current skyline tuples. This is based on the simple property that,

if any tuple dominates t, then there must exist a skyline tuple that also dominates t. For

example, in Table 3.1, under constraint month=Feb. and the full measure space M, the

corresponding context contains t1, t2, t4 and t5, and the contextual skyline has two tuples—
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t1 and t2. When the new tuple t7 comes, with regard to the same constraint-measure pair, it

suffices to compare t7 with t1 and t2, not the remaining tuples.

2) Constraint pruning If t is dominated by t′ in a particular measure subspace M ,

then t does not belong to the contextual skyline of constraint-measure pair (C,M) for any

C satisfied by both t and t′. For example, since t7 is dominated by t3 in the full measure

space M, it is not in the contextual skylines for (team=Celtics ∧ opp team=Nets,M),

(team=Celtics,M), (opp team=Nets,M) and (no constraint,M). Furthermore, since t7

is dominated by t6 inM, it does not belong to the contextual skylines for (season = 1995-

96, M) and (no constraint, M). Based on this, we examine the constraints satisfied by t

in a certain order, such that comparisons of t with skyline tuples associated with already

examined constraints are used to prune remaining constraints from consideration.

3) Sharing computation across measure subspaces As repeatedly visiting the con-

straints satisfied by t for every measure subspace is wasteful, we pursue sharing computa-

tion across different subspaces. The challenge in such sharing lies in the anti-monotonicity

of dominance relation—a skyline tuple in space M may or may not be in the skyline of

a superspace or subspace M ′ [30]. Nonetheless, we can first consider the full space M

and prune various constraints from consideration for smaller subspaces. For instance,

after comparing t7 with t2 in M, the algorithms realize that t7 has smaller values on

points and rebounds. It is dominated by t2 in three subspaces—{points, rebounds},

{points} and {rebounds}. When considering these subspaces, we can skip two contexts—

corresponding to constraint month=Feb. and empty constraint, respectively—as t2 and t7

are in both contexts.

It is crucial to report truly prominent situational facts. A newly arrived tuple t may

be in the contextual skylines for many constraint-measure pairs. Reporting all of them will

overwhelm users and make important facts harder to spot. We measure the prominence

of a constraint-measure pair by the cardinality ratio of all tuples to skyline tuples in the
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corresponding context. The intuition is that, if t is one of the very few skyline tuples

in a context containing many tuples under a measure subspace, then the corresponding

constraint-measure pair brings out a prominent fact. We thus rank all situational facts

pertinent to t in descending order of prominence. Reporters and experts can choose to

investigate top-k facts or the facts with prominence values above a threshold.

Any measure value of a tuple can be the accumulation of the corresponding measure

within a time frame. For instance, while Table 3.1 demonstrates a mini-world of basketball

gamelogs, each of its measure value is the cumulative measure with regard to each instant of

time in the corresponding match. In order to discover the newsworthy facts synchronously

with a live event or stream live news, we further consider instant dataset and incorporate

the algorithms with this framework.

The contributions of this chapter are summarized as follows:

• We study the novel problem of finding situational facts and formalize it as discovering

constraint-measure pairs that qualify a tuple as a contextual skyline tuple (Section 3.3).

• We devise efficient algorithms based on three main ideas—tuple reduction, constraint

pruning and sharing computation across measure subspaces (Section 3.5).

• We further extend the algorithms to consider an instant dataset as input and thus allow live

news streaming (Section 3.6).

• We use a simple prominence measure for ranking situational facts and discovering promi-

nent situational facts (Section 3.7).

• We conduct extensive experiments on three real datasets (two NBA datasets and weather

dataset) to investigate their prominent situational facts and to study the efficiency of vari-

ous proposed algorithms and their tradeoffs (Section 3.8).
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3.2 Related Work

Pioneers in data journalism have considerable success in using computer programs to

write stories about sports games and stock earnings (e.g., StatSheet http://statsheet.

com and Narrative Science http://narrativescience.com). The stories follow writ-

ing patterns to narrate box scores and play-by-play data and a company’s earnings data.

They focus on capturing what happened in the game or what the earnings numbers indi-

cate. They do not find situational facts pertinent to a game or an earnings report in the

context of historical data.

Skyline query is an optimization problem extensively investigated in recent years [22],

since Börzsönyi et al. [9] brought the concept to the database field. In [9] and the studies

afterwards, it is assumed both the context of tuples in comparison and the measure space

are given as query conditions. A high-level perspective on what distincts our work is—

while prior studies find answers (i.e., skyline points) for a given query (i.e., a context, a

measure space, or their combination), we study the reverse problem of finding queries (i.e.,

constraint-measure pairs that qualify a tuple as a contextual skyline tuple, among all possi-

ble pairs) for a particular answer (i.e., a new tuple). In other words, we find ways to make

a particular tuple stand out.

From a technical perspective, Table 3.2 summarizes the differences among the more

relevant previous studies and this chapter, along three aspects—whether they consider all

possible contexts defined on dimension attributes, all measure subspaces, and incremental

computation on dynamic data. With regard to context, Zhang et al. [51] integrate the eval-

uation of a constraint with finding skyline tuples in the corresponding context in a given

measure space. With regard to measure, Pei et al. [30] compute on static data the skycube—

skyline points in all measure subspaces. Xia et al. [48] studied how to update a compressed

skycube (CSC) when data change. The CSC stores a tuple t in its minimum subspaces—the

measure subspaces in which t is a skyline tuple and of which the subspaces do not contain
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t in the skyline. They proposed an algorithm to update CSC when new tuples come and

also an algorithm to use CSC to find all skyline tuples for a given measure subspace.

We can adapt [48] to find situational facts. While Section 3.8 provides experimental

comparisons with the adaptation, here we analyze its shortcomings. Since [48] does not

consider different contexts, the adaptation entails maintaining a separate CSC for every

possible context. Upon the arrival of a new tuple t, for every context, the adaptation will

update the corresponding CSC. Since a CSC only stores t in its minimum subspaces, the

adaptation needs to run their query algorithm to find the skyline tuples for all measure

subspaces, in order to determine if t is one of the skyline tuples. This is clearly an overkill,

caused by that CSC is designed for finding all skyline tuples. Furthermore, while our

algorithms can share computation across measure subspaces, there does not appear to be

an effective strategy to share the computation of CSC algorithms across different contexts.

Promotion analysis by ranking [45] finds the contexts (given by conjunctive con-

straints on dimension attributes) in which an object is ranked high. It has two key differ-

ences from our work. (i) It ranks objects by a single score attribute, while we define object

dominance relation on multiple measure attributes and consider all measure subspaces. A

well-known merit of the concept of skyline, in comparison with ranking, is that it removes

the burden of defining ranking functions from users. Its result is also intuitive to explain.

This is particularly appealing to computational journalism. (ii) It considers one-shot com-

putation on static data, while we focus on incremental discovery on dynamic data. Due

to these distinctions, the algorithmic approaches in the two works are also fundamentally

different.

Wu et al. [46] studied the one-of-the-τ object problem, which entails finding the

largest k value and the corresponding k-skyband objects (objects dominated by less than

k other objects) such that there are no more than τ k-skyband objects. They consider all
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all possible contexts measure subspaces incremental

[51] no no no

[30] no yes no

[48] no yes yes

[45] yes no no

[46] no yes no

[4] no no yes

this work yes yes yes

Table 3.2: Comparing Related Work on Three Modeling Aspects

measure subspaces but not different contexts formed by constraints. Similar to [45], it

focuses on static data.

Alvanaki et al. [4] worked on detecting interesting events through monitoring changes

in ranking, by using materialized view maintenance techniques. The work focuses on top-k

queries on single ranking attribute rather than skyline queries defined on multiple measure

attributes. Their ranking contexts have at most three constraints. The work is similar to [8]

which studied how to predict significant events based on historical data and correspond-

ingly perform lazy maintenance of ranking views on a database.

3.3 Problem Statement

This section provides a formal description of our data model and problem statement.

Table 3.3 lists the major notations. Consider a relational schema R(D;M), where the

dimension space is a set of dimension attributes D={d1, . . . , dn} on which constraints are

specified, and the measure space is a set of measure attributesM={m1, . . . ,ms} on which

dominance relation for skyline operation is defined. Any set of dimension attributes D ⊆ D

defines a dimension subspace and any set of measure attributes M ⊆M defines a measure

subspace. In Table 3.4, R(D;M) = {t1, t2, t3, t4, t5}, D = {d1, d2, d3},M={m1,m2}. We

will use this table as a running example.
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R(D;M) relation R, dimension space D, measure spaceM
D ⊆ D dimension subspace

M ⊆M measure subspace

C constraint

(CD, E) poset of all constraints on subsumption relation E

C1 ⊳ (E)C2 C1 is subsumed by (subsumed by or equal to) C2

t1 ≺ (�)t2 t1 is dominated by (dominated by or equal to) t2
σC(R) tuples in R satisfying constraint C
λM(R) skyline tuples in R on measure subspace M

λM(σC (R)) contextual skyline of R with respect to C and M
µC,M tuples stored with respect to C and M
St contextual skylines for t

CtD or Ct tuple-satisfied constraints of t
⊤ the top element of lattice (CtD, E) and poset (CD, E)

⊥(CtD) the bottom element of lattice (CtD, E)

AC ,DC ,PC ,CHC C’s ancestors, descendants, parents, children in CD
At

C ,Dt
C ,P t

C ,CHt
C C’s ancestors, descendants, parents, children in CtD

Ct1,t2 the intersection of Ct1 and Ct2

SCtM the skyline constraints of t in M
MSCtM the maximal skyline constraints of t in M

Table 3.3: Notations

id d1 d2 d3 m1 m2

t1 a1 b2 c2 10 15

t2 a1 b1 c1 15 10

t3 a2 b1 c2 17 17

t4 a2 b1 c1 20 20

t5 a1 b1 c1 11 15

Table 3.4: Running Example

Definition 11 (Constraint). A constraint C on dimension space D is a conjunctive expres-

sion of the form d1=v1∧d2=v2∧ . . .∧ dn=vn (also written as 〈v1, v2, . . . , vn〉 for simplic-

ity), where vi∈dom(di)∪ {∗} and dom(di) is the value domain of dimension attribute di.

We use C.di to denote the value vi assigned to di in C. If C.di=∗, we say di is unbound,

i.e., no condition is specified on di. We denote the number of bound attributes in C as

bound(C).
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id d1 d2 d3 m1 m2 id.prev

t1 a1 b2 c2 10 5 null

t2 a1 b1 c1 15 10 null

t3 a2 b1 c1 19 3 null

t4 a2 b1 c1 20 3 t3
t5 a1 b2 c1 13 10 null

t6 a1 b1 c2 14 11 null

t7 a1 b1 c1 16 10 t2

t′7 a1 b1 c1 15 11 t2

Table 3.5: Running Example on Instant Data

The set of all possible constraints over dimension space D is denoted CD. Clearly,

|CD| =
∏

i(|dom(di)|+ 1).

Given a constraint C ∈ CD, σC(R) is the relational algebra expression that chooses

all tuples in R that satisfy C.

Example 18. For Table 3.4, an example constraint is C = 〈a1, *, c1〉 in which d2 is unbound.

σC(R) = {t2, t5}.

Definition 12 (Skyline). Given a measure subspace M and two tuples t, t′ ∈ R, t dominates

t′ with respect to M , denoted by t ≻M t′ or t′ ≺M t, if t is equal to or better than t′ on all

attributes in M and t is better than t′ on at least one attribute in M . A tuple t is a skyline

tuple in subspace M if it is not dominated by any other tuple in R. The set of all skyline

tuples in R with respect to M is denoted by λM(R), i.e., λM(R)={t ∈ R|∄t′ ∈ R s.t. t′ ≻M

t}.

We use the general term “better than” in Definition 21, which can mean either “larger

than” or “smaller than” for numeric attributes and either “ordered before” or “ordered after”

for ordinal attributes, depending on applications. Further, the preferred ordering of values

on different attributes are allowed to be different. For example, in a basketball game, 10

points is better than 5 points, while 3 fouls is worse than 1 foul. Without loss of generality,

we assume measure attributes are numeric and a larger value is better than a smaller value.
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Algorithm 7: Find Ct

Input: t ∈ R

Output: Ct: constraints satisfied by t

1 Ct ← ∅;

2 Q← ∅; Q.enqueue(⊤);

3 while not Q.empty() do

4 C ← Q.dequeue();

5 Ct ← Ct ∪ {C};

6 i← n;

7 while i > 0 and C.di = ∗ do

8 C ′ ← C;

9 C ′.di ← t.di;

10 Q.enqueue(C ′);

11 i← i− 1;

12 return Ct;

Definition 13 (Contextual Skyline). Given a relation R(D; M), the contextual skyline

under constraint C∈CD over measure subspace M⊆M, denoted λM(σC(R)), is the skyline

of σC(R) in M .

Example 19. For Table 3.4, if M = M, λM(R) = {t4}. In fact, t4 dominates all other

tuples in space M . If the constraint is C = 〈a1, b1, c1〉, σC(R) = {t2, t5}, λM(σC(R)) =

{t2, t5} for M =M, and λM(σC(R)) = {t2} for M = {m1}.

Problem Statement Given an append-only table R(D;M) and the last tuple t that was

appended onto R, the situational fact discovery problem is to find each constraint-measure

pair (C,M) such that t is in the contextual skyline. The result, denoted St, is {(C,M)|C

∈ CD, M ⊆ M, t∈λM(σC(R))}. For simplicity of notation, we call St “the contextual
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Algorithm 8: BruteForce

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← ∅;

2 foreach M ⊆M do

3 foreach C ∈ Ct do

4 pruned ← false;

5 foreach t′ ∈ R do

6 if t ≺M t′ and t′ ∈ σC(R) then

7 pruned ← true;

8 break;

9 if not pruned then St ← St ∪ {(C,M)};;

10 R← R ∪ {t};

11 return St;

skylines for t”, even though rigorously speaking it is the set of (C,M) pairs whose corre-

sponding contextual skylines include t.

3.4 Solution Overview

Discovering situational facts for a new tuple t entails finding constraint-measure pairs

that qualify t as a contextual skyline tuple. We identify three sources of inefficiency in a

straightforward brute-force method, and we propose corresponding ideas to tackle them.

To facilitate the discussion, we define the concept of tuple-satisfied constraints, which are

all constraints pertinent to t, corresponding to the contexts containing t.

Definition 14 (Tuple-Satisfied Constraint). Given a tuple t ∈ R(D;M) and a constraint

C ∈ CD, if ∀di ∈ D, C.di = ∗ or C.di = t.di, we say t satisfies C. We denote the set of
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Algorithm 9: BaselineSeq

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← ∅;

2 foreach M ⊆M do

3 S ← Ct;

4 foreach t′ ∈ R do

5 if t ≺M t′ then S ← S − Ct,t
′

;;

6 foreach C ∈ S do

7 St ← St ∪ {(C,M)};

8 R← R ∪ {t};

9 return St;

all such satisfied constraints by CtD or simply Ct when D is clear in context. It follows that

given any C ∈ Ct, t ∈ σC(R).

For C∈Ct, C.di can attain two possible values {∗, t.di}. Hence, Ct has 2n con-

straints in total for |D|=n. Algorithm is a simple routine used in all algorithms for find-

ing all constraints of Ct. It generates the constraints from the most general constraint

⊤=〈∗, ∗, . . . , ∗〉 to the most specific constraint 〈t.d1, t.d2, . . . , t.dn〉. ⊤ has no bound at-

tributes, i.e., bound(⊤)=0. Algorithm makes sure a constraint is not generated twice, for

efficiency, by not continuing the while-loop in Line 7 once a specific attribute value is

found in C.

A brute-force approach to the contextual skyline discovery problem would compare

a new tuple t with every tuple in R to determine if t is dominated, repeatedly for every

constraint satisfied by t in every possible measure subspace. It is shown in Algorithm.

The obvious inefficiency of this approach has three culprits—the exhaustive comparison
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with every tuple, for every constraint and in every measure subspace. We devise three

corresponding ideas to counter these causes, as follows:

(1) Tuple reduction For a constraint-measure pair (C,M), t is in the contextual skyline

λM(σC(R)) if t belongs to σC(R) and is not dominated by any tuple in σC(R). Instead

of comparing t with every tuple, it suffices to only compare with current skyline tuples.

This simple optimization is based on the following proposition which ways, if any tuple

dominates t, there must exist a skyline tuple that also dominates t.

Proposition 1. Given a new tuple t inserted into R, a constraint C ∈ Ct and a measure

subspace M , t ∈ λM(σC(R)) if and only if ∄ t′ ∈ λM(σC(R)) such that t′ ≻M t.

To exploit this idea, our algorithms conceptually maintain the contextual skyline

tuples for each context (i.e., measure subspace and constraint), and compare t only with

these tuples for constraints that t satisfies.

(2) Constraint pruning For constraints satisfied by t, we need to determine whether t en-

ters the contextual skyline. To prune constraints from consideration, we note the following

property: if t is dominated by a skyline tuple t′ under measure subspace M , t is not in the

contextual skyline of constraint-measure pair (C,M) for any C satisfied by both t and t′.

To enable constraint pruning, we organize all constraints in Ct into a lattice by their

subsumption relation. The constraints satisfied by both t and t′, denoted Ct,t
′

, also form a

lattice, which is the intersection of lattices Ct and Ct
′

. Below we formalize the concepts of

lattice and lattice intersection.

Definition 15 (Constraint Subsumption). Given C1, C2 ∈ CD, C1 is subsumed by or equal

to C2 (denoted C1 E C2 or C2 D C1) iff

1. ∀di ∈ D, C2.di = C1.di or C2.di = ∗.

C1 is subsumed by C2 (denoted C1 ⊳ C2 or C2 ⊲ C1) iff C1 E C2 but C1 6= C2. In other

words, the following condition is also satisfied in addition to the above one—
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2. ∃di ∈ D such that C2.di=∗ and C1.di 6=∗, i.e, di is bound to a value belonging to

dom(di) in C1 but is unbound in C2.

By definition, σC1
(R) ⊆ σC2

(R) if C1 E C2.

Example 20. Consider C1 = 〈a, b, c〉 and C2 = 〈a, ∗, c〉. Here C1.d1 = C2.d1, C1.d3 = C2.d3,

C1.d2=b and C2.d2 = ∗. By Definition 15, C1 is subsumed by C2, i.e. C1 ⊳ C2.

Definition 16 (Partial Order on Constraints). The subsumption relation E on CD forms a

partial order. The partially ordered set (poset) (CD, E) has a top element ⊤ = 〈∗, ∗, . . . , ∗〉

that subsumes every other constraint in CD. ⊤ is the most general constraint, since it has

no bound attributes. Note that (CD, E) is not a lattice and does not have a single bottom

element. Instead, it has multiple minimal elements. Every minimal element C satisfies the

condition that ∀di, C.di 6= ∗.

If C1 ⊳ C2, we say C1 is a descendant of C2 (C2 is an ancestor of C1). If C1 ⊳ C2

and bound(C1) − bound(C2) = 1, then C1 is a child of C2 (C2 is a parent of C1). Given

C ∈ CD, we denote C’s ancestors, descendants, parents and children by AC , DC , PC and

CHC , respectively.

Definition 17 (Lattice of Tuple-Satisfied Constraints). Given t∈R(D;M), Ct ⊆ CD by

definition. In fact, (Ct,E) is a lattice. Its top element is ⊤. Its bottom element 〈t.d1, t.d2,

. . ., t.dn〉, denoted ⊥(Ct), is a minimal element in CD.

Given C∈Ct, we denote C’s ancestors, descendants, parents and children within Ct

by At
C , Dt

C , P t
C and CHt

C , respectively. |CHt
C |=n−bound(C) where n=|D|, i.e., each

child of C is a constraint by adding conjunct di=t.di into C for unbound attribute di. It

is clear that |P t
C |=bound(C). By definition, At

C=AC and P t
C=PC , while Dt

C⊆DC and

CHt
C⊆CHC .

Example 21. Figure3.1 presents lattice Ct5 for t5 in Table 3.4. For simplicity, we omit

values on unbound dimension attributes (e.g., 〈 *, *, c1〉 is represented as c1). Consider C
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a1,c1 b1,c1a1,b1

b1 c1a1

Τ

a1,b1,c1

Figure 3.1: Lattice Ct5

a1,c1 b1,c1a1,b1

b1 c1a1

Τ

a2,b1 a2,c1

a2

a1,b1,c1 a2,b1,c1

Figure 3.2: Intersection of Ct4 and Ct5

= 〈a1, *, c1〉. A
t5
C = {⊤, 〈a1, *, * 〉, 〈 *, *, c1〉}, P

t5
C = {〈a1, *, * 〉, 〈 *, *, c1〉}, CH

t5
C = {〈a1,

b1, c1〉} and Dt5
C = {〈a1, b1, c1〉}.

Definition 18 (Lattice Intersection). Given t, t′ ∈ R(D;M), Ct,t
′

= Ct ∩ Ct
′

is the inter-

section of lattices Ct and Ct
′

. Ct,t
′

is non-empty and is also a lattice. By Definition 17, the

lattices for all tuples share the same top element ⊤. Hence ⊤ is also the top element of

Ct,t
′

. Its bottom ⊥(Ct,t
′

) = 〈v1, v2, . . . , vn〉 where vi=t.di if t.di=t′.di and vi=∗ otherwise.

⊥(Ct,t
′

) equals ⊤ when t and t′ do not have common attribute value.

Example 22. Figure3.2 shows Ct4 and Ct5 for t4 and t5 in Table 3.4. The constraints

connected by solid lines represent the lattice intersection Ct4,t5 . Its bottom is ⊥(Ct4,t5) =

〈∗, b1, c1〉. In addition to Ct4,t5 , Ct4 and Ct5 further include the constraints connected by

dashed and dotted lines, respectively.

The algorithms we are going to propose consider the constraints in certain lattice

order, compare t with skyline tuples associated with visited constraints, and use t’s dom-

inating tuples to prune unvisited constraints from consideration—thereby reducing cost.

This idea of lattice-based pruning of constraints is justified by Propositions 2 and 3 below.

Proposition 2. Given a tuple t, if t /∈ λM(σC(R)), then t /∈ λM(σC′ (R)), for all C ′ ∈

AC .
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If t ≺M t′, then t /∈ λM(σ⊥(Ct,t′ )(R)). Hence, according to Proposition 2, we have

the following Proposition 3.

Proposition 3. Given two tuples t and t′, if t ≺M t′, then t /∈ λM(σC (R)), for all C ∈

Ct,t
′

.

(3) Sharing computation across measure subspaces Given t, we need to consider not

only all constraints satisfied by t, but also all possible measure subspaces. Sharing compu-

tation across measure subspaces is challenging because of anti-monotonicity of dominance

relation—a skyline tuple under space M may or may not be a skyline tuple in another space

M ′, regardless of whether M ′ is a superspace or subspace of M [30]. We thus propose al-

gorithms that first traverse the lattice in the full measure space, during which a frontier

of constraints is formed for each measure subspace. Top-down (respectively, bottom-up)

lattice traversal in a subspace commences from (respectively, stops at) the corresponding

frontier instead of the root, which in effect prunes some top constraints.

Two Baseline Algorithms We introduce two baseline algorithms BaselineSeq (Algo-

rithm 9) and BaselineIdx. They are not as naive as the brute-force Algorithm. Instead,

they exploit Proposition 3 straightforwardly. Upon t’s arrival, for each subspace M , they

identify existing tuples t′ dominating t. BaselineSeq sequentially compares t with every

existing tuple. S is initialized to be Ct (Line 3). Whenever BaselineSeq encounters a t′

that dominates t, it removes constraints in Ct,t
′

from S (Line 5). By Proposition 3, t is

not in the contextual skylines for those constraints. After t is compared with all tuples,

the constraints having t in their skylines remain in S. The same is independently repeated

for every M . The pseudo code of BaselineIdx is similar to Algorithm and thus omitted.

Instead of comparing t with all tuples, BaselineIdx directly finds tuples dominating t by a

one-sided range query
∧

mi∈M
(mi≥t.mi) using a k-d tree [7] on full measure spaceM.
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3.5 Algorithms

This section starts with algorithms BottomUp (Section 3.5.1) and TopDown (Sec-

tion 3.5.2), which exploit the ideas of tuple reduction and constraint pruning. We then

extend them to enable sharing of computation across measure subspaces (Section 3.5.3).

Lastly, we analyze the complexity of the problem of contextual skylines maintenance (Sec-

tion 3.5.4).

Based on the tuple-reduction idea (Proposition 1), a new tuple t should be included

into a contextual skyline if and only if t is not dominated by any current skyline tuple in the

context. Therefore, BottomUp and TopDown store and maintain skyline tuples with regard

to each constraint-measure pair (C,M) and compare t with only the skyline tuples. For

clarity of discussion, we differentiate between the contextual skyline (λM(σC(R))) and the

space for storing it (µC,M ), since tuples stored in µC,M do not always equal λM(σC(R)), by

our algorithm design.

The algorithms traverse, for each measure subspace M , the lattice of tuple-satisfied

constraints Ct by certain order. When a constraint C is visited, the algorithms compare t

with the skyline tuples stored in µC,M . If t is dominated by t′, then t does not belong to the

contextual skyline of constraint-measure pair (C,M). Further, according to the constraint-

pruning idea (Proposition 3), t does not belong to the contextual skyline of (C ′,M) for any

C ′ satisfied by both t and t′ (i.e., C ′ ∈ Ct,t
′

). This property allows the algorithms to avoid

comparisons with skyline tuples associated with such constraints.

The algorithms differ by how skyline tuples are stored in µC,M . BottomUp stores a

tuple for every constraint that qualifies it as a contextual skyline tuple, while TopDown only

stores it for the topmost such constraints. In our ensuing discussion, we use invariants to

formalize what must be stored in µC,M . The algorithms also differ in the traversing order

of the constraints in Ct. BottomUp visits the constraints bottom-up, while TopDown makes

the traversal top-down. Our discussion focuses on how the invariants are kept true under
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the algorithms’ different traversal orders and execution logics. The algorithms present

space-time tradeoffs. TopDown requires less space than BottomUp since it avoids storing

duplicate skyline tuples as much as possible. The saving in space comes at the cost of

execution efficiency, due to more complex operations in TopDown.

Pei et al. [30] proposed bottom-up and top-down algorithms to compute skycube.

However, their algorithms are for the lattice of measure subspaces instead of constraints.

3.5.1 Algorithm BottomUp

BottomUp (Algorithm10) stores a tuple for every such constraint that qualifies it as

a contextual skyline tuple. Formally, Invariant 1 is guaranteed to hold before and after the

arrival of any tuple.

Invariant 1. ∀C ∈ CD and ∀M ⊆M, µC,M stores all skyline tuples λM(σC(R)).

Upon the arrival of a new tuple t, with regard to each measure subspace M , BottomUp

traverses the constraints in Ct in a bottom-up, breadth-first manner. The traversal starts from

Line 4 of Algorithm10, where the bottom of Ct is inserted into a queue Q. As long as Q

is not empty, BottomUp visits the next constraint C from the head of Q and compares t

with current skyline tuples in µC,M (Line 13). Various actions are taken, depending on

comparison outcome. 1) If t is dominated by any t′, the comparison with remaining tuples

in µC,M is skipped (Line 14). The tuple t is disqualified from not only C but also all

constraints in Ct,t
′

, by Proposition 3. Because BottomUp stores a tuple in all constraints

that qualify it as a contextual skyline tuple, and because it traverses Ct bottom-up, the

dominating tuple t′ must be encountered at the bottom of Ct,t
′

. BottomUp thus skips the

comparisons with all tuples stored for C’s ancestors (Line 14). 2) If t dominates t′, t′ is

removed from µC,M (Line 16). 3) If t is not dominated by any tuple in µC,M , it is inserted

into µC,M (Line 16) and (C,M) corresponds to a contextual skyline for t (Line 15). Further,
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Algorithm 10: BottomUp

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← ∅;

2 foreach M ⊆M do

3 foreach C ∈ Ct do C.pruned ← false;

4 Q← ∅; Q.enqueue(⊥(Ct));

5 while not Q.empty() do

6 C ← Q.dequeue();

7 dominated ← false;

8 foreach t′ ∈ µC,M do

9 if t ≺M t′ then

10 dominated ← true;

11 foreach C ′ ∈ At
C do

12 C ′.pruned ← true; break;

13 else if t′ ≺M t then µC,M .delete(t′) ;

14 if not dominated then

15 St ← St ∪ {(C,M)};

16 µC,M .insert(t);

17 foreach C ′ ∈ Pt
C do

18 if (not Q.contains(C ′)) and (not C ′.pruned) then Q.enqueue(C ′);

19 R← R ∪ {t};

20 return St;

each parent constraint of C that is not already pruned is inserted into Q, for continuation of

bottom-up traversal (Line 18).

Below we prove that Invariant 1 is satisfied by BottomUp throughout its execution

over all tuples.
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Proof of Invariant 1 We prove by induction on the size of table R. Invariant 1 is trivially

true when R is empty. If the invariant is true before the arrival of t, i.e., µC,M stores all

tuples in λM(σC(R)), we prove that it remains true after the arrival of t. The proof entails

showing that both insertions into and deletions from µC,M are correct.

With regard to insertion, the only place where a tuple can be inserted into µC,M is

Line 16 of BottomUp, which is reachable if and only if t is not dominated by any tuple in

µC,M and C belongs to Ct. This ensures that µC,M stores t if and only if t ∈ λM(σC(R)).

Further, it enures that no previous tuple is inserted into µC,M upon the arrival of t, which is

correct since such a tuple was not even in the skyline before.

With regard to deletion, the only place where a previous skyline tuple t′ can be

deleted from µC,M is Line 16, which is reachable if and only if t dominates t′ and C is

satisfied by both tuples. This ensures that t′ is removed from µC,M if and only if t′ is not a

skyline tuple anymore.

Therefore, regardless of whether insertion/deletion takes place upon t’s arrival, µC,M

stores all tuples in λM(σC(R)) afterwards.

Example 23. We use Figure3.3 to explain the execution of BottomUp on Table 3.4, for

measure subspace M={m1,m2}. Assume the tuples are inserted into the table in the order

of t1, t2, t3, t4 and t5. Figure3.3a shows the lattice Ct5 before the arrival of t5. Beside each

constraint C, the figure shows µC,M . Upon the arrival of t5, BottomUp starts the traversal

of Ct5 from its bottom ⊥(Ct5)=〈a1, b1, c1〉. There is one skyline tuple stored in µ⊥(Ct5 ),M—

t2. In subspace M , t5 is incomparable to t2. Hence, t5 is inserted into it. The traversal

continues with the parents of ⊥(Ct5). Among its three parents, 〈a1, b1, ∗〉 and 〈a1, ∗, c1〉

undergo the same insertion of t5. However, the contextual skyline for 〈∗, b1, c1〉 does not

change, since t5 is dominated by t4 in M . All constraints in Ct4,t5 (i.e., 〈∗, b1, c1〉 and

all its ancestors) are pruned from consideration by Property 3. The traversal continues at

〈a1, ∗, ∗〉, for which t1 is removed from the contextual skyline as it is dominated by t5 in
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subspace M and t5 is inserted into it. After that, the algorithm stops since there is no more

unpruned constraints. The content of µC,M for constraints in Ct5 after the arrival of t5 is

shown in Figure3.3b.

b1

{t4}

Τ

{t4}

a ,b ,c

a1

{t1,t2}

c1

{t4}

b1,c1

{t4}

a1,c1

{t2}

a1,b1

{t2}

a1,b1,c1

{t2}

(a) Before t5

b1

{t4}

Τ

{t4}

a ,b ,c

a1

{t2,t5}

c1

{t4}

b1,c1

{t4}

a1,c1

{t2,t5}

a1,b1

{t2,t5}

a1,b1,c1

{t2,t5}

(b) After t5

Figure 3.3: Execution of BottomUp in Measure Subspace {m1,m2}

3.5.2 Algorithm TopDown

BottomUp stores t for every constraint-measure pair that qualifies t as a contextual

skyline tuple. If t is stored in µC,M , then t is also stored in µC′,M for all C ′∈Dt
C , i.e.,

descendants of C pertinent to t. For this reason, BottomUp repeatedly compares a new

tuple with a previous tuple multiple times. Such repetitive storage of tuples and com-

parisons increase both space complexity and time complexity. On the contrary, TopDown

(Algorithm11) stores a tuple in µC,M only if C is a maximal skyline constraint of the tuple,

defined as follows.

Definition 19 (Skyline Constraint). Given t ∈ R(D;M) and M ⊆ M, the skyline con-

straints of t in M , denoted SCtM , are the constraints whose contextual skylines include t.

Formally, SCtM = {C|C ∈ Ct, t ∈ λM(σC(R))}. Correspondingly, other constraints in Ct

are non-skyline constraints.
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Definition 20 (Maximal Skyline Constraints). With regard to t and M , a skyline constraint

is a maximal skyline constraint if it is not subsumed by any other skyline constraint of t.

The set of t’s maximal skyline constraints is denotedMSCtM . In other words, it includes

those skyline constraints for which no parents (and hence ancestors) are skyline constraints.

Formally,MSCtM = {C|C ∈ SCtM , and ∄C ′ ∈ AC s.t. C ′ ∈ SCtM}.
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{}

Τ
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(b) After t5

Figure 3.4: Execution of TopDown in Measure Subspace {m1,m2}

Example 24. Figure 3.3b shows, in measure subspace {m1, m2}, t5 belongs to the contex-

tual skylines of 4 constraints, i.e., SCt5{m1,m2}
= {〈a1, *, * 〉, 〈a1, b1, * 〉, 〈a1, *, c1〉, 〈a1, b1,

c1〉}. 〈a1, *, * 〉 is an ancestor of the remaining skyline constraints and thus it is the only

maximal skyline constraint, i.e.,MSCt5{m1,m2}
= {〈a1, *, * 〉}.

Formally, Invariant 2 is guaranteed by TopDown before and after the arrival of any

tuple.

Invariant 2. ∀C ∈ CD and ∀M ⊆M, µC,M stores a tuple t if and only if C ∈MSCtM .

Different from BottomUp, TopDown stores a tuple in its maximal skyline constraints

MSCtM instead of all skyline constraints SCtM . Due to this difference, TopDown traverses

Ct in a top-down (instead of bottom-up) breadth-first manner. The traversal starts from

Line 6 of Algorithm11, where the top element ⊤ is inserted into a queue Q. As long as Q
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Algorithm 11: TopDown

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← ∅;

2 foreach M ⊆M do

3 foreach C ∈ Ct do

4 C.pruned ← false;

5 C.inAnces ← false;

6 Q← ∅; Q.enqueue(⊤);

7 while not Q.empty() do

8 C ← Q.dequeue();

9 foreach t′ ∈ µC,M do

10 if t ≺M t′ then

11 Dominated(t′, C);

12 else if t′ ≺M t then

13 Dominates(t′, C,M);

14 if not C.pruned then

15 St ← St ∪ {(C,M)};

16 if not C.inAnces then

17 µC,M .insert(t);

18 EnqueueChindren(C);

19 R← R ∪ {t};

20 return St;

Procedure: Dominates (t′, C,M)

1 µC,M .delete(t′);

2 foreach C ′ ∈ CHt′

C − C
t do

3 stored ← false;

4 foreach C ′′ ∈ At′

C′ − Ct do

5 if t′ ∈ µC′′,M then

6 stored ← true;

7 break;

8 if not stored then

9 µC′,M .insert(t′);

Procedure: Dominated (t′, C)

1 C.pruned ← true;

2 foreach C ′ ∈ Ct,t
′

do

3 C ′.pruned ← true;

Procedure: EnqueueChildren (C)

1 foreach C ′ ∈ CHt
C do

2 if not C.pruned then

3 C ′.inAnces ← true;

4 if not Q.contains(C ′) then

5 Q.enqueue(C ′);

is not empty, the algorithm visits the next constraint C from the head of Q and compares t

with current skyline tuples in µC,M (Line 13). Various actions are taken, depending on the

comparison result:
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1) If t is dominated by t′, t is disqualified from not only C but also all constraints

in Ct,t
′

, by Proposition 3. The pruning is done by calling Dominated in Line 11 which sets

C ′.pruned to true for every pruned constraint C ′. Since C is a maximal skyline constraint

for t′, the pruned constraints are all descendants of C in Ct,t
′

. Note that TopDown cannot

skip the comparisons with the remaining tuples stored in µC,M . The reason is that there

might be t′′ in µC,M such that i) t′′ also dominates t and ii) t′′ and t share some dimension

attribute values that are not shared by t′, i.e., Ct,t
′′

−Ct,t
′

6=∅. Since t′′ is only stored in its

maximal skyline constraints, skipping the comparison with t′′ may incorrectly establish t

as a contextual skyline tuple for those constraints in Ct,t
′′

− Ct,t
′

.

2) If t dominates a current tuple t′, t′ is removed from µC,M by calling Dominates

(Line 13). An extra work is to update the maximal skyline constraints of t′ and store t′ in

descendants of C if necessary (Lines 2-9 of Dominates). If C has a child C ′ satisfied by t′

but not t, C ′ is a skyline constraint of t′. Further, C ′ is a maximal skyline constraint of t′,

if no ancestor of C ′ is already a maximal skyline constraint of t′.

3) If t is not dominated by any tuple in µC,M and C was not pruned before when its

ancestors were visited, (C,M) corresponds to a contextual skyline for t (Line 15). If t was

not already stored in C’s ancestors (indicated by C.inAnces), then C is a maximal skyline

constraint and thus t is inserted into µC,M (Line 17).

Furthermore, subroutine EnqueueChildren is called for continuation of top-down

traversal (Line 18). It inserts each child constraint C ′ of C into Q. If t is stored in µC,M

or any of its ancestors, C ′.inAnces is set to true and t will not be stored again in µ(C ′,M)

when the traversal reaches C ′.

Below we prove that Invariant 2 is satisfied by TopDown throughout its execution

over all tuples.

Proof of Invariant 2 We prove by induction on the size of table R. If the invariant is true

before t’s arrival, i.e., µC,M stores a tuple t if and only if C∈MSCtM , we prove that it is
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kept true after the arrival of t. The proof constitutes showing that both insertions into and

deletions from µC,M are correct.

With regard to insertion, there are two places where a tuple can be inserted. 1) In

Line 17 of TopDown, t is inserted into µC,M . This line is reachable if and only if i) C is

satisfied by t, ii) t is not dominated by any tuple stored at C or C’s ancestors, and iii) t is

not already stored at any of C’s ancestors. This ensures that µC,M stores t if and only if

C is a maximal skyline constraint of t, i.e., C ∈ MSCtM . 2) In Line 9 of Dominates, t′

is inserted into µC′,M . This line is reachable if and only if i) t dominates t′, ii) C, which

is a parent of C ′, is satisfied by both tuples, iii) C ′ is satisfied by t′ but not t, and iv) t′ is

not stored at any ancestor of C ′. Since C was a maximal skyline constraint of t′ before

the arrival of t, C ′ must be a skyline constraint of t. Therefore these conditions ensure that

µC′,M stores t′ if and only if C ′ becomes a maximal skyline constraint of t′.

With regard to deletion, the only place where a previous skyline tuple t′ can be

deleted from µC,M is Line 13 of Dominates, which is reachable if and only if t domi-

nates t′ and C is satisfied by both tuples. This ensures that t′ is removed from µC,M if and

only if C is not a maximal skyline constraint of t′ anymore.

Therefore, regardless of whether any insertion or deletion takes place upon the arrival

of t, afterwards µC,M stores all tuples for which C is a maximal skyline constraint.

Example 25. We use Figure3.4 to explain the execution of TopDown on Table 3.4 for

M={m1,m2}. Again, assume the tuples are inserted into the table in the order of t1, t2, t3,

t4 and t5. Figure3.4a shows µC,M beside each constraint C in Ct5 before the arrival of t5.

A tuple is only stored in its maximal skyline constraints. The figure also shows constraints

outside of Ct5 where various tuples are also stored. The maximal skyline constraints for

t2 and t4 are 〈a1, ∗, ∗〉 and ⊤, respectively. The maximal skyline constraints for t1 include

〈a1, ∗, ∗〉 and 〈∗, b2, ∗〉. For t3, the only maximal skyline constraint is 〈∗, ∗, c2〉.
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Upon the arrival of t5, TopDown starts to traverse Ct5 from ⊤. Only t4 is stored in

µ⊤,M . In M , t5 is dominated by t4, thus µ⊤,M does not change and t5 does not belong to

the contextual skylines of the constraints in Ct4,t5—〈 *, b1, c1〉, 〈 *, *, c1〉, 〈 *, b1, * 〉 and

⊤. The traversal continues with the children of ⊤. Among its three children, 〈 *, b1, * 〉

and 〈 *, *, c1〉 do not store any tuple, and t1 and t2 are stored at 〈a1, *, * 〉. They do not

dominate t5 in M . Since t5 was not stored in any of its ancestors, 〈a1, *, * 〉 is a maximal

skyline constraint of t5. Hence, t5 is inserted into it and will not be stored at its descendants

〈a1, b1, *〉, 〈a1, *, c1〉 and 〈a1, b1, c1〉. Since t5 dominates t1, t1 is deleted from 〈a1, *, *

〉. To update the maximal skyline constraints of t1, TopDown considers the two children of

〈a1, ∗, ∗〉—〈a1, b2, ∗〉 and 〈a1, *, c2〉. 〈a1, b2, *〉 is not a new maximal skyline constraint,

since t1 is already stored at its ancestor 〈 *, b2, *〉. 〈a1, ∗, c2〉 becomes a new maximal

skyline constraint since it is not subsumed by any existing maximal skyline constraint of

t1. Thus t1 is stored at 〈a1, *, c2〉. TopDown continues to the end and finds no tuple at any

remaining constraint in Ct5 . Figure3.4b depicts the content of µC,M for relevant constraints

after t5’s arrival.

3.5.3 Sharing across Measure Subspaces

Given a new tuple, both TopDown and BottomUp compute its contextual skylines in

each measure subspace separately, without sharing computation across different subspaces.

As mentioned in Section 3.4, the challenge in such sharing lies in the anti-monotonicity of

dominance relation—with regard to the same context of tuples, a skyline tuple in space

M may or may not be a skyline tuple in another space M ′, regardless of whether M ′ is

a superspace or subspace of M [30]. To share computation across different subspaces,

we devise algorithms STopDown and SBottomUp. They discover the contextual skylines

in all subspaces by leveraging initial comparisons in the full measure space M. In this
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section, we first introduce STopDown and then briefly explain SBottomUp, which is based

on similar principles.

With regard to two tuples t and t′, the measure spaceM can be partitioned into three

disjoint setsM>,M< andM= such that 1) ∀m∈M>, t.m ¿ t′.m; 2) ∀m∈M<, t.m ¡ t′.m;

and 3) ∀m∈M=, t.m = t′.m. Then, t is dominated by t′ in a subspace M if and only if M

contains at least one attribute inM< and no attribute inM>, as stated by Proposition 4.

Proposition 4. In a measure subspace M ⊆M, t ≺M t′ if and only if M ∩M< 6= ∅ and

M ∩M> = ∅.

The gist of STopDown (Algorithm12) is to compare a new tuple t with current tuples

t′ in full space M and, using Proposition 4, identify all subspaces M in which t′ domi-

nates t. It starts by finding the skyline constraints in M using STopDownRoot, which is

similar to TopDown except Lines 13-16. While traversing a constraint C, t is compared

with the tuples in µC,M (Line 10 of STopDownRoot). By Proposition 4, all subspaces

M where t′ dominates t are identified. In each such M , constraints in Ct,t
′

are pruned

(Lines 13-16)—indicated by setting values in a two-dimensional matrix pruned . After fin-

ishing STopDownRoot, with regard to each M , the constraints C satisfying pruned [C][M ]

= false are the skyline constraints of t in M . STopDown then continues to traverse these

skyline constraints in M by calling STopDownNode(M), for two purposes—one is to store

t at its maximal skyline constraints (Line 11 of STopDownNode), the other is to remove

tuples dominated by t and update their maximal skyline constraints (Line 10).

Example 26. We explain STopDown’s execution on Table 3.4. In full spaceM={m1,m2},

STopDown and TopDown work the same. Hence, Figure3.4 shows µC,M beside each C in

Ct5 before and after t5 arrives. Comparisons with tuples inM also help to prune constraints

in subspaces. Consider ⊤ in Figure3.4a, where t4 is stored. The new tuple t5 is compared

with t4. The outcome isM>=∅,M<={m1,m2} andM==∅, since t5 is smaller than t4 on

both m1 and m2. By Proposition 4, t5 is dominated by t4 in subspaces {m1} and {m2}.
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Hence, all constraints in Ct4,t5 (including 〈 *, b1, c1〉, 〈 *, b1, * 〉, 〈 *, *, c1〉 and⊤) are pruned

in {m1} and {m2} simultaneously, by Lines 13-16 of STopDownRoot. As STopDownRoot

proceeds, t5 is also compared with t1 and t2. With regard to the comparison with t1, since

M< = ∅, t5 is not dominated by t1 in any space. With regard to t2,M> = {m2},M
< =

{m1} andM= = ∅. Thus t5 is dominated by t2 in {m1}. Hence, all the constraints in Ct2,t5 ,

which is identical to Ct5 , are pruned in {m1}.

After the traversal in M, STopDown continues with each measure subspace. In

{m1}, all constraints of Ct5 are pruned. Hence, t5 has no skyline constraint and noth-

ing further needs to be done. Figure3.5 depicts µC,{m1} for all C in Ct5 before and after

the arrival of t5. For {m2}, Figure3.6a depicts µC,{m2} for all C in Ct5 before the arrival of

t5. Based on the analysis above, the skyline constraints of t5 in {m2} include 〈a1, *, * 〉,

〈a1, b1, * 〉, 〈a1, *, c1〉 and 〈a1, b1, c1〉. Since non-skyline constraints are pruned, t5 is not

compared with the tuples stored at those constraints. Instead, t5 is compared with t1 stored

at 〈a1, *, * 〉. Since they do not dominate each other in {m2}, 〈a1, *, * 〉 is a maximal

skyline constraint of t5 and t5 is stored at it together with t1. The content of µC,{m2} in Ct5

after encountering t5 is in Figure3.6b. Note that TopDown would have compared t5 with

other tuples seven times, including comparisons with t1, t2 and t5 in {m1, m2}, with t2

and t4 in {m1}, and with t1 and t4 in {m2}. In contrast, STopDown needs four compar-

isons, including the same three comparisons in {m1,m2} and another comparison with t1

in {m2}.

Invariant 2 is also guaranteed by STopDown all the time. We omit the proof which

is largely the same as the proof for TopDown. We note the essential difference between

STopDown and TopDown is the skipping of non-skyline constraints in measure subspaces.

Since the new tuple is dominated under these constraints, it does not and should not make

any change to µC,M for any such constraint-measure pair.
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BottomUp is extended to SBottomUp, similar to how STopDown extends TopDown.

While in STopDown lattice traversal in a measure subspace commences from the topmost

skyline constraints instead of the root of a lattice, lattice traversal in SBottomUp stops at

them. Invariant 1 is also warranted by SBottomUp. Its proof is similar to that for BottomUp.

Due to space limitations, we do not further discuss SBottomUp.
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3.5.4 Complexity Analysis

According to previous study, given a measure subspace, the computation of skyline is

polynomial with respect to the number of tuples. Therefore, for a certain constrain-measure

pair (C,M), the complexity of contextual skyline maintenance is polynomial with regard

to the number of tuples that gets the opportunity to traverse C. The following theorem

shows that the problem of contextual skylines computation is NP-hard.

Theorem 7. The problem of contextual skylines computation is NP-hard.

Proof of Theorem 7 We prove the complexity by reducing the problem of mining frequent

itemsets [3] to computing the contextual skylines with regard to the constraints of Ct such

that t is the new entry of R. According to [5], mining categorical frequent itemsets is

NP-hard.

Consider I as a set of items and I is a subset of I. A transaction is a set of itemsets.

Given a transaction T , the support of I with respect to T is defined as the proportion of

transactions in T which contains I . Given a threshold, if I’s support satisfies it then I is

called frequent. The problem of frequent itemset mining is to find all frequent itemsets.

To reduce the problem, we consider a database R′ having dimension space D′ and

measure spaceM′ = {m}. Let assume V ′ = {v ∈ dom(d)|∀d ∈ D′}. Now for a itemset I

= {i1, i2, . . . , ik}, we consider V ′ = {v1, v2, . . . , vk}. An attribute value vi ∈ V
′ represents

an item ik ∈ I , i.e., I interprets a constraint. We assume that for each tuple m = 1. Each

transaction T is transformed to a tuple tT according to this rule: if an item ij belongs to

a transaction T , then tT includes vj . This rule interprets that for any subset I ⊆ I, the

transaction T contains I if and only if tT occupies the contextual skyline of I-interpreted

constraint. This reduction is linear. Therefore, the problem of contextual skylines compu-

tation is NP-hard.
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3.6 Instant Discovery of Situational Facts

In Section 3.1, we have exemplified news statements backed by data from domains

including sports and social media. The first statement conveys the performance of Paul

George in a particular match retrieved from the final score. The second statement demon-

strates a photo’s achieving significance over time. In both of the cases, each numeric value

is the accumulation of the corresponding measure within a time frame. An instant dataset

contains the cumulative measures with regard to each instant of time. Such instant dataset

reveals the fluctuation of an id’s significance within a time period—e.g., an athlete’s regain-

ing form in a match, or a youtube video’s accumulating huge dislikes after the title being

edited. We consider instant dataset in order to discover newsworthy facts synchronously

with the live event, i.e, to stream live news. Clearly, our framework described in Section 3.3

is not compatible with an instant dataset. Nevertheless, the aforementioned fluctuations can

be interpreted through update of tuples. An update can be represented by the combination

of an old tuple’s deletion and a new tuple’s entrance.

Example 27. Consider the instant data R in Table 3.5, where D = {d1, d2, d3} and M

= {m1, m2}. m1 and m2 are assumed as “as larger as better” and “as smaller as better”,

respectively. Suppose t1 to t6 as the existing tuples (ignore t7 or t′7 right now). For a

particular id, id.prev indicates the corresponding previous tuple. We assume that upon the

arrival of a certain id, id.prev expires. For instance, as t3 is the id.prev of t4, the entrance

of t4 leads t3 to be expired. Therefore, the skyline on context 〈a1, *, * 〉 under measure

spaceM is {t1, t2}.

Suppose t7 just arrives. This arrival causes the expiration of t7’s previous tuple t2.

Since t7 dominates t1, the skyline becomes {t7}. Obviously, t7 dominates t2.

Now suppose t′7 arrives instead of t7 while t′7 considers t2 as its previous tuple as

well. In this case, t′7 is dominated by t2. As t′7 is dominated by t1, t
′
7 fails to occupy the

skyline. Furthermore, a previous non-skyline tuple t5 is promoted as a skyline tuple. t2
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was the only tuple that dominated t5. Now t′7 causes the expiration of t2 and t′7 can not

dominate t5. Therefore, the skyline is {t1, t5}.

In a scenario where each measure attribute is assumed as “as larger as better”, a new

tuple t always dominates its previous tuple t.prev . Therefore, the data model is not affected

by the deletions and our proposed solution framework remains compatible with this case.

However, the presence of a single measure attribute that is assumed as “as smaller as better”

can lead t to be dominated by t.prev . This may allow a previously considered non-skyline

tuple t′ to get promoted as a skyline tuple. In this chapter, we name the phenomenon

“t.prev dominates t” as “relegation”. To make our solution compatible with instant data

framework, we extend our data model described in Section 3.3 as instant framework.

3.6.1 Instant Framework

Consider a relational schema R(D;M), where the dimension space and the measure

space are defined as before (Section 3.3). For each tuple, our framework records the cor-

responding previous tuple. Given t, t′ ∈ R such that t′ is newer than t, t is recorded to be

the previous tuple of t′ if they share values on all dimensions and there does not exist any

tuple t′′ that shares values with t or t′ on all dimensions. Formally, (t′ is newer than t) ∧

(∀d ∈ D : t.d = t′.d) ∧ (t′′ appears between t and t′) ∧ (∄d ∈ D : t.d = t′′.d) =⇒

t′.prev = t. For any t ∈ R, if ∃t′ ∈ R s.t. t′.prev = t, t is considered to be expired. Tuples

other than the expired ones are considered as alive, i.e., {t ∈ R|∄t′ ∈ R s.t. t′.prev =

t}. In Table 3.5, R(D;M) = {t1, t2, t3, t4, t5, t6, t
′
7} (ignore t7 for this discussion), D =

{d1, d2, d3},M={m1,m2}. We use this table as the running example. Note, for a tuple t,

if there is no existing tuple that shares values with t on all dimensions, t.prev is considered

to be null. We assume a null tuple to be dominated by any non-null tuple regardless of

measure subspace.
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Definition 21 (Skyline). An alive tuple t is a skyline tuple in subspace M if it is not dom-

inated by any other alive tuples in R with respect to M . The set of all skyline tuples in R

with respect to M is denoted by λM(R), i.e., λM(R)={t ∈ R|(∄t′ ∈ R s.t. t′ ≻M t)∧(∄t′′ ∈

R s.t. t′′.prev = t)}.

Consider a case of “relegation” where the new tuple is t. For a constraint-measure

pair (C,M), a straightforward approach to the contextual skyline discovery problem would

check whether the contextual skyline contains t.prev . i) If t.prev does not belong to the

skyline, the approach would not go through any comparison regarding t. This is obvious as

the contextual skyline does not include t.prev , there exists an alive tuple t′ that dominates

t.prev . Since t.prev dominates t, t is dominated by t′ (Proposition 1). ii) If t.prev belongs

to the skyline, the approach would compare t with every alive tuple satisfying C. Because

at this point a previously decided non-skyline tuple may occupy the contextual skyline.

The bottleneck of this approach is—the exhaustive comparison with every alive tuple with

regard to every constraint-measure pair that qualifies t.prev in contextual skyline. In order

to ease these issues, we extend the ideas described in Section 3.4.

(1) Tuple reduction As we discussed in Section 3.4, for a certain constraint-measure pair,

comparisons with skyline tuples are sufficient to decide whether an alive tuple in R belongs

to the contextual skyline or not. In order to utilize this concept, we divide the phenomenon

“t arrives t.prev expires” into three time periods.

i) Before the arrival of t: Consider the data as RB that contains the tuples in R−{t},

i.e., t.prev is alive in this period.

ii) Transition period: In this period, the data RT is described as RB − {t.prev},

i.e., t.prev is expired while t is not included yet. If t.prev belonged to λM(σC(RB)), then

according to Definition 21, λM(σC(RT )) contains tuples from λM(σC(RB)) other than

t.prev . Instead, λM(σC(RT )) includes the exclusively dominated tuples of t.prev .
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Definition 22 (Exclusively Dominated Tuples). Given a constraint-measure pair (C,M)

and two alive tuples t, t′ ∈ σC(R), if t dominates t′ with respect to M and there exists no

t′′ ∈ R−{t} such that t′′ dominates t′ with respect to M , t′ is called exclusively dominated

tuple of t. The set of all such exclusively dominated tuples of t in R with respect to (C,M)

is denoted by E tC,M(R), i.e., E tC,M(R) = {t′ ∈ R|(t ≻M t′)∧ (∄t′′ ∈ R−{t} s.t. t′′ ≻M t′)}.

Obviously, if E tC,M(R) is nonempty then t belongs to λM(σC(R)). Similarly, if λM(σC(R))

does not contain t, then E tC,M(R) is empty.

Example 28. Assuming the tuples are inserted into Table 3.5 in the order of t1, t2, t3, t4, t5,

t6 and t′7, if M =M, and the constraint is C = 〈a1, b1, ∗〉, λM(σC(R)) = {t′7}, E
t′
7

C,M(R) =

{t6}, E
t2
C,M(R − {t′7}) = {t6}. Similarly, if M =M, and the constraint is C = 〈a1, ∗, c1〉,

λM(σC(R)) = {t5, t
′
7}, E

t′
7

C,M(R) = φ as well as E t2C,M(R− {t′7}) = {t5}.

In transition period, the content of the skyline is formalized through Equation 3.1.

λM(σC(RT )) = λM(σC(RB)) ∪ E
t.prev
C,M (RB)− {t.prev} (3.1)

Example 29. From Example 28, t2 is the previous tuple of t′7. Consider C = 〈a1, b1, ∗〉.

For the phenomenon “t′7 arrives t2 expires”, λM(σC(RB)) = {} and E t2C,M(RB) = {t6}.

Therefore, in the transition period, the skyline λM(σC(RT )) contains {t6} (Equation 3.1).

iii) After the arrival of t: Consider the data as RA such that RA = RT ∪ {t}. In any

case of relegation, if t.prev /∈ λM(σC(RB)), then t does not belong to λM(σC(RA)) as

well. On the other hand, if t.prev ∈ λM(σC(RB)), then λM(σC(RA)) includes t if t is not

dominated by any tuple in λM(σC(RT )).

a) If t is dominated by any tuple in λM(σC(RT )), then λM(σC(RA)) = λM(σC(RT )).

b) If t is not dominated by any tuple in λM(σC(RT )), then t takes place in λM(σC(RA)).

Besides, tuples dominated by t do not belong to λM(σC(RA)). According to Equation 3.1,
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t can not dominate any tuple in λM(σC(RB)). This is because none of these tuples is dom-

inated by t.prev and t is dominated by t.prev . If t dominates any tuple t′ in E t.prevC,M (RB),

then t′ becomes an exclusively dominated tuple of t, i.e., t′ ∈ E tC,M(RA) and E tC,M(RA) ⊆

E t.prevC,M (RB). Clearly, λM(σC(RA)) excludes E tC,M(RA).

The aforementioned discussion is summarized in Proposition 5.

Proposition 5. Given two tuples t, t′ ∈ R, such that t′ = t.prev where t is the newest entry

and t ≺ t′,

1. t /∈ λM(σC(R)) if and only if λM(σC(R)) = λM(σC(R − {t})) ∪ E
t′

C,M(R − {t}) −

{t′}.

2. t ∈ λM(σC(R)) if and only if λM(σC(R)) = λM(σC(R − {t})) ∪ (E t
′

C,M(R − {t})

− E tC,M(R)) ∪ {t} − {t′}.

Instead of comparing t with every tuple satisfying constraint as a straightforward

approach, our algorithms exploit the aforementioned idea and conceptually maintain the

exclusively dominated tuples for each tuple, i.e., compare t only with the skyline tuples

from the transition period. This idea is justified through Proposition 5.

(2) Constraint pruning For constraints satisfied by t, we need to check whether the con-

textual skyline contains t.prev . To prune constraints from consideration, we note the fol-

lowing property: if t.prev does not belong to the skyline with regard to constraint-measure

pair (C,M), then (C ′,M) for any C ′ that subsumes C will not qualify t as a contextual

skyline tuple. This concept is justified through Proposition 2 and 6.

Proposition 6. Given two tuples t, t′ ∈ R, such that t = t′.prev , if t /∈ λM(σC(R)) then

t′ /∈ λM(σC′(R)) where C ′ ∈ AC ∪ {C}.
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3.6.2 Algorithms for Instant Framework

In this section, we propose algorithms PBottomUp, PTopDown, PSTopDown and

PSBottom which are compatible with the extended framework. These algorithms exploit

the idea described in Section 3.6.1.

1) Algorithm PBottomUp

Upon the arrival of t, if t ≻M t.prev , then PBottomUp calls BottomUp. In case of

t ≺M t.prev , the actions are same as BottomUp except in Lines 10-11. While traversing,

if any constraint C does not contain t.prev , then t is disqualified from not only C but also

each of C’s ancestors (Line 31) (Proposition 6). On the other hand, for each C belongs to

SCt.prevM , t.prev is discarded from µC,M (Line 10) as well as tuples containing E t.prevC,M (R −

{t}) are inserted into µC,M (Line 11) (Proposition 5).

Furthermore, if t.m = t.prev .m for all m ∈ M , the actions are same as PBottomUp

except: 1) There is no action of comparison. 2) For each C belongs to SCt.prevM , t.prev is

discarded from µC,M (Line 33) as well as t is stored into µC,M (Line 33). 1) and 2) are

justified by Proposition 7. Invariant 1 (Section 3.5) is guaranteed by PBottomUp.

Proposition 7. Given an alive tuple t ∈ R such that t.m = t.prev .m for all m ∈ M , a

constraint C ∈ Ct,

1. t /∈ λM(σC(R)) if and only if λM(σC(R)) = λM(σC(R − {t})).

2. t ∈ λM(σC(R)) if and only if λM(σC(R)) = (λM(σC(R − {t})) − {t.prev}) ∪ {t}.

Example 30. We use Figure 3.7 to explain the execution of PBottomUp on Table 3.5, for

measure subspace M = {m1,m2}. Assume the tuples are inserted into the table in the

order of t1, t2, t3, t4, t5, t6 and t′7. Figure 3.7a depicts the content of µC,M for each C in

Ct
′
7 before the arrival of t′7. In addition, the content of E tC,M(R − {t2}) is depicted in blue

color.
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Figure 3.7: Execution of PBottomUp in Measure Subspace {m1,m2}

When t′7 arrives, it is compared with its previous tuple t2. t2 dominates t′7. Now

BottomUp starts the traversal of Ct
′
7 from its bottom ⊥(Ct

′
7) = 〈a1, b1, c1〉. 〈a1, b1, c1〉 con-

tains t2 as a skyline tuple. As there is no other tuple in this context, t′7 becomes skyline

tuple here. The traversal proceeds along the parents of ⊥(Ct
′
7). Among its three parents,

〈a1, b1, ∗〉 and 〈a1, ∗, c1〉 also contain t2 as the only skyline tuple. In context of 〈a1, b1, ∗〉,

t6 is the only tuple exclusively dominated by t2. After the expiration of t2 and before the

consideration of t′7 , the intermittent skyline becomes {t6}. However, upon the arrival of

t′7, t
′
7 replaces t6 from the skyline and t6 remains as an exclusively dominated tuple of t′7.

In case of 〈a1, ∗, c1〉, the intermittent skyline becomes {t5} before the consideration of t′7.

Since t5 is incomparable to t′7, after considering t′7, the final skyline becomes {t5, t
′
7}. The

contextual skyline for 〈∗, b1, c1〉 remains unaffected as it does not contain t2. Along with

〈∗, b1, c1〉, all the constraints in A〈∗,b1,c1〉 are pruned from further consideration (Proposi-

tion 6). The traversal continues at 〈a1, ∗, ∗〉 since the skyline contains t2. Now, after the

expiration of t2 and before the consideration of t′7, the intermittent skyline becomes {t1, t5,

t6} as {t5, t6} is the set of exclusively dominated tuples of t2. Since t′7 is not dominated

by any of these intermittent skyline tuple and it dominates t6, the skyline becomes {t1, t5,

t′7}. The algorithm resumes at this point as there is no more unpruned constraints left. The

content of µC,M for each C in Ct
′
7 after the arrival of t′7 is depicted in Figure 3.7b.
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Figure 3.8: Execution of PTopDown in Measure Subspace {m1,m2}

2) Algorithm PTopDown

Upon the arrival of t, if t≻M t.prev , then PTopDown calls TopDown. If t≺M t.prev ,

the actions are same as PTopDown except:

1) In Lines 3- 5: For each constraint C inMSCt.prevM , t.prev is discarded from µC,M

(Line3) as well as tuples containing E t.prevC,M (R−{t}) are inserted into µC,M (Line 4) (Propo-

sition 5). After that, the traversal starts from the maximal skyline constraints of t.prev

(Line 5) (Proposition 6).

2) In Lines 7- 16: i) If t is not stored into any of C’s ancestors (indicated by

C.inAccess), then t is compared with each tuple stored in µC,M to decide whether t oc-

cupies the contextual skyline (Line 7). ii) Otherwise, t is compared with only the tuples

belong to E t.prevC,M (R−{t}) in order to discard E tC,M(R) from the contextual skyline (Propo-

sition 5). Note that, t is not compared with any tuples stored in µC,M (Line 13). Be-

cause at this point, PTopDown knows that t ∈ λM(σC(R)) and thereby, λM(σC(R)) ⊇

λM(σC(R− t)) (Property 2 of Proposition 5).

On the contrary, if t.m = t.prev .m for all m ∈ M , the actions are same as PTop-

Down except: 1) There is no comparison. 2) For each C inMSCt.prevM , t.prev is discarded

from µC,M (Line 26) as well as t is stored into µC,M (Line 27). 1) and 2) are justified by

Proposition 7. Invariant 2 (Section 3.5) is guaranteed by PTopDown.
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Example 31. We use Figure 3.8 to explain the execution of PTopDown on Table 3.5, for

measure subspace M = {m1,m2}. Assume the tuples are inserted into the table in the

order of t1, t2, t3, t4, t5, t6 and t′7. Figure 3.8a depicts the content of µC,M for each C in Ct
′
7

before the arrival of t′7. Besides, the tuples shown in blue color represents the corresponding

intermittent contextual skyline.

Upon the arrival of t′7, PTopDown compares it with its previous tuple t2. Since t′7 is

dominated by t2, the traversal starts from 〈a1, ∗, ∗〉 as it is the only maximal skyline con-

straint of t2. As t2 is expired now, it is deleted from 〈a1, ∗, ∗〉. At this point the intermittent

skyline becomes {t1, t5, t6}. Upon the consideration of t′7, the skyline becomes {t1, t5, t
′
7}.

The traversal continues with the children of 〈a1, ∗, ∗〉which are unpruned. The descendents

of 〈a1, ∗, ∗〉 are 〈a1, b1, ∗〉, 〈a1, ∗, c1〉 and 〈a1, b1, c1〉. Since 〈a1, b1, ∗〉 has t6 as exclusively

dominated tuple of t2 and t′7 dominates t6; µ〈a1,b1,∗〉,M remains empty. In case of 〈a1, ∗, c1〉,

〈a1, ∗, c1〉 has t5 as exclusively dominated tuple of t2 and t5 is not dominated by t′7. At this

point, 〈a1, ∗, c1〉 is subsumed by t5’s maximal skyline constraint 〈a1, ∗, ∗〉. Therefore, t5

is not stored in µ〈a1,∗,c1〉,M . Since there exists no tuple as exclusively dominated tuple of

t2 in 〈a1, b1, c1〉, no further comparison is required. PTopDown stops at this point. Note

that, after traversing 〈a1, ∗, ∗〉, it becomes obvious that t belongs to λM(σC (R)) for all

C ∈ D〈a1,∗,∗〉. Therefore, t′7 does not need to be compared with any tuple belongs to µC,M

(Property 2 of Proposition 5). Figure 3.8b depicts the content of µC,M for each C in Ct
′
7

after t′7’s arrival.

3) Sharing across Measure Subspaces

In order to share computation across subspaces, we design PSBottomUp and PSTop-

Down. These two algorithms compute the contextual skylines with regard to the full space

at first. The computations correspond to the remaining subspaces are leveraged though

adapting the computations in the full space. In this section, we first introduce PSTopDown

and then discuss PSBottomUp briefly.
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PSTopDown incorporates the idea behind PTopDown and STopDown. The gist of

PSTopDown (Algorithm15) is to compare a new tuple t with the corresponding previous

tuple t.prev in full spaceM and, using Proposition 4, identify all subspaces M in which

either t dominates t.prev or t is dominated by t.prev . At first, the algorithm computes

the contextual skyline tuples inM using PSTopDownRoot, which is similar to STopDown-

Root except in (Lines 4-7). PSTopDownRoot starts by discarding t.prev from its maximal

skyline constraints in M (Line 5) as well as adding E t.prevC,M (R − {t}) into µC,M (Line 7)

(Proposition 5). As described in Section 3.5, while traversing a constraint C, t is com-

pared with the tuples in µC,M (Line 10 of STopDownRoot). STopDownRoot identifies

the subspaces M where t is dominated by any t′ in µC,M and thereby, prunes each such

constraint-measure pair (C,M) (Lines 13-16 of STopDownRoot) (Proposition 4). Other

than M, with regard to each M , PSTopDown calls PSTopDownNode(M) to traverse the

skyline constraints of t.prev . Now PSTopDownNode stores t in its maximal skyline con-

straints (Line 21 of PSTopDownNode). Note that, PSTopDownNode traverses a skyline

constraints C of t.prev in spite of C is pruned. This is because, during this traversal the

tuples belong to E t.prevC,M (R−{t}) are inserted into µC,M (Line 12). Thus Invariant 2 is also

guaranteed by PSTopDown all the time.

Example 32. We explain PSTopdown’s execution on Table 3.5 considering t′7 as the newest

tuple. In full spaceM = {m1, m2}, PTopDown and PSTopDown work the same which is

explained through Figure 3.8. Consider 〈a1, ∗, ∗〉 from Example 31, where t1 and t5 are

stored intermittently. While comparing t′7 with t1 and t5, we get that t′7 is dominated by

both t1 and t5 on {m2}. Therefore, all constraints in Ct1,t
′
7 ∪ Ct5,t

′
7 are pruned in {m2}

simultaneously.

For {m2}, PSTopDown starts the traversal from the maximal skyline constraints of

t.prev : {〈a1, b1, ∗〉, 〈a1, ∗, c1〉}. Before the consideration of t′7, 〈a1, b1∗〉 consider {t6} as

intermittent skyline. After considering t′7, the skyline becomes {t′7}. In case of 〈a1, ∗, c1〉,

92



b1
{}

Τ

{t4}

a1,b1,c1
{}

a1
{t1}

c1
{}

b1,c1
{}

a1,c1
{t2,t5}

a1,b1
{t2}

{t6}

(a) Before Visiting Ct
′
7 in {m2}

b1
{}

Τ

{t4}

a1,b1,c1
{}

a1
{t1}

c1
{}

b1,c1
{}

a1,c1
{t5}

a1,b1
{tʹ7}

(b) After Visiting Ct
′
7 in {m2}

Figure 3.9: Execution of PSTopDown in Measure Subspace {m2}

the intermittent skyline is {t5}. Since 〈a1, ∗, c1〉 is pruned, this intermittent skyline is fi-

nalized. The traversal proceeds through 〈a1, b1, c1〉, where the intermittent skyline is φ.

Therefore, there is no more comparison and PSTopDown resumes at this point. Figure 3.9

depicts µC,{m2} for all C in Ct
′
7 before and after the arrival of t′7.

PBottomUp is extended to PSBottomUp, similar to how PSTopDown extends PTop-

Down. Invariant 1 is also warranted by PSBottomUp.

3.7 Case Study
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A tuple may be in the contextual skylines of many constraint-measure pairs. For

instance, t7 in Example 17 belongs to 196 contextual skylines (of course partly because

the table is tiny and most contexts contain only t7). Reporting all such facts overwhelms

users and makes important facts harder to spot. It is crucial to report truly prominent facts,

which should be rare. We measure the prominence of a fact (i.e., a constraint-measure

pair (C, M)) by
|σC(R)|

|λM (σC(R))|
, the cardinality ratio of all tuples to skyline tuples in the con-

text. Consider two pairs in Example 17: (C1:month = Feb, M1:{points, assists, rebounds}) and

(C2:team=Celtics∧opp team = Nets, M2:{assists, rebounds}). The context of C1 contains 5

tuples, among which t2 and t7 are in the skyline in M1. Hence, the prominence of (C1,

M1) is 5/2. Similarly the prominence of (C2, M2) is 3/2. Therefore, (C1, M1) is more

prominent, because larger ratios indicate rarer events.

For a newly arrived tuple t, we rank all situational facts St pertinent to t in descending

order of their prominence. A fact is prominent if its prominence value is the highest among

St and is not below a given threshold τ . (There can be multiple prominent facts pertinent

to the arrival of t, due to ties in their prominence values.) Consider t7 in Example 17.

From the 196 facts in St7 , the highest prominence value is 3. If τ≤3, those facts in St7

attaining value 3 are the prominent facts pertinent to t7. Among many such facts, examples

are (player = Wesley, {rebounds}) and (month = Feb.∧team = Celtics,{points}). Note that,

based on the definition of the prominence measure and the threshold τ , a context must have

at least τ tuples in order to contribute a prominent fact.

We studied the prominence of situational facts from the NBA box score dataset,

under the parameter setting d = 5, m = 7, d̂ = 3, m̂ = 3 and τ = 500. In other words,

each prominent fact on a new tuple t is about a contextual skyline that contains t and at

most 0.2% of the tuples in the context. Below we show some of the discovered prominent

facts. They do not necessarily stand in the real world, since our dataset does not include

the complete NBA records from all seasons.
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• Lamar Odom had 30 points, 19 rebounds and 11 assists on March 6, 2004. No one before

had a better or equal performance in NBA history.

• Allen Iverson had 38 points and 16 assists on April 14, 2004 to become the first player

with a 38/16 (points/assists) game in the 2004-2005 season.

• Damon Stoudamire scored 54 points on January 14, 2005. It is the highest score in

history made by any Trail Blazers.

Figures 3.10 and 3.11 help us further understand the prominent facts from this ex-

periment at the macro-level. Figure 3.10 shows the number of prominent facts for each

1000 tuples, given threshold τ = 103. For instance, there are 11 prominent facts in total

from the 100,000th tuple to the 101,000th tuple. We observed that the values in Figure 3.10

mostly oscillate between 5 and 25. Consider the number of tuples and the huge number

of constraint-measure pairs, these prominent facts are truly selective. One might expect a

downward trend in Figure 3.10. It did not occur due to the constant formulation of new

contexts. Each year, a new NBA regular season commences and some new players start

to play. Such new values of dimension attributes season and player, coupled with com-

binations of other dimension attributes, form new contexts. Once a context is populated

with enough tuples (at least τ ), a newly arrived tuple belonging to the context may trigger

a prominent fact.

Figure 3.11a shows the distribution of prominent facts by the number of bound di-

mension attributes in constraint for varying τ in [102, 104]. Figure 3.11b shows the distribu-

tion by the dimensionality of measure subspace. We observed fewer prominent facts with

0 and 3 bound attributes (out of d = 5 dimension attributes) than those with 1 and 2 bound

attributes, and fewer prominent facts in measure subspaces with 1 and 3 attributes than

those with 2 attributes. The reasons are: 1) With regard to dimension attributes, if there

are no bound attributes in the constraint, the context includes the whole table. Naturally

it is more challenging to establish a prominent fact for the whole table. If the constraint
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has more bound attributes, the corresponding context becomes more specific and contains

fewer tuples, which may not be enough to contribute a prominent fact (recall that having

one prominent fact entails a context size of no less than τ ). Therefore, there are fewer

prominent facts with 3 bound attributes. 2) With regard to measure attributes, on a single

measure, a tuple must have the highest value in order to top other tuples, which does not

often happen. There are thus fewer prominent facts in single-attribute subspaces. In a sub-

space with 3 attributes, there are also fewer prominent facts, because the contextual skyline

contains more tuples, leading to a smaller prominence value that may not beat the threshold

τ .

We studied the prominence of situational facts from the NBA play by play dataset

as well, under the parameter setting d = 5, m = 7, d̂ = 3, m̂ = 3 and τ = 5, 000. Below we

present some of the discovered prominent facts. As our collected NBA play by play dataset

does not include the complete NBA records, these discovered facts may not stand in the

real world. Note that, in order to discover prominent facts, we don not need to wait for the

box score this time. The algorithms regarding the instant framework discovers prominent

facts synchronously with an ongoing match and thus we can provide live commentary.

• Shawn Marion has 30 points, 16 rebounds and 2 assists. No one before had a better or

equal performance in NBA history.

• Russell Westbrook has 21 points and 15 assists to become the first player with a 21/15

(points/assists) game in this 2015-2016 season in the Oklahoma City Thunder’s match

against Los Angeles Clippers. ...Kevin Durant has scored 30 points. It is the highest

score in this season made by any Los Angeles Clippers.

• Kendall Gill has scored 21 points and 0 fouls. No one had a better performance while

having no foul in the month of January in the Orlando Magic’s match with New Jersey

Nets. ...Dennis Scott has scored 22 points to become the first player with a 22 (points)

game in in the month of January in the Orlando Magic’s match with New Jersey Nets.
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Dennis Scott has scored 1 foul. ...Yet Kendall Gill has scored 0 foul and he is the highest

pointer while having no foul in the month of January in the Orlando Magic’s match with

New Jersey Nets.
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Figures 3.12 and 3.13 further demonstrate the prominent facts discovered from the

NBA play by play dataset at the macro-level. As the number of tuples is comparatively

higher than the box score dataset, we consider higher thresholds in this experiment. Fig-

ure 3.12 shows the number of prominent facts for each 1, 000 tuples, given threshold τ =

15, 000. Figures 3.12 reveals that the values in Figure 3.12 mostly oscillate between 300

and 1500. It is noticeable that the number of prominent facts is significantly greater in

comparison to Figures 3.12. This is because the play by play dataset contains cumulative

measures and intuitively, any significant measure is distributed in comparatively higher

number of tuples. In other words, players having outstanding performances appear in com-

paratively higher number of tuples. Therefore, a tuple is more likely belongs to a contextual

skyline, i.e., appear as a prominent fact. Nevertheless, with regar to the number of tuples in

play by play dataset, these prominent facts are quite selective. Similar to Figure 3.12, we

observe a downward trend is Figure 3.12 and the reason behind is same as before.
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Figure 3.13a shows the distribution of prominent facts by the number of bound di-

mension attributes in constraint for varying τ in [5 × 103, 15 × 103]. We observe highest

prominent facts with 1 bound attributes (out of d = 5 dimension attributes) which concurs

with Figure 3.11a. Besides, Figure 3.13b demonstrates the distribution by the dimension-

ality of measure subspace. Figure 3.13b reveals that measure subspaces with 1 attibute

have the highest prominent facts while Figure 3.11b shows fewer prominent facts with 1

attribute. Since a player is more likely to score for only one measure and higher mea-

sures are comparatively highly distribute, again the cumulative measures answer the reason

behind this phenomenon.

3.8 Experiments

The algorithms were implemented in Java. The experiments were conducted on a

computer with 2.0 GHz Quad Core 2 Duo Xeon CPU running Ubontu 8.10. The limit on

the heap size of Java Virtual Machine (JVM) was set to 16 GB.

3.8.1 Experiment Setup

Datasets We used three real datasets of which NBA boxscore and weather datasets

have similar trends. We mainly discuss the results on the two NBA datasets.

NBA Box Score Dataset We collected 317,371 tuples of NBA box scores from 1991-

2004 regular seasons. We considered 8 dimension attributes: player, position, college,

state, season, month, team, and opp team. College denotes from where a player grad-

uated, if applicable. State records the player’s state of birth. For measure attributes, 7

performance statistics were considered: points, rebounds, assists, blocks, steals, fouls

and turnovers. Smaller values are preferred on turnovers and fouls, while larger values

are preferred on all other attributes.
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NBA Play by Play Dataset We crawled NBA play by play scores from 1996-2016

regular seasons. We considered 5 dimension attributes: player, season, month, team,

and opp team. For measure attributes, we collected the same 7 performance statistics that

were considered in the NBA box score dataset. We translated each play by play score

corresponding to these attributes as a tuple compatible with our instant framework. For

translation, we made these following two rules:

1. Rule 1: If two consecutive tuples t1 and t2 share same values in all of the 5 dimen-

sions, then t1 is considered as t2’s previous tuple. Formally, ∀d ∈ Dt1.d = t2.d ⇒

t1 = t2.prev .

2. Rule 2: Consider a play by play score demonstrated as a score of v in a certain

measure m ∈ M. Then the corresponding tuple t would be interpreted such that

t.m = t.prev .m+ v.

Thus we collected 9,154,078 tuples in total.

Weather Dataset 1 It has more than 7.8 million daily weather forecast records col-

lected from 5,365 locations in six countries and regions of UK from Dec. 2011 to Nov.

2012. Each record has 7 dimension attributes: location, country, month, time step, wind

direction [day], wind direction [night] and visibility range and 7 measure attributes: wind

speed [day], wind speed [night], temperature [day], temperature [night], humidity

[day], humidity [night] and wind gust. We assumed larger values dominate smaller values

on all attributes.

Methods Compared For NBA box score and weather datasets, we investigated

the performances of 7 algorithms—the baseline algorithms BaselineSeq and BaselineIdx

from Section 3.4, C-CSC which is the CSC adaptation described in Section 3.2, and the

algorithms BottomUp, TopDown, SBottomUp and STopDown from Section 3.5. For NBA

play by play dataset, we evaluate the performances of 3 algorithms—the baseline algorithm

1 http://data.gov.uk/metoffice-data-archive
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Figure 3.14: Execution Time of BaselineSeq, BaselineIdx, C-CSC, BottomUp and TopDown

on the NBA Box score Dataset

Baseline from Section 3.4, and the algorithms PBottomUp, PTopDown, and PSTopDown

from Section 3.6. We compared these algorithms on both execution time and memory

consumption.

Parameters We ran our experiments under combinations of five parameters, which

are number of dimension attributes (d), number of measure attributes (m), number of tu-

ples (n), maximum number of bound dimension attributes (d̂) and maximum number of

measure attributes allowed in measure subspaces (m̂). In Table 3.6 (3.7), we list the dimen-

sion (measure) spaces considered for different values of d (m), which are subsets of the

aforementioned dimension (measure) attributes in the datasets.
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Figure 3.15: Execution Time of C-CSC, BottomUp, TopDown, SBottomUp, STopDown on

NBA Box score Dataset
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Figure 3.16: Execution Time on the Weather Dataset, Varying n, d=5, m=7

In particular dimension/measure spaces (corresponding to d/m values), experiments

were done for varying d̂ and m̂ values. A constraint with more bound dimension attributes

represents a more specific context. Similarly, a measure subspace with more measure at-
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tributes is more specific. Considering all possible constraint-measure pairs may thus pro-

duce many over-specific and uninteresting facts. The parameters d̂ and m̂ are for avoiding

trivial facts. For instance, if d=5, m=4, d̂=2 and m̂=3, we consider all constraints with at

most 2 (out of 5) bound dimension attributes and all measure subspaces with at most 3 (out

of 4) measure attributes. In all experiments in this section, we set d̂ = 4 and m̂ = m. That

means a constraint is allowed to have up to 4 bound attributes and a measure subspace can

be any subspace of the whole spaceM includingM itself. In Section 3.7, we further study

how prominence of facts varies by d̂ and m̂ values.

3.8.2 Experiments on NBA Box score and Weather Datasets

Results of Memory-Based Implementation Figure 3.14 compares the per-tuple

execution times (by milliseconds, in logarithmic scale) of BaselineSeq, BaselineIdx, C-

CSC, BottomUp and TopDown on the NBA box score dataset. Figure 3.14a shows how the

per-tuple execution times increase as the algorithms process tuples sequentially by their

timestamps. The values of d and m are d = 5 and m = 7. Figure 3.14b shows the times

under varying d, given n = 50,000 and m = 7. Figure 3.14c is for varying m, n = 50,000 and

d = 5. The figures demonstrate that BottomUp and TopDown outperformed the baselines by

orders of magnitude and C-CSC by one order of magnitude. Furthermore, Figure 3.14b and

Figure 3.14c show that the execution time of all these algorithms increased exponentially

by both d and m, which is not surprising since the space of possible constraint-measure

pairs grows exponentially by dimensionality.

Figure 3.15 uses the same configurations in Figure 3.14 in order to compare C-CSC,

BottomUp, TopDown, SBottomUp and STopDown. We make the following observations on

the results. First, C-CSC was outperformed by one order of magnitude. The per-tuple exe-

cution times of all algorithms exhibited moderate growth with respect to n and superlinear

growth with respect to d and m, matching the observations from Figure 3.14.
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Figure 3.17: Memory Consumption by C-CSC, BottomUp, TopDown, SBottomUp, STopDown

on the NBA Box score Dataset, Varying n, d=5, m=7
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Figure 3.18: Work Done by BottomUp, TopDown, SBottomUp and STopDown on the NBA

Box score Dataset, Varying n, d=5, m=7

Second, as depicted in Figure 3.15a, the bottom-up algorithms exhausted available

JVM heap and were terminated due to memory overflow before all tuples were consumed.

On the contrary, the top-down algorithms finished all tuples. This difference was more clear

on the larger weather dataset (Figure 3.16), on which the bottom-up algorithms caused

memory overflow shortly after 0.2 million tuples were encountered, while the top-down

algorithms were still running normally after 0.9 million tuples. As the difference was al-

ready clear after 0.9 million tuples, we terminated the executions of top-down algorithms

at that point. The difference in the sizes of consumed memory by these two categories

of algorithms is shown in Figure 3.17a. The difference in memory consumption is due
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to that TopDown/STopDown only store a skyline tuple at its maximal skyline constraints,

while BottomUp/SBottomUp store it at all skyline constraints. This observation is verified

by Figure 3.17b, which shows how the number of stored skyline tuples increases by n. We

see that BottomUp/SBottomUp stored several times more tuples than TopDown/STopDown.

Note that TopDown and STopDown use the same skyline tuple materialization scheme.

Correspondingly BottomUp and SBottomUp store tuples in the same way.

Figure 3.16 also shows that, for the weather dataset, C-CSC could not proceed shorty

after 0.2 million tuples were processed. This was also due to memory overflow caused by

C-CSC, since it needs to store skyline tuples in their “minimum subspaces”. C-CSC did

not exhaust memory when it processed the NBA box score dataset (Figure 3.15a), since

there were less skyline tuples in the smaller dataset.

Third, in terms of execution time, TopDown/STopDown were outperformed by Bot-

tomUp/SBottomUp. The reason is, if a new tuple t dominates a previous tuple t′ in con-

straint C and measure subspace M , TopDown/STopDown must update MSCt
′

M . On the

contrary, BottomUp/SBottomUp do not carry this overhead; they only need to delete t′ from

µC,M . Thus, there is a space-time tradeoff between the top-down and bottom-up strategies.

Finally, SBottomUp/STopDown are faster than BottomUp / TopDown, which is the

benefit of sharing computation across measure subspaces. Figures 3.15b and 3.15c show

that this benefit became more prominent with the increase of both d and m. Figure 3.18

further presents the amount of work done by these algorithms, in terms of compared tuples

(Figure 3.18a) and traversed constraints (Figure 3.18b). There are substantial differences

between TopDown and STopDown, but the differences between BottomUp and SBottomUp

are insignificant. The reason is as follows. STopDown avoids visiting pruned non-skyline

constraints, which TopDown cannot avoid. Although SBottomUp avoids such non-skyline

constraints too, BottomUp also avoids most of them. The difference between BottomUp

and SBottomUp is that BottomUp still visits the boundary non-skyline constraints that are
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Figure 3.19: Execution Time of FSBottomUp and FSTopDown on the NBA Box score Dataset
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Figure 3.20: Execution Time of FSBottomUp and FSTopDown on the Weather Dataset, Varying

n, d=5, m=7

parents of skyline constraints and then skips their ancestors, while SBottomUp skips all

non-skyline constraints. Such a difference on boundary non-skyline constraints is not sig-

nificant.
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Results of File-Based Implementation The memory-based implementations of all

algorithms store skyline tuples for all combinations of constraints and measure subspaces.

As a dataset grows, sooner or later, all algorithms will lead to memory overflow. To address

this, we investigated file-based implementations of STopDown and SBottomUp, denoted

FSTopDown and FSBottomUp, respectively. We did not include C-CSC in this experiment

since Figures 3.14-3.23 clearly show TopDown/STopDown is one order of magnitude faster

than C-CSC and consumes about the same amount of memory.

In the file-based implementations, each non-empty µC,M is stored as a binary file.

Since the size of µC,M for any particular constraint-measure pair (C,M) is small, all tuples

in the corresponding file are read into a memory buffer when the pair is visited. Insertion

and deletion on µC,M are then performed on the buffer. When an algorithm finishes process

the pair, the file is overwritten by the buffer’s content.

Figure 3.19 uses the same configurations in Figures 3.14 and 3.15 to compare the per-

tuple execution times of FSBottomUp and FSTopDown on the NBA box score dataset. Fig-

ure 3.20 further compares them on the weather dataset. The figures show that FSTopDown

outperformed FSBottomUp by multiple times. Even for only n=5,000, their performance

gap was already clear in Figures 3.19b and 3.19c. The reason is as follows. In file-based

implementation, while traversing a pair (C,M), a file-read operation occurs if µC,M is non-

empty. Since FSTopDown stores significantly fewer tuples than FSBottomUp (cf. Figure

3.23), FSTopDown is more likely to encounter empty µC,M and thus triggers fewer file-

read operations. Further, a file-write operation occurs if the algorithms must update µC,M .

Again, since FSTopDown stores fewer tuples, it requires fewer file-write operations. Hence,

although SBottomUp outperformed STopDown on in-memory execution time, FSTopDown

triumphed FSBottomUp because I/O-cost dominates in-memory computation.
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3.8.3 Experiments on NBA Play by Play Dataset

Implementation Details In the implementations of PBaseline, PBottomUp, and

PTopDown, the challenge lies in retrieving the set of exclusively dominated tuples for a

certain tuple t with regard to a constraint-measure pair (C,M), i.e., E t.prevC,M (R). In order

to resolve this issue, we have maintained a k-d tree [7] on full measure space M. Ob-

viously, the one-sided range query
∧

mi∈M
(mi ≤ t.prev .mi) includes E t.prev⊤,M (R). How-

ever,
∧

mi∈M
(mi ≤ t.prev .mi) ≫ E

t.prev
⊤,M (R). To get rid of unnecessary search space, we

have considered the query
∧

mi∈M
(mi ≤ t.prev .mi) −

∧
mi∈M

(mi ≤ t.mi). This query

result includes the tuples in E t.prev⊤,M (R) that are not dominated by t, i.e., {t′ ∈ R|t′ ∈

E t.prev⊤,M (R) ∧ t′ ⊀M t}. Now from this query result, we can retrieve the tuples satisfied by

C, for each C ∈ Ct. In other word, we can extract {t′ ∈ R|t′ ∈ E t.prevC,M (R) ∧ t′ ⊀M t}, for

each C ∈ Ct.

The query
∧

mi∈M
(mi ≤ t.prev .mi)−

∧
mi∈M

(mi ≤ t.mi) is the subtraction of these

two one-sided range queries:
∧

mi∈M
(mi ≤ t.prev .mi) and

∧
mi∈M

(mi ≤ t.mi). In order

to reduce the computation cost, we have derived a tuple t′′ from t and t.prev such that

∧
mi∈M

(mi ≤ t.prev .mi∧mi > t′′.mi) =
∧

mi∈M
(mi ≤ t.prev .mi)−

∧
mi∈M

(mi ≤ t.mi).

Finally, we have used a single two-sided range query
∧

mi∈M
(mi ≤ t.prev .mi ∧ mi >

t′′.mi) instead of two aforementioned one-sided range queries to extract E t.prevC,M (R) for all

C ∈ Ctand thus reduced the cost regarding exclusively dominated tuples retrieval.

Experimental Results Figure 3.21 compares the per-tuple execution times (by mil-

liseconds, in logarithmic scale) of PBaseline, PBottomUp, and PTopDown on the NBA play

by play dataset. Figure 3.21a shows how the per-tuple execution times increase as the al-

gorithms process tuples sequentially by their timestamps. The values of d and m are d = 5

and m = 7, respectively. Figure 3.21b shows the times under varying d, given n = 50,000

and m = 7. Figure 3.21c is for varying m, n = 50,000 and d=5. The figures demonstrate

that both PBottomUp and PTopDown outperformed the baselines by orders of magnitude.
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Figure 3.21: Execution Time of PBaseline, PBottomUp, and PTopDown on NBA Play by Play

Dataset
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Figure 3.22: Execution Time on the NBA Play by Play Dataset, Varying n, d=5, m=7

Furthermore, Figure 3.21b and Figure 3.21c demonstrate the impact of d and m in these

algorithms, respectively. Figure 3.21b depicts that the execution time of PBottomUp and

PTopDown increased exponentially by d as the number of constraints to be traversed grows

108



 2

 3

 4

 5

 6

 7

 8

 2e+06  4e+06  6e+06  8e+06

M
em

or
y 

(G
B

)

Tuple ID

PBottomUp
PTopDown

(a) Size of Consumed Memory

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 2e+06  4e+06  6e+06  8e+06

N
um

be
r 

of
 S

ky
lin

e 
T

up
le

s 
S

to
re

d

Tuple ID

PBottomUp
PTopDown

(b) Num of Skyline Tuples Stored

Figure 3.23: Memory Consumption by PBottomUp and PTopDown on the NBA Play by Play

Dataset, Varying n, d=5, m=7
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Figure 3.24: Work Done by PBottomUp and PTopDown on the NBA Play by Play Dataset,

Varying n, d=5, m=7

exponentially. However, the variation of d does not have noticeable impact on PBase-

line. While the bottom-up and top-down approaches compare a new tuple t with regard

to the tuples stored in the traversed constraints, PBaseline compares t with the tuples in

R regardless of the constraints. Therefore, the number of comparisons regarding t is not

affected by the value of d. On the contrary, Figure 3.21c shows that the execution time of

all these algorithms increased exponentially by m as the number of measure spaces grow

exponentially.

Figure 3.22 uses the same configurations in Figure 3.21a to compare PBottomUp and

PTopDown. We make the following observations on the results. First, in Figure 3.21b,
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the execution times of PBottomUp and PTopDown differs with the increase of d. This is

because, intuitively, for a certain tuple t, the set of maximal skyline constraints is similar

to the set of skyline constraints with respect to a smaller d, i.e., MSCtM ≈ SC
t
M . As a

result, t needs to go through similar number of traversal as well as comparisons for both

algorithms.

Second, in Figure 3.21a, PBottomUp exhausted available JVM heap and were termi-

nated due to memory overflow before 8 million tuples while PTopDown were still running.

This phenomenon is explained through Figure 3.23a as it reveals the sizes of consumed

memory by these two algorithms. Furthermore, Figure 3.23b shows how the number of

stored skyline tuples increases by n in PBottomUp and PTopDown. As we discussed in

Section 3.8.2, while the top-down approach stores a tuple only in its maximal skyline con-

straints, the bottom-up approach stores the tuple in all possible skyline constraints. Thus

the corresponding memory consumptions differ.

Finally, in terms of execution time, PBottomUp were outperformed by PTopDown.

The reason is clarified through Figure 3.24a and Figure 3.24b as these two figures reveal

the work done by the two algorithms, in terms of number of comparisons and number of

traversals, respectively. However, it is noticeable that, this behaviour does not concur with

the corresponding evaluation of bottom-up and top-down approaches in Section 3.8.2. This

interprets that for play by play dataset, the overhead regarding “maximal skyline constraints

maintenance” does not cause significant interference. In play by play dataset, most of the

tuples contain smaller values in their measure attributes. These tuples are easily dominated

by the existing skyline tuples. Since these tuples never get the opportunity to occupy any

skyline, they never cause such “maximal skyline constraints maintenance”. In conclusion,

with respect to both space and time, PTopDown dominates PBottomUp.

Consider a case of “relegation” with regard to a newly arrived tuple t, a constraint

C ∈ Ct and the full spaceM. We can identify all subspaces M in which t is dominated by
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an existing tuple t′ such that C ∈ Ct,t
′

(Proposition 4). Suppose t.prev occupied the con-

textual skyline of (C,M). Since this a case of “relegation”, upon the arrival of t, (C,M)

includes the exclusively dominated tuples E t.prevC,M (R) in its contextual skyline. Now for

each t′′ ∈ E t.prevC,M (R), PSTopDown needs to determine the constraint-measure pairs (C,M)

where t′′ belongs to the contextual skyline, by using Procedure PSTopDownNode. In sum-

mary, in a case of “relegation”, upon the arrival of t, PSTopDown needs to consider the

entrance of E t.prevC,M (R) as well for each C ∈ Ct. Practically, E t.prevC,M (R) can be significantly

larger than E t.prevC,M (R) even if |M| = |M | + 1. Because of this overhead, PSTopDown is

outperformed by PTopDown and it is excluded from the depictions.

3.9 Summary

We studied the novel problem of discovering prominent situational facts, which is

formalized as finding the constraint-measure pairs that qualify a new tuple as a contextual

skyline tuple. We presented algorithms for efficient and effective discovery of prominent

facts. Extensive experiments over three real datasets validated the effectiveness and ef-

ficiency of the proposed techniques. Through allowing update on data, our system has

become capable to stream live news. We will apply our algorithms on domains other than

sports and thus bring out regarding prominent situational facts instantly.
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Algorithm 12: STopDown

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← STopDownRoot();

2 foreach M ⊂M do

3 St ← St∪ STopDownNode(M);

4 R← R ∪ {t};

5 return St;

Procedure: STopDownRoot ()

1 St ← ∅;

2 foreach C ∈ Ct do

3 C.pruned ← false;

4 C.inAnces ← false;

5 foreach M ⊂M do

6 pruned [C][M ]← false;

7 Q← ∅; Q.enqueue(⊤);

8 while not Q.empty() do

9 C ← Q.dequeue();

10 foreach t′ ∈ µC,M do

11 if t ≺M t′ then Dominated(t′, C);

12 else if t′ ≺M t then Dominates(t′,C,M);

13 foreach M ⊂M do

14 if t ≺M t′ (Proposition 4) then

15 foreach C ′ ∈ Ct,t
′

do

16 pruned [C ′][M ]← true;

17 if not C.pruned then

18 St ← St ∪ {(C,M)};

19 if not C.inAnces then µC,M.insert(t) ;

20 EnqueueChildren(C);

21 return St;

Procedure: STopDownNode (M)

1 St ← ∅;

2 foreach C ∈ Ct do

3 C.pruned ← pruned [C][M ];

4 C.inAnces ← false;

5 Q← ∅; Q.enqueue(⊤);

6 while not Q.empty() do

7 C ← Q.dequeue(); if not C.pruned then

8 St ← St ∪ {(C,M)};

9 foreach t′ ∈ µC,M do

10 if t′ ≺M t then Dominates(t′, C,M);

11 if not C.inAnces then µC,M .insert(t);

12 ;

13 EnqueueChildren(C);

14 return St;
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Algorithm 13: PBottomUp

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← ∅; if t ≻M t.prev then BottomUp(R, t) ;

2 else if t ≺M t.prev then

3 foreach M ⊆M do

4 foreach C ∈ Ct do C.pruned ← false;

5 Q← ∅; Q.enqueue(⊥(Ct));

6 while not Q.empty() do

7 C ← Q.dequeue();

8 if not µC,M .contains(t.prev) then

9 C ′ ∈ At
C C ′.pruned ← true;

continue;

10 µC,M .delete(t.prev);

11 t′ ∈ Et.prevC,M (R− {t})

µC,M .insert(t′);

dominated ← false;

12 t′ ∈ µC,M if t ≺M t′ then

13 dominated ← true;

14 C ′ ∈ At
C C ′.pruned ← true;

break;

15 else if t′ ≺M t then

16 µC,M .delete(t′)

17 if not dominated then

18 St ← St ∪ {(C,M)};

19 µC,M .insert(t);

20 C ′ ∈ Pt
C if (not Q.contains(C ′))

and (not C ′.pruned) then

Q.enqueue(C ′);

21 R← R ∪ {t};

22 return St;

23 else

24 foreach M ⊆M do

25 foreach C ∈ Ct do C.pruned ← false;

26 Q← ∅; Q.enqueue(⊥(Ct));

27 while not Q.empty() do

28 C ← Q.dequeue();

29 if not µC,M .contains(t.prev) then

30 foreach C ′ ∈ At
C do

31 C ′.pruned ← true;

32 continue;

33 µC,M .delete(t.prev);

µC,M .insert(t);

34 foreach C ′ ∈ Pt
C do

35 if (not Q.contains(C ′)) and

(not C ′.pruned) then

Q.enqueue(C ′);

36 R← R ∪ {t};

37 return St;
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Algorithm 14: PTopDown

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← ∅; if t ≻M t.prev then TopDown(R, t) ;

2 else if t ≺M t.prev then

3 M ⊆M Q← ∅; C ∈ Ct C.pruned ← false;

C.inAnces ← false C ∈MSCt.prevM

µC,M .delete(t.prev);

4 foreach t′ ∈ Et.prevC,M (R− {t}) do

µC,M .insert(t′) ;

5 Q.enqueue(C) while not Q.empty() do

6 C ← Q.dequeue();

7 if not C.inAnces then

8 t′ ∈ µC,M if t ≺M t′ then

9 Dominated(t′, C);

10 else if t′ ≺M t then

11 Dominates(t′, C,M);

12 else

13 t′ ∈ Et.prevC,M (R− {t}) if t′ ≺M t then

14 stored ← false;

15 C ′ ∈ AC ∩ SCt.prevM if

t′ ∈ Et.prevC′,M (R− {t}) then

stored ← true; break ;

16 if not stored then µC,M .insert(t′) ;

17 if not C.pruned then

18 St ← St ∪ {(C,M)};

19 if not C.inAnces then

20 MSCtM ←

MSCtM ∪ {C}; µC,M .insert(t);

21 EnqueueChindren(C);

22 R← R ∪ {t}; return St;

23 else

24 MSCtM ←MSC
t.prev
M ;

25 foreach C ∈MSCt.prevM do

26 µC,M .delete(t.prev);

27 µC,M .insert(t)

28 return St;
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Algorithm 15: PSTopDown

Input: R(M,D): existing tuples; t: the new tuple

Output: St: the contextual skylines for t

1 St ← PSTopDownRoot();

2 foreach M ⊂M do

3 St ← St∪ PSTopDownNode(M);

4 R← R ∪ {t};

5 return St;

Procedure: PSTopDownRoot ()

1 if t ≻M t.prev then

2 STopDownRoot();

3 else if t ≺M t.prev then

4 foreach C ∈MSCt.prev
M

do

5 µC,M.delete(t.prev);

6 foreach t′ ∈ Et.prevC,M (R− {t}) do

7 µC,M.insert(t′);

8 STopDownRoot();

Procedure: PSTopDownNode (M)

1 St ← ∅;

2 if t ≻M t.prev then

3 STopDownNode(M);

4 else if t ≺M t.prev then

5 foreach C ∈ Ct do

6 C.pruned ← pruned [C][M ];

7 C.inAnces ← false;

8 Q← ∅;

9 foreach C ∈MSCt.prevM do

10 µC,M .delete(t.prev);

11 foreach t′ ∈ Et.prevC,M (R− {t}) do

12 µC,M .insert(t′);

13 Q.enqueue(C);

14 while not Q.empty() do

15 C ← Q.dequeue();

16 if not C.pruned then

17 St ← St ∪ {(C,M)};

18 foreach t′ ∈ µC,M do

19 if t′ ≺M t then Dominates(t′, C,M);

20 if not C.inAnces then

21 µC,M .insert(t);

22 EnqueueChildren(C);

23 return St;

24 else

25 MSCtM ←MSC
t.prev
M ;

26 foreach C ∈MSCt.prevM do

27 µC,M .delete(t.prev); µC,M .insert(t);

28 return St;
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d dimension space D

2 player, season

3 player, season, team

4 player, season, team, opp team

5 player, season, month, team, opp team

6 position, college, state, season, team, opp team

7 position, college, state, season, month, team, opp team

Table 3.6: Dimension Spaces for Different Values of d

m measure spaceM

4 points, rebounds, assists, blocks

5 points, rebounds, assists, blocks, steals

6 points, rebounds, assists, blocks, steals, fouls

7 points, rebounds, assists, blocks, steals, fouls, turnovers

Table 3.7: Measure Spaces for Different Values of m
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CHAPTER 4

Conclusion

In this dissertation, we studied efficient evaluation of contextual and reverse Pareto-

optimality queries with regard to two types of queries, namely preference query and sky-

line query. In this regard, we formalized the real-world problem of finding “outstanding”

objects as finding Pareto-optimal objects. To resolve the challenges in evaluating such

queries, we developed efficient algorithms. Going forward, we will apply and adjust our

algorithms in additional domains where there are important applications of contextual and

reverse Pareto-optimality queries. Such a study will assist researchers and practitioners in

supporting Pareto-optimality queries in broader contexts.

117



REFERENCES

[1] https://en.wikipedia.org/wiki/pareto efficiency. Accessed: Nov. 2016.

[2] http://www.newsday.com/sports/columnists/neil-best/hirdt-enjoying-long-run-as-

stats-guru-1.3174737. Accessed: Jul. 2013.
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[39] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Branch-and-bound algorithm

for reverse top-k queries. In SIGMOD, 2013.

[40] B. Walenz et al. Finding, monitoring, and checking claims computationally based on

structured data. In Computation+Journalism Symposium, 2014.

[41] R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu. Efficient skyline

querying with variable user preferences on nominal attributes. Proceedings of the

VLDB Endowment, 1(1), 2008.

[42] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang. Mining favorable facets. In

SIGKDD, 2007.

[43] R.-W. Wong, J. Pei, A.-C. Fu, and K. Wang. Online skyline analysis with dynamic

preferences on nominal attributes. IEEE Transactions on Knowledge and Data Engi-

neering, 21(1), 2009.

121



[44] P. Wu, D. Agrawal, O. Egecioglu, and A. El Abbadi. Deltasky: Optimal maintenance

of skyline deletions without exclusive dominance region generation. In 2007 IEEE

23rd International Conference on Data Engineering, 2007.

[45] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multi-dimensional space.

Proceedings of the VLDB Endowment, 2(1):109–120, 2009.

[46] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. On “one of the few” objects.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1487–1495, 2012.

[47] Y. Wu, B. Harb, J. Yang, and C. Yu. Efficient evaluation of object-centric exploration

queries for visualization. PVLDB, 8(12):1752–1763, 2015.

[48] T. Xia and D. Zhang. Refreshing the sky: the compressed skycube with efficient sup-

port for frequent updates. In Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, 2006.

[49] A. Yu, P. K. Agarwal, and J. Yang. Processing a large number of continuous prefer-

ence top-k queries. In Proceedings of the 2012 ACM SIGMOD International Confer-

ence on Management of Data, 2012.

[50] G. Zhang, X. Jiang, P. Luo, M. Wang, and C. Li. Discovering general prominent

streaks in sequence data. TKDD, 8(2):9:1–9:37, 2013.

[51] M. Zhang and R. Alhajj. Skyline queries with constraints: Integrating skyline and

traditional query operators. DKE, 69(1):153 – 168, 2010.

[52] S. Zhang, N. Mamoulis, D. W. Cheung, and B. Kao. Efficient skyline evaluation over

partially ordered domains. Proceedings of the VLDB Endowment, 3(1-2), 2010.

122


