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ABSTRACT 

ANALYSIS OF COMPOSITE BEAMS WITH AIRFOIL CROSS-SECTIONS WITH I-

SECTION STIFFENER UNDER TENSION AND BI-DIRECTIONAL MOMENTS 

 

Peter LeBoulluec, PhD 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Wen S. Chan 

Co-Advisor: Ashfaq Adnan 

 

Annual wind power generation capacity in the US has increased from 3 gigawatts 

in 2000 to 61 gigawatts in 2013 and is on track to fulfill 20% of projected U.S. electricity 

needs (305 gigawatts) by 2030.  To enable the increase in electricity generation of wind 

turbines, longer blades are being designed which require improved engineered blades 

to handle higher loads. Thus, the wind turbine industry is turning to the use of carbon-

epoxy composite materials to take advantage of their low weight yet high strength ratio 

and improved fatigue resistance. Current analyses to design turbine blades utilize either 

Finite Element Analysis programs, which are time consuming and costly for conducting 

parametric studies in the preliminary design stage, or use analytical solutions which are 

inaccurate or too complex.  

In this research, an analytical model based on Narrow Beam Theory, a 

modification of Classical Lamination Theory, will be made and coded into MATLAB to 

quickly conduct structural analyses on portions of composite turbine blades with airfoil 
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cross-sections. Various laminate layups can be studied with the current model as well 

as various airfoil cross-sections. This analysis will predict the structural stiffnesses and 

stresses and strains in individual composite plies of airfoil blades with and without I-

beam stiffeners under axial and bending loads. Results will be validated using ANSYS 

FEM and with experimental specimens. The experimental work consists of fabricating 

laminates to obtain basic material properties and fabricating uniform airfoil wings to 

conduct a transversely loaded bending test to find flapwise bending stiffness.  

I-beams will also be analyzed separately from airfoil cross-sections to understand 

their stiffness and stress characteristics and to investigate Narrow Beam Theory. Thus, 

by enabling a quick and simple, yet accurate static analysis on composite turbine 

blades, improved initial designs can be determined in an early design phase to allow 

more efficient, reliable, and economical turbine blades to be made. 
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CHAPTER 1  

INTRODUCTION 

Wind turbines are one of the most promising producers of electricity to reduce 

the world’s dependence on fossil fuels.  In 2013, the United States produced 4.5% (61 

GW) of its electricity consumption by wind energy, and in comparison, only 1% of 

electricity from solar energy in 2015.  The US Department of Energy [1] has planned to 

enable production of 20% of U.S. electricity from wind energy by the year 2030.  

Globally, wind energy is expected to produce 12% of the world’s electricity needs by 

2020 and 23% by 2040 [2]. 

To facilitate the increased energy generation of wind turbines, turbine blades are 

made longer to capture more of the wind energy.  Since the 1970’s, most turbine blades 

have been composed of fiberglass composite material using a thermoset epoxy [3].  

Composite materials such as fiberglass and carbon epoxy have high specific strength 

and stiffness, corrosion resistance, low thermal expansion, design flexibility, and 

reduced part count which make them good candidates for turbine blades.  The 

maximum length of turbine blades used today are approximately 65 meters and there 

are prototype designs using 100 meter blades by, for example, Sandia National 

Laboratories. These long blades are sometimes made with carbon epoxy caps which 

are flanges of the stiffener [4]. 

A turbine blade consists of a root end that bolts to a rotor hub, a transition section 

that transitions from the circular root end to the maximum chord airfoil shape, and an 

airfoil section that transforms the wind to mechanical energy.  Down the length of the 
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airfoil section, from the largest chord length to the blade tip, multiple airfoil shapes are 

often used.  This is shown in Figure 1.1 which is a prototype design of a 100 meter 

blade by Sandia National Laboratories.  Each airfoil cross section shown has a unique 

shape [5].  Inside the blade, spars are used which are attached to the upper to lower 

skin surfaces by the use of flanges.  Spars can be in the form of I-beams, box channels, 

D-spars, or other.  The skins are normally a composite sandwich construction.  

Typically, the upper and lower surfaces are made separately then adhesively joined 

together with the spar. Components of typical wind turbine beam cross sections are 

shown in Figures 1.2 and 1.3.  

 

Figure 1.1 Complete blade with visible cross sections 

 (from Griffith, Sandia Labs, 2011 [5]) 
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Figure 1.2 Components of wind turbine blade, cross sectional view 

 
 

 
Figure 1.3 Components of wind turbine blade, cross sectional view, alternate design 

(from Griffith, Sandia Labs, 2011 [5]) 

 

DESIGNING THIN-WALLED BEAMS 

A wind turbine blade can be modeled as a closed section cantilever beam with a 

thin wall assumption.  The thin wall assumption is valid when the maximum cross 

section dimension to skin thickness (or depth) ratio is greater than 10.  The actual 

minimum chord to thickness ratio of Sandia’s 100 meter blade (shown in Figure 1.1) is 

61 in the skin panels and 72 in the spar flange area [5]. 
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THIN WALL BEAM THEORY 

Most thin walled beam theory is based on work done by Vlasov around World 

War II for aircraft wings.  Vlasov created the first thin walled beam theory for isotropic 

material, also called “warping torsion” or “non-uniform torsion”, for open and closed 

beam sections using isotropic material.  For comparison, the classical theory is St. 

Venant’s “circulatory torsion” or “uniform torsion” theory.  Given a torsional load, St. 

Venant’s theory assumes the cross-section remains rigid during twisting, out of plane 

warping is not constrained, cross sections remain planar, and the rate of twist is 

constant in the longitudinal direction. This allows for only tangential shear stresses   

linearly varying across the thickness in response to a torsional load where the torsional 

stiffness is   (polar moment of inertia times shear modulus). St. Venant’s theory is useful 

for uniform beams which are long enough such that any restraint effects which inhibit 

warping due to torsion will decay and can be neglected. 

However, warping is often constrained due to boundary conditions, a localized 

torsional moment, distributed moments, or when the beam’s cross-section changes and 

should be taken into account in certain cases.  Under each of these warp constraint 

conditions, the cross sections do not remain planar (non-uniform warping), thus axial 

loads   inducing bi-moments are present, as seen in Figure1.4 under primary torsion. 

Note that St. Venant’s shear stress effects, which are equal to the torsional loading, are 

still present. Thus, warping constraints produce a warping stiffness which causes an 

increase in the structural torsional stiffness especially for open thin walled cross-

sections but can sometimes be ignored for closed thin walled cross-sections [6]. 

However, composite materials are very flexible in shear such that the cross-section 
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should not be considered infinitely rigid. Also, the constrained warping effects decay at 

a slower rate for composites than for isotropic material so restrained warping should be 

considered for composites [7,8] for accurate analyses.   

 

Figure 1.4 Constrained cross-section end of beam illustrating forms of warping 

 (from Sapountzakis, 2015 [9]) 

Vlasov formulated analytical solutions for primary warping in the late 1930’s [10].  

Secondary warping becomes significant when either the wall thickness of beams 

increases, shear deformation is of importance, using anisotropic material [11], or for 

special cases such as circular cross-sections. Otherwise, primary warping is dominant 

over secondary warping for thin walled beams. Solutions for secondary warping or 

higher-order shear deformation were later added by Gjelsvik [12] concerning metallic 

thin walled beams.  

In the 1970’s, researchers started studying composite thin walled beams. In 

1979, Mansfield and Sobey [13] developed a cylindrical tube model, one or two cells, for 

helicopter rotor blades and introduced the concepts of elastic tailoring. Using composite 
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laminate theory (Love-Kirchoff assumption), Bauld and Tzeng [14] extended Vlasov’s 

theory to open section beams with midplane symmetry in 1984.  

Many researchers analyzed rectangular shaped cross-sectional beams as an 

approximation of an airplane wing or rotor blade.  In 1987, Bauchau, Coffenberry, and 

Rehfield [15] made a comprehensive analysis of composite thin walled box beams with 

closed sections while including the non-classical effects of transverse shear and 

restrained warping.  Bank and Melehn [16] expanded on Timoshenko’s beam theory to 

account for shear deformations by use of a shear correction factor on multi-cell 

composite box beams.  

In 1992, Chandra and Chopra [17] gave analytical solutions verified by bending, 

torsional, extensional, and vibrational experiments on antisymmetric two-celled 

composite box and elliptical blades. This solution included non-uniform warping and 

transverse shear effects under a plane strain assumption. Along with this study, Smith 

and Chopra [18] gave experimental evidence that the effects of shear and warping 

during bending of composite thin walled box beams are significant, as shown in Figure 

1.5. Note that the shear plot is obtained from an unbalanced and unsymmetric laminate. 

It should be noted that Smith and Chopra used a laminate of [15]6T to enhance the 

bending and twisting effect as seen in the left figure. However, common layups, for 

example symmetric laminates such as [±45/0]S, used for blades exhibit an insignificant 

twisting effect due to bending. 
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Figure 1.5 Experimental evidence of shear and warping effects on  

composite box beams (Smith and Chopra [18]) 

Non-uniform first order warping and transverse shear effects were also included 

in a simplified theory by Wu and Sun in 1992 [19]. They used more general 

assumptions than those of Vlasov. Kim and White in 1997 [20] produced one of the first 

theories on thin and thick walled composite closed section beams and accounted for 

three dimensional elastic effects. They included transverse shear and primary and 

secondary torsional warping effects. They found that secondary warping can be 

neglected with thin walled beams but is significant with thick walled beams.  

In 2006, Librescu and Song [21,22] at Virginia Tech developed a comprehensive 

geometrically nonlinear theory based on Galerkin’s variation method for anisotropic thin 

or thick walled beams. They took into consideration many non-classical effects including 

transverse shear, and primary and secondary warping. Pre-twisted, tapered beams, end 

and lateral loads, and body forces were also dealt with. Structural and dynamic 

properties were derived. Only box and elliptical beams were studied and the method is 

complex.  
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Much more research has been made over the years on variations (shown below) 

of thin walled composite beams that won’t be covered here. Jung and Chopra [23] give 

a good review of thin walled beam research before the year 2000. 

• approach (displacement, stress, mixed; Classical Lamination Theory, smear),  

• beam DOF (degree of freedom), (Euler-Bernoulli, St. Venant, Vlasov, higher-

order shear deformation (HSDT)),  

• constitutive relations (plane stress, plane strain),  

• shell wall DOF (membrane, thin plate, HSDT),  

• tailoring (passive, active), and  

• dynamic analysis (bucking, vibration, time dependent excitation). 

 

ANALYTICAL METHODS FOR WIND TURBINE BLADES 

Analytical and finite element analysis of wind turbine blades based on thin walled 

beam theory have occurred relatively recently with the trend towards larger turbine 

blades. Prior to this, blades were improved mainly through trial and error. Most 

analytical methods used today for wind turbine blades can be divided up into ones using 

Classical Lamination Theory (CLT), smear properties, variational methods, or 

combinations of these as a basis. To analyze airfoils or other complex cross-sections, 

most break up the section into discrete finite elements and integrate them to find the 

overall structural properties. 

Smear property methods have been used by numerous researchers including 

Park in 2009 [24], Wang in 2014 [25], and by the Dutch Knowledge Centre Wind 

Turbine Materials and Construction. These methods find axial, bending, and torsional 
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cross-sectional stiffnesses about a cross-section but do not calculate composite ply 

strains and stresses. Park’s method, KSec2D, finds the stiffness of arbitrary cross-

sections using composite laminate plate theory with a modulus weighted approach on 

isotropic equations. Wang’s model, called Composite Blade Cross-Section Analysis or 

CBCSA, uses a weighting method based on CLT and uses a shear flow theory to find 

torsional stiffness. For a composite airfoil with shear webs, Wang’s stiffness results are 

similar to Precomp’s results (will be reviewed later) except Wang’s calculation for 

torsional stiffness is 30 to 45% higher than Precomp’s. However, Wang only compares 

an isotropic symmetric airfoil with finite element analysis. The Dutch Knowledge Center 

developed the FAROB tool which considers constant shear flow and can analyze 

hygrothermal loads. FAROB does not find the shear center and is not suited for arbitrary 

shaped cross-sections. FAROB is the structural analysis tool under FOCUS6, an FEA 

tool, which conducts dynamic analyses including a fatigue, buckling, and modal analysis 

[26]. 

Most analyses are a modification of CLT and perform a cross-sectional analysis 

yielding moments of inertias, axial, bending and torsional stiffness, mass, and shear 

center. Two such analysis tools capable of handling arbitrary sections with webs are 

Pre-Processor for Computing Composite Blade Properties (Precomp) created by Bir in 

2001 [27] at the National Renewable Energy Laboratory (Bir, 2001), and Cross-

sectional Stability of Anisotropic Blades (CROSTAB) developed at the Energy Research 

Centre of the Netherlands. Precomp adapts CLT with a constant shear flow approach, 

keeps web sections normal to the chord, neglects hoop stresses in flanges, and allows 

free warping. Also, transverse shearing is negligible (consequence of CLT) and the 
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section is free to warp (St. Venant’s theory). CROSTAB also adapts CLT with shear 

flow. Bending and torsional stiffness are neglected in sectional property calculations and 

CROSTAB does not determine the shear center location. Neither Precomp or 

CROSTAB find stresses and strains in the composite laminate plies [26]. 

An approach for 3D arbitrary composite structures was developed by Hodges, 

Cesnik, Yu, and Volovoi [28] at Georgia Tech which is used by the helicopter industry 

today. Their theory breaks the 3D problem into a linear 2D analysis conducted by a 

variational asymptotic approach (VAM), and a geometrically exact 1D beam analysis. 

The 1D beam analysis allows for pre-twist, curved beams, and nonlinear effects without 

the use of tensor analysis, and finds the displacements (thus strains and stresses) over 

the whole continuum, thus is geometrically exact. Approximations are made in a 2D 

VAM analysis, developed by Berdichevsky in 1976 [29], which gives the best accuracy 

due to the VAM. The asymptotic correct functions are then used in classical engineering 

models such as Euler-Bernoulli, Timoshenko, or the Vlasov model. The actual tool is 

called VABS (Variational Asymptotic Approach Beam Sectional Analysis). Data is 

inputted into the VABS via PreVABS which takes information directly from a CAD 

package. The time and effort to run VABS is about the same as for Precomp. 

Chen, Yu, and Capellaro [26] evaluated the results of each of these tools except 

for Wang’s tool. Overall, VABS outperforms the other tools in predicting 2D structural 

properties for isotropic circular cross sections, anisotropic elliptical pipe, and an 

isotropic symmetric airfoil. When compared to analytical solutions or ANSYS solid 

element analysis for these cross-sectional configurations, VABS results are very similar. 

An actual airfoil with 5 varying skin compositions and 2 webs normal to the chord with 
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full elastic coupling was also checked. Precomp and CROSTAB had differences in most 

coupling terms by over 100% from VABS and subsequently, their stiffnesses were an 

average of 40% different than VABS. Also, Precomp’s shear center was far off. VABS is 

a very accurate tool but the theory behind it is complex. 

Furthermore, various finite element analyses have been conducted to obtain 

accurate results for structural properties and to conduct dynamic analyses. However, 

these take more time and are more expensive than analytical methods so, primarily, 

only analytical methods will be discussed here. 

 

MOTIVATION FOR RESEARCH 

Due to complex geometries of and the use of composite materials in blades in 

addition to stiffeners and tapering and pre-twist of the blade, existing finite element 

analyses take much time and are costly.  Some analyses may use both finite element 

analyses and analytical solutions and can be quite accurate such as VABS, but are 

complex to understand.  In an initial design phase to analyze airfoil beams as used on 

wind turbines, an engineer needs an understandable method to give quick and accurate 

results.   

This research aims to develop a simplified approach based on modified Classical 

Lamination Theory for beam structures which is robust enough to analyze many 

parameters including airfoil shapes, stacking sequence, layers and stiffeners, and 

accurately find the stiffness and ply stresses of the beam. Loads considered will be axial 

and bi-directional bending moments about the centroid. Although the torsion is one of 

the loading conditions considered in design, this research will investigate will investigate 
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only bi-directional bending and tension. The centroid, stiffnesses including axial and 

bidirectional bending, and stresses in composite plies will be predicted and results will 

be verified with finite element analysis (FEA). Analytical stiffness and strain results 

subject to flapwise bending will be compared to experimental test specimen results. 

This research is a continuation of works by Chan and his former students: Syed, Rios, 

Parambil, Sanghavi, and Kora [30,31,32,33,34]. 

For this research, simplified blades are modeled using the 4-series NACA airfoil 

types as seen in Figure 1.6.  The root and transition section will not be analyzed.  The 

airfoil will be made from a monolithic laminate skin (no core used) using only one type of 

composite material. I-beamed stiffened airfoils as seen in Figure 1.7 will also be studied. 

Symmetric and non-symmetric airfoil cross-sectional geometries will be analyzed as 

well as the use of symmetric, unsymmetric and unbalanced airfoil skin laminates. 



 

13 

 

Figure 1.6 Typical FEA model with axial load applied at centroid,  

airfoil is NACA 2430 series 

 

Figure 1.7 Cross-section of I-beam stiffened NACA 9312 series  

airfoil blade with stress contours 
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CHAPTER 2  

NARROW BEAM PREDICTION OF THE BEHAVIOR OF AN I-BEAM UNDER 

AXIAL AND BI-DIRECTIONAL LOADS 

 Study of an I-beam is conducted to gain an understanding of its behavior, 

become familiar with and check predictions by Narrow Beam Theory on airfoils, gain 

experience to develop MATLAB code to run the analytical method, create APDL code to 

create models in ANSYS, and conduct post processing of FEM (Finite Element Method) 

results.  The analytical methods used in this research are based on Classical 

Lamination Theory thus a brief overview of Classical Lamination Theory is given.  This 

is followed by a discussion on developing equivalent mechanical and thermal properties 

for composite lamina, laminates, and structures such as the I-beam. Finally, the 

predictions of Narrow Beam Theory are compared to FEM on various I-beams and 

conclusions are given. 

 

CLASSICAL LAMINATION THEORY 

On a micro-scale level, a composite lamina is made up of fiber and resin which 

each have unique properties. To efficiently analyze a composite structure however, 

averaged properties of a lamina are utilized assuming perfect bonding between the 

fibers and resin. A lamina is defined by material properties in the principal material 

coordinate system as shown in Figure 2.1. Laminates can be classified as thin 

orthotropic materials. An orthogonal material has 3 mutually perpendicular planes which 

have unique properties from each other. For example, planes 1-2, 2-3 and 1-3 all have 
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unique properties and are symmetric relative to each plane. Orthotropic materials 

exhibit no extension-shear coupling and have 9 independent material constants 

whereas an anisotropic material has 21 independent material constants. The composite 

plate however has a plane of symmetry which is the 2-3 plane, making it transversely 

isotropic. Thus, material properties in the 2-3 plane are interchangeable (ie. 2 3E E ), 

leaving 5 independent constants. 

 

Figure 2.1 Lamina plate with principal material coordinate system 

The compliance stress-strain relationship for a transversely isotropic material is,  

 
11 12 121 1

22 232 2

223 3

22 2323 23

5513 13

5512 12

0 0 0

0 0 0

0 0 0

2( ) 0 0

0

S S S

S S

S

S S

sym S

S

 

 

 

 

 

 

    
    
    
    

     
    

    
        

    

. ( 2-1 ) 

Since a composite laminate is normally thin, it is easy to deform the laminate in 

the 3-direction so stresses in the 3-direction, which is out-of-plane of the plate, are 

negligible compared to stresses that are in-plane to the plate. Thus, a plane stress 

condition can be applied. This condition means that stresses in-plane to the plate are at 
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least an order of magnitude larger than stresses out-of-plane to the plate. Thus, 

according to Figure 2.2 on the right which shows the positive stresses on a small 

element of composite, stresses in the out-of-plane direction, 3 13,   and 23 , for a 

composite laminate are negligible and can be set to zero. Stresses in the in-plane 

direction, 1 2,   and 12 , should be considered. 

 

Figure.2.2 Composite lamina principal material directions and stresses  

on small representative element of lamina 

Making the plane stress assumption, the compliance matrix simplifies to, 
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 ( 2-2 ) 

Note that strain in the 3-direction, 3 , is left out of this simplified matrix where,  

 3 12 1 23 2S S     ( 2-3 ) 

3  can be used to find the changes in thickness of laminates due to in-plane loads and 

to find out-of-plane Poisson’s ratios, however, this research will not use 3 . 
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Given the plane stress condition, lamina material properties, including 

hygrothermal properties, that are considered for composite analysis include the: 

 elastic modulus in the longitudinal or 1-direction: 1E , 

 elastic modulus in the transverse or 2-direction: 2E , 

 shear modulus in the 1-2 plane, 12G , 

 Poisson’s ratio in the 1-2 plane, 12 , (note,  21 12 2 1 E E  ) 

 coefficients of thermal expansion in the 1-2 plane, 1 2,  , and 

 coefficients of hygroscopic expansion due to moisture in the 1-2 plane, 

1 2,  . 

By making the plane stress assumption, this precludes an analysis of delamination due 

to edge effects, imperfections such as waviness or voids, and stress concentration 

areas which all involve 3D stresses. However, for general static, dynamic, buckling, etc. 

structural analyses, the plane stress assumption does give accurate results of in-plane 

stresses. 

The 3x3 simplified compliance matrix, equation 2.2, can be inverted yielding a 

3x3 stiffness matrix shown below which is referred to as the reduced stiffness matrix 

since it incorporates the plane stress assumptions and essentially reduces the analysis 

to a 2D state. 
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 ( 2-4 ) 

This reduced stiffness matrix characterizes a lamina. A laminate however is made up of 

lamina stacked in varying orientations as shown in Figure 2.3. 
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Figure 2.3 Laminate with exposed lamina 

To characterize the whole laminate, a Cartesian global coordinate system, x-y-z 

system, is designated where the x-axis is in the direction of the primary load and the x-y 

plane is in the geometric middle of the laminate. The properties of each lamina must be 

added up to obtain the properties of the laminate. The first step to do this is to rotate 

each lamina’s 2D properties in the 1-2 plane to the x-y global plane as seen in Figure 

2.4. Note that ' '  is negative when the 1-2 coordinates rotate in the counter-clockwise 

direction. 

 

Figure 2.4 Rotation of lamina 1-2 plane to the x-y global plane 

Mathematically, the rotation is accomplished by transformation of the reduced 

stiffness matrix as follows, 
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, ( 2-4 ) 

where the transformation matrices are, 

 

 

2 2

2 2

2 2

2

2

m n mn

T n m mn

mn mn m n

 

 
 
     
 
  
 

 and 

 

2 2

2 2

2 22 2

m n mn

T n m mn

mn mn m n

 

 
 
     
 
  
 

, 

( 2-5 ) 

where cosm   and sinn  . 
x y

Q


 
 

is used to denote the reduced stiffness matrix of a 

lamina transformed to the global coordinate system. The stress-strain relation for each 

lamina can then be defined in the global coordinate system by: 
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. ( 2-6 ) 

To characterize the laminate, a few assumptions must be made concerning the 

deformation of the laminate. These assumptions that Classical Lamination Theory is 

based on are known as the Kirchoff Hypothesis which was developed in the mid 1800’s. 

The theory states that, assuming a laminate plate is subject to a variety of loadings 

including point or distributed normal loads and moments, the normal denoted by AA’ in 

Figure 2.5 will remain a straight line under deformation, keep its original length, and be 

normal to each lamina’s interface. 
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Figure 2.5 Cross sections showing normal before and after deformation 

In effect, the plate curvature is approximated as a constant given small rotation 

angles allowing the normal AA’ to translate and rotate under deformation and stay 

straight.  

 

Figure 2.6 Constant curvature 

Looking at the side view of a beam or plate as in Figure 2.6, the displacement at 

any point in the laminate is based on the midplane displacements, denoted by the ‘ o ’ 

subscript, and the curvature as follows, 
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 ,   = ,   ( , )o x o y o ou u z z w w w x y        . ( 2-7 ) 

z  is the distance from a point to the midplane along the z-axis. The strain at any point 

in the laminate can then be defined by the behavior of the midplane of the laminate as 

follows, 

 

2

2

2

2

2

2

oo
x x x

oo
y y y

oo o
xy xy xy

uu w
z z

x x x

vv w
z z

y y y

u vu v w
z z

y x y x x y

  

  

  

 
    
  

 
    
  

   
      
     

. ( 2-8 ) 

This can be put in matrix form as follows, 
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. ( 2-9 ) 

At any point in the laminate, displacement and strain are linearly dependent on z  and 

can be expressed by the response of the midplane. Note that in Kirchoff’s Hypothesis, 

the through-thickness shear strain, z , is assumed to be equal to zero to avoid 

inconsistencies in the equations, however, under the plane stress condition, z is not 

zero as evidenced by equation 2.3.  

Using Kirchoff’s hypothesis, stress for each lamina in equation 2.6 can be written 

in terms of the midplane strains, curvature and z as follows, 

       o
x y x y x yx yk k
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  
 

 ( 2-10 ) 
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where k  denotes the layer. To relate plate normal forces and moments to stress and 

strain, consider the following plate under loading. 

 

Figure 2.7 In-plane plate forces and moments 

To identify each lamina in the laminate, k  is used to denote the stacking 

sequence from the minus z-axis ( 1k  ) to the positive z-axis ( k n ). The distance z is 

also denoted by the distance from each lamina interface from the midplane. This 

designation is seen in Figure 2.8 below. 

 

Figure 2.8 each lamina within the laminate 
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The normal forces and moments are related to the lamina stress as follows, 
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The normal force and moment are with respect to the width of the laminate thus their 

units are /lb in  and lb  respectively. Subbing in equation 2-10 for the stresses, 
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For simplification, 3x3 matrices , ,A B C  are used in place of the material properties as 

follows, 
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The normal in-plane forces and moments can then be related to the midplane 

strains, 
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where the ABD  matrix is a 6x6 element stiffness matrix and represents the material 

properties of each lamina and the geometry of the laminate. The  A  matrix is the 

extensional stiffness matrix with units of /lb in ., the  B  matrix is the extensional 

bending coupling stiffness matrix with units of lb ., and the  D  matrix is the bending 

stiffness matrix with units of lb in . 

Thus, when in-plane forces are applied to a laminate plate, the midplane strains 

and curvatures can be found based on the ABD  matrix. The midplane strains and 

curvatures can then be used to find the strains at each ply surface using equation 2-9. 

Once the ply surface strains are found which are in the global direction, the strains can 

be found in the principal material coordinates with the  T  transformation matrix. 

Stresses then in the 1-2 or x-y direction can be found for each lamina surface using 

equation 2-6. 

 

EQUIVALENT MECHANICAL AND THERMAL PROPERTIES OF COMPOSITE 

MATERIALS 

Composite materials consist of multiple constituents with various properties. 

Analysis of composite structures using the property of each individual constituent can 
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be insurmountable. Structural behavior of this material, in general, is heterogeneous. To 

overcome this difficulty, the continuum hypothesis is utilized which models the structure 

of the material as a continuum by use of statistical averaging process. This continuum 

hypothesis involves certain measures associated with properties that govern the 

deformability of the media [35]. Common to this approach is selection of a unit cell 

representative of the level of the interest in composites, such as lamina, laminate or 

structure level. Homogenized material properties, or equivalent properties, are 

determined for this unit cell by using statistically averaged material properties according 

to the structural response and/or deformation of the unit cell under loading. 

A number of methods have been reported in the literature for predicting the 

equivalent moduli of a laminate. A common technique is to find a set of equivalent 

properties to represent an orthotropic angle ply or laminate as a homogeneous lamina, 

as seen in Figure 2.9.  

 

Figure 2.9 Orthotropic laminate represented  

by an equivalent homogeneous lamina 

This technique is commonly used in Finite Element Analysis (FEA) to represent a 

composite laminate as one layer to reduce the degrees of freedom in the model. 

However, in this homogenization approach, an equivalent layer representing 
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unsymmetric and/or unbalanced laminates or off-axis laminas will exhibit anisotropic 

behavior. Thus, extension-shear coupling terms, , , , ,,  ,  ,  and x xy y xy xy x xy y    , will exist but 

FEA inputs for anisotropic properties only include xE , yE , xy , and xyG .  By ignoring 

shear deformation caused by normal stress, FEA results will thus be inaccurate for 

unsymmetric and/or unbalanced laminates. 

Research using the homogenized approach includes the following. Pagano [36] 

evaluated moduli of anisotropic plates using micromechanics. Sun and Li [37] 

developed a model for determining the 3rd dimensional modulus. An equivalent property 

method was developed and applied by Sun and Liao [38] to the thick composite 

laminates with unbalanced nodal forces on a free edge to obtain more accurate 

stresses in the vicinity of the high stress gradient region.  

In deriving the equivalent properties of a laminate, Chan and Chou [39] took the 

laminate structural response into consideration to include a coupling effect of combined 

axial and bending loads for unbalanced & unsymmetric laminates. Chan and Chen [5] 

used this modified method to develop closed form solutions of effective moduli that 

account for bending and shear induced deformation. Equivalent thermal properties of 

laminates resulting from lumping layers were investigated by Chan et.al. [40]. 

This study will focus on developing equivalent coefficients of thermal expansion 

of homogenized laminates by taking into account induced curvature and shear 

deformation. Laminas will be first analyzed to compare the modified method to the 

conventional method. The modified method will be used to predict equivalent properties 

of symmetric, un-symmetric, and un-balanced laminates. The equivalent properties will 
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be compared to the convention method and equivalent ply stresses are compared to 

FEA results.  

For the structural case, the narrow beam assumption, developed by Chan and 

Rios [42], is utilized which uses an effective stiffness matrix of the structure. Analysis of 

a composite I-beam by the modified method has been conducted by Parambil [8]. 

Parambil’s derivation and results did not include zD  and xzD , and only considered 

average ply stresses across the width of symmetric laminates. Derivation of zD  and 

xzD  was performed by Rios [32]. Rios applied this to a z-section beam. However, only a 

symmetric case was studied and ply stresses were found at only 4 points on the cross-

section. 

In this research, the modified method will be used on an I-beam structure subject 

to axial and bending loads, xM  and yM , to predict the centroid, effective axial and 

bending stiffness, and ply stresses. Width to depth ratios of 1 to 2 and 1 to 4 will be 

studied to check on the validity of the narrow beam assumption on somewhat wide 

beams. CERIG and RBE3 constraints will be compared to check differences when 

applying loading on a rigid body and free end constraint. Also, I-beams consisting of 

symmetric, unsymmetric, and/or unbalanced laminates will be studied. 

 

ANALTYICAL MODELS OF EQUIVALENT PROPERTIES 

Lamina Equivalent Properties: Conventional Method 

Consider an angle ply lamina under tension. The equivalent properties of an 

arbitrary angle degree lamina can be obtained from the ratio of the corresponding 
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average stress and strain.  Since a lamina is thin, the plane stress condition is 

assumed. The strain/stress relationship of a lamina in x-y coordinates is given in eqn. 1.  

 

11 12 16

12 22 26

16 26 66

1

1 =

1

xy xs

x x x

yx ys

y y x

ysxs

x x xy

E E E
S S Sx x x

S S Sy y yE E E

S S Sxy xy xy

E E G

 

  
 

  

  

 
 

        
        
         
              

        
 
 

. 

( 2-15 ) 

In the conventional method, equivalent properties can be easily obtained by 

isolating a single load to find the corresponding property. In this exercise, we can obtain 

the smeared properties: longitudinal and transverse moduli, xE , yE , Poisson’s ratio, 

xy , shear modulus, xyG , and coefficient of thermal expansion, x y  , as shown below: 
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11 22 11 66

1 1 1
,   ,   ,   x y xy xy

S
E E G

S S S S
      ( 2-16 ) 

      1 2 .x y T        ( 2-17 ) 

The subscripts 1-2 and x-y refer the material and global coordinate systems, 

respectively. It should be noted that this approach yields a 0o lamina with shear 

deformation.  

 

Lamina Equivalent Properties: Modified Method 

In the modified method, the angle lamina is represented by a set of properties of 

a 0o lamina of the same material. To make an off-axis lamina equivalent to a 0o lamina 

ply, the induced shear strain due to tension is suppressed in the modified method as 
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illustrated in Figure 2.10. This causes the equivalent xE  calculated by the modified 

method to be greater than the conventional xE  property since it is a resistance to 

extension as well as shear deformation.   

 

Figure 2.10 Modified Method creating 0o lamina ply  

while suppressing shear strain 

From equation 2.15, the process of suppressing shear strain uses matrix 

substitution which is detailed in equations 2-18 to 2-22. To suppress the shear strain, 

the shear strain is zeroed out which allows the shear force to be written in terms of 

stress in the x and y direction.  

 

16 26 660  0xy x y xyS S S         

16 26

66 66
xy x y

S S

S S
  

 
   

 
 

( 2-18 ) 

Equation 2-18 can now be substituted into equation 2-15 and longitudinal and 

transverse strain can be expressed as follows. 
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 ( 2-19 ) 
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  
     
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 ( 2-20 ) 

These equations for strain can be written in matrix form as 

 
1 2

2 3

x x

y y

R R

R R

 

 

       
    

       
 ( 2-21 ) 

where 

 16 16 26 26
11 12 221 2 3

66 66 66

2 2

, ,    
S S S S

R S R S R S
S S S

      . ( 2-22 ) 

If only tension is applied, longitudinal strain and the longitudinal elastic modulus 

of the equivalent lamina can be expressed as: 

 1
1

1
  R Ex x x

R
     . ( 2-23 ) 

Poisson’s ratio can also be found with an applied tensile load as, 

 
2 2

1 1

y x
xy

x x

R R

R R

 


 
      . ( 2-24 ) 

If a transverse force is only applied, then the transverse modulus can be 

obtained as: 
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 3
3

1
  y y yR E

R
    . ( 2-25 ) 

The shear modulus, xyG , can be obtained by suppressing axial deformation in 

both the x- and y-directions while applying a shear stress. From equation 2-15, the 

longitudinal and transverse stress can be written in terms of the shear stress as follows. 

First, isolating the axial strains, 

 

11 12 16

12 22 26

0

0

x x

y y

S S S
xy

S S S

 


 

             
          

              
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( 2-26 ) 
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( 2-27 ) 

Substituting equation 2-26 back into equation 2-15 and solving for shear stress,  

  16 26 66
x

y

S S Sxy xy


 


  
  

  
 ( 2-28 ) 

Plugging equation 2-27 into equation 2-28 to put this in terms of shear stain, 

 
12 26 22 16 12 16 11 26

16 26 66
2 2

11 22 12 11 22 12xy

S S S S S S S Sxy
S S Sxy xy

G S S S S S S


 

      
          

      

 ( 2-29 ) 

The shear modulus is thus found.  

In summary, the resulting expressions are given below: 
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      
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( 2-30 ) 

It should be noted that the equivalent properties for a laminate does not represent the 

structural response of the equivalent 0o laminate. 

 

Laminate Equivalent Properties: Conventional Method 

Within a laminate, external loads are distributed to each ply relative to a ply’s 

stiffness and orientation. The structural response of the whole laminate can be found by 

integrating the stiffness of each ply relative to the global coordinates and distance about 

the mid-plane. Hence, the equivalent modulus of a 0o laminate can be considered a 

property relative to the mid-plane of a laminate. Considering the plane stress condition, 

the constitutive equation of a laminate is given as:  

 
T

a b N

Mb d





      
     
       

 ( 2-31 ) 

where    and    are the mid-plane strains and curvatures, respectively, in the x-, y-, 

and xy-directions.  N  and  M  are the 3x1 load matrices of the in-plane and the out-

of-plane loads.   a ,  b , and  d  are 3x3 matrices of compliance, coupling, and 

flexibility of the laminate.  
T

b  is the transpose of  b . Note that matrix  b  is not 



 

33 

symmetric in general. Hence,    
T

b b . The average stress of the laminate can be 

obtained by the following equation as:  

  
 N

t
   ( 2-32 ) 

where t  is the thickness of the laminate. Equating the stress and the corresponding 

strain component, the material properties are obtained: 

 
21

11 22 11 66

1 1 1
,   ,   ,   x y xy xy

a
E E G

a t a t a a t
     . ( 2-33 ) 

 

Laminate Equivalent Properties: Modified Method 

Using conventional method properties, the equivalent 0o laminate under tension 

will exhibit a shear deformation or curvature if the original laminate is either 

unsymmetrical and/or unbalanced. For unsymmetric laminates, there will be an 

extension-bending coupling stiffness due to a non-zero  B  matrix as shown in Figure 

2.11. 

 

Figure 2.11 Laminate experiencing bending induced by normal load 

For unbalanced laminates, in-plane extension-shear coupling stiffness exist due to non-

zero 16A  and 26A  terms and bending-twisting coupling stiffness exist due to non-zero 16D  

and 26D  terms exist. The equivalent 0o laminate should take into account this stiffness. 
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The modified method accomplishes this by suppressing the shear deformation and 

curvature.  

To suppress curvature first given a tensile load, a moment is required which can 

be substituted out of the constitutive equation, equation 2-15, as follows, 

 

10 0    T Tb N dM M d b N        

 1 TaN bM a bd b N PN       
( 2-34 ) 

 where          
1

.
T

P a b d b


   ( 2-35 ) 

The constitutive equation now becomes: 

 

11 12 16

12 22 26

16 26 66

 

o
x

o
y

o
xy

P P P Nx

P P P Ny

P P P Nxy







    
    
     
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       

 ( 2-36 ) 

Shear deformation is then suppressed. This matrix substitution is similar to the 

substitution for the lamina where equation 2-36 is now written in the following terms:  
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( 2-37 ) 

Substituting this back into equation 2-36, the strain terms can be solved for as follows: 
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o
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
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 ( 2-38 ) 
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. ( 2-39 ) 

If only tension is applied, longitudinal strain and the longitudinal elastic modulus 

of the equivalent lamina can be expressed as: 
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 . 
( 2-40 ) 

Poisson’s ratio can also be found with an applied tensile load as, 
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. ( 2-41 ) 

If a transverse force is only applied, then the transverse modulus can be obtained as: 
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( 2-42 ) 

 

To obtain the shear modulus 
xyG , laminate strains 0o o

x y    to ensure pure 

shear deformation when
xyN  is applied. The laminate constitutive equation is modified 

as shown which includes the presence of xN  and 
yN  for the suppression of o

x  and 
o
y .  
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 ( 2-43 ) 

xN  and 
yN  are then substituted back into the constitutive equation similar to the 

derivation for the lamina. The shear modulus is expressed as: 

   22 16 12 26 11 26 12 26
66 16 262 2
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P P P P P P P P
G P P P

t P P P P P P

     
               

 ( 2-44 ) 

 

Equivalent Coefficient of Thermal Expansion, CTE, for Laminate 

To find the equivalent coefficient of thermal expansion of the laminate, the same 

approach can be used in determining the equivalent modulus by replacing the 

mechanical loads with the thermally induced loads due to a temperature change.  

Under the conventional approach, the constitutive equation (eqn 6) is used as 

follows:  

 

Th

T Th

a b N

b d M
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
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         

. ( 2-45 ) 

Replacing the strain terms with:  

 ,   x yx yT T        , ( 2-46 ) 

the coefficients of thermal expansion using the conventional methods are expressed as: 

       ,

1Th Th
x y a N b M

T
  


. ( 2-47 ) 

Under the Modified Method,   P N   can be rewritten as: 
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where Th
xN  and 

Th
yN   are the thermally induced loads which are obtained from 

Classical Lamination Theory. 
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( 2-49 ) 

It is noted that Th
xN  and 

Th
yN are a function of T . Hence, 

x  and 
y  are not a function 

of T . 

 

Structural Equivalent Properties: Conventional Method vs. Modified Method 

Composite I-beam structures with uniform cross-sections through the length are 

used as examples to evaluate the equivalent structural properties by the conventional 

and modified methods. The I-beam structural properties considered in this research 

include centroid, axial, and bi-directional bending stiffness. In the conventional method, 

the equivalent moduli described in the previous section are used for each laminate. The 

structural properties are then derived often using isotropic material techniques.  

For example, the axial stiffness of the structure, 
conv

EA ,  is found by summing 

the axial stiffness’s of each laminate. The centroid is found by taking a summation of 
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moments about the y-axis and dividing by the sum of the axial loads. The structural 

bending stiffness’s, ,  and 
conv conv conv
x z xzD D D , can be found as follows. 

                
conv conv conv conv

x z xzx x y x z x yzEA E A D E I D E I D E I     ( 2-50 ) 

where A  is the area, xE  is the elastic modulus in the x-direction, and ,  and y z yzI I I  are 

the moments of inertia of the I-beam cross-section. 

Stresses can be recovered using the conventional method by finding the strain 

and curvatures at the centroid of the structure using the stiffness’s provided above as 

shown below. 
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D Dk M


    

       
    

    
       

 ( 2-51 ) 

The strains and curvatures of each laminate are obtained from the  abd  matrix of the 

laminate and ply stresses are found using the material property and orientation of each 

ply. 

In the modified method, the constitutive equations of the top and bottom flanges 

and the web are first obtained based on a composite narrow beam behavior. The 

sectional properties, centroid, axial stiffness, and bending stiffness of composite I-beam 

can be derived. For clarification of parameters used in the following equations, a typical 

I-beam cross section is illustrated in Figure 2.12 below. ‘C’ is the assumed centroid of 

the I-beam and the x-direction is in the plane of the paper. 
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Figure 2.12 Composite I-beam dimensions 

An illustration of the structural response for a narrow beam under a bending load, 

xM , is shown in Figure 2.13. Both undeformed and deformed shapes are shown. The 

moment is denoted as xM  since composite notation is used where the moment induces 

stresses in the x-direction. The top of the beam is under longitudinal compression 

which, due to the Poisson’s effect, causes expansion in the lateral or y-direction. 

Conversely, the bottom of the beam experiences longitudinal tension leading to lateral 

compression. For a narrow beam as shown, there is considerable flexibility in the y-

direction thus allowing for the assumption that 0   0y yu N    and 0   0y yk M  

.  Similarly, a narrow beam is easy to twist and shear, thus allowing for 0xy xyN M  . 

However, for a narrow I-beam laminate, the flanges are constrained by the web. Hence, 

xyk  is assumed to be zero and 
xyM  is non-zero. 
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Figure 2.13 Narrow beam under bending 

For the I-beam, the flanges and web can be treated as independent laminates. 

Applying the Narrow Beam Theory assumptions discussed for the I-beam, a simplified 

one dimensional relationship between stress and strain can be obtained for each of 

these members. This was done in reference [40] and is briefly reviewed below. 

Applying Narrow Beam Theory, the 6x6 stiffness matrix for each member noted 

by ' 'i , equation 2-14, can be simplified into the following constitutive equation as: 
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. ( 2-52 ) 

Assuming twisting is negligible, then for each member, 

 16 16 660o

xy x x xyk b N d M d M     ( 2-53 ) 

and solving for the twisting moment, 
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Equation 2-52 can then be simplified by substituting in the twisting moment, equation 2-

54, 
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 ( 2-55 ) 

which simplifies to: 
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Thus, we are left with a one dimensional equation for each member of the I-beam. The 

stiffness matrix can be found by taking the inverse of the 1D abd* constitutive equation: 
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Based on this ABD* matrix, expressions for the centroid, equivalent axial 

stiffness, and equivalent bending stiffness were derived in reference [33] and are listed 

below. Appendix A gives a further review of Narrow Beam Theory. 
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* * *

,f1 f1 ,f2 f2 ,w whx x xEA A b A b A    ( 2-59 ) 
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      * * * * * *
1 1 1 1 1 2 2 2 2 2xz f f f f f f f f f f w w w w wD b A z B y b A z B y A y B h z      . ( 2-61 ) 

 

Stress Analysis of Composite I-beam 

The stress analysis using the modified method has been presented in works by 

Parambil [33] and Rios [32] and is also reviewed in Appendix A. 

 

RESULTS COMPARING MODIFIED METHOD TO CONVENTIONAL METHOD WITH 

LAMINA AND LAMINATES 

The material used for the analytical and FEA analyses is IM6G/3501-6 

graphite/epoxy which has mechanical and thermal properties listed below in Table 2.1. 

Ply thickness considered is 0.005 inches. 

Table 2.1 Properties of IM6G/3501-6 graphite/epoxy 

Property Symbol Units Value 

Longitudinal Modulus E1 (Msi) 24.5 

Transverse Modulus E2 (Msi) 1.3 

Shear Modulus G12 (Msi) 0.94 

Poisson's Ratio v12  
0.31 

Longitudinal Thermal Expansion Coefficient α1 (10-6/Fo) -0.5 

Transverse Thermal Expansion Coefficient α 2 (10-6/Fo) 13.9 
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Lamina Study 

Fiber orientations considered are: 0, 15, 30, 45, 60, 75 and 90 degrees. Only one 

ply of a specific orientation is considered at one time. Figure 2.14 shows a comparison 

of equivalent global properties derived from the conventional and modified method.  

The conventional method yields the same results as the modified method for 0 

and 90 degree laminas since there is no coupling between extension and shear. 

However, for off-angled laminas, the equivalent xE , yE , and xyG properties calculated 

by the modified method are higher than those obtained by the conventional method. 

This was predicted since the modified method suppresses the shear deformation which 

increases the stiffness of the lamina. 

It should be noted that the modified method of lamina equivalent properties is to 

represent equivalent 0o properties of the given laminate. 
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Figure 2.14 Comparing equivalent material properties of individual lamina plies  

between Modified Method and Conventional Method 

 

Laminate Study 

Various stacking sequences of an 8-ply laminate have been chosen to represent 

symmetric, unsymmetric, balanced, and unbalanced layups or combinations thereof. 

These stacking sequences are: 

Table 2.2 Stacking sequences utilized 

Stacking 
Sequence 

Symmetric Balanced Exception 

[±θ/0/90]S Yes Yes 
 

[±θ/0/90]2T No Yes 
 

[θ2/0/90]S Yes No Balanced when θ = 0o or 90o 

[θ2/0/90]2T No No Balanced when θ = 0o or 90o 
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θ is the ply orientation which varies as 0, 15, 30, 45, 60, 75, and 90 degrees. For 

the case of a symmetrical laminate, coupling stiffness matrix [B] = 0. For the case of a 

balanced laminate stiffness, shear coupling terms A16 = A26 =0. Figures 2.15 through 

2.18 show the calculated equivalent in-plane properties of the various laminates. 

 

Figure 2.15 Comparing equivalent longitudinal and transverse moduli, Ex and Ey, of 

various laminates between Modified Method and Conventional Method 

The main difference between the modified and conventional method is that the 

modified method mathematically suppresses the extension-shear coupling and bending-

twisting coupling whereas the conventional method ignores these effects. Thus, for 

symmetric and balanced laminates, all effective properties derived from the modified 

and conventional method should be identical. This is verified for all material properties 
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in Figures 2.15 to 2.18 with the [ / 0 / 90]S  stacking sequence, and with the 
2[ / 0 / 90]S  

when    0o or 90o. 

 

Figure 2.16 Comparing equivalent shear modulus, Gxy, of various laminates 

 

Figure 2.17 Comparing equivalent poisson’s ratio, νxy, of various  
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The largest equivalent moduli differences between the modified method and 

conventional method are normally with the unsymmetric and unbalanced [𝜃2/0/90]2T 

layup. This is as expected due to the suppression of the extension-shear and extension-

bending coupling. 

 

Figure 2.18 Comparing equivalent coefficients of thermal expansion, αx and αy , of 

various laminates between Modified Method and Conventional Method 

The equivalent Poisson’s ratio between that calculated by the modified and 

conventional method varied with unsymmetric/balanced and unbalanced/symmetric 

laminates. The same trend is observed with equivalent coefficients of thermal expansion 

values.  



 

48 

A summary of the percent differences between the modified method and 

conventional method is shown in Table 2.3. 

Table 2.3 Comparison of material properties between  

modified and conventional method 

Theta 
(degrees) 0 15 30 45 60 75 90 

Ex (psi) 

[+Ɵ/-Ɵ/0/90]S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

[+Ɵ/-Ɵ/0/90]2T 4.3% 4.7% 5.3% 4.9% 3.8% 3.5% 3.8% 

[θ2/0/90] S 0.0% 23.8% 30.2% 16.0% 3.5% 0.1% 0.0% 

[θ2/0/90] 2T 4.3% 25.6% 31.8% 18.6% 6.8% 3.8% 3.8% 

Ey (psi) 

[+Ɵ/-Ɵ/0/90] S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

[+Ɵ/-Ɵ/0/90] 2T 24.5% 23.8% 20.6% 12.5% 4.5% 1.7% 0.5% 

[θ2/0/90] S 0.0% 0.1% 3.5% 16.0% 30.2% 23.8% 0.0% 

[θ2/0/90] 2T 24.5% 24.2% 25.4% 32.5% 39.8% 27.9% 0.5% 

Gxy (psi) 

[+Ɵ/-Ɵ/0/90] S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

[+Ɵ/-Ɵ/0/90] 2T 0.0% 4.3% 9.9% 11.4% 9.5% 4.3% 0.0% 

[θ2/0/90] S 0.0% 24.4% 34.9% 35.2% 36.9% 25.8% 0.0% 

[θ2/0/90] 2T 0.0% 26.3% 39.4% 42.4% 43.9% 29.4% 0.0% 

ʋxy 

[+Ɵ/-Ɵ/0/90] S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

[+Ɵ/-Ɵ/0/90] 2T 19.2% 25.7% 25.4% 17.1% 8.7% 3.1% 0.9% 

[θ2/0/90] S 0.0% 45.3% 68.6% 69.6% 56.6% 28.0% 0.0% 

[θ2/0/90] 2T 19.3% 35.1% 62.9% 64.9% 53.2% 29.0% 4.5% 

αx(10-6/oF) 

[+Ɵ/-Ɵ/0/90] S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

[+Ɵ/-Ɵ/0/90] 2T 51.8% 2.7% 1733.8% 9.5% 4.6% 5.9% 6.0% 

[θ2/0/90] S 0.0% 536% 23530% 189% 32.4% 3.3% 0.0% 

[θ2/0/90] 2T 51.8% 548% 23741% 199% 38.9% 9.8% 6.0% 

αy(10-6/oF) 

[+Ɵ/-Ɵ/0/90] S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

[+Ɵ/-Ɵ/0/90]2T 53.0% 52.3% 49.1% 36.0% 203.2% 6.0% 4.4% 

[θ2/0/90]S 0.0% 3.3% 32.4% 189% 23530% 536% 0.0% 

[θ2/0/90]2T 53.0% 58.8% 101% 324% 32026% 632% 4.4% 
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I-BEAM RESULTS COMPARING MODIFIED METHOD TO FEA 

I-beam Finite Element Models 

Narrow Beam Theory predictions are compared to FEA results for two types of I-

beams as shown in Figure 2.19. The Tall I-beam model has a web width of 1 inch and 

the Short model has a web width of 0.5 inches. The top and bottom flange widths are 1 

and 2 inches, respectively, for both models. 

 

Figure 2.19 Finite Element Models of Tall and Short I-beams 

Solid element, SOLID186, is used which has 20 nodes per element and each 

node has 3 degrees of freedom [44]. Solid elements were used to ensure out of plane 

strains and stresses are modeled accurately.  Each model has a minimum of 165,000 

degrees of freedom.  Models were constructed by using MATLAB to make an APDL text 

file which defines keypoints, creates volumes from the keypoints, then meshes the 

volumes with the appropriate local coordinate system.   

For the mesh, there is an element per composite layer, thus the thickness of 

each element is 5 thousands of an inch. A zoomed view of a typical mesh is seen in 

Figure 2.20. The mesh of the web and flanges is denser closer to the web-flange 
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interface and linearly increases in element width with the distance away from this 

interface. The flange mesh at the web interface matches the web mesh such that the 

thickness and width of the flange elements are both 0.005 inches. 

 

Figure 2.20 Mesh used for I-beam, element coordinate system shown 

The element coordinate system is assigned by first rotating the global coordinate 

system relative to the x-axis, then rotating it about the z-axis in the plane of each ply.  

An example of the APDL code to show how to define the element coordinate system for 

the web is as follows.  

CSYS,0    ! Working in global crd system first 
CLOCAL,20,CART,0,0,0,0,90,0 ! Rotating 90 degrees about x-axis 
CSYS,20    ! Work in CSYS,20 
CLOCAL,30,CART,0,0,0,45,0,0 ! Rotate CSYS,20 in plane of laminate 

! Using mapped mesh commands not shown here 
ESYS,30    ! Defines element coordinate system 
VSEL,S,VOLU,,1   ! Selects volume to mesh 
VMESH,ALL    ! Meshes selected volume(s) 
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The fixed end of the model is fully constrained at each node as seen at the far 

end in the upper left hand corner in Figure 2.21. Loads are applied to a master node at 

the centroid of the cross section on the other end of the beam in the lower right hand 

corner of Figure 2.21 with either CERIG or RBE3 linear constraint equations.  The 

centroid, displacement, and stress are measured in the middle of the beam using an 

RBE3 constraint. 

 

Figure 2.21 I-beam model showing far end at upper left fully constrained, near end 

using a CERIG constraint for loads, and middle with an RBE3 constraint 

Both the CERIG and RBE3 constraints use a master node which is attached to a 

MASS21 point element located at the centroidal cross-section of the I-beam.  The 

master node has 6 DOFs (3 for translation and 3 for rotation) which are defined by the 

MASS21 element. The master node is attached to slave nodes which in this case are all 

the nodes at the desired cross-section.  The CERIG command sets up a ‘Constraint 

Equation based RIGid region’ which holds the slave nodes or cross section rigid but 
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allows 6 DOFs as defined by the master node.  Essentially, the slave nodes have 

dependent DOFs and the master node has independent conditions.  With the RBE3 

command, the role of the slave and master node are switched where the slave nodes 

have independent DOFs and the master node is the dependent node reflecting the 

average of all the slave nodes. 

As mentioned, both constraints are both used to distribute a load to the end of 

the beam. The CERIG constraint is appropriate for cases where the beam is actually a 

portion of a structure such as a part of a wing between bulkheads. The RBE3 constraint 

treats the beam as an isolated cantilever where the end is free to deform. Thus, the 

deformation behavior varies based on which constraint is used to apply loads as seen in 

Figure 2.22 which shows a tall I-beam model with unsymmetric laminates subject to an 

axial load. In reality, beams fall between these two conditions so both cases are 

considered in this analysis for the tall model. 

 

Figure 2.22 Comparing deformation of CERIG and RBE constraints  

with Tall, unsymmetric model under tensile loading 
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The meshed aspect ratios are kept a width-to-thickness ratio of 10 to 20 and a 

length-to-thickness ratio of 25.  These aspect ratios are chosen based on a 

convergence study as shown in Figure 2.23 below. In this figure, ‘P325’ stands for 3 

plies for upper flange, 2 plies for web, and 5 plies for lower flange. ‘P8614’ is similar 

having 8 plies for upper flange, 6 plies for web, and 14 plies for lower flange. ‘P325 

Length’ checks length-to-thickness aspect ratio which range from 200 to 10 

corresponding to the data points.  ‘P325 Width’ checks the width-to-thickness AR 

(aspect ratio) for the P325 I-beam whose data points range from an AR of 30 to 2. 

‘P8614 Width’ data points range from an AR of 30 to 10. 

 

Figure 2.23 Convergence plot of I-beam 

The structural width-to-depth ratio is 2 and 4 for the Tall and Short I-beams, 

respectively. The Short I-beam will test the Narrow Beam Theory with a slightly wide 

beam with a width-to-depth ratio of 4. 
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Stress readings were taken from elements located at middle section of the beam.  

Post processing of stress in the global direction of each element from ANSYS was done 

using MATLAB. 

Axial stiffness is determined by, 

 
x-displacement

axial load
EA   . ( 2-62 ) 

Bending stiffness is determined by use of the Bernoulli-Euler equation for cantilever 

beams with an applied moment at the free end as follows, 

 
2

2

ML
EI

z
   ( 2-63 ) 

where M is the moment applied, L  is the length of the beam, and z  is the 

displacement in the z-direction. 

Four layup configurations studied which are shown in Table 2.4. In addition, the 

length is varied for the Tall beam FEM from 6 to 12 inches. Also, two methods of 

applying loads will be studied, one with the CERIG constraint and the other with the 

RBE constraint. 

Table 2.4 I-beam Layup Variations 

 
Sym, Bal unSym, Bal Sym, unBal 

unSym, 
unBal 

Top Flange [±45/0/90]S [±45/90/0]2T [452/90/0]S [452/90/0]T 

Web [±45/0]S [0/452/-452/0]T [452/02/±45]T [0/453/-45/0]T 

Bottom 
Flange 

[±45/04/90]S [02/90/02/±45]2T [-454/90/02]S [02/90/02/452]2T 

 

 The layups chosen in Table 2.4 consider how the I-beam is manufactured which 

is illustrated in Figure 2.24. One or more plies are used on the outer surface of the web 
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which also becomes external plies to the flanges. These are the C-shaped plies on 

either side of the web. Thus, for the symmetric & unbalanced layup, the lower outer ply 

of the top flange is +45 degrees which is +45 degrees on the web but is -45 degrees on 

the top of the bottom flange. 

 

Figure 2.24 Typical layup of I-beam (adapted from [45]) 

 

Composite I-beam Analysis, Centroid and Stiffness 

Table 2.5 shows a comparison of I-beam structural properties between the 

Narrow Beam Theory (NBT) and conventional analytical methods for the tall model with 

6 and 12 inch lengths.  
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Table 2.5 Comparison of NBT and Conventional Method  

using the tall model at 6 and 12 inch lengths 

Model Layup Method 
Length 

(in) 

Centroid 
Height 

(in) 

Axial 
Stiffness 

(lb-in) 

Bending 
Stiffness

Dx 
 (lb-in2) 

Bending 
Stiffness

Dz  
(lb-in2) 

Tall 

Sym, 
Bal 

NBT 
6 -2.0% -0.1% -1.3% 11.4% 

12 -0.5% 0.0% -0.2% 0.4% 

Conv 
6 -1.9% -0.1% 31.8% 0.0% 

12 -0.4% 0.0% 33.3% -9.8% 

              

UnSym, 
Bal 

NBT 
6 3.2% -0.7% -5.1% -0.3% 

12 -0.9% -0.6% -2.0% 0.0% 

Conv 
6 0.0% -4.4% 25.4% -14.1% 

12 -4.0% -4.3% 29.6% -13.8% 

              

Sym, 
UnBal 

NBT 
6 -5.4% -2.3% -8.6% 3.7% 

12 1.4% -0.4% 0.1% -2.2% 

Conv 
6 -5.5% -2.4% -4.2% 4.6% 

12 1.4% -0.4% 4.9% -1.3% 

              

UnSym, 
UnBal 

NBT 
6 -5.4% 2.9% 2.7% 13.7% 

12 -3.0% 0.1% 0.3% -1.2% 

Conv 
6 -37.2% 37.5% 43.8% 47.3% 

12 -9.2% -5.5% 41.2% -17.0% 

The values in this table are percentages showing the difference between the 

predicted values and values obtained from ANSYS FEA. The layups refer to the layups 

presented in Table 2.4. Note that bending stiffness Dxz  was not included since its value 

is very low. 

Comparing the Narrow Beam Theory (NBT) Method to the Conventional, NBT 

has lower error percentages than the conventional method using a 6 inch length beam 
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for most centroid and stiffness values with the exception of the cells highlighted in 

purple. For beams with length of 12 inches, NBT values are all lower in error than those 

predicted by the conventional method. Also, NBT predictions using the 12 inch beam 

are consistently lower in error than NBT predictions using the 6 inch beam. The 6 inch 

length may experience more end constraints effects which cause some NBT predictions 

to be away from FEA estimations. Note that conventional method prediction errors with 

the 12 inch beam did not always decrease as compared to the errors with the 6 inch 

model.  

Table 2.6 compares the centroid and stiffness predictions of the tall and short 6 

inch length models. In this table, under ‘Model’, ‘Width: F1=1”, W=1”, F2=2”’ refers to 

the width of the upper flange, web, and lower flange in inches. A CERIG constraint at 

one end of the beam is used to apply loads at the cross-sectional centroid. 

For the short model, NBT is more accurate in predicting the centroid and 

stiffnesses as compared to the conventional method with the exception of the bottom 

yellow highlighted cell for axial stiffness with the unsymmetric and unbalanced layups. 

At the same layup, the bending stiffness, Dx , is 5.3% different from the FEA estimation 

which can be considered acceptable. The short model NBT predictions are overall 

better than those using the tall model whereas conventional stiffness predictions are 

worse for the short beam compared to the tall beam. This is a surprising finding since 

the Narrow Beam Theory should work better in narrow beams such as the tall I-beam. 
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Table 2.6 Structural property comparison between the  

Modified and Conventional Analytical Method 

CERIG Constraint % Difference from FEM Results 

Model Layup Method 
Centroid 
Height 

(in) 

Axial 
Stiffness 

(lb-in) 

Bending 
Stiffness 

Dx 
 (lb-in2) 

Bending 
Stiffness 

Dz 
 (lb-in2) 

Tall, 
Width 
F1=1” 
W=1” 
F2=2” 

Sym, 
Bal 

NBT -2.0% -0.1% -1.3% 11.4% 

Conventional -1.9% -0.1% 31.8% 0.0% 

            

UnSym, 
Bal 

NBT 3.2% -0.7% -5.1% -0.3% 

Conventional 0.0% -4.4% 25.4% -14.1% 

            

Sym, 
UnBal 

NBT -5.4% -2.3% -8.6% 3.7% 

Conventional -5.5% -2.4% -4.2% 4.6% 

            

UnSym, 
UnBal 

NBT -5.4% 2.9% 2.7% 13.7% 

Conventional -11.4% -2.9% 44.6% -4.6% 

              

Short, 
Width 
F1=1” 

W=1/2” 
F2=2” 

Sym, 
Bal 

NBT -0.4% -0.1% -1.4% 0.1% 

Conventional -0.2% -0.1% 36.5% -8.4% 

            

UnSym, 
Bal 

NBT 0.1% -0.7% -3.8% -0.4% 

Conventional -3.2% -4.7% 33.1% -12.7% 

            

Sym, 
UnBal 

NBT -1.5% 1.3% -1.1% -2.3% 

Conventional -1.5% 1.3% 4.5% -2.6% 

            

UnSym, 
UnBal 

NBT 0.9% 3.5% 5.3% -3.7% 

Conventional -6.0% -2.7% 57.6% -18.1% 

 

When looking at the deflections of the full I-beam models in ANSYS, the Tall, 

symmetric and unbalanced (UnBal) I-beam case exhibits twisting under a tensile load 

as compared to the unsymmetric case (UnSym) as seen in Figure 2.25. In this figure, 

loading is applied to the master node of a CERIG constraint. This seems to cause the 
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predictions of NBT for centroid and bending stiffness, Dx , to be larger in error for the 

unbalanced layup compared to the unsymmetric layup and the symmetric and balanced 

layup. However, these prediction errors are close to an acceptable value of 5% and are 

alleviated when using a 12 inch beam. 

 

Figure 2.25 Deformation comparison of Tall I-beam models under tensile loading. FEM 

beam is 6 inches long. Color scheme shows deflection in the y-direction. 
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Composite I-beam Analysis, Ply Stress 

Stress analyses are made for each layup variation shown in Table 2.4 for the tall 

model with lengths of 6 and 12 inches, and short model with length of 6 inches. Plots for 

all variations with a 6 inch length are found in Appendix B. 

For most models and load cases, the ply stresses predicted by the NBT was 

within five percent or less of the FEM. A summary of notable discrepancies of significant 

ply stresses between the NBT and FEA is shown in Table 2.7. Note, Fx is an axial load, 

Mx is a moment about y-axis, and Mz is a moment about z-axis. ‘L’ is for beam length. 

The percentages shown in Table 2.7 are the difference between ply stress predictions 

by NBT compared to those estimated by FEA. The stresses used for this comparison 

are from 6 points across the width of the flanges and 8 points across the width of the 

web. These points do not include stress at the end points which are affected by end 

effects and stress close to the web-flange interface which are affected by the stress 

concentrations in this region as shown in Figure 2.28. NBT does not account for stress 

concentrations and end effects. The percentage shown is the stress difference at each 

point between the NBT and FEA along the width. Thus, for a plot as shown in Figure 

2.26, the difference in the stress for the zero degree ply is 11 percent even though if the 

stress is averaged then compared, the difference would be close to zero. Stress 

obtained from FEA is noted by a solid curve and stress from NBT is noted by the dotted 

line of which there are 10 data points across the width of the member. 
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Figure 2.26 Comparing stresses between FEA and NBT 

Table 2.7 Notable Discrepancies between the NBT and FEA of significant ply stresses. 

Top and Bot correspond to top and bottom flange. 

 
Model L Lay-up of I-beam (member, load, % difference) 

  
(in) Sym, Bal UnSym UnBal UnSym, UnBal 

C
E

R
IG

 

Short 6 
all stresses 

< 3% 
Top, Fx 4% 
Bot, Mx 5% 

Top, Fx   8%      
Bot, Fx 16% 

Top, Fx 10%  
Bot, Fx 10%      
Bot, Mx  7% 

Tall 6 
all stresses 

< 3% 
Top, Fx 7% 
Bot, Mx 3% 

Top, Fx  7%      
Bot, Fx 11% 

Top, Fx 10%     
Bot, Fx 19% 
Bot, Mx  3% 

Tall 12 
all stresses 

< 3% 
Top, Fx 1% 

Top, Fx 4.5%     
Bot, Fx    7% 

Top, Fx 5%     
Bot, Fx 9% 

       

R
B

E
3

 Tall 6 
Top, Fx 3%      
Top Mz 42% 

Top, Fx 7%      
Top Mz 44% 

Top, Fx   7%      
Bot, Fx  12%     
Top, Mz 16% 

Top, Fx 20%     
Bot, Fx 21%     
Top, Mz 50% 

Tall 12 
Top, Fx   1%      
Top Mz 34% 

Top, Fx  1%      
Top Mz 40% 

Top, Fx   5%      
Bot, Fx    8%      
Top, Mz 12% 

Top, Fx  10%     
Bot, Fx  10%     
Top, Mz 44% 
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In Table 2.7, only significant ply stresses are considered. In most cases, stress in 

the principal material direction, 11 , is the significant stress. ‘L’ represents the length of 

the beam. For each model and beam length, 3 load cases were considered separately 

in this table, an axial force, 
xF , a moment about the y-axis, 

xM , and a moment about 

the z-axis, 
zM . All 3 members of the I-beam are considered but the web has no notable 

discrepancies or has very low stresses thus does not appear in the table. For the 

flanges, ‘Top’ and ‘Bot’ indicate the top and bottom flange. Note that Appendix B does 

include a 4th load case which is a combined loading of 
xF , 

xM , and 
zM  but this is only 

a superposition of each of these loads applied separately. 

For the CERIG constraint case, predictions in all significant ply stresses for the 

symmetric, balanced I-beam model are within 3% of stresses estimated by FEA. The 

accuracy of predicted 11  stress values for models with a half inch web length are very 

similar to that of one inch with the exception of the bottom flange of the unsymmetric 

and unbalanced model as seen highlighted in yellow in Figure 2.27 with an applied 

moment 
xM . The bottom flange in this layup has 8 zero plies which are all visible in 

blue in this figure since they experience different stresses due to bending about the y-

axis. 

As illustrated in Figure 2.28, differences in predicted 11  stress compared to FEA 

on the bottom flange are larger with the half inch web model due to more pronounced 

constraint induced stresses. The first ply stresses of the half inch web experience much 

higher relative stress range fluctuations than that of the one inch web. This occurs 

because the half inch web model experiences a larger torsional rotation due to flanges 
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closer to the shear center. Figure 2.28 compares the 11 stresses of the short and tall,  

unsymmetric and unbalanced models with an applied moment of 
xM  along the xy-

plane of the bottom flange. The short or ½ inch web model experiences much more 

stress compared to the 1 inch web model since the flanges are closer to the neutral 

axis. Also, the predictions of 11  in the 90o plies of the bottom flange are not very 

accurate but these are not considered as significant stress compared to the 11  stress 

on the 0o plies. Overall, the Narrow Beam Theory can be applied to I-beams with 4:1 

width to depth ratios with little error. 

 

Figure 2.27 Comparison of the ½” length web to the 1” length web unsymmetric and 

unbalanced case, 
xM  load, considering 11 . NBT stresses are dotted lines  

and FEA stresses are solid lines. 
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Figure 2.28 Comparison of the ½” width web to the 1” width web, unsymmetric and 

unbalanced case, 
xM  load, bottom flange, first ply, considering 11 . 

A poor prediction of 11  using CERIG of 7% resulted from the unsymmetric 

model in the 0o ply of the top flange with an applied axial force, highlighted in blue in 

Table 2.8. This is for the model of 6 inch length but when checking the same model and 

conditions with the 12 inch length, this error reduced to 1%. This is illustrated in Figure 

2.29. Similar results are found with the unbalanced case in the top and bottom flanges 

also shown in Figure 2.29. 

The 12 inch length model is less affected by the rigid body constraints applied at 

both ends of the beam, CERIG and fixed constraints. This is illustrated in Figure 2.30 

where the 11  stress across the width and length of the 0o ply of the bottom flange due 

to an axial load is compared between the 6 and 12 inch length unsymmetric models. 

The overall stress is flatter and lower over the length and width of the beam for the 12 

inch model. The end constraint-induced stresses affect the stresses more throughout 

the length of the shorter beam than those of the longer beam. 
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The NBT method obviously does not predict the end constraint-induced stresses, 

stress concentrations where the web meets the flanges, and edge stresses at the end of 

the flanges. 

 

Figure 2.29 Comparison between 6 and 12 inch length CERIG constrained models with 

poor analytical predictions. NBT stresses are dotted lines  

and FEA stresses are solid lines. 
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Figure 2.30 Comparison of 11  stresses in the 0ply of bottom flange, unsymmetric, tall 

model under axial load with CERIG constraint. Stresses from 0.5” to 5.5” and 1” to 11” 

length for the 6” and 12”length models, respectively, are shown. 

 

Figure 2.31 Comparison of 11  ply stresses between CERIG and RBE3 constraint. 

Model is tall, unsymmetric, 6” length under 
zM  applied moment. NBT stresses are 

dotted lines and FEA stresses are solid lines. FEM plots to the right show deflection  

due to 
zM  with colors representing z-displacement. 

A comparison of 11  ply stresses between the CERIG and RBE3 constraints is 

shown in Figure 2.31 using the tall, unsymmetric model, 6 inch length, under an 
zM  

applied moment. As shown with the full FEM on the right in Figure 2.31, the RBE3 
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constraint allows a slight rotation about the x-axis due to 
zM  which is constrained in the 

CERIG model. Note that only the boundary of the unloaded model is shown. This 

rotation with the RBE3 constraint causes additional stresses in the top flange as 

evidenced in the top flange stress vs. width plots. These additional stresses are not 

predicted by the NBT. The differences in stress between NBT and FEA are highlighted 

in green in Table 2.7. 

From Table 2.7, the 12” length beam does not alleviate the stresses caused by 

zM  much for each lay-up since a rotation is still present with the RBE3 constraint 

model (highlighted in green in Table 2.7). Similar to the CERIG models, the 11  stresses 

in 0ply of the top and bottom flanges due to an axial load for each lay-up are alleviated 

using the 12” length model as compared to that of the 6” model for all layup variations. 

 

SUMMARY 

A concept of equivalent properties for lamina, laminate, and structure levels is 

presented. Methods that are considered include the modified method and the 

conventional method. Equivalent properties calculated by the modified method takes 

into consideration the structure behavior of an equivalent zero degree lamina. Hence, 

the induced curvature and the shear deformation are suppressed for unsymmetrical and 

unbalanced laminates under applied axial or thermal loading, and the induced axial and 

shear deformation are suppressed under an applied bending moment. 

A comparison between the modified and conventional method on equivalent 

properties of individual laminas validated the modified model. The equivalent moduli of 
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the modified method for laminates that are not symmetric & balanced are greater than 

those of the conventional method since these moduli restrict couplings. Also, symmetric 

& unbalanced laminates yielded higher differences between the equivalent moduli of the 

modified and conventional methods than the unsymmetric & balanced laminates. For all 

equivalent properties with the exception of the Poisson’s ratio, the unsymmetric and 

unbalanced laminates yielded the highest difference between the modified and 

conventional method.  

For symmetric & balanced, and symmetric & unbalanced laminates under an 

axial load, the modified method gives reasonable predictions for the σx ply stresses. For 

unsymmetric laminates, the differences between the modified method and FEA for the 

σx stress in 0o plies varies were as high as 26% and averaged around 8% for the 

unsymmetric laminates considered. Thus, for unsymmetric layups, the modified method 

could be used for rough estimates of σx stress given axial loading conditions. In the 

case of the thermal load, the modified method gives reasonable predictions for the σx
TH, 

and τxy
TH ply stresses for thermally loaded symmetric and balanced, and unsymmetric 

and unbalanced laminates. 

In predicting the centroid and axial and bi-directional bending stiffness for the 

structural case of the I-beam, Narrow Beam Theory is consistently more accurate than 

the conventional method with almost all results under 5% as compared to FEA. 

However, in cases where twisting rotation is present such as the unbalanced model, the 

NBT accuracy can be over 5% for the tall model but under 5% for the short model and 

can be improved by considering a longer beam.  
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The accuracy of predicting ply stress using the NBT depends on the constraint 

used in the FEM and the length of the beam analyzed. For a length to height ratio of 3 

to 1 using the CERIG constraint to apply loads, the axial loading case yielded significant 

ply stress errors over 5%. However, for length to width ratios of 6 to 1, the additional 

stress caused by the constrained ends are reduced by the longer length causing most 

significant stresses to be under 5% with the exception of the bottom flange under axial 

loading. Using the RBE3 constraint to apply loads, the stress prediction caused by axial 

loading was similar to the CERIG case. However, an applied 
zM  moment caused large 

errors in the significant stresses of the top flange which was only slightly alleviated by 

using a longer length beam. Overall, most predicted ply stresses are under 5% using 

NBT. Also, the NBT is valid for I-beams with width to depth ratios of 1 to 4. 

In summary, the modified method is a significant improvement over the 

conventional method and can be used in analysis of laminates in most cases. The 

modified method also can be used to analyze the centroid, stiffness’, and ply stresses 

for structures similar to the I-beam with prediction errors mostly under 5%. 
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CHAPTER 3  

ANALYTICAL METHOD TO ANALYZE AIRFOIL BLADES UNDER AXIAL AND 

BI-DIRECTIONAL MOMENTS 

A modification of Narrow Beam Theory is used to analyze composite airfoil cross-

sections. The analytical method developed is a semi-closed solution which breaks up an 

airfoil profile into discrete elements and treats each element as a laminate. The laminate 

properties are rotated, then the Narrow Beam Theory is applied to find the stiffness 

properties. An alternative closed form method can be developed however this has not 

been developed in this research. 

For this analysis, structural stiffness parameters obtained are the axial and bi-

directional moment. A term is derived for the coupling between the bi-directional 

moments. Axial and bending stiffness terms are found about the centroid. Axial forces 

and moments about the centroid can induce torsion and will be considered but these 

coupling stiffness terms will not be determined in this analysis. Airfoils with and without 

an I-beam stiffener will be analyzed. 

 

DISCRETIZING AIRFOIL PROFILE 

The Narrow Beam Theory (NBT), similar to that was used to analyze the I-beam 

structure in Chapter 2, will be used. Before applying NBT, the cross-section of the airfoil 

must be chopped into discrete elements. This can be visualized in Figure 3.1. 

Each element is a quadrilateral, oriented to match the contour of the airfoil. Each 

element is then treated as a laminate where Classical Lamination Theory can be 
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applied and the laminate ABD matrix can be found relative to the laminate x’- y’-z’ axes.  

Note that the x-axis points out from the page.  Each elemental 6x6  ABD  matrix, as 

shown in equation 2-14, is rotated about the x-axis to align with the global x-y-z 

coordinate system. 

 

Figure 3.1 Dividing the Airfoil Contour into Discrete Elements 

The global x-y-z coordinate system is chosen where the y-axis is the chord of the 

airfoil. The chord runs in a straight line from the leading edge point to trailing edge point 

of the airfoil. This helps to minimize the rotation of elements to the global x-y-z axes. 

Other global coordinate systems could be chosen but this was not performed in this 

research. 

Addition of an I-beam stiffener or any other stiffener can be made and the same 

discretizing and ABD rotation can be performed. Figure 3.2 shows an I-beam stiffened 

airfoil studied in this research. In Chapter 2, the I-beam has straight flanges but in this 
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case, the flanges must follow the profile of the airfoil. Thus, to have good accuracy, the 

flanges are broken into elements as shown in the close-up image. 

 

Figure 3.2 MATLAB generated model of NACA 0030 airfoil cross-section  

with I-beam stiffener 

Note that the entire thickness of the profile is populated by elements. The 

MATLAB code generated for this research was used to conduct the analytical study as 

well as make an ANSYS model. Thus, the identical model was used for both analyses in 

which MATLAB is used to make an APDL code to generate the model in ANSYS. If no 

ANSYS model needs to be generated, then only a single curve is needed for the airfoil 

and I-beam profile. The curve then can be moved to the midplane of the laminate skin 

and the analytical method can be conducted. This works because the ABD matrix from 

Classical Lamination Theory relates strains and curvatures with structural load at the 

midplane.  
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ROTATION OF ELEMENT ABD 

Rotation from the laminate x’-y’ plane to the global x-y plane is shown in Figure 

3.3.   is the rotation angle to the y global axis . ib  is also shown which is the width of 

the element. 

 

Figure 3.3 Rotation from laminate x’-y’ direction to global x-y direction 

Rotation of the 6x6  ABD  matrix is performed by transforming each 3x3 matrix 

which comprises the 6x6  ABD  matrix. This is done because the 3x3 matrices labeled 

as A, B, and D are 2 dimensional matrices in terms of x’ and y’. The 6x6  ABD  matrix is 

thus a 2D matrix which requires 2D transformation matrices. Using the A matrix as an 

example, transformation about the x-axis towards the y-axis is, 

 ' '[ ] [ ( )]  [ ]   [ ( )]r
x y i i x y i iA T A T     , (3-1) 
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where the subscript ' 'i  represents each element of the airfoil and superscript ' 'r  

indicates rotation by the transformation matrix about the x-axis to align with the global x-

y-z coordinate system. 

This same transformation formula is also used to rotate the B and D matrices 

about the x-axis.  Note that rotation in Figure 3.3 is positive but the angle of the element 

is negative. The transformation matrices about the x-axis are: 

 
2

1 0 0

[ ( )] 0 0  = [ ( )]

0 0

i iT m T

m

  

 
 

  
 
 

, (3-2) 

where cos( )m  . By transforming the  
i

ABD  matrix, the rotated  
r

i
ABD  matrix is 

obtained: 

  
,

r r
r

i r r

i y axis

A B
ABD

B D


 
  
  

. (3-3) 

 

CONVERTING ELEMENT ABD INTO A 1D MATRIX: WIDE BEAM APPROACH 

A popular technique to analyze structures is known as the wide beam approach 

which is often used by engineers in industry. Essentially, the beam is modeled as a 

wide plate as shown in Figure 3.4. Under a moment xM , the plate experiences curvature 

in the z direction ( xk ) but very little curvature in the y direction (
yk ) except at the end of 

the plate. Also, there is strain in the x-direction but very little in the y direction. Thus, 

, , ,  and y xy y xyk k   are approximated to equal zero.  
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Figure 3.4 beam deformation due to moment (from Rios [32]) 

These assumptions are applied to the cross-sectional  
r

ABD  matrix and a 

simplified one dimensional, 2x2 matrix is derived.  
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11 11

11 11 ,

r
o

x x

o
x xi i y axis i

N A B

M kB D





   
    

     
. (3-5) 

Here it is noted that all the coupling terms except for 11
rB  or the extension-

bending coupling in the x-direction have been disregarded. This single coupling term is 

seen in Figure 3.5. 
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Figure 3.5 Wide Beam Approach only coupling term between extension  

and bending in the x-direction 

This leads to inaccurate centroid and stiffness results for composite cross sections. 

 

CONVERTING ELEMENT ABD INTO A 1D MATRIX: NARROW BEAM APPROACH 

To find the centroid about the y-axis, the Narrow Beam assumptions for a 

laminate are made, where only xN  and xM  loads are considered and all other loads are 

approximated to be zero. In the I-beam case, 
xyM  was also considered since there was 

a web to improve torsional stiffness. In the airfoil case, twisting is assumed to occur 

relatively easily thus 
xyM  is assumed to be zero. 

Note that xM is a moment about the y-axis.  By using matrix substitution, the 

coupling terms are considered since they are included in the simplified 1D stiffness 

matrix as follows.  In these equations, the strains, curvatures, and loads are acting 

about the midplane of each element, noted by the superscript, ' 'o . 
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 where:   

22 26 22 26

12 16 12 16 26 66 26 66

12 16 12 16 22 26 22 26

26 66 26 66

,   

A A B B

A A B B A A B B
P R

B B D D B B D D

B B D D

 
 

        
 
 

. (3-7) 

Note that 
TP  is the transpose of the P matrix.  The unknown terms 

, , ,  and o o o o
y xy y xyk k   can be substituted for using the , ,  and TP P R  matrices.  The 

known cross-sectional loads in the x-direction can now be related to only the strain and 

curvature in the x-direction and material properties as follows, 

 
11 11 1

11 11

o o
x x xT

o o
x x x

N A B
P R P

M B D k k

 
           
                     

. (3-8) 

This yields the following stiffness matrix, 

 
* *

* *

,

r
o

x x

o
x xi i y axis i

N A B

M kB D





   
    

     
. (3-9) 

This simplified matrix relates x-direction loads with x-direction strain and 

curvature thus is a one dimensional equation.  Due to use of matrix substitution, the 

coupling terms, such as extension couplings as illustrated in Figure 3.6, are not 

disregarded since they are substituted back into the 1D simplified matrix.   
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Figure 3.6 Examples of extension coupling included in Narrow Beam Theory. Top is 

extension-transverse curvature, left is extension–shear, right is extension–twist 

 

AIRFOIL CENTROID 

The centroid, or location of the neutral axis, is important because it decouples 

axial and bending stresses and strains.  If an axial load is applied at the centroid, there 

is no bending and vice-versa.  For isotropic material, the centroid is dependent on only 

the cross-sectional geometry of the beam. For a laminated composite material, the 

centroid is dependent on the geometry as well as the stacking sequence and material 

constants. 

The centroid can be found by doing a force balance between a normal force 

acting at the centroid to normal forces acting at each element of the airfoil structure. 

Instead of finding the normal force and reference distance from only the top and bottom 

flange and web as with the I-beam, with the airfoil, the normal force and distance from a 

temporary origin, shown in Figure 3.1, are found for each element and used in equation 

3-10 as shown below. 
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, (3-10) 

and based on equation 3-10, the normal forces of each element can be converted to 

material properties from equation 3-9 and knowing the curvature is zero with a resultant 

axial force at the centroid. Thus, 

 
* * *

, , ,

r o r r c

x i i x i i x i i xN A B k A    . (3-11) 

' 'n  is the number of elements on the profile of the airfoil and ' * 'r  represents a rotated 

matrix with NBT applied. iy  and iz  are the distances from the center of each element to 

the temporary origin as see in Figure 3.7. If an I-beam is used, the elements making up 

the I-beam are added to the elements of the airfoil. 

 

Figure 3.7 Temporary origin 

The centroid relative the z-axis, cY , and relative to the y-axis, 
cZ , are as follows, 
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(3-12) 

 

AIRFOIL AXIAL STIFFNESS 

The equivalent axial stiffness of a structure is defined as the amount of the 

resultant axial load need to produce a unit of axial strain at the structural centroid as 

shown below. 

 
x

c

x

N
EA


  (3-13) 

Consider that the resultant axial load, xN , is distributed to all airfoil elements. 

Since the resultant axial load is at the centroid, no resultant moment is produced, thus 

there is no curvature at the centroid. Since classical lamination theory is applied, 

curvature is linear thus curvature across the whole airfoil cross-section is constant. With 

no curvature over the cross section, the axial strain at the centroid is equal to the axial 

strain over the entire cross-section, therefore ,

c o

x x i   . 

 Applying these assumptions, the 1D equation 3-9 shown below from each 

element is, 
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The axial force at the centroid for the entire structure can be found by summing the axial 

forces from all elements as follows, 
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The axial stiffness for the structure, in terms of material properties, is thus, 
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AIRFOIL BENDING STIFFNESS 

This method is described in Appendix A for an I-beam and can be applied to a 

structure composed of discrete elements such as an airfoil as follows.  
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 (3-17) 

Starting from the stiffness matrix for the entire structure that is desired, the 

general equation used to relate the curvature and bending stiffness is 

c c c
x x x xz z x xM D k D k D k    where the c

xz zD k  term is neglected since it is small in 

comparison to the c
x xD k  term. To determine the structural bending stiffness term in the 

x-direction with respect to each element, ,x iD , consider a resultant moment at the 

centroid of the structure, xM . This moment consists of loads ,x iN  and ,x iM  acting at 

the midplane of an element ' 'i .  This equilibrium relation of moments from an element is 

written mathematically as, 

  , , , ,x i i x i i c x iM b M z N  , (3-18) 
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where ,x iM is the moment produced from element ' 'i . 

The loads in equation 3-18 can be replaced with material properties from 

equation 3.9 to find the moment applied to the structure from element ' 'i , 

   * * * *
, , , , , ,

r o r o r o r o
x i i i x i i x i i c i x i i x iM b B D k z A B k     . (3-19) 

In finding the axial stiffness, it was determined that , ,
o c
x i x ik k  due to the linear 

curvature assumption. Note that ,
c
x ik is the curvature about the centroid caused by loads 

at one element. If a moment about the centroid is produced, then the element midplane 

strain is only a function of ,
c
x ik  and there is no centroidal strain, thus 0

, , ,

c

x i i c x iz k  . ,i cz  is 

the distance from the cross-sectional centroid to the element centroid in the z-direction. 

So, the equation above can be simplified to, 

  * 2 * *
, , , ,2c r r r

x i i x i i i c i i c iM b k A z B z D   , (3-20) 

and the structural stiffness term ,x iD  due to ,x iN  and ,x iM  acting on element ' 'i  is, 

  * 2 * *
, , ,2r r r

x i i i i c i i c iD b A z B z D   . (3-21) 

A similar approach is taken to find ,z iM . This yields, 

  * 2 * *
, , , ,2c r r r

z i i z i i i c i i c iM b k A y B y D    (3-22) 

 where   * 2 * *
, , ,2r r r

z i i i i c i i c iD b A y B y D   . (3-23) 
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For moment coupling terms xzD , consider an applied moment xM  on the 

structure which causes curvature c
xk  as well as induces c

zk  due to the coupling term xzD  

as follows, 

 c c
x x xzx zM D k D k  . (3-24) 

Primary interest is on the coupled curvature, c
zk , so xM  can be isolated with the c

zk  

term, leaving 
c

x xz zM D k . xM  needs to be converted into material properties to find 

xzD . This is done by breaking down xM  into loads on discrete elements such as 

element ' 'i  as follows, 

  , , , ,x i i x i i c x iM b M z N  . (3-25) 

Again, the 1D equation 3-9 from Narrow Beam Theory is used to break down the 

element loads into material properties using *r
iABD  giving equation 3-26 shown below, 

   * * * *
, , , , , ,

r o r c r o r c
x i i i x i i x i i c i x i i x iM b B D k z A B k     . (3-26) 

 Relating element midplane strain, 0

,x i , to curvature of the cross-section, 

 
0

, , , , , ,

c c c

x i x i i c x i i c z iz k y k    . (3-27) 

However, only a moment is applied so there is no net axial strain at the centroid and 
,

c

x ik  

can be neglected since the primary interest is on the coupled curvature
,

c

z ik . Thus, 

 
0

, ,

c

x i i c zy k  , (3-28) 
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which is then inserted into equation 3-26, and still neglecting 
,

c

x ik , yields, 

  * *
, , , ,

r r c
x i i i c i c i i z iM b y z A B k   (3-29) 

 where  * *
, , ,

r r
xz i i i c i c i iD b y z A B  . (3-30) 

 Of course, the equations above found are the bending stiffness terms from one 

element. To obtain the cross-sectional stiffness of the airfoil structure, the stiffness 

terms must be summed for all elements as follows: 

  * 2 * *
, ,

1

2
n

r r r
x i i i c i i c i

i

D b A z B z D


    (3-31) 

  * 2 * *
, ,

1

2
n

r r r
z i i i c i i c i

i

D b A y B y D


    (3-32) 

  * *
, ,

1

n
r r

xz i i c i c i i

i

D b y z A B


  . (3-33) 

With the coupled stiffness moment terms, the stiffness matrix of the entire 

structure about the centroid due to , ,  and x zxN M M  is given as, 

 

0 0

0

0

c
xx
c

x x xz x

c
z xz z y

N EA

M D D k

M D D k

   
     

    
    
      

, (3-34) 

where the resultant loads and strains are acting upon the centroid.   
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LAMINATE PLY STRAINS AND STRESSES 

From the cross-sectional stiffness matrix about the centroid, the axial strain at the 

midplane of each element in the global x-y direction can be found by, 

 
,

, , ,
o c c c XS
x i x i c x i c yz k y k    , (3-35) 

where 
,c XS

yk  is the curvature about the z-axis in the y-z plane. When dealing with 

laminates, yk  is used to represent the curvature about the x-axis affecting the 

longitudinal side of the airfoil beam thus this nomenclature is used. 

Distances 
,i cy  and ,i cz  are illustrated in Figure 3.8. 

 

Figure 3.8 Translating and rotating cross-section centroidal strains  

and curvatures to laminate midplane 

Again assuming linear curvature, c
xk and 

,c XS
yk  are the same for the centroid as 

well as at each element in the global x-y-z direction.  Thus, at the laminate element, the 

axial strain and curvatures are known in the global x-y-z direction.  These strains and 

curvatures can then be rotated about the x-axis by the transformation matrix to align 

with the laminate y’-z’ plane as follows, 
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  

'

'

, ,
'

o o
x x

o c
x i x

o XS c XS
yy

i i

k T k

k k



 



   
      

     
   
      

, (3-36) 

where i  is illustrated in Figure 3.7 which in this case is a negative theta. 

A key to finding the ply strains and curvatures is to assume twisting is negligible, 

' ' 0o
x yk  .  This is a valid assumption considering that the material of the airfoil cross-

section is a considerable distance away from the shear center, thus the structure is stiff 

relative to torque.    

With these assumptions, the strains and curvatures of each element relative to 

the laminate’s x’-y’ coordinate system, or the composite coordinate system, is found as 

follows, 
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o
x'ε

x'k

, (3-37) 

where the bold items, 
' ' ' '( , , )o o o

x x x yk k , are known. The 6x3 [ ]abd  matrix is from the 

compliance matrix of the laminate itself.  The loads are acting on the midplane of the 

laminate.  Note that the b coupling terms associated with the curvatures are not the 

same as the b coupling terms associated with the strains.   

This set of equations can be simplified as follows.  First, the 6x3 [ ]abd  matrix is 

rearranged to separate the known and unknown strains and curvatures; 
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 (3-38) 

    
11 11 16 12 12 26

11 11 16 16 16 66

61 16 66 21 12 26

where:    and  
i i

i i

a b b a b b

U b d d V a b b

b d d b d d

   
   

 
   
      

 . (3-39) 

Now, matrix substitution for the loads can be performed as follows, 

  

''
1

' '

' ' 0

o
xx
o

x xi

x z i
i

N

M U k

M




 
      

   
   
    

. (3-40) 

This is used to find the unknown strain and curvature in terms of known strains and 

curvatures. 

    

' '

1
' ' '

'
0

o o
y x

o o
x y xi i

o
y ii

V U k

k

 




   
      

   
   
     

. (3-41) 

The laminate midplane strains and curvatures can be used to solve for the 

strains on the surface of each ply as follows, 
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, (3-42) 
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where 'z is the distance from the laminate midplane to the interested ply surface and k  

is the number of the ply surface starting from the inner ply surface going to the outer 

surface.  Stresses in the laminate global direction (x’-y’) at each ply surface can also be 

found using, 

 

' '

' '' '

' ' ' ', ,

x x

y yx y k

x y x yi k i k

Q

 

 

 



   
           
   
      

. (3-43) 

Finally, stresses in the 1-2 material direction at each ply surface are found using, 

  
1

2

12 ,
,

( )

x

yk

i k xy i k

T

 

  

 

  
    

    
   
    

. (3-44) 

The ply stress in the principal material direction can be found for each laminate. 
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CHAPTER 4  

RESULTS OF AIRFOIL UNDER AXIAL LOAD AND BI-DIRECTIONAL 

MOMENTS 

The analytical method discussed in Chapter 3 for an airfoil under axial and bi-

directional moments is compared to finite element analysis to determine prediction 

accuracy. The finite element model will be explained followed by a comparison of the 

FEA and analytical method results. 

 

AIRFOIL FINITE ELEMENT MODELS 

 Similar to the I-beam FEA models, SOLID186 elements are used in ANSYS to 

obtain more accurate FEA results since it includes out of plane stresses. MATLAB is 

used to create an APDL code which ANSYS runs to create the model and apply 

constraints and loads. The models created in ANSYS are identical to the models run for 

the analytical analysis thus direct comparisons can be made. For each model, the outer 

airfoil shape is the profile of the airfoil modeled. Most models are from the NACA 4-

series airfoils. 

 Four types of airfoils are chosen for study, the NACA 6721, NACA 0030, and 

NACA 9312 which are shown in Figure 4.1, 4.2, and 4.3 respectively. One other is the 

airfoil that is used for the experimental section but its designation is unknown. The 

airfoils were chosen to study a symmetric geometry case, the NACA 0030, a more 

common airfoil, the NACA 6721, and an extreme case of the NACA 4-series, the NACA 

9312. Each beam is studied with and without an I-beam stiffener. 
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Figure 4.1 MATLAB cross sectional plot of NACA 6721 airfoil 

 

Figure 4.2 NACA 0030 airfoil with constraints and axial load 

 

 An ANSYS model of the NACA 0030 airfoil is shown in Figure 4.2. The end at the 

left is fully constrained at each node. The loaded end on the right has a CERIG 

constraint applied at all the end nodes. The master node of the CERIG constraint is 

located at the centroid and is axially loaded in the figure. An RBE3 constraint is used in 

the middle of the beam to measure deflections and find the centroid. The CERIG and 
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RBE3 constraints have been described in the I-beam finite element models section. The 

cross-sectional mesh of the airfoil is denser near the leading edge of the airfoil where 

there is more curvature to maintain the geometry of the airfoil shape. This is more acute 

in the NACA 9312 model shown in Figure 4.3 which is generated in MATLAB. Notice 

that there is a row of elements for each composite ply. 

 

 

 

Figure 4.3 NACA 9312 cross-section with close-ups of leading and trailing edges 

Airfoil models with I-beam stiffeners are also studied. Figure 4.4 shows a simple 

cross-section of an FEM with an I-beam. Notice that the trailing edge uses a box-tail 

instead of a pointy tail. Composite designs of airfoils typically use a box-tail approach. 

The I-beam has equal lengths for each flange where the web is placed central to each 

flange. The position of the I-beam has been arbitrarily chosen such that the distance 

from the leading edge to the edge of each flange is 0.2 times the chord length. The 

length of each flange is ¼ the length of the chord. These distances can be modified 

easily in the MATLAB code and optimized but is not done in this research. 
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Figure 4.4 Airfoil with I-beam stiffener, axial stress shown 

It is important to verify the element coordinate system in ANSYS thus it is 

checked in various ways. One method is a visual check of the element CSYS in ANSYS 

as seen in Figure 4.5 which shows the bottom flange of the I-beam. Each color 

represents a different CSYS. A symmetric layup can be noticed in each element 

laminate. 

 

Figure 4.5 Checking element CSYS visually in ANSYS 

  Another way to check the element CSYS is to show the principle material axes of 

each element as seen in Figure 4.6. The blue axis represents the out-of-plane or z’ 
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direction and the yellow and white axes represent the in-plane directions.

 

Figure 4.6 Checking element CSYS with principle material axes 

 For the I-beam model in Chapter 2, the flange mesh matches the web mesh at 

the interface. However, this creates many very small elements. To reduce the amount of 

elements and degrees of freedom in the airfoil with I-beam model, a discontinuous 

mesh is used at the interface of the web and flanges. This is shown in Figure 4.7. 

 

Figure 4.7 Discontinuous mesh at web and flange, axial stress shown 

To ensure the dissimilar meshes are attached at the interface, a constraint along 

adjacent meshes is used in ANSYS. At the interface, the degrees of freedom of the 
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nodes of the web are interpolated with the degrees of freedom of the flange using the 

shape functions of the flange. Constraint equations are used to associate the nodes of 

the web with those of the flange. The constraint at these interfaces is shown in Figure 

4.8. The web-flange constraints run the length of the model. 

 

Figure 4.8 Constraints of airfoil with I-beam 

 ANSYS is able to show and list the stresses in the global x-y coordinate system. 

However, the stress in each element’s material coordinate system is sought. Thus, 

ANSYS generated stresses in the global material direction about the center cross 

section of the airfoil are saved into a file. MATLAB is then used to convert these global 

stresses into elemental material stresses in the 1-2 direction. This is accomplished by 

rotating the global x-y stresses about the x-axis towards the element x’-y’ coordinate 

system as seen in Figure 4.9 on the left. Next, the elemental x’-y’ stresses are rotated 

about the z’ axis to the elemental 1-2 direction as shown at the right. Mathematically, 
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both these rotations involve the 2D transformation matrix first about the x-axis using  , 

then about the z-axis using  . 

 

Figure 4.9 Rotating global x-y stress into elemental x’-y’ stresses on the left then 

rotating the elemental x’-y’ stresses to the elemental 1-2 direction 

 

Convergence of Finite Element Model 

 To check on the proper mesh size, a convergence study is performed on a NACA 

0030 airfoil without I-beam with a 2 inch chord and 12 inches in length. Element 

thickness is the smallest element dimension and is determined by the ply thickness 

which is held constant at 0.005 inches for this study (except for the experimental 

specimens). Thus, convergence checks are made on length to ply thickness and on 

width to ply thickness. For the length to ply thickness, 66 elements are used along the 

perimeter of the airfoil cross-section which yields an average width to thickness aspect 

ratio of 12.6 with a maximum of 17.1. For the width to thickness check, an aspect ratio 

of 100:1 is used for length to thickness. 
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 The variable of interest is the bending stiffness term. Figure 4.10 shows the 

bending stiffness, xD  relation to length to thickness aspect ratio in terms of degrees of 

freedom. After about 100,000 DOFs, the bending stiffness term is approximately 

0.004% away from the converged value.  

 

Figure 4.10 Convergence plot of length to thickness to bending stiffness 

Table 4.1 Convergence check of length to thickness aspect ratio 

L/thk 
AR 

DOF 
CPU 
time 
(sec) 

Dx 
% from 

converge 
value 

1σ   

max, 
0 deg 

1σ  

max, 30 
deg 

1σ   

max,  
-30 deg 

400 36,438 18 69,563 0.128% 86.484 42.350 43.223 

200 68,874 33 69,657 0.008% 86.760 44.100 43.315 

100 133,746 70 69,654 0.004% 86.748 44.105 43.2716 

50 263,490 172 69,654 0.004% 86.742 44.107 43.2715 

25 522,978 385 69,651 0.000%       

17 782,466 640 69,651 0.000% 86.742 44.108 43.2707 

 

A table of these values including stress in the 1 principle material direction is 

shown in Table 4.1. Even at a length to thickness aspect ratio of 100:1, there is good 

agreement between the converged value of xD (approximately 69,651) and the 
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converged values of the maximum values of 1  in the 0, 30, and -30 degree plies. An 

aspect ratio of at least 50:1 in length to thickness is chosen to use for this study. 

Table 4.2 shows the convergence study for the width to length aspect ratio. At an 

average width to thickness aspect ratio of 15, there is a 0.2% error in the prediction for 

xD as compared to the converged xD value of 69,749. A check is also made for this 

aspect ratio between the analytical model’s prediction and the converged xD value of 

69,645. As an average ratio of 15, there is only a 0.24% error in the predicted value. 

Thus, an average width to thickness ratio of 15 is adhered to in this study. 

Table 4.2 Convergence check of width to thickness  

aspect ratio, XS is cross-section 

Avg/Max  
W / thk 

AR 

Elems 
in XS 

DOF 
(103) 

CPU 
time 
(sec) 

Dx by 
FEM 

% from 
converge 

value 

Dx by 
Analyt 

% from 
converge 

value 

30 / 45 28 58 31 68,776 1.40 68,438 1.73 

22 / 32 38 78 42 69,311 0.63 69,086 0.80 

18 / 24 48 98 53 69,520 0.33 69,347 0.43 

15 / 20 58 118 60 69,616 0.19 69,476 0.24 

12 / 17 68 138 72 69,668 0.12 69,548 0.14 

11 / 15 78 158 84 69,697 0.07 69,593 0.07 

9 / 13 90 182 96 69,740 0.01 69,624 0.03 

8 / 11 100 202 100 69,749 0.00 69,645 0.00 

 

 

FEA Centroid Calculation 

The centroid is calculated by applying an axial load at an arbitrary point about the 

cross-section near the center of the airfoil. The cross-sectional coordinates of the 

master nodes for the loaded end CERIG constraint and the middle RBE3 constraint are 
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made equal to the arbitrary point’s coordinates. The displacements are noted and a 

second point is arbitrarily chosen and the same procedure followed. This is illustrated in 

Figure 4.11 where arbitrarily chosen positions are noted by a dot and corresponding 

displacements caused by an axial load are noted by an asterix. 

 

Figure 4.11 Calculating centroid in ANSYS 

Taking the differences in the position and displacement changes in the x-

direction and assuming linear curvature, the position of zero displacement is, 

 
1 2

1 1
1 2

o

x x
x x u

u u

 
   

 
. (4-1) 

The same is done for the y-direction. However, curvature is not absolutely linear 

and the neutral axis is not parallel to the x and y axes thus this is an iterative process 

until the cross-sectional displacements are approximately zero.  

 

FEA Stiffness Calculations 

Once the cross-sectional centroid is found, stiffness terms can be calculated. 

Axial stiffness is found by applying an axial load at the load end centroid and dividing 

the load by the axial strain found at the middle length centroid using the RBE3 master 

node. Bending stiffness terms xD  and zD  are found using the Bernoulli-Euler equation 
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for a cantilever beam with one end fixed and a moment applied at the free end as 

follows, 
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2
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x x
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, (4-2) 

where the bars indicate over the entire cross-section, L  is the length of the beam, w  is 

displacement in the z-direction, and v  is the displacement in the y-direction. 

 The coupling bending stiffness is found by applying xM and finding the points 

along the perimeter of the cross-section at the middle length of the beam where axial 

stress is zero. There will be 2 points were stress will be zero which are the points that a 

linear neutral axis will cross. Elemental stresses are actually used and stress will not 

actually be zero at an element. Thus, the stress along the perimeter is interpolated to 

find the zero axially stressed points. Once the neutral axis is found, the angle it makes,

 , from the y-axis is obtained and the following equation is used to find the coupling 

stiffness, 
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D D
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AIRFOIL RESULTS FROM AXIAL LOAD AND BI-DIRECTIONAL MOMENTS 

Four symmetric geometry cases are studied from the three main NACA airfoils. 

These cases are listing in Table 4.3. Each airfoil beam is analyzed as a hollow beam 

and with an I-beam stiffener. The first cases, C1 and C1ib2, consist of six plies of zero 
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degree only and have a chord length of 1 inch. The other cases have a symmetric layup 

of  [±30/0]S and vary in chord length and NACA designation except for case C21 which 

uses a [±45]S layup. I-beam stiffeners, other than case C1ib2, use a [±45/0]S layup for 

the flanges and web. The aspect ratio of each model made is also shown which applies 

to both the ANSYS and analytical models studied. All models have a width to thickness 

(W/thk) ratio of less than 15 and a length to thickness (L/thk) ratio of 50 or less. 

Table 4.3 Symmetric Geometry Cases studied 

Case NACA Layup 
Chord 
Length 
(inch) 

Average Aspect 
Ratios  

W/thk, L/thk 

C1 AF0030 [0]6T 1 8.5 / 25 

C1ib2 AF0030 + IB IB = [0]6T 1 7.2 / 25 

C2 AF0030 [30/-30/0]S 1 7.5 / 25 

C2ib1 AF0030 + IB IB = [45/-45/0]S 1 7.5 / 25 

C21 AF0030 [45/-45]S 1 9.5 / 25 

C30 AF6721 [0]6T 1 9.5 / 25 

C31 AF6721 [30/-30/0]S 1 9.5 / 25 

C32 AF6721 [30/-30/0]S 2 15 / 25 

C33 AF6721 [30/-30/0]S 3 12 / 50 

C33ib1 AF6721 + IB IB = [45/-45/0]S 3 13 / 50 

C4 AF9312 [30/-30/0]S 2 11 / 50 

C4ib1 AF9312 + IB IB = [45/-45/0]S 2 12 / 50 

 

 Results for the centroid are found in Table 4.4. The ANSYS model in case C1 is 

compared to the analytical model as a means for verifying the FEA model. The error 

between the FEM and the Narrow Beam Theory approach (NBT) is very minimal for the 

zero degree laminate cases. Cases C1, C1ib2, C2, C2ib1, and C21 are all symmetric 

thus the centroid along the z-direction, Cz, is approximately zero thus the error is not 

listed. In all cases, the error between the predicted value and FEA is less than 1.0% 
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thus there is excellent agreement. In most cases, the presence of the I-beam reduces 

the error in the predicted centroid value. The worst prediction of centroid is with the [45/-

45]s layup which tends to have more nonlinear behavior.  

Table 4.4 Verification of Centroid NBT Prediction with FEA 

Case Method Cy (in) Cz (in) 
 

Case Method Cy (in) Cz (in) 

C1  
N0030c1 

FEA 0.455 1.07E-06 
 C21  

N0030c1 

FEA 0.465 1.45E-05 

NBT 0.454 -1.00E-06 
 

NBT 0.462 
 

[0]6T Error -0.12% 
  

[±45]S Error -0.75% 
 

C1 ib2 
N0030c1 

FEA 0.421 4.75E-06 
 C30 

 N6712c1 

FEA 0.444 4.32E-02 

NBT 0.421 4.41E-06 
 

NBT 0.444 4.32E-02 

IB [0]6T Error -0.04% 
  

[0]6T Error -0.01% 0.05% 

C2  
N0030c1 

FEA 0.455 7.18E-05 
 C31  

N6712c1 

FEA 0.445 4.32E-02 

NBT 0.454 1.69E-05 
 

NBT 0.444 4.32E-02 

[±30/0]S Error -0.09% 
  

[±30/0]S Error -0.07% 0.15% 

C2 ib1 
N0030c1 

FEA 0.430 3.43E-05 
 C32  

N6712c2 

FEA 0.933 8.37E-02 

NBT 0.429 3.01E-06 
 

NBT 0.932 8.42E-02 

IB [±45/0]S Error -0.39% 
  

[±30/0]S Error -0.14% 0.57% 

C4  
N9312c2 

FEA 0.892 1.31E-01 
 C33 

N6712c3 

FEA 1.421 1.23E-01 

NBT 0.890 1.32E-01 
 

NBT 1.419 1.25E-01 

[±30/0]S Error -0.23% 0.26% 
 

[±30/0]S Error -0.15% 1.02% 

C4 ib1 
N9312c2 

FEA 0.849 1.40E-01 
 C33 ib1 

N6712c3 

FEA 1.339 1.25E-01 

NBT 0.847 1.40E-01 
 

NBT 1.333 1.25E-01 

IB [±45/0]S Error -0.24% 0.02% 
 

IB [±45/0]S Error -0.44% 0.21% 

 

 All stiffness results are tabulated in Table 4.5 where orange highlights indicated 

predictions off by more than 5%. Stiffness results for NACA 0030 models with the 

symmetric geometry are in very good agreement between the FEA and Narrow Beam 

Theory Approach. Error in axial and bending stiffness in the flapwise direction, xD , and 

chord-wise direction, zD , are less than 4%. However, predictions for the bending 

coupling terms xzD with the NACA 9312 and the 3 inch chord NACA 6712 without I-
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beam have fairly high errors. All other cases have xzD predictions under 5.3%. The 

presence of an I-beam stiffener results in much lower errors in the xzD term. Note that 

the xzD term is actually an average of the calculated xzD and zxD terms found with FEA. 

NBT predicts only xzD and assumes zxD is equal. 

Table 4.5 Verification of Axial and Bending Stiffness NBT Predictions with FEA 

Case Method 
AE  

(lb-in) 
Dx  

(lb-in2) 
Dz  

(lb-in2) 
Dxz  

(lb-in2) 

C1  
N0030c1 

FEA 1,268,875 12,312 98,217 ~0 

NBT 1,271,555 12,341 98,735 
 

[0]6T Error 0.21% 0.23% 0.53% 
 

C1 ib2 
N0030c1 

FEA 1,702,321 16,012 105,367 ~0 

NBT 1,705,584 16,013 105,784 
 

IB = [0]6T Error 0.19% 0.01% 0.40% 
 

C2  
N0030c1 

FEA 784,745 7,636 60,277 ~0 

NBT 779,426 7,570 60,612 
 

[±30/0]S Error -0.68% -0.87% 0.55% 
 

C2 ib1 
N0030c1 

FEA 980,937 9,521 63,933 ~0 

NBT 972,376 9,179 63,929 
 

IB [±45/0]S Error -0.87% -3.59% -0.01% 
 

C21 
N0030c1 

FEA 143,423 1,505 11,711 ~0 

NBT 140479 1.45E+03 1.16E+04 
 

[±45]S Error -2.05% -3.84% -1.16% 
 

C4  
N9312c2 

FEA 1,468,249 12,098 406,872 6,518 

NBT 1,457,337 12,041 408,127 4,638 

[±30/0]S Error -0.74% -0.47% 0.31% -28.8% 

C4 ib1 
N9312c2 

FEA 1,793,400 14,416 427,493 8,460 

NBT 1,775,408 14,129 429,161 7,383 

IB [±45/0]S Error -1.00% -1.99% 0.39% -12.7% 

C30 
 N6712c1 

FEA 1,182,080 5,502 78,857 3,749 

NBT 1,183,571 5,689 81,817 3,913 

[0]6T Error 0.13% 3.38% 3.75% 4.38% 

C31  
N6712c1 

FEA 730,727 3,399 48,296 2,276 

NBT 724,988 3,465 50,116 2,397 

[±30/0]S Error -0.79% 1.95% 3.77% 5.30% 

C32  FEA 1,566,989 33,205 482,096 16,983 
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Case Method 
AE  

(lb-in) 
Dx  

(lb-in2) 
Dz  

(lb-in2) 
Dxz  

(lb-in2) 

N6712c2 NBT 1,555,492 33,629 493,112 17,682 

[±30/0]S Error -0.73% 1.28% 2.29% 4.12% 

C33 
N6712c3 

FEA 2,406,005 119,189 1,741,702 46,093 

NBT 2,386,208 121,046 1,777,674 56,108 

[±30/0]S Error -0.82% 1.56% 2.07% 21.7% 

C33 ib1 
N6712c3 

FEA 2,990,192 156,703 1,873,002 55,480 

NBT 2,957,515 154,242 1,888,476 57,273 

IB [±45/0]S Error -1.09% -1.57% 0.83% 3.23% 

 

  Stress results are much more agreeable in these cases. The stress results 

shown are the stress in the 1-2 material direction for each ply of a chosen laminate. In 

plots showing the airfoil skin, the upper and lower skin are shown in the same plot with 

the upper surface starting at the leading edge at a value of zero. A vertical black line 

indicates the location of the trailing edge where the lower surface stress plot starts and 

ends to the right which is back at the leading edge. The x-axis is the distance relative to 

the chord. Only unique ply angles are shown in the legend however all ply stresses are 

present in the plot. Typically, plies with the same angle in a laminate will have similar 

stresses. 
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Figure 4.12 Stress Comparisons of cases C33 and C4 under an applied axial load, xF  

Figure 4.12 shows a comparison of cases C33 (NACA 6721, [±30/0]S, chord 3”) 

and C4 (NACA 9312, [±30/0]S, chord 2”) under an applied axial load of 1 lb. The solid 

curves are the FEM stresses and the dotted curves with the asterix markers are created 

from the analytical theory. It is evident that there is very good agreement in the 1 2, ,   
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and 12  in-plane stresses when considering axial loading for these cases. This is typical 

for all axial loaded cases with unstiffened beams. 

For beams with I-beam stiffeners, there is a decrease in the FEM airfoil stress 

over the skin-I-beam interface. This is most noticeable in the transverse direction, 2 , 

with an axial load as shown in case C2ib1 (NACA 6721, [±30/0]S, chord 1”)  on the left 

in Figure 4.13. The pink regions show the location of the I-beam where the width 

represents the span of the flanges. The analytical results did not compensate for this 

stress change. However, the transverse stress case has the highest prediction error but 

the transverse stress is almost negligible compared to the longitudinal stress. 

In other loading cases, the change in stress over the airfoil skin, I-beam interface 

is not as pronounced. This is shown on the right in Figure 4.13 which shows C33ib1 

case (NACA 6721, [±30/0]S, chord 3”) under an xM applied load. 
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Figure 4.13 Stress discrepancies occurring over I-beam interface with airfoil 
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Figure 4.14 Comparing flap-wise moment induced stresses  

between cases C33ib1 and C4ib1 

 There is good agreement between the NBT and FEA stress results considering 

xM loading in cases C33ib1 (NACA 6721, [±30/0]S, chord 3”) and C4ib1 (NACA 9312, 

[±30/0]S, chord 2”). Again, there are slight prediction errors over the I-beam, airfoil skin 

interface but mainly with the transverse stress which is significantly lower than the 

longitudinal stress.  
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Figure 4.15 Comparing chord-wise moment induced stresses  

between cases C4 and C4ib1 

 Considering a load of zM , NBT predictions of stress are in good agreement with 

FEA stress results. By comparing the same model with and without an I-beam stiffener, 

stress level reductions can be noticed primarily in the primary material direction (
1 ) 

when using an I-beam.  
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 For design purposes, considering axial and bi-directional moment loads, an 

optimal location for the I-beam stiffener would be where there is maximum stress which 

is due to the xM load as seen in Figure 4.14. In this research however, the I-beam 

location was arbitrarily chosen and not optimized. 

 

Figure 4.16 I-beam stresses for case C2ib1 under axial applied load 

 Considering stress of the I-beam stiffener, there are good predictions by NBT in 

the longitudinal and shear stress states for top, bottom, and web members of the 
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stiffener under axial loading as in Figure 4.16. Prediction errors are evident in the 

transverse direction but again, theses stresses are negligible as compared to the 

longitudinal stress. 

 

Figure 4.17 I-beam stresses for case C4ib1 under applied flap-wise moment 

The prediction errors are again only notable in the transverse direction under a 

flap-wise applied moment as in Figure 4.17.  
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Figure 4.18 I-beam stresses for case C33ib1 under applied chord-wise moment 

 For I-beam stiffeners under a flap-wise applied moment as in Figure 4.18, 

prediction errors are again only notable in the transverse direction. 
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CHAPTER 5  

EXPERIMENTAL STUDY 

This chapter describes the fabrication of airfoil beam structures for bending test. 

Descriptions of test setup, test fixture and load application as well as data acquisitions 

are also included. The main purpose of this experimental study is used to validate the 

flapwise bending stiffness/ply stress of the composite airfoil that were obtained by the 

present method. This test is chosen since it is the primary load for wind turbine blades. 

Fabrication of coupons for material characterization and description of coupon test 

procedures as well as test results are given in Appendix C. 

The test to be performed on the experimental specimens is the flapwise bending 

test. This test is chosen since it is the primary load for wind turbine blades. 

 

FABRICATION OF COMPOSITE WINGS 

Material Used 

The label on the prepreg roll used for the airfoil skin of the first specimen is IM7-

G/8552, 35%, 380AW, 12”, FM 00. IM7 is a carbon fiber, 8552 is an epoxy which cures 

at 350oF, and 35% is the percent resin content in the prepreg thus there is 65% fiber 

content. The ‘380AW’ indicates the thickness and application of the composite. ‘AW’ 

most likely means All-Weather and the 380 represents a thickness of 14.6/1000 inches. 

The ‘FM 00’ indicates it is 2 plies of unidirectional plies. 12” is the width of the prepreg 

roll used. The manufacture date on the roll is Jan, 2010 thus a material characterization, 

which is described in Appendix C, was performed to check the properties. 
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Cutting Prepreg Material 

To avoid aging the prepreg material, 4 kits were cut at one time to minimize the 

time the roll is out of the freezer. When a kit comes out, it can defrost in about 1 hour 

when left outside the freezer. In comparison, a full prepreg reel can take 8 to 10 hours 

to defrost. 

Not all cuts were made for each kit thus allowing for changes if needed. For each 

kit, the 0, 90, and ±45 degree plies must be cut. Also, the ±45o leading edge strip must 

be cut, width = 2 inches. In fact, some of the kits were used to make test coupons since 

only 2 wings were made. 

The roll used was opened recently and each layer is two plies of 0 degrees at a 

one foot width. Material was pliable and in good condition. The zero degree plies are cut 

in 3 foot lengths.  

For specimen 1, the -+45o and 90o plies cut are in about 1 foot lengths so 3 cuts 

are placed together on the wing to make up one ply. The layup with -+45o plies is shown 

in Figure 5.1. 

For specimen 2, the 45o plies were left in 3 foot sections. Thus, the layup could 

not be a symmetric [±45/0]S since there is only one roll of ±45o and a 3 foot section of    

-+45o cannot be made with it. Also 3 foot sections of -+45o or 90o plies cannot be made 

from the 0o roll since it is one foot wide. Thus, specimen 2 uses an unsymmetric layup 

however each layer is continuous. 
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Figure 5.1 Layup of -+45 degree plies for specimen 1 

 

Mold Preparation 

The mold utilized is from the UTA Formula Car Team. The wing mold comes in 2 

halves, an upper and lower ‘clam-shell’ half. Each half is made out of aluminum. The 

length of the mold is 36.0 inches and the chord of the airfoil to be made is 4.88 inches.  

Material for top and bottom surface is 5 inch width for butted up ends at the leading 

edge. 

Mold surfaces which contact the composite must be wet-sanded smooth down to 

900 grit sand-paper although this is not done every time the mold is used. Mold 

surfaces are treated with a release agent. The release agent is similar to wax and helps 

the wing pop off the mold. 
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Layup Prior to Cure 

The top and bottom halves of the wing are laid up separately. Each wing half is 

laid up by placing prepreg plies against the shoulder at the trailing edge then working 

material to match the contour of the airfoil. Plastic tools are used to help eliminate voids.  

When laying up -+45o and 90o prepreg plies for specimen 1, 3 prepreg pieces are 

butted up together by overlapping them slightly. A major problem of voids comes from 

the overlapped 45 and 90 degree plies which necessitates that preceding layers are 

worked extra at these overlaps to create a smooth surface with minimal voids. 

Most material went over the leading edge plane so excess material is cut off by a 

razor blade. Some material is excess at the ends of the 3 foot length and this excess is 

also cut off by a razor blade. This finalizes the layup of each half of the airfoil. 

After laying up each half of the mold, a 2 inch wide leading edge strip was 

applied as seen in Figure 5.2. One inch of the leading edge strip is adhered to the 

leading edge of the top half or surface of the airfoil. Also on the top half, the Cytec FM 

300, a 350oF cure temperature film adhesive, is placed on the end of the trailing edge. 

This film adhesive helps to bond the two wing halves together at the trailing edge. A bag 

is made with double sided tape and placed in the top mold down the inner channel of 

the wing. This bag is wrapped with release film to help extract the bag once cured. 
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Figure 5.2 Leading edge strip used to attach the upper and lower surfaces 

The lower mold is placed on top of the top mold while making sure the other half 

of the leading edge strip is inside the 2 molds. Once the molds are placed together, the 

other half of the leading edge strip is adhered to the bottom half of the mold by use of a 

long ruler. Thus, the leading edge strip attaches the 2 mold together at the leading 

edge. 

Breather cloth is wrapped around the mold to allow excess resin to be soaked up 

and for pressure to access all areas of the bag. An outer bag is made which encloses 

the whole wing mold and breather cloth and makes a seal with the inner channel bag. 

Thus, the inner channel bag is open to the pressure inside the autoclave which then 

puts pressure on the leading edge strip to conform to the contour of the inner leading 

edge. 

 

During and After Cure 

The cure process is the same as used for the test coupons as described above. 

After cure, edges are wet sanded with 180 or 220 grit, then 320 grit sand-paper. Finer 
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grit is good to use but aesthetics is not a concern, rather safety in handling the wing is 

critical. There are many sharp edges due to flash after curing that can easily cut hands 

or leave long composite splinters. Care is taken to not sand down resin covering fibers. 

Care is also taken when wet sanding to not scratch or damage the surface of the wing 

as the wing is positioned in a sink over running water to wet-sand. 

 

Inspection 

Visual inspections were conducted to see if any surface wrinkle, fiber fraying or 

other defects occur.  No delamination inspection was conducted since the lab has the 

limited facility for detail damage inspection.  

After cure, warping is checked that is likely due to thermal stress caused by the 

difference in the stress free temperature (slightly below the cure temperature of 350oF) 

and the ambient temperature of 70oF. Warping of the specimens is measured by placing 

the wing on a flat surface, making contact with one end and one side edge. One corner 

will be raised. The raised distance is measure and divided by the length of 3.0 feet. 

 

SPECIFICS FOR EACH WING MADE 

General Notes 

After cure, warping is present which is likely due to thermal stress caused by the 

difference in the stress free temperature (slightly below the cure temperature of 350oF) 

and the ambient temperature of 70oF. Warping of the specimens is measured by placing 

the wing on a flat surface, making contact with one end and one side edge. One corner 

will be raised. The raised distance is measure and divided by the length of 3.0 feet. 
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The inner bag and release film is difficult to pull out thus is left in the wing since 

weight is not a concern. The inner bag and release film seems to be bonded inside the 

wing at the trailing edge and does not come free easily. The bag and film are cut back 

so they are not hanging out of the wing. 

The leading edge strip is [±45o ]T and is the same material as the skin. Plies for 

the top and bottom molds are cut to 5 inches width. 

The width of the specimen is measured from the leading edge to the end of the 

curvature at the trailing edge which forms a corner where some extra material comes 

out. 

 

Summary of Specimens 

Table 5.1 shows a summary of critical dimensions for each specimen. The details 

of each specimen will be described in the sections below. 

Table 5.1 Summary of Critical Dimensions for Specimens 

Specimen Skin Layup 
# of 
plies 

Width 
(in) 

Angle of 
twist 

(radians 
per foot) 

Average 
ply 

thickness 
(in) 

1 [±45/02/90]S 10 4.635 1.86 0.00695 

2 [+45/-45/02/+45/-45]T 6   4.637  0.0 0.00689 

 

 

Composite Wing #1 

Most plies had enough width to create a butted-end at leading edge between the 

2 halves. One 45o ply did not reach butted-end since it was cut probably not quite at 

45o. One 0o ply was miss cut by about an 1/8 inch at the end but the errant cut did cut 
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the material complete away so the small ‘sliver’ cut on the material was kept. However, 

when cured, the ‘sliver’ cut went between the 2 mold halves at the trailing edge and 

were present when the edge were sanded down and became deeply imbedded into my 

finger. Better to cut any hanging edges off the prepreg I think. 

Wing #1 shows small visible scratches on its surface after the wet sanding 

process. 

Prior to cure, the mold could not be pressed together. There was approximately a 

0.10 inch gap at the trailing edge and a 0.05 inch gap at the leading edge. After cure, 

the film adhesive had oozed out at the trailing edge and resin had escaped thru the 

leading edge gap which was only approximately 0.010 inches. The gap was likely due to 

the use of too many plies for the mold. Also, the internal vacuum bag could not be taken 

out from the cavity of the airfoil. 

The angle of twist per foot is 0.033 degrees or 1.86 radians.  

 The average ply thickness for the skin away from the leading edge strip is 0.0139 

inches. Thickness was measured at either end of the beam with average measurements 

of 0.0137 and 0.0141 inches for each end. Since the manufacturer’s cured thickness 

specification is 0.0146 inches, it appears some excess resin came out of the cure. After 

testing, the samples will be cut in 3 pieces and the thickness will be measured for each 

piece to check if the thickness is thin only at the ends of the 3 foot beam. 

 The trailing edge exhibits some cured plies where the gap between the 2 molds 

existed. This could be cut away with a Dremel diamond cutter. However, since the 

specimen will undergo a flapwise bending test and this extra material is located near the 

neutral axis thus won’t contribute much to the stiffness of the beam. Also, the airfoil 
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maybe weak at the trailing and leading edge so a little extra material at the trailing edge 

may help the wing stay together under load. 

 

Composite Wing #2 

Some plies did not reach the edges length-wise of the 3 foot mold by 

approximately 1/8 inch. This is not deemed important since the ends of the beam are 

clamped. The material was laid up and sat in the mold out of the cooler for 2 days. 

The leading edge strip consisted of 2 layers of ±45o strips, one 2.0 inches wide, 

the other 1.5 inches wide. They were laid up by tapering the plies with the 2.0 inch wide 

applied first. 

 The 2 mold halves fit together with little gap. After cure, the gap between the 

mold halves was almost nonexistent. There was little excessive resin out-flow 

noticeable. The internal vacuum bag could be taken out. 

 

FLAPWISE BENDING TEST FOR SPECIMENS 

To conduct the bending test, fixtures were fabricated to fix the beam at one end 

and enable loading at the other. Also, an apparatus was made to load the cantilevered 

beam. 

 

Test Preparation, Fixtures 

To save on time and money, the fixtures for are made out of ABS by a 3D printer. 

The airfoil shape that the mold creates is confidential information to the UTA Formula 

Car Team. Thus, the airfoil designation is unknown. The airfoil shape then is determined 
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by tracing the airfoil cross-section of specimen 1 on to paper and scanning it into a jpeg 

file, converting it to data points, then use MATLAB to convert the data points to an airfoil 

curve again to enable changes to the data. MATLAB was used to separate the airfoil 

cross-section into 2D upper and lower clamps. Also, since ABS is chosen as the 

material, there will be little friction to hold the beam in the fixtures. Thus, for specimen 1, 

a silicon gasket is used to fit between the composite airfoil and the fixtures. MATLAB is 

then also used to provide room for the silicon gasket material. For specimen 2, thin 

double sided tap was placed on the lower half of the fixed clamp. 

Once the general clamp was formed in MATLAB, CATIA is used to make the 

clamps in 3D with bolt holes. Thin prototypes are then made to check the fit of the 

clamp and the airfoil specimen. Figure 5.3 on the left shows a prototype of the bottom 

clamp ready to be made on a Makerbot 3D printer. The prototypes were made at a 10% 

to 50% fill as shown in Figure 5.2 on the right. 

 

Figure 5.3 Prototype model of lower clamp on left and start of 3D build  

using 50% fill on the right 
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 The prototypes were fit checked mainly by using pieces of paper, each at a 

thickness of 0.004 inches, to estimate the gap between the clamp and airfoil profile. 

This process is shown in Figure 5.4. Changes were made in CATIA and a new 

prototype would be made and again fit checked. In total, for specimen 1,about 7 

prototypes were made to ensure an even fit along the contour. Since specimen 2’s fixed 

clamp use a thin adhesive instead of silicon, the initial prototype was already a close fit 

to the airfoil and less prototypes were made. 

 

Figure 5.4 Checking specimen 1fixture prototype fit with paper shims 

 The fixed end clamp is mounted to a wood panel to allow it to be firmly clamped 

to a table as seen in Figure 5.5. Figure 5.6 shows how the fixed end clamp is mounted 

to a table top. 
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Figure 5.5 Fixed end clamp 

 

Figure 5.6 Fixed end clamped to table top 

 The load fixture is shown in Figure 5.7 where the beam with the vacuum bag and 

silicon gasket are shown. Both wing specimens used the same load clamp. In this 

fixture, the upper clamp is made to extend 3/4 of an inch past the lower clamp. The 

beam extends to the length of the lower clamp, thus allowing an overhang of the upper 
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clamp. On the top of the upper clamp is a 2 inch long and 1/4 inch wide slot to allow a 

cable to pass through which is used to attach weight as seen in Figure 5.8. The steel 

cable, 3/16 inch diameter, runs just in front of the beam thus applying a vertical shear 

force to the beam. Notice that the washer making contact with the fixture is knurled and 

fixture is scratched up around the slot to create friction at their interface to prevent 

slippage. 

 

Figure 5.7 Load fixture 
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Figure 5.8 Load fixture, upper clamp 

The cable ends are clamped with a type of u-bolt. The lower end of the cable 

runs through the center of a 2 inch pipe as seen in Figure 5.9. Weights can be added 

onto the pipe to exert a vertical shear load on the beam. 



 

126 

 

Figure 5.9 Test setup 

  

Test Preparation, Measuring Devices 

Strain is measured from the beam with linear strain gages. 3 strain gages are 

used with wing 1, one on the top side of the airfoil and the other 2 located on the bottom 

side of the airfoil. Figure 5.10 shows these strain gages. Wing 2 used 2 strain gages on 

the top and bottom surface of the wing. 
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Figure 5.10 Strain gages used on specimen 1 

The strain gages are attached to a D4 Data Acquisition Conditioner which is then 

fed to a computer to Micro-Measurements software to read the strain gages. 

The end displacement is also measured at either side of the load fixture by use of 

spring loaded dial gages. The setup with these dial gages is seen in Figure 5.11. 

 

Figure 5.11 End displacement dial gages 
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The setup on the left of Figure 5.11 was used at first with specimen 1. However it 

was noticed that the pneumatic platform that the gages were attached to was causing 

sudden increases of deflection as measured by the gages. Thus, the gages were 

mounted on a fixed table which gave more reliable readings however a slight strain rate 

effect was still noticed which caused an approximate deflection of 0.005 inches per 

minute. The silicon gasket was suspect to produce this deflection thus a new fixed end 

bracket was made for specimen 2. Also for specimen 2, the dial gages were placed 

directly on the composite wing at 20 inches from the fixed end of the beam which is 

nearest the fixed clamp. This can be seen in Figure 5.12. 

 

Figure 5.12 Placement of dial gages for specimen 2 

  

Flapwise Bending Test of Specimens 

Load was applied in 2.5 pound increments by placing weight lifting plates on the 

pipe on either side of the cable. Figure 5.13 shows the maximum applied load for 
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specimen 1. The total load is the plate weight plus the weight of the load fixture with 

cable and pipe which is 5.48 lbs. The weight of the wing specimen and half of the strain 

cables is 1.75 lbs and its resultant acts at the center length of the beam thus half this 

weight is added to the end of the beam load since a flapwise bending moment is 

considered. Although the vertical load applies a shear force and moment to the beam, 

the maximum shear load is 66.4 lbs and the maximum moment is 1,991 in-lb thus the 

shear load is considered to be negligible. 

 

Figure 5.13 Maximum applied load to specimen 1 

 During the test a few issues were noticed that could affect the bending rigidity 

calculations. The main issue is the compression of the silicon gasket. The design of the 

fixed end fixture did not allow one to tighten the bolts very much thus the silicon gasket 

was not compressed much. This allows the blade to start curvature inside the fixed end 

fixture as seen in Figure 5.14. The second end clamp design corrected this problem and 

was used on specimen 2. 

 Even after using a fixed table to mount the dial gages, a slight strain rate effect 

was noticed which may have resulted in displacement varying down with time. When 
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running the second sample, a strain rate effect of approximately 0.004 inch/1000 was 

still noticed even though no silicon was used on the fixed end. Thus, a second run was 

made with the second wing where measurements were taken more quickly and the time 

between load intervals was decreased. 

 

Figure 5.14 Fixed end allowing curavture of the wing 

 Another issue included a slight curvature of the fixed end fixture which probably 

affected the deflection readings on the dial gages. To improve on this, specimen 2 used 

a tight fitting fixed clamp with only a thin layer of double sided tape on one surface. 

Also, inserts were placed into specimen 2 to fill the cavity of the airfoil which is inside 

the fixed clamps. These inserts can be seen in Figure 5.15. The inserts consisted of 3 

pieces which were fitted tightly inside the airfoil. 
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Figure 5.15 End inserts used for specimen 2 

 

COMPARISON OF EXPERIMENTAL RESULTS TO ANALYTICAL AND FEA RESULTS 

Flap-wise Bending Stiffness 

Sample 1 produced the flap-wise bending stiffness results as shown in Figure 

5.16. The bending stiffness is in increments based on the step-wise loading. xD is 

calculated for every 2.5 lbs loaded. The beginning of the loading produced very irregular 

xD values thus the 3rd xD value to the end is averaged and compared to the analytical 

values. 
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Figure 5.16 Incremental flap-wise bending stiffness plot of sample 1 

 Figure 5.17 shows the xD plot for 2 runs of sample 2. All data points from both 

runs are used to find an average xD value. Note that run 2 was made at a faster pace 

than run 1 to try to alleviate any strain rate effects. 

 

Figure 5.17 Incremental flap-wise bending stiffness plot of sample 2 
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 Table 5.2 shows the comparison of the experimental xD results with the xD found 

with the analytical method. For the NBT analysis, material properties used are 

presented in Table C.4 which are from volumetric averaging. 

Table 5.2 Comparison of Flap-wise Bending Findings 

Results of Flap-wise Bending, Dx 

Method Wing 1 Wing 2 

NBT 687,194 286,801 

Experimental, run 1 390,334 184,941 

Differ from FEM -43.2% -35.5% 

Experimental, run 2 
 

190,044 

Differ from FEM 
 

-33.6% 

 The experimental results of flap-wise bending stiffness of specimen 1 and 

specimen 2 are very poor.  

Despite the quicker pace run for specimen 2, run 2, the bending stiffness only 

increased 3.0%. Thus, the strain rate effect does not appear to affect the bending 

stiffness results with specimen 2 much. However, specimen 1 is probably affected by 

the use of the silicon gasket. The use of wood for the bottom bracket at the fixed end 

could be a reason for the strain rate effect also. The bolts that held the clamp to the 

wood noticeably compressed the wood, allowing the wing to curve down more.  

Improved xD experimental results using Wing 2 are probably due to the 

continuous layup used, not using the silicon gasket in the fixed end clamp, and using 3D 

printed ABS inserts in the airfoil at the fixed end. Further improvements could be to 

replace the wood base with an ABS plastic or aluminum material. Also, the airfoil at the 

fixed end should be potted to make the fixed end of the airfoil specimen more rigid. 
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Analysis of Longitudinal Strain on Select Points on Outer Surface of Airfoil 

Outer ply longitudinal strain was measured by the strain gages on the outer 

surface of the airfoils close to points which yield maximum strain. Gage locations were 

measured and longitudinal strain predictions were obtained from approximately the 

same positions. 

 Specimen 2 results are compared to results obtained from Narrow Beam Theory 

using the same airfoil cross-section and material properties obtained from Table C.4. 

Figure 5.18 compares the longitudinal strain on the upper surface of wing specimen 2 

near the highest point relative to the chord where the strain gage is located. As shown, 

NBT predicts a higher longitudinal strain than found experimentally. These curves are 

nearly identical with run 1 and run 2 for specimen 2. 
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Figure 5.18 Longitudinal strain readings from the upper airfoil surface strain gage and 

NBT predictions, specimen 2, run 1 

Figure 5.19 compares the longitudinal strain on the lower surface of wing 

specimen 2 near the lowest point relative to the chord where the strain gage is located. 

As shown, NBT again predicts a higher longitudinal strain than found experimentally. 

These curves are nearly identical with run 1 and run 2 for specimen 2. Note that strain 

gage data is much more consistent than the dial gage data used to determine the flap-

wise bending stiffness. 
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Figure 5.19 Longitudinal strain readings from the lower airfoil surface strain gage and 

NBT predictions, specimen 2, run 2 

Table 5.3 gives the percentage difference between the experimental longitudinal 

strain readings and those calculated by NBT. All reading in Table 5.3 come from 

specimen 2. For example, at the moment of 1091 in-lbs, NBT predictions for longitudinal 

strain are 36% greater than the experimental readings. 

Table 5.3 Longitudinal strain comparisons between experimental readings 

 and NBT predictions on bending test of specimen 2 

 Specimen 2 run 1 run 2 run 2 

Moment (lb-in) Upper surface Upper surface Lower surface 

143 70% 54% 53% 

242 53% 48% 45% 

341 45% 42% 39% 

416 42% 38% 35% 

491 40% 38% 35% 
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 Specimen 2 run 1 run 2 run 2 

Moment (lb-in) Upper surface Upper surface Lower surface 

566 39% 37% 34% 

641 37% 35% 32% 

716 36% 35% 31% 

791 36% 35% 31% 

866 36% 35% 31% 

941 34% 34% 30% 

1016 34% 34% 30% 

1091 36% 36% 31% 

 

 The differences between NBT and the experimental data on the longitudinal 

strain are similar to the differences in the flap-wise bending results. An FEA model was 

run using the experimental beam model with manufacturer’s properties and there was 

good agreement with NBT on bending stiffness. Also, the airfoil cases run in this 

research show that NBT is in close agreement with FEA results. Thus, it is suspected 

that the experimental wing is giving inaccurate results. Some experimental test issues 

have been identified such as the wood base and the fixed end inserts. Other issues 

could be that the composite material is old and the wing design is made in two parts. 
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CHAPTER 6  

CONCLUSION AND FUTURE RECOMMENDATIONS 

A semi-closed form solution is developed based on Narrow Beam Theory to 

analyze airfoil cross-sectional beams with and without an I-beam stiffener under axial 

and bi-directional moments. The solution is based on a discrete element approach 

which can be applied to any airfoil profile. Only a single line profile is needed to conduct 

this analysis thus is advantageous over the Finite Element Method especially in an early 

design phase of a project. Despite the simplicity of this method, accurate ply stresses 

over approximately the full cross-sectional field can be obtained. Centroid, axial 

stiffness, and flap-wise and chord-wise bending stiffnesses are accurately determined 

for symmetric laminates and symmetric and non-symmetric airfoil geometries. The 

bending coupling stiffness term is also obtained with some prediction errors for airfoils 

without stiffeners. However, with the use of stiffeners in these airfoils, the bending 

coupling term prediction is mostly acceptable. 

An experimental test was fabricated and conducted to measure flap-wise 

bending tests and take strain readings on an approximately 5 inch chord airfoil beam. 

Two good quality airfoil samples were manufactured and tested. Results were obtained 

and compared to analytical predictions made by this modified Narrow Beam Theory. 

Differences of 30% or more were found for both flap-wise bending stiffness and 

longitudinal strain. Possible reasons for these discrepancies are the manufacture of the 

experimental wing and the age of the material used. The wing is laid up in 2 sections 

and cured together with adhesive on the trailing edge and composite leading edge 
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strips. The material is 5.5 years old so a material characterization study was made but 

did not yield dependable data. NBT results have good agreement with FEA thus the 

experimental data seems suspect. 

An analysis of equivalent properties for lamina, laminate and I-beams is 

conducted to gain an understanding of Narrow Beam Theory and develop MATLAB 

code to conduct analyses, facilitate creating, running, and post processing of ANSYS 

models. An approximate full-field cross-sectional stress analysis in the material’s 

principal coordinate system is created and a thorough I-beam analysis of symmetric, 

unsymmetric, and unbalanced layups composed of 0o, 90 o, and 45 o plies was 

performed. Centroid and axial and bending stiffnesses are determined with Narrow 

Beam Analyses which outperforms conventional analyses. Stress predictions from NBT 

are very accurate under applied loads with rigid cross-sections with few exceptions. 

Stress predictions from applied loads on a free end with the RBE3 constraint are more 

challenging especially concerning 
zM  moments and some poor predictions were noted. 

A detailed summary of equivalent property modified method and the I-beam analysis is 

found at the end of Chapter 2. 

It is concluded that the developed novel analytical method can be used in the 

evaluation of axial and bi-directional bending stiffness of composite beams with airfoil 

cross-section with and without stiffeners, performing parametric study in preliminary 

design stage, as well as optimize designs. 
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FUTURE RECOMMENDATIONS 

Based on this research and the success of the modified Narrow Beam Theory, 

the following work is recommended as a continuation of this research. 

 

Airfoil Analyses 

 A closed form solution could be developed by considering the airfoil profile 

as a curve and integrating over the length of the curve. 

 Various stiffeners could be explored to be coupled with airfoils to compare 

which performs better in defined conditions. 

 Stiffener position and layups could be optimized. 

 Torsion should be studied first at the shear center to decouple it from 

moments then at the centroid to merge it with axial, and bi-directional 

moment loads. 

 Airfoils with various laminates could be studied such as using a different 

laminate for the upper and lower surface or making a fiberglass beam with 

carbon-epoxy flange I-beams. 

 An analysis of a tapered and rotated airfoil beam could be conducted. 

Different thicknesses could be modeled considering a long beam such as 

a wind turbine blade. A method to couple cross-section analyses would 

need to be developed such as treating attachments to sections as springs 

and dampeners. 

 Thermal analyses could be performed using NBT on airfoil beams. 
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 Larger chord beams should be studied and compared to literature. FEA 

comparisons could also be made by using shell elements. If shell 

elements are used, an analysis could be made to see if it yields similar 

stress and strains to brick elements. 

 Consider using layered brick elements to reduce the size of the FEA 

model. 

 

Experimental Study 

 Make an aluminum base to mount the fixed end to the table. The wood 

base use in this research seemed to cause problems. 

 Consider constructing a one piece airfoil with a removable inner mold. 

This may allow a better comparison to the analytical analysis. 

 Narrow Beam Theory appears to yield better predictions with stiffened 

airfoils. An airfoil with a stiffener could be tested. 

 A torsion test could be conducted perhaps with use of a torque wrench. 

  



 

142 

APPENDIX A 

REVIEW OF NARROW BEAM THEORY FOR I-BEAMS 



 

143 

This method applies to I-beams made of straight members. The I-beam is 

composed of 3 laminate members as shown in Figure A.1, labeled ‘f1’ for the top flange, 

‘w’ for the web, and ‘f2’ for the bottom flange.  The ABD matrix is found in each laminate 

member by use of Classical Lamination Theory then Narrow Beam Theory is used to 

find the centroid, stiffnesses, and strains and stresses of the entire I-beam as discussed 

below. 

 

Figure A.1 Composite I-beam cross-section geometry with straight members. Member 

‘f1’ is the top flange, ‘w’ is the web, and ‘f2’ is the bottom flange. 

 To analyze a composite I-beam, the Narrow Beam assumption is made which 

was developed by Parambil and Chan in 2011 (33).  In this assumption, the beam is 

treated as one-dimensional in the x-direction. Normally, the narrow beam assumption is 

valid when the depth (z-direction) over width (y-direction) ratio is 6 or greater. 
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An illustration of a narrow beam, first undeformed, then under a bending load, 

xM , is shown in Figure 2.13. A reduced 2x2 stiffness matrix is obtained using Narrow 

Beam Assumptions for each member of the I-beam as shown in Chapter 2 with 

equations 2-52 through 2-57. The reduced stiffness matrix is thus: 
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(A-1) 

 

CENTROID OF I-BEAM 

The centroid, or location of the neutral axis, is important because it decouples 

axial and bending stresses and strains.  If an axial load is applied at the centroid, there 

is no bending and vice-versa.  For isotropic material, the centroid is dependent on only 

the cross-sectional geometry of the beam. For a laminated composite material, the 

centroid is dependent on the geometry as well as the stacking sequence and material 

constants. 

The centroid is the location where a resultant axial force will be equal to 

distributed axial forces applied to each laminate member. Figure A.2 illustrates this 

concept where the axial loads acting at the centroid of each laminate are noted by ,x iN  

which are load per unit length of laminate ' 'i  . The magnitude of the resultant force, xN , 
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over the whole I-beam structure (as noted by the bar over the N ) is the sum of each 

,x iN  times the respective laminate width. 

 

Figure A.2 Net forces acting on the centroid of each member 

The distances z1, z2, and z3 are from the centroid of each laminate member to 

the y-axis. To find the centroid of each laminate, set , 0x iM   and apply ,x iN  at the 

midplane of laminate ' 'i . Equation A-1, which finds the strains about the midplane, is 

applied yielding, 
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Considering the strain about the centroid of the laminate, x ,  
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where  is the distance from the midplane to the centroid for a laminate member. 

Note that for this I-beam, there is symmetry about the z-axis.  Thus, only the 

centroid in the z-direction needs to be determined, defined by cZ .  The centroid is found 

by taking a moment equilibrium about the y-axis as follows: 
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 (A-4) 

where ib  is the width of each laminate (for the web (hw), this is in the z-direction), and 

iz is the distance from the bottom of the lower flange (y-axis) to the centroid of each 

laminate member as seen in Figure A.2.  

The forces, ,x iN , can be written in terms of the strain and curvature using the 

*

iABD matrix in equation A-1.  Note that the forces ,x iN  are applied to the centroid of 

each laminate thus there is no curvature about that individual laminate so , 0o

x ik  , as 

shown in equation A-5. Expanding equation A-4 by subbing in equation A-5, cZ  is found 

in equation A-6.  
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Note that the centroid relative to the z-axis can also be obtained for unsymmetric 

I-beam geometries using a similar approach with cZ . The resulting equation is: 
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EQUIVALENT STIFFNESS OF I-BEAM  

 Stiffness is important since stiffness can be used to derive the stress and strain 

of the material. Using the narrow beam assumption to relate stress to strain, an 

equivalent stiffness for the entire structure can be found.  Stiffness or rigidity is a 

measure of a material’s resistance to various deformations.  A material exhibits axial, 

bending, shear and torsional stiffness depending on the loading condition.  Here, only 

loads , ,  and x x zN M M  are considered.  

 Axial stiffness of the entire structure, EA , relates a pure axial load located at the 

centroid of the structure, 
xN ,  to axial strain that is produced. A pure axial load is placed 

at the structure’s centroid where no moment is induced. Structural bending stiffnesses, 

xD and zD , relate a pure moments, xM or zM , with curvature in that direction.  

Structural bending coupling, xzD , is also considered.  

Loads are shown in Figure A.3. The orientation of the moments using composite 

lamination theory is such that the resultant tensile stresses produced are on the positive 

side of the respective axis. For example, zM is oriented in the negative z-direction since 

it produces a tensile stress in the positive y-direction. xM , which is in the positive 

direction about the y-axis, produces tensile loads in the positive z-direction. 
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Figure A.3 Loads considered for structural stiffness 

The governing equation for the structure relating the considered loads to strains 

and curvatures is:  
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EQUIVALENT AXIAL STIFFNESS 

 The equivalent axial stiffness of an I-beam relates a centroid located axial load to 

axial strain.  Only an axial load applied at the centroid is used to find the axial stiffness.  

Pure moments do not produce axial strains. The relationship was utilized in equation A-

5 and is displayed again in equation A-9. 

 

* * *

,f1 f1 ,f2 f2 ,w w

* * *

,f1 f1 ,f2 f2 ,w w

( h )

h

c

x x x x x

x
x x xc

x

N A b A b A

N
EA A b A b A





  

   
. (A-9) 



 

149 

EQUIVALENT BI-DIRECTIONAL BENDING STIFFNESS 

 From equation A-8, bending stiffness xD  can be written as follows, 

 c c c
x x x xz z x xM D k D k D k   . (A-10) 

When xM  is applied, it is assumed that curvature about the z-axis, c
zk , is very small as 

compared to curvature about the y-axis, c
xk . Thus, c

zk  is assumed to be equal to zero in 

equation A-10. The goal from equation A-10 is to find a relationship between xM  and 

c
xk  in terms of material properties found in the *

iABD matrix to find the stiffnesses. 

 xM is the resultant moment on the structure. This can be broken down into 

moments from each member about the y-axis passing. Thus, for each member, the total 

moment and normal force times moment arm to the centroid affects the moment about 

the centroid of the structure. Considering both ,x iM  and ,x iN  on only the flanges, the 

following equation can be obtained for the resultant moment about the I-beam centroid. 

    ,f1,f2 f1 ,f1 1 ,f1 f2 ,f2 2 ,f2x x c x x c xM b M z N b M z N    . (A-11) 

Now considering only the top flange member, using equation A-1 from Narrow Beam 

Theory, , 1x fM  and , 1x fN  can be written in terms of material properties and substituted 

in equation A-11 as follows, 

   * * * *
,f1 f1 f1 ,f1 f1 ,f1 1 f1 ,f1 f1 ,f1

o o
x x x c x xM b B D k z A B k     . (A-12) 

 



 

150 

  ( 0-1 ) 

where 
1cz  is the distance from the top flange centroid to the centroid of the I-beam as 

seen in Figure A-1. 

Using Classical Lamination Theory, strain and curvature are related through a 

first order, or linear, warping.  About the mid-plane of the top flange, this relationship is: 

 
0

,f1 1 1

c c c

x x c x c zz k y k    . (A-13) 

where 1cy is the distance from the mid-width of the flange to the centroid of the I-beam 

as seen in Figure A-1. However, after applying only a resultant ,f1xM about the midplane 

of flange 1, there is no axial strain at the centroid of the I-beam, 0c

x  .  As stated 

above, curvature about the z-axis is neglected so 0.c

zk    Note that curvature c

xk is linear 

(in the y-direction) over the whole cross section.  Applying these conditions to equation 

A-13, 
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c

x c xz k  . (A-14) 

and plugging into equation A-12, 
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Note that the term in the parentheses in equation A-15 is similar to the parallel axis 

theorem. This is true for a laminate that is aligned horizontally with the centroidal axes. 

Similarily, for the bottom flange, 



 

151 

  * 2 * *
,f2 f2 f2 2 f2 2 f22 .c

x x c cM b k A z B z D   . (A-16) 

 Bending of the web, ,wxM , only considers the normal force, ,wxN , acting on the 

centroid of the web. The normal force on the web though is treated as a distributed load 

along the length of the web in equation A-17. 
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The limits on the integral represent the moment arms of ,wxN   about the centroid of the 

I-beam.  Figure A-4 illustrates these moment arms. 

 

Figure A.4 Moment arms for web normal force ,wxN   about I-beam centroid 

Integrating and converting ,wxN to strain and curvature using the *

wABD  matrix 

shown in equation A-1, the following equation is obtained. 
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. (A-18) 
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Summing up equations A-15, A-16, and A-18, the total moment, xM , about the I-beam 

centroid is: 
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. (A-19) 

Applying equation A-10, the bending stiffness xD is found to be: 
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. (A-20) 

Bending stiffness about the z-axis, zD , is found in a similar manner by applying ,z iM  

and ,x iN  at each member and finding the resultant moment, zM . The resulting 

equation is shown below. 
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. (A-21) 

 

EQUIVALENT BENDING STIFFNESS, xzD  

xzD is the coupling between moments in the x and z direction. Equation A-8 can 

be used to derive xzD  starting with: 
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1 1 1 1 1 2 2 2 2 2xz f f f f f f f f f f w w w w wD b A z B y b A z B y A y B h z      . (A-23) 

 

 

STRAINS AND STRESSES 

 Once the stiffness components of the I-beam are known, the strain and curvature 

at the I-beam’s centroid can be found using equation A-8 as follows: 
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(A-24) 

The force and moments are actually summations of the mechanical and hygrothermal 

loads on the structure thus the superscript ‘ total ’. Note, the bar represents something 

applied to the whole structure. For example, in the case of the thermal load on the 

structure in the x-direction,  , 1 , 2 ,

T T T T
x x f x f x wN N N N   . 

The superscript ' 'T  indicates thermally induced loads and ' 'H  indicates 

hygroscopic or moisture induced loads. Thermally induced loads occur when there is a 

temperature difference  dT   between the service temperature and the stress free 

temperature which for composites is slightly less than the curing temperature. 
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Hygroscopic induced loads are caused by moisture absorption after the curing process 

 dC   which causes the composite to expand. Thus, the strain and curvature at the 

centroid of the I-beam represents the deformation due to the combined mechanical and 

hygrothermal loading. However, provided that the structure is free to deform, the 

hygrothermal loads do not cause additional stress due to hygrothermal induced 

deformation. Hygrothermal loads do induce stresses within the laminate caused by 

adjacent ply hygrothermal expansion differences. 

The structural strain and curvature can then be translated to each laminate 

member. First, the axial strain in the x-direction of each laminate is found using, 

 , , ,
o c c c
x i x i c x i c zz k y k    . (A-25) 

For the case of a geometrically symmetric I-beam, , 0i cy  . Since curvature is assumed 

to be linear, ,
c

i x xk k  for each laminate member. Also, it is assumed that twisting 

curvature is negligible, thus , 0i xyk  . This is assumed because the web supports the 

flanges and inhibits twisting of the I-beam. Equation A-25 applies to laminates in 

structures that are horizontally oriented as the case with the two flanges of an I-beam. 

The web of the I-beam however is vertically oriented and requires switching ,w cz  with 

,w cy  in equation A-25. Thus, the mid-plane strain, curvature, and loads on each 

laminate of the symmetric I-beam structure can be found using,  
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where the bolded variables, , ,, ,  o c
x i x xy ik k , are known values and i= f1,f2, and w (top 

flange, bottom flange, and web). Thus, there are six equations and six unknowns so the 

unknowns can be solved for.  

 Strains on the surface of each ply of each laminate member can be found using, 
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Stresses in the global direction (x-y) at each ply surface can also be found using, 

 

, , ,,

, , , ,

, , , ,

x i x i x ix i

y i y i y i y ix y k

xy i xy i xy i xy ik k

T C

Q T C

T C

  

   

   



       
                

   
          

. (A-28) 

The CTE and CHE’s come from the Modified Method, equations 2-49. The 

hygrothermal effects are subtracted from the strains at each ply surface since these 

strains are due to both mechanical and hygrothermal loads. In effect, if there are no 

mechanical loads, hygrothermal effects would cause ply stresses based on the 
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difference between the structural deformation minus the hygrothermal expansion at that 

point in the laminate. These equations find strains and stresses at the ply surface only. 

Stress can then be found in the material direction (1-2) as follows, 
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APPENDIX B  

STRESS PLOTS OF I-BEAM MODELS 
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The following plots are the stress plots of all I-beam cases studied with a length 

of 6 inches. In all plots, the solid stress curves are from the FEA analysis and the dotted 

stress curves are from Narrow Beam Theory. Note that theses plots use the term 

“Modified” which refers to the NBT. There are 3 columns in each plot to show the stress 

in each I-beam member, from top flange, web, and bottom flange. The 3 rows in each 

plot are the principal material stresses starting with 1 , then 2 , and 12 . Note that the 

stress range on the y-axis varies for each member. The x-axis shows the width of the 

corresponding member. For the web, the x-axis is zero at the bottom flange interface 

and increases to the top flange interface.  

The legend gives a unique color to each ply angle used in the laminate member. 

Note that the ply angle often occurs more than once in a layup such as for [ 45 / 0 / 90]S   

and there are separate curves for each layer. However, these plots do not distinguish 

which ply a certain curve is from. In many cases, the stress from one angle ply is very 

similar to the stress of the same ply angle but at a different height in the layup. 

The title to the left indicates the load ( xF , xM , zM , and x x zF M M ), I-beam model, 

tall (L112) or short (L1052) model, the aspect ratio for width to thickness (i.e. A20) and 

length to thickness (i.e. R25), and the constraint type for the load. The loads used are 

xF = 1 lb, xM = 1 lb-in, and zM = 1 lb-in. 

The plots are grouped first by web height (tall then short model), then by 

constraint (CERIG then RBE3), then by load ( xF , xM , zM , and x x zF M M ), and finally by 

layup type (sym&bal, unsym&bal, sym&unbal, and unsym&unbal). 
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Figure B.1 Stress plots of tall, CERIG model under axial load 
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Figure B.2 Stress plots of tall, CERIG model under xM load 
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Figure B.3 Stress plots of tall, CERIG model under zM load 
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Figure B.4 Stress plots of tall, CERIG model under combined load 
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Figure B.5 Stress plots of tall, RBE3 model under axial load 
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Figure B.6 Stress plots of tall, RBE3 model under xM load 
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Figure B.7 Stress plots of tall, RBE3 model under zM load 
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Figure B.8 Stress plots of tall, RBE3 model under axial load 
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Figure B.9 Stress plots of short, CERIG model under axial load 
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Figure B.10 Stress plots of short, CERIG model under xM load 
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Figure B.11 Stress plots of short, CERIG model under zM load 
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Figure B.12 Stress plots of short, CERIG model under combined load 
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APPENDIX C  

MATERIAL CHARACTERIZATION FOR EXPERIMENTAL STUDY 
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Material used for the experimental study is characterized to check its properties 

against published data. The goal is to use the current properties found with the material 

characterization in the analytical and FEA analysis to conduct a correct comparison of 

flap-wise bending results with the experimental study.  

 

FABRICATION OF COMPOSITE MATERIAL SAMPLES 

Basic material properties are sought after which are the in-plane longitudinal and 

transverse elastic modulus, Poisson’s ratio, and in-plane shear modulus. To test for 

these, the following coupons were made per ASTM standards. Material used was IM7-

G/8552 which has a date of manufacture of January 2010. The manufacturer’s prepreg 

storage life in freezer conditions for 8552 epoxy is 12 months [46]. 

 2 rolls were used, one unidirectional and one [±45o]. Each roll was 1 foot in 

width. The same rolls are used for the wing fabrication and are discussed in more detail 

in that section. 

Table C.1 Samples Tested for Material Characterization 

Property Layup # samples Width (in) Length (in) 

E1, v12 [0]8T 3 0.5 9 

E2 [90]8T 3 1 9 

G12 [±45]4S 3 1 9 

 

Dimensions for each sample were checked and results are in Table C.2. 
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Table C.2 Measurement of Samples 

Sample Width (in/k)     Thick (in/k)     

measurement# 1 2 3 Avg 1 2 3 Avg 

0 deg A 486 489 487 487.3 56 55 55.5 55.5 

0 deg B 488 489 487.5 488.2 58 57 56.5 57.2 

0 deg C 486 488 487.5 487.2 57.5 57.5 58 57.7 

                  

45 deg A 1007 1011 1008 1008.7 55 54.5 54 54.5 

45 deg B 1014 1009 1009 1010.7 58 58.5 58 58.2 

45 deg C 1003 1002 1003 1002.7 58 58 58.5 58.2 

                  

90 deg A 1013 1019 1022 1018.0 57 55.5 57.5 56.7 

90 deg B 1014 1014 1015.5 1014.5 56.5 57 57 56.8 

90 deg C 1018 1015 1015.5 1016.2 56.5 57 57 56.8 

 

12x12 inch sample panels were laid up on one 3x1 foot aluminum panel which 

was 3/8 inch thick. A thin release film is first placed on the aluminum mold panel and 

wrapped over the composite panels after laid up. This is used so the composite panels 

do not stick to the mold or other material. The sample panels were placed side by side 

to fit on the panel. Once laid up, breather cloth is placed on top and a vacuum bag is 

placed and sealed around the whole mold with an air valve place on top where there is 

extra padding. 

An autoclave is used to cure the samples. Program 3 is selected on the 

autoclave which is preprogrammed to cure the 8552 epoxy. The cure cycle is shown in 

Figure C.1 below. This includes a pre-soak temperature at 225oF, a 2 hour constant 

temperature at 350oF. The entire cycle takes approximately 5 hours. 

Once the mold is placed into the autoclave, an air pressure line is connected 

from the autoclave to the vacuum bag to maintain a vacuum. This is until the pressure in 
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the autoclave reaches 30 psig. The autoclave applies a pressure on the mold during the 

whole cure. 

 

Figure C.1 Cure cycle for 8552 Epoxy 

 After the panels cured, resin flowed between them thus adhering the 12x12 inch 

panels together. A band saw was used to cut the 3 samples apart. A diamond 

embedded wet saw was then used on each 12x12 inch panel to cut the samples to the 

proper dimensions noted in Table C.1.  

After cutting the composite samples, aluminum end tabs, 1.5 inches in length, 

were made and adhered to the ends of the samples with room temperature cure film 

adhesive. Next, Micro-Measurement strain gages were adhered to each of the [0]8T and 

[±45]4S samples in the transverse direction. Cables were attached to the gages with 

solder pads to provide a stress relief. For longitudinal strain, an Epsilon extensometer is 

used. Prior to testing the samples a visual inspection is made of the samples and 
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crease marks were mainly noticed on the samples due to creasing of the release film 

during curing. Figure C.1b shows the samples that were tested. 

 

Figure C.2 Coupons tested 

 

TESTING OF COMPOSITE MATERIAL SAMPLES 

A Shimadzu tensile test machine with a 5000 Newton load cell is used to test the 

samples. Each sample is loaded to approximately 4800 Newtons. The [90]8T samples 

experienced a brittle transverse fracture around 2000 Newtons though as seen in Figure 

C.2. The entire test setup is shown in Figure C.3. 
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Figure C.3 Test setup for coupon specimens 

Data was taken from the strain gages via a Micro-Measurements D4 Data 

Acquisition Conditioner and software. To record the data, a sample rate of 1 per 1/8 

second was selected. The extensometer was connected to a DSCUSB-UL Conditioner 

then to Epsilon software. The sampling rate for the extensometer was 100 samples per 

second. Tensile test data was also recorded with Trapezium software in which a 

sampling rate of 100 samples per second was recorded. The strain gage software did 

not allow for a sampling rate of 100/second. A close-up view of the strain gages is 

shown in Figure C.4. 
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Figure C.4 Strain gages used in coupon tests 

Readings of load, longitudinal and transverse strain were collected in Excel 

spreadsheets with time in seconds. MATLAB was used to merge the data together 

based on the time stamps. It is noted that although strain sampling rates were chosen, 

the actual interval between sampling varied and sometimes skipped samplings. Load 

sampling frequency was consistent at 100/second thus strain data was interpolated to 

the same rate. The strain and load data were not synchronized so the starting point was 

determined for each dataset by the end of the load. Strain data was stopped only after 

the load was stopped and held constant. 
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On one sample test, a slip of the extensometer was noticed after processing the 

data thus the test was run again. Figure C.5 shows the processed data illustrating the 

slip. 

 

Figure C.5 Extensometer data in red showing a slip 

Typical stress-strain curves are shown in Figure C.6. 

 

Figure C.6 Typical stress strain curves from each sample type 
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Figure C.3 Typical stress strain curves from each sample type 

RESULTS OF COMPOSITE CHARACTERIZATION TESTING 

Results for each property are found in Table C.3. The published properties are 

from Hexcel [46]. 

Table C.3 Material Property Results 

Measured 0o Layup 
+-45 o 
Layup 

90 o 
Layup 

 
E1 (Msi) v12 

G12 
(Msi) 

E2 
(Msi) 

Test 1 23.95 0.4607 0.787 1.42 

Test 2 23.97 0.3716 0.763 1.47 

Test 3 23.10 0.37797 0.814 1.35 

Avg 23.67 0.403 0.788 1.413 

Manufacturer 
Data 

23.80 0.316 0.77 1.70 

Difference -0.5% 27.5% 2.34% -16.9% 

 

The E1 property is very accurate probably since this property is determined by 

the condition of the fibers and the fibers probably do not degrade much in the freezer. 

E2 has a drop of 17% probably partially due to the matrix being 6 years old.  

Data and the data processing method were checked but no errors could be found 

to explain why the Poisson’s Ratio is 34% greater and E2 is 17% less than 

manufacturer’s data. Other published data [47] reports E2 values around 1.3 Msi which 

would then yield an error of 9%. 

Due to of the limited amount of coupons tested, no volume fraction tests were 

performed. Since the material characterization yielded questionable property values, the 

manufacturer’s data will be used for analysis considering the fiber volume fraction by 
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accounting for the ply thickness difference for obtaining estimated properties of the 

specimens made. 

  

CALCULATION OF EXPERIMENTAL COMPOSITE PROPERTIES  

CONSIDERING FIBER VOLUME FRACTION 

 

 To compare the fiber volume fraction between the experimental wings and the 

standard material per specifications given by the manufacturer, The Rule of Mixtures 

approach is utilized. This will calculate the experimental exp exp exp exp
1 2 12 12, , ,  and E E G  

properties based on the change in volume, which is defined by the ply thickness, 

between the experimental and standard material. In Figure C.7, the standard material 

has a thickness of plyt . The wing samples have the same amount of fibers per ply but 

the thickness is 
exp
plyt  and the matrix portion shown in Figure C.7 is no longer present in 

the fiber and matrix composite. 

 

Figure C.7 Volumes of Standard and Experimental Composite 

The properties of the experimental specimens can be found as follows where the 

standard properties are noted without use of a superscript, for example,
1E . 

Fiber & Matrix Fiber & Matrix 

Matrix 
t
ply

 
t’
ply

 

Standard Experimental 
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 Properties used and calculated are shown in Table C.4. The standard properties 

are from Hexcel, HexPly 8552 Epoxy Matrix Product Data sheet [46]. 
m  is found from 

similar epoxy material [48]. 

Table C.4 Experimental wing material properties based on  

fiber volume fraction analysis 

Property Standard Material 
Experimental 
Wing Material 

Units 

Em 0.677  - Msi 

vm 0.35  -   

tply 7.3 6.919 inch/1000 

E1 23.8 25.07 Msi 

E2 1.7 1.03 Msi 

v12 0.316 0.314   

G12 0.77 0.869 Msi 
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Properties used and calculated are shown in Table C.4. Since the wing ply 

thickness is less than the standard ply thickness, the experimental material has more 

fibers per unit volume thus 
exp
1E is greater than 

1E . Since there is less matrix or epoxy 

material per unit volume, 
exp
2E is less than 

2E . Thus, the experimental wing material 

properties listed in Table C.4 are used in the analytical analysis to compare flap-wise 

bending stiffness and axial strain with those from the experimental wing bending tests. 
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