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ABSTRACT

ATTITUDE STABILIZATION OF SPACECRAFT

USING MOVING MASSES

Juran Hwang, MS

University of Texas at Arlington, 2016

Supervising Professor: Atilla Dogan

This research investigates the ability of stabilizing spacecraft rotational motion by inter-

nal mass actuation. The mass actuation mechanism consists of three internal masses placed

along the three axes at some offset distance that can move to induce inertial forces and

moments and change the inertia matrix and center of mass. A set of nonlinear equations

of motion are developed to model the motion, both orbital and rotational dynamics and

kinematics, of a spacecraft with mass and inertial variation due to internal mass actuation,

under the gravitational field of Earth. The equations inherently include the inertia effect of

the mass motion on the orbital and rotational dynamics. Translational kinematics is written

in terms of altitude, longitude and latitude, and the rotational kinematics is expressed rela-

tive to the local horizontal and local vertical frame. The equations of motion are first used

to analyze two nominal flight conditions: (1) spacecraft facing towards Earth on a circular

iv



orbit, and (2) spacecraft spinning around the axis towards Earth on a circular orbit. A NDI

(Nonlinear Dynamic Inversion) based controller is designed to stabilize the spacecraft by

mass actuation in the first nominal condition from a tumbling condition. This controller is

evaluated at three levels in terms of the fidelity of the spacecraft model: (1) only rotational

dynamics equations, (2) rotational dynamics coupled with the nominal orbital motion, and

(3) the full nonlinear 6-DOF model. The simulation results demonstrate that mass actua-

tion can achieve detumbling of the spacecraft in all three cases with some steady state error

when acceleration, speed, and position constrains are imposed on the mass actuators.
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CHAPTER 1

INTRODUCTION

1.1 Background

Spacecraft attitude determination and control (ADC) plays a crucial role in the accom-

plishment of mission of the spacecraft. As of today, many spacecraft have been successfully

launched and most have performed well as they were designed. Unfortunately, some of them

failed their missions. For example, on April 3, 1973, Salyut 2 was in uncontrolled state from

tumbling caused by an explosion or a wildly firing thruster [1]. Recently, there was another

accident happened on March 26, 2016, Japan’s Hitomi was tumbling in space induced by

a malfunction [2]. Spacecraft may be in unstable state by many factors such as the solar

radiation, flexible part of the spacecraft, or internal motion in manned spacecraft. The

spacecraft should be stabilized by its ADC system. As long as the spacecraft is in the stable

state, it can fulfill its own function and carry out the mission during its whole lifespan. In

other words, if the spacecraft is tumbling, it would not be possible to acquire the desired

attitude to point toward the Earth and determine the spacecraft’s trajectory. For this rea-

son, ADC in the spacecraft is closely related to the spacecraft’s performance and have been

studied and developed so for.

1
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There are two types of commonly used stabilization devices. The passive type uses spin

stabilization or gravity gradient. This passive controller is simple to install but easy to be

disturbed by external torque (e.g., gravity gradient, aerodynamic drag, and solar radiation).

The second and commonly used type of stabilization devices include reaction wheels, control

moment gyros (CMG), magnetic torque and thrusters. These actuators are able to provide

more accurate orientation and high agility of the response but need to accept high expense

[1].

Mass actuation is another active stabilization method proposed for various applications

such as spacecraft [7-12], airplane [3,4] and warhead [5]. Ref. [6–9] dealt with two internal

moving masses for attitude stabilization. Particularly, for micro satellites in Ref. [8] and [7],

instead of installing heavy actuators, the spacecraft may take an advantage of utilizing its

movable mass for detumbling. Also, Ref. [10] presents the optimal recofiguration of movable

fuel tank to control the spacecraft’s attitude. In Ref. [11], two masses moving along x-axis

are used for detumbling an asymmetric space station.

1.2 Research Objective and Thesis Content

This thesis investigates the feasibility of mass actuation in detumbling a spacecraft flying

on a circular orbit in the gravitational field of Earth. In Section 2, it develops the equations

of motion and computer simulation that model the dynamic effect of internal mass motion

on the rotational and orbital motion of the spacecraft. The orbital motion kinematics

is represented in terms of altitude, longitude and latitude. The rotational kinematics is

written in terms of 3-2-1 Euler angles relative to the local horizontal and local vertical

frame. Two different nominal flight conditions on circular orbit are simulated in Section 3 :

(1) spacecraft pointing towards Earth, and (2) spacecraft spinning around the axis towards
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Earth. In this section, open-loop responses of the spacecraft to various mass actuation are

analyzed in both nominal conditions. Section 4 gives the details of the control design, using

a nonlinear dynamic inversion method to stabilize the spacecraft from a tumbling state. In

Section 5, the detumbling controller is evaluated in closed loop using spacecraft models with

increasing fidelity: (1) rotational dynamics only, (2) rotational dynamics coupled with the

nominal orbital motion, and (3) the full 6-DOF model. Conclusions and future work are

discussed in Section 6.



CHAPTER 2

EQUATIONS OF MOTION

This chapter presents the mathematical concepts for spacecraft dynamics modelling and

the equations of motion for spacecraft with moving masses. A set of nonlinear, 6-DOF,

equations of motion from Ref. [12] is modified for spacecraft. For spacecraft orbital motion,

translational kinematics is written in the local frame.

2.1 Mathematical concepts

2.1.1 Inertial Frame

The inertial frame is fixed to the Earth, thus it rotates at the same speed as the Earth’s

rotation. In this system, the origin is at the center of Earth and z-axis, zE , points towards

the North pole and xE-axis is towards the point on the surface coinciding the latitude of 0

deg (Equator) and the longitude of 0 deg (Greenwich). YE-axis is normal to xE-zE plane

to complete the right handed Cartesian coordinate system.

4



5

Figure 2.1: Inertial frame(Earth-Fixed)

2.1.2 Local Frame

The spacecraft position is tracked in terms of altitude, latitude, and longitude. In order

to express and simulate its trajectories, it is necessary to transform this geodetic coordinate

to a local rectangular coordinate system. The local frame denoted with the letter L. The

xL of the local frame always points at the spacecraft from the origin of Earth. zL-axis

is parallel to the direction of spacecraft velocity and perpendicular to xL-axis. yL-axis is

normal to xL-zL plane to complete the right handed Cartesian coordinate system.

Figure 2.2: Local frame
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The rotation from the inertial frame to the local frame can be achieved by a rotation by

angle L around zE-axis, and then the second rotation by angle −λ around yE-axis depicted

in Fig. 2.2 and a more detailed discussion in appendix A.

2.1.3 Body Frame

Spacecraft translational and rotational dynamics are described in this thesis using body

frame representation. The body frame denoted with the letter B is the frame translates and

rotates with the spacecraft. In this study, the center of mass of the entire spacecraft system

moves as the internal masses move. Thus, the origin of the body frame is not placed at

the center of mass of the whole spacecraft system. Instead, the body frame origin is placed

at the center of mass of the rigid body part of the spacecraft, i.e., the spacecraft system

excluding the moving masses.

Figure 2.3: Spacecraft’s body frame

2.1.4 Vectrix Formalism and Rotation Matrices

The equations of motion of spacecraft in this thesis are written in the matrix form. This

is because the matrix equations are more proper for carrying out simulations in MATLAB.

To write a vector in matrix form, vectrix formalism is adapted from Ref. [12]. The matrix
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form of the equations make use of vector representations in a specified frame instead of

vectors. For example, the vectrix of X frame is defined to be the array of the unit vectors

of its axes and is denoted by

[X̂] =


îX

ĵX

k̂X

 (2.1)

Hence, vector a can be written as

a = [X̂]Ta (2.2)

where a is the representation of vector a in X frame and a 3x1 matrix. There are several

reference frames so the representation of vectors in multiple frames are used in the matrix

form. Note that the relationship between the vectrices of the two frames are defined by the

rotation matrix between the two frames,

[X̂] = RXY [Ŷ] (2.3)

where RXY is the rotation matrix from the X frame to the Y frame. Representations

or components of a vector in different frames are also related through the same rotation

matrix. For example, representation of vector a in X frame can be written in terms of its

representation in Y frame as

aX = RXY aY (2.4)
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Due to the orthogonal property of rotation matrices, the inverse rotation from Y to X

is performed by using the transpose of RXY .

aY = RT
XY aX (2.5)

The equations of motion for the spacecraft written in matrix form are used to facilitate

numerical simulations. The matrix equations include the rotation matrices to transform

the components of a vector from one frame to another. Typically, a vector is written in

the most convenient frame (e.g., gravity vector, altitude, latitude, and longitude written in

the local frame) and then transformed to the frame of interest for simulation or dynamical

analysis (e.g., the inertial frame or spacecraft body frame). The rotation matrices are defined

between the reference frames in this thesis are shown in figure 2.4. In this study, there are

two rotation matrices used, RBL and RLI. RBL is rotation matrix from local frame to body

frame as

RBL =


cosψcosθ cosθsinψ −sinθ

−cosφsinψ + sinφsinθcosψ cosφcosψ + sinφsinθsinψ sinφcosθ

sinθsinψ + cosφsinθcosψ −sinφcosψ + cosφsinθsinψ cosφcosθ

 (2.6)

RLI is rotation matrix from inertia frame to local frame as

RLI =


cosλcosL cosλSinL sinλ

−sinL cosL 0

−sinλcosL −sinλsinL cosλ

 (2.7)
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Figure 2.4: Reference frames and the rotation matrices

2.2 Equation of Motion

2.2.1 Translational Dynamics

Translational dynamics equation of the spacecraft in matrix form is

˙VB =
1

mt
FB − S(ρcm,t)ω̇B + S(ωB)VB − S2(ωB)ρcm,t

+2S(ωB)
1

mt

k∑
j=1

mj ρ̇mj −
1

mt

k∑
j=1

mj ρ̈mj

(2.8)

where VB is the representation of the velocity of the spacecraft, VB = [uvw ]T and FB is the

external forces acting on the spacecraft expressed in the body frame. ρcm,t is the position

of the center of the mass of total system. ωB is the representation of the angular velocity

vector of the spacecraft, ωB = [p q r ]T . mt is the total mass of the system. mj is the mass

of jth mass actuator, j = 1, 2, 3. ρmj is the position of the jth mass actuator from the initial

position which is the center of mass of spacecraft. All terms in the equation are expressed

in the body frame with respect to inertial frame. Also, note that S(·) is the skew-symmetric

matrix operation on the representation of a vector and defined as
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S(x) =


0 c −b

−c 0 a

b −a 0

 (2.9)

for an arbitrary vector x with the representation [a b c ]T .

The external force, FB , is expressed as

FB = Fa + Fg (2.10)

where Fa = [Fx, Fy, Fz]T is in the body frame of the applied force due to external sources

other than gravity such as thruster. Fa depends on nominal condition analyzed in appendix

B. Fg is the gravitational force using the law of gravitational attraction as

Fg = [L]T


−

M +

k∑
j=1

mj

 µ

(R+ h)2

0

0


= [B]TRBL


−

M +

k∑
j=1

mj

 µ

(R+ h)2

0

0


(2.11)

where [L]T = [B]TRBL which is the relationship between local frame and body frame using

rotation matrix, M is the mass of rigid body of spacecraft and mj is the mass of jth moving

mass actuator, µ is the standard gravitational parameter, 3.989× 1014 m/s2.

Fig. 2.5 depicts the gravitational force vectors acting on rigid body center of mass, f
M
,

and on the jth mass, f
mj

. Note that these two vectors are not along the same direction

since each vector points towards the center of Earth from different positions. However, the

formulation in Eq. (2.11) assumes them to be pointing in the same direction, which can be

justified due to the fact that the distance between these two points is much smaller than
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the distances from the center of Earth.

Figure 2.5: Gravitational moments acting on rigid body center of mass and moving mass

2.2.2 Rotational Dynamics

The matrix form of the rotational dynamics is

ω̇B = I−1

t {MB +
[
S(ωB)It − İm

]
ωB +mtS(ρcm,t)V̇B

−mtS(ρcm,t)S(ωB)S(ωB)VB +

k∑
j=1

mjS(ρmj)ρ̈mj}
(2.12)

where It is the inertia matrix of spacecraft including the moving masses, İm is the time rate

of change in the inertia matrix of the moving masses, MB is the moment of the external

forces around the origin of the spacecraft body frame and expressed in body frame as

MB =Ma +Mg (2.13)

where Ma is applied force from control momentum gyros or momentum wheel or other
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actuators installed in spacecraft. Mg is gravitational moment due to the rigid body mass,

and the moving masses, around the origin of the body frame. Therefore,

Mg = −

MS(ρcm) +

k∑
j=1

mjS(ρmj)

RBL


− µ

(R+ h)2

0

0

 (2.14)

2.2.3 Translational Kinematics

The translational kinematics is the formulation for the time rate of change of the position

vector in terms of the translational velocity vector. Position vector rB relative to the center

of Earth is most conveniently expressed in the local frame as

rB = [L]T


R+ h

0

0

 (2.15)

where R is the Earth mean radius, 6,367,435 m and h is altitude measured from Earth’s

surface. Since [L] = RLI[I], rB can be expressed in the inertial frame and differentiated as

ṙB = [I]T
d

dt


RT

LI


R+ h

0

0




=

[I]T


cosλcosL −(R+ h)sinλcosL −(R+ h)cosλsinL

cosλsinL −(R+ h)sinλsinL (R+ h)cosλcosL

sinλ (R+ h)cosλ 0




ḣ

λ̇

L̇



(2.16)
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In order to track the spacecraft in terms of altitude (h), latitude (λ), and longitude(L),

let χ = [h λ L]T , χ̇ = [ḣ λ̇ L̇]T and εεε as

εεε =


cosλcosL (R+ h)sinλcosL −(R+ h)cosλsinL

cosλsinL −(R+ h)sinλsinL (R+ h)cosλcosL

sinλ (R+ h)cosλ 0

 (2.17)

Therefore, translational kinematics can be expressed in inertial frame, ṙB = [I]Tεεεχ̇ and

ṙB = [B]TVB in body frame. Note that [I] = RT
LIR

T
BL[B]. Thus, ṙB is rewritten from the

above two equations as

ṙB = [B]TRBLRLIεεεχ̇ = [B]TVB (2.18)

Canceling out the common vectrix [B]T , translational kinematics equation is now written

in terms of (h, λ, L)

χ̇ = εεε−1RT
LIR

T
BLVB (2.19)

2.2.4 Rotational Kinematics

The rotational kinematics equation in matrix form is from Poisson’s equation

ṘBL = S(ω
BL

)RBL (2.20)

where ω
BL

is the representation of the angular velocity vector of the spacecraft with respect

to local frame expressed in its own body frame as ω
BL

= [ωx ωy ωz]
T .

The rotational motion of the spacecraft is written in terms of Euler angles as
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φ̇

θ̇

ψ̇

 =


1 tanθsinφ tanθcosφ

0 cosφ −sinφ

0 secθsinφ secθcosφ




ωx

ωy

ωz

 (2.21)

There are three angular velocity vectors involved in the equations of motion. Angular

velocity of the spacecraft relative to the inertial frame, computed by the rotational dynamics

in Eq. (2.12), is wB , expressed in the body frame with representation wB . Angular velocity

of the spacecraft relative to the local frame, introduced in the rotational kinematics formu-

lation in Eq. (2.21) is wBL, expressed in the body frame with representation wBL. The

relation of these two rotation matrices should be formulated. This is done by introducing

wL, the angular velocity vector of the local frame relative to the inertial frame, with its rep-

resentation in the local frame as wL. The angular velocity with respect to the inertial frame

can be expressed as the sum of the angular velocity with respect to the local frame and the

angular velocity of the local frame with respect to the inertial frame, which is formulated as

ωB = ωBL + ωL (2.22)

Using the representations of these vectors as introduced above, this equation can be written

in terms of the representations as

ωB = ωBL + RBLωL (2.23)

Since the local frame is defined such that x-axis always points towards the spacecraft

traveling along the orbit, its angular velocity wL is dependent on the orbital motion. As

depicted in Fig. 2.6, rotation from the inertial frame to the local frame can be achieved
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by (1) rotating around z-axis by angle L, followed by rotation around y-axis by angle −λ.

Similarly, the angular velocity of the local frame can be written in terms of the angular

velocities of these elementary rotations as

ωL = [1]T


0

0

L̇

+ [L]T


0

−λ̇

0

 = [L]T


R2


0

0

L̇

+


0

−λ̇

0




(2.24)

where

R2(−λ) =


cosλ 0 sinλ

0 1 0

−sinλ 0 cosλ

 (2.25)

Carrying out the matrix multiplications in Eq. (2.24) and noting that wL is the repre-

sentation in the local frame lead to

ωL =


sinλL̇

−λ̇

cosλL̇

 =


0 0 sinλ

0 −1 0

0 0 cosλ




ḣ

λ̇

L̇

 = ε2χ̇ (2.26)

where

ε2 =


0 0 sinλ

0 −1 0

0 0 cosλ

 (2.27)
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Figure 2.6: Rotation from inertial frame to local frame

2.2.5 State-Space Form of the Dynamics Equations

The dynamics equations written in a compact form as,

V̇B = f1ω̇BR
+ c1 (2.28)

ω̇BR
= f2V̇B + c2 (2.29)

where

f1 = −S(ρcm,t) (2.30)

c1 =
1

mt
FBR

S(ωBR
)VB = S2(ωBR

)
1

mt

k∑
j=1

mj ρ̇mj −
1

mt

k∑
j=1

mj ρ̈mj (2.31)

f2 = mtI−1

t S(ρcm,t) (2.32)

c2 = I−1

t

{
MBR

+
[
S(ωBR

)It − İm
]
ωBR
−mtS(ρcm,t)S(ωBR

)S(ωBR
)VB

k∑
j=1

mjS(ρmj)ρ̈mj

}
(2.33)

Note that the above set of equations, Eq.(2.28) and Eq.(2.29), are not in the standard state-

space form, which is the most convenient for numerical simulation. After some manipulation,

these equations are rewritten as

V̇B = (I3×3 − f1f2)−1(f1c2 + c1) (2.34)
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ω̇BR
= (I3×3 − f2f1)−1(f2c1 + c2) (2.35)

Eqs. (2.32) and (2.33) are the dynamics equations written in the state-space form and to

be used in linearization of equations of motion and computer simulations.



CHAPTER 3

NOMINAL CONDITION AND OPEN LOOP

RESPONSE SIMULATION

The equations of motions are implemented in a Matlab/Simulation environment to eval-

uate controller performance in detumbling tasks. This chapter presents the simulations of

nominal condition flights and response of the spacecraft to mass actuation. As stated be-

fore, three internal masses are considered, each of which moves along one of the three axes.

For the purpose of control design, the commanded accelerations of the internal masses are

defined as the control input variables. The saturation limits of the mass motion in accel-

eration, speed and position are included in the simulation model. The motion dynamics of

each mass actuator, considering all the saturation limits, model the relations between the

acceleration, speed, and position, e.g., the speed and acceleration go to zero at the time

when the position reaches its limit, while the commanded acceleration is still nonzero. In

the discussions below, the masses that move along x-axis, y-axis, and z-axis are referred to

as ma1, ma2, and ma3, respectively. This means the control input variables are

u = [ρ̈m1x
ρ̈m2y

ρ̈m3z
]T (3.1)
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Although no particular spacecraft is represented in the simulation, the following mass

and inertia parameters are used in the simulations. The mass of the rigid part of the

spacecraft is 400 kg and the body frame of the spacecraft is assumed to be the principal

axes, i.e., the inertia matrix is diagonal with Ixx = 900, Iyy = 200, and Ixx = 130 kg.m2.

The total mass of the spacecraft and the inertia matrix will be different depending on the

amount and position of the mass actuators.

3.1 Simulation of Nominal Flight

In the simulation environment discussed above, the nominal flight conditions defined and

analyzed in Appendix B are simulated. This is to validate the accuracy of the simulation in

the nominal conditions before any other open loop or closed loop simulations are carried out.

Since the nominal conditions are defined to have no internal mass motion, the input variables

(i.e., the acceleration commands of the three masses) are set to zero. The simulation of

nominal flight was divided into two specific cases ; non-spinning and spinning along xB-

axis. In both cases, the fixed positions of the three masses are set such that the center of

mass of the spacecraft is at the origin of the body frame. The dynamic simulation is started

with the initial conditions of the state variables at their nominal values. It is expected that

all the variables should stay at their nominal values.

3.1.1 Circular Orbit with No Spinning

In this section, the nominal condition is when the spacecraft travels in a circular orbit

without spinning, but always facing Earth. Simulation results are presented in Fig. 3.1.

From the nominal condition analysis, the nominal values of state variables are given that

translational velocity of spacecraft, VB0 = [0, 0, 7998]T km/s and rotational velocity, ωB0 =
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[0, -0.007, 0] T deg/s. The altitude, h0 and latitude, L0 are specified and should be constant

at 200 km and 0 deg respectively. Also, the time rate of change of latitude is λ̇0 = 0.07

deg/s so, λ is linearly increasing as the spacecraft is orbiting the Earth.

(a) Translational velocity (b) Rotational velocity

(c) Translation Kinematics (d) Eulear angles

Figure 3.1: Circular orbital motion without spin

3.1.2 Circular Orbit with Spinning

As shown in Fig. 3.2, the spacecraft was in orbital motion with a simple spin along

xB-axis, which is always aligned with xL-axis. The p0 is specified as 1 deg/s. u is zero and

v, w, q, and r are some trigonometric functions of time. The altitude and longitude are
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constant in this nominal flight.

(a) Translational velocity (b) Rotational velocity

(c) Translation Kinematics (d) Euler Angles

Figure 3.2: Circular orbit with spinning

3.2 Open-loop Response to Mass Actuation

Since the open-loop system was validated in nominal condition, it can now show the

proper rotational dynamics response induced by the mass actuation. The open-loop response

to mass actuation was simulated and examined in phases as follows.

(1) Simulation of mass actuation with rotational dynamics.
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(2) Simulation of mass actuation with rotational dynamics coupled with the nominal or-

bital motion.

(3) Simulation of mass actuation with full 6-DOF equations.

The simulations were conducted with different control inputs, i.e., different acceleration

of mass actuators as u = [1, 0, 0], [0, 1, 0], [0, 0, 1]. The mass accelerations start at 5

s. It means the one mass actuator moves with 1 m/s2 of acceleration at each time until

speed and/or position limits are reached. The position limit was ±2 m and speed limit was

±10 m/s.

3.2.1 Rotational Dynamics Only

In this section, only the response of rotational dynamics was examined. In other word,

the spacecraft was stationary and was not in orbital motion. As a result, there was no

translational coupling and external force exerted on the spacecraft. For simulation, only the

equation of rotation dynamics was used in the system. From Eq. (2.12), the general form

of rotational dynamics, after canceling out the translational term, rotational dynamics is

reduced to

ω̇B = I−1

t {MB +
[
S(ωB)It − İm

]
ωB +

k∑
j=1

mjS(ρmj)ρ̈mj} (3.2)

Fig. 3.4 to 3.6 show the change in the rotational velocity with respect to inputs. The

initial position of mass actuators were ρm1 = [0, -0.1, 0.1] m, ρm2 = [0.1, 0, 0.1] m and

ρm3 = [0.1, 0.1, 0] m. The initial ωB0
was [0, 0, 0] deg/s. As seen in Fig. 3.4 (a), the mass

actuators reached the position limit at 7 seconds after starting to move at 5 seconds while

ma2 and ma3 were fixed at the initial position. Fig. 3.4 (b) shows that the movement of

ma1 induced the change in q and r mostly. In Fig. 3.5, the movement of ma2 toward its
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limits changed the p and r the most. For ma3 in Fig. 3.6, also presents that the movement

of ma3 induced the change in p and q mostly.

(a) Position of mass actuator (b) ωB

Figure 3.4: Response when rotational dynamics only with u=[1,0,0]

(a) Position of mass actuator (b) ωB

Figure 3.5: Response when rotational dynamics only with u=[0,1,0]



24

(a) Position of mass actuator (b) ωB

Figure 3.6: Response when rotational dynamics only with u=[0,0,1]

It is obvious that the internal mass motion caused changes in the inertia matrix. Since

the actuators moved parallel to its own axis, the principal axes of inertia have larger change

compared to off-diagonal terms.

Figure 3.7: Inertia matrix when u = [1, 0, 0] w.r.t the initial position of mass actuators

In Fig.3.7, when ma1 moved, the linear motion of ma1 produced the moment arm which

caused the increase in Iyy and Izz significantly then others in the inertia matrix. In the
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rotational dynamics, Eq. (3.2), it has a product of inertia and rotational velocity. Thus,

this may explain why q and r changed considerably.

Furthermore, the inertia matrix was also affected by the position of mass actuators.

Since the actuators were placed along the three axes at some offset distance, the effect of

this offset was investigated in Fig. 3.8. The position 1 is the position of mass actuators,

ma1 = [0, -0.1, 0.1] m, ma2 = [0.1, 0, 0.1] m and ma3 = [0.1, 0.1, 0] m and the position 2 is

the position of ma1 = [0, -0.5, 0.5] m, ma2 = [0.5, 0, 0.5] m and ma3 = [0.5, 0.5, 0] m. The

inputs were the same as u = [1, 0, 0] for both simulation. Fig. 3.8 indicates that the offset

from its axis increases the moment arm, which induce larger change in rotational velocity.

(a) ωB when position 1 with u = [1, 0, 0] (b) ωB when position 2 with u = [1, 0, 0]

Figure 3.8: ωB w.r.t the initial position of mass actuators

3.2.2 Rotational Dynamics Coupled with Orbital Motion

In this section, the spacecraft travels in a circular orbit with constant translational

velocity. The rotational dynamics including translational terms are derived in Section 2.2.2.
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The general form of rotational dynamics, Eq. (2.12) is used and stated again below,

ω̇B = I−1

t {MB +
[
S(ωB)It − İm

]
ωB +mtS(ρcm,t)V̇B

−mtS(ρcm,t)S(ωB)S(ωB)VB +

k∑
j=1

mjS(ρmj)ρ̈mj}
(3.3)

The initial ωB = [0, -0.07, 0] m/s. The Fig. 3.9 shows that only r is excited by ma1

starting to move at 5 seconds from nominal condition. As can be seen in Fig 3.10, when

ma2 moves, both p and r are excited although the change in r is much larger. Also note

that when ma2 reaches its position limit and stops, p goes back to zero while r decreases

close to zero, but not exactly. As shown in Fig 3.11, when ma3 moves, it mainly excites r

component. When the rotational motion is coupled with nominal orbital motion, r changed

more than other components. This is because, in orbital motion, VB0 was [0, 0,7790.6]

km/s, that is w-component was very high, which might explain why r-component of the

angular velocity is excited the most by mass-actuation. Therefore, not only mass actuation

is a factor but the coupling with translational velocity needs to be taken account in orbital

motion as well.

(a) Position of mass actuator (b) ωB

Figure 3.9: Response when rotational dynamics only with u=[1,0,0]
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(a) Position of mass actuator (b) ωB

Figure 3.10: Response when rotational dynamics only with u=[0,1,0]

(a) Position of mass actuator (b) ωB

Figure 3.11: Response when rotational dynamics only with u=[0,0,1]

3.2.3 Full 6-DOF Motion

In this section, the open-loop simulation was carried out with 6-DOF equations of motion.

Fig. 3.12 shows that when the ma1 reached the its position limit, r was not zero so Euler

angle kept varying as can be seen in Fig. 3.12 (d). Also, in Fig. 3.12 (a), translational

velocity was also changed because it is also coupled with rotational velocity. Since the

open-loop does not have a controller, the system does not stay at the nominal condition. It
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led to the change in translational velocity significantly. For u=[0, 1, 0] and u=[0, 0, 1], the

simulation results were similar to those detailed in Fig. 3.12.

(a) VB (b) ωB

(c) Translational Kinematics (d) Euler anlges

Figure 3.12: Full 6-DOF motion response when u = [1, 0, 0]



CHAPTER 4

MASS-ACTUATION-BASED CONTROLLER DESIGN

FOR DETUMBLING

The control design objective is to bring a tumbling spacecraft into no-rotation or simple

spin state using the internal mass motion as the control mechanism. In the equations of

motion, the (commanded) acceleration of the three masses are defined as the control input

variables. Since the detumbling is the objective, the angular velocity components are defined

as the outputs to be controlled.

The control design is carried out using the NDI (Nonlinear Dynamic Inversion) method

based on the rotational dynamics equation alone in Eq. (2.12) as this equation relates

the output (angular velocity representation) to the control variables (accelerations of the

moving masses). The right hand side of the rotational dynamics in Eq. (2.12) is defined as

the pseudo control, which leads to

ω̇B = ν (4.1)
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where ν = [νp νq νr]
T is

ν = I−1

t {MB+[S(ωB)It−İm]ωB+mtS(ρcm,t)V̇B−mtS(ρcm,t)S(ωB)VB+

k∑
j=1

mjS(ρmj)ρ̈mj}

(4.2)

ωB = [p q r]T (4.3)

In scalar form, Eq. (4.1) is

ṗ = νp

q̇ = νq

ṙ = νr

(4.4)

For each component, a PID (Proportional Integral Derivative) controller is used as

νp = KPpep +KIp

∫ t

0

epdτ +KDp ėp (4.5)

νq = KPqeq +KIq

∫ t

0

eqdτ +KDq ėq (4.6)

νr = KPr
er +KIr

∫ t

0

erdτ +KDr
ėr (4.7)

where
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ep = pc − p

eq = qc − q

er = rc − r

(4.8)

Once the linear controllers are designed for the pseudo control variables, the control law

for the original control variables should be constructed. This requires the solution of Eq.

(4.2) for the original control variables [ρ̈m1x
ρ̈m2z

ρ̈m3z
]T . These control variables appear in

the last term within the summation over j. There are three moving masses in this study,

thus k = 3. Further, in each ρ̈mj representation, there is only one component as the others

are zero due to the fact that the corresponding mass moves along a single axis. Thus,

3∑
j=1

mjS(ρmj)ρ̈mj

= m1S(ρm1)


ρ̈m1x

0

0

+m2S(ρm2)


0

ρ̈m2y

0

+m3S(ρm3)


0

0

ρ̈m3z


(4.9)

Carrying out the matrix multiplications and additions in the above equation, and rear-

ranging in terms of the control variables, it can be shown that

3∑
j=1

mjS(ρmj)ρ̈mj = H


ρ̈m1x

ρ̈m2y

ρ̈m3z

 (4.10)
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where

H =


0 m2ρm2z

−m3ρm3y

−m1ρm1z 0 m3ρm3x

m1ρm1y
−m2ρm2x

0

 (4.11)

which should be an invertible matrix, which can be achieved with the right choices of the

base positions of the three mass actuators. Rearranging of Eq. (4.2) after substituting Eq.

(4.10) leads to the NDI control law for the original control variables as


ρ̈m1x

ρ̈m2y

ρ̈m3z

 = H−1{Itν −MB − [S(ωB)It − İm]ωB +mtS(ρcm,t)S(ωB)VB} (4.12)

Fig. (4.1) depicts the feedback control structure with the implementation of this NDI

controller. Here, the state vector (the output of Block S/C) is defined based on Eq. (4.12)

as

Figure 4.1: NDI+PID feedback control structure
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where

x =



VB

ωB

ρm1

ρ̇m1

ρm2

ρ̇m2

ρm3

ρ̇m3



(4.13)

and the output matrix is defined as

C = [03×3 I3×3 018×3] (4.14)



CHAPTER 5

CLOSED-LOOP SIMULATION

The mass actuated spacecraft was simulated in the MATLAB/Simulink model to exam-

ine stabilization of spacecraft under mass actuation using the NDI controller designed in

Chapter 4. The detumbling controller is evaluated in closed loop using spacecraft models

with increasing fidelity as in Chapter 3.

The spacecraft was tumbling around x, y and z-axis with non-zero p0, q0, and r0. The

three mass actuators, ma1, ma2 and ma3 were placed at the initial position and move all

the way into the end of its track that measured 4m in length.

5.1 Rotational Dynamics Only

In this section, the simulation investigates the mass actuation on the stationary satellite.

More specifically, the spacecraft is not in transational motion but can be in rotational motion

by the movement of mass actuators or possible disturbances. Also, the spacecraft is located

in deep space so it is not affected by Earth’s gravity. For simulation, only the equation of

motion of rotational dynamics was used as in Section 3.2.1.

The tumbling condition is that the spacecraft is rotating with p0= 1 deg/s, q0= -1 deg/s,

and r0= 0.8 deg/s. To stabilize the spacecraft from tumbling, the commanded output should
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be zero. i.e., pc = qc = rc = 0.

As shown in the Fig. 5.1, the mass actuator can stabilize the spacecraft when it has

no acceleration limits. However, the required acceleration needs to go to as high as ρ̈m1 =

[175.5, 0, 0] m/s2, ρ̈m2 = [0, -129.9, 0] m/s2, ρ̈m1 = [0, 0, 263.5] m/s2.

(a) Position of mass actuators (b) ωB with no acceleration limit

Figure 5.1: Rotational dynamics response in closed-loop with no acceleration limit

(a) Position of mass actuators (b) ωB with 1m/s2 of acceleration limit

Figure 5.2: Rotational dynamics response in closed-loop with 1 m/s2 acceleration limit

Considering the constraints on the mechanisms used to exert acceleration on the mass

actuators, there must be an acceleration limit for mass actuators. In the Fig. 5.2, the

spacecraft cannot achieve pc = qc = rc = 0 when it has 1m/s2 of the acceleration limit.
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This result presents that the actuators may not always feasible if there is an acceleration

limit.

With the acceleration limits imposed, another mechanism to utilize in order to increase

the effectiveness of the mass actuators is the offset distances of the mass actuators from

the axis along which they move. Thus, in this simulation case, the offset distances are

increased from the position 1 to the position 2 as introduced in Section 3.2.1. The position

1 is where ρm1 = [0, -0.1, 0.1] m, ρm2 = [0.1, 0, 0.1] m and ρm3 = [0.1, 0.1, 0] m and the

position 2 is where ρm1 = [0, -0.5, 0.5] m, ρm2 = [0.5, 0, 0.5] m and ρm3 = [0.5, 0.5, 0]

m. The amount of mass was the same as [40, 40, 40] kg. Increasing distance from the axis

caused the increasing moment arms, which tends to increase the inertia force and moment.

Fig. 5.3 shows that the mass actuation can successfully stabilizes the spacecraft even with

the acceleration limits. This simulation experiment indicates that the various factors that

should be considered to vary to improve the closed loop performance include placement

of the mass actuators, saturation limits of the acceleration, speed and position, and the

amount of mass used in the mass actuators.

(a) Position of mass actuators (b) ωB

Figure 5.3: Rotational dynamics response in closed-loop with 1 /m2 limit and position 2
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5.2 Rotational Dynamics Coupled with Orbital Motion

In this case, the spacecraft is in the no-spinning nominal case as defined in Section 3.1.1.

This simulation case uses only the rotational dynamics equation with the terms representing

coupling with the translational motion, as formulated in Eq. (3.3). The translational

variables are assumed to stay at their nominal values, i.e. coupling of the translational

motion with the rotational motion is ignored while the coupling of the rotational motion

with the nominal translational motion is included. This section investigates the performance

of the mass actuation in detumbling while the coupling with orbital motion is included in

the simulation.

The simulation was conducted with the 40 kg of mass for ma1, ma2, and ma3. Note

that, in orbital motion, nominal values for rotational velocity are pc = rc = 0 and qc =

-0.007 deg/s and translational velocity are u0 = v0 = 0 and w0 = 7790.6 km/s.

(a) ωB without an acceleration limit (b) ωB with an acceleration limit

Figure 5.4: Comparison of ωB w.r.t acceleration limit

Fig. 5.4 (a) shows that the mass actuator can stabilize the spacecraft when it has no

acceleration limits. However, the required accelerations need to go as high as ρ̈m1 = [353.7,
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0, 0] m/s2, ρ̈m2 = [0, 12.31, 0] m/s2, ρ̈m1 = [0, 0, 133.8] m/s2. In Fig. 5.4(b), with ±1m/s2

of the acceleration limits, r increased to its peak at 1 second and then decreased but could

not converge to zero.

(a) ωB when position 2 (b) ωB when ma =[60, 20, 5] (kg)

Figure 5.5: Change in ωB w.r.t mass and position of the mass actuator

If the amount of mass and/or offset position of the actuator are changed, it can stabilize

the system even with acceleration limits. Fig. 5.5 (a) shows that the required detumbling

is achieved when the offset distances are increased to the values in the set of position 2,

as discussed in Section 5.1. For variation in amount of mass, when the mass of the mass

actuators increases, it induces more change in rotational velocity. Fig. 5.5 (b) shows that

when ma1 was the heaviest and ma3 is the smallest, rc could be achieved. This results

indicates that ma1 has a decisive effect on the stabilization in r.

The stabilization of r takes longer time than p and q in both simulation cases in Fig.

5.4 and Fig. 5.5. r is the angular velocity around zB-axis which is the same direction of

spacecraft’s translational motion. In orbital motion, VB0
was [0 , 0, 7790.6] km/s, which

is the reason considered to cause r-component to take longer to stabilize. To better un-

derstand the effect of the orbital motion on the stabilization of the spacecraft, the required
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accelerations (which is seen when no acceleration limit is imposed) are compared in Fig. 5.6

when the spacecraft is stabilized when only rotational dynamics is considered versus when

the spacecraft is coupled with the nominal orbital motion. Fig. 6.6 clearly shows that the

required acceleration increases significantly for the masses moving along y- and z-axes while

decreases for the mass moving along x-axis when the coupling with the orbital motion is

included in the simulation. Especially, the required ρ̈m1, acceleration along x-axis, which

has the most effect on r-component, is increased significantly.

Figure 5.6: Comparision of ρ̈mj w.r.t. the coupling of orbital motion

5.3 Full 6-DOF Motion

In this section, the full set of equations, rotational and translational dynamics and

kinematics, are included in the simulation. This means the cross coupling between the

rotational and translational motion as formulated in Eqs. (2.8), (2.12), (2.19), and (2.22)

are present and the effects of stabilization of the rotational motion on the orbital motion

should be seen.
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The simulation was carried out with the 40kg of mass for ma1, ma2, and ma3 with

acceleration limit of ± 1 m/s2. p0 = q0 = r0 = 0 deg/s. The commanded outputs are

pc = rc = 0 deg/s and q0 = −0.07 deg/s, which are the nominal values. This simulation is

to examine whether the mass actuator control rotational velocity to bring it back to nominal

values.

(a) VB (b) ωB

(c) Translation Kinematics (d) Euler angle w.r.t local frame

Figure 5.7: Full simulation with ωB0
= [0, 0, 0]deg/s

As can be seen in Fig. 5.7(b), q was rapidly decreased to -0.07 deg/s as the nominal

value. However, r surged instantly from 0 to 0.06 deg/s at 50 s whenma2 reaches its position

limit, as can be seen in Fig. 5.8. Furthermore, Fig. 5.7 shows that the variation of u, w,

altitude and ψ were increased at 50 s. Meanwhile, the effect of the rotational stabilization
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on the orbital motion seems to be small until 50 s since u-variation is very small and v- and

w-components seem to stay at their respective nominal value. Also, altitude and longitude

stayed close to their nominal values as well. After ma2 position saturates, which is followed

by sudden increases to saturation of the other mass actuators at 50 s, the altitude, Euler

angles ψ and φ start to slowly decrease, and thus deviate from their respective nominal

values.

Figure 5.8: Position of mass actuators

The next simulation was conducted with ωB0
which were p0 = 1 deg/s, r0 = -1 deg/s

and q0 = 0.8 deg/s. This initial values represent more severe disturbance than previous sim-

ulation shown in Fig. 5.7. During this simulation, Fig. 5.9 (a) shows that the translational

velocity was changed due to the coupling with rotational dynamics. Also, in the Fig. 5.9

(c) and (d), the altitude and orientation was affected by the change in rotational velocity.

In this simulation, the result indicates that while the mass actuator controls the rotational

velocity, the dynamics and kinematics are changed unavoidably due to the cross coupling
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each other.

(a) VB (b) ωB

(c) Translational Kinematics (d) Euler angles

Figure 5.9: Full simulation with ωB0 = [1,−1, 0.8]deg/s



CHAPTER 6

CONCLUSION

This research investigates the ability of stabilizing spacecraft rotational motion by inter-

nal mass actuation. The mass actuation mechanism consists of three internal masses placed

along the three axes at some offset distance that can move to induce inertial forces and

moments and change the inertia matrix and center of mass. Results indicated that the mass

actuators was feasible for detumbling the spacecraft which was traveled in deep space or in

a circular orbit.

A set of nonlinear equations of motion are developed to model the motion, both orbital

and rotational dynamics and kinematics, of a spacecraft with mass and inertial variation

due to internal mass actuation, under the gravitational field of Earth. The equations inher-

ently include the inertia effect of the mass motion on the orbital and rotational dynamics.

Translational kinematics is written in terms of altitude, longitude and latitude, and the

rotational kinematics is expressed relative to the local horizontal and local vertical frame.

In this study, the application of mass actuators was simulated and examined in phases.

The equations of motion were first used to analyze two nominal flight conditions: (1) space-

craft facing towards Earth on a circular orbit, and (2) spacecraft spinning around the axis

towards Earth on a circular orbit. The open-loop system provided the rotational dynamics
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response of mass actuated spacecraft.

A NDI (Nonlinear Dynamic Inversion) based controller was designed to stabilize the

spacecraft by mass actuation in the first nominal condition from a tumbling condition. This

controller was evaluated at three levels in terms of the fidelity of the spacecraft model:

(1) only rotational dynamics equations, (2) rotational dynamics coupled with the nominal

orbital motion, and (3) the full nonlinear 6-DOF model.

In the first case, the simulation was carried out with the rotational dynamics only.

Due to the absence of gravity effect and translational velocity, the change in the rotational

velocity was induced by the motion of mass actuators. The spacecraft was assumed to be

tumbling around x, y, and z-axis. Without the acceleration limits of mass actuators, the

spacecraft achieved the stabilization. However, when there was an acceleration limit, the

spacecraft could not stabilize all components of rotational velocity when the mass amounts

are small and the offset distances are short. In severe disturbance like three axes tumbling,

the mass actuator may not be feasible due to its limits. It was shown, however, that when

the mass amounts are increased and/or the offset distances are increased, the effectiveness

of mass-actuation increases and thus the stabilization is still possible even with acceleration

limits.

In the second case, the spacecraft stays in the circular orbit (constant speed, always

facing Earth) regardless of the rotational motion. This is because the rotational dynamics

with the coupling terms with the translational motion is used. The simulation results showed

the effect of the orbital motion on the stabilization of the rotational motion. The simulation

results show that the stabilization of the rotational motion is obtained although the decrease

in the disturbance along z-axis has taken longer time than the disturbances along other axes.

This is because the spacecraft was in translational motion with high speed of [0, 0, 7990.6]
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m/s. Furthermore, for control r, ma1 was the most effective control variable.

In the last case, it was shown that the angular velocity can be returned to the nominal

condition using mass actuation even when the full nonlinear equations of motion are con-

sidered, which models cross coupling between the rotational and translational motion. In

the meantime, the control of the rotational motion had some effect on the orbital motion,

specifically the translational velocity components, and also the orientation of the spacecraft.

The main original contribution of this thesis is the consideration of the orbital motion

along with the rotational motion when studying detumbling with mass actuation. Most

prior research efforts do not consider the orbital motion in their system while using moving

mass to control the attitude or rotational velocity or maneuver. They usually consider the

rotational dynamics only. In order to apply this concept to the spacecraft in Earth orbit,

the orbital motion must be included. Also, some of them show they do not control full

3-axes of attitude or rotational velocity.

The thesis presents that the mass actuators is feasible for deep space satellite and low

Earth orbit satellite. Also, it can stabilize from any 3-axes disturbance. There might be a

benefit from the mass actuator for an extension of its lifespan by not using thrusts or high

energy consuming actuators. Furthermore, it can be an alternative mean for a failure of

primary actuators.

For future work, the simulation results showed that after detumbling, the spacecraft’s

translational velocity and orientation were changed. This is because the mass actuators

control the rotational velocity, not control the attitude of spacecraft. Therefore, the future

subject of study would be the attitude control with mass actuation. Furthermore, it is

necessary to see whether the mass actuator can control the spacecraft’s attitude as a main

actuator of the spacecraft.



Appendix A

TRANSFORMATION FROM EARTH-FIXED FRAME

TO LOCAL FRAME
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The position of a spacecraft orbiting around Earth is usually expressed in terms of

altitude, latitude, and longitude. This section explains the procedure to obtain the relation

between these parameters and the position of the spacecraft in Earth-fixed frame. This

procedure involves two reference frames: (1) Earth-fixed frame, and (2) Local-horizontal-

local-vertical, or “local” in short, frame.

Earth-fixed frame is defined such that (1) the origin is at the center of Earth, (2) z-

axis, zE , is points towards the North pole, (3) xE-axis is towards the point on the surface

coinciding the latitude of 0 deg (Equator) and the longitude of 0 deg (Greenwich), and (4)

yE-axis is normal to xE-zE plane to complete the right handed Cartesian coordinate system.

Local frame is defined such that its x-axis always points at the spacecraft. Thus, position

of the spacecraft is always along the x-axis of the local frame. Thus, the position vector of

the spacecraft is written in local frame as

rB = [L]T


R+ h

0

0

 (A.1)

where [L] is the vectrix of the local frame, R is the radius of Earth, and h is the altitude of

the spacecraft, as depicted in Fig. A.1.

To express the position vector in Earth-fixed frame, the rotation matrix from Earth-fixed

frame to local-frame should be used. The local frame is defined such that its orientation

with respect to Earth-fixed frame is obtained through two elementary rotation: (1) rotation

around zE-axis by angle of L degree, where L is “the longitude” by definition, and (2)

rotation around the new y-axis in the negative direction by angle λ, which is “the latitude”

by definition.



48

Figure A.1: Depiction of Earth-fixed and local frame

Recall that the standard rotation matrix in terms of Euler angles, (ψ, θ, φ) is obtained

through 321 elementary rotations, i.e., (1) rotation around z-axis by angle ψ, (2) rotation

around y-axis by angle θ, and (3) rotation around x-axis by angle φ as

RBL =


cosψcosθ cosθsinψ −sinθ

−cosφsinψ + sinφsinθcosψ cosφcosψ + sinφsinθsinψ sinφcosθ

sinθsinψ + cosφsinθcosψ −sinφcosψ + cosφsinθsinψ cosφcosθ

 (A.2)

Since the rotation from Earth-fixed to local frame involves elementary rotations around

3rd axis, and then 2nd axis, the standard rotation matrix, given in Eq. (A.1), in terms of

321 Euler angles, can be used to obtain the rotation matrix from Earth-fixed to local frame.

This is done by simply replacing ψ with L, θ with −λ, and setting φ = 0 as no third rotation
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is needed, which leads to

RLI =


cosλcosL cosλSinL sinλ

−sinL cosL 0

−sinλcosL −sinλsinL cosλ

 (A.3)
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NOMINAL CONDITION ANALYSIS
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This section describes the procedure for determining the conditions for control variables

and values for the state variables in a specified nominal flight condition. The nominal values

obtained through such an analysis are used to run a dynamic simulation by initializing the

state variables to their nominal values and setting the control variables at their nominal

values as the first step of verifying the accuracy of the dynamic simulation. The nominal

values of the state and control variables are also used when a linear model is to be derived

for a given nonlinear model. Nominal values of state and control variables are also used to

initialize nonlinear dynamic simulations. The specific nominal condition analyzed in this

section is as follows. The spacecraft travels in a circular orbit with constant translational

speed. Circular orbit implies that altitude is constant, i.e., h = h0, and ḣ = 0. At the same

time, the spacecraft points towards Earth and spinning around the direction towards Earth.

More specifically, the x-axis of the spacecraft body frame is always aligned with x-axis of the

local frame while the spacecraft rotates around the x-axes with a constant speed. Further,

the circular orbit is chosen to be in a vertical plane corresponding to the longitude of 0

deg, which implies L = L̇ = 0. During a nominal condition flight, the internal masses are

considered to be stationary at specified location, which implies ρ̇mj = ρ̈mj = 0.

Consider that ψ, θ, φ are the Euler angles of the spacecraft relative to the local frame.

Also, note that xB-axis is aligned with xL-axis, which implies that ψ = θ = 0 during the

nominal flight. Thus, the rotation matrix in the nominal condition is

RBL =


1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 (B.1)

The nominal longitude is selected to be L = 0, which further implies that L̇ = 0. Thus,
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the rotation matrix from the inertial frame to the local frame becomes

RLI =


cosλ 0 sinλ

0 1 0

−sinλ 0 cosλ

 (B.2)

Similarly , matrix ε becomes

εεε =


cosλ −(R+ h0)sinλ 0

0 0 (R+ h0)cosλ

sinλ (R+ h0)cosλ 0

 (B.3)

Since altitude h and longitude L are constant,

χ̇ =


0

λ̇

0

 (B.4)

Translational velocity vector in the body frame is expressed as

VB =


u

v

w

 (B.5)

Rewriting the translational kinematics in, Eq.(2.19), gives

εεεχ̇ = RT
LIR

T
BLVB (B.6)

Putting the matrix expansions introduced above in this form of the translational kine-
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matics yields

−λ̇(R+ h0)sinλ = ucosλ− sinλ(vsinφ+ wcosφ) (B.7)

0 = vcosφ− wsinφ (B.8)

λ̇(R+ h0)cosλ = vsinλ+ cosλ(vsinφ+ wcosφ) (B.9)

Eq.(B.7) and Eq.(B.9) are rewritten by dividing them by sinλ and cosλ, respectively

−λ̇(R+ h0) =
ucosλ

sinλ
− (vsinφ+ cosφ) (B.10)

−λ̇(R+ h0) =
usinλ

cosλ
+ vsinφ+ cosφ (B.11)

Adding these two equations together leads to

0 =
u

sinλcosλ
(B.12)

which implies u = 0 for any λ. With u = 0, either Eq.(B.10) and (B.11) leads to

λ̇ =
vsinφ+ wcosφ

R+ h
(B.13)

Eq.(B.8) implies

tanφ =
v

w
(B.14)

which implies



54

sinφ =
v

V
(B.15)

cosφ =
w

V
(B.16)

where V =
√
v2 + w2, the magnitude of the orbital velocity of the spacecraft since u = 0.

Substituting Eq.(B.15) and (B.16) into Eq.(B.13) gives

λ̇0 =
V

R+ h0
(B.17)

Using Eq.(B.15) and (B.16), and the fact that u = 0, the translational velocity, as

represented in the body frame, can be written as

VB =


0

V sinφ

V cosφ

 (B.18)

where note that y- and z-components are time-varying through φ and V is not constant in

this general nominal flight condition.

Recall that ψ = θ = 0 and φ̇ = p0, a constant in the nominal condition. Under these

conditions, rotational kinematics in ,Eq. (2.21), written in terms of the Euler angles of the

spacecraft body frame relative to the local frame, leads to

0 = wysinφ+ wzcosφ (B.19)

0 = wycosφ− wzsinφ (B.20)
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p0 = wx (B.21)

which implies wx = p0, wy = 0, wz = 0. That is, the angular velocity with respect to the

local frame, expressed in the body frame is,

ωBL =


p0

0

0

 (B.22)

The angular velocity of the local frame with respect to the inertial frame, when L̇ = 0,

in the nominal condition, is reduced to

ωL =


0

−λ̇

0

 (B.23)

The angular velocity of the body frame with respect to the inertial frame is formulated

from Eq. (B.22) and (B.23), in the nominal condition, as

ωB = ω
BL

+ RBLωL =


p0

−λ̇cosφ

λ̇sinφ

 (B.24)

Note that, y and z components are time dependent as φ̇ = p0 and thus φ varies linearly

with time.

The internal mass actuators are stationary in this nominal condition, which reduces the
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translational dynamics in ,Eq. (2.8), to

V̇B =
1

mt
FBR

− S(ρcm,t)ω̇B + S(ωB)− S2(ωB)ρcm,t (B.25)

where the external force, in the nominal condition, is expressed as

FB =


−mt

µ

(R+ h0)2

0

0

+


Fx

Fy

Fz

 (B.26)

where Fx, Fy, Fz are components in the body frame of the applied force due to external

sources other than gravity such as thruster.

ω̇B =


0

p0λ̇sinφ

p0λ̇cosφ

 (B.27)

ρcm,t =


ρcm,tx

ρcm,ty

ρcm,tz

 (B.28)

Note also that x-component of V̇B is zero since u, x-component of VB , is constant as

shown earlier.

Then, the first row of Eq.(B.25) gives

0 = − µ

(R+ h0)2
+ Fx − 2λ̇0p0ρcm,tzsinφ+ 2λ̇0p0ρcm,tycosφ+ λ̇0V + λ̇2ρcm,tx (B.29)
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Substituting λ̇0 from Eq.(B.17) in this equation, and rearranging lead to a quadratic

equation for V as

V 2 + 2p0(−ρcm,tzsinφ+ ρcm,tycosφ)
R+ h0

R+ h0 + ρcm,tx

V +
Fx

mt

(R+ h0)
2

(R+ h0 + ρcm,tx)

− µ

R+ h0 + ρcm,tx

= 0

(B.30)

This equation can be analyzed in two cases depending on whether Fx = 0. When Fx = 0,

Eq. (B.30) becomes

V 2 + 2p0(−ρcm,tzsinφ+ ρcm,tycosφ)
R+ h0

R+ h0 + ρcm,tx

V − µ

R+ h0 + ρcm,tx

= 0 (B.31)

where note that the coefficient of the linear term is time-varying through φ, which implies

V0, the nominal value of V, is also time-varying even in the nominal condition. The linear

term also indicates the special cases where V is constant

(1) When p0, no spinning around xB-axis.

(2) When the moving masses are placed in such a way that ρcm,ty = ρcm,tz = 0.

In either case,

V = ±
√

µ

R+ h0 + ρcm,tx

(B.32)

which is now constant when ρcm,tx is kept constant. This implies, from Eq.(B.17) that λ̇0

is also constant.

When none of the above special cases is present, the linear term in Eq.(B.30) can be

removed by properly selecting Fx as

Fx0
= 2

mtp0
R+ h0

(ρcm,tzsinφ− ρcm,tycosφ)V0 (B.33)
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where note that Fx0has to be time-varying due to φ. When Fx = Fx0 , V = V0, a constant,

as formulated in Eq. (2.12), even when p0, ρcm,ty and ρcm,tz are not zero.

In the case of constant V0, the other two components of Eq.(B.32) are used to derive the

formulation of y and z-components of the applied force as

Fy0

Fz0

 = −mtλ̇
2
0

 sin2φ sinφcosφ

sinφcosφ cos2φ


ρcm,ty

ρcm,tz

 (B.34)

which shows that Fy0 and Fz0 are also time-varying due to φ.

In the nominal condition studied where the mass actuators are stationary, the rotational

dynamics in Eq.(2.12) reduces to

ω̇B = I−1

t {MB + S(ωB)ItωB +mtS(ρcm,t)V̇B −mtS(ρcm,t)S(ωB)VB} (B.35)

where the total external moment is

MB =MBG
+ τB (B.36)

whereMBG
is the moment due to the gravity and can be expressed in the nominal condition

considered as

MBG
= mtS(ρcm,t)


µ

(R+ h)2

0

0

 (B.37)

and τB is the applied torque from a source other than the mass actuation, such as control

moment gyro and thrusters.



59

In the general nominal case, recall that

ωB0
=


p0

−λ̇0cosφ

λ̇0sinφ

 (B.38)

ω̇B0
=


p0

λ̇0p0sinφ

λ̇0p0cosφ

 (B.39)

VB0
=


0

V sinφ

V cosφ

 (B.40)

V̇B0 =


0

V̇ sinφ+ V p0cosφ

V̇ cosφ− V p0sinφ

 (B.41)

It is clear from Eq.(B.35) that to sustain this general nominal condition, there should

be applied torque as

τB0
= Itω̇B0

−MBG
− S(ωB)ItωB0

−mtS(ρcm,t)V̇B0
+mtS(ρcm,t)S(ωB0

)VB0
(B.42)

where note that τB is time-varying through time varying ωB0
and VB0

. In the special
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nominal case with p0 = 0 and V0 constant

ωB =


0

−λ̇0

0

 (B.43)

ω̇B =


0

0

0

 (B.44)

VB =


0

0

V0

 (B.45)

V̇B =


0

0

0

 (B.46)

where φ0 = 0 is chosen. In this case, the applied torque becomes constant as

τB0
= −MB0

− S(ωB0
)ItωB0

−mtS(ρcm,t)S(ωB0
)VB0

(B.47)

Furthermore, when ρcm,t = 0, MBG
= 0 by Eq. (B.37). In this special case

τB0
= −MB0

− S(ωB0
)ItωB0

=


−Iyzλ̇20

0

−Ixyλ̇20

 (B.48)
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where Iyz and Ixy are products of inertia in matrix It. This implies that no applied torque

is required in this special case when Ixy = Iyz = 0
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