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ABSTRACT

INFLUENCE OF FUNCTIONALS ON THE CONDITIONING OF WELL

DETERMINED LEAST SQUARES FINITE ELEMENT FORMULATION

ANIRUDH RAJAGOPAL, M.S

The University of Texas at Arlington, 2016

Supervising Professor: Brian H. Dennis

The Least-Squares Finite Element Method (LSFEM) is a numerical method

for solving partial differential equations (PDE) approximately by minimizing the

L-2 norm of the PDE residuals. Unlike the more common Galerkin approach, this

method does not employ integration by parts to reduce the continuity requirements

of the basis functions. Instead, the PDE is cast as a first-order system of differential

equations, which allows for the solution of primary and secondary variables with the

same order of accuracy. In addition, this approach always leads to a direct mini-

mization problem and therefore not subject to the restrictive inf-sup condition and

does not result in an indefinite system of equations like the Galerkin method. De-

spite these advantages, it has been noted by other researchers that the choice of mesh

and numerical integration scheme results in an implicit weighting of the functionals.

This leads solutions that are very mesh sensitive and linear systems of equations that

are ill-conditioned. This first part of this research is focused on creating a perfectly

determined problem whose solution is independent of any implicit weighting. This

is accomplished in 2-D by selectively subdividing quadrilateral mesh elements into

iv



triangles and employing reduced integration. This results in a discrete system with

exactly the same number of equations as unknowns. A sensitivity analysis is used

on the whole domain and elements which are most sensitive to a weight factor are

split until the desired number of equations is reached. A 2-D LSFEM solver was

developed for hybrid quadrilateral/triangle meshes to demonstrate the method for el-

liptic and hyperbolic-elliptic equations. The conjugate gradient method was used as

a solver for the resulting system of equations. Results show the solution to the result-

ing well-determined system is independent of any user defined weights applied to the

functionals. An optimized set of weights was then obtained to minimize the number

of conjugate gradient iterations required to solve the linear system of equations.
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CHAPTER 1

Introduction

Scientists have been utilizing finite element techniques to solve fluid and heat

transfer problems for many decades now. Perhaps, the lack of a comprehensive fi-

nite element code, covering a large spectrum of problems is motivation to many

enthusiasts.

The motivation behind this study is also to advocate such a common and more

diverse technique namely, the least-squares finite element method. This study also

explains certain complications behind using the least-squares technique in different

genre of problems. For certain problems, the least-squares finite element method has

conveniently yielded discrete linear systems that are symmetric and positive definite

such that other methods have failed to do so.

The least-squares finite element method (LSFEM) that has been implemented

here is essentially minimizing the L2 norm of the residuals of given system of partial

differential equations. As this study uses C0 elements to solve the problem cases,

second order 2D partial differential equations have to be minimized to a set of first

order system formulations by introducing two flux variables. This study has been

implemented on problems with simple boundary conditions and smooth solutions.

Unfortunately, most applications in reality is not as simple as this, in that, often

complex combinations of boundary conditions have to be used and the solutions

might not be smooth enough to obtain good accuracy. The focus of this work is to

implement the method efficiently.
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There are many advantages of the LSFEM namely,

• Avoiding the LadyzhenskayaBabuskaBrezzi (LBB) condition by using a common

approximate function.

• The choice of this function will also not affect the LBB condition.

• Implementing boundary conditions is simpler.

• Essentially reducing the order of system of equations, thereby reducing the

complexity and using simpler approximate functions.

One of the few problems faced by this technique is that the condition number

of the system of equations that would be generated depends extensively on the type

of problem. Thus, the technique was considered fruitful for only certain types of

problems. Another problem with LSFEM is that the technique very rarely solves

a well-determined system of equations. The number of unknowns to the number of

equations have to match in order to best pose the problem.
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CHAPTER 2

Literature Review

In order to solve a governing partial differential equation in the least-squares

sense, its residual along with that of the boundary conditions has to be approximated.

With a long history shown by Eason [5], it is still a widely used finite element method.

Boundary valued problems have been widely solved in the past as shown in work by

Bramble and Schatz [6] and this has been used by Varga [7].

The least-squares technique can be compared to traditional Galerkin Finite El-

ement techniques as described by Jiang and Povinelli [3]. Lynn and Arya [8] and

Zienkiewicz, et al [9] showed how introducing an additional unknown variable can

reduce the order of the governing PDE and also maintain smoothness using C0 ele-

ments. Straight forward problems were first solved in Lynn [10], Lynn and Alani [11],

Polk and Lynn [12] and Fix and Guzburger [13]. This progressed onto a generalized

Cauchy-Reimann equation, where an error estimate is provided by Fix and Rose [14]

2.1 Poisson Equation

Petrovsky type elliptic equations were solved theoretically by Wendland [15].

Petrovsky systems are a class of elliptic systems where the all the functionals and

the unknown variables are of the same continuity. Another general method was in-

troduced by Aziz, et al [16]. The method introduces the Agmon-Douglis-Nirenberg

(ADN) type elliptic equations where the weighted residuals of the functionals is re-

duced.

The work done by Jiang, et al [3] has been an appropriate start for this thesis. In the
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paper [3], the author compares the various finite element technique and formulations

for simple elliptic problem. The study introduces a new optimal least-squares tech-

nique where the compatibility condition (irrotationality) was introduced and this , as

claimed, proves that the ellipticity of the system to be regained. The paper also solves

for a forcing function derived through the method of manufacturing. This method is

a way of arriving at a forcing function keeping the analytical solution as a fixed entity.

This thesis also utilizes the same forcing function throughout the Poisson equation

study. Even the least-squares solutions were validated with respect to this forcing

function.

2.2 Convection-Diffusion Equation

The work done by Fletcher [17] is a good reference to solve for energy-free

Euler equation. This thesis has a lot of commonality with the work done by Nguyen

and Reynen [18], in that, both solve for the advection-diffusion equation using least-

squares technique but on a rather different bandwidths of Peclet number. Also, this

study is purely based on proving that the new technique developed works right on a

wide variety of problems. The upwinding scheme used in [18] is through the Taylor-

Galerkin model, which is essentially rendered useless because of the least-squares

formulation extended into the time domain.

The main idea about heat transfer between parallel plates has been derived

from Sellers, et al [19] and Haji-Sheikh, et al [20]. The boundary conditions and

exact solution has been computed from the same. These two papers represent the

pure theoretical idea of the heat transfer problem.
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2.3 Conjugate Gradient

This study focuses on estimating the contributions of individual functionals

to the overall condition of the system. In order to preserve this contributions, no

pre-conditioner of any kind was used with the iterative solver - conjugate gradient

technique. The conjugate-gradient algorithm and methodology was derived from

the book by Saad [4]. This book proved very vital for the understanding of vector

notations, vector calculus and the algorithms of various iterative solvers. The works

by Jiang [1-3],[21-26] and Carey [26] all utilize the same conjugate-gradient algorithm,

either with or without the pre-conditioner. The common pre-conditioner used would

be the LU pre-conditioner.

2.4 Sensitivity Analysis

Majority of the finite element techniques are chosen according to problem be-

cause of the condition of the system of equations. This is avoided by estimating the

condition of the system through the sensitivity analysis. Grcar [27] provides a real-

istic way of relating the sensitivity to the condition number of a linear system. Luo

and Tseng [28] have shown what the bound on the distance from any point to the

solution set of a linear system.
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CHAPTER 3

Numerical Representation and Motivation

This section consists of two parts - the numerical formulation and the motivation

inspired from these formulations. The least-squares formulations is an effective way

of generating symmetric positive definite stiffness matrices for many non self-adjoint

problems, in which the governing equations are reduced to a first order system of

equations. The systems that permit the least-square functional representation in

H1 - norm equivalent are termed H1 - coercive formulations.

3.1 Mathematical Representation

Most governing equations in fluid dynamics and heat transfer problems gener-

ally are second order partial differential equations. The 2D form of these equations

can be represented in terms of a first order non-dimensionalized system of equations

by introducing two flux terms in each direction. The solution for all the variables can

be determined simultaneously. For simplicity, this study involves only steady state

problems.

Consider a boundary valued scalar transport problem,

Lû = f̂ in Ω (3.1)

Bû = ĝ in Γ (3.2)

Here L is a first order partial operator and varies with problem such that,

Lû =
n∑
i=1

α
∂û

∂xi
+ βû (3.3)

6



The domain is bounded such that Ω ∈ Rn with a piecewise smooth boundary

Γ where n represents the number of linearly independent vectors or simply just the

number of dimensions in this case. ûT = (u1, u2, u3, ...um) is a vector of unknown

functions. α and β are merely square matrices which determine the type of problem

and f̂ represents the force vector. B is a boundary operator and ĝ represents the

force values at the boundaries.

The main point is to notice is this is a generalized way of formulating the

least-squares system. The operators mentioned in (3.1) will indirectly reflect the

conditionality of the system of equations as they depend on the problem definition.

This problem maybe caused by many factors say, if the problem is a non-self adjoint

Sturm-Louiville type or if the operators are not scaled right. This study assumes

that (3.1) has a unique smooth (asymptotic) solution and the approximate function

is chosen such that it captures the solution well [1,2].

The common notation L̂2(ω) represents the L-2 norm of the vector, in that, it

denotes the space for square-integrable functions within the domain ω such that the

inner product is given by,

(u, v) =

∫
Ω

uv dω u, v ∈ L̂2(Ω) (3.4)

and the norm,

‖u‖2
0 = (u, u) u ∈ L̂2(Ω) (3.5)

For ’m’ number of unknowns in û, there are two spaces,

L2(Ω) = (L̂2(Ω))m (3.6)
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H1(Ω) = (Ĥ1(Ω))m (3.7)

Where Ĥ1(Ω) and H1(Ω) represent the Sobolev sub-spaces for each component

and for all the components respectively.

Since the least squares minimizes the residual function, least squares functional

set has to be generated as follows,

R(û) = ‖Lû− f̂‖2
0 = (Lû− f̂ , Lû− f̂) (3.8)

The left hand side represents the residual function or set of the individual functionals

and it varies according to the reduced first order system of equations. The weak

statement can be written in terms of the approximate function such that û ∈ ~S,

(Lŵ, Lû) = (Lŵ, Lf̂) (3.9)

Where function space S = {û ∈ (Ĥ1(Ω))m;Bû = 0 on Γ}, ŵ = δû

The weak statement can be written in the form of the approximate function.

This is done by first discretizing the domain according in finite number of elements

and then mapping the solutions onto the Gauss points using the shape function as

shown below,

û(x) =
Ne∑
i=1

ψi(x) ûi (3.10)

Where ûi represents node-wise unknowns. Upon substituting this approximation

onto the weak statement, a linear system of equation is formed in terms of stiffness

8



matrix K which is assembled from elemental stiffness matrices Ke, unknown vector

U and load vector F assembled from elemental force vectors Fe

KU = F (3.11)

The elemental stiffness matrices and load vectors are represented in terms of

respective elemental shape function ψ = (ψ1, ψ2, ψ3, ...ψNe)
T as,

Ke =

∫
Ωe

{Lψ}T {Lψ} dΩ (3.12)

Fe =

∫
Ωe

{Lψ}T f̂ dΩ (3.13)

The stiffness matrix K is symmetric positive definite in LSFEM, as such, itera-

tive methods like Conjugate Gradient technique can be used to invert K and estimate

the unknown vector U accurately. As each of the reduced first order system of equa-

tions produces a functional term in least-squares form, the weights of these individual

functionals determine their contribution to the condition number of the stiffness ma-

trix. Since inverting a stiffness matrix through iterative techniques like the conjugate

gradient will depend on its condition number, it is very vital that choosing the weights

of these individual functionals will determine the rate of convergence of the iterative

solver (the number of iterations).

Inverting the stiffness matrix using conjugate gradient (CG) method is one of

the most widely used iterative scheme. In order to preserve the effect of the LSFEM

on the condition number of the stiffness matrix, no pre-conditioners were used in this

study. CG is used essentially to solve a linear system of equations by starting with

an initial guess and progressing iteratively towards to solution. In a generalized way,

9



the CG method can be written in its quadratic form by representing it in a scalar

quadratic form of a vector.

f(x) =
1

2
~xTA~x−~bT~x+ c (3.14)

where f(x) is the objective function, A is the matrix operator that has to be

inverted, ~x is the unknown vector, ~b is a vector and c is a scalar constant. In order

for CG method to used, the matrix operator A has to be symmetric and positive

definite.

For a matrix operator A to be symmetric and positive definite, ~xTA~x > 0. The

gradient of a vector field at a given point, gives the magnitude of its change in

particular direction.

f ′(x) = [
∂

∂x1

f(x)
∂

∂x2

f(x)
∂

∂x3

f(x)
∂

∂xn
f(x)]T (3.15)

The goal of this method is to minimize the objective function f ′(x) . Since A is

symmetric, (3.14) can be reduced to the form

f ′(x) = A~x−~b (3.16)

Upon setting the gradient to zero, (3.15) can be written in terms of a linear system

of equation

A~x−~b = 0 (3.17)

In conjugate gradient we follow the path of steepest descent, where it is ini-

tialized at an arbitrary point x0 and iteratively reaches the minimum. This process

cycles over till a tolerance limit is reached either in maximum iteration limit set by

the user or a minimum residual between two iterations. At the beginning of each

iteration, the direction will first be calculated such that it provides the shortest path

to the solution.

10



Figure 3.1: An example plot of objective function f(x) in two directional search as
per Shewchuk, et al [4].

The above plot represents an example of the optimization search space for

minimizing the objective function f(x) and the red dot represents its minimum. Line

search helps choose the α to minimize f(x) along a line but how big should it’s

magnitude be in order to be represented in the form,

x1 = x0 + αr0 (3.18)

The residual ri is calculated at the end of each iteration to determine the distance

to solution. The residual in reality provides a sense of direction for the next step. α

denotes the direction that minimizes f(x) if
df(x(1))

dα
= 0. From this, the value of α

can be calculated. The slope of the parabola in Figure 3.1 at any point represents the

projection of the gradient onto the line such that f(x) is minimized at a point where

the gradient is orthogonal to the search line. From this it is clear that we have to

start with assuming that the residual of each iteration is orthogonal to the previous.

11



r1
T r0 = 0 (3.19)

(b− Ax1)T r0 = 0 (3.20)

(b− Ax0 + αr0)T r0 = 0 (3.21)

α =
rT0 r0

rT0 Ar0

(3.22)

In order to reduce the matrix-vector product twice within each steepest decent

step, (3.18) can be pre-multiplied with A as,

ri+1 = ri − αiAri (3.23)

In the LSFEM formulation the matrix operator A is K. Thus, in order to invert

the stiffness matrix efficiently without stability issues, the condition number of the

matrix has to be as close to 1 as possible.

3.2 Motivation

The analogy that has been put forth already is that the condition number of

the stiffness matrix is very important while inverting the same using CG method.

The condition number primarily depends on the type of problem - characteristics of

the governing equation, type of boundary conditions and technique used to derive

the formulations. But the weights on individual functionals can also affect the con-

tribution of these functionals on the overall condition number of the system. This

study primarily focuses on estimating this very contribution. An optimization study

12



on various fluid and heat transfer problems was conducted keeping in mind, the con-

dition of the system as the objective to be minimized.

One of the main problems with least-squares scheme is that the problem be-

comes either a over-determined system or an under-determined system because of the

degree of freedom associated with the problem.In order to pose the problem right,

the number of equations to the number of unknowns for the system of equations has

to be matched. This way, a more conditioned system is formed.

The first task from this point would be matching the number of equations to

the number of unknowns. This is done by increasing or decreasing the number of

Gauss points where the problem is solved before being numerically integrated using

Gaussian Quadrature scheme for the entire domain. After this, an optimizer is used

as a black box to minimize the condition number of the matrix to as close to one as

possible.
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CHAPTER 4

Methodology

The primary goal of this study was to tackle the conditionality problem asso-

ciated with varying type of problems. This section talks in detail about how this

is done. There are three main steps that were taken and they are enlisted in the

upcoming subsections.

4.1 Posing the problem

In most finite element formulations, the number of equations does not match

with the number of unknowns. Here an example has been described in order to make

this concept a little more clearer.

(a) (b)

Figure 4.1: Example of splitting 2’ quadrature on a domain with quadrilateral ele-
ments

14



Consider the number of elements within the domain as shown in Figure 4.1(a) to

be a 5X5 uniform quadrilateral grid structure that uses 2 point Gaussian quadrature

to solve for quadrilateral elements. Thus there are 4 Gauss points for each element

where the solutions are numerically integrated for the whole domain, as shown in Fig-

ure 4.1. In a way, the problem is being solved onto these Gauss points and mapped

onto the nodes.

For a simple potential flow, the governing equation can be represented in terms of

div-curl-grad system of equations. This gives one functional for divergence and curl

equations and one in each direction for the gradient term. Thus for a 2D problem as

shown in Figure 4.1,

The number of functionals (A) = 4

The total number of Gauss points for the domain (B) = 100

Thus, total number of equations (M) = A.B = 400

The number of nodes (C) = 36

Variables for a div-curl-grad representative of potential flow would be scalar

potential and flux in two directions.

The number of variables (D) = 3

Total number of unknowns (N) = C.D = 108

Thus there is an imbalance in the number of equations to the number of un-

knowns. Since, in this example there are more number of equations than unknowns,

the system becomes over-determined. Similarly, if 1’ quadrature is used to solve for

the quadrilateral elements, system will become under-determined. Thus in order to

pose the problem in a correct fashion, the total number of Gauss points have to be al-

tered. A quadrilateral-split technique has been introduced in this study where certain

quadrilateral elements are split in two triangular elements in which just 1’ quadrature
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is used as shown in Figure 4.1(b).

The number of elements and location of the elements that have to be split are

the big questions. How many elements does it take to make system a well-determined

one? Holding onto the notations from the above stated example,

Total number elements to be split =
1

2
{M −N + β} (4.1)

Where β refers to the number of nodes on which Dirichlet boundary conditions

have been applied. The 1
2

indicates that a single quadrilateral element will be split

into 2 triangular element. The next question would be what are the locations at

which the split has to be done? For this a sensitivity analysis is performed which is

described in the next section.

4.2 Sensitivity Analysis

The location for splitting the quadrilateral elements is very important and need

not be random in most cases. The rate of convergence has been monitored by vary-

ing the randomness of this location and was found that the location also affects the

rate of convergence. A firm assumption that the rate of convergence or number of

iterations needed for convergence is considered as a good indication of the condition

number of the stiffness matrix that the CG inverts. This means that by finding the

locations which sensitive, in terms of number of iterations, to perturbations to the

weight factors of individual functionals can provide a good map of the location for

split.

For this, a sensitivity analysis has been performed on each functional on a element

by element basis. The weight factor of a functional has to be perturbed by such a

value that neither the numerical error should not outweigh it nor should it be too big

to make drastic change in the condition of the system.
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Consider a system such that the condition number is dependent on the weights

of the individual functionals, c = c(w0) and c(w0) number of iterations to conver-

gence. Here w0 denotes the initial weight factor without being perturbed. After

perturbation, according to Taylor series expansion:

c (w0 + ∆w) = c(w0) + ∆w
dc

dw
|w0 + . . . (4.2)

Where ∆w represents the sensitivity factor, w0 is the initial weight factor. Since

all the functionals were initially given the same weight, c(w0) remains constant for

all cases in a problem.

Sensivity =
dc

dw
|w0 =

c (w0 + ∆w)− c(w0)

∆w
(4.3)

The sensitivity value is calculated for each weight factor on each element. This

gives a map of sensitivity for the whole domain per weight.

Figure 4.2: An example of the sensitivity map for the whole domain
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The Figure 4.2 illustrates an example of how the sensitivity map would look

like. This map indicates how good the locations that are most sensitive to weight

factor changes. The maps are all normalized by the highest value in this study to get

a cumulative estimate of the sensitivity. The maps for all functionals are put together

and the most sensitive elements are picked. The number of elements picked is given in

equation (4.1) and these are split. Another important information to be noted is that,

Dirichlet boundary elements should not be split. This is because, even though these

elements do contribute to the condition of the system, it is unavoidable. The Dirichlet

boundary conditions are not calculated through the least-squares formulations but

rather are hard coded into the stiffness matrix and load vector.
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CHAPTER 5

Problem setup, Results and Discussion

The study involves investigation of the contribution of each functional on the

overall condition of the system. It is imperative that the characteristics of the gov-

erning differential operator determines the condition of the system. Thus, in order

to develop a more universal finite element code, it is very crucial to handle differ-

ent kinds of ill-conditioned systems without using a pre-conditioner for the iterative

solver but rather through the formulations itself.

With that as a motivation, the methodology that was discussed in the last

chapter, has been implemented on two types of problems. Even within each of these

problems, multiple situations have been implemented to observe a trend within a

problem. This way, any future research can pick up where this study leaves.

5.1 Poisson Equation

Diffusion of a scalar quantity is governed by the Poisson equation which essen-

tially solves the PDE with a source term in terms of spacial dimensions. This study

considers a 2-D steady incompressible Poisson equation in terms of any scalar variable

T ,

∆2T = f̂ (5.1)

The main advantage of using the least-squares sense is to reduce the order of

the differential operator to L as shown in equation (3.1). The differential operator

here in the Poisson equation is a second order PDE and it can be reduced to a first
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order differential operator of the form equation (3.1) by introducing two variables in

the form of fluxes (~q). Once the flux is introduced, the second order PDE is reduced

to a system of first order equations known as ”The Div-Curl-Grad System” which are

collectively solved,

~q = −k ∆T in Ω (5.2)

∇ . ~q = ~f in Ω (5.3)

∇× ~q = 0 in Ω (5.4)

Where k represents a material constant, ~q represents the flux vector and ~f represents

the source term in the domain Ω.

The above system of equations represent the Div-Curl-Grad system. Here equa-

tion (5.2) represents the gradient term where a flux term has been introduced in terms

of the scalar variable. Since in this study, the domain is in 2-D, this term can be

opened up into two terms. The equation (5.3) represents the Poisson equation in first

order terms after introducing the fluxes or simply the divergence term. The equation

(5.4) represents the curl of the fluxes. This essentially puts forth an irrotationality

condition. This is to introduce an optimality in the least-squares formulation as sug-

gested by Jiang and Povinelli [5].

There are three variables in this formulation, namely T , ~qx, ~qy and they can be

mapped onto the transformation plane by introducing the shape function ψ

T =
∑

ψiTi (5.5)

qx =
∑

ψiqxi (5.6)

qy =
∑

ψiqyi (5.7)
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It is clear from equations (5.2) - (5.4) that there are 4 functionals that have to

be collectively minimized in the 2-D least-squares non-dimensionalized sense.

π = π1 + π2 + π3 + π4 (5.8)

Where,

π1 =

∫
Ω

[
~qx +

∂T

∂x

]2

dΩ (5.9)

π1 =

∫
Ω

[
~qy +

∂T

∂y

]2

dΩ (5.10)

π3 =

∫
Ω

[
∂ ~qx
∂x

+
∂ ~qy
∂y
− ~f

]2

dΩ (5.11)

π3 =

∫
Ω

[
∂ ~qx
∂y
− ∂ ~qy
∂x

]2

dΩ (5.12)

This can be reduced in the form of a common first order operator as shown in

equation (3.1) and represented as

∂{π}
∂{V̂ }

=
∑
j

∂{πj}
∂{V̂ }

= [L]{u} − {f} = [w]{R}T{u}{R} − [w]{R}f (5.13)

Where, {V̂ } represents the respective dimensions, {R̂} represents a vector of

functionals and [w] represents the elemental set of weight. This equation (5.13) has

to be minimized to 0. The above equation (5.13) can be then reduced to form,

[K]{U} = {F} (5.14)
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5.1.1 Case 1:

Consider an example of a 10 × 10 uniform square grid as shown in the Figure

(5.1) below. The problem is solved for a source term given by Jiang and Povinelli

[3] and the exact solutions have been shown in the validation chapter in comparison

with the finite element solution. Here, only the problem definition and the simulation

solution has been shown.

Figure 5.1: A 5×5 uniform square grid with constant normal fluxes on the boundaries

According to [3], the source term was,

F = (5π2 + 1)cos(2πx)cos(πy) (5.15)

The plot below indicates the least-squares solution of T , ~qx and ~qy.
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(a) LSFEM solution for T (b) LSFEM solution for qx

(c) LSFEM solution for qy

Figure 5.2: The plot of LSFEM solution with constant normal fluxes on boundaries
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5.1.1.1 Sensitivity Analysis

Like discussed before, a sensitivity analysis was conducted on an element by ele-

ment basis. The location to split the quadrilateral elements can be estimated from the

sensitivity map. The weight factors were initially normalized to 1 (weights = [0.25 0.25 0.25 0.25]).

Each weight was perturbed by 10−6 and the number of iterations for each case was

mapped and has been shown below.

(a) Weight for Div term (b) Weight for the Curl term

(c) Weight for the x-gradient (d) Weight for the y-gradient

Figure 5.3: Sensitivity map of individual functionals
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The sensitivity map has been normalized to the maximum value from all 4. The

lower limit of the legend has been changed to the lowest value among the 4. This

map indicates the change in the number of iterations or rather the condition of the

matrix with perturbations in weight function.

5.1.1.2 Optimization

After obtaining the sensitivity map of the domain and the weight functions,

only those elements with most sensitivity were sorted. Among this set, the number

of elements provided by equation (4.1) were split. An optimization study was con-

ducted using MATLAB’s ”fmincon” library. The linear equalities set here normalizes

the weights to 1. The optimizer was run for an initial equal weights of [0.1 0.3 0.5 0.1].

Weights Values
Div term 0.25
Curl term 0.25
x-gradient 0.25
y-gradient 0.25

Number of Iterations 295

Table 5.1: Initial equal weights

Weights Values
Div term 0.4897
Curl term 0.2744
x-gradient 0.1777
y-gradient 0.0683

Number of Iterations 235

Table 5.2: Optimized weights
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The optimized weight was found after 7 outer loop iterations and 45 inner loop

iterations. The changes in the outer loop are represented in appendix

5.1.2 Case 2:

Consider the same example of a 10 × 10 uniform square grid as shown in the

Figure (5.3) below. The difference here is the boundary condition specified.

Figure 5.4: A 5× 5 uniform square grid with constant T on the boundaries

The source term was kept the same from [3],

F = (5π2 + 1)cos(2πx)cos(πy) (5.16)

The plot below indicates the least-squares solution of T , ~qx and ~qy.
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(a) LSFEM solution for T (b) LSFEM solution for qx

(c) LSFEM solution for qy

Figure 5.5: The plot of LSFEM solution with constant T on boundaries
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5.1.2.1 Sensitivity Analysis

Like discussed before, a sensitivity analysis was conducted on an element by ele-

ment basis. The location to split the quadrilateral elements can be estimated from the

sensitivity map. The weight factors were initially normalized to 1 (weights = [0.25 0.25 0.25 0.25]).

Each weight was perturbed by 10−6 and the number of iterations for each case was

mapped and has been shown below.

(a) Weight for Div term (b) Weight for the Curl term

(c) Weight for the x-gradient (d) Weight for the y-gradient

Figure 5.6: Sensitivity map of individual functionals
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The sensitivity map has been normalized to the maximum value from all 4. The

lower limit of the legend has been changed to the lowest value among the 4. This

map indicates the change in the number of iterations or rather the condition of the

matrix with perturbations in weight function.

5.1.2.2 Optimization

After obtaining the sensitivity map of the domain and the weight functions,

only those elements with most sensitivity were sorted. Among this set, the number

of elements provided by equation (4.1) were split. An optimization study was con-

ducted using MATLAB’s ”fmincon” library. The linear equalities set here normalizes

the weights to 1. The optimizer was run for an initial equal weights of [0.1 0.3 0.5 0.1].

Weights Values
Div term 0.25
Curl term 0.25
x-gradient 0.25
y-gradient 0.25

Number of Iterations 246

Table 5.3: Initial equal weights

Weights Values
Div term 0.4897
Curl term 0.2744
x-gradient 0.1777
y-gradient 0.0683

Number of Iterations 205

Table 5.4: Optimized weights
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The optimized weight was found after 7 outer loop iterations and 45 inner loop

iterations. The changes in the outer loop are represented in appendix

5.2 Convection-Diffusion Equation

Figure 5.7: Flow through parallel plates

Considering a steady and hydrodynamically fully developed flow between two

impermeable parallel plates such that they are 2H apart. The momentum equation

can be derived using the Brinkman momentum equation,

~u

Uavg
=

3

2

[
1−

( y
H

)2
]

(5.17)

Convection between 2 parallel plates essentially solves for the scalar variable T

in the Convection-Diffusion equation. This study considers a 2-D steady incompress-

ible Convection-Diffusion equation,

~u .∇T − 1

Pe
∇2T = 0 (5.18)

Equation (5.18) is a non-dimensionalized form of the Convection-Diffusion equa-

tion where T is any scalar variable, Pe denotes the Peclet Number which represents
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the ratio of convection to diffusion, ~u denotes the velocity. The advantages of using

LSFEM is to reduce the order of the differential operator to ’L’ as shown in equation

(3.1). In this 2-D problem, the differential operator is again a second order PDE and

it can be reduced to a first order ’L’ operator by introducing flux term(~q) in the two

direction. The reduced system of equations are,

~q = −k ∆T in Ω (5.19)

~u . ~q − 1

Pe
∇ . ~q = 0 in Ω (5.20)

∇× ~q = 0 in Ω (5.21)

Where ~q represents the flux vector in the domain Ω.The equations (5.19) - (5.21)

represent 4 functionals that have to be collectively minimized in the 2-D least-squares

non-dimensionalized sense. These functionals, when represented in least square sense,

π1 =

∫
Ω

[
~qx +

∂T

∂x

]2

dΩ (5.22)

π2 =

∫
Ω

[
~qy +

∂T

∂y

]2

dΩ (5.23)

π3 =

∫
Ω

[
~u .

(
∂ ~qx
∂x

+
∂ ~qy
∂y

)
− 1

Pe

(
∂2 ~qx
∂x2

+
∂2~qy
∂y2

)]2

dΩ (5.24)

π4 =

∫
Ω

[
∂ ~qx
∂y
− ∂ ~qy
∂x

]2

dΩ (5.25)

Upon minimizing the residual to 0, it can be reduced to a form,

[K]{U} = {F} (5.26)
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5.2.1 Case 1:

Figure 5.8: Flow through parallel plates with constant wall temperature

Consider a 20 × 10 uniform grid with boundary conditions as shown in figure

(5.7). The setup represents only one half of the problem, as symmetry boundary

conditions have been used at y = 1. The length of the domain is taken twice as much

as the width.

The following simulations have been performed on the same grid and a Peclet

number of 5000. This indicates that the flow is a little convection-dominated flow.

Cases for more Peclet number have been included in the Appendix A.

32



(a) LSFEM solution for T

(b) LSFEM solution for qx

(c) LSFEM solution for qy

Figure 5.9: The plot of LSFEM solution with constant wall temperature
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5.2.1.1 Sensitivity Analysis

The sensitivity map was conducted on this problem as well with the same per-

turbation of 10−6.

Peclet No = 1000 :

(a) Weight for Convection − Diffusion
term

(b) Weight for the Curl term

(c) Weight for the x− gradient (d) Weight for the y − gradient

Figure 5.10: Sensitivity map of individual functionals

Peclet No = 10000 :
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(a) Weight for Convection − Diffusion
term

(b) Weight for the Curl term

(c) Weight for the x− gradient (d) Weight for the y − gradient

Figure 5.11: Sensitivity map of individual functionals

5.2.1.2 Optimization

After obtaining the sensitivity map of the domain and the weight functions,

only those elements with most sensitivity were sorted. Among this set, the number

of elements provided by equation (4.1) were split. An optimization study was con-

ducted using MATLAB’s ”fmincon” library. The linear equalities set here normalizes

the weights to 1. The optimizer was run for an initial equal weights of [0.1 0.3 0.5 0.1].
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Weights Pe = 500 Pe = 1000 Pe = 10000 Pe = 20000
Con−Dif term 0.25 0.25 0.25 0.25

Curl term 0.25 0.25 0.25 0.25
x-gradient 0.25 0.25 0.25 0.25
y-gradient 0.25 0.25 0.25 0.25

Number of Iterations 331 362 321 318

Table 5.5: Initial equal weights

Weights Pe = 500 Pe = 1000 Pe = 10000 Pe = 20000
Con−Dif term 0.345 0.3381 0.2939 0.4106

Curl term 0.0544 0.0606 0.1225 0.05
x-gradient 0.3255 0.0837 0.0.157 0.2096
y-gradient 0.2852 0.5176 0.4365 0.3396

Number of Iterations 275 288 299 309

Table 5.6: Optimized weights

5.2.2 Case 2:

Consider the same 20× 10 uniform grid with boundary conditions as shown in

figure (5.9). The wall boundary is given a constant flux. This problem is solved to

spot variations in the least-squares system.

Figure 5.12: Flow through parallel plates with constant flux at the plate boundary

The following simulations have been performed on the same grid and a Peclet

number of 5000.
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(a) LSFEM solution for T

(b) LSFEM solution for qx

(c) LSFEM solution for qy

Figure 5.13: The plot of LSFEM solution with constant wall flux
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5.2.2.1 Sensitivity Analysis

The sensitivity map was conducted on this problem as well with the same per-

turbation of 106.

Peclet No = 1000 :

(a) Weight for Convection − Diffusion
term

(b) Weight for the Curl term

(c) Weight for the x− gradient (d) Weight for the y − gradient

Figure 5.14: Sensitivity map of individual functionals
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Peclet No = 10000 :

(a) Weight for Convection − Diffusion
term

(b) Weight for the Curl term

(c) Weight for the x− gradient (d) Weight for the y − gradient

Figure 5.15: Sensitivity map of individual functionals

5.2.2.2 Optimization

The linear equalities set here normalizes the weights to 1. The optimizer was

run for an initial equal weights of [0.1 0.3 0.5 0.1].
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Weights Pe = 500 Pe = 1000 Pe = 10000 Pe = 20000
Con−Dif term 0.25 0.25 0.25 0.25

Curl term 0.25 0.25 0.25 0.25
x-gradient 0.25 0.25 0.25 0.25
y-gradient 0.25 0.25 0.25 0.25

Number of Iterations 306 335 310 352

Table 5.7: Initial equal weights

Weights Pe = 500 Pe = 1000 Pe = 10000 Pe = 20000
Con−Dif term 0.345 0.3381 0.2939 0.4106

Curl term 0.0544 0.0606 0.1225 0.05
x-gradient 0.3255 0.0837 0.0.157 0.2096
y-gradient 0.2852 0.5176 0.4365 0.3396

Number of Iterations 239 245 270 311

Table 5.8: Optimized weights
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

The least squares finite element has been criticized to have implicit weighting

due to the mesh and numerical integration scheme. This leads to a mesh sensitive

ill-conditioned problem.

The use of sensitivity analysis technique essentially predicts the more mesh sen-

sitive regions within the domain, where the quadrilateral elements with more Gauss

points are split into triangular elements with lower Gauss points, thereby reducing

the order of integration. This effectively matches the number of equations to the

number of unknowns.

The sensitivity analysis, as the result shows is good map to perform the split.

Upon doing the split, the next step is to generate an optimized set of weights that

tackles the ill-conditionality problem of certain system. This study has also success-

fully worked on both elliptic and elliptic-hyperbolic equations. The solution to these

equations are independent of weights applied on the functionals.

6.2 Future Work

1. The same methodology can be implemented on a more convection dominated

flows. The convective part is the major contributor of the ill-conditionness.

2. It is very important to produce better results with a more global optimizer like

say, Genetic Algorithm, where the global minima is the goal.
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3. Another extension of this research would definitely be using the same technique

on other traditional finite element methods.

4. This study shows that a constant set of weights have been used for all elements.

This can be changed to make the weight as a function of the spatial dimen-

sions. Hence, each element would have a different set of weights according to

its location.A trend on what kind of function to be used for a particular type

of problem can be a parametric study.

5. Non-linearity in the formulations can cause additional ill-conditioning and it is

very common while solving Navier-Stokes equation. The condition number for

such problems can be better quantified.
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APPENDIX A

Validation
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For the validation of results, a 5 × 5Grid has been considered. The analytical

solution is obtained from the method of manufacturing from Jiang’s work [3]. The

forcing function taken here is F = (5π2 + 1)cos(2πx)cos(πy).

A.0.1 For Primary Variable T :

T = −cos(2πx)cos(πy) (A.1)

(a) LSFEM solution for T

(b) Exact Solution for T

Figure A.1: Comparison of approximate to exact solution for variable T
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A.0.2 For Flux Variable qx :

qx = 2πsin(2πx)cos(πy) (A.2)

(a) LSFEM solution for qx

(b) Exact Solution for qy

Figure A.2: Comparison of approximate to exact solution for variable qx
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A.0.3 For Flux Variable qy :

qy = πcos(2πx)sin(πy) (A.3)

(a) LSFEM solution for qy

(b) Exact Solution for T

Figure A.3: Comparison of approximate to exact solution for variable qy
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APPENDIX B

Optimizer
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The optimizer used here is the ’fmincon’ function in MATLAB. This is a

local optimizer that estimates the minimum of constrained non-linear multivariable

function.

minx f(x) such that



c(x) ≤ 0

ceq(x) = 0

A.x ≤ b

Aeq.x = beq

lbound ≤ x ≤ ubound,
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