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ABSTRACT

INTEGRATIVE APPROACHES FOR LARGE-SCALE BIOMEDICAL DATA

ANALYSIS

Ashis Kumer Biswas, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Jean X. Gao

Advancement of the Next Generation Sequencing (NGS), also known as the

High Throughput Sequencing (HTS) technologies allow researchers investigate genome,

transcriptome, or epigenome of any organism from any perspective, thereby contribut-

ing to the enrichment of the biomedical data repositories for many of the lesser known

phenomena. The regulatory activities inside genome by the non-coding RNAs (ncR-

NAs), the transcribed product of the long-neglected “junk DNA” molecules is one

such phenomenon. While large-scale data about the ncRNAs are becoming publicly

available, the computational challenges are being imposed to the bioinformaticians

for efficient mining to get reliable answers to few subtle questions. Given the fact

that a huge number of transcript sequences are retrieved every day, how can one dis-

tinguish a coding transcript from an ncRNA transcript? Can the structural patterns

of the ncRNAs define their functions? Finally, from the accumulating evidences of

dysregulations by ncRNAs leading to their association with a wide variety of human

diseases, can one devise an inference engine to model the existing disease links as well

as deduce unexplored associations?
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Most prior works on ncRNA data analysis are not applicable for addressing the

challenges due to the size and scope of the available datasets. In this dissertation,

we present efficient in silico integrative methods to mine biomedical data pertain-

ing to answering aforementioned questions. We design CNCTDiscriminator method

for reliably classifying the coding and non-coding RNAs coming from any part of

the genome. This is achieved through an extensive feature extraction process for

learning an ensemble classifier. We design algorithm, PR2S2Clust, to characterize

functional ncRNAs by considering their structural features. For this, we formulate

the problem as a clustering of the structures of the patched RNA-seq read segments,

which is first of its kind in literature. Finally, we propose three algorithms to deal

with the disease-ncRNA association inference problem. The first algorithm formu-

lates the inference as a modified Non-negative Matrix Factorization (NMF) problem

that can handle additional features of both the entities. The second algorithm for-

mulates the problem as an Inductive Matrix Completion (IMC) problem presenting

a generalized feature integration platform overcoming the cold-start issue common to

most of the prior works including the NMF strategy. The final algorithm, Robust

Inductive Matrix Completion (RIMC) is presented to solve two major issues with the

IMC formulation pertaining to data outliers and sparsity. For all the problems, we

provide rigorous theoretical foundations of the proposed algorithms and conduct ex-

tensive experiments over real-world biomedical data available in the public domains.

The performance evaluation validates the utility and effectiveness of the proposed

algorithms over existing state-of-the-art methods.
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CHAPTER 1

INTRODUCTION

1.1 Non-coding RNAs (NcRNAs) and Preliminaries

In early 2003, when researchers officially1 completed sequencing the human

genome, they were surprised to find out that only about 21,000 protein coding genes

are scattered along the 3 billion DNA bases and in between are megabases of “junk”,

or so it seemed to the researchers back then. It was until the ENCODE projects

published their decade-long investigations and uncovered the truth that the human

DNA is not actually littered with useless bases, rather most of these have func-

tional importance [1]. The project revealed that the regulation of the genes, which

is more complicated than what was previously thought, is influenced by multiple

stretches of regulatory DNA located both near and far from the gene itself and by

strands of RNAs, that never are translated into proteins, the so-called non-coding

RNA (ncRNA) molecules.

With the advancement of the High Throughput Sequencing (HTS)2 platform,

researchers can sequence DNA and RNA much more quickly and inexpensive way

than the previously used Sanger sequencing and as such it revolutionized the study of

ncRNAs and other genomic molecules. The platform includes the RNA-seq tool that

can quantify expression scores of any stretch of RNA transcript under investigation,

especially the stretches from the ncRNA parts of the transcripts, more effectively and

1https://www.genome.gov/11006929/2003-release-international-consortium-completes-hgp/,

Last accessed: 12-07-2016 9:12AM
2
a.k.a. Next Generation Sequencing (NGS), the term deliberately avoided throughout the dis-

sertation to promote the usage of HTS in place of NGS to refer to the decade old platform.

1

https://www.genome.gov/11006929/2003-release-international-consortium-completes-hgp/


2

accurately which otherwise would not be possible to calculate with the almost obsolete

microarrays [2]. Whereas the other tool under the HTS umbrella, known as the

ChIP-seq that can map the interactions between the transcription factor proteins and

the DNA sequences comprehensively across the entire genome, that essentially have

influence on the rate of transcription of genetic information from DNA to messenger

RNA to coding and non-coding RNA transcripts as well as forming gene network

scaffolds irrespective of their coding potentials [3]. Essentially this method uses an

antibody to home in on a particular DNA-binding protein (called the transcriptor

factor, TF) and helps pinpoint the locations (called the transcriptor factor binding

sites, TFBS) where that particular protein works. A typical HTS experiment produces

around 100 gigabytes of short-read sequence data that at first needs to go under

alignment with respect to the reference genome before retrieving the corresponding

information about specific ncRNA sites.

NcRNA transcripts like other RNA transcripts are single-stranded molecules

and most functional ncRNAs can fold to itself by forming base pairings. These pair-

ings occur between the bases G and C, U and A and sometimes G and U. Such

pairings are the building blocks of the structural identity of the ncRNA transcripts.

There are in silico structure prediction tools being used. For example, Vienna RNA

Package which predicts the secondary structure of a given ncRNA with minimum free

energy [4]. Whereas the Single nucleotide polymorphisms (SNPs), the most frequent

genetic variations among people link to abnormalities in gene expressions, their dys-

regulations, impacts on the stability of the secondary structures have become a de

facto standard dataset to utilize in ncRNA function association problems [5].

The datasets and packages described above can be accessed through publicly

available repositories. As the datasets are heterogeneous to each other, these open

up a broad spectrum of analysis pipelines for the bioinformaticians involving one or
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multiple sources to reliably retrieve desired information about the ncRNAs. Most

of the datasets are large-scale and require special computational treatments during

analysis, while others are inherently sparse that stymie the applications of straight-

forward machine learning algorithms to accomplish a goal. Since all the datasets are

coming from actual problem environments, e.g., either from sequencing of tissues of

classified patients, or genome-wide association study to identify SNPs, any new infer-

ences from the models built in this dissertation can not be readily evaluated (at least

computationally verified) unless supported by any independent and experimentally

obtained data or findings.

1.2 Motivation and Challenges

Computational challenges are being imposed to the bioinformaticians as plethora

of ncRNA datasets are becoming available in the public repositories on a regular ba-

sis. Of the many challenges, developing an in silico classification of the non-coding

and coding RNA transcripts will help the researchers explore these two entities sep-

arately, determine activities where a group of ncRNAs are always involved or even

study closely related ncRNAs in terms of their functions. There are two categories

of classifiers for this purpose. Firstly, the alignment-based approaches try computa-

tionally predict which possible protein the given transcript would produce, and then

exhaustively align the protein sequence over a protein database. While the approach

may look seemingly intuitive, as it shows low sensitivity as it declares the given tran-

script as non-coding if it misses in the protein database. The problem narrows down

to the choice of protein database. The alignment-free approach extracts features of

the given transcript and train a classifier. As discussed in earlier section that there

are many heterogeneous data available about a transcript, researchers face two ques-

tions while developing the discriminatory models: which feature-set would be the
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best choice, and what classification algorithm would reliably classify the two types of

transcripts.

The RNA-seq platform offers researchers deep understanding about the tran-

scriptomics of any organisms. The analysis pipeline begins by first mapping the raw

short-read sequences to the reference genome. Then clusters of overlapping short-

read sequences are grouped into blocks of reads with similar start and end positions.

Finally, the overlapping and closely spaced read blocks are further grouped to form

read-block groups that will be called read-segments. The segments are representative

fragment for the constituent raw short-read sequence blocks, and considering these

instead of the raw short-read set greatly reduces size of the dataset and also allows the

application of computationally sophisticated algorithms. However, since most of the

functional ncRNAs form secondary structures, and their corresponding functions can

be characterized through the structural signatures, the challenge now is to efficiently

characterize functions of the ncRNA read-segments through these signatures, as well

as group together similar ncRNAs in that perspective.

Accumulating evidences show that the long ncRNAs (lncRNAs), a subclass of

the ncRNAs having length more than 200 bases are discovered to be associated with

a variety of human diseases through many the dysregulations and mutations. Thus,

a comprehensive understanding of potential disease-related lncRNAs can facilitate

development of our current knowledge-base in a way capable of explaining accurately

the molecular mechanisms of human diseases, their implications and also facilitate the

diagnosis, treatment, prognosis and prevention. Most prior work on lncRNA-disease

association inference do not offer data integration interface where varieties of data

about both the entities can be provided and utilized to predict association scores.

Some others suffer the cold-start problem, where the entire inference model requires

re-training in order to predict association between novel lncRNA and diseases. This
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issue hinders the applicability of the method by biologists and researchers from the

relevant field.

1.3 Dissertation Organization

In Chapter 2, we presented the CNCTDiscriminator method to classify cod-

ing and non-coding RNA transcripts [6, 7, 8]. Our key contribution is to consider

RNA-seq expression scores of the transcripts along with other standard features to

discriminate the transcripts. Prior works focused on evaluating their methods on a

small dataset lacking diversity. We provide a robust large-scale benchmark dataset

covering a large population of transcripts in each of the two groups. In addition to

employing the traditional hypothesis model, we also proposed a hierarchical ensemble

strategy to accomplish the task of classification by building up a group of hypoth-

esis models at the first level based on different feature categories, then the outputs

of the groups are fed as input features to build a hypothesis model at the next level

thereby extending the reliability of the overall prediction performance of each individ-

ual models. We provide extensive experimental results over the benchmark datasets

that illustrate the effectiveness of our technique.

In Chapter 3, we defined the problem of clustering the patched read-segments

through secondary structure perspective [9, 10]. We present a platform to tackle the

clustering problem. We proposed several pairwise distance measures for the patched

read segments based on the perspective. Hierarchical clustering algorithms are em-

ployed to cluster the segments through the respective pairwise distance matrices.

We offer methods to extract features from the predicted secondary structures of the

patched read-segments, so that we can represent the patched read-segments as vec-

tors. Classical partitional clustering algorithms are employed to cluster the vectors.

We present ensemble approach to aggregate multiple clustering results that the ability
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to boost clustering performance. Comprehensive experiments on real datasets show

the significant improvement of our methods over the state-of-the-art methods.

In Chapter 4,we propose a computational framework for constructing the lncRNA-

gene co-modules based on the integration of prior knowledge we have [11, 12]. We

incorporated the predicted lncRNA-disease association and experimentally validated

gene-disease association, gene-gene interaction data, expression profiles of both lncR-

NAs and genes in a non-negative matrix factorization framework. We also applied

the similar matrix factorization approach on each of the association data alone to

further cluster the lncRNAs in terms of meaningful disease groups.

In Chapter 5, we demonstrate that the integration of diverse features of the

lincRNAs and the diseases available through publicly available data-servers can over-

come worse predictive performance issue faced by the inference tools which occurs

due to the extreme sparsity inherent to the lincRNA-disease association dataset. We

provide an application of the Inductive Matrix Completion (IMC) method and show

induction on novel diseases and novel lincRNAs that are not seen at the training

time, unlike the traditional matrix factorization methods and network-based infer-

ence methods that are transductive by nature. We present extensive experiments and

comparative study to show effectiveness of our proposed method.

In Chapter 6, We present RIMC algorithm, its correctness and proof for its

convergence [13]. We apply RIMC to the available association data between human

lincRNAs and OMIM disease phenotypes as well as a diverse set of side informa-

tion about the lincRNAs and the diseases. We demonstrate the performance of our

method in terms of precision@k and recall@k at the top-k disease prioritization to

the subject lincRNAs. We also provide a comparative study considering the state-

of-the-art lincRNA-disease ranking solutions. Finally, we present results focusing on
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the effectiveness of the induction property of RIMC along with the standard IMC

approach.



CHAPTER 2

CNCTDiscriminator: The Coding and Non-coding Transcript

Discriminator

2.1 Introduction

2.1.1 The Coding and Non-coding Transcript Discrimination Problem

The central dogma of Molecular Biology states that the portions of a DNA

are first transcribed into RNA transcripts (i.e., the mRNAs) that later get trans-

lated to different proteins. This pipeline was proved incomplete after the discovery of

transcipts that never get translated to any protein. These are the non-coding RNA

(ncRNA) transcripts, and they form another tier of gene expression with many differ-

ent cellular activities including gene silencing, replication, gene expression regulation,

transcription, chromosome stability, protein stability, translocation, localization and

RNA modifications, processing and their stability [14]. Classifying the non-coding

and coding transcripts that produce the RNA transcripts will help the researchers

explore the two types of genes separately, determine activities in which a group of

ncRNAs are always involved or even study closely related functions by different groups

of ncRNAs.

Among the in silico strategies to discriminate coding and non-coding tran-

scripts, two broad categories were being observed – the alignment-free and the alignment-

based approaches. Each of these approaches employed either sequence based or struc-

ture based features or both from the transcripts. For instance, the Open Reading

Frame (ORF) length is one of the most intuitive feature used to distinguish non-

coding RNAs from the mRNAs. Because short putative ORFs can be occurred by

8
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chance within a long non-coding transcript and minimum ORF cutoffs are applied

to reduce the likelihood of falsely classifying non-coding transcript as mRNAs [15].

Although straightforward to apply across large datasets, ORF length is an unreliable

feature. When ORF cutoff length is big, very long non-coding RNAs having putative

ORFs may be misclassified as mRNAs, and also when ORF cutoff length is small,

many mRNAs are misclassified as non-coding RNA.

Discriminating long non-coding RNAs from the mRNAs can also be accom-

plished by assessing putative ORFs for similarity to known proteins using an alignment-

based approach[16]. But the approach is limited by the number of genomes available

for comparison.

Programs like RNAz [17] employed the presence of conserved predicted RNA

secondary structure to identify non-coding RNAs that have different functional prop-

erties. But, using these programs to detect transcripts as non-coding RNAs is likely

to lead to significantly false positive and false negative discoveries, since conserved

secondary structures are also commonly found in mRNAs, especially at the 3’ UTRs.

The functional non-coding RNAs may contain secondary or tertiary structures with

non-canonical base interactions [18] that are not considered by most structure pre-

diction programs. Moreover, Rivas et al. [19] outlined that secondary structures are

not sufficiently different from the predicted stability of a random RNA sequence that

make it harder to build stable discriminating strategy utilizing structure information

only. Therefore, researchers emphasize on multi-domain combination strategies to

solve the problem.

2.1.2 Existing Combination Strategies

Among the combination strategies, CPC (Coding Potential Calculator) [20]

employed a few features of the transcripts pertaining to the ORFs and the possible
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proteins for the transcript which was accomplished by doing an exhaustive align-

ment of the transcript sequences over the entire UniProt database of proteins using

BLAST. The approach is not suitable because it is prone to be biased for classifying as

non-coding those transcripts that do not have good hits from the protein databases.

Thus, CPC is not robust in situations where the researchers are looking for a reliable

annotation of a novel RNA transcript.

Alignment-free strategy like PORTRAIT [21] was developed with a goal to

screen the non-coding RNAs which might have been caught during the transcrip-

tome sequencing process. The method first translates the ESTs from the given input

sequences into possible proteins. The SVM induced protein coding and non-coding

transcript discriminating models were built by employing nucleotide composition,

length, amino acid composition of the translated protein, ORF length, isoelectric

point, entropy and hydropathy features. It classifies only the transcripts which are at

least eighty nucleotides long is one of it’s drawback. But there may be cases where

it would be required to work with shorter RNA sequences having length less than

eighty nucleotides.

While such methods have been widely used, recently another alignment-free

combination approach was employed in CPAT [22] to classify non-coding and cod-

ing transcripts which is fast as it extracts only four ORF-based features out of the

transcripts to build the supervised logistic regression model. Although very fast and

seemingly straightforward approach, CPAT is not reliable in large scale datasets where

transcripts from both classes do not exhibit any consistent discriminatory behaviors

at the ORF feature space.
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2.1.3 Outlines

The existing methods discussed so far employed either sequence, or ORF based

features from the transcripts. However, with the advent of the High Throughput Se-

quencing platform – RNA-seq [2], expression scores of a large number of transcripts

become easy to calculate. Expression scores of both coding and non-coding tran-

scripts can be quantified from the RNA-seq short-read sequences more effectively and

accurately than using microarrays. The structural patterns of the blocks of many

such short-read sequences obtained from typical RNA-seq experiments were previ-

ously shown promising in novel ncRNA transcript discovery [23]. But such expression

scores were never employed as features to address the transcript classification problem.

In this paper, we have considered integration of such expression scores and presented

applicability of the scores alongside other features to discriminate transcripts.

Again, preparation strategies of benchmark dataset by the existing three meth-

ods focused extracting only a very small portion of the annotation data sources as

compared to the total number of annotations available in the sources, thereby the

methods lost, to some extent, the reliability of the prediction performance when ap-

plied to predict a large scale robust benchmark. Here, we addressed the issue of

benchmark construction.

All of the existing in silico strategies used traditional hypothesis learning scheme

– that is trained with a set of instances each having a set of features and a model

is built from it which can be used later to predict class labels of new and unknown

instances. One limitation of this scheme is feature selection. If a large number of

features per instance are employed, without feature selection, while building such

models, the scheme may show poor performance. Whereas selecting prominent fea-

tures out of a large number of features is not an easy task. In addition to employing

the traditional hypothesis model, we also proposed a hierarchical ensemble strategy
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to accomplish this task by building up a group of hypothesis models at the first level

based on different feature categories, then the outputs of the groups are fed as input

features to build a hypothesis model at the next level thereby extending the reliability

of the overall prediction performance of the each individual models.

Finally we performed a comparative analysis of our proposed discriminating

scheme with the current state-of-the-art systems – CPC [20], PORTRAIT [21] and

CPAT [22].

2.2 Methods

2.2.1 Obtaining the Dataset

We collected with the RNA-seq experiment data which was generated from

a High Throughput Sequencing (HTS) of RNAs from brain and other cell lines of

human (homo sapiens) samples [24]. We retrieved the RNA-seq short-read aligned

BED/BigWig formatted files associated with the GEO accession GSE30222 from the

NCBI’s Gene Expression Omnibus.

We retrieved the annotations of the protein-coding transcripts and long non-

coding RNAs found in the main chromosomes of human from GENCODE (version 16)

[25]. The total number of annotated protein coding and non-coding transcripts found

in the annotation dataset were 94,847 and 22,444, respectively. We further retrieved

species specific 47,250 protein coding annotations from NCBI RefSeq [26] (March

10, 2008 update). Short non-coding RNA transcripts were obtained from Ensembl

(ftp://ftp.ensembl.org/pub/release-71/fasta/homo_sapiens/ncrna/Homo_sapiens.

GRCh37.71.ncrna.fa.gz). This dataset contains 19,878 non-coding transcripts. For

the four datasets, we kept only those transcripts which have length less or equal to

ftp://ftp.ensembl.org/pub/release-71/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh37.71.ncrna.fa.gz
ftp://ftp.ensembl.org/pub/release-71/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh37.71.ncrna.fa.gz
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1000nt. Table 2.1 summarizes the number of transcripts of each class from the four

datasets.

Table 2.1: Summary of the transcript annotations considered in this study

Data Source Name Transcript type Number of Annotationsa

GENCODE (ver 16) Protein coding 37,640
RefSeq (rel 3/10/08) Protein coding 8,436

GENCODE (ver 16) Non protein coding 17,345
Ensembl (ver GRCh 37.71) Non protein coding 17,651

a after the size filter was applied to the original data source.

We randomly selected 80% transcripts from each of the four datasets for training

the supervised learning method, and the remaining 20% of each of the datasets were

stored as an independent benchmark test set. This test dataset will be used to assess

performances of our method and existing three methods. From Table 2.1 we noticed

that there are 11,080 more coding transcripts than the non-coding transcripts. This

uneven distribution of the two classes would have subtle impact on the quality of

training models. To remedy this problem, we used random oversampling [27] of the

minor dataset (i.e, the non-coding dataset in our case) before the training phase.

Thus, the size of the training set became 73,720 transcripts and that of the test set

was 18,432 transcripts. The dataset is made available in public (please read Section

5 about the retrieval).

2.2.2 Features for the Supervised Learning

There are four categories of features we selected in our study – (i) base com-

positions, (ii) open reading frame (ORF) statistics, (iii) transcript expression scores

and (iv) properties of the secondary structure of the transcripts. There are many nu-
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cleotide composition-based measures that can be obtained from the bare transcript

sequences. Longest ORFs can be obtained through application of probability model-

ing from the given transcript sequences. The third category of features comprise of

Read Per Kilobases Per Millions short reads (RPKM) scores that are the normalized

expression scores for a given transcript in several different cell lines observed in RNA-

seq experiments. Finally, the properties of the predicted secondary structures of the

transcripts also have potential in the transcript discrimination problem. In the next

four sections we discuss the extraction of these features in detail.

2.2.3 Extracting Composition based Features

From the nucleotide sequences of transcripts we computed global G+C content,

G+C content in the first, second and third positions of the codon bases. The com-

positions of unigrams, bigrams and trigrams for the entire length of the transcripts

were also calculated. Finally after including the length of the transcript as another

composition based feature, the total number of composition features become 89 ( 4

G+C content related, 4 unigrams, 16 bigrams, 64 trigrams and 1 length measure).

2.2.4 Extracting the ORF based Features

Protein coding transcripts have very well defined properties – a 5’ cap, 5’ and

3’ untranslated regions (UTR), an open reading frame (ORF) and a poly-A tail.

The ORF is mostly unique feature for protein coding transcripts. We extracted the

longest ORF within a given transcript sequence using getorf tool from the EMBOSS-

6.5.7 package [28]. Once an ORF is predicted, we extracted different features of

the probable translated proteins. For instance, isoelectric point, mean hydropathy,

polarity scores, base and acidity profiles, amino acid compositions. Fickett scores of

the ORF, ORF coverage scores [22] were also calculated. Finally, after the inclusion
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of the total number of predicted ORFs from each transcript, we could extract 35 ORF

based features in this category.

2.2.5 Extracting the Expression Scores of the Transcripts

From a typical RNA-seq experiment we get short read sequences which are first

aligned to a reference genome before the expression analysis could be started. The

alignment results are stored in a variety of file formats. We dealt with two of them

– BigWig and BED. The bigwig is a binary indexed file containing coverage scores

for RNA transcripts with one nucleotide span under specific condition. Suppose a

bigwig file contains all the scores of n different chromosomal positions, and we have m

different transcripts for which we want to compute the total expression scores. Since

n is much larger than m, we need a fast way to sum up all the scores that map to

the m transcripts rather than doing a linear scan. We proposed Algorithm 1 to solve

this problem.

In Algorithm 1, we called several functions in lines 2, 7, 10. In line 2, the func-

tion ranges extracts the start and end coordinates of the scores of the chromosome

under consideration fom the given bigwig file BW . Let, the total number of such

ranges be n1. As the bigwig files are binary-indexed, the cost of the extraction of the

ranges is O(n1). In line 7, we created an interval tree having m intervals (ranges).

The complexity to build the interval tree here is O(m lgm). Then in line 10, the

function searchTree searches a query range of the chromosome C into the subject

interval tree for a full overlap. This complexity for this search is O(lgm), while the

total complexity of the for loop of lines 9–11 is O(n1 lgm). So overall complexity of

Algorithm 1 is O(n1 lgm) which is more efficient than the brute-force linear scan of

the query ranges over the subject transcript ranges that would have an exhaustive
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Algorithm 1 Computing expression scores of m transcripts of chromosome C from

a bigwig file

Input: (i) A BigWig file, BW containing n short read map entries, (ii) a list of transcript annota-

tions, T containing m entries of them. Each of the T entry has a field id and two coordinates –

start and end representing the transcript start and end positions with respect to the chromosome

C.

Output: A list of transcripts containing all the information of T with an additional information–

“score” of each transcript that will represent the expression scores of the transcripts.

1. if BW contains scores of chromosome C then

2. queryRanges← ranges(BW [C])

3. RangeList← ∅
4. for i = 1 to m do

5. RangeList[i]← (T [i].start, T [i].end)

6. end for

7. IV T ← BuildIntervalTree(RangeList)

8. hits← ∅
9. for j = 1 to count(queryRanges) do

10. hits[j]← SearchTree(queryRanges[j], IV T )

11. end for

12. for k = 1 to count(hits) do

13. if hits[k] hits on the subject T [i] then

14. Add the hits[k].score to T [i].score

15. end if

16. end for

17. end if

18. return T

complexity of O(n1m). We used Algorithm 1 to retrieve the nucleotide coordinates

along with the scores from each of the bigwig files.

Expressions of RNA transcripts from an RNA-seq experiment is often quantified

with a measure “RPKM”[29], which is defined in Equation 2.1.

RPKM =
n(ER)

n(TR)(millions)× Len(kB)
(2.1)
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In the Equation 2.1, n(ER) is the total number of short-reads mapped to a

specific transcript under consideration, n(TR) is the total number of short-reads

mapped in the experiment (in Million unit), and Len is the length of the transcript

(in kilobase unit).

In order to compute RPKM score of a transcript, we added all the one-nucleotide

span scores of all the coordinates that map in between the start and the end coor-

dinates of the transcript. The summation is the n(ER) in the above equation. For

an RNA-seq experiment mapping a total of 50 million short-reads would have n(TR)

value 50 for instance. Finally, the absolute difference between the start and end coor-

dinates of the transcript is the length of the transcript (Len). By plugging in the three

values into the RPKM equation (shown above), we can compute the RPKM score of

a transcript. By following this approach, we computed the RPKM scores of all the

transcripts in different bigwig files. The RPKM scores of the transcripts from aligned

BED formatted file can be computed using the python script rpkmforgenes.py [30].

2.2.6 Extracting Features from the Predicted Secondary Structures

RNA transcripts are single-stranded molecules and can fold to itself by forming

base pairings. These pairings often occur between the bases G and C, U and A, and

sometimes G and U. The base pairings form the structural components of the RNA

transcript. The components are shown in Figure 2.1.

The important components of secondary structures are – (i) helix or stem, which

is a consecutive stacking of base pairs; (ii) loop, that is a region of unpaired bases;

(iii) hairpin loop, which is a loop enclosed by a helix or stem; (iv) multi-loop, which

is a loop region from which three or more helices arise; and (v) internal loop, which

is a loop inside a helix.
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Figure 2.1: Components of the secondary Structure of the Non-coding transcript
(transcript id ENST00000390187) from the ENSEMBLGRCh v37.71 data source.

Among the several approaches to predict RNA secondary structures, the Vienna

RNA package “RNAfold” [4] is the most widely used. It is based on a dynamic

programming algorithm with a quadratic computational complexity, aiming to predict

the secondary structures of a given RNA sequence with minimum free energies. We

applied the program to predict the secondary structures of all the transcripts listed

in Table 2.1. The program reported the minimum free energy (MFE) of each of the

transcript and generated a text file containing the predicted secondary structures in

bracket notation. Then we extracted the following features of the predicted secondary

structures: (i) number of paired bases, (ii) number of hairpin loops, (iii) number of

multi-loops and (iv) minimum free energy (MFE).
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2.2.7 Hypothesis Classifier

We used SVMperf that is an implementation of the Support Vector Machine

(SVM) formulation for optimizing multivariate performance measures [31]. Since our

training data set contains 73,720 instances, training with a non-linear SVM would

be expensive due to its quadratic computational complexity and in practice does

not show good performance. Whereas the SVMperf enables training the conventional

linear classification SVMs by optimizing error rate in time that is linear in the size

of the training data set. During the training, we set the trade-off between training

error and margin to be 20, the loss function to be the error rate, and we did not use

any bias feature for the particular classifier.

2.2.8 Feature Specific Ensemble Classifiers

Ensemble learning refers to a collection of methods that learn a target function

by training a number of individual weak learners and combining their predictions. The

features are first grouped into four broad categories – sequence composition features,

ORF features, RPKM features and secondary structure features. We then build four

separate hypothesis models given the four categories of features. Then we applied the

stacked generalization approach [32] at the combiner, i.e., the output patterns of the

first level experts serve as input to the second-level expert that is also a hypothesis

learner. We used SVMperf to build learners of each level of the Ensemble classification.

2.2.9 Training and Testing using the Classifier

All feature values of the training and test instances were normalized to fit into

range [-1, 1]. The training and test steps by the two types of classifications are

described in following two subsections.
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2.2.9.1 Steps in the Hypothesis Learning

• Step 1: For feature combination “f” from the 15 possible combinations of the 4

feature categories, get the training set containing the particular feature values.

• Step 2: Do a 10-fold cross validation with the training dataset and report the

average performance scores. Finally, train with all the entries in the training

dataset and store the model.

• Step 5: Repeat steps 1 and 2 for the remaining 14 possible combinations.

• Step 6: Predict the independent benchmark set using each of the final training

models and report the performance scores.

2.2.9.2 Steps in the Feature Specific Ensemble Learning

• Step 1: Randomize the instance ordering of the training dataset for feature

“f” from the 4 feature categories and split the set into 10 blocks having equal

number of training instances.

• Step 2: Do the exact same ordering of instances for the training datasets of

remaining 3 feature categories and split into 10 blocks in a similar fashion as

step 1.

• Step 3: For the feature category “f”, do the 10 fold cross validation using the 10

blocks prepared in previous steps, and report the average performance scores.

Moreover, the predicted labels for each of the 10 blocks were stored.

• Step 4: Repeat step 3 for the remaining 3 feature categories.

• Step 5: The four predicted labels of each of the training instances reported by

each of the four category classifiers are then combined into a new training file

having the four predicted labels as four features with the true labels.
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• Step 6: The new training file is given to a hypothesis classifier and applied

10-fold cross validation. The performance scores were recorded.

• Step 7: At the end, re-train the second level classifier with all the instances of

the new training file and store the model.

• Step 8: Re-train all the four first level classifiers with all the instances of the

training set and store the respective models.

• Step 9: Predict the independent benchmark set by first extracting the 4 cate-

gories of features of all the transcripts in the test set and fed these to the four

level-1 classifiers. The prediction results by each of the classifiers were then

combined to form a new test file which is given to the level-2 classifier for the

final prediction. Then the performance scores were reported.

2.2.10 Evaluating the Classifiers

The test datasets were given to the classification models for prediction and

based on the true class labels and the predicted class labels the confusion matrices

containing four frequency scores – True Positives (TP ), True Negatives (TN), False

Positives (FP ) and False Negatives (FN) for the classification experiments were

prepared. Here, TP denotes the number of positive samples corrected predicted as

positive, TN denotes the number of negative samples correctly classified as negative,

FP represents the number of negative samples misclassified as positive, and FN

denotes the number of positive samples incorrectly classified as negative. In this

binary classification problem we followed the convention to represent a non-coding

RNA transcript to be in the “negative” class and a coding RNA transcript in the

“positive” class. For all the classification runs, we computed the four performance
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measures of binary classification: precision, recall, accuracy and F1-score which are

defined in equations 2.2–2.5.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.4)

F1score = 2× Precision× Recall

Precision + Recall
(2.5)

2.3 Experimental Results and Discussion

We prepared fifteen bar plots of performance scores by the fifteen classifiers

we built by training with each of the fifteen possible feature combinations which is

shown in Figure 2.2. Each plot represents accuracy (A), precision (P), recall (R) and

F1-score (F1) in both 10-fold cross validation (CV) and testing with the independent

benchmark (Test) by a single hypothesis classification model trained with certain

combination of features. It can be observed in the plots that a single feature category

classifier alone can not outperform any classifier which is trained with more than one

feature categories.

The RPKM feature alone shows the worst discrimination performance. In search

of the reason behind this, we identified that not all coding and non-coding transcripts

exhibited expressions in the RNA-seq experiment we dealt with. Thus, the training

data with the RPKM features became sparse and are not suitable alone. However,

applications of this feature in conjunction with other category of features enhances

the classification performance.

We further ranked the feature combinations in the decreasing order of ROC area

and found that the combination of composition and ORF based features yields the
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Figure 2.2: Separate single hypothesis classification performance built by all the 15
possible combinations of the 4 feature categories. Left most four bars of each plot
represent accuracy (A), precision (P), recall (R) and F1-score (F1) respectively from
a 10-fold cross validation (CV), whereas the rightmost four bars represent the same
four performance measures when the corresponding classifier is given the independent
test set for prediction.
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most area under the ROC curve. Table 2.2 lists the ranks along with the proportion of

the Area Under the ROC curve (AUC) by the classifiers built with the combination.

Table 2.2: Ranks of the combination of feature categories to build single hypothesis
classifiers

Rank Combination of Feature Categories AUC

1. composition+orf 0.8917
2. composition+orf+structure 0.8915
3. composition+orf+rpkm+structure 0.8907
4. composition+orf+rpkm 0.8906
5. orf+rpkm+structure 0.8844
6. orf+structure 0.8838
7. orf+rpkm 0.8784
8. orf 0.8776
9. composition 0.8343
10. composition+structure 0.8335
11. composition+rpkm+structure 0.8315
12. composition+rpkm 0.831
13. rpkm+structure 0.7716
14. structure 0.7705
15. rpkm 0.4724

Figure 2.3 illustrates the 10-fold cross validation as well as the test performance

of our feature-specific ensemble approach. From the figure it is evident that both

the training performance and the test performances were consistent. However, this

approach falls behind few feature combination specific single hypothesis classifiers as

reported in Table 2.2 in terms of “recall”.

Next, we compared the three existing state-of-the-art systems – CPC (Coding

Potential Calculator) [20], PORTRAIT [21] and CPAT [22] with our top ranked 3

hypothesis classification systems built with combinations of feature categories as well

as the one built with the ensemble based approach. All these systems have publicly

accessible web interface where we can perform the predictions based on the inputs
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Figure 2.3: Performance of the CNCTDiscriminator – ensemble approach. Left most
four bars represent accuracy (A), precision (P), recall (R) and F1-score (F1) respec-
tively from a 10-fold cross validation (CV). And the rightmost four bars represent the
same four performance measures when the Ensemble classifier is given the indepen-
dent test set for prediction.

we provide. We evaluated our system and the existing three systems with the in-

dependent test dataset we prepared as discussed in Section 2.1. We measured the

prediction performances of each of the systems after computing the confusion matri-

ces. However, the PORTRAIT prediction system could not predict 634 input RNA

transcripts which were less than eighty nucleotides long. In this regard, we evenly

added the number of coding and non-coding transcripts from these non-predicted test

examples into respective cells in the confusion matrix for the PORTRAIT.

Table 2.3 summarizes the comparison statistics of the three existing systems

with our proposed three single hypothesis classification and one ensemble classification

approaches. From the results it can be noticed that the metric “precision” for each

of the existing three systems is higher as compared to ours. This is because of the

fact that the CPC, PORTRAIT and CPAT systems show bias towards predicting a
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transcript “non-coding” than “coding”. Other than this metric, our system is superior

than these. And after analyzing the prediction results of these three existing systems

we found that many coding transcripts ( 1600 out of 4838 false negatives in case of

CPAT, 3129 out of 6824 false negatives) with lengths between 400nt to 600nt were

falsely predicted as non-coding.

Table 2.3: Comparing classification performance of our system with CPC[20],
PORTRAIT[21] and CPAT[22] on the independent benchmark dataset

Systems Accuracy Precision Recall F1-score

CPC[20] 0.627530 0.983141 0.259468 0.410578
PORTRAIT[21] 0.798258 0.843730 0.732005 0.783907

CPAT[22] 0.756402 0.977374 0.524957 0.683044

CNCTDiscriminator-I a 0.8311 0.8386 0.8201 0.8292
CNCTDiscriminator-II b 0.8254 0.8209 0.8324 0.8266
CNCTDiscriminator-II c 0.8028 0.7706 0.8622 0.8138

CNCTDiscriminator-IV d 0.8153 0.8985 0.7108 0.7937

Note:
a Classifier built with feature categories: composition and ORF
b Classifier built with feature categories: composition, ORF and structure
c Classifier built with feature categories: composition, ORF, RPKM and
structure
d Feature specific ensemble based classifier

2.4 Conclusion

The proposed CNCTDiscriminator is a collection of models trained with dif-

ferent features of the transcripts, where each model is capable of discriminating two

classes of transcripts. We assessed the performance of each one of these and argued

which to pick in practice. We also introduced a feature specific ensemble approach

in building a specialized model which outperforms prediction performances of those
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models that were built only with the individual category of features. Compared with

the existing supervised systems – CPC [20], PORTRAIT [21] and CPAT [22] methods,

the proposed CNCTDiscriminator system operates more accurately and reliably.

There are several future research directions worth pursuing. The proposed

model is a binary classifier, it is only applicable if the given input is a valid RNA

transcript from a reference organism’s genome. One can impose different strategy to

detect the transcripts which are neither coding nor non-coding. Moreover, among the

four categories of features, calculating the RPKM scores requires the user to know

the coordinate of the input transcripts with respect to the reference genome of the

organism. One limitation of our system is that we selected transcripts having length of

1000nt or less from the data sources. So, the performance of the CNCTDiscriminator

could be suffered while classifying very long transcripts.

2.5 Availability

CNCTDiscriminator source codes, training and test datasets are available at

the URL http://biomecis.uta.edu/˜ashis/res/cnctdiscriminator/suppl

http://biomecis.uta.edu/~ashis/res/cnctdiscriminator/suppl


CHAPTER 3

PR2S2Clust: The Patched RNA-seq Read Segments’ Structure-oriented

Clustering

3.1 Introduction

RNA-seq Read Segments’ Clustering Problem: RNA-seq is a revolution-

ary technology for profiling transcriptomes with which a very precise measurement of

expression levels of transcripts and their isoforms can be accomplished [2]. The ex-

pression data reveal a vast number of opportunities to investigate the transcriptomic

details of an organism that may or may not have a well-studied genome. In most

cases the reference genome is available and the analysis pipeline starts by mapping

the RNA-seq short-read sequences to the genome, generally using the tool TopHat

[33]. Then clusters of overlapping short-reads are grouped into blocks of reads with

similar start and end positions using the tool blockbuster [23]. Finally, the overlap-

ping and closely spaced read blocks are further grouped to form read-block groups

which we call the read-segments. The RNA-seq read segments are the representative

fragment for the constituent raw short-read sequence blocks as introduced in earlier

studies [34, 35]. The strategy of considering the read segments rather than blocks

of raw short-read sequences greatly reduces the size of the dataset, that allows the

application of more computationally expensive algorithms (e.g., pairwise structural

distance metric based clustering algorithms, etc.) can be applied as well as preserving

structural properties, such as position, length and approximate read start sites and

end loci, which otherwise would not have been computationally feasible. By looking

at their genomic positions the segments can be labelled. However, clustering the seg-

28
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ments might group together segments which share common traits. The commonalities

include either sequence level patterns, or structural patterns, or read mapping pat-

terns. We emphasize that our technique will necessarily consider both the sequence

and secondary structure patterns of the segments to find meaning clusters of the read-

segments. The reason behind this is that RNA structures are responsible for specific

biological functions [36, 37]. For example, there are many well-characterized regula-

tory RNAs in the UTRs of mRNAs that act in cis as receivers of other trans-acting

signals, by forming secondary structures that bind regulatory proteins or small molec-

ular weight ligands [38], whereas mechanisms of miRNA biogenesis were investigated

through the corresponding experimentally determined secondary structures [39, 40].

However, as experimentally predicted secondary structures may be expensive and

time consuming to get, the Minimum Free Energy (MFE) based secondary structure

modeling tools have been applied for the prediction of functional non-coding RNAs

[19, 41]. The sequence patterns of the segments have been investigated by earlier stud-

ies [34, 35]. Since, we incorporated both sequence and secondary structure patterns of

the segments, our method should be efficient in the following manners – (i) it should

be able to produce biologically meaningful clustering results, and (ii) computational

complexity of the method should be comparable to the existing methods.

Limitations of existing methods: There are several sequence and structure

based RNA clustering algorithms available. The LocARNA [42] employs a pairwise

local sequence-structure alignment based strategy to cluster RNAs. The FoldAlign

[43] uses an energy model and sequence similarity to simultaneously fold and align the

given RNA sequences. Both the LocARNA and FoldAlign use variant of Sankoff algo-

rithm for alignment and folding, resulting high computational complexity. Whereas,

the GraphClust [44] is an alignment-free method that first encodes the secondary

structures in graphs, then extracts kernel features from the graphs and finally lever-
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ages the idea of locality sensitive hashing to perform clustering in terms of approxi-

mate nearest neighbor queries. The aforementioned methods can only be employed

to cluster the segments, but not the read-mapped patched segments. However, the

DeepBlockAlign [34] method considers patched processing patterns, but does that at

the sequence level of the segments making it impossible to analyze whether structural

information at all have any significance on the generated clustering results.

Outline of our results: In this paper, we investigate the significance of using

secondary structure information of the patched read-segments in the ncRNA annota-

tion. We propose the annotation of the ncRNAs as a clustering problem using which

we tend to know groups of read-segments having similar structural properties. This

grouping of the read-segments also provides confidence in the novel ncRNA annota-

tion. We proposed seven pairwise structural distance metrics that take patched RNA-

read segments as input. The metrics are (i) Patched Binary Lempel-Ziv complexity

distance, (ii) Patched Quaternary Lempel-Ziv complexity distance, (iii) Patched Tree-

Edit Distance, (iv) Patched Damerau-Levenshtein string edit distance, (v) Patched

Euclidean Distance and (vi) Patched Cosine distance and (vii) Patched Random

walker termination based distance. Hierarchical clusterings from each of the distance

matrices were performed. Since we have several clustering results for each dataset

due to multiple distance matrices and clustering parameters, we employed ensem-

ble strategy to combine the clustering results to come to a consensus partitioning.

For this purpose, we applied co-association based [45], majority voting based and

Meta-Clustering Algorithm (MCLA) [46] based aggregation strategies to perform the

consensus merging of the results. Moreover, we presented a method to represent the

read-segments as vectors and applied classical partitional clustering algorithms. De-

pending on the parameters of the clustering algorithms, we obtained multiple results
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where again the ensemble clustering strategies were used to retrieve the consensus

partitions.

Summary of contributions:

• We define the problem of clustering the patched read-segments through sec-

ondary structure perspective (§3.2). We present a platform to tackle the clus-

tering problem (§3.3).

• We proposed several pairwise distance metrics for the patched read-segments

based on the structural perspective. Hierarchical clustering algorithms are em-

ployed to cluster the segments through the matrices (§3.4).

• We show methods to extract features from the predicted secondary structures of

the patched read-segments, so that we can represent the patched read-segments

as vectors. classical partitional clustering algorithms are employed to cluster

the vectors (§3.5).

• We present ensemble approach to aggregate multiple clustering results that has

ability to boost clustering performance (§3.6).

• We present comprehensive experiments on real datasets that show the signifi-

cance improvement of our proposed methods over the state-of-the-art methods

(§3.7).

3.2 Problem Definition

In this section, we start with describing the patched RNA-seq read segments

and then define the problem of clustering the segments. We also present clustering

performance measures that we will be using in the experiments.
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Figure 3.1: RNA-seq read segments.

3.2.1 RNA-seq Read Segments

Expression profile of a given RNA transcript from an RNA-seq experiment is

measured in terms of number of short read sequences mapped to the genomic loci of

the transcript. The profiles can be compressed by grouping the reads into blocks using

the blockbuster [23] tool. The tool performs peak detection on the signal obtained

through counting the number of short reads mapped per nucleotide. The signal,

across adjacent loci, is then modeled with a mixture of Gaussian distributions. A

greedy algorithm is applied to it to extract the reads that belong to the same block,

beginning with the largest Gaussian component and removing them in successive

iterations. It further assembles a sequence of adjacent blocks into a block-group

if the constituent blocks are either overlapping or separated by not more than 30

nucleotides (∆). The representative nucleotide sequence spanning the first block to

the last block will be termed as “segment” sequence throughout this article. Figure

3.1 shows two such segment sequences: segment1, segment2, representing the two

block-groups {block1, block2}, and {block3, block4} respectively. The two segments

are separated by the threshold distance, ∆ nucleotides.
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3.2.2 Patched RNA-seq Read Segments

An n length segment s = (a1 : f1, a2 : f2, · · · , an : fn) is called the patched

representation of the RNA-seq read segment, where ai is the ith nucleotide position

of the segment, and fi denotes number of short-read sequences overlap at position

ai. Now, if we have stable secondary structure associated with the segment, we can

convert the structure into a patched structure leveraging the patched representation

of the segment. Figure 3.2 illustrates a patched RNA secondary structure of a
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Figure 3.2: Patched representation of a Secondary structure of the representative read
segment with the read blocks aligned with the structure (shown in the overlapping
blue-lines).

certain segment. The structure can also be represented as a weighted undirected

graph G(V,E), with n nodes denoting the number of bases in the segment, and m

edges forming the secondary structure (both base-pairs and sugar backbone), cij =

cji = f > 0 is the edge weight between nodes i and j referring the number of short-

read overlaps between the two.

3.2.3 Problem Setup

Let S = {s1, s2, · · · , sN} be a collection of N RNA-seq read segments. We

construct the corresponding set P , the patched secondary structures of the read

segments from the set S, where P = {p1,p2, · · · ,pN}. Our goal is to resolve a
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clustering of these N segments in such a way that segments in the same group (called

a cluster) are more similar to each other than to those in other groups (clusters) in

terms of their secondary structural properties. We adapt three categories of clustering:

hierarchical clustering, partitional clustering and ensemble clustering.

Definition 1. A cluster K is defined as any subset of P . A collection of

clusters H is called a hierarchical clustering if ∪Ki∈HKi = P and for any Ki, Kj ∈

H, only one of the following is true (i) Ki ⊂ Kj, (ii) Kj ⊂ Ki, (iii) Ki ∩Kj = ∅

The hierarchical clusteringH forms a tree, where each internal node corresponds

to a particular cluster. Let D = {di,j} denotes the collection of all pairwise similar-

ities (or dissimilarities) between the segments in P , with di,j denoting the similarity

score (or dissimilarity score) between pi and pj assuming di,j = dj,i. The hierarchi-

cal clustering algorithm requires the complete D matrix to be able to identify the

clustering result H.

Definition 2. A collection of cluster T is called a partitional clustering if

∪Ki∈TKi = P and Ki ∩Kj = ∅ holds for any i, j.

Most of the partitional clustering algorithms optimize a criterion function, min-

imize the intra-cluster sum of squares distances between the segments for example,

to compute the partitioning. The hierarchical clustering H can be converted into a

partitional clustering through using a cut at specified height of the tree.

Definition 3. Given a set of t partitional clustering results Π = {π1, π2, · · · , πt}

of the set of N patched segments P = {p1,p2, · · · ,pN}, where πi = {φi(p1), φi(p1),

· · · , φi(pN)}, and φi(·) denotes a cluster number, x ∈ {1, 2, · · · , C}, assigned by the

ith clustering result, and C being the total number of clusters in each of the cluster-

ing result. Now, a collection of cluster Γ is called a consensus (i.e., ensemble)

clustering of the set Π if ∪γi∈Γγi = Γ and γi ∩ γj = ∅ holds for any pair of i, j,
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and Γ = Ψ(Π), where Ψ(·) being the consensus function that combines the t separate

partitioning results and computes the single final cluster.

Among many cluster aggregation strategies (i.e., the Ψ(·) functions), we adapted

the three state-of-the-art strategies, namely co-association matrix, meta-clustering

and majority voting. In this manuscript, we present a comparative study of the

consensus clustering over the individual (either hierarchical or partitional) clustering

algorithms.

3.2.4 Performance Measures

Given a set of N segments G = {S1, · · · , SN} and suppose X = {X1, · · · , XM},

and Y = {Y1, · · · , YP} be the two partitioning results of the N segments in G,

where ∪Mi=1Xi = G = ∪Pj=1Yj and xi ∩ Xj = ∅ = Yk ∩ Yl for 1 ≤ i 6= j ≤ M and

1 ≤ j 6= k ≤ P . The information on the overlap between the two partitions X and Y

can be summarized in form of a M×P contingency table C = [nij]
i=1···M
j=1···P as illustrated

in Table 3.1, and nij denotes the number of segments that are common to partition

Xi and Xj. The
(

N

2

)

segment pairs in G can be classified into four types – N11: the

number of pairs that are in the same cluster in both X and Y; N00: the number of

pairs that are in different clusters in both X and Y; N01: the number of pairs that

are in the same cluster in X but in different cluster in Y; and N10: the number of

pairs that are in different cluster in X but in the same cluster in Y. All of these

four values can be computed using the nij’s from the contingency table (Table 3.1).

Since, the dataset we will be using is associated with ground-truth labels, we will

perform two external validations to assess one partitioning result (say, X) with the

ground truth partition (Y). The validations are namely Adjusted Rand Index (ARI)
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Table 3.1: The notations for the contingency table for comparing two partitions X
and Y .

X \Y Y1 Y2 · · · YP Sums

X1 n11 n12 · · · n1P a1

X2 n21 n22 · · · n2P a2
...

...
...

. . .
...

...
XM nM1 nM2 · · · nMP aM

Sums b1 b2 · · · bP
∑

ij nij = N

[47] and Normalized Mutual Information (NMI) [46], which are defined in Equations

3.1 and 3.2.

ARI(X,Y) =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)
(3.1)

NMI(X,Y) =
I(X,Y)

√

H(X)H(Y)
, where: I(X,Y) =

M
∑

i=1

P
∑

j=1

nij
N

log
nij/N

aibj/N2

and, H(X) = −
M
∑

i=1

ai
N

log
ai
N
,H(Y) = −

P
∑

j=1

bj
N

log
bj
N

(3.2)

The ARI is bounded by 1 and equals to 0 only when the Rand Index (RI), that is

(N00 +N11)/
(

N

2

)

= E[RI] which happens if X and Y partitions are picked at random.

The NMI is also bounded by 1 and equals 0 when the two partitions are truly random.

Besides the external validations, we will also use one internal quality metric

namely Sum of Squared Error (SSE) that measure the intra-cluster homogeneity and

the inter-cluster separability while only considering the data itself without external

ground true labels, and is defined in Equation 3.3.

SSE(X) =
M
∑

i=1

∑

v∈Xi

||vi − µi||2, (3.3)

where Xi is the set of items in the cluster i; µi is the mean vector of cluster i.
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3.3 Overview of PR2S2Clust System

This section overviews PR2S2Clust, our system for clustering of the patched

secondary structure of the representative patched RNA-seq read segments. We start

by presenting the key idea of the PR2S2Clust: how patched secondary structures can

be clustered through introduction of various distance measures and applications of

partitional, hierarchical and the consensus clustering strategies to reliably partition

the segments. While §3.4, §3.5, and §3.6 describe each of the parts in detail, we

discuss at the end of this section how we prototyped the PR2S2Clust system over

real-world RNA-seq experiment datasets for its evaluation.

3.3.1 System Architecture

Figure 3.3 illustrates architecture for PR2S2Clust which has two three main

steps: (1) Pre-processing that builds pairwise distance matrices to be used by the

hierarchical clustering algorithms, and the vectorized representation of the structures

that will suitably be applied to any partitional clustering algorithm, (2) Clustering

of the segments according to the inputs from the previous step and (3) Clustering

aggregation of all the partitions obtained in the previous step. The system works as

follows:

• Step 1, Pre-processing: It receives as input a set of patched segment se-

quences (as defined in §3.2). RNA Secondary structures of the sequences are

predicted through using the-state-of-the-art tools. Then, the patched version of

the structures are prepared. We introduce several pairwise structural distance

measures that takes the patched representation into consideration. The corre-

sponding distance matrix for each of the measure is prepared for the next step

of hierarchical clustering. Additionally, we also introduce feature extraction
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Figure 3.3: System architecture of the PR2S2Clust.

processes to convert the patched secondary structures into feature vectors that

will be suitable for use as input for the partitional clustering algorithm.

• Step 2, Individual Clusterings: Given a distance matrix, we perform hi-

erarchical clustering. Later, we cut the generated dendrograms to retrieve a

linear partitional clustering results. Again, the feature vectors prepared in the

previous step are also fed into a partitional clustering algorithm to generate

clustering results. All of these clustering results are individually validated for

their performance and reported in §3.7.

• Step 3, Consensus Clustering: Given, all the different clustering results of

the segments obtained from the different clustering methods in the previous

step, in this step we combine all the individual results to get a single consensus

clustering result (§3.6). This is due to the fact that sometimes individual clus-

tering results may lead to incorrect and unstable partitioning of the data points,
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and aggregating the clustering results overcomes the issue. We extended our

system to addressed this issue in this step. We presented three cluster aggre-

gation strategies and reported a comparative analysis of the techniques along

with the individual clustering methods.

3.3.2 Prototype Design for the Morin EB dataset

Before delving into the detail design of PR2S2Clust in §3.4, §3.5 and §3.6,

we would like to briefly discuss how we prototyped over Morin EB dataset [48], a

representative dataset used by deepBlockAlign [34] method that we contrasted with

our system. Note that while we focus the rest of the manuscript on this particular

dataset, the adaptation to other RNA-seq datasets is pretty straightforward; e.g., we

present experiments with two additional datasets – GSM450598 [49] and GSM450605

[49] in §3.7.2.2.

We retrieve the segment sequences from the dataset through application of the

blockbuster tool [23]. The sequences along with the frequency of short-reads mapped

on the entire lengths (i.e., their patched representations) are then used to predict cor-

responding secondary structures. Two predictor algorithms were used, namely Vienna

RNAfold [4] and CentroidFold [50]. Several distinctive features were extracted from

the predicted structures, and pair-wise distance matrices were prepared according to

our proposed distance criteria. The feature-represented structure vectors are used in

k-means clustering algorithm, and the distance matrices are applied to hierarchical

agglomerative clustering algorithm. Finally, the results are aggregated.

We used the same ground-truth labels for each of the segments as the deep-

BlockAlign [34] project. Originally, the labels are determined based on the genomic

positions of the segments and pre-existing annotations of the region encompassed by

the segments.
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3.4 Hierarchical Clustering of the Segments

The key to hierarchical clustering is the pairwise distance matrix among the

read-segments. Here, we first define several pairwise structural distance metrics, with

which we can build the distance matrices. We then perform hierarchical clustering

on each of the distance matrix, and aggregate the results. By applying the pairwise

structural distance measures, we can define one pairwise distance matrix per measure.

Then we perform the hierarchical clustering with complete linkage of the distance

matrices, and applied a cut to obtain k number of clusterings. We report each of

the individual clustering performances using external evaluation criteria – Adjusted

Rand Index and Normalized Mutual Information (NMI), and the internal evaluation

criterion – Sum of Squared Error (SSE).

3.4.1 LZ-Complexity based Distance Criterion

The Binary LZ-complexity distance [10] is the direct extension to the very well

known Lempel-Ziv (LZ) sequence comparing algorithm [51]. Since the LZ complex-

ity is applicable only to finite linear sequences, the secondary structures denoted by

dot-bracket notation of the RNA segments are first required to convert to a dot-plot

matrix, from which a corresponding binary sequence can be extracted. A dot plot is

a two-dimensional graph in which there is a dot (or symbol “1”) at position (i,j) if a

base at position i pairs with the base at position j in the secondary structure, other-

wise there is no dot present in the plot (denoted by symbol “0” in the matrix). Fig.

3.4 shows both the predicted secondary structure and corresponding dot plot repre-

sentation of the read block segment 405 of the morin EB dataset. In the dot plot, if

scanned diagonally from left to right downward fashion and stopping at the symmet-

ric border line and re-scan from the next column or row, we will get a binary sequence

of 0s and 1s. In the binary sequence a block of consecutive 1s represent a stem of the
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secondary structure and block of consecutive 0s between two stems represent loop.

We further replaced each block of 0s by a single “0” for simplicity. Thus, the char-

acteristic binary sequence for the structure of segment 405 is “0111101011111110”.
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Figure 3.4: Dot plot representation of the secondary structure of the read block
segment (ID: 405). The lower right triangle contains the secondary structure and
the upper left triangle is its dot plot representation. The mapping of the stems
(consecutive base-pairs in the structure) are shown using the arrows from the dot
plot to the secondary structure plot. The scanning direction starts from the lower
left part of the upper triangle to its upper right part (shown as the dotted triangular
arrow heads).

After the conversion of the RNA secondary structure into the binary sequence,

the LZ-complexity of the sequence can be computed. There are several distance
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measures between two linear sequences S and Q based on the LZ-complexities of the

S and Q sequences [52]. In our study we used the following normalized distance

function d(S,Q) :

d(S,Q) =



















c(SQ)−c(S)+c(QS)−c(Q)
1

2
[c(SQ)+c(QS)]

: if Q 6= S

0 : otherwise

Here, the function c(·) returns the LZ-complexity of a given linear sequence, SQ is a

new sequence when Q is appended to the sequence S. The LZ complexity, c(·) of a

finite sequence is related to the number of steps required by a production process that

builds the original sequence. Let S, Q and R be sequences defined over an alphabet

Σ, where |S| denotes number of symbols in sequence S, S[i] denotes the ith symbol

of sequence S and S[i : j] denotes the substring of S composed of the elements of S

between index i and j (inclusive). An extension R = SQ of S is reproducible from S

(denoted S → R) if there exists an integer p ≤ |S| such that Q[k] = R[p+ k − 1] for

k = 1, . . . , |Q|. That is, R can be obtained from S by copying elements from the pth

location in S to the end of S. As each copy extends the length of the new sequence

beyond |S|, the number of symbols copied can be greater than |S| − p+ 1. Thus, this

is a simple copy process of S starting from position p, which can carry over to the

added part, Q.

A sequence S is producible from its prefix S[1 : j], which is denoted by S[1 : j]⇒

S, if S[1 : j]→ S[1 : |S|−1]. Thus, the production allows an extra different symbol at

the end of copy process which is not permitted in reproduction. Any sequence S can be

built using a production process where at its ith step S[1 : hi−1]⇒ S[1 : hi], assuming

an empty symbol produces the first symbol of S. An m-step production process of S

results in a parsing of S in which H(S) = S[1 : h1] ·S[h1 +1 : h2] · . . . ·S[hm−1 +1 : hm]

is called the history of S and Hi(S) = S[hi−1 + 1 : hi] is called the ith component
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of H(S). If S[1 : hi] is not reproducible from S[1 : hi−1], then Hi(S) is called the

exhaustive history. A history is called exhaustive if each of its components (except

possibly the last one) is exhaustive. Let cH(S) be the number of components in the

history of S. Then the LZ complexity of S is c(S) = min{cH(S)} over all histories

of S. It can be shown that c(S) = cE(S), where cE(S) is the number of components

in the exhaustive history of S

The Binary LZ complexity based distance measure does not consider base com-

positions into account in the stem sites, that is, it treats characteristic sequences

of AU or UA, GC or CG, GU or UG pairs without their order of occurrences. In

Quaternary LZ complexity, the order of the base-pair compositions is taken into con-

sideration. The dot plot from the secondary structure is prepared in much the same

way as in the binary case, except that in the (i, j)th cell a 1 is assigned if (i, j) base

pair is a AU or UA, a 2 is assigned if it is a GC or a CG base pair, a 3 is assigned if

it is a GU or a UG base pair, and otherwise 0 to represent a no base pair. Then the

characteristic sequence out of the dot plot is extracted as before, and LZ-complexity

algorithm is applied to it to deduce the pairwise normalized distance score between

two RNA structures.

3.4.2 Tree Edit Distance Criterion

SimTree is an application available at the url http://bioinfo.cs.technion.

ac.il/SimTree/ (Last accessed: 12-07-2016 9:13AM) for computing and analyzing

the similarity between two RNA secondary structures. The method transforms the

two RNA secondary structures into labeled trees and then computes the distance

between the two trees resulting in a similarity score. The values of the score range

between 0 and the size of the smaller tree. However, the raw similarity score can be

normalized to ignore the effect of tree sizes. The normalized score is between 0 and

http://bioinfo.cs.technion.ac.il/SimTree/
http://bioinfo.cs.technion.ac.il/SimTree/
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1, where 1 denotes a perfect match. In our problem, SimTree normalized similarity

score can be used to derive a pairwise structure distance, d(P,Q) for the two RNA

secondary structures P and Q:

d(P,Q) = 1− simTree score(P,Q). (3.4)

3.4.3 Damerau-Levenshtein String-Edit Distance Criterion

The Damerau-Levenshtein distance is a distance [53] between two strings denot-

ing secondary structures of two read-segments represented in dot-bracket notation.

The distance is given by counting the minimum number of operations required to

transform one string into the other, where an operation is defined as an insertion,

deletion or substitution of a single character, or a transposition of two adjacent char-

acters. The distance between two strings a and b is given by da,b(|a|, |b|) where:

da,b(i, j) =















































































































































max(i, j) case 1

min































































da,b(i− 1, j) + 1

da,b(i, j − 1) + 1

da,b(i− 1, j − 1) + 1(ai 6=bj)

da,b(i− 2, j − 2) + 1

case 2

min











































da,b(i− 1, j) + 1

da,b(i, j − 1) + 1

da,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise

where the cases are:

• Case 1: if min(i, j) = 0

• Case 2: if i, j > 1 and ai = bj−1 and ai−1 = bj
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3.4.4 Euclidean Distance Criterion

The distance between two secondary structure vectors ~u and ~v is given by the

following equation:

d(~u,~v) =
1

2

||(~u− µ~u)− (~v − µ~v)||2
||~u− µ~u||2 + ||~v − µ~v||2

where the µ~a is the mean of ~a. The distance value of 1 denotes the most distant

vectors, where a value close to 0 denotes the two vectors essentially are the same.

Preparation of each of the vectors given the predicted secondary structures are dis-

cussed in §3.5.1.

3.4.5 Cosine Distance Criterion

The cosine distance between two structure vectors ~u and ~v is given by the

following equation:

d(~u,~v) = 1− ~u · ~v
||~u||||~v||

The distance measure is also bounded in the range [0,1].

3.4.6 Random Walker Termination based Distance Criterion

Consider a random walker on the patched secondary structure graph G walks

from node i to node j according to the transition probability pij and pays the cost

cij. Fang et al. [54] developed k-Random Walker Termination algorithm (k-RWT) for

undirected and unweighted graph. Based on an intuition from the thermodynamic

system, the authors set k random walkers with a fixed initial energy for a walk on the

graph, and by walking they lose their energy, and eventually stop when the energy

becomes zero.
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Compute RWTWG(G, k, φ)

1 // G(V,E): input graph, k: number of iterations,

2 // and φ: sink threshold

3 for i = 1 to V. length

4 // assigning number of random walkers on each node

5 walkers[i] = i.degree

6 walkers next[i] = 0

7 total walkers = sum(walkers)

8 while k > 0

9 for i = 1 to V. length

10 for each walker on node i

11 for each j be the neighbor of node i

12 // transition probability

13 p(i, j) = w(i,j)
∑

a
w(i,a)

14 j = pick a neighbor node with probability p(i, j)

15 if walkers[j] > φ

16 walkers next[j] = walkers next[j] + 1

17 else total walkers = total walkers − 1

18 zero(walkers)

19 swap(walkers,walkers next)

20 rate =termination rate of walkers in this iteration

21 RWT .append(rate)

22 k = k − 1

23 return RWT
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This way, just as the cooling process of two objects with similar shape have similar

heat transfer pattern, thereby reveal the fact that the random walker termination

patterns should be similar between the two graphs if they are structurally similar.

We need to extend the k-RWT algorithm for a general setup, that is, on weighted

undirected graphs. Then, the modified k-Random Walker Termination algorithm on

a graph of patched RNA Secondary Structure would get us a score, and scores of

several structures can be compared to identify similarities among structures. The

similarity scores can then be employed to perform hierarchical clustering. We have

implemented Random Walker based termination algorithm on patched (i.e., weighted)

RNA secondary structure graph. Algorithm Compute RWTWG returns the time series

rate vector given a patched RNA secondary structure graph. In the algorithm we

computed the transition probabilities from the edge-weights. The k element time

series rate vector RWT is considered as a representative signature of each RNA

secondary structure graph.

Parameter Selection k and φ: Since each node are assigned number of

walkers equal to its degree, and we see that in a RNA secondary structure graph a

node can not have more than degree 3, we can tune φ from 0 to 3. Sink threshold close

to the degree of the nodes will lead to early walker terminations, whereas threshold

close to 0 will keep the walker running for a while. Empirically we found that all the

walkers die after about 15-20 iterations. Thus, k = 20 would be a reasonable choice.

Applying the algorithm on all the patched transcripts of the dataset of segments, we

retrieved RWT signatures, and computed the pairwise alignments.

Then, we measure pairwise distance between two graphs (i.e., patched segments)

using Equation 3.5.

RWTscore(U, V ) =

√

√

√

√

k
∑

i=1

(ui − vi)2 (3.5)
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3.5 Partitional Clustering of the Segments

In order to apply a partitional clustering algorithm (k-means for instance),

we are required to transform the secondary structure of the segment into vector of

features. We applied k-means algorithm on the vectors containing the read-segment

vectors. We generated clustering results by running several runs of k-means with

different seeds each time with the distance functions: (1) squared Euclidean distance,

(2) cityblock distance, (3) cosine distance, (4) correlation distance and (5) hamming

distance. In this section, we describe the process of feature extraction from the

structural segments.

3.5.1 Feature Representation of the Segments

(a) Hairpin
Loop

(b) Stem (c) Interior
Loop

(d) Left
Bulge Loop

(e) Right
Bulge Loop

(f) Multi-
Loop

Figure 3.5: Structure elements occurred in a RNA secondary structure

Most RNA molecules are single stranded that fold back onto itself to form

double helical regions stabilized by the Watson-Crick base pairs (A-U and C-G) and

wobbling base pair (G-U).

Given a primary structure, i.e., a sequence S, a secondary structure is defined

as a set P = {(i, j)|1 ≤ i < j ≤ n} of base-pairs represented as tuples of positions

in the sequence of length n such that for any two base-pairs (i1, i2), (j1, j2) ∈ P with

i1 < j1 either

1. i1 < i2 < j1 < j2 or,
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2. i1 < j1 < j2 < i2

The two conditions imply that a base participates in at-most one base-pair. The

tuple (S, P ) describes an RNA as a sequence of nucleotides provided with a secondary

structure formed by base-pairs. A secondary structure can be drawn in a plane such

that base-pairs are designated by arcs whose ends connect the two bonded bases, and

all arcs can be drawn in one half-plane such that they do not cross.

The base-paired structure formed by the Watson-Crick base-pairs A-U and C-G

and the wobbling base-pair G-U can be divided into loops, also known as structure

elements. A loop is a formation of a base-pair (i, j) that encloses a chain nucleotides

or other base-pairs. A free energy contribution can be assigned to each loop. The

method commonly used for the energy calculation of a complete secondary structure is

based on the nearest neighbor model in which the thermodynamic stability of a base-

pair is dependent on the adjacent base-pairs. The loops are assumed to contribute

additively to the overall free energy of the secondary structure.

Figure 3.5 demonstrates the common structural elements of secondary struc-

tures. If all the internal nucleotides in the sequence interval [i + 1, · · · , j − 1] with

base-pair (i, j) are contiguous and non-binding, then we call this element a hairpin.

If the base-pair (i, j) is adjacent to another base-pair (k, l) such that i < k < l < j,

then various structure element formations are possible:

1. if k > i+ 1 and j = l + 1, then we call this structure element a left bulge;

2. if k = i+ 1 and j > l + 1, then it is a right bulge;

3. if k > i+ 1 and j > l + 1, then it is an internal loop;

4. if k = i+ 1 and j = l + 1, then it is a stem (or a stack).

A multi-loop consists in addition to the base-pair (i, j) of at least two base-pairs from

which several stems radiate.



50

Minimum Free Energy (MFE) based RNA secondary structures can be predicted

using the well known Vienna RNA package [4]. However, it was later discovered that

the non-coding RNA sequences do not always form MFE based secondary structures

that may lead to a wrong predictions of the structure by Vienna RNA package.

We, therefore, in conjunction with the Vienna RNA package, applied a non-MFE

based secondary structure predictor, CentroidFold [50]. The later package applied a

posterior decoding method including the γ-centroid estimator that can provide more

reliable RNA structures, especially non-coding RNA structures.

Both the Vienna RNA and CentroidFold packages provide a dot-bracket nota-

tion of the predicted secondary structures. From the results we first extracted the

following 10 features: (1) n(AU), the total number of A-U, or U-A base pairs (Watson

& Crick pair) present in the predicted structure. The frequency is normalized by total

number of base pairs present in the structure. (2) n(CG), the normalized number of

C-G or G-C base pairs (Watson & Crick pair) present in the structure, (3) n(GU),

the normalized number of G-U or U-G base pairs (Wobbling pair) present in the

structure, (4) n(BP ), base pair ratio of total number pairs present in the predicted

structure to the length of the sequence, (5) n(HP ), average number of bases form-

ing a hairpin, (6) n(LB), average number of bases forming a left bulge, (7) n(RB),

average number of bases forming a right bulge, (8) n(IL), average number of bases

forming an interior loop, (9) n(Stem), average number of base-pairs forming a stem,

(10) n(ML), average number of bases forming a multi-loop.

However, the Vienna RNA package also reports the MFE of the predicted sec-

ondary structure that we also consider as a feature associated with the Vienna RNA

prediction. Thus, a total of twenty-one structural features form a twenty-one dimen-

sional data vector per predicted structure. The 21 × N data matrix containing the

21 features of the N read-segment vectors were prepared. Figure 3.6 illustrates two
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examples of the secondary structure profile extraction of the RNA-seq read block

groups.

U
A
A

C
A

A
A

U
G

CC
U

UUAGUC
AGUU

A
G A

G C U A
A U U A A G

A
C

C
U
U

C A U
G
U
U

C
AG

U
C

A

G
C

A
U
U
U
G C U U

A
U
C
A
U

C
A

UCCA
G

G

G
C

A
G

C
G

AU
G

G
C

C
GA

G
U G

G
U

U
A
AG
G
CGUUGGA

CU
U
G

A A
A
U C C A A U G

G
G

G
U
C U

C
C
C
CG CG

C
A
G
G

U
U

C G
A
A

CC
C

U
G

C

U
C

G
C

U
G

C G G AAG
C G

G
GU

GCUCU
U
A
U
U

U
U

UUCU
A

U
U
U
U

U
U

Figure 3.6: Secondary Structures of the two read block segments (segment id 43 on
the left and 608 on the right) from the morin EB dataset (predicted by VienaRNA
package) . Here, for the read-segment id 43 (left): (i) average hairpin length is
4+11

2
= 7.5, (ii) average left and right bulges length are 0 and 0 respectively since

there is none present in the structure, (iii) average interior loop length is 2
1

= 2, (iv)
average length of stems is 7+3+5+3

4
= 4.5, (v) average size of the multi-loop is 9

1
= 9.

And for id 608 (right): (i) average hairpin length is 4+7+4+7+4
5

= 5.2, (ii) average left
and right bulge length is 1+1

2
= 1 and 0 respectively, (iii) average interior loop length

is 0, since none is present, (iv) average length of stems is 2+3+7+5+7+3+5
7

= 4.57, (iv)
average size of multi-loop is 15

1
= 15

3.6 Ensemble Clustering of the Segments

Recently, the ensemble clustering has emerged as an important extension to

the classical clustering problem since it shows potential to overcome the clustering

instability imposed by the classical approaches and thereby improve performance.

In this section, we briefly summarize the three ensemble clustering approaches that

aggregates various partitional clustering results of the same number of segments, and

draw conclusion by providing us a consensus result.
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3.6.1 Co-association matrix based cluster aggregation

Combining clustering results (i.e., evidences) using the co-association matrix

employed a voting mechanism [45]. The key intuition behind this aggregation strategy

is that read-segments which are similar are very likely to be co-located in the same

cluster. Thus, the co-occurrences of the pairs of read-segments in the same cluster

can be considered as votes for their association. Thus the n data partitions of N

read-segments are mapped into an N ×N co-association matrix C:

C(i, j) =
nij
n
, (3.6)

where Nij is the number of times the segment pair (i, j) is assigned to the same

cluster among the n partitions. This corresponds to a non-linear transformation of

the original feature space into a new representation, summarized in the similarity

matrix, C, induced by inter-segment relationships present in the clustering ensemble

[45]. Now by applying a hierarchical clustering on the new similarity matrix C, a

consistent partition can be retrieved.

3.6.2 Meta-Clustering Algorithm (MCLA) for cluster aggregation

The approach is based on clustering the clusters [46]. The first step of the

clustering algorithm is to form a meta-graph with a vertex for each base cluster. The

edge weights of the graph are proportional to the similarity between the vertices,

computed using the binary Jaccard measure:

Wi,j =
|ci ∩ cj|
|ci ∪ cj|

where ci and cj are the two clusters. This similarity matrix W can be treated as a

graph with clusters as nodes. And this graph is partitioned into meta-clusters using

the METIS algorithm. Then, all the clusters in each meta-cluster are collapsed to
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yield an association vector for the meta-cluster. The vector is computed by averaging

the association instances to each of the constituent clusters of the corresponding meta-

cluster. The instance is then clustered into the meta-cluster that it is associated to.

3.6.3 Majority Voting based cluster aggregation

Majority voting is an intuitive cluster aggregation method. It chooses the cluster

for a data point that is chosen by the majority of the independent clustering results

[55, 56]. Given a set of data points, every clustering algorithm tries to minimize the

total intra-cluster distances and maximize total inter-cluster distances among the data

points. However, the choice of optimization criterion, that is, the distance measures

used for a particular clustering algorithm may lead to unstable partitioning of the data

points if the distribution of the points is totally unknown. In such cases, it may not

be obvious which criterion to use to obtain stable clustering results. Majority voting

based clustering aggregation method can help solve this issue. With this method the

output of several single clustering algorithms can be combined to reduce the variance

of the error between the different results and to get an overall decision made by the

combined clustering algorithms.

Assume that we have T independent clustering results of N data points, each

having C number of partitions. Now, for a given data point x, we first prepare a

decision profile matrix Dx ∈ {0, 1}T×C , where Dx(t, i) = 1 if the tth clustering results

chooses the ith cluster for the data point x, otherwise Dx(t, i) is set to 0. Majority

voting result in an ensemble decision for cluster i of a data point x would be formulated

as in Equation 3.7.

Cluster assignment of the data point x = max
i







T
∑

t=1

Dx(t, i)







(3.7)
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As can be seen in Equation 3.7, if there is no majority, the tie is broken by assigning

the data point x to the first cluster, which would be the assignment number returned

by the max function.

The technique was successfully applied to characterize the event related poten-

tials of the EEG signals that help in the early diagnosis of the Alzheimer’s disease

[57]. It was also reported to solve problems from molecular biology. It was applied

to recognize, given a sequence of DNA, the boundaries between exons (the parts of

the DNA sequence retained after splicing) and introns (the parts of the DNA that

are spliced out) [56].

3.7 Experimental Evaluation

In this section, we present details of the datasets, programming platforms, and

the experiments along with the results.

3.7.1 Experimental Setup

Hardware and Platform: All our experiments were conducted on a computer

with Intel(R) Core(TM) i3-2310M CPU @ 2.10GHz with 3MB of L2-cache, 8GB of

RAM, 500GB of SATA hard-drive with 5400RPM. The algorithms were implemented

in R programming language (version 3.2.0) in R-Studio development environment

installed in a 64-bit Ubuntu 14.04 LTS operating system.

Dataset: We considered the using the Illumina sequenced 15 days old human

Embroyoid cell dataset [48] (morin EB). Additionally we considered two other RNA-

seq datasets: GSM450598 and GSM450605, which are Illumina sequenced dissected

34 days and 5105 days old human post-mortem superior frontal gyrus tissue sample

datasets respectively [49].
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Table 3.2: The dataset containing the read block groups used in our study.

Dataset name
Number of RNA-seq read segments per category of ncRNAs

miRNAtRNA rRNA scRNA snoRNA

CD

snoRNA

HACA

snoRNA

scaRNA

snRNA un-labeled Total (Σ)

morin EB [48] 193 157 24 7 42 4 1 9 18 455

GSM450598 [49] 193 74 28 13 30 2 1 6 30 377

GSM450605 [49] 194 161 35 56 56 16 3 52 113 686
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Ground Truth: We retrieved the annotations of RNA-seq segments of the

dataset from the website of deepBlockAlign (http://rth.dk/resources/dba/supplementary.

php (Last accessed: May-20-2015)) [34]. We list the labels in Table 3.2, where we

can see that the morin EB dataset contains 455 segments representing eight different

categories of non-coding RNAs (ncRNAs). Statistics of the additional two datasets

are also listed in the table.

Algorithms Evaluation: We evaluated hierarchical clustering approaches ap-

plied on the distance criteria we proposed in §3.4 in terms of Adjusted Rand Index

(ARI) and Normalized Mutual Information (NMI). We also evaluated ensemble par-

titional clustering approaches in terms of ARI, NMI and SSE. We compared four

algorithms with our ensemble based approach, which are (1) LocARNA [42], (2)

FoldAlign [43], (3) GraphClust [44], (4) DeepBlockAlign [34].

3.7.2 Experimental Results

3.7.2.1 Hierarchical Clustering Results of the Segments

According to the flow diagram illustrated in Figure 3.3, we first obtained the

secondary structures of all the segments of the dataset (§3.5.1). Then we prepared

seven pairwise distance matrices for the dataset (§3.4.1, §3.4.1, §3.4.2, §3.4.3, §3.4.4,

§3.4.5, §3.4.6 ). The CPU time requirement for preparing each of the matrix is il-

lustrated in Table 3.3. It is clear that the Euclidean distance, Damerau-Levenshtein

string edit distance and the Cosine distance calculations are the fastest because of

their linear computational complexity, whereas the implementations of the prepara-

tion of the other three distance matrices quite complicated, and each runs in quadratic

order.

http://rth.dk/resources/dba/supplementary.php
http://rth.dk/resources/dba/supplementary.php
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Table 3.3: CPU time (in seconds) required to prepare each of the pairwise distance
matrix for the Morin EB dataset.

Distance Metric Name CPU Time

1. Binary LZ distance 23125.80
2. Quaternary LZ distance 20621.92
3. SimTree edit distance 14860.30
4. Damerau-Levenshtein String Edit dis-
tance

44.66

5. Normalized Squared Euclidean distance 48.22
6. Cosine distance 41.93
7. Random Walker Termination 101.22

Once we got the pairwise distance matrices, we performed hierarchical agglom-

erative clustering with complete linkage. We applied a cut into the dendrograms at

k = 8, and computed the evaluation scores – Adjusted Rand Index and NMI. We set

k to 8 only because the data-set has ground truth labels and there were eight differ-

ent types of ncRNA annotations, namely – (i) miRNA, (ii) tRNA, (iii) rRNA, (iv)

scRNA, (v) snoRNA CD, (vi) snoRNA HACA, (vii) snoRNA scaRNA, (viii) snRNA.

There were few non-annotated segments which we discarded in all our evaluation (Ta-

ble 3.2). Table 3.4 (rows 1–10) summarizes the results of all the experiments of our

proposed PR2S2Clust system through the hierarchical clustering strategies applied

on the Morin EB dataset.

Furthermore, from the seven dendrograms retrieved from the hierarchical clus-

terings, we prepared seven linear partition vectors of the class membership by applying

a cut in specified height to have eight clusters (i.e., k = 8). Table 3.4 (rows 8–10)

summarizes the three different cluster aggregation strategies. We notice the consen-

sus function MCLA performs the best and is the most appropriate to use in retrieving

the final ensemble partition vector than the other two consensus functions.
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Table 3.4: Performance of different hierarchical clustering approaches. The top scores
are shown in bold-faces.

Hierarchical Clustering Approach ARI NMI

P
R

2
S

2
C

lu
st

S
y

st
e
m

1. Binary LZ distance 0.6216 0.0777
2. Quaternary LZ distance 0.6385 0.1609
3. SimTree edit distance 0.6458 0.1694
4. String Edit distance 0.6959 0.3124
5. Normalized Squared Euclidean distance 0.5827 0.2240
6. Cosine distance 0.6589 0.2444
7. Random Walker Termination distance 0.7036 0.2897
8. Co-association based cluster aggregation 0.5861 0.0369
9. Meta-clustering based cluster aggregation 0.7183 0.3159
10. Majority Voting based cluster aggregation 0.5014 0.0527

11. LocARNA [58] distance 0.3583 0.0642
12. FoldAlign [43] distance 0.4069 0.1091
13. GraphClust [44] distance 0.3520 0.0743
14. deepBlockAlign [34] distance 0.3586 0.0699

We also applied the four existing algorithms (LocARNA [58], FoldAlign [59],

GraphClust [44] and deepBlockAlign [34]) on the same dataset to retrieve the pair-

wise distance scores, and we performed similar hierarchical clustering strategy as

applied in PR2S2Clust to obtain clustering results. We evaluated the performance of

each of the methods in terms of ARI and NMI, and listed in Table 3.4 (rows 11–14).

The clustering performance based on the pairwise distance scores obtained through

the deepBlockAlign [34] is found to underperform. The alignment of block groups

(i.e., the read-segments) only considers pairwise sequence level changes, wherein the

pairwise segment distances computed by our proposed PR2S2Clust system considers

both sequence and secondary structure level features of the segments that can be

seen as the key player for the performance difference. Although, the LocARNA [58],

FoldAlign [43] and GraphClust [44] methods considered both sequence and struc-

tural similarities during the computation of the pairwise alignment scores, none did
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not consider the patched representation of the RNA-seq read segments like in the

PR2S2Clust system. This empirically justifies the performance boost by using all

the pairwise distance variations used in our proposed system. Again, from the table

we identify the strength of Meta-clustering based cluster aggregation (row 9 in the

table) among all the available methods over the two cluster aggregation methods as

well as any other individual clustering schemes. We also can see that the performance

of the Random Walker Termination based strategy on the patched RNA secondary

structures introduced in this study is comparable with other strategies in PR2S2Clust

system.

3.7.2.2 Partitional Clustering of the Read-Segments

The set of experiments were conducted to emphasize on the investigation about

the applicability of the ensemble partitional clustering over the ensemble hierarchical

clusterings. The data matrices of dimension 21×N of the N read-segments in each

of the datasets were generated by extracting twenty one features from the predicted

secondary structures were the input to the several runs of k-means with combinations

of varying initial centroid and distance metrics, where k were set to 8. The three con-

sensus functions were once again applied to the generated partitions for aggregation.

Table 3.5 summarizes the clustering performances of the three consensus functions in

each of the three data-sets.

We can see the MCLA based consensus function consistently shows superior

performance than the other two – co-association scheme and the majority voting

algorithm in terms of all the three evaluation criteria (two external and one internal).

If we compare the performance of MCLA from Table 3.5 with the result presented in

Table 3.4, we realize that the ensemble partitional clustering strategy is the best to

apply in practice than the ensemble hierarchical clustering.
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Table 3.5: Ensemble partitional clustering of the dataset of RNA read block structural
profiles.

Dataset Consensus Function ARI NMI SSE

Morin EB
Co-association based aggregation 0.5067 0.0386 0.4637
Meta-clustering based aggregation
(MCLA)

0.6918 0.3021 0.7341

Majority Voting based aggregation 0.377 0.0462 0.4637

GSM450598
Co-association based aggregation 0.5579 0.0354 0.5915
Meta-clustering based aggregation
(MCLA)

0.6398 0.3096 0.7321

Majority Voting based aggregation 0.4032 0.0429 0.5942

GSM450605
Co-association based aggregation 0.4644 0.0246 0.4534
Meta-clustering based aggregation
(MCLA)

0.7301 0.2541 0.6166

Majority Voting based aggregation 0.3440 0.0873 0.4475

3.7.2.3 Comparing Hierarchical and Partitional Clustering Results

In terms of experimental running time, partitional clustering algorithm is much

faster than that of hierarchical clustering. The most exhausting part of the hierarchi-

cal clustering in our experiments was the preparation of pairwise distance matrices for

N read-segments per dataset, that requires O(N2) running time as the pre-processing

time before the we can call the hierarchical cluster function. In contrast, k-means

algorithm, the partitional clustering we used in our study does not require this ex-

pensive pre-processing step. However, it requires vectorized representation of each of

the segments. That is why we extracted twenty one structural features and formed a

21-dimensional vector for each of the read-segments. The running time of extracting

all the 21 features from a given pool of secondary structures of the N read-segments

is O(N).

If we take a look at both Table 3.4 and Table 3.5, we will find that performance

scores of hierarchical clustering is better than those of the partitional clustering which
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underlines the superiority of the hierarchical clustering over the partitional clustering

with the cost of CPU time.

3.7.2.4 Comparing with Ensemble Clustering Results

Different classical clustering algorithms produce different clustering results be-

cause they impose different structures on the data. And, not a single clustering

algorithm is optimal; moreover different realizations of the same algorithm may gen-

erate different results. However, the ensemble clustering exploits the complementary

nature of the different clustering results of the same dataset to aggregate all into a

consensus clustering result that agree to all the different input clusterings to some

extent. Thus, the ensemble strategies are popular way of overcoming instabilities in

each of the individual clustering algorithms. If we take a look at the seven classical

hierarchical clusterings entries in Table 3.4, and compare with the three ensemble

results just below the seven rows (rows 8–10), we can realize the phenomena. For

instance, not a single classical clustering algorithm topped in all the evaluation scores

for all the datasets. This underlines the fact that the performance of the individual

clustering is somehow inconsistent than that of ensemble clusterings (specifically of

the Meta-clustering based aggregation algorithm).

3.8 Conclusions and Future Works

In this article we explored various ensemble clustering strategies and application

of these to various RNA-seq non-coding segment data-sets based on their structural

dimensions. We presented justification for picking the appropriate clustering strat-

egy to use in similar studies – classical individual clustering vs. ensemble clustering,

or partitional clustering vs. hierarchical clustering. We showed that the use of the

ensemble clustering will provide an extra level of confidence in the clustering results.
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However, the ensemble partitional clustering would be best in practice than the en-

semble hierarchical clustering strategies in terms of the standard evaluation criteria

and computational cost and time. The results presented in this manuscript will help

researchers to adopt the best strategy while they do intend to cluster their own seg-

ment data-sets and seek to focus on the structural perspective. One possible future

research direction would be to aggregate the dendrograms without destroying the

hierarchy in order to perform the ensemble hierarchical clustering. Investigating the

application of the multi-dimensional structural profile vectors of the RNA-seq read

segments in the multi-class classification framework would also reveal some structural

properties that might be more discriminative than the others to solve the annotation

problem.



CHAPTER 4

NMF based LncRNA-Disease Association

4.1 Introduction

With the advent of the High Throughput Sequencing (HTS) platform it is ex-

perimentally verified that the protein-coding genes account for only a small fraction of

the human genome (∼ 1.5%). In other words, more than 98% of the human genome do

not code any protein; the fact implies that the traditional central dogma of molecular

biology [60] is incomplete. There exists another branch along with the “traditional”

dogma that explains a huge number of the non-protein coding genes that undergo

transcription but never translate proteins [61, 62, 14]. Accumulating evidences re-

ported over the past decade shed lights on many these non-coding RNAs (ncRNAs)

and their functionalities in biological processes. The long non-coding RNAs (lncR-

NAs), a subclass of the ncRNAs having length more than 200 bases are discovered to

be associated with many biological processes, such as imprinting control, epigenetic

regulation, cell cycle control, nuclear and cytoplasmic trafficking, cell differentiation,

immune responses and chromosome dynamics [63]. It is rather not surprising to dis-

cover the fact that the dysregulations and mutations of the lncRNAs are implicated

in variety of human diseases [64, 65, 66]. That is why, a comprehensive understanding

of potential human disease-related lncRNAs can facilitate development of our current

knowledge-base; essentially that could explain accurately the molecular mechanisms

of human diseases, their implications and also facilitate the diagnosis, treatment,

prognosis and prevention [67, 68].

63
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There are plenty of research efforts that have contributed into characterizing

lncRNAs by generating the corresponding sequences, expression profiles and genomic

annotations. But, only a few studies have been conducted to infer lncRNA-disease

associations, indicating that we still are far from understanding the hidden functional

associations of the lncRNAs. Of the few, Liao et al.[69] proposed the concept of

coding-non-coding gene co-expression (CNC) network which was constructed from

several gene expression dataset of coding and non-coding genes. The authors then

conducted prediction of similar functional characteristics of lncRNAs from the CNC

networks using a graph analytical approach. Guo et al. [70] developed a long non-

coding RNA global function predictor (lnc-GFP) to predict probable functions for

lncRNAs at large scale by integrating gene expression data and protein-protein inter-

action data. They also employed the concept of CNC network by Liao et al. [69]. But

here the weighted CNC network was constructed using both the co-expression data

and the protein-protein interaction data. Once the CNC network is built, a global

propagation algorithm that is guaranteed to converge to a local minimum. The al-

gorithm outputs the rank of all un-annotated genes with respect to a query function

category. Finally, the top-ranked genes are functionally annotated with the function

category of interest.

Yang et al. [71] presented a method to analyze lncRNA-disease associations,

that can be used to predict lncRNA implicated diseases. Based on the available

lncRNA-disease associations, two biological networks were constructed – an lncRNA-

implicated disease network (lncDN) and disease-associated lncRNA network (DlncN).

In lncDN, a vertex represents a disease, and a link between two vertices indicates

the two corresponding diseases shared at least one lncRNA as their disease-causing

lncRNA. However, in DlncN, a vertex represents an lncRNA, while a link between

two nodes represents the fact that the two corresponding lncRNAs were implicated
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in at least one common disease. A graph analytical approach was applied to ex-

tract the similar lncRNAs and disease from these projected networks. Moreover, a

propagation algorithm was applied on a weighted bipartite network of the lncRNA-

disease associations to predict potential. Thus, by modeling the lncRNA-disease

association as a bipartite network, and by mining the resultant network lncRNA and

disease association scores were predicted. Chen et al. [68] developed a method of

Laplacian Regularized Least Squares for LncRNA-Disease Association (LRLSLDA)

that considered integrating the intergenic lncRNA (lincRNA)-tissue expression pro-

files obtained from the Human BodyMap LincRNA project [72], although only a few

lncRNAs in their dataset were found to be intergenic that makes such an integra-

tion non-contributing towards the inference. However, the method prioritized the

entire lncRNAome for disease of interest by integrating known phenome-lncRNAome

network obtained from the existing database of lncRNA-disease associations.

All of these studies focused on solving and ranking lncRNA-disease associations.

The prior knowledge of the coding gene - disease associations pops up a question: is

there any possibility that there exists lncRNA-gene regulation in order to perform a

particular function and or infer a disorder in the biological system? In fact this has

been puzzled quite a few researchers and apparently there exists such lncRNA-gene

relationship network inside cell [73, 74]. It is yet to explore the mysterious modular

organization of the lncRNAs and coding genes, and understanding of their complex

phenomena that are causing human diseases. In this article, we propose a computa-

tional framework for constructing the lncRNA-gene modules based on the integration

of prior knowledge we have, so far. We incorporated the predicted lncRNA-disease

association, and experimentally validated gene-disease association, gene-gene inter-

action data, expression profiles of both lncRNAs and genes in a non-negative matrix

factorization (NMF) framework. We also applied the similar factorization approach



66

on each of the association data alone to further cluster the lncRNAs in terms of

meaningful disease groups.

The rest of the article is organized as follows: section 2 presents the details of

the dataset used in this study, along with the preprocessing step. The lncRNA-disease

association and the lncRNA-gene co-module discovery problem are formulated later

in the section. Then, at section 3 we present experimental setup along with results.

Finally, conclusions and future research directions are drawn at the section 4.

4.2 Materials and Methods

Figure 4.1 describes all our proposed framework to deal with four problems: (i)

lncRNA-disease association inference, and corresponding bi-clustering, (ii) lincRNA-

disease association inference, (iii) Categorizing lincRNAs by factoring the correspond-

ing expression profile, (iv) lincRNA-gene co-module discovery. Each of the framework

are discussed below.

4.2.1 Datasets and pre-processing

The Human BodyMap project provides us a catalog of 8,194 lincRNAs and

28,473 assembled from RNA-seq data from around 4 billion RNA-seq reads across

22 tissues [72]. The catalog contains transcript expression scores estimated through

measuring corresponding abundances across the tissues using the tool Cufflinks [75].

We have collected the list of 1,028 experimentally validated associations among

322 long non-coding RNAs (lncRNAs) and 221 diseases from the LncRNADisease

data server [67] on January 13, 2015.

The association dataset of long intergenic non-coding RNAs (lincRNAs) and

diseases were extracted from the same data server on the same date. There listed

was 1,564 lincRNAs and their associations with a pool of 1,641 diseases. The disease
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Figure 4.1: Overview of the proposed frameworks.

names that were used in the association set were not-canonical and had no index

through using standard naming (e.g., RefSeq, ENSEMBL, and so on). We first tab-

ulated all the disease names from the dataset, and then employed an OMIM API

function call [76] to retrieve closely matched phenotype IDs (i.e., the entries prefixed

with character # or %, or none), resulting a set of 684 OMIM phenotypes (mainly

diseases) associated with the lincRNAs. We removed all the lincRNA entries from

the association dataset that did not participate in the expression measurement, and

removed all the disease entries that could not be matched with any valid OMIM phe-
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notype ID and disjoint of the disease entries from the coding-gene association data-

set. Finally, the lincRNA-disease association data-set contains associations among

562 lincRNAs and 645 OMIM diseases.

The associations among the coding-genes and diseases were pulled from Dis-

GeNET web-server [77]. There were 415,681 associations among 16,666 coding genes

and 13,135 diseases. Again, the disease names found were non-indexed through stan-

dard naming. We, therefore, applied OMIM function call again to map the disease

names into closely matched phenotype IDs. We retain the coding-gene entries that

were found expressed in the RNA-seq experiment. We retain disease entries in this

case if valid OMIM phenotype IDs were found, and is also associated with at least

one lincRNAs in the pool we selected above. Thus, we extracted the coding gene and

disease association dataset among 13,425 coding-genes and 645 OMIM diseases.

Gene-gene genetic interaction network were extracted from [78]. Of the 4,836,794

genetic interactions between pairs of genes, we kept only the interactions among the

genes from our gene pool, resulting 3,264,923 remaining interactions. We associate

the genes with their Entrez identifier throughout the study.

Given the disease associations among lncRNAs and genes, we propose a way to

build a lncRNA-gene co-association network from the disease association perspective.

An lncRNA l is co-associated with a gene g if both implicates the same disease, d.

Using this simple process we could extract 1,775,735 co-associative edges among the

562 lincRNAs and 13,425 coding genes.

4.2.2 Association Inference through Standard NMF Formulation

The lncRNA-disease association matrix A ∈ R
m×n
+ , where m and n are the

number of lncRNAs and diseases respectively, and Ai,j = 1 denoting there is at

least one experimental evidence present that support association between lncRNA i
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with disease j, otherwise the cell value would be 0. Each column of the matrix A

corresponds to a data point in the m-dimensional space. The non-negative matrix

factorization (NMF) [79, 80] technique divides such a matrix into two non-negative

matrices: a basis matrix of lower rank W ∈ R
m×r
+ and a coefficient matrix H ∈ R

r×n
+ ,

where the rank r < min{m,n}, so that

A ≈ WH. (4.1)

An NMF solution is not unique, because of the fact that, for any diagonal matrix

D ∈ R
r×r
+

A ≈ WH = WDD−1H = (WD)(D−1H) = V G,

where, V = WD and G = D−1H. Both the matrices V and G are not necessarily

equal to W and H respectively, implies the non-uniqueness property of the solution

to the equation 4.1.

A solution to the NMF problem, however, can be obtained by solving the fol-

lowing optimization problem:

min
W,H

F(A,W,H) ≡ ||A−WH||2F

s.t.,W ≥ 0, H ≥ 0,

(4.2)

where W ∈ R
m×r
+ is a basis matrix, and H ∈ R

r×n
+ is a coefficient matrix. W,H ≥ 0

means that all elements of W and H are non-negative. Since r < m and r < n,

dimensionality reduction is achieved, and a lower dimensional representation of A in

a r-dimensional space is given by H.|| · ||2F is the square of the Frobenius norm and is

defined as

||A−WH||2F = tr((A−WH)(A−WH)T ),

where tr is the matrix trace operator.
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The fact that W and H are non-negative guarantees that parts of the matrix

can be combined additively to form the given association matrix as a whole; NMF

is a useful technique for obtaining a part-based representation of the data. In other

words, factorization allows us to easily identify substructures in the data [81]. Several

approaches to solve NMF by iteratively updating W have been presented in earlier

studies [82]. Additional Bioinformatics applications of NMF are presented in a review

article by Devarajan [83]. Several variants of NMF have been proposed by incorpo-

rating various kinds of constraints: discriminative constraints [84], locality-preserving

or network-regularized constraints [85, 86] and sparsity constraints [87, 88].

One non-negative matrix factorization algorithm developed by Lee and Seung

[89] is based on the multiplicative update rules of W and H, and is shown in Algo-

rithm 2. The approximations of W and H remain non-negative during the updates.

Algorithm 2 Standard NMF based on Euclidean Distance [89]. Calculate W,H such

that A ≈ WH

Input: A ∈ R
m×n
+ , rank r, and the two initial seed matrices W ∈ R

m×r
+ and

H ∈ R
r×n
+

Step 1: Normalize columns of A.

Step 2: Scale columns of W to sum to 1.

Step 3: Update H and W matrices using the following update rules:

Hqj ← Hqj

(W TA)qj
(W TWH)qj + ǫ

, (1 ≤ q ≤ r, 1 ≤ j ≤ n)

Wiq ← Wiq

(AHT )iq
(WHHT )iq + ǫ

, (1 ≤ i ≤ m, 1 ≤ q ≤ r)

Step 4: Scale columns of W to sum to 1.

Step 5: Repeat steps 3–5 until convergence



71

It is generally best to update W and H “simultaneously”, instead of updating each

matrix fully before the other [90]. That is, after updating a row of H, we update

the corresponding column of W . In the implementation, we added a small quantity

ǫ = 2.2204 × 10−16 to the denominators in the approximations of W and H in each

iteration. However, Kullback-Leibler divergence based NMF formulation avoids sim-

ilar multiplicative update rules, and is able to avoid numerical underflows to some

extent (Algorithm 3).

Algorithm 3 Standard NMF based on Kullback-Leibler divergence [91]. Calculate

W,H such that A ≈ WH

Input: A ∈ R
m×n
+ , rank r, and the two initial seed matrices W ∈ R

m×r
+ and

H ∈ R
r×n
+

Step 1: Normalize columns of A.

Step 2: Scale columns of W to sum to 1.

Step 3: Update H and W matrices using the following update rules:

Hau ← Hau

(

∑

i
WiaAiu
(WH)iu

)

∑

kWka

, (1 ≤ a ≤ r, 1 ≤ u ≤ n)

Wia ← Wia

(

∑

u
HauAiu
(WH)iu

)

∑

vHav

, (1 ≤ i ≤ m, 1 ≤ a ≤ r)

Step 4: Scale columns of W to sum to 1.

Step 5: Repeat steps 3–5 until convergence

Pauca et al. [90] proposed a constrained NMF (CNMF) formulation,

min
W,H

||A−WH||2F + α||W ||2F + β||H||2F

s.t.,W ≥ 0, H ≥ 0,

(4.3)
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where α and β are regularization parameters. Algorithm 4 can be used to retrieve the

two factors W and H. The regularization parameters α ∈ R and β ∈ R are used to

Algorithm 4 CNMF/Regularized NMF. Calculate W,H such that A ≈ WH

Input: A ∈ R
m×n
+ , rank r, and the two initial seed matrices W ∈ R

m×r
+ and

H ∈ R
r×n
+

Step 1: Normalize columns of A.

Step 2: Scale columns of W to sum to 1.

Step 3: Update H and W matrices using the following update rules:

H
(t)
qj ← H

(t−1)
qj

((W (t−1))TA)qj − βH(t−1)
qj

((W (t−1))TW (t−1)H(t−1))qj + ǫ

for 1 ≤ q ≤ r, 1 ≤ j ≤ n

W
(t)
iq ← W

(t−1)
iq

(A(H(t))T )iq − αW (t−1)
iq

(W (t−1)H(t)(H(t))T )iq + ǫ

for 1 ≤ i ≤ m, 1 ≤ q ≤ r

Step 4: Scale columns of W to sum to 1.

Step 5: Repeat steps 3–5 until convergence

balance the trade-off between the accuracy of the approximation and the smoothness

of the computed solution.

Sparseness constraints can be enforced on W or H in the NMF formulation

(Equation 4.2). Kim and Park [88] introduced two formulations and the corresponding
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algorithms for sparse NMFs – SNMF/L for sparse W , and the SNMF/R for sparse

H. The following is the formulation of SNMF/L:

min
W,H

1

2
{||A−WH||2F + η||H||2F + β

m
∑

i=1

||W (i, :)||21}

s.t.,W ≥ 0, H ≥ 0.

(4.4)

Here, the parameter β is used to adjust the sparsity in W while the parameter η is

used to preserve accuracy in H. And the formulation of the SNMF/R is:

min
W,H

1

2
{||A−WH||2F + η||W ||2F + β

n
∑

j=1

||H(:, j)||21}

s.t.,W ≥ 0, H ≥ 0.

(4.5)

Again, the parameter β is used to adjust the sparsity in H and the parameter η is

used to preserve the accuracy in W . Each of these two sparse NMF formulations

that imposes the sparsity either on W or H utilizes L1-norm minimization and the

corresponding algorithms are based on Alternating Non-negativity constrained Least

Squares (ANLS) [88]. The ANLS problem for SNMF/L is shown below:

min
H
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Similarly, the ANLS problem for the SNMF/R formulation is given below:
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4.2.2.1 LncRNA-Disease Association Inference

Non-negative Matrix Factorization models map both the lncRNAs and diseases

to a joint latent factor space of dimensionality r, such that lncRNA-disease associ-

ation are modeled as the inner products in the latent feature space (f1, f2, · · · , fr).

Accordingly, each lncRNA i is associated with a vector li ∈ R
r, and each disease j is

associated with a vector dj ∈ R
r. Thus, for a given lncRNA i, the elements of the

vector li measure the extent to which the lncRNA possesses those factors, whereas

for a given disease j, the elements of dj measure the likelihood of association of the

disease with corresponding factors. The dot product li
Tdj captures the association

between lncRNA i and disease j. This approximates the overall association of disease

j with lncRNA i, that is denoted by âij leading to the estimate

âij = li
T · dj (4.10)

Once the NMF factorization is complete on matrix A, the inference system can easily

estimate the likelihood of association of an lncRNA with a disease using equation

4.10. Figure 4.2 illustrates the inference process.

4.2.3 Bi-clustering

Many traditional clustering algorithms such as Hierarchical clustering have been

applied for the purpose of clustering gene micro-array data which is an association

between genes and samples to some extent [92, 93]. These strategies have a signifi-

cant limitation: the approaches assign samples into some specific classes based on the

genes’ expression levels across all the samples. Sometimes, it is necessary to develop

clustering methods that can identify the local structures, instead of the global phe-

nomenon. Moreover, it has been shown in molecular biology that only a small number

of genes or lncRNAs are involved in a pathway or biological process on most cases.



75

List of experimentally

supported LncRNA-disease

associations

LncRNA Disease

*

Figure 4.2: An abstract view of the lncRNA-disease association inference process.
At first from the list of experimentally supported lncRNA-disease associations, the
original association matrix A is formed, where Aij = x, and x ≥ 0 is a positive integer
denoting number of experimental evidences that support the association between ith

lncRNA and jth disease. Then NMF is applied to factor A into two matrices W and
H. The corresponding rows of W and columns of H are then used to estimate the
likelihood of the association betwen lncRNAs with diseases.

Specifically, only a small subset of lncRNAs are active for one cancer type, or one

dysfunction, so generating sparse bi-clustering structures (i.e., the number of genes

in each bi-clustering structure is small) is of great interest [94]. Many bi-clustering

algorithms have been developed to explore the correlations between genes and sam-

ples and to identify the local gene-sample structures in the micro-array data, and

some other association data [95]. However, the idea of bi-clustering is to characterize

each lncRNA by a subset of diseases and to define each disease in a similar way. As
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a consequence, bi-clustering algorithms can select the groups of lncRNAs that show

similar expression behaviors in a subset of diseases that belong to some specific classes

such as some specific cancers, or disorders, and thus identify local structures of the

association data.

Several bi-clustering algorithms have been proposed including BiMax, ISA,

SAMBA, OPSM, which are evaluated in the review by Prelic et al [95]. However,

bi-clustering can also be performed using NMF. The NMF factors can be used to per-

form bi-clustering analysis of the data matrix. The rows of the association matrix A

represent lncRNAs, and the columns represent diseases. We can use the basis matrix

W to divide the m lncRNAs into r lncRNA-clusters, and the coefficient matrix H

can be used to divide the n diseases into r disease-clusters. Typically the following

rules are used to assign membership:

• ith lncRNA is assigned to the lncRNA-cluster q if the Wiq is the largest in

W (i, :), i.e., the ith row of the matrix W .

• jth disease is assigned to the disease-cluster q if the Hq,j is the largest in H(:, j),

i.e., the jth column of the matrix H.

4.2.4 Association inference through Data Integration in NMF Formula-

tion

Here we defined the NMF objective function with three components: (i) The

non-negative lincRNA and coding gene expression matrices L ∈ R
nt×nl
+ and C ∈

R
nt×nc
+ , where nl, nc, nt represent number of lincRNAs, number of coding genes and

number of tissue samples considered in the expression datasets. (ii) the coding gene-

coding gene genetic interaction network, X ∈ Rnc×nc
+ , and (iii) lincRNA-coding gene

co-association network, Y ∈ Rnl×nc
+ that represents the relationship among sets of

lincRNAs and genes that are co-associated for similar diseases.
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Here in this problem our goal is to identify lincRNA-gene co-modules. We

further assume that there is a common basis matrix W for both the lincRNA and

coding gene expression matrices L and C. These two expression matrices need to be

factored into the basis W and two coefficient matrices Hl and Hc. Thus, the objective

function becomes:

minW,Hl,Hcf(W,Hl, Hc) = ||L−WHl||2F + ||C −WHc||2F , (4.11)

where W,Hl, Hc have dimensions nt×r, r×nl and r×nc respectively. The parameter

rank, r is chosen prior to the optimization. Solutions to the equation 4.11 is not unique

[81] and demonstrate integrating prior knowledge to the above objective function to

retrieve biologically significant results. In addition to that, such an integration can

narrow down the large search space of lincRNA-gene co-modules.

If the gene-gene interaction network is defined as X and the lincRNA-gene

co-association network as Y . We first define the objective function where we try

to maximize the prior knowledge of the gene-gene interactions as possible. Thereby

maximizing the following function:

maxW,Hl,Hc
∑

ij

xij(h
c
i)
Thcj = tr(HcXH

T
c ). (4.12)

This term ensures that the coding genes with known genetic interactions have similar

coefficient profiles.

The co-association relationships between lincRNAs and coding genes can also

be integrated similarly into the following function:

maxW,Hl,Hc
∑

ij

yij(h
l
i)
Thcj = tr(HlY H

T
c ). (4.13)

We now combine the three objective functions from Equations 4.11, 4.12, 4.13

into the following single optimization function:

minW,Hl,Hc||L−WHl||2F + ||C −WHc||2F − λ1tr(HcXH
T
c )− λ2tr(HlY H

T
c ), (4.14)
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where the parameters λ1 and λ2 are weights for the integration constraints defined in

X and Y .

However, to avoid sparser NMF representations, we further imposed L1-norm

constraints on the Hl and Hc matrices [88], along with growth limiting constraints on

the matrix W . Finally, our objective function for this problem becomes:

minW,Hl,Hc||L−WHl||2F + ||C −WHc||2F − λ1tr(HcXH
T
c )− λ2tr(HlY H

T
c )

+γ1||W ||2F + γ2





∑

j

||hj||21 +
∑

k

||hk||21



 , (4.15)

where hj and hk are the jth and kth columns of the coefficient matrices Hl and Hc re-

spectively. The term γ1||W ||2F limits the growth of W , and γ2

(

∑

j ||hj||21 +
∑

k ||hk||21
)

encourages sparsity.

The objective function in Equation 4.15 is not convex in W,Hl, Hc that kept

us from obtaining the global minimum. Algorithm 5 can be adapted to retrieve

reasonable local solutions to this optimization problem [81].

4.3 Experiment Results and Discussions

4.3.1 Experiment 1: NMF on the LncRNA-disease association

To evaluate the performances of the models, we preferred three widely used

metrics, namely Mean Absolute Error (MAE), Accuracy and Root Mean Squared

Error (RMSE) [96], which are defined as follow:

MAE(Ŷ,Y) =
1

|τ |
∑

(i,j)∈τ

|ŷij − yij|, (4.16)

Accuracy(Ŷ,Y) =
1

|τ |
∑

(i,j)∈τ

(1− |ŷij − yij|)

= 1−MAE(Ŷ,Y), (4.17)
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Algorithm 5 Integrative NMF. Calculate W,Hl, Hc.

Step 1: Initialize W,Hl, Hc with non-negative random values drawn from uniform

distribution.

Step 2: Fix Hl and Hc, and solve the following optimization problem:

minW ||L−WHl||2F + ||C −WHc||2F + γ1||W ||2F

This can be accomplished by updating W with the following update rule:

wij ← wij
(LHT

l + CHT
c )ij

(WHlHT
l +WHcHT

c + 1
2
γ1W )ij

Step 3: Fix W , and solve the following optimization problem:

minHl,Hc ||L−WHl||2F + ||C −WHc||2F

−λ1tr(HcXH
T
c )− λ2tr(HlY H

T
c )

+γ2





∑

j

||hj||21 +
∑

k

||hk||21





This can be accomplished by updating Hl and Hc using the following update rules:

hlij ← hlij
(W TL+ 1

2
λ2HcY

T )ij
[

(W TW + γ2er×r)Hl

]

ij

hcij ← hcij
(W TC + λ1HcX + 1

2
λ2HlY )ij

[

(W TW + γ2er×r)Hc

]

ij

Step 4: Repeat Step 2-3 until convergence.

RMSE(Ŷ,Y) =

√

√

√

√

1

|τ |
∑

(i,j)∈τ

(ŷij − yij)2, (4.18)

where Ŷ and Y are the computed association matrix and the observed association

matrix respectively, while τ is the set of lncRNA-disease pairs for which we want to



80

predict the ratings, that is, τ can be considered as the test set. The preference between

the above two metrics depends on the particular application. In practice, MAE is

popular for many collaborative filtering algorithms, while RMSE is still popular for

the similar problems that generate real valued output.

Table 4.1: Evaluation of the three NMF Algorithms – Standard NMF, Regularized
NMF and Sparse NMF in terms of mean absolute error (MAE) and root mean squared
error (RMSE) by varying ranks (r).

r
MAE RMSE

Standard
NMF

Regularized
NMF

Sparse
NMF

Standard
NMF

Regularized
NMF

Sparse
NMF

2 0.84 0.85 0.85 20.87 21.23 21.23
10 0.54 0.55 0.54 13.48 13.64 13.56
20 0.39 0.39 0.38 9.67 9.71 9.59
30 0.30 0.30 0.31 7.50 7.58 7.66
40 0.24 0.24 0.23 6.02 6.06 5.66
50 0.19 0.20 0.18 4.70 4.90 4.57

The lncRNA-disease associations are first split into five random folds. Then we

performed five-fold cross validation to evaluate the model. Table 4.1 demonstrates

the predictive performance of lncRNA-disease associations by using the three NMF

models. The association matrix is first factored into W and H matrices using the

three NMF algorithms. We performed several runs of NMF by varying rank of W

and H, which are r = 2, 10, 20, 30, 40, 50. Then the original matrix is reconstructed

by multiplying the computed W and H matrices. The estimated matrix is then

compared with the original matrix for errors, in terms of RMSE and MAE scores.

Since, the accuracy and MAE scores are exactly complement to each other, it is

evident from the Table 4.1 that once we increase the rank of the NMF factorization,

the error decreases, as well as accuracy increases. As the rank of the NMF in our
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current dataset can only be less than 221 (that is, the minimum of the two dimensions

of the association matrix), we showed here only the effect of choosing rank less than

50. The trend of accuracy and MAE can be equally observed in all of the NMF-based.

If we look at the trend of RMSE scores as the increment of rank in the various

NMF implementations, we find all of the three algorithms show almost similar RMSE

trend. However, since the input association matrix possesses sparsity property, it is

better to use the sparse NMF considering the sparsity property into account. Thus,

from Table 4.1 results we can conclude that the sparse NMF (SNMF/R) performed

better than the other two NMF algorithms.

As explained in the previous section, a bi-clustering algorithm enables us to

explore groups of entities that are similar within a small locality. Essentially, we are

more interested to identify groups of lncRNAs that are associated with a very simi-

lar group of diseases, or disorders. Since, other than the lncRNA-disease association

information we did not use any other characteristics of lncRNAs in our NMF-based

formulations in order to understand similarities between lncRNA-pairs, it is not ev-

idently interesting to perform clustering on the diseases that would reveal similar

diseases groups. However, on the contrary, grouping lncRNAs reveals a number of

useful characterization of lncRNAs in terms of the implication of diseases.

Table 4.2 lists out 10 significant clusters of lncRNAs that we retrieved after we

performed a generalized NMF on the association matrix, and sought for two factors

W and H of rank 322 × 10, and 10 × 221, meaning we expected a r = 10 rank

approximation of the association matrix. Using the bi-clustering strategy described

in the earlier section, we assigned membership scores for each of the 322 lncRNAs to

any of the 10 disease classes. Here the latent feature space is 10-dimensional.

We then put the class major disease associations to the lncRNAs in Table 4.2

and found interesting lncRNA groups. For instance, there we see a prominent group
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(cluster # 5) of lncRNAs which are associated with heart diseases. All the lncRNAs

in cluster #7 are associated with neurological disorders to some extent. Cluster # 6

contains all the lncRNAs which are mostly associated with hereditary disorders.

Cluster #1 is representing mostly the gastro-intestinal dysfunctions. All the

remaining clusters are representative to several cancer categories and associated lncR-

NAs. A similar approach can also be employed to cluster the 221 diseases in the pool,

according to the 10 latent features.

4.3.2 Experiment 2: NMF on the LincRNA-disease association

One of the essential parameter in NMF method is the rank r. It defines the

number of meta-lincRNAs used to approximate the target association matrix. There

are several approaches in picking the optimal value of r: (i) taking the first value of

r for which the cophenetic correlation coefficient starts to decrease [91], (ii) picking

the first value where the Residual Sum of Squares (RSS) curve present an inflection

point [97]. The measures are plotted in Figure 4.3. Here, the cophenetic correlation

coefficient decreased from rank 2 till 4, and then were raised for the increment of ranks.

The explained variance (evar) went down after the rank 5. It is also important to

notice that the basis W and the coefficient matrix H were sparse, and our framework

was able to handle sparsity that makes the framework robust.

We further investigated the convergence speed of the NMF algorithms: brunet

[91], lee [89], non-smooth NMF (nsNMF) [98], snmf/r and snmf/l [88]. The results are

shown in Figure 4.4. Each curve reports the trajectory of the approximation residuals,

computed with the corresponding method’s loss function. Each track is normalized

separately over its maximum value and stops at the number of iterations required

to achieve the convergence criterion. We see that lee, snmf/l and snmf/r converged
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Table 4.2: 7 prominent clusters of lncRNAs that were retrieved from our NMF models

ID Mostly associ-

ated diseases

lincRNAs

1 gastric cancer,
liver related
cancer, kidney
injury

AIR, CCAT1, DQ786243, Dreh, ENST00000513542, GNAS-AS1, HEIH, HOTTIP,
HULC, IGF2-AS, KCNQ1OT1, LALR, LDMAR, LINCMD1, lncRNA-ATB, lncRNA-
MVIH, MINA, MIR7-3HG, NPTN-IT1, np 17856, np 5318, RNA polymerase III-
dependent lncRNAs, RNase MRP, VL30 LTRs

2 Esophageal
squamous cell
cancer, type
II diabetes,
melanoma

1B FGF-antisense transcripts, Alu lncRNAs, CDKN2B-AS1, CDKN2B-AS10,
CDKN2B-AS11, CDKN2B-AS13, CDKN2B-AS2, CDKN2B-AS3, CDKN2B-AS5,
CDKN2B-AS7, CDKN2B-AS8, D4Z4, ESCCAL-1, ESCCAL-5, ESRG, Gm20748, HI-
LNC25, HYMAI, KUCG1, LINC00032, LINC01262, NPPA-AS1, NRON, PDZRN3-
AS1, PISRT1, PTHLH, SPRY4-IT1

3 Angelman syn-
drome, Prader-
Willi syndrome,
Silver-Russell
syndrome

116HG, AK023948, anti-NOS2A, BDNF-AS1, C15orf2, H19, IPW, KCNQ1DN,
MAP3K14, MESTIT1, MIR100HG, MKRN3-AS1, SCAANT1, SLC7A2-IT1A/B,
SNHG11, Ube3a-as, UBE3A-AS1, UBE3A-ATS

4 prostate can-
cer, enterovirus
infection, au-
toimmune
disease

AC002511.1, AP000688.29, ATXN8OS, C1QTNF9B-AS1, CBR3-AS1, CCND1
promoter-derived lncRNAs, CDKN2B-AS9, CTBP1-AS, DAPK1, DLEU1, DLEU2,
DNM3OS, GAS5, Kcna2 antisense RNA, LINC00162, Linc00963, LOC728606,
LSINCT5, MIR155HG, NAMA, PCA3, PCGEM1, PCNCR1, PRNCR1, PVT1, RP4-
620F22.3, RP5-843L14.1, SCHLAP1, SNHG5, SRA1, TCL6, TERC, ZFAT-AS1

5 Heart Failure 5730458M16Rik, AK038798, AK044955, AK049728, AK137898, AK144081,
AK153778, BX118339, DMPK, DMPK 3’UTR, ENSMUST00000022467, EN-
SMUST00000041159, ENSMUST00000117372, ENSMUST00000117393, ENS-
MUST00000119855, ENSMUST00000120925, ENSMUST00000127230, ENS-
MUST00000127429, ENSMUST00000130025, ENSMUST00000142855, ENS-
MUST00000143888, ENSMUST00000160947, ENSMUST00000167632, FADS1,
Fendrr, Gm12839, Gm6644, LIPCAR, LOC102635190, Scarb2, Trpm3, uc.115-,
uc.184+, UCH1LAS, Zim3

6 Hereditary
Haemorrhagic
Telangiecta-
sia, fragile X
syndrome

B1 SINE RNA, ENSG00000135253.9, ENSG00000147753.5, ENSG00000196096.3,
ENSG00000197251.3, ENSG00000203325.3, ENSG00000206129.3,
ENSG00000215231.3, ENSG00000215374.4, ENSG00000215808.2,
ENSG00000226496.1, ENSG00000229563.1, ENSG00000230133.1,
ENSG00000230544.1, ENSG00000231133.1, ENSG00000231185.2,
ENSG00000232021.2, ENSG00000232046.1, ENSG00000232956.3,
ENSG00000233154.1, ENSG00000233251.3, ENSG00000235285.1,
ENSG00000237036.3, ENSG00000237548.1, ENSG00000240453.1,
ENSG00000241269.1, ENSG00000245910.3, ENSG00000248176.1,
ENSG00000249364.1, ENSG00000249772.1, ENSG00000250195.1,
ENSG00000250608.1, ENSG00000254154.3, ENSG00000255471.1,
ENSG00000256218.1, ENSG00000259150.1, ENSG00000259334.1,
ENSG00000259484.1, ENSG00000259758.1, ENSG00000263753.1,
ENSG00000264772.1, ENSG00000266952.1, FMR4, FMR6, RNA-a

7 Alzheimer’s
disease, bipolar
disorder, Hunt-
ington’s disease,
schizophrenia,
depression,
DiGeorge syn-
drome

51A, 7SL, BACE1-AS, BCYRN1, BDNF-AS, DAOA-AS1, DGCR5, DISC2,
DLG2AS, FGF10-AS1, GDNFOS, HAR1A, HAR1B, HCP5, HELLPAR, HLA-AS1,
HTTAS, HTTAS v1, IFNG-AS1, LINC00271, LINC00299, LOC389023, NEAT-
1, PRINS, PSORS1C3, PTCSC, PTCSC3, REST/CoREST-regulated lncRNAs,
SNHG3, SOX2-OT, TRAF3IP2-AS1, TUG1
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Figure 4.3: Estimation of the rank parameter. Each of the quality measures were
computed from 10 runs for each value of the rank. Here, we estimate the rank to be
4 (according to [91]).

early than the brunet and nsNMF algorithms. Although the brunet and nsNMF kept

moving towards more minimum solutions, than the rest of the algorithms.

Table 4.3 illustrates the comparison between the five NMF codes we applied on

our formulation. We performed leave-one-out-cross validation (LOOCV) to measure

the accuracy of each of the formulation. We found that SNMF/R performed superior

than the other four algorithms. Moreover, SNMF/R algorithm is fast since it con-

verges quickly and it also is robust since it takes into account the sparsity constraints.

All the other parameters, like the Silhouette for the basis and coefficient matrices of

the five algorithms are almost similar.
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Table 4.3: Comparison results of running several NMF algorithms on the LincRNA-disease association dataset.

Method Sparseness

(basis)

Sparseness

(coeffi-

cient)

Silhouette

(co-

effient)

Silhouette

(basis)

Residuals iterations Accuracy

brunet 0.71 0.73 0.90 0.85 6573.31 2000 0.63

lee 0.55 0.64 0.85 0.80 1093.55 780 0.41

nsNMF 0.74 0.80 0.88 0.88 7257.59 2000 0.74

snmf/r 0.55 0.71 0.87 0.83 1100.07 195 0.81

snmf/l 0.56 0.69 0.86 0.83 1101.12 185 0.73
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Figure 4.4: Error track for the runs of the three NMF algorithms: brunet, lee, nsNMF,
snmf/r, snmf/l

4.3.3 Experiment 3: NMF on the LincRNA expression dataset

In this set of experiment, we applied the same five NMF algorithms on the

LincRNA expression profiles encoded the the L ∈ R
nt×nl
+ matrix, where nt is the

number of tissue samples where the nl number of LincRNA abundance scores were

calculated. Since the expression scores of the transcripts from an RNA-seq experiment

is merely read-counts of the fragmented reads, the matrix L is always non-negative

and we did not require any preprocessing before applying NMF on the matrix.

The main goal of this particular experiment is to achieve a low-rank represen-

tation of the expression profile. There were nt = 22 samples of the 562 lincRNAs.

Figure 4.5 illustrates the metrics we seek to estimate rank for the NMF algorithm.

As we see a decreasing trend of the cophenetic correlation coefficient at rank 4. The

dispersion and the explained variance (evar) are at increasing trend at or after rank

4. We, therefore, picked 4 to be the rank. Using the 4-rank representation of the

expression profile, we identified clusters of lincRNAs. Essentially, since the lincRNAs

were missing class labels, it was not possible for us to evaluate. However, we put the
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Figure 4.5: Estimation of the rank parameter. Each of the quality measures were
computed from 10 runs for each value of the rank. Here, we estimate the rank to be
4 (according to [91]).

clustering results in a publicly available website, so that interested researchers can

infer significant relationships among lincRNAs (Please see section: Availability).

Once again, we drew performance comparison of the five NMF algorithms on

the dataset. Since we lack the class labels for this particular cases, we omit the

external evaluation scores, rather showing the intrinsic evaluation measures in Table

4.4.
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Table 4.4: Comparison results of running several NMF algorithms on the LincRNA-expression dataset.

Method Sparseness

(basis)

Sparseness

(coef.)

Silhouette

(coef.)

Silhouette

(basis)

Residuals Iteration Cophenetic

corr.

coef.

Dispersion

brunet 0.740 0.750 0.924 0.774 2481.242 440 0.889 0.535

lee 0.763 0.734 0.769 0.735 6477.119 740 1 1

nsNMF 0.772 0.841 0.914 0.819 3286.715 480 0.917 0.561

snmf/r 0.761 0.795 0.781 0.720 9279.551 75 1 1

snmf/l 0.800 0.606 0.724 0.757 9575.074 115 1 1
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4.3.4 Experiment 4: Integrative NMF approach for LincRNA-gene co-

module identification

The integrative NMF algorithm (Algorithm 5) was applied to identify lincRNA-

gene co-modules. The algorithm requires setting five parameters: rank r, interaction

constraint parameter λ1, relationship constraint parameter λ2, growth parameter for

the basis matrix γ1 and sparsity parameter γ2. Since we have extracted 645 diseases

with OMIM phenotype IDs, we can further categorize these diseases into 20 classes

according to the work of [99]. For this regard, we manually assigned the 645 diseases

into the 20 classes. It should be noted that the mapping turned out to be a surjective

function. Figure 4.7 illustrates the distribution of the 20 disease classes that represents

the 645 mapped diseases from the dataset.

Since we ended up with the 20 disease classes, we set the number of lincRNA-

gene co-module to be 20 (= rank, r). However, the remaining four parameters were

determined empirically using a brute-force search over γ1, γ2 ∈ {10, 5}, λ1, λ2 ∈

{0.1, 0.01, 0.001} on the matrices. Each integrative NMF function was allowed to
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Figure 4.7: . The mapping-frequency distribution of the 20 disease classes. It was
interesting to find out that the “developmental” and “neurological” disease classes
were mapped to about one-third of all the diseases.

iterate at most 20 times, and each of the NMF call is repeated three times. Thus, al-

together 108 NMF function calls were made with the same dataset with rank r = 20.

We carefully measured relative error in each iteration inside an NMF function call for

a specific parameter settings. Here, the relative error is computed as:

relative error =
1

ntnl

∑

ij |lij − (WHl)ij|
1

ntnl

∑

ij lij
+

1
ntnc

∑

ij |cij − (WHc)ij|
1

ntnc

∑

ij cij
, (4.19)

based on the matrices we defined earlier. We noticed that the NMF algorithm was

gradually decreasing the relative error with the parameter setting: λ1 = 0.001, λ2 =
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0.001, γ1 = 10, γ2 = 10. Thus, we fixed our parameters to have these settings before

running the integrative NMF algorithm.

The output coefficient matrices Hl and Hc of the algorithm were used to identify

lincRNA-gene co-modules. We used the maximum coefficient in each column of Hl

and Hc to discover patterns and determine memberships among the lincRNAs and

genes [91]. Then, for each predicted co-module, we computed the percentage of

lincRNAs co-associating with the coding genes for causing one of the 20 category of

diseases. Table 4.5 presents the percentage scores of our integrative NMF algorithm

for each of the 20 co-modules. We noticed that the co-modules 1, 5, 7 and 9 do

not contain any lincRNAs, therefore, the percentage coverage score is left blank in

the table. We compared our co-module association results with that of k-means

and agglomerative hierarchical clustering with average linkage, with k = 20 and

cut at 20 respectively. We also included the percentage scores of the lincRNAs co-

associating with genes in the table. But interestingly, we see that both k-means and

hierarchical clustering failed to identify such lincRNA-gene co-modules, leaving most

of the entries in the table blank. This proves the robustness of our integrative NMF

algorithm over traditional clustering approaches to deal with such problem. The list

of co-modules and the members were kept in a publicly accessible url (Please see the

section: Availability).

4.4 Conclusion and Future Research Scopes

Many lncRNAs play critical roles in human diseases and disorder pathways.

An lncRNA may implicate multiple diseases, while a disease could be a result by

association of several canonical lncRNAs. A comprehensive understanding of the

associations is necessary in diagnosis, and novel drug discovery, and future research

in this domain. However, a very little is known about the association of lncRNAs
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Table 4.5: Performance comparisons of lincRNA-gene co-module discoveries of our
proposed integrative NMF approach along with two base-line clustering algorithms,
k-means and hierarchical ( agglomerative) clustering

Module no.
Percentage of lncRNAs co-associating with genes

Integrative-NMF K-means Hierarchical Clustering

1 0.99
2 0.83
3 0.67
4 0.96 1.00
5
6 1.00
7
8 0.90
9 0.98
10 1.00
11 1.00
12 0.94
13 1.00
14 0.89
15 0.75
16 0.80
17 0.95
18 0.78
19 0.75
20 0.78

with diseases, co-associations of such molecules with other genes as compared to the

exponential rate of discovery of the lncRNAs per year.

In this article, we proposed the three NMF-based formulations for solving three

different problems: (i) lncRNA-disease association problem, (ii) clustering of lncR-

NAs based on expressions, (iii) lncRNA-gene co-module discovery through integration

of existing knowledge about them. We implemented the NMF algorithms to solve the

problems. The models have two-fold properties – they are able to explain each of the

associated lncRNA as well as the disease in a latent feature space that can be consid-

ered a dimensionality reduction step before further processing. Secondly, the NMF
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factors can be used to retrieve bi-clusters, that is, groups of similar lncRNAs, and

groups of similar diseases in the latent feature dimension. Initially, we thought that

any NMF-based formulation that only considers the existing knowledge of lncRNA-

disease association would be fair enough to be used in practical association prediction

problems. But, through the data integration based NMF experiments we realized the

computational framework provided association results can also confidently provide

meaningful biological insight of the associations through co-modules which is cur-

rently grasped attention to many non-coding research groups.

There are some limitations exist in our NMF-based lncRNA-disease association

approach. Firstly, although we adapted a grid search technique to choose param-

eter settings in our experiments, we still need a better and faster way to accom-

plish this. Secondly, we only incorporated the existing lncRNA-disease association

information, relationship networks among lncRNAs and genes, but did not include

disease-related information, disease-disease similarity network, textual profiles of dis-

eases which presumably would produce even meaningful results. Thirdly, in this

current setup, lncRNA association inference for a query disease can only be possible

for a fixed set of diseases and lncRNAs, because of the inherent transductive property

of the problem formulation. However, it might be a prominent research possibility

to overcome this limitation that would enable the users to apply the same model to

identify novel potential lncRNA-associated diseases as well.

4.5 Availability

All the pre-processed data, source codes (written in R language) and experiment

results were available at a publicly available website located at http://biomecis.

uta.edu/˜ashis/res/netmahib2015/.

http://biomecis.uta.edu/~ashis/res/netmahib2015/
http://biomecis.uta.edu/~ashis/res/netmahib2015/


94

4.6 Comments

Fixing an issue with the integrative NMF optimization problem:

Consider the objective function J(W,Hl, Hc) for the integrative NMF as designed

in Equation 4.14 from Chapter 4 (re-written here for convenience to the readers):

minW,Hl,HcJ = ||L−WHl||2F + ||C −WHc||2F − λ1tr(HcXH
T
c )− λ2tr(HlY H

T
c )

If any optimization algorithm stops at a solution tuple (W ∗, H∗
l , H

∗
c ) as the optimum

point, one can immediately claim a second tuple optimum than that point, which

is, (W ∗∗, H∗∗
l , H

∗∗
c ), where W ∗∗ = 1

10
W ∗, H∗∗

l = 10H∗
l and H∗∗

c = 10H∗
c . To prove

this claim, we can compare the two quantities: J(W ∗, H∗
l , H

∗
c ) and J(W ∗∗, H∗∗

l , H
∗∗
c ).

Here, ||L−W ∗∗H∗∗
l ||2F = ||L−W ∗H∗

l ||2F , and ||C−W ∗∗H∗∗
c ||2F = ||C−W ∗H∗

c ||2F . But,

λ1tr(H
∗∗
c XH

T∗∗
c ) = 100λ1tr(H∗

cXH
T∗
c ), and λ2tr(H

∗∗
l Y H

T∗∗
c ) = 100λ2tr(H

∗
l Y H

T∗
c ).

This implies J(W ∗∗, H∗∗
l , H

∗∗
c ) < J(W ∗, H∗

l , H
∗
c ). Now, given the tuple (W ∗∗, H∗∗

l , H
∗∗
c )

that is just claimed as the optimum solution, then another optimum solution can be

found using similar fashion: (W ∗∗∗, H∗∗∗
l , H∗∗∗

c ), and so on. Exact optimum solution,

thus, can never be obtained for this phenomenon.

As a remedy we propose an alternate objective as shown in Equation 4.20.

minW,Hl,HcJ(W,Hl, Hc) = ||L−WHl||2F + ||C −WHc||2F

−λ1tr(WHcXH
T
c W

T )− λ2tr(WHlY H
T
c W

T )

+γ1||W ||2F + γ2





∑

j

||hj||21 +
∑

k

||hk||21



 , (4.20)

The objective function can be written as:

J = tr(LTL− 2HT
l W

TL+HT
l W

TWHl) + tr(CTC − 2HT
c W

TC +HT
c W

TWHc)

−λ1tr(WHcXH
T
c W

T )− λ2tr(WHlY H
T
c W

T ) + γ1tr(W
TW )

+γ2e1×rHlH
T
l e

T
1×r + γ2e1×rHcH

T
c e

T
1×r (4.21)



95

Let ψij, ξij and φij be the multipliers for the constraints Wij ≥ 0, (Hl)ij ≥ 0 and

(Hc)ij ≥ 0 respectively. Thus, the Lagrangian is:

L(W,Hl, Hc) = J + tr(ΨW T ) + tr(ΞHT
l ) + tr(ΦHT

c ) (4.22)

The partial derivatives of L with respect to W,Hl, Hc are:

∂L
∂W

= −2LHT
l + 2WHlH

T
l − 2CHT

c + 2WHcH
T
c

−2λ1WHcXH
T
c − 2λ2WHlY H

T
c + 2γ1W + Ψ

∂L
∂Hl

= −2W TL+ 2W TWHl − λ2W
TWHcY

T + 2γ2er×rHl + Ξ

∂L
∂Hc

= −2W TC + 2W TWHc − 2λ1W
TWHcX + λ2W

TWHlY + 2γ2er×rHc + Φ

Based on the KKT conditions ψijWij = 0, ξij (Hl)ij = 0, φij (Hc)ij = 0. So, we get

the following equations for W,Hl, Hc:

[

−2LHT
l − 2CHT

c − 2λ1WHcXH
T
c − 2λ2WHlY H

T
c

]

ij
Wij

+
[

2WHlH
T
l + 2WHcH

T
c + 2γ1W

]

ij
Wij = 0,

[

−2W TL− λ2W
TWHcY

T
]

ij
(Hl)ij +

[

2W TWHl + 2γ2er×rHl

]

ij
(Hl)ij = 0

[

−2W TC − 2λ1W
TWHcX

]

ij
(Hc)ij +

[

2W TWHc + λ2W
TWHlY + 2γ2er×rHc

]

ij
(Hc)ij = 0

Thus, we get the following update rules to obtain W,Hl, Hc:

Wij ← Wij

(

LHT
l + CHT

c + λ1WHcXH
T
c + λ2WHlY H

T
c

)

ij
(

WHlHT
l +WHcHT

c + γ1W
)

ij

(4.23)

(Hl)ij ← (Hl)ij

(

W TL+ λ2

2
W TWHcY

T
)

ij

(W TWHl + γ2er×rHl)ij
(4.24)

(Hc)ij ← (Hc)ij

(

W TC + λ1W
TWHcX

)

ij
(

W TWHc + λ2

2
W TWHlY + γ2er×rHc

)

ij

(4.25)



CHAPTER 5

LiDiAimc: LincRNA-Disease Associations through Inductive Matrix

Completion

5.1 Introduction

LincRNA-Disease association inference problem: The protein-coding

genes are the most well studied regions in the entire human genome. However, such

genes account for only 2% of the genome [100]. In recent years, it has become evident

that the non-protein coding portion of the genome, especially the long intergenic non-

coding RNAs (lincRNAs) having length more than 200 bases each with no overlaps

with any annotated protein-coding regions, are of critical functional importance for

their diverse molecular mechanisms and implications of various human diseases [101].

With the advent of the high-throughput genomic technologies, such as RNA-seq and

ChIP-seq, a huge number of lincRNAs have been cataloged. However, determining

their functions, specifically the associations of the lincRNAs to human diseases, re-

main a challenge [72]. In silico association inference tools would present, in this

regard, an important facet towards discovering causal lincRNA-disease relationships

and better understanding of the human diseases. Such tools would be able to rank

disease implications by a given lincRNA based on prior knowledge.

Limitations of existing methods: There are several long non-coding RNA

(lncRNA)-disease association inference tools developed in the previous three years.

Unfortunately, only a few dealt with the lincRNA-disease inference problem. Due to

the intricacies inherent to this association inference problem, only a small number

of experimentally validated associations have been reported in the publicly available

96
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database, such as lncRNAdisease [67]. For this reason, leveraging multiple comple-

mentary data sources is essential for predicting lincRNAs related to disease pheno-

types, and thus different inference methods have been developed considering different

knowledge sources. For instance, K-RWRH [102], LRLSLDA [68] and TslncRNA-

disease [103] are popular family of network based methods. The methods utilize bio-

logical networks, such as lincRNA similarity network and disease similarity network

and infer lincRNA-disease connections by either using random walk procedure on a

derived biological network or by computing a similarity measure between nodes with

known disease implications. The association inference problem can also be solved

using a matrix completion approach. These approaches suffer from the cold start

problem, due to the inability to address the inference predictions of the diseases

for novel lincRNAs and vice versa. Furthermore, these methods were presented on

a very small set of associations and developed without considering the scalability

(e.g., around 200 lncRNAs compared to more than 8000 lincRNAs available to date

from [72] research remain overlooked). However, the methods exploiting lincRNA-

expression profiles to build similarity networks may only deal with specific disease

classes that are only available through the seed or true associations and therefore the

methods fall short in generalizing to novel diseases.

Outline of our proposed approach: In this article, we propose a method,

LiDiAimc, that can easily integrate complementary features of both the lincRNAs and

the diseases. It provides better coverage and generalization than any other methods

focusing only on a specific data source. Our method involves two steps. Firstly, we

extract features of the lincRNAs and the diseases from multiple data sources. Then,

we integrate the features in the Inductive Matrix Completion (IMC) approach [104]

to learn the lincRNA-disease association network. Such a scheme enables LiDiAimc

method overcoming the cold-start problem, as well as providing an interface to a
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more generalized integration of multiple data sources of both the lincRNAs and the

diseases. We evaluate our proposed LiDiAimc method through extensive experiments

and the results show superior performance compared to the state-of-the-art methods.

Summary of contributions:

• We demonstrate that the integration of diverse features of the lincRNAs and the

diseases available through publicly available data-servers can overcome worse

predictive performance issue faced by the inference tools which occurs due to

the extreme sparsity inherent to the lincRNA-disease association dataset.

• We provide an application of the Inductive Matrix Completion (IMC) method

and show induction on novel diseases and novel lincRNAs that are not seen

at the training time, unlike the traditional matrix factorization methods and

network-based inference methods discussed earlier which are transductive in

nature.

• We present a comparison of our proposed LiDiAimc method with the state-

of-the-art methods on a set of OMIM disease phenotypes. The results show

superiority of our method.

5.2 Methods

5.2.1 Overview of the System Architecture

The goal of a lincRNA-disease association inference method would be to com-

pute rank of potential lincRNAs for a specific disease of interest utilizing available

multiple data sources that describes both the lincRNA and disease entities and vice

versa. It can be represented as predicting likelihood of an edge in a bipartite graph

between a pair of putative lincRNA and disease as illustrated in Figure 5.1. Firstly,

we form the lincRNA-disease association matrix A ∈ R
Nl×Nd , where each row cor-
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LincRNA-Disease

   association dataset

known association

predicted association

LincRNA feature data

Disease feature data

Figure 5.1: The Disease-LincRNA association problem, represented as a bipartite
graph. Besides the known lincRNA-disease associations, we have considered four
data sources for lincRNAs: Eset, Tset, Fset and Sset representing tissue expression,
transcriptional regulations, functional annoations and SNP associations respectively,
and two data sources for diseases: Mset and Pset representing OMIM term frequency
inverse document frequency information and phenotypic similarity respectively. Fur-
ther discussions on each of the data sources can be found in Section 5.3.

responds to a lincRNA of total Nl lincRNAs and each column to a disease of total

Nd diseases, such that Aij = 1 if lincRNA i is associated with disease j and 0 if the

relationship is not known. Secondly, we prepare the feature matrix for the lincRNAs

X ∈ R
Nl×fl , where each row represents the conglomeration of fl features about a

lincRNA obtained through multiple data sources. Similarly, we prepare the feature

matrix for the diseases Y ∈ R
Nd×fd , where each row represents the fl features of

the corresponding to a disease from several data sources. Now, we look for develop-

ing a lincRNA-disease association inference method utilizing the three data matrices

A,X and Y , that would be able to provide better generalization of the integration

approaches offered by the state-of-the-art methods, as well as solve the cold-start
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problem by offering predictions of novel lincRNAs and novel diseases that might not

be seen by the model during the learning step.

5.2.2 LiDiAimc Method

The most popular solution approach to this association prediction problem

would be the low rank matrix completion algorithm. In that case the objective is

to recover the underlying low rank matrix by using the observed entries of A, which

is typically formulated as:

min
W,H

1

2
||A−WH||2F +

λ1

2
||W ||2F +

λ2

2
||H||2F , (5.1)

where W ∈ R
Nl×r and H ∈ R

Nd×r with r being the dimension of the latent

feature space for both the lincRNAs and the diseases, and λ1, λ2 are the two reg-

ularization parameters. This approach was adapted in similar disease association

problems as in [11] and in collaborative filtering methods for recommender systems

by [105].

However, the formulation 5.1 is restricted to the transductive setting, i.e., pre-

dictions can only be made to existing lincRNAs and diseases available at training.

As outlined in the work by [106] that the formulation can not be used to predict on

rows and columns of A with no known entries.

The Inductive Matrix Completion approach [104] enables us to incorporate side

information of the lincRNAs and diseases. The formulation overcomes the limitation

imposed by the transductive matrix completion approach. Therefore we can predict

association between new lincRNAs and diseases that are not included in the A matrix

during the training time. The trick is to obtain two factor matrices W and H to

define the latent feature space for the corresponding features of lincRNAs and diseases

respectively rather than the lincRNA and disease entities themselves.
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Let the matrix X ∈ R
Nl×fl be the training feature matrix of the Nl lincRNAs

where the ith row xi ∈ R
fl denotes the feature vector of lincRNA i. Similarly, the

matrix Y ∈ R
Nd×fd represents the feature matrix of the Nd diseases where the jth

row yj ∈ R
fd denotes the feature vector of disease j. Here, the IMC approach tries

to recover a low-rank matrix Z ∈ R
fl×fd using the observed entries of A, and the X

and Y feature matrices. The entry Aij is modeled as xTi Zzj. By forming Z as WHT ,

where W ∈ R
fl×r and H ∈ R

fd×r, the problem can be solved by obtaining the two

factors W and H through solving the following optimization problem:

min
W,H

ϕ =
1

2
||A−XWHTY T ||2F +

λ1

2
||W ||2F +

λ2

2
||H||2F ,

such that, W ≥ 0, H ≥ 0 (5.2)

where λ1, λ2 are the regularization parameters that trade off accrued loss on the

observed entries and the trace norm constraint.

Once the W and H matrices are obtained, given a new lincRNA i′ that was

not part of the training data, the prediction Ai′j can be computed for a disease j as

long as we have feature vector xi′ , using the model as: Ai′j = xi′WHTyj. Similarly,

prediction can also be made for a new disease j′ with an lincRNA in the set using

new feature vector yj′ by Aij′ = xiWHTyj′ . However, the prediction between a

new disease (j′) and a new lincRNA (i′) can also be computed through using their

corresponding feature vectors, xi′ and yj′ through: Ai′j′ = xi′WHTyj′ .

5.2.3 Dimensionality Reductions for the Features

As most of the data sources forming the feature matrices X and Y of the lincR-

NAs and diseases respectively are high dimensional, we applied principal component

analysis (PCA) on each of these to construct robust and useful lincRNA and disease

feature matrices. For instance, consider the lincRNA and single nucleotide polymor-
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phism (SNP) dataset, Sset ∈ R
Nl×Nψ of Nl lincRNAs and Nψ SNPs. Let, U ∈ R

Nl×Nζ

denotes the matrix of eigen vectors corresponding to the top Nζ latent features of the

ith lincRNA. We performed PCA on functional annotation dataset (Fset), SNP as-

sociation dataset (Sset) of the lincRNAs, and the OMIM term frequency inverse

document frequency (TF-IDF) dataset (Mset) , similarity matrix dataset (Pset) of

the disease entities in order to obtain low-dimensional feature matrices X and Y for

the lincRNAs and diseases respectively.

5.2.4 Optimization through Stochastic Gradient Descent

The objective function in Equation 5.2 is non-convex in both W and H together.

Therefore, it is unrealistic to expect an algorithm to find the global minima [107]. In

this section and the following section we introduce two iterative algorithms which can

obtain local minima to the function: Stochastic Gradient Descent (SGD) and non-

linear Conjugate Gradient Descent (CGD). The solvers use alternating minimization

to optimize Equation 5.2 by fixing W and solve for H and vice versa (Equation 5.3,

5.4). Since the loss function used in Equation 5.2 is Frobenius norm, the objective

function of one variable (W or H) becomes convex and can be solved using the two

algorithms.

We have fixed W (t) after the tth iteration.

H(t+1) ← arg min
H

ϕ(:, H) (5.3)

We now have fixed H(t+1)

W (t+1) ← arg min
W

ϕ(W, :) (5.4)
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First we discuss how to minimize the function ϕ using multiplicative update

rules obtained through the SGD method. The function ϕ can be rewritten as:

ϕ =
1

2
Tr
(

(

A−XWHTY T
)T (

A−XWHTY T
)

)

+
λ1

2
Tr
(

W TW
)

+
λ2

2
Tr
(

HTH
)

=
1

2
Tr
(

ATA
)

+
1

2
Tr
(

Y HW TXTXWHTY T
)

−Tr
(

ATXWHTY T
)

+
λ1

2
Tr
(

W TW
)

+
λ2

2
Tr
(

HTH
)

(5.5)

Now, let ψik, φjk be Lagrange multipliers for the constraints Wik ≥ 0 and Hjk ≥ 0

respectively. And Ψ = (ψik) and Φ =
(

φjk
)

. Then, the Lagrange L is

L =
1

2
Tr
(

ATA
)

+
1

2
Tr
(

Y HW TXTXWHTY T
)

(5.6)

−Tr
(

ATXWHTY T
)

+
λ1

2
Tr
(

W TW
)

+
λ2

2
Tr
(

HTH
)

+Tr
(

ΨTW
)

+ Tr
(

ΦTH
)

(5.7)

The partial derivatives of the Lagrange L with respect to W and H are:

∂L
∂W

= −XTAYH +XTXWHTY TY H + λ1W + Ψ (5.8)

∂L
∂H

= −Y TATXW + Y TY HW TXTXW + λ2H + Φ (5.9)

Now by applying the KKT conditions ψikWik = 0 and φjkHjk = 0 we get the following

equations of Wik and Hjk respectively:

−
(

XTAYH
)

ik
Wik +

(

XTXWHTY TY H
)

ik
Wik

+λ1 (W )ikWik = 0 (5.10)

−
(

Y TATXW
)

jk
Hjk +

(

Y TY HW TXTXW
)

jk
Hjk

+λ2 (H)jkHjk = 0 (5.11)
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These equations lead to the following update rules:

Wik ← Wik

(

XTAYH
)

ik

(XTXWHTY TY H + λ1W )ik
(5.12)

Hjk ← Hjk

(

Y TATXW
)

jk

(Y TY HW TXTXW + λ2H)jk
(5.13)

We have the following theorem corresponding to these two update rules.

Theorem 5.2.1. The objective function of the LiDiAimc problem (Equation 5.2) is

nonincreasing under the update rules (Equation 5.12 and 5.13).

In the following section we provide a detailed proof of Theorem 5.2.1. Our proof

follows the sketches from the proof of the original Non-negative Matrix Factorization

function by [79].

Finally, we arrive at a point when it is appropriate to define Algorithm 6 to

solve the objective function taking care of all the issues discussed so far in this section.

Algorithm 6 SGD to solve Equation 5.2.

Input: A ∈ R
Nl×Nd
+ , rank r, X ∈ R

Nl×fl
+ , Y ∈ R

Nd×fd
+ and the two initial seed

matrices W ∈ R
fl×r
+ and H ∈ R

fd×r
+ .

Output: Calculate W,H such that A ≈ XWHTY T

1. repeat

2. Update H matrix using Equation 5.13.

3. Update W matrix using Equation 5.12. Here we will be using the H calculated

at the previous step.

4. until convergence criterion is met

5. return W,H
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5.2.5 Proof of Theorem 5.2.1

Proof. Here, we show that the objective function is non-increasing under the update

rules. Specifically, here we prove that the objective function is non-increasing under

the update step for H, and same feature under the update rule for W can be similarly

proved. Here we adopted the same strategy applied in [79] that introduced the concept

of an auxiliary function in the Expectation-Maximization algorithm. Now, we define

the auxiliary function G for our proof.

Definition 5.2.1. G(H,H ′) is an auxiliary function for the function F (H) ifG(H,H ′) ≥

F (H) and G(H,H) = F (H).

Lemma 5.2.2. If G is an auxiliary function of F , then F is non-increasing under

the update

H(t+1) = argmin
H

G(H,H(t)) (5.14)

Proof.

F (H(t+1)) ≤ G(H(t+1), H(t))

≤ G(H(t), H(t)) = F (H(t))

�

With a proper auxiliary function, the update rule for H is exactly the required

update solution to the Lemma 5.2.2. Now we use Fab to denote the part of the

objective function which is only relevant to Hab. We get–

F ′
ab =

(

∂F
∂H

)

ab

=
(

−Y TRTXW + Y TY HW TXTXW + λ2H
)

ab

F ′′
ab =

(

W TXTXW ⊗ Y TY
)

aa
+ (λ2Ik)aa
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Here, ⊗ denotes the kronecker product. As the update is element-wise, it is sufficient

to show that each Fab is non-increasing under the update rule for H.

Lemma 5.2.3. The function

G(H,H
(t)
ab ) = Fab(H

(t)
ab ) + F ′

ab(H
(t)
ab )

(

H −H(t)
ab

)

+

(

(

W TXTXW ⊗ Y TY + λ2Ik
)

H
)

ab

H
(t)
ab

(

H −H(t)
ab

)2

(5.15)

is an auxiliary function for Fab.

Proof. Obviously the first criterion of an auxiliary function is met, becauseG(H,H) =

Fab(H). We only need to show the second criterion, that is G(H,H
(t)
ab ) ≥ Fab(H).

Let us compare the Taylor series expansion of the function Fab(H):

Fab(H) = Fab(H
(t)
ab ) + F ′

ab(H
(t)
ab )

(

H −H(t)
ab

)

+
F ′′

ab(H
(t)
ab )

2!

(

H −H(t)
ab

)2

+ · · ·+ ignoring higher orders

And so,

Fab(H) = Fab(H
(t)
ab ) + F ′

ab(H
(t)
ab )

(

H −H(t)
ab

)

+
1

2

(

W TXTXW ⊗ Y TY + λ2Ik
)

aa

(

H −H(t)
ab

)2

(5.16)

Now, since

(

(

W TXTXW ⊗ Y TY + λ2Ik
)

H
)

ab

=
∑

k

(

W TXTXW ⊗ Y TY + λ2Ik
)

ak
(H

(t)
kb )

≥ H
(t)
ab

(

W TXTXW ⊗ Y TY + λ2Ik
)

aa
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That is,
(

(

W TXTXW ⊗ Y TY + λ2Ik
)

H
)

ab

H
(t)
ab

≥
(

W TXTXW ⊗ Y TY + λ2Ik
)

aa

Hence, comparing Equation 5.15 and 5.16 we have:

G(H,H
(t)
ab ) ≥ Fab(H)

�

Now, we can have the following update rule based on the auxiliary function

G(H,H t
ab), by replacing G(H,H t

ab) in Equation 5.14 by the results of Equation 5.15:

H
(t+1)
ab = H

(t)
ab −H(t)

ab

F ′
ab(H

(t)
ab

(Y TY HW TXTXW + λ2H)ab

= H
(t)
ab



1− F ′
ab(H

(t)
ab

(Y TY HW TXTXW + λ2H)ab





= H
(t)
ab

(

Y TRTXW
)

ab

(Y TY HW TXTXW + λ2H)ab

Due to the property of the auxiliary function G(H,H
(t)
ab ) for Fab, Fab is non-increasing

under this update rule.

5.2.6 Optimization through Nonlinear Conjugate Gradient Descent

Nonlinear Conjugate Gradient Descent (CGD) [108], another prominent iter-

ative method for solving sparse systems, like ours, is investigated here due to its

popularity in recent years and is compared against the Stochastic Gradient Descent

(SGD) based method developed in the previous section in terms of convergence qual-

ity. One of the best properties of the Conjugate Gradient method is its ability to

generate a set of conjugate vectors efficiently; the vectors successively are used in

minimizing each of the functions (Equation 5.3 and 5.4).
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To solve a minimization problem for x ∈ R
n of a function f(x), CGD tends

to solve x successively by using: xk+1 = xk + αkdk, where αk is a stepsize obtained

through a line search and dk is the search direction defined by Equation 5.17,

dk =























gk for k = 1

gk + βkdk−1 for k ≥ 2,

(5.17)

where gk is the gradient of the objective function. Here, only the stepsize αk and

the parameter βk remain to be determined in the definition of the CGD. Since our

objective function uses squared loss function, the line search for solving αk (Equation

5.18) can be made computationally fast through using the operations to compute the

Hessian (∇2) proposed by [109].

αk = arg min
α

f(xk + αdk);α > 0 (5.18)

Different formulae for the parameter βk result in different conjugate gradient meth-

ods. We investigated methods by [108] (CGD-FR) and [110] (CGD-PR). However,

sometimes the methods may cycle infinitely without approaching a solution even if

the stepsize αk is chosen to the least positive minimizer of the line search function.

The remedy to the issue is to restart CGD whenever the β parameter found to be

negative by setting d = g, a solution suggested by [111].

Thus, to solve the equation 5.4 for optimum W we present Algorithm 7. How-

ever, a symmetric algorithm was prepared to solve equation 5.3. The computation of

the Hessian ∇2
Wϕ required at line 7 and 9 in Algorithm 7 was achieved through the

fast operations developed in the study by [109].
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Algorithm 7 CGD to solve Equation 5.4. Calculate W .

Input: Gradient: ∇Wϕ, Hessian: ∇2
Wϕ of the objective function f and option: Any

of the four variations of CGD to update β parameter { FR, PR }

Output: W

1. Initialize W0 to any seed; g0 = −∇Wϕ(W0); d0 = g0

2. k = 0

3. repeat

4. if ||gk|| is small then

5. return Wk

6. else

7. αk =
gTk gk

dTk∇2
Wϕ(Wk)dk

8. Wk+1 = Wk + αkdk

9. gk+1 = gk − αk∇2
Wϕ(Wk+1)dk

10. if option is Fletcher Reeves (FR) then

11. βk =
gTk+1gk+1

gTk gk
12. else if option is Polak-Ribière (PR) then

13. βk =
gTk+1(gk+1 − gk)

gTk gk
14. end if

15. βk = max{0, βk} //[111]

16. dk+1 = gk+1 + βkdk

17. k = k + 1

18. end if

19. until Convergence criterion is met

20. return Wk
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5.3 Experiments

5.3.1 Disease-LincRNA Association dataset

We obtained human lincRNA-disease associations by combining the LncR-

NADisease database [67] and the supporting dataset from the co-expression based

association study conducted by [103]. The combined dataset contains 46,934 associ-

ations among 8194 lincRNA genes and 1213 diseases. Since none of the two datasets

adapted standard naming of the diseases, we retrieved top-5 closely matched OMIM

phenotypes for each of the disease names from the pool using OMIM API [76], and

prepared the association matrix between 8194 lincRNA genes and 2661 OMIM phe-

notypes. The matrix is very sparse having only 0.22% non-zero entries. To compare

different approaches on the novel association prediction, we use use 10-fold cross

validation over the association dataset.

5.3.2 LincRNA Feature datasets

RNA-seq provided Expression profiles of lincRNAs on different tissues

underline the impact of the lincRNAs for diseases occurring corresponding tissues.

Although not all diseases are tissue-specific, neither are the lincRNAs, the profiles

still can be used to distinguish between co-expressed lincRNAs to implicate diseases.

RNA-seq measurement of 8194 lincRNA expression levels on 22 human tissues are ob-

tained from the Human BodyMap Project 2.0 [72]. Expression scores are represented

in terms of FPKM values (Fragments Per Kilobase of exons per Million Fragments

mapped).

ChIP-seq provided Transcription Factor Binding Sites (TFBS) of the

lincRNAs unravel the transcriptional regulatory relationships of lincRNAs with tran-

scription factors. We obtained 160,588 relationships among the 8194 lincRNAs and

120 transcription factors from ChIP-Base dataset [112]. There are only 217 lincRNAs
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have relationship with one transcription factor, and out of 120 transcription factors,

the minimally related transcript factor, “BACH1” has 11 lincRNA connections, and

there are 6130 lincRNAs connecting with a transcript factor, “HNF4A”.

Functional annotations of the lincRNAs dictate their characterizations and

involvement on various biological activities inside human cells that implicitly cor-

relate with various disease phenotypes. Linc2GO [113] presents a database of such

annotations of lincRNAs based on the ceRNA hypothesis [114]. We retrieved 8111

GO BP (Biological Process) terms, 3218 GO MF (Molecular Function) terms and

193 KEGG Pathway terms associated with the 8194 lincRNAs from the database,

resulting a total of 11522 functional terms for each lincRNA in our study. However,

this annotation matrix is also sparse, having 0.11% non-zero entries. We use the lead-

ing 100 singular vectors of the matrix as the representative features of the lincRNAs

contributed from the Linc2GO dataset.

Single Nucleotide Polymorphisms (SNPs) in lincRNAs were found to be

linked to their abnormal expressions and dysregulations, thereby playing key roles

in various phenotypes and diseases [115]. The lncRNASNP dataset [5] provides a

comprehensive resource of SNPs in human lncRNAs, and we extracted 368,494 SNPs

in the 8194 lincRNAs from the database. The SNP-lincRNA association is sparse with

0.0077% non-zero entries. We use the leading 100 singular vectors of the matrix as the

representative features of the lincRNAs contributed from the lncRNASNP dataset.

Finally, we considered only those lincRNAs having all these four types of fea-

tures. Therefore, we ended up having a catalog of 6540 lincRNAs with corresponding

features.
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5.3.3 Disease Feature datasets

Term Frequency Inverse Document Frequency (TF-IDF) of the 2661

OMIM phenotypes obtained from the OMIM text corpus provides a standard statistic

that reflect how important a term is to a OMIM phenotype text collection. The TF-

IDF score increases proportionally to the frequency of occurrences of a term in a

particular page, but is offset by the frequency of the term in the whole corpus. This

phenomenon helps to identify important keywords associated appearing only in the

corresponding OMIM page, as well as less important terms appearing most of the

pages. The number of terms considered in the scheme is 20491, thus resulting in a

TF-IDF matrix of size 2661 by 20491. We use the leading 100 singular vectors of

the matrix as the representative features of the diseases contributed from the OMIM

TF-IDF dataset.

Phenotypic similarity profiles of the lincRNAs were retrieved from a recent

study by [116], where the authors developed a method to accumulate the MeSH terms

associated with the publications referenced in the OMIM phenotype pages and able

to compute scores that reflect the molecular relatedness between two OMIM entries.

The similarity matrix thereby is symmetric of dimension 2661 by 2661. We reduce

the dimensionality of the feature space using PCA, retaining the top 100 principal

components.

We considered only those diseases having all these two types of features. Thus,

we ended up having a catalog of 2148 diseases with corresponding features.

5.3.4 Baselines

We compare the results of our proposed LiDiAimc method with four approaches.

Firstly, the standard non-negative matrix factorization on the lincRNA-disease asso-

ciation matrix A from Equation 5.2. This becomes a special case for the Inductive
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Matrix Completion objective where the lincRNA feature matrix (X) and the dis-

ease feature matrix (Y ) are set to identity. We compare three other methods that

provide interfaces to scale their corresponding framework to a much larger dataset

like ours (i.e., considering associations among the 6540 lincRNAs and 2418 disease

phenotypes). The approaches differ much in solving the association problems, from

significant test for associating identities, solving the Graph Laplacian Regularized

Least Squares, to Kernalized Random Walk with restart approach. We describe each

of the four methods in more detail below.

5.3.4.1 NMF [79]

Here, we consider matrix completion on the bipartite network A and solve

the optimization Equation 5.1 enforcing non-negativity constraints over W and H

using Alternating Least Squares (ALS) method. The standard matrix completion

formulation does not accommodate any of the side information available about the

lincRNAs and diseases. After the convergence of NMF Algorithm we retrieved rank

of the predictions using the estimated values of the matrix, i.e., higher the estimated

Aij, more relevant is the lincRNA i for disease j.

5.3.4.2 LRLSLDA [68]

The Laplacian Regularized Least Squares for LncRNA-Disease Association (LRL-

SLDA) method is based on preparing two similarity matrices. Firstly, the lincRNA-

lincRNA similarity matrix was built through the integration of the pairwise expres-

sion correlation obtained from the same dataset [72] we used in this study and dis-

ease implication matrix. Secondly, the disease-disease similarity matrix, the pairwise

source implicator lincRNA matrix. LRLSLDA builds two separate classifiers to com-

pute probability of disease-lincRNA association in the lincRNA space and the disease



114

space respectively. The two probabilities obtained through the two classifiers were

combined by a mean operation. The final probability score, F ∗
ij reflects the probability

that lincRNA j is related to the disease i. The computationally expensive operation

in LRLSLDA is during the pairwise similarity matrix constructions which prohibits

its usability in scalable framework development. Moreover, there are eight parameters

used in LRLSLDA, which comparatively is a large number to tune in order to make

the method computationally efficient.

5.3.4.3 TsLincRNA-Disease [103]

Tissue - Specificity based LincRNA - Disease association prediction framework

(TsLincRNA - Disease) draws a demarcation line between tissue-specific and non-

tissue-specific classes utilizing the tissue-specificity index for each of the lincRNAs in

the study. The tissue expression dataset [72] for each of the lincRNAs are obtained

through the same source as in our study. The tissue-specific lincRNAs undergo a sta-

tistical significance test to be marked as disease causing in the particular tissue in its

profile. However, for identifying relationships among the diseases and the non-tissue-

specific lincRNAs a human lincRNA-gene co-expression network is first constructed

utilizing publicly available gene expression profile dataset, gene-disease association

datasets, then a mean enrichment analysis for the set of genes co-expressed with each

lincRNA follows predicting association with the diseases in the study.

5.3.4.4 K-RWRH [102]

Kernel-based Random Walk with Restart method in a heterogeneous network

is an extension to the RWRH algorithm proposed in [117]. Here the heterogeneous

network is constructed by a disease-disease similarity matrix, lincRNA-lincRNA sim-

ilarity matrix and known lincRNA-disease relationship matrix. It predicts potential
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lincRNA-disease association through simulating the random walk with restart from a

given set of known disease and lincRNA seed nodes. After some steps, the steady state

probability distribution is obtained. The lincRNAs and the diseases (representing the

nodes in the network) are ranked based on the steady probabilities.

Note that the first method does not use any of lincRNA or disease specific

features such as TF-IDF, disease phenotype similarity, RNA-seq provided expression

profiles, ChIP-seq provided Transcription factor binding sites, functional GO anno-

tations and SNP linkages. However, remaining three methods also do not use none

of these features except the expression profiles. For all the methods, including our

LiDiAimc we rank the predictions using the estimated values corresponding to a lin-

cRNA for each of the diseases considered in our study. For the LiDiAimc method, we

construct the lincRNA and disease feature matrices X ∈ R
Nl×fl with fl = 342 and

Y ∈ R
Nd×fd with fd = 200 for the set of Nl = 6540 lincRNAs and Nd = 2418 diseases

(in terms of OMIM phenotypes). We set the best parameters values for each of the

methods through cross-validation except LRLSLDA, in which case we set the eight

parameter values as suggested by the authors. All the experiments were run on an

Intel(R) Core (TM) i5-2400 CPU running at 3.10GHz, 4-cores, 6MB L2-cache, 12GB

of RAM (DDR3 1333) hosting Ubuntu 14.04 operating system

5.3.5 Evaluation Metrics

The lincRNA-disease association prediction algorithm under evaluation com-

putes a ranking score for each candidate disease (i.e., disease that is not reported to

be connected with a lincRNA before) and returns the top-k highest ranked diseases

as recommendations to a target lincRNA. Thus, for the evaluation of the predictive

accuracy, the goal is to find out how many disease-lincRNA associations previously

marked off in the preprocessing step recovered in the returned disease recommenda-
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tions. More specifically, we used two evaluation metrics: (1) the ratio of recovered

diseases to the k recommended diseases for the target lincRNA, and (2) the ratio

of recovered diseases to the set of diseases deleted in preprocessing [118]. The first

metric is called precision@k and the latter is known as recall@k. The metrics are

defined in Equation 5.19 and 5.20. In our experiment, we tested the performance

when k = {5, 10, 20, 40, 50, 60, 70, 80, 90, 100}.

precision@k =
1

Nl

Nl
∑

l=1

|Pl(k) ∩Dl|
k

(5.19)

recall@k =
1

Nl

Nl
∑

l=1

|Pl(k) ∩Dl|
|Dl|

, (5.20)

where Pl(k) being the top-k ranked diseases for lincRNA l, Dl is the set of diseases

related to the lincRNA l marked off during the training step, Nl is the total number

lincRNAs in the evaluation dataset. We performed 10-fold cross-validation to mea-

sure the performance of our proposed LiDiAimc method as well as the competitive

four methods. It is worth noting that the precision@k and recall@k in our experi-

ments are not high. This is because of the sparsity in the lincRNA-disease association

dataset having density only 0.003. Similar performance can also be observed in other

association recommendation works by [119] and [120] just to name a few. Therefore,

the low precision obtained in our experiment is reasonable. In this article, we em-

phasize on comparing relative performance of the methods rather than their absolute

performance.

5.4 Results and Discussions

5.4.1 Effects of the Parameter Settings

The parameters to the LiDiAimc method are the rank (r) of the basis, W and

the coefficient, H matrices and the regularization parameters λ1, λ2 for W and H
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matrices respectively. The precision@k and recall@k performance of the LiDiAimc

with the three solution schemes (SGD, CGD-PR and CGD-FR) are presented in Fig-

ure 5.2. It is evident from the figure that the top-k association retrieval performance

varies with the changes in the rank parameter. We varied the rank parameter from

50 to 200, which is equal to min(rank(X), rank(Y )), where X,Y are the lincRNA and

disease feature matrices respectively. We see that there is little to no boost up of

the performance from the changes of rank value from 50 to 100. However, continuing

to increase the rank to the maximum possible value, 200, the performance degrades

in terms of both the precision@k and recall@k. This issue can be justified as an

overfitting problem.

We set the regularization parameters λ1 = λ2 = 1.0 in the optimization function

(Equation 5.2) as we found that the predictive performance degrades if the parameters

are set to values deviating far away from 1.0 (data not shown). We found the cut-off

value for the parameters through cross-validation for all possible values in the range

(0.1, 10.0).

5.4.2 True LincRNA-Disease Association Retrieval

The 10-fold cross-validation results on 2418 OMIM diseases are presented in

Figure 5.3. The Y -axis in the plots (a,b) gives the precision@k and recall@k scores

for various k values in the horizontal X-axis. We observe that most of proposed

LiDiAimc variants significantly dominate the competitive methods over all k values.

The best precision@k and recall@k recorded are close to 10% and 38% respectively

at the top-5 association prediction cases and are obtained through utilizing the Polak-

Ribière (PR) approach for solving through CGD, and also the Fletcher-Reeves (FR)

approach.
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Figure 5.2: Performance of LiDiAimc for different values of rank parameter, r. (a-b):
SGD based solution shows a slight improvement of precision@k and recall@k values
for increasing the rank parameter, r, (c-d): For Fletcher-Reeves (FR) solution, r = 50
seems to out-performs the others. (e-f): In the Polak-Ribière (PR) solution, again
the r = 50 shows better performance than with any rank lower or higher than that.
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Figure 5.3: Comparision of lincRNA-disease association methods. (a) k-vs-
precision@k plot for all the seven methods. The three solid lines represent three
of our proposed solutions from the LiDiAimc model, and the dotted four lines denote
the performance lines of the four competitive methods. (b) k-vs-recall@k plot for
the nine methods. The proposed LiDiAimc method (the three variants) are trained
with 342 lincRNA features and 200 disease features, with a rank, r = 100. NMF was
trained with the same binary association matrix we used in LiDiAimc with a rank
r = 100.
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The matrix completion on A performs significantly better than the three other

baseline algorithms. LRLSLDA performs worse in terms of precision@k and the

recall@k scores. This is because, the method only relies on known association matrix

and the expression profiles of the lincRNAs. Moreover, it comes with a lot of param-

eters to learn, and is not easily scalable in larger context, like ours, because of the

complex pinv operations to compute the Laplacians. Among the two approaches to

solve the LiDiAimc, SGD thrives to top the two competitive methods, namely LRL-

SLDA and TslncRNA-disease in terms of precision@k, but successfully dominates

over the three methods (LRLSLDA, KRWRH and the TslncRNA-disease) in terms of

recall@k.

5.4.3 Induction on new Associations and Case Studies

Next, we investigate the power of the inductive learning which we introduced

in this study via LiDiAimc method to predicting the associations between (i) a new

disease to a well studied lincRNA, (ii) a new lincRNA to a well studied disease and

(iii) a new disease to a new lincRNA. In order to investigate these three features

offered by a recommendation system like ours, we randomly picked 10% of the sub-

ject lincRNA entries and the corresponding associations from our datasets (X, the

lincRNA featureset and A, the lincRNA-disease association data matrix for case i

and iii above) and the subject disease entries and the respective associations from

Y , the disease featureset and A matrix for case ii and iii above as new test samples.

LiDiAimc was then trained with the remaining entries and associations. We evaluate

each of the models with the respective set-aside test cases. We repeat the above steps

10 times and recorded the average predictive scores for each of the solution strategies

we proposed for LiDiAimc. The only assumption in the LiDiAimc for induction is

that all the features for the novel disease (or the lincRNA or both) may be available
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during prediction. Here we underline the power of inductive learning of the trained

models which is readily usable for prediction for a new test lincRNA or disease (or

both) entries even though the entries were absent during the training. Note that

all the baseline methods are missing from each of the plots in Figure 5.4 as none

could make such prediction of the novel disease and lincRNA associations using the

respective learned models because of their inherent transductive formulations.

Figure 5.4(a,b) illustrates the performance of our three solution approaches

for LiDiAimc on new diseases. The precision@k and recall@k curves for both the

Fletcher-Reeves (FR) and Polak-Ribière (PR) methods for the CGD based LiDiAimc

almost superimpose each other and both present superior performance than that of

the SGD based approach for predicting upto the top-50 lincRNA associations with

the novel diseases. CGD based strategies are also seen performing better than the

SGD for induction on the novel lincRNA (Figure 5.4 c,d) and both (Figure 5.4 e,f).

Finally, we applied LiDiAimc to prioritize all the 6,540 candidate lincRNAs

for each of the 2,418 OMIM disease phenotypes under investigated in the study.

All the known lincRNA-disease associations were treated as ground truth dataset

and were used as training associations. The top-20 predicted diseases for each of

the lincRNAs are publicly released to benefit experimental validation from biologists

(please check the availability URL). According to the predictive result for lincRNAs,

the transcript TCONS 00000721 (gene XLOC 001186) are associated to ovarian dis-

eases (OMIM IDs: 184700, 311360, 615723) which is confirmed by [121] through

relating the protein coding EXD3 gene which is in the vicinity of the lincRNAs.

The lincRNAs TCONS 00000895 (gene: XLOC 000148) and TCONS 00001488 (gene:

XLOC 000824) are predicted to be linked to testes disorders. It is verified through

Gene Expression Atlas database by the two related protein coding genes: ZNF502

and DCAF16. The lincRNA TCONS 00013953 (gene id: XLOC 006604) is predicted
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Figure 5.4: Performance of LiDiAimc for induction on novel diseases, novel lincRNAs
and both. (a-b): Inductive performance of the three solutions to the LiDiAimc in
predicting associations of new diseases with a well studied set of lincRNAs, (c-d): In-
ductive performance of the three solutions to the LiDiAimc in predicting associations
of new lincRNAs with a well studied set of diseases. (e-f): Inductive performance of
the three solutions to the LiDiAimc in predicting associations of new diseases with a
set of new lincRNAs.

to be associated with breast cancer (OMIM ID: 604370) because of the NRF1 coding

gene which has true associations with the disease [122].

5.5 Conclusions and Future Research Scopes

In this manuscript, we have proposed a novel method, LiDiAimc, for predicting

associations between the long intergenic non-coding RNAs (lincRNAs) and diseases.

The method presents an integration interface for various categories of features of

both the lincRNAs and diseases obtained through different independent data sources

for explaining the relationships between the two entities, as no single data source

can potentially capture all the relevant relations. We investigated three solution

approaches to develop our method and presented results of a comprehensive analysis

of our LiDiAimc approach underlining the fact that the choice of the features of
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the lincRNAs and diseases is the best as well as the integration framework performs

superior than the competitive methods LRLSLDA, KRWRH and TslncRNA-disease

(which rely on the lincRNA expressions and true association matrix) and the NMF

(that relies only on the true associations). In our experiments we find that LiDiAimc

method performs the best in predicting associations between already studied set of

lincRNAs and diseases as well as between novel set of lincRNAs and diseases which

makes the method a suitable association prediction tool for the biologists.

Several possible extensions to the LiDiAimc method presented here can be

made: the inductive framework (as opposed to its transductive versions) is not limited

to the types of features used in the experiments we presented, as new sources of

information can be integrated easily via rank-1 updates. The framework itself can be

extended to address the sparsity issue inherent to the true association matrix.

5.6 Availability

The dataset and the association prediction results are all available at http://

biomecis.uta.edu/˜ashis/res/LiDiAimc

http://biomecis.uta. edu/~ashis/res/LiDiAimc
http://biomecis.uta. edu/~ashis/res/LiDiAimc


CHAPTER 6

LincRNA-Disease Associations through Robust Inductive Matrix

Completion

6.1 Introduction

LincRNA-Disease association inference problem: It is a surprising fact

that, only 2% of the entire human genome codes for protein [100]. In recent years, it

has become evident that the non-protein coding portion of the genome, especially the

long intergenic non-coding RNAs (lincRNAs) having length more than 200 bases each

with no overlaps with any annotated protein-coding regions, are of critical functional

importance for their diverse molecular mechanisms and implications of various human

diseases [101]. With the advent of the high-throughput genomic technologies, such

as RNA-seq and ChIP-seq, a huge number of lincRNAs have been cataloged. But,

characterizing their functions, predicting the associations of the lincRNAs to human

diseases, remain a challenge [72]. In silico association inference tools would present,

in this regard, an important facet towards discovering causal lincRNA-disease rela-

tionships and better understanding of the human diseases. Such tools would be able

to rank disease implications by a given lincRNA based on prior knowledge.

Limitations of existing methods: There are several long non-coding RNA

(lncRNA)-disease association inference tools developed in the past few years. Unfortu-

nately, only a few have dealt with the lincRNA-disease inference problem. Due to the

intricacies inherent to this problem, only a small number of experimentally validated

associations have been reported in the publicly available databases, such as lncR-

NAdisease [67]. For this reason, leveraging multiple complementary data sources is

123
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essential for predicting lincRNAs related to diseases as well as respective phenotypes,

and thus different inference methods have been developed considering different knowl-

edge sources. For instance, K-RWRH [102], LRLSLDA [68] and TslncRNA-disease

[103] are popular family of network based methods. The methods utilize biological

networks, such as lincRNA similarity network and disease similarity network and in-

fer lincRNA-disease connections by either using random walk procedure on a derived

biological network or by computing a similarity measure between nodes with known

disease implications. The association inference problem can also be solved using a

matrix completion approach. These approaches suffer from the cold start problem,

due to the inability to address the inference predictions of the diseases for novel lin-

cRNAs and vice versa. Furthermore, these methods were presented on a very small

set of associations and developed without considering the scalability (e.g., around 200

lncRNAs compared to more than 8000 lincRNAs available to date from [72] research

remain overlooked). However, the methods exploiting lincRNA-expression profiles to

build similarity networks may only deal with specific disease classes that are only

available through the seed or true associations and therefore the methods fall short in

generalizing to novel diseases. Owing to the fact that, a plethora of side information

about the lincRNAs and the disease phenotypes are available, and the data is growing

extensively every single day. The standard Inductive Matrix Completion (IMC) can

take into account these side information along with the known association evidences

to predict missing associations [104]. But, the standard IMC uses the least square

error function that is well known to be unstable with respect to noises and outliers

present in the dataset [123]. However, the side information about the lincRNAs and

the diseases possibly contain noise and outliers. To deal with such situation, a robust

IMC is needed.
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Outline of our proposed approach: We propose a novel robust formulation

of IMC using ℓ2,1 norm penalty function, as well as ℓ2,1 based regularization. The

proposed method is called “robust” as it can handle outliers and noises better than

the standard IMC. Also, it can handle joint sparsity, i.e., handle appropriately the

feature set, where each feature either has small values for all data points or has large

values over all data points.

Summary of contributions:

• We propose Robust IMC that can handle outliers and noises in the dataset,

along with the sparsity consideration. We derive the computational algorithm

and provide a correctness proof of the algorithm.

• We provide an application of our Robust IMC method to solve the lincRNA-

disease association inference problem. We show that RIMC can perform in-

duction to decipher associations between a novel disease and a novel lincRNA,

based on the side information about them we have, that are not provided dur-

ing learning phase. This is unlike the traditional matrix factorization methods

and network-based inference methods discussed earlier which are transductive

in nature.

• We demonstrate that the integration of diverse features of the lincRNAs and the

diseases available through publicly available data-servers can overcome worse

predictive performance issue faced by the inference tools which occurs due to

the extreme sparsity inherent to the lincRNA-disease association dataset.

• We present a comparison of our proposed RIMC method with standard IMC as

well as the state-of-the-art lincRNA-disease association methods.

The rest of the paper is organized as follows. In section II we propose the robust

IMC formulation using ℓ2,1 norm, underline the advantages of the proposed algorithm

compared with the standard IMC as well as standard NMF approaches. Here we also
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show the correctness of the proposed algorithm. In section III we present the config-

urations for the experiments we conducted in this study. That includes description

of the association dataset, side information dataset, feature extraction, summary of

baseline algorithms as well as the performance metrics used to evaluate the models.

In Section IV, we present the results of the association inference experiments on the

dataset, and underline the superior performance of the proposed algorithm than the

existing methods. Finally, in section V we conclude the paper by pointing out several

future research scopes.

6.2 Robust Inductive Matrix Completion (RIMC)

In this section we review standard Inductive Matrix Completion method; then

we present our robust IMC (RIMC) formulation. Later, we provide a computational

algorithm for our proposed method along with the correctness of the algorithm. The

whole idea of the Inductive Matrix Completion strategy can be summarized into a

flow diagram as presented in Figure.

6.2.1 Review on Standard IMC

The Inductive Matrix Completion approach [104] enables us to incorporate side

information of both the row and column entities. The formulation overcomes the

limitation imposed by the transductive matrix completion approaches (e.g., standard

NMF, etc.). Therefore we can predict association between new entities that are not

included in the data matrix available at training time. Given input matrix A ∈

R
M×N encapsulating the association between M row entities and N column entities.

Besides A, side information of both the entities are given in two matrices X ∈ R
M×m
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Figure 6.1: Inductive Matrix Completion Flow diagram: (From top-left) Given, A
being the association matrix between two different sets (e.g., lincRNAs and disease
phenotypes), each having M and N number of items, X being the feature matrix
for the M items of the first set (e.g., lincRNAs), and Y being the feature set of the
second set (e.g., disease phenotypes). Portion of the association matrix A is shaded
denoting the there is atleast one association known between the lincRNA and the
corresponding disease phenotype. Feature dimensions of the two sets are m and n
respectively, and the feature sets were constructed from a collection of heterogeneous
data repositories. The goal is to obtain a low-rank realization of the two feature set in
terms of W and H matrices. Once W and H matrices are retrieved, through induction
one can retrieve association scores between two items of the two sets, regardless the
two items were considered in A,X, Y (as in the calculation of α score) or not (as in
computing β, γ, δ scores). Calculation of α utilizes the existing A,X, Y matrices to
retrieve corresponding feature vectors. However, for the calculations of β, γ, δ new
feature vectors are to be constructed having similar feature dimensionality and then
put into the calculations.
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containing m features of the M row entities and Y ∈ R
N×n containing n features of

the N column entities respectively. The standard IMC is defined as,

min
W,H

J =
1

2
||A−XWHTY T ||2F +

λ1

2
||W ||2F +

λ2

2
||H||2F ,

such that, W ≥ 0, H ≥ 0 (6.1)

where ||B||2F =
∑

ij B
2
ij is the Frobenius norm (i.e., ℓ2 norm) of a matrix, and λ1, λ2

are the regularization parameters that trade off between the accrued loss on the

observed entries and the trace norm regularization constraints. Here, goal is to recover

a low-rank matrix Z ∈ R
m×n using the observed entries of A, and the X and Y

feature matrices. The entry Aij is modeled as xTi Zyj. By forming Z as WHT , where

W ∈ R
m×r and H ∈ R

n×r. The problem can be solved using Algorithm 8.

Once the W and H matrices are obtained, besides computing the associative

scores among the row and column entities from the training set, it can also perform

induction on a new row entity i′ that was not part of the training data, the prediction

Ai′j can be computed for a column j as long as we have feature vector xi′ , using the

model as: Ai′j = xi′WHTyj. Similarly, prediction can also be made for a new column

entity j′ with a row entity in the set using new feature vector yj′ by Aij′ = xiWHTyj′ .

However, the prediction between a new column entity (j′) and a new row entity (i′)

can also be computed through using their corresponding feature vectors, xi′ and yj′

through: Ai′j′ = xi′WHTyj′ .

6.2.2 Robust IMC (RIMC) Formulation

One limitation of the standard IMC is that it is prone to outliers in the given

dataset. Given A ∈ R
M×N , X ∈ R

M×m, Y ∈ R
N×n, the loss function of the standard

IMC is:

||A−XWHTY T ||2F =
M
∑

i=1

||Ai,: − (XWHTY T )i,:||22 (6.4)
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Algorithm 8 COMPUTE STANDARD IMC(A,X,Y ,r)

Input: association matrix A ∈ R
M×N ; feature matrix for the M row entities X;

feature matrix for the N column entities Y ; desired rank r

Output: Calculate the two factor matrices W ∈ R
m×r and H ∈ R

n×r

1. Initialize W and H as random dense matrix maintaining the non-negativity con-

straints Wik ≥ 0, Hjk ≥ 0.

2. repeat

3. Update H matrix using the following equation:

Hjk ← Hjk

(

Y TATXW
)

jk

(Y TY HW TXTXW + λ2H)jk
(6.2)

4. Update W matrix using the following equation. Here we will be using the H

calculated at the previous step.

Wik ← Wik

(

XTAYH
)

ik

(XTXWHTY TY H + λ1W )ik
(6.3)

5. until convergence criterion is met

6. return W,H

Here, the error for each row entity of the objective function, the squared residue

error is accumulated in the form of ||Ai,: − (XWHTY T )i,:||22. Hence, a few outliers

with large error could dominate the overall computation. The second limitation of

the standard IMC is that the ℓ2 norm based regularization (i.e., ridge regularization)

does not handle joint sparsity across the feature data matrices. By joint sparsity we

refer to the set of features having either small scores across all data points, or large

scores across all data points. Thus it is very important to present a robust IMC

formulation.
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The robust IMC formulation involves ℓ2,1 norm instead of ℓ2 norm to define the

loss function which is:

||A−XWHTY T ||2,1 =
M
∑

i=1

√

√

√

√

√

N
∑

j=1

(A−XWHTY T )2
ij (6.5)

Here, the error for each data point is not squared, and thus the large errors due to

outliers do not dominate the objective function as they would in the standard IMC

formulation.

We now propose robust IMC formulated as:

min
W,H

J = ||A−XWHTY T ||2,1 + λ1R(W ) + λ2R(H),

such that, W ≥ 0, H ≥ 0 (6.6)

Here, we have several options as the regularization function R(·); such as: R1(B) =

||B||2F , R2(B) =
∑M
i=1 ||Bi,:||1, R3(B) =

∑M
i=1 ||Bi,:||02 and R4(B) =

∑M
i=1 ||Bi,:||2. Here,

R1(·) is the ridge regularization and is adapted in the standard IMC formulation, R2(·)

is the LASSO regularization which is a non-convex function and difficult to optimize.

R3(·) involves the ℓ0 norm and is the most desirable [124], and R4(·) employs the

ℓ2,1 norm. We selected the R4(·) because it is convex and can be easily optimized

according to [125].

Thus given the data matrices A,X, Y , in this paper we optimize the following

robust IMC formulation:

min
W,H

J = ||A−XWHTY T ||2,1 + λ1||W ||2,1 + λ2||H||2,1,

such that, W ≥ 0, H ≥ 0 (6.7)

6.2.3 Algorithm for RIMC

The main contribution of this manuscript is to derive Algorithm 9 that solves

the robust IMC optimization problem (Equation 6.7).
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Algorithm 9 COMPUTE ROBUST IMC(A,X,Y ,r)

Input: association matrix A ∈ R
M×N ; feature matrix for the M row entities X;

feature matrix for the N column entities Y ; desired rank r

Output: Calculate the two factor matrices W ∈ R
m×r and H ∈ R

n×r

1. Initialize W and H as random dense matrix maintaining the non-negativity con-

straints Wik ≥ 0, Hjk ≥ 0.

2. Initialize D ∈ R
M×M , P ∈ R

m×m, Q ∈ R
n×n as identity matrices.

3. repeat

4. Update H matrix using the following equation:

Hγψ ← Hγψ

(

Y TATDXW
)

γψ

(Y TY HW TXTDXW + λ2QH)γψ
,

5. Update the diagonal matrix D using the following equation:

Dii = 1

/

√

√

√

√

√

N
∑

j=1

(A−XWHTY T )2
ij (6.8)

6. Update the diagonal matrix Q using the following equation:

Qii = 1

/

√

√

√

√

r
∑

j=1

H2
ij (6.9)

7. Update W matrix using the following equation. Here we will be using the H

calculated at the previous step.

Wαβ ← Wαβ

(

XTDAYH
)

αβ

(XTDXWHTY TY H + λ1PW )αβ

8. Update the diagonal matrix P using the following equation –

Pii = 1

/

√

√

√

√

r
∑

j=1

W 2
ij (6.10)

9. until convergence criterion is met
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6.2.4 Convergence of the RIMC Algorithm

Here, we are going to prove the convergence of Algorithm 9 described in Theo-

rem.

Theorem 6.2.1. Algorithm 9 will monotonically decrease the objective function of

the problem (Equation 6.7) in each iteration and converge to the global optimum of

the problem.

However, it can be rephrased using the following two statements:

(A) Updating H using equation 6.8 while fixing W , the objective function of the

problem (Equation 6.7) monotonically decreases.

(B) Updating W using equation 6.10 while fixing H, the objective function of the

problem (Equation 6.7) monotonically decreases.

Proof. We prove Theorem 6.2.1 (A,B) separately in the following two sections.

6.2.5 Proof of Theorem 6.2.1(A): Updating of H

Proof. We now focus on proving Theorem 6.2.1(A). The proof requires the following

two lemmas: (Lemma 6.2.2 and 6.2.3).

Lemma 6.2.2. Let, H(t) be the H at the tth iteration, and H(t+1) is obtained from the

next iteration. Then, under the update rule of Equation 6.8, the following inequality

holds.

tr
(

(A−XWH(t+1)TY T )TD(A−XWH(t+1)TY T )
)

+λ1tr
(

W TPW
)

+ λ2tr
(

H(t+1)TQH(t+1)
)

≤ tr
(

(A−XWH(t)TY T )TD(A−XWH(t)TY T )
)

+λ1tr
(

W TPW
)

+ λ2tr
(

H(t)TQH(t)
)

, (6.11)

where, Dii = 1

/

√

∑N
j=1(A−XWH(t)TY T )2

ij, and Qii = 1

/
√

∑r
j=1 H

(t)T

ij
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The proof of Lemma 6.2.2 is given in section 6.2.7.

Lemma 6.2.3. Under the update rule of Equation 6.8, the following inequality holds:

||A−XWH(t+1)TY T ||2,1 + λ1||W ||2,1 + λ2||H(t+1)||2,1

− ||A−XWH(t)TY T ||2,1 − λ1||W ||2,1 − λ2||H(t)||2,1 ≤
1

2

{

tr
(

(A−XWH(t+1)TY T )TD(A−XWH(t+1)TY T )
)

+λ1tr
(

W TPW
)

+ λ2tr
(

H(t+1)TQH(t+1)
)

−tr
(

(A−XWH(t)TY T )TD(A−XWH(t)TY T )
)

−λ1tr
(

W TPW
)

− λ2tr
(

H(t)TQH(t)
)

}

, (6.12)

where D,P,Q matrices are defined earlier.

The proof of Lemma 6.2.3 is given in section 6.2.8.

Now, if we take a look at the right hand side of the inequality in Equation 6.12,

the value is negative or zero according to Lemma 6.2.2. This completes the proof

that the objective function of Equation 6.7 decreases monotonically.

6.2.6 Proof of Theorem 6.2.1(B): Updating of W

Proof. We now focus on proving Theorem 6.2.1(B). The proof requires the following

two lemmas: (Lemma 6.2.4 and 6.2.5).
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Lemma 6.2.4. Let, W (t) be the W at the tth iteration, and W (t+1) is obtained from the

next iteration. Then, under the update rule of Equation 6.10, the following inequality

holds.

tr
(

(A−XW (t+1)HTY T )TD(A−XW (t+1)HTY T )
)

+λ1tr
(

W (t+1)TPW (t+1)
)

+ λ2tr
(

HTQH
)

≤ tr
(

(A−XW (t)HTY T )TD(A−XW (t)HTY T )
)

+λ1tr
(

W (t)TPW (t)
)

+ λ2tr
(

HTQH
)

, (6.13)

where, D,P,Q are defined earlier.

Proof of Lemma 6.2.4 is provided in section 6.2.9.

Lemma 6.2.5. Under the update rule of Equation 6.10, the following inequality holds:

||A−XW (t+1)HTY T ||2,1 + λ1||W (t+1)||2,1 + λ2||H||2,1

− ||A−XW (t)HTY T ||2,1 − λ1||W (t)||2,1 − λ2||H||2,1 ≤
1

2

{

tr
(

(A−XW (t+1)HTY T )TD(A−XW (t+1)HTY T )
)

+λ1tr
(

W (t+1)TPW (t+1)
)

+ λ2tr
(

HTQH
)

−tr
(

(A−XW (t)HTY T )TD(A−XW (t)HTY T )
)

−λ1tr
(

W (t)TPW (t)
)

− λ2tr
(

HTQH
)

}

, (6.14)

where D,P,Q matrices are defined earlier.

Proof of Lemma 6.2.5 is provided in section 6.2.10.

Now, if we take a look at the right hand side of the inequality in Equation 6.14,

the value is negative or zero according to Lemma 6.2.4. This completes the proof

that the objective function of Equation 6.7 decreases monotonically.
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6.2.7 Proof of Lemma 6.2.2

Proof. We can re-write equation 6.11 as follows:

J(H(t+1)) ≤ J(H(t)), (6.15)

where

J(H) = tr(A−XWHTY T )TD(A−XWHTY T )

+λ1tr(W
TPW ) + λ2tr(H

TQH) (6.16)

And, according to the statement of Lemma 6.2.2, under the update rule of equation

6.8, J(H) monotonically decreases. In order to prove the statement, we follow the

approaches utilizing auxiliary functions [79, 126].

Definition 6.2.1. G(H,H ′) is an auxiliary function for the function J(H) ifG(H,H ′) ≥

J(H) for all H ′ and G(H,H) = J(H).

Now, we define:

H(t+1) = argmin
H

G(H,H(t))

So, we have

J(H(t+1)) = G(H(t+1), H(t+1)) ≤ G(H(t+1), H(t))

≤ G(H(t), H(t)) = J(H(t))

This proves that J(H(t)) is monotonically decreasing.

Now the important steps in the remainder of the proof are: (a) determine a

proper auxiliary function, and (b) find the global minima of the auxiliary function.

Lemma 6.2.6. The function

G(H,H ′) = tr(ATDA)− 2tr(Y HW TXTDA)
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+λ1tr(W
TPW ) + λ2tr(H

TQH)

+
n
∑

i=1

r
∑

j=1

(Y TY H ′W TXTDXW )ijH
2
ij

H ′
ij

(6.17)

is an auxiliary function for J .

Proof. Now J(H) of equation 6.16 can be re-written as:

J(H) = tr(ATDA)− 2tr(Y HW TXTDA)

+λ1tr(W
TPW ) + λ2tr(H

TQH)

+tr(HTY TY HW TXTDXW ) (6.18)

Now we will be applying the following inequality of matrices according to the inves-

tigations by [127, 126]:

tr(HTΛHB) ≤
∑

i

∑

j

(ΛH ′B)ji
H2
ij

H ′
ij

, (6.19)

where, Λ, B,H are non-negative matrices, and Λ, B are symmetric matrices. And

obviously the equality holds in Equation 6.19 when H = H ′.

In equation 6.19, if we do the substitutions: Λ = Y TY,B = W TXTDXW,H =

H,H ′ = H ′, we see that the fifth term of equation 6.18 is smaller than the fifth term

of equation 6.17. However, the equality holds when H = H ′. Thus G(H,H ′) in

equation 6.17 is an auxiliary function of J(H).

Now, we need to find the global minimum of Equation 6.17. Let f(H) =

G(H,H ′). The gradient of f(H) is

∂f(H)

∂Hij

= −2(Y TATDXW )ij + 2λ2(QH)ij

+2
(Y TY H ′W TXTDXW )ijHij

H ′
ij

(6.20)
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However, the second order derivative (i.e., the Hessian matrix) would be

∂2f(H)

∂Hij∂Hkl

= 2 (Q)jl δikδkβ

+



2
(Y TDYH ′W TXTXW )ij

H ′
ij



 δjlδik (6.21)

The Hessian matrix (Equation 6.21 is semi-positive definite implying that f(H) =

G(H,H ′) is a convex function. Thus, there exists a unique global minimum for f(H).

The global minimum can be obtained by setting the gradient of f(H) to zero and

solve for H. Thus from equation 6.20 we get

Hij = H ′
ij

(Y TATDXW )ij
(Y TY H ′W TXTDXW + λ2QH)ij

(6.22)

By replacing H(t+1) = H and H(t) = H ′, we would obtain the update rule of Equation

6.8. Therefore, under this rule, the objective function J(H) of Equation 6.16 decreases

monotonically, and hence completes the proof.

6.2.8 Proof of Lemma 6.2.3

Proof. We know that,

tr(A−XWH(t)TY T )TD(A−XWH(t)TY T )

+ λ1tr(W
TPW ) + λ2tr(H

(t)TQH(t))

=
M
∑

i=1

N
∑

j=1

(A−XWH(t)TY T )ijDii

+ λ1tr(W
TPW ) + λ2

n
∑

k=1

r
∑

l=1

H
(t)
kl

2
Qkk

=
M
∑

i=1

||Ai − (XWH(t)TY T )i||2Dii

+ λ1tr(W
TPW ) + λ2

n
∑

k=1

||H(t)
k ||2Qkk

Similarly, we can see that

tr(A−XWH(t+1)TY T )TD(A−XWH(t+1)TY T )
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+ λ1tr(W
TPW ) + λ2tr(H

(t+1)TQH(t+1))

=
M
∑

i=1

||Ai − (XWH(t+1)TY T )i||2Dii

+ λ1tr(W
TPW ) + λ2

n
∑

k=1

||H(t+1)
k ||2Qkk

Then, the right-hand side (r.h.s) of Equation 6.12 becomes

r.h.s =
1

2

M
∑

i=1

(

||Ai − (XWH(t+1)TY T )i||2

−||Ai − (XWH(t)TY T )i||
)

Dii + λ2

n
∑

k=1

(

||H(t+1)
k ||2

−||H(t)
k ||2

)

Qkk

=
1

2

M
∑

i=1

(

||Ai − (XWH(t+1)TY T )i||2Dii −
1

Dii

)

+ λ2

n
∑

k=1

(

||H(t+1)
k ||2Qkk −

1

Qkk

)

And, the left-hand side (l.h.s) of Equation 6.12 becomes

l.h.s =
M
∑

i=1

(
√

||Ai − (XWH(t+1)TY T )i||2

−
√

||Ai − (XWH(t)TY T )i||2
)

+ λ2

n
∑

k=1

(

√

||H(t+1)
k ||2 −

√

||H(t)
k ||2

)

=
M
∑

i=1

(

||Ai − (XWH(t+1)TY T )i||

−||Ai − (XWH(t)TY T )i||
)

+ λ2

n
∑

k=1

(

√

||H(t+1)
k ||2 −

√

||H(t)
k ||2

)

=
M
∑

i=1

(

||Ai − (XWH(t+1)TY T )i|| −
1

Dii

)

+ λ2





n
∑

k=1

||H(t+1)
k || − 1

Qkk




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Now, we compute the difference between the l.h.s and r.h.s,

l.h.s− r.h.s =
M
∑

i=1

(

||Ai − (XWH(t+1)TY T )i||

−||Ai − (XWH(t+1)TY T )i||2
Dii

2
− 1

2Dii

)

+ λ2

n
∑

k=1

(

||H(t+1)
k || − ||H(t+1)

k ||2Qkk

2
− 1

2Qkk

)

=
M
∑

i=1

Dii

2





||Ai − (XWH(t+1)TY T )i||
Dii

−||Ai − (XWH(t+1)TY T )i||2 −
1

D2
ii

)

+ λ2

n
∑

k=1

Qkk

2





||H(t+1)
k ||
Qkk

− ||H(t+1)
k ||2 − 1

Q2
kk





=
M
∑

i=1

(−Dii)

2

(

||Ai − (XWH(t+1)TY T )i|| −
1

Dii

)2

+ λ2

n
∑

k=1

(−Qkk)

2

(

||H(t+1)
k || − 1

Qkk

)2

≤ 0

The above inequality holds because, D,Q are non-negative matrices, and the sum of

non-positive numbers is always non-positive. This completes the proof.

6.2.9 Proof of Lemma 6.2.4

Proof. We can re-write equation 6.13 as follows:

J(W (t+1)) ≤ J(W (t)), (6.23)

where

J(W ) = tr(A−XWHTY T )TD(A−XWHTY T )

+λ1tr(W
TPW ) + λ2tr(H

TQH) (6.24)
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And, according to the statement of Lemma 6.2.4, under the update rule of equation

6.10, J(W ) monotonically decreases. In order to prove the statement, we follow the

approaches utilizing auxiliary functions [79, 126].

Definition 6.2.2. G(W,W ′) is an auxiliary function for the function J(W ) ifG(W,W ′) ≥

J(W ) for all W ′ and G(W,W ) = J(W ).

Now, we define:

W (t+1) = argmin
W

G(W,W (t))

So, we have

J(W (t+1)) = G(W (t+1),W (t+1)) ≤ G(W (t+1),W (t))

≤ G(W (t),W (t)) = J(W (t))

This proves that J(W (t)) is monotonically decreasing.

Now the important steps in the remainder of the proof are: (a) determine a

proper auxiliary function, and (b) find the global minima of the auxiliary function.

Lemma 6.2.7. The function

G(W,W ′) = tr(ATDA)− 2tr(Y HW TXTDA)

+λ1tr(W
TPW ) + λ2tr(H

TQH)

+
m
∑

i=1

r
∑

j=1

(XTDXW ′HTY TY H)ijW
2
ij

W ′
ij

(6.25)

is an auxiliary function for J .

Proof. Now J(W ) of equation 6.32 can be re-written as:

J(W ) = tr(ATDA)− 2tr(Y HW TXTDA)
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+λ1tr(W
TPW ) + λ2tr(H

TQH)

+tr(W TXTDXWHTY TY H) (6.26)

Now we will be applying the following inequality of matrices according to the inves-

tigations by [127, 126]:

tr(W TΛWB) ≤
∑

i

∑

j

(ΛW ′B)ji
W 2
ij

W ′
ij

, (6.27)

where, Λ, B,W are non-negative matrices, and Λ, B are symmetric matrices. And

obviously the equality holds in Equation 6.27 when W = W ′.

In equation 6.27, if we do the substitutions: Λ = XTDX,B = HTY TY H,W =

W,W ′ = W ′, we see that the fifth term of equation 6.26 is smaller than the fifth term

of equation 6.25. However, the equality holds when W = W ′. Thus G(W,W ′) in

equation 6.25 is an auxiliary function of J(W ).

Now, we need to find the global minimum of Equation 6.25. Let f(W ) =

G(W,W ′). The gradient of f(W ) is

∂f(W )

∂Wij

= −2(XTDAYH)ij + 2λ1(PW )ij

+2
(XTDXW ′HTY TY H)ijWij

W ′
ij

(6.28)

However, the second order derivative (i.e., the Hessian matrix) would be

∂2f(W )

∂Wij∂Wkl

= 2 (P )ij δjlδik

+



2
(XTDXW ′HTY TY H)ij

W ′
ij



 δjlδik (6.29)

The Hessian matrix (Equation 6.29) is semi-positive definite implying that f(W ) =

G(W,W ′) is a convex function. Thus, there exists a unique global minimum for f(W ).
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The global minimum can be obtained by setting the gradient of f(W ) to zero and

solve for W . Thus from equation 6.28 we get

Wij = W ′
ij

(XTDAYH)ij
(XTDXW ′HTY TY H + λ1PW )ij

(6.30)

By replacing W (t+1) = W and W (t) = W ′, we would obtain the update rule of

Equation 6.10. Therefore, under this rule, the objective function J(W ) of Equation

6.32 decreases monotonically, and hence completes the proof.

6.2.10 Proof of Lemma 6.2.5

Proof. We know that,

tr(A−XW (t)HTY T )TD(A−XW (t)HTY T )

+ λ1tr(W
(t)TPW (t)) + λ2tr(H

TQH)

=
M
∑

i=1

N
∑

j=1

(A−XW (t)HTY T )ijDii

+ λ1

m
∑

k=1

r
∑

l=1

W
(t)
kl

2
Pkk + λ2tr(H

TQH)

=
M
∑

i=1

||Ai − (XW (t)HTY T )i||2Dii

+ λ1

m
∑

k=1

||W (t)
k ||2Pkk + λ2tr(H

TQH)

Similarly, we can see that

tr(A−XW (t+1)HTY T )TD(A−XW (t+1)HTY T )

+ λ1tr(W
(t+1)TPW (t+1)) + λ2tr(H

TQH)

=
M
∑

i=1

||Ai − (XW (t+1)HTY T )i||2Dii

+ λ1

m
∑

k=1

||W (t+1)
k ||2Pkk + λ2tr(H

TQH)
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Then, the right-hand side (r.h.s) of Equation 6.14 becomes

r.h.s =
1

2

M
∑

i=1

(

||Ai − (XW (t+1)HTY T )i||2

−||Ai − (XW (t)HTY T )i||
)

Dii + λ1

m
∑

k=1

(

||W (t+1)
k ||2

−||W (t)
k ||2

)

Pkk

=
1

2

M
∑

i=1

(

||Ai − (XW (t+1)HTY T )i||2Dii −
1

Dii

)

+ λ1

m
∑

k=1

(

||W (t+1)
k ||2Pkk −

1

Pkk

)

And, the left-hand side (l.h.s) of Equation 6.14 becomes

l.h.s =
M
∑

i=1

(

√

||Ai − (XW (t+1)HTY T )i||2

−
√

||Ai − (XW (t)HTY T )i||2
)

+ λ1

m
∑

k=1

(

√

||W (t+1)
k ||2 −

√

||W (t)
k ||2

)

=
M
∑

i=1

(

||Ai − (XW (t+1)HTY T )i||

−||Ai − (XW (t)HTY T )i||
)

+ λ1

m
∑

k=1

(

√

||W (t+1)
k ||2 −

√

||W (t)
k ||2

)

=
M
∑

i=1

(

||Ai − (XW (t+1)HTY T )i|| −
1

Dii

)

+ λ1





m
∑

k=1

||W (t+1)
k || − 1

Pkk





Now, we compute the difference between the l.h.s and r.h.s,

l.h.s− r.h.s =
M
∑

i=1

(

||Ai − (XW (t+1)HTY T )i||

−||Ai − (XW (t+1)HTY T )i||2
Dii

2
− 1

2Dii

)
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+ λ1

m
∑

k=1

(

||W (t+1)
k || − ||W (t+1)

k ||2Pkk
2
− 1

2Pkk

)

=
M
∑

i=1

Dii

2





||Ai − (XW (t+1)HTY T )i||
Dii

−||Ai − (XW (t+1)HTY T )i||2 −
1

D2
ii

)

+ λ1

m
∑

k=1

Pkk
2





||W (t+1)
k ||
Pkk

− ||W (t+1)
k ||2 − 1

P 2
kk





=
M
∑

i=1

(−Dii)

2

(

||Ai − (XW (t+1)HTY T )i|| −
1

Dii

)2

+ λ1

m
∑

k=1

(−Pkk)
2

(

||W (t+1)
k || − 1

Pkk

)2

≤ 0

The above inequality holds because, D,P are non-negative matrices, and the sum of

non-positive numbers is always non-positive. This completes the proof.

6.2.11 Correctness of the RIMC Algorithm

In this section we are going to prove that the converged solution presented in

Algorithm 9 is the correct optimal solution. In fact, we will show that the converged

solution satisfies the Karush-Kuhn-Tucker (KKT) condition of the constrained op-

timization theory. At first, we have theorem 6.2.8 to prove the correctness of the

algorithm with respect to W . Theorem 6.2.9 will prove the correctness of the algo-

rithm with respect to H.

Theorem 6.2.8. At convergence, the converged solution W ∗ of the updating rule in

Algorithm 9 satisfies the KKT condition.
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Proof. The KKT condition for W with constraints Wαβ ≥ 0, with α = 1, · · · ,m; β =

1, · · · , r is:

∂J(W )

∂Wαβ

Wαβ = 0,∀α, β (6.31)

Similar to Equation 6.16, the J(W ) can be written as:

J(W ) = tr(A−XWHTY T )TD(A−XWHTY T )

+λ1tr(W
TPW ) + λ2tr(H

TQH) (6.32)

Now, the partial derivative of J(W ) can be expressed as:

∂J(W )

∂Wαβ

= −2(XTDAYH)αβ + 2λ1 (PW )αβ

+ 2
(

XTDXWHTY TY H
)

αβ
(6.33)

Thus, the KKT condition for W is:

[

−
(

XTDAYH
)

αβ
+ λ1(PW )αβ

+
(

XTDXWHTY TY H
)

αβ

]

Wαβ = 0,∀α, β (6.34)

But, once W converges (according to Algorithm 9), the converged solution W ∗

satisfies the following:

W ∗
αβ ← W ∗

αβ

(

XTDAYH
)

αβ

(XTDXW ∗HTY TY H + λ1PW ∗)αβ

which can be written as

[

−
(

XTDAYH
)

αβ
+ λ1(PW

∗)αβ

+
(

XTDXW ∗HTY TY H
)

αβ

]

W ∗
αβ = 0,∀α, β (6.35)

This is identical to equation 6.34. Thus, the converged solution W ∗ satisfies the

KKT condition.
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Theorem 6.2.9. At convergence, the converged solution H∗ of the updating rule in

Algorithm 9 satisfies the KKT condition.

Proof. The KKT condition for H with constraints Hγψ ≥ 0, with γ = 1, · · · , n, ψ =

1, · · · , r is:

∂J(H)

∂Hγψ

Hγψ = 0,∀γ, ψ (6.36)

Now, the partial derivative of J(H) from equation 6.16 is

∂J(H)

∂Hγψ

= −2
(

Y TATDXW
)

γψ
+ 2λ2(QH)γψ

+ 2
(

Y TY HW TXTDXW
)

γψ
(6.37)

Thus, the KKT condition for H is:

[

−
(

Y TATDXW
)

γψ
+ λ2(QH)γψ

+
(

Y TY HW TXTDXW
)

γψ

]

Hγψ = 0,∀γ, ψ (6.38)

But, once H converges (according to Algorithm 9), the converged solution, H∗ sat-

isfies the following:

H∗
γψ ← H∗

γψ

(

Y TATDXW
)

γψ

(Y TY H∗W TXTDXW + λ2QH∗)γψ

which can be written as

[

−
(

Y TATDXW
)

γψ
+ λ2(QH

∗)γψ

+
(

Y TY H∗W TXTDXW
)

γψ

]

H∗
γψ = 0,∀γ, ψ

This is identical to equation 6.38. Thus, the converged solution H∗ satisfies the KKT

condition.
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6.2.12 Computational Complexity of the RIMC Algorithm

Computational complexity is another issue as we hope that RIMC algorithm

(Algorithm 9 is not more time consuming. Hence, we analyze the computational cost

of the algorithm. Since, r < min(m,n), the numerator of Equation 6.8 can be com-

puted as (Y T (AT (D(XW )))) with r(nN +NM +M2 +Mm) scalar multiplications;

whereas one can compute the denominator of the equation as (Y T (Y (H(W T (XT (D(XW )))))))+

λ2(QH) with r(2nN + 2mM + nr+mr+ nm) scalar multiplications. For computing

the numerator of Equation 6.10, one can use the parenthesization (XT (D(A(Y H))))

with r(mM + M2 + MN + Nn) scalar multiplications, and the denominator as

(XT (D(X(W (HT (Y T (Y H))))))) + λ1(PW ) with r(2nN + 2mM + nr + mr + m2)

scalar multiplications. Thus, for the complexity of the Algorithm 9 is ζr(6nN +

2MN + 2M2 + 6mM + 2nr+ 2mr+mn+m2), where ζ is total number of iterations

until the convergence (or the stopping) criterion is met.

6.3 Experimental Configurations

6.3.1 Disease-LincRNA Association dataset

We obtained human lincRNA-disease associations by combining the LncR-

NADisease database [67] and the supporting dataset from the co-expression based

association study conducted by [103]. The combined dataset contains 46,934 associ-

ations among 8194 lincRNA genes and 1213 diseases. Since none of the two datasets

adapted standard naming of the diseases, we retrieved top-5 closely matched OMIM

phenotypes for each of the disease names from the pool using OMIM API [76], and

prepared the association matrix between 8194 lincRNA genes and 2661 OMIM phe-

notypes. The matrix is very sparse having only 0.22% non-zero entries. To compare
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different approaches on the novel association prediction, we use 10-fold cross valida-

tion over the association dataset.

6.3.2 LincRNA Feature datasets

RNA-seq provided Expression profiles of lincRNAs on different tissues

underline the impact of the lincRNAs for diseases occurring corresponding tissues.

Although not all diseases are tissue-specific, neither are the lincRNAs, the profiles

still can be used to distinguish between co-expressed lincRNAs to implicate diseases.

RNA-seq measurement of 8194 lincRNA expression levels on 22 human tissues are ob-

tained from the Human BodyMap Project 2.0 [72]. Expression scores are represented

in terms of FPKM values (Fragments Per Kilobase of exons per Million Fragments

mapped).

ChIP-seq provided Transcription Factor Binding Sites (TFBS) of the

lincRNAs unravel the transcriptional regulatory relationships of lincRNAs with tran-

scription factors. We obtained 160,588 relationships among the 8194 lincRNAs and

120 transcription factors from ChIP-Base dataset [112]. There are only 217 lincRNAs

that have relationship with one transcription factor, and out of 120 transcription fac-

tors. The minimally related transcript factor, “BACH1” has 11 lincRNA connections,

and there are 6130 lincRNAs connecting with a transcript factor, “HNF4A”.

Functional annotations of the lincRNAs dictate their characterizations and

involvement on various biological activities inside human cells that implicitly correlate

with various disease phenotypes. Linc2GO [113] presents a database of such annota-

tions of lincRNAs based on the ceRNA hypothesis [114]. We retrieved 8111 GO BP

(Biological Process) terms, 3218 GO MF (Molecular Function) terms and 193 KEGG

pathway terms associated with the 8194 lincRNAs from the database, resulting a total

of 11522 functional terms for each lincRNA in our study. However, this annotation
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matrix is also sparse, having 0.11% non-zero entries. We use the leading 100 singular

vectors of the matrix as the representative features of the lincRNAs contributed from

the Linc2GO dataset.

Single Nucleotide Polymorphisms (SNPs) in lincRNAs were found to be

linked to their abnormal expressions and dysregulations, thereby playing key roles

in various phenotypes and diseases [115]. The lncRNASNP dataset [5] provides a

comprehensive resource of SNPs in human lncRNAs, and we extracted 368,494 SNPs

in the 8194 lincRNAs from the database. The SNP-lincRNA association is sparse with

0.0077% non-zero entries. We use the leading 100 singular vectors of the matrix as the

representative features of the lincRNAs contributed from the lncRNASNP dataset.

Finally, we considered only those lincRNAs having all these four types of fea-

tures. Therefore, we ended up having a catalog of 6540 lincRNAs with corresponding

features.

6.3.3 Disease Feature datasets

Term Frequency Inverse Document Frequency (TF-IDF) of the 2661

OMIM phenotypes obtained from the OMIM text corpus provides a standard statistic

that reflects how important a term is to a OMIM phenotype text collection. The TF-

IDF score increases proportionally to the frequency of occurrences of a term in a

particular page, but is offset by the frequency of the term in the whole corpus. This

phenomenon helps to identify important keywords associated appearing only in the

corresponding OMIM page, as well as less important terms appearing most of the

pages. The number of terms considered in the scheme is 20491, thus resulting in a

TF-IDF matrix of size 2661 by 20491. We use the leading 100 singular vectors of

the matrix as the representative features of the diseases contributed from the OMIM

TF-IDF dataset.
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Phenotypic similarity profiles of the lincRNAs were retrieved from a recent

study by [116], where the authors developed a method to accumulate the MeSH terms

associated with the publications referenced in the OMIM phenotype pages and able

to compute scores that reflect the molecular relatedness between two OMIM entries.

The similarity matrix thereby is symmetric of dimension 2661 by 2661. We reduce

the dimensionality of the feature space using PCA, retaining the top 100 principal

components.

We considered only those diseases having all these two types of features. Thus,

we ended up having a catalog of 2148 diseases with corresponding features.

6.3.4 Baselines

We compare the results of our proposed method with five approaches. Firstly,

the standard non-negative matrix factorization on the lincRNA-disease association

matrix A. This can be considered as a special case for the Inductive Matrix Comple-

tion objective where the lincRNA feature matrix (X) and the disease feature matrix

(Y ) are set to identity. We compare three other methods that provide interfaces

to scale their corresponding framework to a much larger dataset like ours (i.e., con-

sidering associations among the 6540 lincRNAs and 2418 disease phenotypes). The

approaches differ much in solving the association problems, from significant test for

associating identities, solving the Graph Laplacian Regularized Least Squares, to Ker-

nalized Random Walk with restart approach. We describe each of the four methods

in more detail below. Finally, we compared the standard IMC method as discussed

in Section 6.2.1.
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6.3.4.1 NMF [79]

Here, we consider matrix completion on the bipartite network A and solve the

standard optimization equation enforcing the non-negativity constraints over W and

H using Alternating Least Squares (ALS) method. The standard matrix completion

formulation does not accommodate any of the side information available about the

lincRNAs and diseases. After the convergence of NMF Algorithm rank of the pre-

dictions can be retrieved using the estimated values of the matrix, i.e., higher the

estimated Aij, more relevant is the lincRNA i for disease j.

6.3.4.2 LRLSLDA [68]

The Laplacian Regularized Least Squares for LncRNA-Disease Association (LRL-

SLDA) computes a weighted rank score for association between an lincRNA with a

disease using probabilities retrieved from two independent classifiers modeled using

lincRNA-lincRNA and disease-disease similarity matrices. The computationally ex-

pensive operation in LRLSLDA is during the pairwise similarity matrix constructions

which prohibits its usability in scalable framework development. Moreover, there are

eight parameters used in LRLSLDA, which comparatively is a large number to tune

in order to make the method computationally efficient.

6.3.4.3 TsLincRNA-Disease [103]

Tissue - Specificity based LincRNA - Disease association prediction framework

(TsLincRNA - Disease) draws a demarcation line between tissue-specific and non-

tissue-specific classes utilizing the tissue-specificity index for each of the lincRNAs in

the study. It uses statistical significance test and a mean enrichment analysis on a co-
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expression network to predict disease associations with tissue specific and non-specific

lincRNAs respectively.

6.3.4.4 K-RWRH [102]

Kernel-based Random Walk with Restart method in a heterogeneous network

is an extension to the RWRH algorithm proposed in [117]. Here the heterogeneous

network is constructed by a disease-disease similarity matrix, lincRNA-lincRNA sim-

ilarity matrix and known lincRNA-disease relationship matrix. It predicts potential

lincRNA-disease association through simulating the random walk with restart from a

given set of known disease and lincRNA seed nodes. After some steps, the steady state

probability distribution is obtained. The lincRNAs and the diseases (representing the

nodes in the network) are ranked based on the steady state probabilities.

6.3.5 Experimental Setup

Note that the first method does not use any of lincRNA or disease specific

features such as TF-IDF, disease phenotype similarity, RNA-seq provided expression

profiles, ChIP-seq provided Transcription factor binding sites, functional GO anno-

tations and SNP linkages. However, remaining three methods also do not use any

of these features except the expression profiles. For all the methods, including the

standard IMC and our proposed RIMC we rank the predictions using the estimated

values corresponding to a lincRNA for each of the diseases considered in our study.

For the standard IMC method and our proposed RIMC method, we construct the

lincRNA and disease feature matrices X ∈ R
M×m with m = 342 and Y ∈ R

N×n

with n = 200 for the set of M = 6540 lincRNAs and N = 2418 diseases (in terms

of OMIM phenotypes). We set the best parameters values for each of the methods

through cross-validation except LRLSLDA, in which case we set the eight parameter
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values as suggested by the authors. All the experiments were run on an Intel(R)

Core (TM) i5-2400 CPU running at 3.10GHz, 4-cores, 6MB L2-cache, 12GB of RAM

(DDR3 1333) hosting Ubuntu 14.04 operating system.

6.3.6 Evaluation Metrics

The lincRNA-disease association prediction algorithm under evaluation com-

putes a ranking score for each candidate disease (i.e., disease that is not reported to

be connected with a lincRNA before) and returns the top-k highest ranked diseases

as recommendations to a target lincRNA. Thus, for the evaluation of the predictive

accuracy, the goal is to find out how many disease-lincRNA associations previously

marked off in the preprocessing step recovered in the returned disease recommenda-

tions. More specifically, we used two evaluation metrics: (1) the ratio of recovered

diseases to the k recommended diseases for the target lincRNA, and (2) the ratio

of recovered diseases to the set of diseases deleted in preprocessing [118]. The first

metric is called precision@k and the latter is known as recall@k. The metrics are

defined in Equation 6.39 and 6.40. In our experiment, we tested the performance

when k = {5, 10, 20, 40, 50, 60, 70, 80, 90, 100}.

precision@k =
1

Nl

Nl
∑

l=1

|Pl(k) ∩Dl|
k

(6.39)

recall@k =
1

Nl

Nl
∑

l=1

|Pl(k) ∩Dl|
|Dl|

, (6.40)

where Pl(k) being the top-k ranked diseases for lincRNA l, Dl is the set of diseases

related to the lincRNA l marked off during the training step, Nl is the total num-

ber lincRNAs in the evaluation dataset. We performed 10-fold cross-validation to

measure the performance of our proposed RIMC method as well as the competitive

methods. It is worth noting that the precision@k and recall@k in our experiments

are not high. This is because of the sparsity in the lincRNA-disease association
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dataset having density only 0.003. Similar performance can also be observed in other

association recommendation works by [119] and [120] just to name a few. Therefore,

the low precision obtained in our experiments is reasonable. In this article, we em-

phasize on comparing relative performance of the methods rather than their absolute

performance.

6.4 Results and Discussion

6.4.1 Effect of the parameter settings

(a)

(b)

(c)

(d)

Figure 6.2: Comparing precision@k and recall@k of the standard IMC and the
robust IMC on different values of rank parameter r. Error bars are not shown in this
plot as the standard deviations are too small. (a-b): Standard IMC shows a slight
improvement of precision@k and recall@k with increasing value for r. (c-d): Robust
IMC shows the best performance when r = 50.

The parameters to the RIMC method are the rank (r) of the basis W and the

coefficient H matrices and the regularization parameters λ1, λ2 for W and H matrices

respectively. The precision@k and recall@k performance of the method along with
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the standard IMC formulation is presented in Figure 6.2. It is evident from the

figure that the top-k association retrieval performance varies with the changes in the

rank parameter. We varied the rank parameter from 50 to 200, which is equal to

min(rank(X), rank(Y )), where X,Y are the lincRNA and disease feature matrices

respectively. We see that there is little to no boost up of the performance from the

changes of rank value from 50 to 100. However, continuing to increase the rank to

the maximum possible value, 200, the performance degrades in terms of both the

precision@k and recall@k. This issue can be justified as an over-fitting problem. We

set the regularization parameters λ1 = λ2 = 1.0 in the optimization functions as we

found that the predictive performance degrades if the parameters are set to values

deviating far away from 1.0 (data not shown). We found the cut-off value for the

parameters through cross-validation for all possible values in the range (0.1, 10.0).

6.4.2 True LincRNA-Disease Association Retrieval

(a) (b)

Figure 6.3: Comparision of lincRNA-disease association methods. Error bars are not
shown in this plot as the standard deviations are too small. (a) k-vs-precision@k plot
for all the six methods. (b) k-vs-recall@k plot for the six methods. The standard
IMC and the proposed RIMC method is trained with 342 lincRNA features and 200
disease features, with a rank, r = 100. NMF was trained with the same binary
association matrix we used in the IMC experiments with a rank r = 100.



156

The 10-fold cross-validation results on 2418 OMIM diseases are presented in

Figure 6.3. The Y -axis in the plots (a,b) gives the precision@k and recall@k scores

for various k values in the horizontal X-axis. We observe that the proposed RIMC sig-

nificantly dominates the competitive methods over all k values. The best precision@k

and recall@k recorded are close to 10% and 38% respectively at the top-5 association

prediction cases. The matrix completion on A performs significantly better than the

three other baseline algorithms. LRLSLDA performs worse in terms of precision@k

and the recall@k scores. This is because, the method only relies on known association

matrix and the expression profiles of the lincRNAs. Moreover, it comes with a lot of

parameters to learn, and is not easily scalable in larger context, like ours, because of

the complex pinv operations to compute the Laplacians.

6.4.3 Induction on new Associations

We investigate the power of the inductive learning, readily provided by the

IMC formulations in both the standard IMC and our proposed RIMC to predict the

associations between

i) a new disease to a well studied lincRNA,

ii) a new lincRNA to a well studied disease

iii) a new disease to a new lincRNA.

The only assumption in the IMC framework for induction is that all the features for

the novel disease (or the lincRNA or both) may be available during prediction. Here

we underline the power of inductive learning of the trained models which is readily

usable for prediction for a new test lincRNA or disease (or both) entries even though

the entries were absent during the training. Note that all the baseline methods other

than the standard IMC are missing from each of the plots in Figure 6.4,6.5, 6.6 as
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none could make such prediction of the novel disease and lincRNA associations using

the respective learned models because of their inherent transductive formulations.

6.4.3.1 Induction experiments on new LincRNAs

We randomly picked 10% of the subject lincRNA entries and the corresponding

associations from our datasets (X, the lincRNA featureset and A, the lincRNA-disease

association data matrix) and all of the existing disease entries and the respective as-

sociations from Y and A. This set-aside entries will be served as test-set for the

first batch of induction experiment. Both the standard IMC and the RIMC were

then trained with the remaining entries and associations. We evaluate each of the

models with the respective set-aside test cases. We repeat the above steps 10 times

and recorded the average predictive scores for the comparison. Figure 6.4 illustrates

the performance comparison of the standard IMC and our proposed robust IMC for

the both new diseases and the new lincRNAs. The precision@k curve for the robust

IMC show a superior performance than that of the standard IMC based approach for

predicting upto the top-50 disease associations with the new lincRNAs. For higher

values of k in the top-k predictions, both RIMC and the standard IMC show simi-

lar performance. But in terms of numerical precision, RIMC exceeds the standard

IMC. However, in the recall@k curve, we can see that RIMC performs superior than

standard IMC method.

6.4.3.2 Induction experiments on new Diseases

Here, we randomly picked 10% of the subject disease entries and the correspond-

ing associations from our datasets (Y , the disease featureset and A, the lincRNA-

disease association data) and the subject lincRNA entries and the respective associa-

tions from X and A, and these sets will be considered as test set. Both the standard
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(a) (b)

Figure 6.4: Performance comparison of the standard IMC and our proposed robust
IMC for induction on existing set of diseases and new lincRNAs. Error bars are not
shown in this plot as the standard deviations are too small. (a) k-vs-precision@k
plot for the two methods, (b) k-vs-recall@k plot for the two methods.

IMC and the RIMC were then trained with the remaining entries and associations.

We evaluate each of the models with the respective set-aside test cases. We repeat the

above steps 10 times and recorded the average predictive scores for the comparison.

Figure 6.5 illustrates the performance comparison of the standard IMC and our pro-

posed robust IMC for the both new diseases and the new lincRNAs. The precision@k

and recall@k curves for the robust IMC show a superior performance than that of the

standard IMC based approach for predicting upto the top-50 lincRNA associations

with the novel diseases.

(a) (b)

Figure 6.5: Performance comparison of the standard IMC and our proposed robust
IMC for induction on new diseases and existing set of lincRNAs. Error bars are not
shown in this plot as the standard deviations are too small. (a) k-vs-precision@k
plot for the two methods, (b) k-vs-recall@k plot for the two methods.
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6.4.3.3 Induction experiments on both new LincRNAs and new Diseases

Finally, in this batch of induction experiment, we randomly picked 5% of the

subject disease entries, and 5% of the subject lincRNA entries and the corresponding

associations from our full set of existing datasets (X,Y , the lincRNA and disease

feature-sets respectively and A, the lincRNA-disease association data) which will be

considered as a test-set for the experiment. Both the standard IMC and the RIMC

were then trained with the remaining entries and associations. We evaluate each of

the models with the respective set-aside test cases. We repeat the above steps 10 times

and recorded the average predictive scores for the comparison. Figure 6.6 illustrates

the performance comparison of the standard IMC and our proposed robust IMC for

the both new diseases and the new lincRNAs. The precision@k plot of for the robust

IMC show a superior performance than that of the standard IMC based approach

for predicting for both lower and higher values of k in the top-k association ranking

with the novel diseases. However, from the recall@k cure of the both algorithms, we

can see that both RIMC and standard IMC performs similar in the top-k association

prediction problem.

(a) (b)

Figure 6.6: Performance comparison of the standard IMC and our proposed robust
IMC for induction on both new diseases and new lincRNAs. Error bars are not shown
in this plot as the standard deviations are too small. (a) k-vs-precision@k plot for
the two methods, (b) k-vs-recall@k plot for the two methods.
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6.5 Conclusions

In this manuscript, we proposed a robust formulation of the inductive matrix

completion method using ℓ2,1 norm. We applied our proposed method for predicting

associations between the long intergenic non-coding RNAs (lincRNAs) and diseases.

The method presents an integration interface for various categories of features of

both the lincRNAs and diseases obtained through different independent data sources

for explaining the relationships between the two entities. The proposed method can

handle inherent noises and outliers in the dataset, and was shown to outperform the

ℓ2 norm based standard IMC formulation. Besides the standard IMC formulation,

our proposed method also outperformed other four lincRNA-disease association solu-

tions. In our experiments we found that our method performs the best in predicting

associations between already studied set of lincRNAs and diseases as well as between

novel set of lincRNAs and diseases which makes the method a suitable association

prediction tool for the biologists.

Two possible extensions to our method presented here can be made: (i) the

inductive framework (as opposed to its transductive versions) is not limited to the

types of features used in the experiments we presented, as new sources of information

can be integrated easily via rank-1 updates. (ii) The framework itself can be extended

to address the missing value problem inherent to the side information of the two

respective entities.
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