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ABSTRACT

MODELING AND SIMULATION OF CONTACT AND IMPACT DYNAMICS IN

MULTIBODY SYSTEMS

ABHISHEK CHATTERJEE, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Alan P. Bowling

Contact and impact analyses are an essential part of multibody dynamic simulations.

Modeling of contact and impact problems have applications in a wide variety of areas

including robotics, earthquake engineering, computer graphics, and manufacturing. Col-

lisions between objects typically take place over surfaces that are represented by a set of

points in the operation space, thereby requiring multi-point contact and impact analysis.

Analysis of multi-point contact and impact may lead to indeterminate (underdetermined)

problems with more number of unknowns (contact forces) than equations.

This work pertains to the problem of resolving multi-point contact and impact prob-

lems in multibody systems consisting of hard objects, that can be assumed to be rigid.

In the first part of this work, a rigidity based modeling and simulation technique is de-

veloped for multi-point impacts between hard objects. In this proposed framework im-

pacts are treated as discrete events during which the velocities of the system evolve in

the impulse-domain, based on an impulse-momentum theory called Darboux-Keller shock.

Constraints derived based on the rigid body assumption are used to resolve indeterminacy

associated with multi-point analysis. An energetic terminal constraint is also proposed
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based on Stronge’s Hypothesis, that guarantees the treatment of impact to be energetically

consistent. This approach is used to derive both planar and three-dimensional models of

multi-point indeterminate impacts.

The rigid impact model based on impulse-momentum theory, developed in the first

part of this work, loses some information like force and deformation histories during im-

pacts. This lost information, however can be useful in certain types of application. Hence,

to retain this information, the second part of this work proposes a method of augmenting

the rigid-impact model with a contact force model from the contact mechanics literature

to simultaneously determine the force and deformation histories during an impact event.

The contact force model used here is a viscoelastoplastic model of contact that considers

the effects of permanent (plastic) deformation in the material. A relationship is developed

between the permanent deformations of the material and the energetic terminal constraint

proposed in the first part of this work to characterize the force histories during collisions.

The accumulation of discrete impact events during the time-domain simulation may

lead to chattering or zeno phenomenon, causing the adaptive step-size integration to halt or

fail. This work resolves this problem by transitioning to contact when the normal compo-

nents of the post-impact velocities become very small. During contact, the forces between

the participating rigid bodies satisfy the: 1) non-penetrability condition and 2) frictional

force constraints based on Coulomb Friction. The non-penetrability condition enforces nor-

mal velocity and acceleration constraints on the equations of motion, whereas the Coulomb

friction constrains the tangential forces at the contact points. These constraints placed on

the equations of motion, lead to a reduction in the number of degrees of freedom (DOF) of

the system. This work uses an online constraint embedding technique to enforce contact

constraints.
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CHAPTER 1

INTRODUCTION

The motivation for this research is to develop modeling and simulation techniques

for rigid contacts and impacts in multibody dynamic systems. Modeling of hard contact

and impact problems have a wide variety of applications in areas such as robotic manip-

ulation, earthquake engineering, vehicle dynamics, computer graphics and manufacturing.

An important class of multibody contact and impact problems deals with the analysis of

multi-point collisions with friction, which are very useful in modeling impacts between

rigid surfaces. A very crucial requirement in such analyses is that of maintaining energy-

consistency in solutions to such problems. This work develops methods for solving such

multi-point frictional collision problem, that guarantees an energetically consistent solu-

tion. The solution methods proposed in this work utilized certain constraints based on the

assumption of rigidity to resolve multi-point collision problems. This approach is used to

solve both planar (2D) and spatial (3D) multi-point impact problems. This work also ad-

dresses certain problems related stick-slip transition and slip-reversal in frictional impacts.

Rigid bodies typically tend to rebound instantaneously at collisions, which coincide with

abrupt changes in the system’s velocities. Hence, an event-based simulation approach is of-

ten needed to model collisions, where the time-domain integration of the equations of mo-

tion of the system is stopped upon collision-detection and then restarted with a new set of

initial-conditions based on the evaluated post-impact states. However, this approach always

causes the numerical integration to chatter or exhibit what is known as zeno phenomenon,

as the rebound velocities get very small, resulting in the time-domain numerical integration

to halt. Hence, a method of transitioning to contact is also proposed in this work. The rigid
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collision model proposed in the first part of this work treats collisions to be instantaneous

and perfectly rigid. However, in reality collisions between rigid object do take place over

tiny measurable periods of time, and exhibit minute deformations. Although the rigid col-

lision model presented in the first part of this work is very convenient and useful for a lot of

applications, it loses some information like the force histories, deformation histories, and

time of impact. These information can be very useful for certain types of applications such

as, biomedical/orthopedic applications or tribological applications. Hence, the last part of

this work is dedicated to the problem of retaining/recovering the force, deformation and

elapsed-time information while using the rigidity based collision model developed in the

first part.

The various collision modeling methods presented in the literature can be generally

subdivided into two groups: rigid collision models [1–4] and deformable collision mod-

els [5–11]. The rigid collision models are based on the assumption that bodies undergo-

ing collision would experience no or negligible amounts of deformation. This method of

impact modeling are typically applicable for objects composed of materials of very high

stiffness that require very large forces to induce very small amounts of deformation. Rigid

collisions also typically assume the time-duration of an impact to be very small. These

assumptions lead to a considerable simplification of the impact problem, such that each

collision essentially translate to an instantaneous change of velocities of the system, and

in effect ignoring the very small of deformations and very large force quantities. The

deformable collision models, on the other hand, rigorously model the dependence of defor-

mations on the contact forces, based on the foundations of solid mechanics [12–17]. The

deformable collision models are suitable for objects that undergo significant deformations

during collision. However, their usage is somewhat impractical if the colliding bodies ex-

perience very small amounts deformation, since they require integration of very high forces

at very small time scales. Rigid collision models are more appropriate for collisions with
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small deformation, since these models are usually based on the integration of impulses,

which are “well-behaved" physical quantities, obtained by scaling the very large contact

forces with the very small time of impact. However, a significant drawback of using a rigid

collision model is that this analysis loses certain information during a collision viz. contact

force history, deformations, and elapsed time of impact. The main objective of this work

is to develop a framework for modeling rigid impacts, while including certain aspects of

deformable collision models to retain the time-dependent force and deformation histories

during an impact.

One of the key features of rigid collision models is that they result in nonsmooth

jumps in the system velocities, and therefore they represent a type of hybrid dynamical

system. The changes in the velocities of the system at collisions is governed by one of

three different classes of restitution laws: 1) Kinematic, 2) Impulsive and 3) Energetic. Ki-

netic restitution laws are the simplest form of restitution law, that are applied directly to

the pre-impact velocities to determine a set of post-impact velocities that are characterized

by a kinematic coefficient of restitution parameter. An example of kinematic coefficients of

restitution is Newton’s COR [3, 11]. A major drawback kinematic restitution laws is that

they have been known to produce energetically inconsistent results, under certain condi-

tions [18, 19]. The impulsive and energetic restitution laws, on the other hand, are based

on what is known as Darboux-Keller Shock Dynamics [1, 20, 21]. In this description of

rigid body impact dynamics the equations of motion of the system are integrated over a

small time-period to be redefined as velocity-impulse relationships. Also, the tangential

forces (differential impulses) are resolved in terms of Coulomb friction Law [4, 21, 22].

Hence, in this approach the velocities of the system during an impact is evolved in terms

of the normal components of the impulses at various contact points. In the case of single

point three-dimensional impacts, the Coulomb friction law yields a set of coupled ordinary

differential equations that may be resolved separately for the conditions of sticking, slip-
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ping and slip-reversal [4, 22]. The Coulomb friction law defines these states in terms of

the stick-slip transition. The transition to or from the slip state is associated with a dis-

continuous change in velocity. The Coulomb friction law models an idealized version of

this behavior and is commonly used to establish a set of complementarity conditions for

modeling the stick-slip phenomenon [23–27]. An impulsive restitution law characterizes

the net impulses imparted to the contact points throughout the impact event in terms of the

Poisson’s COR [11,28]. Once the net impulses are known, the post-impact velocities can be

determined based on the Darboux-Keller model. Poisson’s COR has been known to always

yields energetically consistent solutions. Nevertheless, it is worth noting that impulsive

restitution law is a purely mathematical treatment of restitution law, and doesn’t provide

much insight on mechanism of the impact process [29]. Similar to the impulsive restitution

law, the energetic restitution laws can also be formulated in terms of the Darboux-Keller

model. An energetic restitution law was first proposed by Boulanger [30], and Routh [31],

was later rediscovered by Stronge [2,22,26,32,33] and also applied it in the context of rigid

impacts by using the Darboux-Keller model. A great advantage of energetic restitution law

is that the post-impact velocities are constrained directly in terms of an energetic coefficient

of restitution parameter, which grantees energy consistency during collision.

Previous works dealing with rigid body collision have also considered the problem

of analyzing multi-point impacts [5, 6, 34–42]. An important feature of most multi-point

impact problems is that the number of contact forces on the system exceed the number of

degrees of freedom (DOF) of the system. This type of impact problems are also known as

indeterminate impacts, since solving for the contact forces in such impacts yield an under-

determined problem. In the literature, one can find a number of different approaches for

addressing this indeterminacy problem. One group of work resolves these indeterminate

multi-point impact analysis problems using optimization based approaches [15, 43]. The

optimization methods often pose multi-point impact as a linear complementarity problem
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(LCP), where the contact forces are represented by Lagrange multipliers [16, 17, 44–46].

Posing contact and impact problems as LCPs, allows the use of a discrete numerical in-

tegration scheme, known as time-stepping [46–51]. An alternative approach to this is to

use additional constraints on the contact forces to resolve the indeterminacy problem. The

constraints applied on the contact forces of the system can be of two types: compliance

based [5,6,34,35] or rigidity based [36–42]. The compliance based constraints allow some

deformations at all contact points such that the forces on the system can be constrained

in terms of some stiffness model. The force distribution obtained using compliance based

approach depends upon the very small deformations at all contact point. This can some-

times make the resulting differential equations harder to integrate. In contrast, the rigidity

based constraints doesn’t allow any deformations at the contact points, such that the result-

ing force distribution only depends upon the positions and orientations of the impacting

bodies [38, 42]. Constraints based on the rigid body assumption, also allows for all of the

contact forces at various points on the body to be defined in terms of a single normal force

(differential impulse) parameter. This in turn facilitates the characterization of the total

normal work (energy dissipation due to the normal contact forces) in terms of a global co-

efficient of restitution parameter [36–42]. Hence, the idea of the energy based restitution

law, proposed by Stronge for single-point impact [22, 32], can be generalized to charac-

terize energy loss throughout the system, involving multi-point impacts. This work uses

a global version of the ECOR to model the system level energy dissipation in multi-point

impact problems, similar to [52], as opposed to defining a local ECOR for each impact

point as in [28, 53, 54].

A vast amount of literature addresses the topic of COR estimation based on the ma-

terial properties of the impacting bodies [55–57]. Yet, it is well-known that the COR can

depend on more than the material properties. The global ECOR used herein depends on

mass properties, initial velocities, the system configuration prior to collision, friction, and
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more. It is difficult to determine the global ECOR as a function of all of these properties.

However, determining the global ECORs by matching experimental results provides inter-

esting insights into the process of energy loss during a collision. After examining several

cases of impact, it may be possible to develop some general guidelines for choosing the

value of a global ECOR based on the particulars of the collision, but for now, the key use

of the proposed analysis is to investigate energy losses.

The Darboux-Keller [1, 20, 21] based impact models scale the forces during impact

with the time of impact, transforming the equations of motions into a velocity-impulse rela-

tionship. This converts the impact problem to a first-order dynamics problem with respect

to the impulses, where the forces, displacement and time evolution during an impact is

disregarded. This scheme is very convenient and efficient for rigid impact analyses, where

the primary quantity of interest is the post-impact velocities of the system, given the pre-

impact velocities. Since, time is very small while the contact force are very large, neither

time or forces are considered useful in such analysis. However, the force, deformation and

time evolution during rigid impacts are useful for certain applications. Since no object is

truly rigid, hard objects that may be considered rigid for some analyses, actually do exhibit

very small deformations that characterizes the contact forces on the body during collision.

Nevertheless, deformation based contact models are inefficient for very hard or rigid ob-

jects, compared to the Darboux-Keller model. Hence in this work an extension to the rigid

impact model is also proposed where a rigid collision model is augmented with contact

force model to yield force, deformation and time evolution information of an impact along

with the post-impact states. This scheme maintains the overall rigidity of the body while

allowing tiny deformations in the neighborhood of the contact points, and as a result allows

for the calculation of forces and elapsed-time, as efficiently. Since the overall rigidity in

the impact model is maintained, the dynamic associated with rigid collision model is unaf-

fected by the forces and deformations, instead the rigid collision model dictates the nature
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of the force, deformation and time evolution during impact. The contact force model used

for this augmentation is a visco-elastoplastic force model is taken from the contact mechan-

ics literature [55, 58–67], that allows permanent (plastic) deformations, and is discussed in

details in Chapter 7. The analysis presented in Chapter , also establishes a link between

the permanent deformations and global ECOR, and thereby helps define the relationships

governing the evolution of deformation, forces and time in terms of the states of the rigid

impact model i.e. velocities, energy dissipation and impulses.

The short duration of rigid body collisions produces large forces and thus it is more

useful to examine the problem in the impulse domain rather than the time domain. The

impulse-domain impact analysis takes place after the time-domain integration of the equa-

tions of motion is stopped when a collision is detected. This method of simulation is known

as event-based or hybrid dynamic simulation, where standard numerical integration tech-

niques are used to simulate the time-dependent equations of motions between various im-

pact events. One of the difficulties encountered with the event-based simulation approach

is the accumulation of events because of the high frequency chattering behavior as the im-

pact transitions to a contact. In the hybrid dynamic simulation of rigid bodies, chattering

takes place when a rigid body impacts a contact surface with a small amount of rebound.

These small rebounds lead to a succession of impact events that, in effect, stop the time

based simulation. Chattering is common in a variety of hybrid dynamic simulation prob-

lems, and has been studied extensively from a numerical integration point of view in the

literature [68–71]. The goal here is not to use an advanced numerical integration scheme to

eliminate the chattering behavior. Instead a smooth time-domain contact dynamics model

is developed that uses online constraint embedding to remove degrees of freedom (DOFs),

which eliminates the chattering behavior.

Constraint enforcement in multibody dynamics can be performed by redundant co-

ordinate techniques or coordinate reduction/constraint-embedding techniques [72]. Tech-
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niques based on redundant coordinate sets solve the equations of motion and the constraints

simultaneously in a differential algebraic equation (DAE) framework. DAE solvers typi-

cally satisfy constraints and reduce “drift-off effects” by employing error-minimization

techniques based on Baumgarte’s stabilization method [72–76] or Lagrange multiplier

based penalty methods [73, 77, 78]. In contrast, coordinate reduction methods reformu-

late the equations of motion based on a minimal set of independent generalized coordi-

nates. Constraint embedding techniques are based on coordinate-partitioning techniques

originally proposed in [79], that make use of the constraint equations to resolve dependent

coordinates in terms of independent generalized coordinates based on the SVD [73,80,81],

LU [81] or QR [82–85] decomposition methods. This work uses a QR based constraint

embedding technique to enforce non-penetrability and frictional constraints during the no-

rebound contact phase.

In Chapter 2 a general overview of modeling and simulation technique for con-

strained dynamic systems is presented. The goal of this chapter is to introduce a method

of online constraint embedding that is used throughout this work. Chapter 2 presents a

broad background on the two types of constraints common in multibody dynamic systems:

Bilateral and Unilateral constraints. Although this work is mainly concerned with model-

ing unilateral constraints (contact constraints), the online constraint embedding technique

allows both types of constraints using a similar framework. The method for enforcing fric-

tional contact constraints (a type of unilateral constraints), is revisited in Chapters 3 and 5.

Chapter 3 develops the method for solving planar multi-point impact problems. The pla-

nar impact problem offers certain simplifications to the general three-dimensional problem,

nevertheless the fundamental problem of resolving indeterminacy in multi-point impact re-

mains in both. So this chapter presents a great deal of discussion on the overall approach

of resolving indeterminacy. Chapter 4 presents some simulation results for planar impact

problems. Chapter 5 generalizes some of the techniques used in Chapter 2 and develops
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solution method for three-dimensional (spatial) impact problem. Chapter 5 also discuses

to great length about the problem of multi-point stick-slip transition and slip-reversal that

occurs in three-dimensional impacts. It also presents a non-iterative solution method for

the slip-reversal problem. Chapter 6 presents some simulation results obtained based on

the method presented in Chapter 5. Lastly, Chapter 7 develops the method of estimating

forces, deformations, and time-evolution during rigid collisions. Simulation results based

on the method proposed in Chapter 7 are presented in Chapter 8.
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CHAPTER 2

CONSTRAINED DYNAMICS AND CONTACT MODELING

This chapter presents a general framework for modeling constrained dynamic sys-

tems that would be used throughout the remainder of this work. Multibody dynamic sys-

tems in their most general form can be represented in terms of Differential Algebraic Equa-

tions (DAE) systems. DAE systems are systems of ordinary or partial differential equations

(ODE or PDE), whose states are constrained by an algebraic equation. Although it is possi-

ble to represent multibody dynamic systems using both ordinary and partial DAEs, partial

DAEs are rarely used in practice because they are significantly harder to solve. Hence

within the domain of multibody dynamics, by DAE it is implied that the differential equa-

tion component of the system is an ordinary differential equation.

The ordinary differential equation portion of a DAE for a multibody dynamic system,

represents the dynamics or force-acceleration relationship for the system, and is referred

to as the equations of motion for the system, which can be derived using a number of

different methods viz. Newton-Euler, Kane/Maggi, Euler-Lagrange, etc. Where as the

algebraic portion of a multibody DAE system arises due to all kinematic or contact con-

straints on the system. The constraints on a multibody system are essentially restrictions

on the configuration-space that reduces the degrees of freedom (DOF) of the system, with

respect to number of defined coordinates. A standard method for solving DAE systems is to

convert it into a standard ODE problem. This can be done by taking derivatives of the asso-

ciated algebraic equation to match the order of the differential equations in the DAE system.

Hence, this allows for a DAE to be evaluated as an ODE, provided the initial conditions

satisfy the constraints (or are zeros of the algebraic equation). The conversion of DAEs to
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ODEs may be performed symbolically to yield minimal sets of differential equations that

can be integrated numerically. In multibody dynamics vernacular, this approach is often

referred to as offline constraint embedding. The offline constraint embedding approach is

suitable for small systems (less number of bodies) with persistent kinematic constraints.

However, this approach is not efficient for multibody systems with large number of bodies

or contact constraints. Contact constraints in multibody systems can activate and deacti-

vate during numerical integration, which makes them difficult to enforce with the offline

constraint embedding method. Hence, numerical evaluation of the DAEs are more suitable

for contact problems.

In multibody dynamics, the class of methods used to numerically solve DAEs by

conversion to ODEs, are often referred to as online constraint embedding. The online con-

straint embedding methods in the literature can be classified into two groups: redundant

coordinate [72–78] approaches or coordinate-partitioning approaches [72, 73, 79–85]. In

this work a coordinate-partitioning approach is used to numerically solve DAEs with con-

tact constraints.

2.1 General Form of Equations of Motion

The general form of the equations of motion for any arbitrary multibody dynamic

system is can be written as,

A(q)q̈+B(q, q̇) = Γ(q) = JT (q)F+ E(q)TΥ (2.1)

where q is a set of generalized coordinates used to describe the configuration of the multi-

body system, and A(q) is a mass matrix that contains all of the masses and moments of

inertia of the system. The vector B(q, q̇) contains a number of other terms, and can be

broken down as,

B(q, q̇) = b(q, q̇) + g(q) (2.2)
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where b(q, q̇) and g(q) are the Coriolis and gravity terms, respectively. The left-hand side

of the generalized equations of motion in (2.1), given by Γ(q), contain terms related to the

generalized active forces, or external forces applied to the system. The generalized active

forces Γ(q) is composed of two terms JT (q)F and E(q)TΥ, which represent contributions

of the constraint forces and applied input forces, respectively. The constraint forces given

by F, are the forces applied to the system by all kinematic or contact constraints on the

system, and is related to the generalized active forces through a constraint Jacobian matrix

J(q). Υ consists of all the applied input forces/torques to the system, and is related to Γ(q)

by a matrix E(q), which is a diagonal matrix consisting of all gear ratios associated with

the applied input forces/torques as diagonal elements. Hence, the general form of equations

of motion in (2.1), representing the dynamics of an arbitrary system forms the ordinary

differential equation (ODE) portion of the DAE for the multibody dynamics system, and

can be rewritten as an initial value problem (IVP) as,

q̈ = A−1
(
JTF+ ETΥ−B

)
with q(0) = q0, q̇(0) = q̇0 (2.3)

where q0 and q̇0 are the initial values of the states for the second order ODE. Here the

mass matrix A has been assumed to be a full-rank and invertible. However, note that A

may not be invertible if quaternions are used to represent the orientations of the system.

In such cases, additional constraints are required for the inversion [86]. In this work all

orientations are represented using euler angles.

2.2 Constraints

Constraints in multibody systems that reduce the system’s degrees of freedom, can

be classified as either Bilateral Constraints or Unilateral Constraints. Although, this work

mainly deals with unilateral constraints related to contact problems, for completeness, both

types of constraints are briefly discussed in the following sections.
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2.2.1 Bilateral Constraints: Joints

Bilateral constraints are the type of constraints used to model various types of joints

in multibody dynamic systems. These constraints can be further classified into holonomic

or non-holonomic constraints. The holonomic constraints are only functions of generalized

coordinates q, whereas non-holonomic constraints can be functions of q, q̇ or t. If the non-

holonomic constraint is a function is time t, then it is called rheonomic, otherwise it’s called

scleronomic. Despite these classification, the general approach for solving these different

types of constraints remain the same. Hence, the approach discussed here is derived using

rheonomic bilateral constraint of the type:

Φ(q, t) = 0 (2.4)

The constraint in (2.4) would be called an index - 2 constraint, which means two time-

derivative operations are required for the constraint to have same order as the order of the

ODE in (2.3). The index - 2 constraint function Φ(q, t) is a time-dependent position-level

constraint function. Consequently, Φ̇ and Φ̈ would be velocity-level and acceleration-level

constraints and are given by,

Φ̇ =
∂Φ

∂q
q̇ +

∂Φ

∂t
= J q̇+ a = 0

and, Φ̈ =
∂Φ

∂q
q̈+

d

dt

(
∂Φ

∂q

)

q̇+
∂2Φ

∂t2
= J q̈+ J̇ q̇ + ȧ = 0

(2.5)

Note, that the constraint Jacobian J obtained in (2.5) identical to the constraint Jacobian

in (2.1) and (2.3). This property is very important as it allows for the unknown constraint

forces F to be eliminated out of the reduced equations of motion.

2.2.2 Unilateral Constraints: Contact

Unlike bilateral constraints, the unilateral constraints are not always active. These

constraints are conditionally activated, and are useful in modeling contact and friction in
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dynamic systems. The conditions for activating these constraint while modeling rigid con-

tact and impact are presented in Sections 3.3 and 5.3, in the form of certain complimentarity

conditions. Nevertheless, when these constraints are activated, they are enforced as velocity

and acceleration level constraints similar to (2.5).

2.3 Constraint Embedding - Coordinate Partitioning

This section presents an overview of the coordinate-partitioning based method used

to enforce constraints in this work. The method essentially relies on partitioning the con-

straint Jacobian obtained in (2.5) to express the generalized speeds and accelerations in

terms of a minimal independent sets of their components. The constraint Jacobian can be

partitioned into dependent and independent columns using QR decomposition as,

J = QR = Q [RD RI ] = [QRD QRI ] = [JD JI ]

where JD and JI columns associated with the dependent and independent generalized speed

components. JD is selected such that its is full-rank and invertible. Similarly, q̇ can be

partitioned into dependent and independent parts as q̇ = [q̇D q̇I ]
T . Then the Jacobian in

the first equation of (2.5) can be decomposed as,

0 = Φ̇ = J q̇+ a =

[

JD JI

]






q̇D

q̇I




+ a (2.6)

The dependent components of the generalized speeds can be expressed in terms of the in-

dependent components by inverting JD matrix. Thus, all generalized speeds can be defined

in terms of the independent generalized speeds,

q̇ =






−J−1
D JI

I




 q̇I +






−J−1
D a

0




 = Gq̇ + h (2.7)

Taking the time-derivative of (2.7) yields,

q̈ = Gq̈I + Ġq̇I + ḣ (2.8)
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Repeating the same process with the acceleration equations in (2.5), and then comparing

with (2.8) yields,

Ġq̇ =






−J−1
D J̇ q̇

0




 and ḣ =






−J−1
D ȧ

0




 (2.9)

The equation (2.8) defines shows the relationship of all generalized acceleration with the

set of independent generalized accelerations qI . Now, substituting (2.8) into the equations

of motion in (2.1), and pre-mutiplying both sides with GT yields,

GTAGq̈I +GTAĠq̇I +GTAḣ+GTB = GTJTF+GTETΥ (2.10)

Considering the decomposition of the constraint Jacobian, the term GTJT in (2.10) van-

ishes as,

GTJT = (JG)T =






[

JD JI

]






−J−1
D JI

I











T

= (−JI + JI)
T = 0 (2.11)

Hence, all of the constraint forces F defined on the system get eliminated once the con-

straints Φ are enforced, thereby reducing the degrees of freedom of the system. The inde-

pendent set of generalized acceleration can now be solved as,

q̈I =
(
GTAG

)−1
(

GTETΥ−GTAĠq̇I −GTAḣ−GTB
)

(2.12)

Therefore, the constrained dynamic system could be numerically integrated using equations

(2.7), (2.7) and (2.12). Thus the constrained dynamic system could be summarized as,







q̈ = Gq̈I + Ġq̇I + ḣ

where, q̈I =
(
GTAG

)−1
(

GTETΥ−GTAĠq̇I −GTAḣ−GTB
)

and, q̇ = Gq̇ + h

(2.13)
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The reduced equations of motion in (2.13) represents constrained dynamics for a given set

of constraints Φ(q, t). The constraints Φ can be either bilateral or unliateral constraints.

In case of bilateral constraints Φ remains constant throughout the simulation, whereas in

case of unlateral constraints the elements of Φ are conditionally activated or deactivated.

The application of unilateral constraints in this work arise due to the problem of modeling

contact between rigid bodies, where certain components of Φ, say Φzi , represent the nor-

mal component of the position vector between a surface and a contact point. The contact

constraints cannot be applied until the contact point touches the surface, i.e. when Φzi ≤ 0.

So when the condition, Φzi ≤ 0 is satisfied, the contact constraints applied between a pair

of contact point and contact surface include 1) non-penetration constraints and 2) frictional

constraints. The details pertaining to 1) non-penetration and 2) frictional constraints are

presented in Chapters 3 an 5. However, an important thing to note about frictional con-

straints, which is based on Coulomb’s law, is that these constraints are actually force-based

inequality constraints. Chapters 3 and 5 shows how the force inequality constraints based

on Coulomb’s law can be enforced via the aforementioned method.
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CHAPTER 3

PLANAR RIGID IMPACT MODEL

The motivation for this work is to develop an analytical framework for modeling

interactions between mechanical systems (e.g. buildings, legged robots, etc.) and their

surroundings. This work presents a two-dimensional analysis of this problem using a rigid

multibody approach assuming small deformations of the bodies. The modeling approaches

used in multibody dynamics might be considered a coarse approximation, but their sim-

plicity often leads to useful insights about the behavior of the mechanical systems studied.

This work is fundamentally focused on developing an energetically consistent method of

modeling planar indeterminate contact and impact while considering the stick-slip transi-

tion. The tangential impulses and forces during impacts and sustained contacts respectively

are modeled using Coulomb friction. The slip-direction may change during contact or im-

pact due to the discontinuity associated with the friction force, such that the post-impact

velocities are affected during impact events. The point(s) in contact during an impact event

or sustained contact phase may stick (no-slip), slide (slip) or enter a stick-slip transition.

The stick-slip transition refers to the instants when one or more contact points with initial

tangential velocities come to rest. Following the stick-slip transition these points may stick,

slip-reverse or resume slipping [28, 87]. Analysis of the stick-slip transition leads into an

analysis of the transition between impact and contact. After an impact event, points on the

surface may rebound from the surface or remain in sustained contact with it. This work is

intended to address all phases of this analysis from impact to contact in an energetically

consistent manner.
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A considerable amount of work related to contact and impact in multibody systems

can be found in the literature. Interactions between rigid bodies are referred to as impacts

when they occur over an infinitesimally small time-period. Rigid impacts take place in the

presence of very large forces, such that the bodies experience a sudden change in veloc-

ity. These events can be treated as continuous, discontinuous or hybrid processes. The

continuous approaches use regularized [8], non-colliding [9], or compliant [88,89] contact

force models and often involve penalty methods. These models allow small local defor-

mations between the impacting bodies since they incorporate stiffness due to springs and

dampers into the model [10]. In the discontinuous approach impacts between rigid bodies

are treated as discrete events. This approach, also referred to as piecewise [8] or nons-

mooth [11, 26, 90], treats the impact event as an instantaneous change in velocities of the

impacting bodies. The post-impact velocities are resolved based on impulse-momentum

theory with the help of constraints as shown in [21]. The hybrid or impact and continu-

ous [9], approaches treat the impact event as discontinuous in time-domain but continuous

in impulse-domain [2, 32, 33]. The hybrid approach is used in this work.

One of the key issues addressed in this work is the problem of resolving indetermi-

nacy in multi-point impact based on rigidity. As shown in [36] velocity constraints can

be derived based on the rigid body assumption. Then the indeterminacy can be resolved

by applying these constraints at the velocity level of the equations of motion. The work

in [36] used this method and solved for the post-impact velocities using an optimization

technique. This work proposes a further development such that the post-impact veloci-

ties may be solved analytically based on constraints arising from the rigid body assump-

tion. An alternative method found in literature, involves allowing compliance at the impact

points [29], thereby adding degrees of freedom (DOFs) and equations of motion. These ad-

ditional equations of motion remove the indeterminacy associated with multiple point im-

pacts. In [34], a distributing law was developed for frictionless multiple impacts and later
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extended to consider friction [35]. This theoretical approach produces consistent results

in comparison to experiments and explores the complex behaviors that arise with friction.

Similar to [36], this work utilizes the constraints available from the rigid body assumption.

However, the present work converts the velocity constraints into force constraints using the

dual property of the impact Jacobian and applies them at the force level. These aspects of

the analysis allow a conversion of physically meaningful velocity constraints into force or

impulse constraints.

Another key issue addressed here is the energy consistency of rigid body collision

simulations. Herein, an energetic coefficient of restitution is used to guaranty energetic

consistency. An extensive body of work exists on the estimation of coefficients of restitu-

tion (CORs) based on the material properties of the impacting bodies [55–57]. However,

the objective of this work is not to estimate COR values for impacts, but rather to im-

plement classical hypotheses for rigid body collision to model energy dissipation. The

efficacy of these hypotheses lies in their ability to represent physically consistent behavior.

For example, it has been established that Newton’s COR may lead to energy gains during

impacts and thereby yield energetically inconsistent simulation results [18, 19]. Poisson’s

COR yields energetically consistent solutions but was formulated as a mathematical conve-

nience to allow resolution of the post-impact velocities [29]. Stronge’s energetic coefficient

of restitution (ECOR) stems from work in [30, 31], and incorporates work-energy theory

to yield energetically consistent results for rigid body impact modeling [2, 22, 33]. In this

work, the application of the ECOR is extended to model the global dissipation of energy for

multiple point impact problems, similar to the breakthrough works in [26, 52], as opposed

to defining local ECORs for each impact point as in [28, 53, 54].

A rigid body model provides a simplified or coarse analysis of a collision. Thus the

goal in this work is to determine whether the proposed framework can capture realistic be-

havior after in response to a collision. It is possible to use more detailed models that include
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deformations and other surface phenomena to obtain a prediction of a system’s post-impact

behavior based on material properties [55,57,91]. The remarkable thing in this work is that

such a simplified model can capture system behavior to the level of accuracy that will be

shown later. The current state of this work provides a tool for analyzing energy losses in a

recorded collision. This is similar to several current works which use experimental data to

determine the CORs for different types of collisions [19, 92].
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Figure 3.1: (a) Planar model of the ball example, (b) velocities and forces at impact points
1 (ground) and 2 (wall).

This work presents an analytical framework for the treatment of simultaneous, multi-

point impact problems in the presence of friction. Djerassi developed an analytic approach,

similar to the present work, for analyzing single point planar impact problems [2]. Extend-

ing a similar analysis to multiple point impact problems results in indeterminacy, as the

number of impact forces exceeds the number of available equations to solve for them. For

example, consider the planar ball of radius R, as shown in Fig. 3.1(a). The position and

orientation of this planar ball can be described in terms of three generalized coordinates q1,

q2, and q3, which are associated with the three degrees of freedom of the system. When

the two different impact points, namely 1 and 2 in Fig. 3.1(a), are considered with friction,
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there are four unknown impact forces ft1, fn1, ft2, and fn2, as shown in Fig. 3.1(b). The

subscripts ni and ti for i = 1, 2 shown in Fig. 3.1(b) refer to the normal and tangential

terms respectively. Note that there are four forces but only three equations of motion to

solve for them, thereby making the impact problem indeterminate.

3.1 Impact Modeling

This section presents the analytic framework for impact analysis used in this work.

The proposed method treats impacts as discrete events within the transient simulation of

the system’s equations of motion. During these impact events the time is held fixed, while

the impact states evolve in the impulse-domain, similar to [21, 33–37]. The relations that

govern the evolution of the system states during impact events are dependent on the fric-

tional constraints enforced by the Coulomb friction law. Application of Coulomb friction

for the analysis of impacts, inevitably leads to a set of complimentarity conditions which

accounts for the discontinuities in the tangential velocities as impact points transition be-

tween slipping and sticking. In the case of multi-point impacts, frictional constraints are

often insufficient to fully establish the governing relationships. Additional constraints are

necessary to determine the contribution of each point toward the net impulse induced on

the system during impact. This work proposes the use of rigid-body constraints along with

the Coulomb friction law for this purpose. Here the proposed analysis is demonstrated with

the help of the example in Fig. 3.1, a rigid body undergoing simultaneous two-point im-

pact. However, the method is generalizable to any planar rigid multibody system and any

number of points.
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3.1.1 General State Equations during Impact

The configuration of the rigid body system used for this example is defined by a set

of generalized coordinates, q. A general form of the governing equations of motion for the

system can be expressed as

A(q)q̈+ b(q̇,q) + g(q) = Γ(q) = JT (q)F = JT (q)

[

ft1 fn1
ft2 fn2

]T

(3.1)

where A is the mass matrix for the system. The terms b and g define the Coriolis and

gravity terms respectively. The generalized active forces are represented by Γ and are

related to the impact forces, F, through the impact Jacobian matrix, J . The impact Jacobian

matrix also forms an important relationship between the velocities of the impact points

and the generalized speeds. This dual relationship property of the impact Jacobian matrix

will later be used in the application of the rigid-body constraints. Since, the impact event

takes place over a small period of time, a definite integration of the equations of motion in

Eq. (3.1) over the interval [t, t+ ǫ] yields
∫ t+ǫ

t

(A(q)q̈ + b(q̇,q) + g(q)) dt =

∫ t+ǫ

t

JT (q)Fdt (3.2)

where ǫ is the small time period representing the duration of the impact event. This yields,

A (q̇(t+ ǫ)− q̇(t)) = JTp = JT

[

pt1 pn1
pt2 pn2

]T

(3.3)

where p is a vector containing all of the impulse parameters. The terms pti and pni
represent

the tangential and normal impulse parameters for the ith point where i = 1, 2. Based on the

assumption that the configuration of the block does not change during an impact event, the

Coriolis and gravity terms disappear upon integration over the infinitesimally small time-

period, ǫ. Also, A and J , which were defined as functions of the generalized coordinates q

in Eq. (3.1), remain constant during the impact event. The generalized speeds, as a result

of Eq. (3.3), can be rewritten as,

q̇ = q̇(0) + A−1JTp (3.4)
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where q̇(0) and q̇ refer to the pre- and post-impact generalized speeds of the system.

Note that in Eq. (3.4), the generalized speeds q̇ are linearly dependent on the impulses p.

Therefore, Eq. (3.4) describes the equations of motion for the impact event in the impulse-

domain, as opposed to Eq. (3.1) which is in time-domain. The generalized speeds are

expressed in terms of the operational space velocities of the impact points to facilitate the

proposed analysis. Hence, Eq. (3.4) is pre-multiplied by the impact Jacobian,

ϑ =

[

vt1 vn1
vt2 vn2

]T

= ϑ(0) + JA−1JTp (3.5)

where ϑ(0) and ϑ stand for the pre- and post-impact velocities of the impact points. The

tangential and normal velocities of the impact points are represented by vti and vni
respec-

tively, where i = 1, 2.
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Figure 3.2: Typical friction behaviors after the stick-slip transition if (a) one point, or (b)
two points come to rest.

During an impact events, various contact points in a rigid-body system may experi-

ence what is known as the Stick-Slip Phenomenon. The stick-slip phenomenon is character-

ized by discontinuous changes in the velocities of the contact points. An idealized version
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Figure 3.3: Typical friction behaviors after the stick-slip transition if (a) one point, or (b)
two points come to rest.

of this behavior can be modeled using the Coulomb friction law [2, 21, 32]. Coulomb fric-

tion models introduce discontinuities in the velocities of the contact points that closely

resemble reality. These discontinuities occur as a result of points transitioning between

sticking and slipping.

In Eq. (3.5), p =

[

pt1 pn1
pt2 pn2

]T

represents all of the impulses at differ-

ent contact points. The impulses in p can be resolved in terms of one arbitrarily chosen

independent impulse parameter,

p = Cpn2
where pn2

≥ 0 (3.6)

Here pn2
is the arbitrarily chosen impulse parameter. The coefficient C, which depends

upon the slip-state of the various contact points, is derived using frictional and rigid-body

constraints. Sec. 3.2 presents the details of this derivation. Therefore, using Eq. (3.5) and

Eq. (3.6), the contact point velocities ϑ during an impact event may be expressed as,

ϑ = ϑ(0) + JA−1JTCpn2
(3.7)
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where pn2
≥ 0. Eq. (3.7) shows that the contact velocities ϑ evolve linearly as a function of

the independent impulse parameter pn2
. However this linear relationship is disrupted when

one (or more) contact points experience the stick-slip transition.

Consider the case of an impact event with non-zero pre-impact velocities. In such

an impact the first stick-slip transition takes place when vti = 0. Fig. 3.2 shows the oc-

currence of stick-slip transitions when the tangential velocities of one (or more) contact

points becomes equal to zero. The stick-slip transition shown in Fig. 3.2 marks the end of a

phase in which the contact points undergo an initial sliding. After the stick-slip transition,

contact points may enter sticking (S) or slip-reversal or slip-resumption (S-R), as shown in

Fig. 3.3. Slip resumption occurs when the tangential speed of the contact point equals zero

momentarily and then the point resumes slipping in the same direction. Therefore the fric-

tional constraints on the impulse parameters change depending on the situation following

a stick-slip transition. Hence the coefficient C in Eq. (3.7) is updated whenever a contact

point enters the stick-slip transition, its tangential velocity becomes equal to zero.

Let the velocities at the various stick-slip transitions be defined as ϑk, where the

subscript k = 0, ..., N refer to the stick-slip transitions, including the pre-impact velocities

ϑ0 = ϑ(0) . The total number of stick-slip transitions N cannot be determined a priori,

it depends upon the number of times the tangential velocities of one (or more) contact

point reaches zero. The value of the independent impulse parameter, pn2
at kth stick-

slip transition will be referred to as psk. Fig. 3.4 shows an example of velocity evolution

through different sticking and slipping conditions. Based on the definition of the velocities

at different stick-slip transitions k, Eq. (3.7) may be rewritten as,

ϑ = ϑk + JA−1JTC(pn2
− psk) where pn2

≥ 0 (3.8)
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The values for the independent impulse parameters, psk at the different stick-slip transitions

k = 1, ..., N can be easily determined using the tangential components of ϑk−1 and there

corresponding slope from JA−1JTC.

Equation (3.8) essentially expresses the post-impact velocities of the contact points

as a function of one independent impulse parameter, pn2
. The relationship between post-

impact velocities and the independent impulse parameter is linear. However at stick-slip

transitions the frictional force constraints change and therefore the term C which is associ-

ated with the frictional and rigid body constraints is updated. The remaining portion of this

section, which deals with the termination of the impact event or in other words determining

the impulse pn2
at the end of the impact event, is presented with the assumption that C is

known in all situations.
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3.1.2 Energetic Termination of Impact Events

The criterion for the termination of impact events is based on Stronge’s Hypothesis on

rigid impacts [22, 32]. Stronge’s hypothesis places an energetic constraint on the evolution

of the contact point velocities as a function of the independent impulse parameter as shown

in Eq. (3.8). The work done during an impact event is given by the difference in kinetic

energy between the pre- and post-impact states of the rigid body system, which is given by,

W =
1

2
q̇TAq̇− 1

2
q̇T (0)Aq̇(0) (3.9)

=
1

2
ϑT (J+)

T
A(J+)ϑ− 1

2
ϑT (0)(J+)

T
A(J+)ϑ(0) (3.10)

where J+ is the pseudo-inverse of the impact Jacobian matrix J . Since, the pre- and post-

impact generalized speeds or contact point velocities depend upon the independent impulse

pn2
, the work itself becomes a function of the independent impulse parameter. The net work

done during an impact event can be decoupled between work done by normal impulses and

work done by tangential impulses. The energetic constraint based on Stronge’s hypothesis,

is placed only on the work due to the normal components. The normal work is given by,

Wn =
{

ϑt
T (J+

t )
T
A(J+

n )ϑn − ϑt
T (0)(J+

t )
T
A(J+

n )ϑn(0)
}

+
1

2

{

ϑn
T (J+

n )
T
A(J+

n )ϑn − ϑn
T (0)(J+

n )
T
A(J+

n )ϑn(0)
}

(3.11)

where ϑt and ϑn are the tangential and normal velocities of the contact point, while Jt

and Jn are their corresponding Jacobian matrices. The definition of the normal work, and

therefore the ECOR, is similar to that in [52]. Note that ϑt and ϑn are linearly related to pn2

within any phase. Therefore, based on Eq.(3.11) Wn would be a quadratic function on pn2

with constant coefficients for each stick-slip phase. However, the constant coefficients of

this quadratic function must be updated at every stick-slip transition, because they depend

upon the vector C as defined in Eq. (3.6). Figure 3.5 shows an example plot of normal

work Wn as a function of pn2
. As expected, the quadratic relationship between the normal
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work and the independent impulse parameter yields a parabolic trend in the plot. The shifts

shown in Fig. 3.5 are a result of the stick-slip transition.
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Figure 3.5: Example plot of the normal work for an impact event showing the shifts that
occur from the stick-slip transition.

The normal work written as a function of pn2
is given by,

Wn(pn2
) = Wnk + a(pn2

− psk)
2 + b (pn2

− psk) (3.12)

where a and b are the constant coefficients that can be found by substituting Eq. (3.8) into

Eq. (3.11). These constant coefficients define the parabolic curve for normal work for a

given phase following stick-slip transition k. The terms a and b are dependent upon C, but

are independent of the initial velocities ϑ(0). The term Wnk is the normal work at stick-slip

transitions k = 0, .., N , such that Wn0 = 0.

According to Stronge’s Hypothesis, the energy change during an impact takes place

over two consecutive energetic phases: a compression phase followed by a restitution
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phase. As shown in Fig. 3.5, compression takes place over the interval of pn2
when the

normal work is generally decreasing. The end of the compression phase is marked by the

minimum normal work Wnc in Fig. 3.5, where the corresponding value for the independent

impulse parameter is pnc. The normal work at the end of the compression phase Wnc is

given by,

Wnc = minWn(pn2
) (3.13)

Note that in Eq. (3.13) the value of Wnc can be found analytically.

The energetic phase following the end of compression is the restitution. The resti-

tution phase ends when the impact event terminates. The value of normal work and the

independent impulse parameter at this point are given by Wnf and pnf . The terminal nor-

mal work Wnf is related to the normal work at the end of the compression phase Wnc as,

Wnf = (1− e2∗)Wnc (3.14)

where e∗ ∈ [−1, 1] is defined as the Global Energetic Coefficient of Restitution which

accounts for the amount of energy dissipated during an impact event. Using Eq. (3.12) it

can be shown that Stronge’s model in Eq. (3.14) is equivalent to Poisson’s model for planar

impact problems. The Poisson’s model for impact is given by,

pnf = (1 + e∗)pnc (3.15)

The global ECOR e∗, is similar to the traditional definitions of ECOR in the way that it

describes an energetic relationship between compression and restitution for a single contact

point. However due to the application of rigid-body constraints in this work, e∗ assumes a

broader role by providing a system-level energetic constraint during impacts, such that it

eliminates the need for defining local ECORs at different contact points. Unlike traditional

ECORs which exist within the range ∈ [0, 1], the global ECOR can take both positive and

negative values as, e∗ ∈ [−1, 1]. The global ECOR e∗ is necessarily positive for single
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point impact events, but it may assume both positive and negative values for simultaneous

multi-point impact analysis. Here e∗ < 0 implies that the impact event terminates before

the end of compression phase. It is evident from Eq. (3.14) that the net energy loss during

an impact cannot be altered with a sign change of e∗. However a sign change of e∗ affects

the amount of impulse experienced at the contact points. When an ECOR is chosen such

that e∗ < 0, the post-impact velocities in the normal direction of all contact-points are

not guaranteed to be positive. This leads to a successive impact event involving the points

with negative post-impact velocities at the end of the first impact event. Thus, in a series

of successive impact events the final impact event must have a positive value of e∗. Some

of the results shown in Sec. 4 demonstrate the usefulness of e∗ < 0 values for replicating

post-impact behavior.

3.2 Stick-Slip Analysis during Impact Events using Coulomb friction and Rigid Body

Constraints

Rigid bodies undergoing impact in the presence of dry friction typically exhibit a

slipping (sliding) and halting (sticking) behavior. In the literature, this behavior is often

represented mathematically as a set of complementarity conditions that establish the re-

lations between friction and contact forces [27]. Classical Coulomb friction defines the

conditions for stick-slip in terms of tangential velocities and accelerations,






ϑti = 0 and ϑ̇ti = 0 then ‖fti‖ ≤ µs |fni| sticking

ϑti = 0 and ϑ̇ti 6= 0 then ‖fti‖ = µs |fni| stick-slip transition

ϑti 6= 0 then ‖fti‖ = µd |fni
| slipping

(3.16)

where µs and µd are the static and dynamic coefficients of friction [27].

The relations in Eq. (3.16) state the conditions for sticking, the stick-slip transition

and slipping respectively. The conditions in Eq. (3.16) capture the discontinuities in fric-
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tional forces during contact or impact (assuming µs 6= µd). These discontinuities lead to

an abrupt transition between sticking and slipping, also referred to as impending motion.

Fig. 3.3 shows the discontinuities in the contact point velocities caused due to stick-slip

transitions.

Equations (3.16) form the basis for linear complementarity problem (LCP) relevant

to optimization-based solutions of contact and impact problems [93]. Complementarity

conditions based on moments can also be found in the literature [94, 95]. Certain friction

models eliminate the need for complementarity conditions by allowing a continuous stick-

slip transition [96, 97]. In this work, a discontinuous friction model based on impulsive

forces is used for stick-slip transition, as presented in [23]. The complementarity condi-

tions based on Coulomb friction in Eq. (3.16) are relevant for the more general 3D contact

problems, where the tangential components of velocities are resolved in terms of two basis

directions that define a contact plane. This work is only concerned with planar contact

and impact problems, such that the tangential components are constrained along a single

direction. Also, as was discussed in Sec. 3.1, an impact event can consist of a number of

different phases, during which the changes in the velocities and impulses are characterized

by the slip-state at different contact points. The complementarity conditions used in this

work to describe the stick-slip states are,






vti(pn2
) = 0 and v̇ti(pn2

) = 0 then pti ≤ µspni
sticking

vti(pn2
) = 0 and v̇ti(pn2

) 6= 0 then pti = µspni
stick-slip transition

vti(pn2
) 6= 0 then pti = µdpni

slipping

(3.17)

where the subscript i refers to the contact point and k represents a point in the impulse

domain when an impact point comes to rest, having no tangential velocity. The velocity-

impulse relation shown in Eq. (3.8), depends upon the vector C. This section shows how

C is derived using the rigid body constraints and Coulomb friction as shown in Eq. (3.17).
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3.2.1 Frictional Constraints for Slipping

When a contact point i slips during an impact event, the tangential impulse on the

point is related to the normal impulse as,

pti = −xiµipni
(3.18)

where xi is a multi-valued signum function such that xi ∈ {−1, 1}, which represents the

direction of the tangential pre-impact velocity of the point vti . The term xi may be also

defined as xi = vti/||vti ||. Here the coefficient of the point i is selected as µi = µs. The

frictional constraint for slipping can be rewritten as,

pti + xiµipni
= uip = 0 (3.19)

where the row vector ui contains coefficients from frictional constraint equation for the ith

point.

3.2.2 Frictional Constraints for Sticking

When a point i sticks, both the tangential velocity and acceleration of the point re-

main equal to zero. In Eq. (3.5) the velocities of all the contact points are related to their

respective impulses by,

M = JA−1JT =












mt1

mn1

mt2

mn2












(3.20)

where mti and mni
are the rows of M corresponding to the tangential and normal com-

ponents, respectively. Hence constraining the tangential velocity of point i using Eq. (3.5)

yields.

vti = 0 = mtip (3.21)
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where the row vector mti gives the coefficients for p for the point to remain in sticking.

Therefore when the point i sticks the frictional constraint is replaced by,

uip = mtip = 0 (3.22)

3.2.3 Rigid-Body Constraints

The frictional constraints based on the Coulomb friction law can only resolve the

tangential impulses in terms of the normal impulses of the contact point. In case of simul-

taneous muli-point impact analysis, constraint relationships must be established to resolve

all of the unknown impulse parameters in terms of one independent impulse parameter.

Here such constraint relationships are derived based on the assumption of rigidity. These

rigid body constraints were originally used to develop the equations of motion in Eq. (3.1).

To remain consistent with the original equations, it is necessary to apply these constraints

in the impact analysis as well.

Consider for the two-point impact example, v1 =

[

vt1 vn1

]T

and v2 =

[

vt2 vn2

]T

are the velocities of points 1 and 2. The direction cosines of the line defined by the two

contact points is given by,

η̂ =
(PO1 −PO2)

||PO1 −PO2||
=

[

ηx ηy

]T

where POi is the position of the contact point i = 1, 2 with respect to the body’s center of

mass. The rigid body assumption restricts any relative motion between the contact points

during impact. Therefore the velocities of the two contact points are constrained along η̂

as,

(v1 − v2) · η̂ = 0 (3.23)
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Upon expansion,

(vt1 − vt2)ηx + (vt1 − vt2)ηy =

[

ηx ηy −ηx −ηy

]

︸ ︷︷ ︸
w












vt1

vn1

vt2

vn2












= wϑ = 0 (3.24)

Equation (3.24) gives the constraint equations that relate the velocities of the two contact

points undergoing impact. The velocity projection method in Appendix A shows that the

rigid body constraints that are applicable at the velocity level can also be enforced at the

force/impulse level. Hence, the rigid-body constraint in Eq. (3.24) can be expressed in

terms of impulses as,

wp =

[

ηx ηy −ηx −ηy

]












pt1

pn1

pt2

pn2












= 0 (3.25)

The constraint in Eq. (3.25) gives the relationship between the impulse parameters of the

two points used in this example. If the number of contact points is increased, additional

constraint equations similar to Eq. (3.25) would be necessary to resolve all of the associated

impulse parameters in terms of one independent parameter. The remainder of this section is

dedicated to the solution method used in this work to resolve the frictional and rigid-body

constraints.

3.2.4 Solution to Friction and Rigid Body Constraints and Analysis of Slip-Reversal

Here the frictional constraints due to sticking and slipping as shown in Eq. (3.22)

and Eq. (3.19) respectively, and the rigid-body constraints in Eq. (3.25) are used to resolve

all of the impulse parameters in terms of a single independent impulse parameter. Also the

conditions for slip-reversal are shown and analyzed here.
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The frictional and rigid-body constraints from Eq. (3.19), Eq. (3.22) and Eq. (3.25)

can be rewritten as,

Hp = 0 where H =









w

u1

u2









(3.26)

where ui for points i = 1, 2 are the coefficients of the frictional constraint equation. De-

pending upon whether the point i sticks or slips, the row vector ui is chosen from the

relations Eq. (3.19) or Eq. (3.22). The matrix H ∈ R
3×4 is rank deficient by one. This rank

deficiency will persist if the number of contact points are increased. For an n-point im-

pact, the number of frictional constraints would be 2n, the number of rigid-body constraint

equations would be 2n− 1, and the number of impulse parameters would be 4n. Thus, H

would be rank deficient by one, for any arbitrary number of contact points n.

The linearly dependent and independent columns of H can be separated as,

H =

[

Hs Hr

]

(3.27)

where Hs ∈ R
3×3 are the linearly independent columns and Hr ∈ R

3×1 is the single

dependent column. Here Hr is selected as the last column of H , which is consistent with

the choice of the independent impulse parameter pn2
Since H is rank deficient by one and

Hr is a column vector, Hs is full rank and invertible. Thus, the impulse parameters for all

of the points can be computed as,

p =






−Hs
−1Hr

1




 pn2

= Cpn2
=












c1

c2

c3

1












pn2
(3.28)
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where C relates all of the impulse parameters to one independent impulse. The partitioning

carried out in Eq. (3.27) to obtain Hs and Hr, can be performed using QR, SVD or LU

decomposition methods. This work uses the QR decomposition method.
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Figure 3.6: The no-slip condition defined by the value of µs for (a) one point and (b) two
point stick-slip transition

The vector C can be used in Eq. (3.8), and is recomputed and updated for every stick-

slip transition k. However the conditions for slip-reversal must be checked before using C

in Eq. (3.8), if the points are stationary in the tangential direction. If vt1 = 0 and/or vt2 = 0

at the beginning of a stick-slip phase then according to the complimentarity conditions in

Eq. (3.17), for the points to stick the impulses must satisfy: pti ≤ µspni
, where µs is the

coefficient of static (limiting) friction and the subscript i refers to the points in sticking. The

constraint used for sticking friction in Eq. (3.22), enforces a critical coefficient of friction,

µ̄i for the equality relation of the Coulomb friction law pti = −xiµ̄ipni
, such that vti = 0.
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Hence based on Eq. (3.28), the critical coefficients of friction for the two contact points are

given by

µ̄1 = − c1
x1c2

µ̄2 = − c3
x2

(3.29)

Therefore the no-slip condition for the contact points is given by,

µ̄i ≤ µs (3.30)

Any contact point i, with tangential velocity vti = 0 sticks if the no-slip condition in

Eq. (3.30) is satisfied. The no-slip condition for any given value of µs can be plotted on a

velocity-impulse plot, as denoted by the shaded regions in Fig. 3.6. Violation of Eq. (3.30)

leads to slip-reversal which causes the slip direction to change such that the coefficient of

friction becomes µ̄i = −µd.

When a point i slip-reverses, the vector C is recomputed by resetting ui based on

the equality constraint of Coulomb friction law parameterized by a negative coefficient of

friction µ̄i = −µi,

pti − xiµipni
= uip = 0 (3.31)

3.3 Transition to Contact

The discussion presented in Sec. 3.1 and Sec. 3.2, is primarily relevant to impulse-

domain analysis of impact events, during which the time remains fixed. The impulse-

domain analysis takes place after the time-domain integration of the equations of motion

is stopped upon impact detection. This method of simulation is known as event-based or

hybrid dynamic simulation approach, where standard numerical integration techniques are

used to simulate the time-dependent equations of motions between various impact events.

Impulse-domain analysis with event-based simulation approach is appropriate for rigid

body impacts which occur over infinitesimally small time-periods. However, one of the
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difficulties encountered with the event-based simulation approach is the accumulation of

events due to high frequency chattering behavior for low-speed contacts. In the hybrid dy-

namic simulation of rigid bodies, chattering takes place when a rigid body touches a contact

surface but does not rebound, which leads to a successive series of impact events that, in

effect, stop the time-domain simulation. This chattering has been studied extensively in the

literature [68–71].

Here the chattering behavior is caused by the non-smooth dynamic model used for

the treatment of impact events during a transient simulation. The impulse-domain anal-

ysis presented earlier is inadequate for handling no-rebound contact. In this work, a no-

rebound contact is represented by smooth dynamics where non-penetrability conditions are

enforced. Frictional constraints are also enforced during the contact phase.

Constraint enforcement for multibody dynamics can be performed by either redun-

dant coordinate techniques and coordinate reduction/constraint-embedding techniques [72].

Techniques based on redundant coordinate sets solve the equations of motion and the al-

gebraic constraints simultaneously, in a differential-algebraic equation (DAE) framework.

DAE solvers typically satisfy algebraic constraints and curb what is known as “drift-off ef-

fects” using several methods. One approach is Baumgarte’s stabilization method [72–76],

which essentially treats the contact constraint forces as a PD feedback control input com-

puted using the constraint violations and their derivatives. Other approaches include a

penalty based formulations, such as the staggered stabilization technique [73, 77], and the

augmented Lagrangian method [73, 78]. Coordinate reduction methods on the other hand,

reformulate the equations of motion based on a minimal set of independent generalized

coordinates. These methods can be performed offline or online while the simulation is

running. Online constraint embedding is based on the coordinate-partitioning techniques

originally proposed in [79] that make use of the constraint equations to resolve dependent

coordinates in terms of independent generalized coordinates using the SVD [73, 80, 81],
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LU [81] or QR [82–85] decomposition methods. The proposed analysis uses a QR based

constraint embedding technique to enforce non-penetrability and frictional constraints dur-

ing the no-rebound contact phase.

This work uses a simple criteria for distinguishing between contacts, impacts and

separation:






if |vni(t)| ≤ ǫv and v̇ni(t) < 0 Contact (Constraint Embedding)

if vni(t) < −ǫv and v̇ni(t) < 0 Impact (Impulse-Domain Analysis)

if vni(t) > ǫv or v̇ni(t) > 0 Separation (Floating-Base EOM)

(3.32)

where ǫv is a small threshold value selected to determine if the contact points have near-

zero normal velocity. During contact, the non-penetrability constraint always needs to be

satisfied. However, similar to the impulse-domain analysis, the frictional constraints can

switch during contact depending upon whether a contact point sticks or slips. The proposed

method first embeds non-penetrability and sticking friction constraints. Then a method

based on the rigid body constraints is used to compute the reaction forces. The reaction

forces are checked using the friction cone defined by Coulomb’s law to identify contact

points that are slipping. Finally sliding frictional constraints are enforced for the relevant

points.

3.3.1 Reaction Forces due to Contact Constraints Assuming Sticking

Initially, during a no-rebound contact phase, all of the points satisfying the contact

criteria in Eq. (3.32) are assumed to stick. Therefore both the tangential and the normal
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components are constrained to be equal to zero. Consider the velocities and accelerations

of the contact points that satisfy the contact constraint in Eq. (3.32)

0 = ϑc =









vt1

vn1

...









= Jc q̇ (3.33)

and,

0 = ϑ̇c =









v̇t1

v̇n1

...









= Jc q̈ + J̇c q̇ (3.34)

where Jc is the Jacobian matrix associated with ϑc. Substituting the expression for q̈ from

Eq.(3.1),

0 = ϑ̇c = Jc A
−1Jc

TF − JcA
−1 (b(q, q̇) + g(q)) + J̇c q̇ (3.35)

Similar to the impulse domain analysis, the contact forces F are going to be constrained

by the rigid body constraints and frictional constraints. Hence the contact constraint forces

may be resolved as,

F = C Fr (3.36)

where Fr is an independent force parameter. The vector C is recomputed for the contact

condition, using the method shown in Sec. 3.2. Now substituting Eq. (3.36) into Eq.(3.35)

yields,

c̄ Fr = Jc A
−1Jc

TC Fr = JcA
−1 (b(q, q̇) + g(q)) − J̇c q̇ (3.37)

Hence, the full set of reaction forces F would be given by,

F = C Fr = C
c̄T

c̄T c̄

(

JcA
−1 (b(q, q̇) + g(q)) − J̇c q̇

)

(3.38)

The reaction forces in F in Eq. (3.38) are calculated assuming that all of the points are

sticking. Now Coulomb’s law is used to check whether the contact points stick or slip,

|fti| ≤ µs fni
(3.39)
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where µs is the coefficient of static (limiting) friction. A contact point sticks if equation

Eq. (3.39) is satisfied, otherwise the point slips. When a contact point slips, the contact-

plane tangential velocities have unknown non-zero values. Thus, the velocity and accel-

eration constraint in Eq. (3.33) and Eq. (3.34) need to be restricted to only the normal

components for the slipping points. The constraint for the tangential forces are then given

by Coulomb’s friction law.

Enforcing the slip and no-slip constraints is accomplished by partitioning the reaction

forces as follows:

F =






Fslip

Fstick




 = Sc






Fslipn

Fstick




 (3.40)

where Fslip and Fstick are the forces at the contact points that are slipping and sticking,

respectively and Fslipn are the normal forces at the points i that are slipping,

Fslip =









ft1

fn1

...









Fslipn =






fn1

...




 (3.41)

In Eq. (3.40) the matrix Sc relates the normal forces of the slipping points to the tangential

forces using the equality relation of Coulomb friction law,

Sc =









−xiµi

1
0

0 I









(3.42)

where xi = vti/||vti|| gives the direction of the contact point, µi = µd is the dynamic

coefficient of friction at point i, and I is an identity matrix. Eq. (3.42) shows the matrix

Sc as if i refers to a single point. Sc should be suitably adjusted when defining Coulomb

friction relations for more than one point.
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Using dual property of the Jacobian matrix, the generalized active forces, Γ in Eq. (3.1),

are related to the constraint forces as

Γ = JT
c F = JT

c Sc






Fslipn

Fstick




 (3.43)

Based on the dual property of the Jacobian matrix, as shown in the Appendix A, the force

constraint in Eq. (3.43) may be written as a velocity constraint,

0 =






ϑstick

ϑslipn




 = ST

c Jc q̇ = JI q̇I + JD q̇D (3.44)

where ϑstick refers to both the normal and tangential velocity components of the points

that are sticking, ϑslipn refers to only the normal velocity components of the points that are

slipping, and q̇D and q̇I are the dependent and independent generalized speeds. Now q̇ and

q̈ can be expressed as

q̇ =






q̇D

q̇I




 =






−J−1
D JI

I




 q̇I = G q̇I (3.45)

and

q̈ = G q̈I + Ġ q̇I Ġ q̇I =






−J−1
D

(

ṠT
c Jc + ST

c J̇c

)

q̇

0




 (3.46)

Substituting Eq. (3.44) and Eq. (3.46) into Eq. (3.1) and pre-multiplying with GT yields,

GT A G q̈I + GT
(

A Ġ q̇I + b + g
)

= GTJT
c Sc






Fslipn

Fstick




 (3.47)

From Eq. (3.44) and Eq. (3.45), it can be easily shown that,

GTJT
c Sc = 0 (3.48)
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Hence, the reduced set of equations of motion are given by,

GT A G q̈I + GT
(

A Ġ q̇I + b + g
)

= 0 (3.49)

Thus, during contact Eq. (3.49), Eq. (3.45) and Eq. (3.46) are used to integrate the states of

dynamic system.

3.3.2 Summary of the Proposed Method

This section presents a brief summary of the proposed simulation method for rigid

body contacts and impacts. In this approach the simulation takes place in two different

domains: 1) time-domain in which the system’s states evolve with respect to time and 2)

impulse domain in which the states are dependent on a single parameter of impulse. The

switch between the time-domain and impulse domain model takes place when an impact

is detected according to the criteria Eq. (3.34). The conditions in Eq. (3.32) also present

the criteria for embedding contact constraints during the time-domain simulation of the

system. Note that if a single point is experiencing impact, all points are considered to be

experiencing impact.; the contact analysis is not used when an impact event is detected.

The time domain model is given by a set of ordinary differential equations, and may

be expressed without any loss in generality as an initial value problem (IVP) as,






IVP : q̈ = Gq̈I + Ġq̇I, q(0) and q̇(0)

where q̈I = −(GTAG)
−1
GT (AĠq̇I + b(q, q̇) + g(q)), q̇ = Gq̇I

and Ġ q̇I =






−J−1
D

(

ṠT
c Jc + ST

c J̇c

)

q̇

0




 , G =






−J−1
D JI

I






(3.50)

the matrices JD and JI is found by partitioning the matrix Sc
TJc into dependent and inde-

pendent columns. Note that if system is not in contact at any point G = I , where I is an
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identity matrix, and Ġ = 0. Substituting these into Eq.(3.50) would lead to IVP equivalent

to an IVP formed by setting the right hand side of (3.1) to zero.

The impulse-domain model for impact analysis is given by the following set of equa-

tions: 





ϑ = ϑk + JA−1JTC(pn2
− psk) where pn2

≥ 0

C =






−Hs
−1Hr

1




 andH =









w

u1

u2









= [Hs Hr]

Wn(pn2
) = Wnk + a(pn2

− psk)
2 + b (pn2

− psk)

(3.51)

Here the relationship between velocity and the independent impulse parameter is given

by a piece-wise linear algebraic equation, and the normal work is given by a piece-wise

quadratic equation. The idea is to evolve ϑ(pn2
) and Wn(pn2

) with respect to pn2
≥ 0,

and find the solution of pnc such that, pnc = argminWn(pn2
). Then the value of the

independent impulse parameter at the end of the impact event would be pnf = (1+ e∗)pnc.

Hence the post-impact velocities of the contact points are found by further evolving the

system until ϑ(pn2
= pnf). If all the normal components of the post-impact velocities

are positive or close to zero, then the time-domain simulation is resumed. Otherwise the

impact analysis is repeated for the points with negative normal velocities at the end of the

first impact event.
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CHAPTER 4

SIMULATIONS OF CONTACT AND IMPACT IN PLANAR RIGID SYSTEMS

This section presents results of some benchmark examples of multi-point impact

problems using the proposed method. First, an example is presented for a planar block

impact with a horizontal, stationary surface. This problem is analyzed using both friction-

less and frictional models of impacts. Simulation results using the proposed method are

compared with experimental results found in the literature, which gives an indication of the

energy loss during the impact. Another set of results pertaining to the angular response of

a planar rocking block model is also presented. The time-domain simulation of the rocking

block model requires a switching scheme for the pivoting between the two vertex contact

points. The contact transition technique that was discussed in Sec. 3.3 is used to accom-

plish this switching between contact constrained points. The angular responses generated

using the proposed method are then compared against experimental results for validation

and analysis of the energy losses. Lastly an example of a planar ball two-point impact is

presented, to illustrate the effect of stick-slip transition on the post-impact states.

4.0.1 Simulation Technique

The hybrid simulation technique implemented for this work uses Matlab’s ode45,

which is an adaptive Runge-Kutta integrator based on the Dormand-Prince method [98,99].

The results in this section were simulated in Matlab on an Intel(R) Core(TM) 2 Duo CPU

with 3 GHz processor and 4 GB RAM. The examples used in this work do not have complex

geometries, so a simple collision detection scheme is used here. The collision detection

scheme tracks the distances of certain a priori selected points from the contact surface, and
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collision is detected when one or more of these distance values are equal (or less than)

zero. If the proposed contact and impact modeling is to be used for more complicated

geometries, a variety of advanced collision detection methods are available in the literature,

see [100–102].

1

PNG = q1 N1 + q2 N2 

GROUND

N1

N2

N

q3

G

b

2

h

1 2

G

fn2,vn2

 ft2vt2,

fn1,vn1

 ft1vt1,

(a) (b)

Figure 4.1: (a) Model description for the planar rocking block example, (b) velocities and
forces at the impact points.

4.0.2 Example 1: Planar Rocking Block

The rocking block problem is of great interest in the multibody dynamics community

[26, 53, 103, 104]. The interest in this particular problem is facilitated partly due to its

relevance in applications such as robotics [105,106] and earthquake engineering [107,108],

and also due to a number of issues that arise in its modeling. One of the main issues faced

in planar rocking block modeling is the resolution of the indeterminate system of equations

when multiple point impacts are considered. Another key issue is the switching of pivot

points during the rocking motion. The proposed method addresses both of these issues.

The planar rocking block model in Fig. 4.1a has three DOFs and its center of mass is

located at point G. The configuration of the block is given by a set of generalized coordi-

nates q =

[

q1 q2 q3

]T

, where q1 and q2 represent the block’s position and q3 denotes

its orientation. The dimensions of the the block are defined by its breadth b and height h,
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such that b/h >
√
2 (flat block [53, 104]) for two of the cases studied here. The contact

between the bottom surface of the block and the ground is assumed at the two vertex points

1 and 2, as shown in Fig. 4.1. The terms in Eq. (3.4) that represent the dynamics of the

planar rigid block are given by,

A =









m 0 0

0 m 0

0 0 m(b2+h2)
12









J =














1 0 h cos(q3)+b sin(q3)
2

0 1 h sin(q3)−b cos(q3)
2

1 0 h cos(q3)−b sin(q3)
2

0 1 h sin(q3)+b cos(q3)
2














q̇(0) =

[

0.344 −0.500 −9.199

]T

(4.1)

Based on this assumption the planar rocking block poses an indeterminate problem when

both vertex points 1 and 2 touch the surface. The rigid body constraints introduced in

Sec. 3.2 resolve this indeterminacy by harnessing the rigidity property of the block. If

additional contact points are introduced, the indeterminacy can still be resolved due to the

availability of additional rigid body constraint equations, which are derived based on pairs

of contact points.

4.0.2.1 Rocking Block: Frictionless Case

Here the results of the frictionless version of the planar rocking block example are

compared with an experimental result from the study in [53]. The block has a mass of

m = 2.5 kg, breadth of b = 0.1087 m and a height of h = 0.0645 m, similar to the

experimental specimen used in [53]. Here the coefficients of friction for the two contact

points are assumed to be µ1 = µ2 = 0. This leads to the tangential friction forces ft1 and

ft2 , shown in Fig. 4.1, being equal to zero. The simulation starts with point 1 in contact

and the impact event takes place when point 2 hits the ground. Note, that both points 1 and

2 would be used for the impact analysis, although impact takes place only at point 2. In the
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context of the experimental results shown in [53], θ1 = θ2 = 0◦ is used to represent a flat

ground surface.

Simulation sta
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GROUND
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GROUND

Collision =  1st & 2nd 
impact events

Simulation sta
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Simulation end

Collision
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GROUND

GROUND

(a) (b)

Figure 4.2: Simulation of the (a) frictionless (CPU Time: 0.28 s) and (b) frictional (CPU
Time: 0.26 s) rocking block examples—a similar post-impact state is obtained for both
cases.

Some configurations from the simulation results are shown in Fig. 4.2a. A plot of

the system energy is included in Fig. 4.7 to show energy consistency for the simulation

performed. The entire impact process shown in this example takes place over two consec-

utive impact events. At the end of the first impact event the post-impact normal velocity

of point 2 remains negative, while the normal velocity of point 1 becomes positive. Thus a

secondary impact event takes place that only includes point 2 in the impact analysis. The

post-impact state for point 2 is determined at end of the second impact event, whereas the

velocities at end of the first impact event are used as the post-impact state for point 1. The

post-impact states are used to compute the initial conditions needed to restart the simulation

after the impact.

The analysis of the first impact event is illustrated in Fig. 4.3. Particularly Fig. 4.3a

shows the normal work for e∗ = −0.8, where the first impact event is terminated in its
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Figure 4.3: (a) Normal work done, and (b) evolution of velocities throughout the first
impact event for the frictionless rocking block example.

compression phase by the start of the second impact event, recall Fig. 3.5. Figure 4.3b

depicts the evolution of velocities throughout the first impact event. This figure shows

how the normal, vn1
, and tangential, vt1 , velocity of point 1 evolve, indicating that point 1

rebounds slightly from the surface, while the normal velocity of point 2 is negative, which

initiates a second impact event. Analysis of the second impact event is shown in Fig. 4.4

and only involves the velocities of point 2, vn2
and vt2 . It begins with the velocity of point 2

at the end of the first impact event. In the second impact event e∗ = 0.6667. The evolution

of velocities in Fig. 4.4b shows that point 2 rebounds from the surface. The inset plot in

Fig. 4.2a shows a close-up view of the post-impact state of the entire block rebounding

away from the surface after the collision. An ECOR equal to one, e∗ = 1 would indicate

no energy loss. Therefore ECORs of e∗ = {−0.8, 0.67} indicate a significant loss of

energy during this first collision, which is also indicated by the substantial difference in the

rebound configuration of the block as compared to its initial configuration in Fig. 4.2a.

The results obtained for this benchmark are compared to experimental data reported

in Fig. 8 of [53].. The global ECOR values of e∗ = {−0.8, 0.67} yield an identical match
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Figure 4.4: (a) Normal work done, and (b) evolution of velocities throughout the second
impact event for the frictionless rocking block example.

to the results in [53]. The post-impact velocities for the two methods given in Table 4.1 for

points 1, v+1 , and 2, v+2 , are normalized with respect to the pre-impact velocity of point 2,

v−2 , to directly compare the two results. Note that these are only the normal components

of the velocities of points 1 and 2. The impact analysis method shown in [53] uses local

ECORs corresponding to each contact point. These local ECOR values were experimen-

tally found to be e1 = 0.43 and e2 = 0.64 corresponding to points 1 and 2 respectively.

Intuitively, one would expect e1 < e2 for the local ECORs because point 2 rebounds higher

than point 1, but it is not clear that this intuition is valid. The global ECORs give a different

view of the collision, which suggests that the collision loses more energy during the inter-

action at point 2 than at point 1. This is because point 2 is solely involved in the second

impact event, where a larger portion of the system energy is lost, even though it rebounds

higher than point 1. It is possible to reach the opposite conclusion from the local ECORs

if there was no other indication of how the system loses energy. One can also consider the

small difference in the initial and final position of point 1, compared to the large difference

for point 2, as an indication of where most of the energy is lost.
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4.0.2.2 Rocking Block: Frictional Case

A rocking block with friction is explored here to observe the effects of considering

friction at the impact points. The same model parameters and initial conditions, as in

Sec. 4.0.2.1, are used in this simulation aside from friction at the impact points, where

initially µ1 = µ2 = 0.35. The coefficients of friction do not have to be the same but it

makes sense for this example because the points impact the same surface.
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Figure 4.5: (a) Normal work done, and (b) evolution of velocities throughout the first
impact event for the frictional rocking block example.
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Figure 4.6: (a) Normal work done, and (b) evolution of velocities throughout the second
impact event for the frictional rocking block example.
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The results of the simulation are depicted in Fig. 4.2b and a plot of the system energy

is included in Fig. 4.7 to show energy consistency for the simulation performed. Similar to

the frictionless case, the collision of point 2 with the ground results in two impact events

which are representative of the entire collision of the block with the ground. The first im-

pact event is the only indeterminate one in the simulation, which involves the simultaneous

impact of points 1 and 2. The post-impact velocity of point 2 at the end of the first impact

event is negative which indicates that it is still moving toward the ground surface. This

situation is interpreted as a second impact event involving only point 2, a determinate col-

lision. Furthermore, point 1 has a positive velocity after the first impact event, which is

interpreted as having reached its post-impact state, as in the frictionless case. This second

impact event is resolved before restarting the simulation to find the post-impact velocity of

point 2.

The result obtained for this case is similar to the frictionless case analyzed in Sec. 4.0.2.1

and [53]. The difference is that the global ECORs is e∗ = −0.863 for the first and

e∗ = 0.623 for the second impact event. The first impact event, illustrated in Fig. 4.5,

shows a plot of the normal work and evolution of velocities. The inclusion of friction for

this case does not cause the tangential velocities to come to rest at the stick-slip transition;

this is almost the case at the end of the first impact event. Thus, the slope of the velocities

never changes and the impact points maintain a slip-state of forward sliding throughout the

impact event. The plot of the normal work in Fig. 4.5a shows that the first impact event

terminated in its compression phase due to the start of the second impact event. As in the

frictionless case, Fig. 4.5b shows how the normal, vn1
, and tangential, vt1 , velocity of point

1 evolve, which shows that point 1 slightly rebounds from the surface. Meanwhile, the

normal velocity of point 2 is negative which indicates that it is still impacting the ground,

initiating a second impact event. The analysis of the second impact event is shown in

Fig. 4.6 and only involves point 2. Fig. 4.6a shows the characteristic parabolic shape of
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the normal work where a compression and restitution phase are clearly defined. Fig. 4.6b

shows how the velocities of point 2, vn2
and vt2 evolve, such that point 2 rebounds from the

surface.

Table 4.1: Comparison of a frictional rocking block to theoretical and experimental results
of a frictionless case. (The ECORs (e1, e2) used in [53] are local for each impact point; in
this work, two impact events are detected for this case so two global ECORs are used here
in the order specified.)

v+1 /v−2 v+2 /v−2 ECORs

Experimental Yilmaz, et al. [53] -0.100 -0.600 e1 = 0.43, e2 = 0.64

Theoretical Chatterjee-Rodriguez-Bowling
no friction -0.100 -0.600 e∗ = -0.8, 0.6667
with friction -0.100 -0.600 e∗ = -0.863, 0.623

The results from this case are summarized in Table 4.1, along with the results for the

frictionless case examined in Sec. 4.0.2.1. Fig. 4.2(b) also shows a close up view of the

post-impact state of the block leaving the ground surface after the simultaneous collision.

The post-impact velocities of points 1, v+1 , and 2 v+2 , are normalized with respect to the

pre-impact velocity of point 2, v−2 . The solution to the post-impact velocities of points 1

and 2 are also identical to the result obtained for the frictionless case. Friction is dissipative

by nature and it is observed that this leads to an increase in the global ECOR for the first

impact event and a reduction for the second, to obtain the same post-impact result.

The conclusions concerning the energy losses from the frictionless case in Sec.

4.0.2.1 also apply here, but the inclusion of friction includes a second means of energy

dissipation that alters the ECORs in a manner that is difficult to predict. Because the final

motion is identical to the frictionless case, it appears that friction dissipated more energy at

points 1 and 2 than in the frictionless case during the first impact because the global ECOR

increased while yielding the same post-impact velocities; recall that the global ECOR de-
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termines only the loss of normal work even though it is dependent on friction. Yet the

global ECOR decreases for the second impact event, which means that more energy is lost

for the normal work to obtain the same post-impact velocities as in the frictionless case.
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Figure 4.7: Energy consistency throughout the simulation for (a) frictionless rocking block,
and (b) frictional rocking block examples.

4.0.3 Example 2: Angular Response of Planar Rocking Block

The results in Sec. 4.0.2 show that the proposed method can be used to analyze the

energy losses during a single collision in the rocking block problem. However, the method

also applies to cases of multiple collisions over time and shows the energy dissipation over

the entire motion of the system. To examine successive collisions, the method must address

the transition to contact that can occur if a point on the block sticks to the surface. This

problem of simulating successive collisions has been studied extensively in the literature

[34, 54, 109–115]. These models use stiffness properties [113], local energy dissipation

properties [34, 109] or global kinematic restitution properties [115].
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The data analyzed in this example comes from [113,114], which reports experimental

data on different specimens of concrete blocks for the cases of free-rocking and rocking

with base excitation; herein, only the free-rocking block results are considered. The work

in [103] showed that these experimental results can be predicted using the LZB model,

which was proposed in [34, 54, 109–112]. The LZB model uses local ECORs for each

contact point and relates the local energy losses by a distributing law, based on parameters

defined as contact stiffness ratios and elasticity coefficients. This is different from the

proposed approach where the stiffness and elasticity between different contact points is

lumped into a global ECOR as was discussed in Sec. 3.1.2.

Table 4.2: Choice of effective width

Block Specimen Geometric LZB model CRB model
width(m) [114] width(m) [103] width(m)

1 0.25 0.23 0.23

2 0.17 0.155 0.155
4 0.16 0.115 0.115

Three different specimens were used for the free-rocking block experiments in [114]:

1) Specimen 1 with a width of 0.25 m, height of 1 m and mass of 503 kg, 2) Specimen 2

with width and height 0.17 m and 1 m respectively and a mass of 228 kg, and 3) Specimen

4 of width 0.16 m, height 0.457 m and mass 245 kg. The width of the block needs to

be calibrated, since the angular response to a rocking block problem is highly sensitive

to variations in width [116]. A detailed discussion on this presented in [103, 116]. The

effective width selected herein for all of the specimens are the same as in [103, 116], and

are tabulated in Table. 4.2.

Fig. 8.40 compares the simulated and experimental angular response of the three

specimens. Here, Pena refers to the measured angular response from the experiments done
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Figure 4.8: Angular Response for (a) Specimen 1 (CPU Time: 59.06 s) (b) Specimen 2
(CPU Time: 79.33 s) (c) Specimen 4 (CPU Time: 56.37 s). The angular response data for
Pena and LZB, were obtained from plots shown in Fig.5 of [103].

by Pena et.al [114], LZB refers to the simulated response using the LZB model [103],

and CRB is the simulated angular response based on the approach proposed in this work.

The static and dynamic coefficient of friction used for the simulation are µs = 0.577 and

µd = 0.3 respectively, identical to [103].

To match this data, a negative global ECOR is used for the multi-point impacts and a

positive global ECOR is used for the single point impacts. Thus, for each specimen a pair

of ECOR values are chosen The response for Specimen 1, shown as CRB in Fig. 8.40a
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Figure 4.9: Energy consistency throughout the simulation for (a) Specimen 1 (b) Specimen
2 (c) Specimen 4 .

was obtained using e∗ = −0.73 for all two-point impacts and e∗ = 0.8 for all single point

impacts. Also shown in Fig. 8.40a, is the angular response of the same specimen using

the LZB model where an ECOR value, en = 0.97 is used until 2.83 seconds, after which

it is updated with en = 0.88 [103]. Note, that the en used in [103] are local ECORs at

each point, as opposed to the global ECOR e∗ used in this work. Similarly, the global

ECORs used to match the angular response for Specimen 2 in Fig. 8.40b and Specimen 4

in Fig. 8.40c are e∗ = {−0.95, 0.8} and e∗ = {−0.96, 0.8}, respectively. The LZB model

simulates the response for Specimen 2 with an ECOR of en = 0.999, and for Specimen 4
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the ECOR values are en = {0.99, 0.87} before and after 0.85 seconds. All of the simulation

parameters used for the LZB and CRB models are summarized in Table 4.3. The interesting

thing to note is that all of the local ECORs have higher values than the global ECORs,

especially in the case of Specimen 1. The global ECORs also indicate that most of the

system energy was lost during single point impacts, rather than the multiple point impacts.

This same trend was true for the previous analyses in Sec. 4.0.2.

Table 4.3: Simulation Parameters

Specimen 1 Specimen 2 Specimen 4
LZB CRB LZB CRB LZB CRB

µd 0.3 0.3 0.3 0.3 0.3 0.3
µs 0.577 0.577 0.577 0.577 0.577 0.577

ECORs {0.97, 0.88} {−0.73, 0.8} 0.999 {−0.95, 0.8} {0.99, 0.87} {−0.96, 0.8}

W
A

L
L

GROUND

Post-Impact

Pre-Impact

Initial Pre-impact Post-impact

Position

q1 0.000 m 3.614 m 3.614 m
q2 1.500 m 0.500 m 0.500 m
q3 0.000 rad 0.000 rad 0.000 rad

Speeds

q̇1 8.000 m/s 8.000 m/s -5.504 m/s
q̇2 0.000 m/s -4.430 m/s 4.893 m/s
q̇3 0.000 rad/s 0.000 rad/s -9.786 rad/s

Velocities

vt1 8.000 m/s 8.000 m/s -10.397 m/s
vn1 0.000 m/s -4.430 m/s 4.893 m/s
vt2 0.000 m/s -4.430 m/s 0.000 m/s
vn2 8.000 m/s 8.000 m/s -5.504 m/s

(a) (b)

Figure 4.10: (a) Simulation of the planar ball example (CPU Time: 0.54 s), and (b) table of
velocities and generalized speeds for the simulation.
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4.0.4 Example 3: Planar Ball With Friction

Here, a simulation of a planar ball impacting a corner, as in Fig. 3.1a, is performed

to show the effect of the stick-slip transition on the post-impact behavior of a system. The

dynamics of the planar ball are shown in Eq. (3.4):

A =









m 0 0

0 m 0

0 0 mR2

2







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J =




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
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1 0 R cos(q3)

0 1 R sin(q3)

0 1 R cos(q3)

1 0 −R sin(q3)
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q̇(0) =


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



8.000

−4.430

0.000









(4.2)

The planar ball has a mass m = 1.0 kg and radius R = 0.5m. The simulation of the ball is

depicted in Fig. 4.10a and ends when a second collision is detected with the ground. A plot

of the system energy is shown in Fig. 4.11 to show energy consistency for the simulation

performed. Only one impact event occurs during the collision of the ball and the corner,

which is an indeterminate collision involving points 1 and 2. A global ECOR of e∗ = 0.5

and µ1 = µ2 = 0.35 are used to generate the simulation data given in Fig. 4.10b.
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Figure 4.11: Energy consistency throughout the simulation for the planar ball example.
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The ball has no angular velocity prior to impact but rebounds with a negative angular

velocity after impact. This angular velocity is attributed to the slip-state of the ground

contact point undergoing slip reversal, while the wall contact point sticks to the surface

until it separates from it at the end of the collision. This is also consistent with the post-

impact trajectory of the ball’s mass center shown in Fig. 4.10a, which is higher than its

pre-impact trajectory.
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Figure 4.12: (a) Normal work done, and (b) evolution of velocities throughout the impact
event for the planar ball example.

The evolution of the velocities were determined by accounting for the change in slip-

state of points 1 and 2 throughout the impact event. The result of these processes is shown

in Fig. 4.12. A plot of the normal work throughout the collision is shown in Fig. 4.12a.

The two shifts in the normal work curve are a result of evaluating the stick-slip transition,

which occur at the points where vt2 = 0 and vt1 = 0. These shifts indicate the importance

of knowing where the tangential velocities come to rest so that the stick-slip transition can

be analyzed. The effects of a change in friction direction are illustrated in the evolution
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of velocities, seen in Fig. 4.12b. Both tangential velocities reach the stick-slip transition

during this single impact event. The tangential velocity at the wall comes to rest first at ps1

and sticks to the surface. The no-slip condition for this impact point is derived and plotted

in Fig. 4.12b to allow a check if the slip-state changes during the remainder of the impact

event. The tangential velocity of the ground impact point comes to rest next in the impact

event at ps1. This impact point slip-reverses so that the friction direction changes, which

is consistent with the negative angular velocity of the ball after the collision. Figure 4.12b

illustrates an abrupt shift in the direction for all of the velocities at the stick-slip transitions.

The energy plots are included here to show energy consistency for the collisions

simulated for the planar rocking block (frictionless and frictional) and planar ball examples.

The drops in total energy shown in Fig. 4.7, Fig. 4.11, and Fig. 8.42 correspond to the

energy losses specified by the global ECOR and friction analyzed in the previous sections.
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CHAPTER 5

SPATIAL RIGID IMPACT MODEL

5.1 Overview of Impact Modeling

The proposed method treats impacts as discrete events within the time-domain sim-

ulation of the equations of motion. The impact evolves to its final state in the impulse

domain rather than the time domain. The goal is to express all of the impulses in terms

of a single independent impulse so that the work-energy theorem can govern the evolu-

tion of the single impulse in an energetically consistent manner. This section derives this

approach using as an example the three-dimensional rigid block undergoing a four-point

impact shown in Fig. 5.1. However, the proposed method may be generalized for any type

of multibody system and any number of contact points.

1

2

3

l

w

h

Nx

Ny

Nz

O

GROUND

4

N

Figure 5.1: Three-dimensional model of a rocking block example with four corner impact
points.

62



The configuration of the rigid block shown in Fig. 5.1, is represented by a minimal

set of generalized coordinates,

q = [ q1 q2 q3 q4 q5 q6 ]
T (5.1)

where q1, q2, and q3 represent the position of the body’s reference point O, and q4, q5, and

q6 define the orientation of the body. In the Fig. 5.1, the four impact points are denoted as

i = {1, ..., 4}, and there positions with respect to the inertial reference frame and point are

defined as PNi = [xi yi zi]
T . The equations of of motion for this system are,

Aq̈ + b(q, q̇) + g(q) = Γ(q) = JT (q) F (5.2)

where A is the mass matrix of the system. The vector b(q, q̇) and g(q) are the Coriolis and

gravity terms respectively. Note that for the simple block example in Fig. 5.1, the Coriolis

terms would be equal to zero. The generalized active forces are represented by Γ and are

related to the impact forces, F, through the contact Jacobian matrix J . The post-impact

states can be obtained by performing a definite integration over the very small time period

[t, t+ ǫ],
∫ t+ǫ

t

(Aq̈+ b(q, q̇) + g(q)) dt =

∫ t+ǫ

t

JT (q) F dt (5.3)

This yields,

A (q̇(t + ǫ) − q̇(t)) = JT

∫ t+ǫ

t

F dt = JTp (5.4)

where,

p = [px1
py1 pz1 . . . px4

py4 pz4]
T

The vector p contains all of the impulses induced at the impact points during the impact

event. The terms pxi
and pyi are the tangential impulses and pzi is the normal impulse,

at impact point i = 1, ..., 4. It is assumed that there is no change in configuration during

an impact event. The definite integration over the small time-period [t, t+ ǫ] causes the
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Coriolis force and gravity terms to vanish in the (5.4). The mass matrix, A and contact

Jacobian J are assumed to remain constant during the impact event.

The velocities of the impact points can be obtained by inverting the mass matrix A

and pre-multiplying the resulting equation by the Jacobian matrix,

ϑ = [vx1
vy1 vz1 . . . vx4

vy4 vz4]
T = ϑ(0) + JA−1JT p = ϑ(0) + M p (5.5)

where and ϑ(0) and ϑ are the pre- and post-impact velocities of the impact points. vxi

and vyi are the tangential components, and vzi is the normal component of the velocity at

impact point i = 1, ..., 4. It is noteworthy that at this point the velocities of the contact

points are only dependent on the impulses. Hence, (5.5) shows the impulse-domain version

of the equations of motion [1, 2, 20–22, 26].

In addition to impulses and momentum in (5.5), the proposed analysis also considers

the effect of friction on system behavior during the collision. Here the Coulomb friction law

is used to determine the stick or slip state of the impact points. Unlike the planar analysis,

the three dimensional analysis of the stick-slip transition must be addressed in force space.

The Coulomb friction law in three-dimensions, cannot be analytically integrated. Hence,

the impulses p in (5.5) need to be numerically integrated. In addition to Coulomb friction,

this work also uses constraints based on the rigidity of the body, this allows for the impulses

to be represented in terms of an arbitrarily selected normal impulse parameter pn ≥ 0. For

the example in Fig. 5.1, dpn = dpz4 will be used. Thus, the impulses p in (5.5) would be

given by,
dp

dt
= F = C

dpn
dt

p =

∫ pn

0

C dpn (5.6)

where C is a force gradient vector in terms of the independent impulse term. The derivation

of C will be discussed in Sec. 5.2. Thus (5.5), (5.6) and (5.7) govern the impact point

velocities. As it can be seen in (5.6), the impulses p is defined in terms of definite integral

with respect to pn as a dummy variable. Thus, the post-impact states depend upon the final
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value of pn. This work uses an energetic constraint based on the work-energy theorem to

determine the final value of pn, such that the energy consistency of the system is guaranteed.

Unlike planar impacts, in three dimensions the slip direction may vary during an

impact event, which requires a different treatment of the stick-slip transition. The first

difference is that Cartesian velocities will be examined in cylindrical coordinates:

ϑcyl = [s1 φ1 vz1 . . . s4 φ4 vz4 ]
T (5.7)

si =
√
vxi

2 + vyi
2 φi = arctan(vxi

, vyi) (5.8)

where si and φi are the sliding speed and sliding direction in the impact plane. This change

of coordinates is carried out at the velocity-level, not the position-level, to avoid singulari-

ties in the transformation [4, 22].
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Figure 5.2: Example of the evolution of velocities with pn.

Fig. 5.2 shows an example of the evolution of velocities with respect to an indepen-

dent impulse parameter required to address impact events. The analysis begins by assuming

all impact points with a nonzero tangential velocity are slipping. If an initial tangential ve-

locity is equal to zero, C is determined assuming that this point is sticking. The resulting
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impulses are checked to if they satisfy the sticking condition; see Sec. 5.2.4. If not, the

point is assumed to be slipping and the analysis continues.

The numerical integration of C in (5.6) then begins to find a new value of p. This

value is substituted into the impulse-momentum relationship in (5.5) to determine new

velocities of the impact points. These velocities are then converted into the cylindrical

coordinates in (5.7), shown in Fig. 5.2. The goal is to evolve the velocities until a tangential

velocity becomes equal to zero, or the final impulse is reached. If a tangential velocity

crosses zero, then the stick-slip transition is evaluated to determine whether the impact

point will slip or stick; an event function tracks si to catch a zero crossing. Again, it is

assumed to stick and the resulting forces are checked. However, C must be re-evaluated

each time any tangential velocity becomes equal to zero. Thus, the integration shown

in (5.6) is not trivial. The end of the collision is specified using the global ECOR, which

defines the value of the final impulse, pnf . However, to find the final impulse, it is necessary

to locate the impulse at the end of the compression phase, pnc, as the integration progresses.

The final and compression impulse will be discussed in Sec. 5.2.6.

Even if the integration in (5.6) reaches the final impulse, it is possible that the velocity

of some impact points will still cause the surfaces to penetrate. In this case, a second impact

event is triggered which will include only the impact points that are attempting to penetrate.

The whole process is performed again for this subset of impact points. If some velocities in

this second event are still attempting to penetrate the surfaces, a third event is triggered and

so on until all points have post-impact velocities where they are not attempting to penetrate

the surfaces. This is considered the end of the collision. Thus a collision may consist of

several impact events.

At the end of the collision, it is possible that the surfaces may remain in contact

with each other. In this case the impacts comprising the collision transition into a contact

scenario. Sec. 5.3 will discuss how the transition from impact to contact is modeled in the
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proposed approach. In this work, it is necessary to address the transition from impact to

contact to match some experimental data.

5.2 Friction, Rigid Body, and Energetic Constraints

This section discusses the derivation of C in (5.6) as well as the energetic termination

condition for the impact events. During impact events, points may stick, slip or slip-reverse.

The slip-state of any given impact point is characterized in terms of the sliding speed along

the impact plane,






si = 0 and ṡi = 0 sticking

si = 0 and ṡi 6= 0 stick-slip transition

si 6= 0 slipping

(5.9)

where the subscript i refers to the impact point. In the literature, stick-slip behavior is

represented as a set of complementarity conditions [27], which establish frictional force

relationships for different slip states. These complementarity conditions are defined based

on Coulomb fricton [27, 95, 117], and form the basis for the LCP, which are solved us-

ing optimization techniques [117, 118]. This work uses a similar set of complementarity

conditions based on Coulomb friction law,






sticking dpti ≤ µs dpzi

stick − slip transition dpti = µs dpzi

slipping dpti = µd dpzi

(5.10)

where dpti =
√

dpxi

2 + dpyi
2, and i = 1, ..., 4. µs and µd are the static and dynamic

coefficients of friction. The relations in (5.10) express the complementarity conditions in

terms of force components, where dt is multiplied on both sides, leaving the differential

impulses.
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5.2.1 Frictional Constraint for Slipping

According to (5.10), if a given contact point i slips during an impact, the relationships

between the tangential and normal differential impulses are given by,

dpxi

dt
= −µi cos(φi)

dpzi
dt

dpyi
dt

= −µi sin(φi)
dpzi
dt

(5.11)

where µi = µd is the coefficient of friction for point i = 1, ..., 4. The equations in (5.11)

also govern the force relations during slip-reversal. The frictional constraints in (5.11) can

be expressed as,





dpxi
+ µi cos(φi) dpzi

dpyi + µi sin(φi) dpzi




 = Ui dp = 0 (5.12)

5.2.2 Frictional Constraint for Sticking

If a contact point i sticks during impact, the sliding speed is constrained to be zero,

si = 0, and therefore vxi
= vyi = 0. The differential velocities of the sticking points are

obtained from (5.5) as

dϑ = M dp =
[
mT

x1
mT

y1 mT
z1 . . .

]T
dp (5.13)

When an impact point sticks [22],





dvxi

dvyi




 =






mxi

myi




 dp = Ui dp = 0 (5.14)

5.2.3 Rigid-Body Constraints

In case of a single-point impacts, the differential impulses can be resolved just by

using the slipping or sticking frictional constraints. However, for multi-point impact ad-

ditional constraints are required for the distribution of the forces (differential impulses) to

various contact points. This work uses the rigidity property of the impacting body to derive
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additional constraints. These constraints can be expressed in terms of the direction cosines

associated with pairs of points on the rigid body,

η̂ =
(POi −POj)

||POi −POj||
= [ ηx ηy ηz ]

T (5.15)

where POi and POj are the position vectors from the body-attached reference point O to

the impact points i, j = 1, ..., 4, i 6= j. The relative motion of two impact points on the

same rigid body must be equal to zero when observed from the body-attached reference

frame and point, therefore

(vi − vj) · η̂ = 0

(vxi
− vxj

)ηx + (vyi − vyj )ηy + (vzi − vzj )ηz = wij ϑ = 0

(5.16)

Equation (5.16) provides a constraint equation which relates the velocities of points i and

j. The velocity projection method in Appendix A and [36–38] shows that velocity-level

rigid-body constraints may be transformed into force-level constraints as,

wij dp = 0 (5.17)

The rigid body constraint shown in (5.17) is an approximate force distribution law, which

assumes no deformation in the body during impact. In reality, objects composed of any

material would show some deformation during impact. So the assumption made here re-

garding the rigidity of the body is an idealization, that is admissible only for materials of

high stiffness that exhibit negligible amounts of deformation under compression. This as-

sumption significantly simplifies the analysis of multi-point impact analysis, and therefore

is advantageous in the context of hybrid dynamic simulation.

5.2.4 Final Frictional and Rigid Body Constraints

Sections 5.2.1, 5.2.2, and 5.2.4 presented the frictional and rigid body constraints

that can be imposed on the differential impulses. This section will demonstrate how these
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constraint may be used to resolve the differential impulses with respect to a single indepen-

dent impulse parameter. In order to resolve the differential impulses for an n-point impact

in terms of a single independent parameter, n − 1 rigid body constraints and 2n frictional

constraint are required. The frictional and rigid body constraints from (5.12), (5.14) and

(5.17) for the example block in Fig. 5.1 can be expressed as,

H dp =



















U1

...

U4

w14

w24

w34



















dp = 0 (5.18)

Note that the wij will always be linearly independent as long as i 6= j. The matrix H ∈

R
11×12 is rank deficient by one row. The linearly dependent and independent columns of H

can be separated as, H = [Hs Hr]. Where Hs ∈ R
11×11 is a full rank matrix, Hr ∈ R

11×1

is a linearly dependent column in H , such that

dp =






−H−1
s Hr

1




 dpn = C dpn (5.19)

where C relates all of the differential impulses to the single independent impulse parameter

dpn.

If si = 0, the differential impulses must satisfy the no-slip condition,

√
dp2xi

+ dp2yi ≤ µs dpzi =⇒
√

C2
xi

+ C2
yi

≤ µs Czi
(5.20)

where Cxi
, Cyi and Czi are the element of C associated with dpxi

, dpyi , and dpzi respec-

tively. Thus (5.20) implies that the slip state of an impact point is dependent on the friction

and rigid body constraints, rather than the value of pn. If the no-slip condition is not sat-

isfied, then point i slips along a new direction φ̂i. This is known as Slip-Reversal. The
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following section presents how this new slip direction φ̂i is calculated. Since this work

considers rigid bodies, if two or more impact points stick, then sticking is enforced in all

other contact points. Hence there can be only three possibility during stick-slip transition:

1) all points enter sticking, 2) a single point sticks, while the rest slip-reverse or 3) all

points slip-reverse in some new directions. If the slip states of any of the impact points

must be altered, H must be re-evaluated and all conclusions of sticking and slipping must

be rechecked.

5.2.5 Stick-Slip Transition

This section presents the methods used in this work to solve for the unique and in-

variant slip-direction at stick-slip transition and during slip-reversal. The invariant slip

direction at the stick-slip transition can only be solved by reformulating the differential ve-

locities in (5.5) in cylindrical coordinates [41]. The tangential components of the cartesian

differential velocities can be expressed in terms of cylindrical coordinates as,

vxi
= si cos(φi)

vyi = si sin(φi)







=⇒






dvxi

dvyi




 =






cos(φi) − sin(φi)

sin(φi) cos(φi)






︸ ︷︷ ︸
R






dsi

sidφi






(5.21)

The cartesian coordinate differential velocities may be further expressed in terms of differ-

ential impulse parameters, as shown in (5.13). Also note that the transformation R in (5.21)

is orthogonal. Hence the cylindrical coordinate differential velocities can be expressed as,





dsi

sidφi




 = RT






dvxi

dvyi




 =






cos(φi) sin(φi)

− sin(φi) cos(φi)











mxi

myi




 dp (5.22)

When the point i enters stick-slip transition the sliding velocity si becomes zero and results

in a change in sliding direction. The new sliding direction φ̂i can be calculated by substi-

tuting si = 0 in (5.22) and solving for φi, as shown in [22]. However this is a difficult task
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considering that (5.22) has nonlinear trigonometric functions of φi. Hence, these trigono-

metric functions are expressed in terms of differential impulse parameters using (5.11),

cos(φi) = − dpxi

µidpzi
sin(φi) = − dpyi

µidpzi

Substituting these into (5.22) yields two equations,





dsi

sidφi




 = − 1

µidpzi






dpxi
dpyi

−dpyi dpxi











mxi

myi




 dp (5.23)

The stick-slip transition takes place when the sliding velocity si for any point i comes

to rest. This situation may occur either 1) when a single contact point i comes to rest,

si = 0 while all other points continue to slip or 2) when all contact points come to rest

simultaneously. These scenarios are analyzed separately here.

5.2.5.1 Case: Single Point Enters Stick-Slip Transition

First, lets consider case when a single point i = 1 enters stick-slip transition, while

the other points 2, 3, and 4 are in slip. This yields s1 = 0, and consequently the first

equation of (5.23) for the point i = 1 would be given by,

0 =

[

dpx1
dpy1

]






my1

−mx1




 dp (5.24)

The frictional constraints on the other points and the rigid body constraints may be written

in terms of matrix H∗, and partitioned into H∗
s and H∗

r as,

H∗dp =



















U2

U3

U4

w14

w24

w34



















dp = H∗
sdps +H∗

r









dpx1

dpy1

dpz1









= 0 (5.25)
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where dps are the differential impulse parameters of the points in slip. H∗
s and H∗

r are

columns of H∗, corresponding to the slipping and stick-slip transition point differential

impulses. Hence, solving for the impulses using (5.25) and substituting into (5.24) yields,

0 =

[

dpx1
dpy1

]

Q
︷ ︸︸ ︷





myi

−mxi











−(H∗
s )

−1H∗
r

I














dpx1

dpy1

dpz1









=

[

dpx1
dpy1

]




Qo






dpx1

dpy1




+Qrdpz1






(5.26)

where,

Q =






Q11 Q12 Q13

Q21 Q22 Q23




 =

[

Qo Qr

]

When a contact point enters stick-slip transition, the tangential differential impulses on the

point are related to the normal differential impulse according to coulomb law of slipping

friction. However the slip direction changes to φi = φ̂i, which is an unique direction

such that si = 0 and dsi > 0 at stick-slip transition. Therefore the tangential differential

impulses during stick-slip transition may be normalized by the normal differential impulse

parameters as,





dpx1

dpy1




 = dpz1






dp̂x1

dp̂y1




 (5.27)

Now, substituting (5.27) into (5.26) and diving through with dp2z1 yields,

0 =

[

dp̂x1
dp̂y1

]

Qo






dp̂x1

dp̂y1




+QT

r






dp̂x1

dp̂y1




 (5.28)

Also, based on the Coulomb slipping friction law the normalized differential impulses form

the constraint,

dp̂2x1
+ dp̂2y1 = µ2

1 (5.29)
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Next, lets define a variable u = tanφ1, which represents the tangent of the unknown slip-

direction such that, dp̂y1 = udp̂x1
, then (5.28) and (5.29) may be rewritten as,

[Q22u
2 + (Q12 +Q21) u+Q11] dp̂x1

+ (Q13 + uQ23) = 0

(1 + u2) dp̂2x1
= µ2

1

(5.30)

Now solving the two equations in (5.30) to eliminate p̂x1
, yields a quartic polynomial equa-

tion of a single variable,

c0u
4 + c1u

3 + c2u
2 + c3u+ c4 = 0 (5.31)

where c0, c1, c2, c3 and c4 are coefficients formed by the elements of the matrix Q and the

coefficient of friction µi.

Equation (5.31) has four roots uk where k = 1, .., 4, each of which is associated to a

slip direction φ̂1k = tan−1 uk, known as isoclines [22]. The roots of the quartic equation

(5.31) can be calculated by forming a Frobenius companion matrix.

L =












0 0 0 −c4/c0

1 0 0 −c3/c0

0 1 0 −c2/c0

0 0 1 −c1/c0












(5.32)

The Frobenius Companion matrix L would yield a characteristic equation identical to the

quartic equation (5.31). Therefore the eigenvalues of L, λk are equal to the roots of the

quartic polynomial in (5.31). So, the four roots of (5.31) are uk = λk for k = 1, ..., 4.

Using the Coulomb friction relation in (5.29) and the relation dp̂y1 = udp̂x1
, the tangential

differential impulses of the point in stick-slip transition are given by,

dp̂x1k
= − µ1

√

1 + u2
k

dp̂y1k = − µ1uk
√

1 + u2
k
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Thus, the isocline associated with each root of (5.31) can be calculated as,

φ̂1k = tan−1

(
dp̂y1k
dp̂x1k

)

(5.33)

Based on the criteria for slip-reversal, if the contact point continues to slip after stick-

slip transition the slip-direction is reset to one of the isoclines. This selection is made by

computing ds1
dpz1

(φ1k) using the second equation form (5.23) and checking if the differential

tangential work is negative for a given isocline φ1k,

if
ds1
dpz1

(φ1k) > 0 and dWt(φ1k) < 0 then φ1 = φ̂1k (5.34)

for k = 1, ..., 4. dWt(φ1k) is the differential tangential work for the given isocline. The

differential tangential work is must be negative. Note that, it may be still possible to have

more than slip direction remaining, even after eliminating certain isoclines based on (5.34).

In such a situation, the unique slip direction φ̂ is chosen as the one that results in least

amount of energy loss due to friction, or φ1 = argmin
φ1k

− dWt(φ1k).

5.2.5.2 Case: All Points Enter Stick-Slip Transition

A different scenario may arise such that multiple contact points enter stick-slip tran-

sition simultaneously. Note, that this case may only occur when all of the contact points

are impacting the same plane, or in other words, the normal velocity/force direction for

all of the points are parallel to each other. In case of impacts involving multiple impact

planes (viz. a block simultaneously impacting a wall and a floor), the tangential velocity

of one contact point depends upon the normal velocity of another contact point. Therefore,

in this case, if multiple contact point simultaneously enters stick-slip transition, the normal

velocity components for these points must also be zero. Note that the only way the normal

velocities of these contact points can be simultaneously zero in this configuration, would

be if all initial velocities were zero at the beginning of the impact event, which contradicts

the definition of impacts (initial normal velocities for an impact event must be negative).
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On the other hand, if all contact point impacting a common impact plane simultane-

ously enter stick-slip transition, it would be necessary to evaluate the slip-direction for all

these point at this instant. Based on the rigidity assumption, a natural conclusion for this

situation is that the tangential velocities of all of the contact points must be zero, and conse-

quently all slip-directions φi are unknown. Although this scenario requires the solution for

all four contact points simultaneously, the number of unknown variable in this problem can

be reduced by taking advantage of the fact that all of contact point accelerations are related

to one another. Let us consider an independent contact point j = 4, having an acceleration

v̇j then all other contact point accelerations are defined by the relationship,

v̇k = v̇j + Ω̇×Pjk +Ω× (Ω×Pjk) (5.35)

where k = 1, 2, 3. Ω =

[

0 0 ω

]T

and Ω̇ are the angular velocities and accelerations

of the body. Pjk = [xjk, yjk, zjk]
T is the position vector between the points j and k. At the

stick-slip transition, the sliding speed of the contact points vanishes to si = 0. This implies

that the angular velocity of the body at stick-slip transition should also vanish, Ω = 0.

Therefore, the tangential acceleration components of the contact points k = 1, 2, 3 based

on (5.35), may be written in differential form as,





dvxk

dvyk




 =






dvxj

dvyj




 +






−dωyjk

dωxjk




 (5.36)
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Thus, the tangential components of the differential velocities of all contact points may be

rewritten in terms of the impulses as,















dvx1

dvy1
...

dvx4

dvy4
















= S









dvxj

dvyj

dω









=
















mx1

my1

...

mx4

my4
















︸ ︷︷ ︸

Mt

dp (5.37)

where S is a matrix containing the coefficients from (5.35). The differential impulses dp

may be resolved using the rigid body constraints,

H∗dp =









w14

w24

w34









dp =

[

H∗
s H∗

r

]






dps

dpr




 = 0 (5.38)

where,

dps = [dpz1 dpz2 dpz3 ]
T and dpr = [dpx1

dpy1 . . . dpx4
dpy4 dpz4 ]

T

Now (5.37) may be expressed in terms of dpr as,

S









dvxj

dvyj

dω









= Mt






−(H∗
s )

−1H∗
r

I






︸ ︷︷ ︸
G

dpr =

[

Gs Gr

]






dpt

dpn




 (5.39)
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where Gs and Gr are the dependent and independent columns of the matrix G. The vector

dpr is further partitioned into dpt and the independent impulse parameter dpn = dpz4 .

Hence, from (5.39) the dependent impulses may be solved as,

dpt =

[

(Gs)
−1S −(Gs)

−1Gr

]












dvxj

dvyj

dω

dpn












(5.40)

Thus, the differential impulses dp on the system during stick slip transition may be resolved

in terms of

u =

[

dvxj
dpn

dvyj
dpn

dω
dpn

1

]T

as,

dp =






−(H∗
s )

−1H∗
r

I











(Gs)
−1S −(Gs)

−1Gr

0 . . . 0 1






︸ ︷︷ ︸
Λ

u dpn =












Λxi

Λyi

...

Λz4












u dpn (5.41)

Therefore, the tangential impulses for point i = 1, ..., 4 would be given by,

dpxi
= Λxi

u dpn dpyi = Λyiu dpn (5.42)

The sliding speeds at all contact points vanishes, if all of the contact points simulta-

neously enter stick-slip transition. Thus, setting si = 0 for all contact points i = 1, ..., 4 in

(5.23) yields,

0 =

[

dpxi
dpyi

]






my1

−mx1




 dp (5.43)

Now substituting (5.41) and (5.42) in (5.43) and dividing both sides by dpn
2 yields,

0 = uT

[

Λxi

T Λyi
T

]






myi

−mxi




Λ

︸ ︷︷ ︸
Qi

u (5.44)
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for the contact points i = 1, ..., 4.

Now, in order to solve for the invariant slip-direction the solution to u needs to be

computed by simultaneously solving the quadratic form expression in (5.44) for all four

contact points i = 1, ..., 4. This poses a multipolynomial root finding problem. Equation

(5.44) can be rewritten as set of multipolynomial system in terms of ū =

[

u1 u2 u3

]

as,

f1(u1, u2, u3) = 0

f2(u1, u2, u3) = 0

f3(u1, u2, u3) = 0

f4(u1, u2, u3) = 0

(5.45)

where u1 =
dvx1
dpn

, u2 =
dvy1
dpn

, and u3 =
dω
dpn

. Since, it is important to locate all possible roots

of (5.44), traditional line-search based root-finding methods such as Newton-Raphson,

Secant or Broyden methods are not adequate, as they only converge to one among the

many possible solutions, subject to good initial guess. Hence, the feasible solution set for

the given multi-polynomial system requires a slightly more sophisticated treatment. Ap-

pendix. B shows a general procedure for computing all roots of a multi-polynomial system.

Note that the solutions ūk = [u1k , u2k , u3k ]
T thus obtained for (5.45) may contain

both real and complex solutions. Only the real solutions are admissible for the calculation

of the unknown slip-direction. Hence, using the real solutions ūk, the isoclines φ̂ik for each

point may be calculated.

φ̂ik = tan−1
(

Λxi
uk

Λyi
uk

)

where uk =






ūk

1




 (5.46)
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Finally, the unique slip-directions φ̂i are selected from the set of isoclines based on the

criteria,

if







ds1(φ̂ik) > 0

ds2(φ̂ik) > 0

ds3(φ̂ik) > 0

ds4(φ̂ik) > 0

and dWt(φik) < 0 then φ̂i = φ̂ik (5.47)

Similar, to the single-point stick-slip transition case, it is possible to end up with more than

one feasible solution set for the given multipolynomial system. In such cases the solution

is selected from the feasible set as the one that results in the least amount of energy loss

due to frictional forces.

5.2.6 Energetic Termination of Impact Events

In non-smooth impact models, the post-impact velocities are characterized in terms

of a coefficient of restitution (COR) parameter. There are three types of COR: Newton’s

COR (Kinematic), Poisson’s COR (Impulsive) and Stronge’s ECOR (Energetic). Newton’s

COR has been known for yielding in energy gain for certain frictional impacts [18, 19].

Glocker showed that Newton’s COR can violate energy consistency for certain types mech-

anisms, and developed a method for determining the bounds of COR that ensures energy

consistency, based on the condition number of the Delaussus matrix [119]. Poisson’s COR

has been generally proven to ensure energy consistency for frictional systems and for sys-

tems containing one single frictional contact [119]. However, it has been shown that Pois-

son’s COR can lead to energy gains for systems with more than one frictional contact [119].

Stronge’s ECOR on the other hand always ensures energy consistency, since this type of

COR directly enforces a constraint on the energy of the system [2, 22, 33]. This work uses

a global energetic coefficient of restitution based on the Stronge’s ECOR. The global en-

ergetic coefficient of restitution enforces a constraint on the energy dissipation throughout
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the system, unlike the standard Stronge’s ECOR which constrains the energy dissipation at

each contact point.

This section discusses the criterion for terminating an impact event which defines

the final impulse, pnf , and compression impulse, pnc, that were discussed toward the end

of Sec. 5.1. The energetic constraint used in this work is based on Stronge’s ECOR [22,

26, 32]. Stronge’s ECOR places an energetic constraint on the normal work, which is

an extension of the restitution expression given by Boulanger [30] and Routh [31]. In

Stronge’s approach, impact events take place in two phases, compression and restitution.

The ECOR determines energy loss in the system. However, it was originally formulated

for single point impacts. This work uses an extension of this concept, the global ECOR,

which determines the system energy loss for multi-point impacts.

The expression for the normal work during impact may be expressed as the summa-

tion of the energy dissipation at all of the contact points given by,

Wn =

∫ z1

0

fz1dz1 + . . .+

∫ z4

0

fz4dz4

=

∫ pz1

0

dpz1
dz1
dt

+ . . .+

∫ pz4

0

dpz4
dz4
dt

(5.48)

This yields the expression,

Wn(pn) =

∫ pn

0

ϑ(pn)
T
Cn dpn (5.49)

where ϑn(pn) and Cn are the normal components from the vectors ϑ(pn) and C respec-

tively. The normal work is a piecewise quadratic curve with respect to the independent

impulse parameter pn, as shown in Fig. 5.3. The normal work generally decreases during

the compression phase and starts to increase in restitution phase. Hence, the compression

phase ends when the normal work assumes a minimum value Wnc, given by,

Wnc = min (Wn(pn)) −→ pn (Wnc) = pnc (5.50)

where pnc is the impulse at the end of the compression phase.
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Figure 5.3: Example of a normal work plot.

It is difficult to find pnc analytically, because of the integration involved. Hence,

the value of pnc and Wnc = Wn(pnc) is found by numerically integrating (5.6) along with

(5.49), and using an event-location scheme to terminate this integration when the condition

in (5.50) is satisfied. The value of the normal work at the end of the compression phase,

Wnc, can be related to Wnf , the normal work value at the end of the impact event, as

Wnf = (1− e∗
2) Wnc (5.51)

where e∗ ∈ [−1, 1] is the global ECOR. Unlike the traditional ECOR which ∈ [0, 1], the

global ECOR may assume negative values. A negative value occurs when the impact event

terminates before the end of compression. Termination of impact events before full com-

pression is reached is a feature of multi-point impact analysis, and is not relevant for single

point impacts. This situation occurs when some impact points begin to separate while the

other points continue to be in impact. This type of impact event is typically followed by

another impact event involving only the points that remain in impact (vni
< 0) at the end

of the preceding impact event.
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The global ECOR parameter e∗ is used to impose a constraint on the total energy

dissipation of the system during collision. Therefore, an e∗ ∈ [−1, 1] always guarantees

the energy consistency for simultaneous multi-point impact analysis. The objective of this

work is not to quantify or characterize this parameter, rather it is to use this definition of

coefficient to restitution and adjust its value to obtain simulation results, that can be either

compared against experimental results or qualitatively analyzed for validity. The global

ECOR, similar to other definitions of coefficient of restitution (e.g. Newton’s, Poisson’s

or Stronge’s), is fitting parameter, that can be determined experimentally. However, since

e∗ is a system level parameter, its experimental determination may require the control of

a multitude of variable viz. material properties, contact geometries, configurations, initial

speeds and accelerations, etc.

The value of the independent impulse parameter at the end of the restitution phase pnf

is the solution of the integral equation in (5.49) for a normal work value of Wnf . Similar to

pnc, the value of pnf is found using event location during the numerical integration of (5.6)

and (5.49). Since Wn(pn) is a piece-wise quadratic function, for any given value of Wnf ,

there must exist atleast two solutions of pnf , pnf < pnc and pnf > pnc. The velocities at

the end of the collision are used as the initial conditions when the time-domain integration

is restarted.

5.3 Transition from Impact to Contact

Typically, surfaces rebound after a collision, but after the energy is lost in successive

collisions, the amount of rebound decreases. As the magnitude of the normal velocities

for the rebound decrease, the time duration between impacts essentially converges to zero.

This results in an accumulation of impact events and causes the numerical integrator to stop

or fail. This situation is known as chattering or the zeno phenomenon and is a feature of
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hybrid dynamic simulation. This situation is sometimes addressed using more advanced

numerical schemes [68–71]. However use of such numerical schemes would neglect the

dynamics of the system engaged in sustained contact, which is well understood. Hence, in

this work the idea is to transition to a contact mode by enforcing some constraints based on

the non-penetrability criteria and Coulomb friction, when the simulation starts to chatter.

The criteria used in this work for enforcing these contact constraints constraints is

given by,






|vzi(t)| ≤ ǫv and v̇zi(t) < 0 Contact

vzi(t) < −ǫv and v̇zi(t) < 0 Impact

vzi(t) > ǫv or v̇zi(t) > 0 Separation

(5.52)

where ǫv is a small threshold value selected to determine if the contact points have near-zero

normal velocity. During contact, the non-penetrability constraint must always be satisfied.

However, similar to the impulse-domain analysis, the frictional constraints can switch dur-

ing contact depending upon whether a contact point sticks or slips. In the proposed method,

the contact constraint forces are first calculated by assuming all of the contact points are

sticking. Then the reaction forces are checked using the Coulomb friction law to identify

contact points that are slipping. Finally, sliding frictional forces are enforced for the sliding

points.

Initially, during a no-rebound contact phase, all of the points satisfying the contact

criteria in (5.52) are assumed to be sticking. Therefore both the tangential and normal

components of velocity are constrained to be equal to zero. Consider the velocities ϑc and

accelerations ϑ̇c of a set of contact points c that satisfies the contact constraint in (5.52),

0 = ϑc = [ vx1
vy1 vz1 · · · ]T = Jc q̇ (5.53)

and,

0 = ϑ̇c = [ v̇x1
v̇y1 v̇z1 · · · ]T = Jc q̈ + J̇c q̇ (5.54)
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where Jc is the Jacobian matrix associated with ϑc. Substituting the expression for q̈ from

(5.2),

0 = Jc A
−1Jc

TF − JcA
−1 (b(q, q̇) + g(q)) + J̇c q̇ (5.55)

Similar to the impulse domain analysis, the contact forces F are constrained by the rigid

body and frictional constraints. The contact constraint forces may be resolved as,

F = [ fx1
fy1 fz1 . . . fx4

fy4 fz4 ]
T = C Fr (5.56)

where Fr is an independent force parameter. The vector C constrains the forces based on

the Coulomb friction and the rigid body constraints, as shown in Sec. 5.2. First C is com-

puted considering all of the contact points to be in sticking, then the no-slip condition in

(5.20) is checked to identify the points that slipping. If a contact point sticks, both tan-

gential and normal components of the velocity and acceleration for the point is constrained

to be zero. When a contact point slips, the tangential velocities have unknown non-zero

values. Thus, the velocity and acceleration constraints in (5.53) and (5.54) need to be re-

stricted to only the normal components for the slipping points. The tangential forces are

then given by Coulomb’s friction law.

Enforcing the slip and no-slip constraints is accomplished by partitioning the reaction

forces as follows:

F =






Fslip

Fstick




 = Sc






Fslipn

Fstick




 (5.57)

where Fslip and Fstick are the forces at the contact points that are slipping and sticking,

respectively and Fslipn are the normal forces at the points i that are slipping,

Fslip = [ fx1
fy1 fz1 · · · ]T Fslipn = [ fz1 · · · ]T (5.58)
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In (5.57) the matrix Sc relates the normal forces of the slipping points to the tangential

forces using the equality relation of the Coulomb friction law,

Sc =









−µi cos(φi) 0

−µi sin(φi) 0
0

0 I









(5.59)

where µi = µd is the dynamic coefficient of friction at point i, and I is an identity matrix.

Equation (5.59) shows the matrix Sc as if i refers to a single point, but it should be suitably

adjusted when considering more than one point.

Using the dual property of the Jacobian matrix, the generalized active forces, Γ in

(5.2), are related to the constraint forces as

Γ = JT
c F = JT

c Sc






Fslipn

Fstick




 (5.60)

Based on the dual property of the Jacobian matrix, as shown in the Appendix A, the force

constraint in (5.60) may be written as a velocity constraint,

0 =






ϑstick

ϑslipn




 = ST

c Jc q̇ = JI q̇I + JD q̇D (5.61)

where ϑstick refers to both the normal and tangential velocity components of the points

that are sticking, ϑslipn refers to only the normal velocity components of the points that are

slipping, and q̇D and q̇I are the dependent and independent generalized speeds.

In (5.61), the matrix ST
c Jc is partitioned as ST

c Jc = QR = Q

[

RD RI

]

=
[

JD JI

]

with the help of the QR decomposition with column pivoting. Now q̇ and q̈

can be expressed as

q̇ =






q̇D

q̇I




 =






−J−1
D JI

I




 q̇I = G q̇I (5.62)
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and,

q̈ = G q̈I + Ġ q̇I (5.63)

where

Ġ q̇I =






−J−1
D

(

ṠT
c Jc + ST

c J̇c

)

q̇

0




 (5.64)

Substituting (5.61) and (5.63) into (5.2) and pre-multiplying with GT yields,

GT A G q̈I + GT
(

A Ġ q̇I + b + g
)

= GTJT
c Sc






Fslipn

Fstick




 (5.65)

From (5.61) and (5.62), it can be easily shown that,

GTJT
c Sc = 0 (5.66)

Hence, the reduced set of equations of motion are given by,

GT A G q̈I + GT
(

A Ġ q̇I + b + g
)

= 0 (5.67)

Thus, during contact (5.67), (5.62) and (5.63) are used to integrate the states of dynamic

system. Hence the time-domain equations of motion (EOM) during contact can be summa-

rized as,






EOM : GT A G q̈I + GT
(

A Ġ q̇I + b + g
)

= 0

where q̈I = −(GTAG)
−1
GT (AĠq̇I + b(q, q̇) + g(q))

and q̇ = Gq̇I, G =






−J−1
D JI

I




 ,

Ġ q̇I =






−J−1
D

(

ṠT
c Jc + ST

c J̇c

)

q̇

0






(5.68)

Note that when the system is not in contact at any point the matrix Sc
TJc = [JD JI] is

empty. Consequently, G = I , where I is an identity matrix and Ġ = 0. Substituting
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these back into (5.68), gives back (5.2) with the right-hand side (forcing terms) set to zero.

Hence, (5.68) represents both the constrained and unconstrained time-domain dynamics of

the system.
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CHAPTER 6

SIMULATIONS OF CONTACT AND IMPACT IN SPATIAL RIGID SYSTEMS

6.1 Simulation Technique

This section discusses the techniques used in this work to simulate the aforemen-

tioned hybrid dynamic system, in which the dynamics evolve while switching back and

forth between the impulse domain and the time domain. The simulation is initialized with

a set of initial conditions on the generalized coordinates q(0) and generalized speed q̇(0).

The first step is to identify a set of contact points (if any) indexed i, such that, zi ≤ 0,

vzi ≤ ǫv and v̇zi < 0. The parameter ǫv is a small threshold value used to determine if

|vzi| → 0. Next all these contact points are checked for the impact criteria, i.e. vzi < −ǫv ,

in accordance to (5.52). If one or more contact point(s) test positive to the impact criteria

in (5.52), the impulse domain analysis is performed considering all of the contact points.

The contact point velocities are numerically integrated using the differential equations in

(5.6). The numerical integration is terminated using an event-location scheme. The contact

point velocities are rechecked at the end of the impact event. If the normal velocities of

any of the contact points remain vzi < −ǫv, a following impact event takes place involving

only the contact points with vzi < −ǫv . This process is repeated until all of the contact

point velocities are vzi > −ǫv. The post-impact velocities thus obtained, are then used to

initialize the time-domain dynamics. The time-domain dynamics is represented by the set

of differential equations in (5.68). Again during the time domain dynamics, if there exists

any contact point(s) such that, zi ≤ 0, |vzi| ≤ ǫv and v̇zi < 0, then the non-penetrability and

Coulomb friction constraints are embedded. During the time domain simulation, an event

location scheme is used to detect impacts based on the conditions specified in (5.52).
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6.2 Results

This section presents a number of simulation results on example of multi-point con-

tact and impact problems using the proposed method. The first two simulations presented

in this section pertain to examples of a three-dimensional rigid block undergoing a four-

point impact against the ground and a three-dimensional sphere undergoing a three-point

impact against a wall corner. These examples are presented to demonstrate how the pro-

posed method is used to solve multi-point impact problems. The next example shows a

set results for a three-dimensional block undergoing a series of impact and contact. In this

example the number of points used for the contact/impact analysis varied. The objective of

presenting this result is to show that the proposed method can be used to model contacts

and impacts between generalized surfaces involving a large number of contact points. The

final example presents a set of results on the angular response of a free three-dimension

rocking block model. The results presented in this example is validated using experimental

results from another study.

The hybrid dynamic simulation technique used in this work was implemented with

the help of Matlab’s ode45, which is an adaptive Runge-Kutta integrator based on Dormand-

Prince method [98, 99]. The results presented in this section were simulated on an Intel(R)

Core(TM) 2 Duo CPU with 3 GHz processor and 4 GB RAM.

6.2.1 Example-1: 3D Block 4 point Impact

This section presents the example of a three-dimensional block model impacting a

ground, as shown in Fig.5.1. The block model identifies four impact points, denoted by

1, 2, 3, and 4, which are located at the corner points of the impacting surface of the block

and its center of mass at point O. The system has six DOFs described by six generalized

coordinates - three translation q1, q2, q3 and three orientation q4, q5, q6 coordinates. The

block has length l = 0.1m, width b = 0.2m, and height h = 0.05m with mass m = 0.25 kg.
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It is assumed in the simulations that follow, that the impact of the block’s bottom surface

with the ground occurs only at the points identified in Fig. 5.1. A static and dynamic

coefficient of friction are µs = 0.6 and µd = 0.35, respectively. The global ECOR value

for this impact is chosen to be e∗ = 0.50.

The simulation starts with a configuration of the block such that the edge defined by

the points 1 and 2 is in contact with the ground. Contact constraints prevent the block from

penetrating into the ground, so the block pivots along the edge until a collision takes place

with the ground surface. All four points are in contact when this collision takes place, hence

all these points are considered for the impact analysis. This presents an indeterminate case,

as the number of contact forces exceed the number of degrees of freedom of the system.

The frictional and rigid body constraints as presented in Sec. 5.2 resolve this indeterminacy.

The energetic termination criteria in Sec. 5.2.6, guarantees energy consistency in the post-

impact states. The results of the simulation are depicted in Fig. 6.1a. A plot of the system
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Figure 6.1: (a) Simulation of the 3D rocking block example with four corner impact points
and (b) energy consistency for the simulation.

energy is included in Fig. 6.1b to show energy consistency for the simulation performed.
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The impact problem shown here is an example of multi-point impact analysis, where the

indeterminacy is resolved by application of rigid body constraints. The impact problem

consists of two consecutive impact events. The first impact event is the only indeterminate

one in the simulation, which involves the simultaneous impact of points 1, 2, 3, and 4. The

post-impact velocity of points 3 and 4 at the end of the first impact event are negative which

indicate that they are still moving toward the ground surface. This situation is interpreted as

a second impact event involving only points 3 and 4, a determinate collision. Furthermore,

points 1 and 2 have a positive velocity after the first impact event, which are interpreted

as having reached their post-impact state. The second impact event is resolved before

restarting the simulation. The result for this case is obtained by using global ECORs
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Figure 6.2: (a) Evolution of sliding velocities, sliding directions, and normal velocities and
(b) Normal work done throughout the first impact event for the 3D rocking block example
with four corner impact points.

e∗ = 0.50, 0.50 for the first and second impact events, respectively. The first impact event,

illustrated in Fig. 6.2, shows a plot of the normal work and evolution of sliding velocities,

sliding directions, and normal velocities. The inclusion of friction for this case does cause

the tangential velocities to come to rest together at the stick-slip transition in the first impact
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Figure 6.3: (a) Evolution of sliding velocities, sliding directions, and normal velocities
and (b) Normal work done throughout the second impact event for the 3D rocking block
example with four corner impact points.

event. Analysis of this stick-slip transition using the techniques discussed in Sec. 5.2, yield

new feasible slip-directions, however all of these new slip-directions violate the condition

(5.47). This implies that the assumed estimate of the static coefficient of friction µs = 0.6

is invalid for the given configuration, and the contact points must stick. The plot of the

normal work in Fig. 6.2a shows its characteristic shape. Figure 6.2b shows the velocities

during this impact event. As it can be seen in Fig. 6.2b, the normal velocities of all contact

points do not reach positive values at the end of the impact event, hence a second impact

event follows. Figures 6.3a and 6.3b shows the normal work and velocities plots for the

second impact event, which involves only two contact points which had negative velocities

at the end of the first impact event. The tangential velocities Fig. 6.3b continue to be zero

during the second impact event due to sticking constraints, and both normal velocity values

reach positive values as the impact event terminates.
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Figure 6.4: Three dimensional model of a sphere impacting a corner.

6.2.2 Example-2: 3D Ball 3 point Impact

The three-dimensional model of the sphere is shown in Fig. 6.4. The sphere has

three impact points denoted by 1, 2, and 3. This system has six degrees-of-freedom (DOF)

defined by six generalized coordinates - three translation q1, q2, q3 and three orientation q4,

q5, q6 coordinates. The sphere has mass, m = 1 kg and radius R = 0.50 m.

An arbitrary initial position and translational velocity was used for the ball simula-

tion with no initial angular velocity. The simulation of the sphere is depicted in Fig. 6.5a,

as it impacts a corner formed by the ground and two wall planes, and ends when a second

impact is captured with the ground. This corner impact event is an indeterminate collision

involving points 1, 2, and 3. An e∗ = 0.50 and µB = µC = µD = 0.35 is used. After im-

pacting the corner, the position of the impact points 1, 2, and 3 change which demonstrate

the sphere’s post-impact angular velocity as a result of impact. A plot of the system energy

is shown in Fig. 6.5(b) to show energy consistency throughout the simulation.

After impact, the sphere follows a lower trajectory which suggests that the system

lost energy from the impact. This is supported by the energy plot in Fig. 6.5(b), which is
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Figure 6.5: (a) Simulation results and (b) Energy consistency of the 3D sphere example
impacting a corner.

further used to determine that no energy gains were encountered throughout the simulation.
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Figure 6.6: (a) Normal work done and (b) evolution of sliding velocities, sliding directions,
and normal velocities throughout the impact event for the 3D sphere example.

The result of this three-dimensional case was obtained using the developed numerical

framework. First, the impulse at the end of the compression phase is determined and used
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to find Wnc, and the net work done on the systemWnf with the global ECOR. The evolution

of the sliding velocities, sliding directions, and normal velocities were determined by the

numerical integration of the system equations in (5.5) throughout the impact event, and

shown in Fig. 6.6b. A plot of the normal work throughout the impact event is shown in

Fig. 6.6a. In this particular simulation, none of the sliding velocities come to rest at the

stick-slip transition, which result in no shifts in the normal work plot.

The end condition for the normal impulse pnf is evaluated with the knowledge of

Wnf , which marks the end of the impact event. The post-impact velocities at the impact

end serve as the initial conditions for restarting the simulation to model the system after

impact.

6.2.3 Example-3: 3D Block Surface-Surface Contact and Impact

The example presented in this section demonstrates that the proposed method of con-

tact and impact analysis may be used to model general surface to surface contact and impact

problems. Multibody dynamics simulation systems typically store geometry information

of bodies as a collection of points, in the form of a mesh or a grid. Contact and impact

analysis may be performed on these points upon collision detection. The preceding ex-

amples demonstrated that by using the proposed method contact and impact analysis may

be performed for a given set of points. However, it is important to show that the results

obtained using this technique is invariant to the number of points used for a given con-

tact/impact configuration. This is to show that if the geometries of the impacting bodies are

represented using some mesh, the contact and impact analysis results are not affected by

the mesh density. In this example a three-dimensional rigid block model of mass 2.5 kg

and dimensions 1.5m×1.5m×1m is dropped from a height of 1.5m (the distance between

the center of mass and the ground), with a roll angle of −0.2rad. The values for static and

dynamic coefficients of friction are selected to be µs = 0.1 and µd = 0.2, respectively. The
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Figure 6.7: Block with (a) four points (b) eight points (c) sixteen points (d) twenty-five
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global ECOR value is chosen to be e∗ = 0.5. The bottom face of the block interacts with

the ground throughout the simulation. In this example, the simulation is performed for four

different cases, while using the same initial configuration and simulation parameters. In

these four cases the bottom surface of the block is represented using 1) four corner points,

2) eight points evenly distributed on the edges, 3) sixteen points and 4) twenty-five points

distributed throughout the bottom surface. These four cases are shown in Fig. 6.7. Results

were generated using the proposed method over a 2 seconds period, while considering all

the points that came in contact for the contact and impact analysis.

Figure 6.8 shows the evolution of the generalized coordinates for the 1) Four Point,

2) Eight Point, 3) Sixteen Point, and 4) Twenty-Five Point cases for the 2 second simu-

lation. It is clear from these plots, that the trajectories of the generalized coordinates for

these cases remains very close to one another throughout the simulation period. The small

errors between the trajectories are mainly a consequence of numerical tolerance, and can

be considered negligible. The energy dissipation exhibited by the system during all these

simulations are shown in Fig. 6.9. Again the energy dissipation plots reaffirm that the over-

all behavior of the simulation is not affected due to the redundant number of points used

for the contact and impact analysis. The steps on the total energy plot reflect the energy

dissipation due to impact.

Another interesting feature of the proposed contact/impact analysis technique is re-

vealed by investigating individual impact events. Fig. 6.10 shows a comparison of the

normal work plot for the first impact event during the simulation. Notice, that for all four

cases the values of Wnc and Wnf are identical. However, the pnf values are different for the

four cases. The final value of of the independent impulse parameter is reduced for greater

number of points. This indicates that the rigid-body constraints used in the model is in

effect distributing the net impulse over the constituent points. Hence, for a greater number
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Figure 6.8: Comparison of the generalized coordinates of the block
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Figure 6.9: Energy Dissipation for (a) Four Point (CPU Time: 21.52 s), (b) Eight Point
(CPU Time: 18.66 s), (c) Sixteen Point (CPU Time: 27.98 s) and, (d) Twenty-Five Point
Cases (CPU Time: 35.67 s)

of points, each point contributes a lesser amount towards the net impulse induced on the

system.

6.2.4 Example-4: 3D Rocking Block Angular Response

The example provides an experimental validation for the proposed method. Here

the benchmark problem of rocking block is simulated and compared against experimental

results. The rocking block problem has be been extensively studied in the literature [34,35,
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Figure 6.10: Comparison of the Normal Work plot for the first impact event.

109–115]. These models use stiffness properties [113], local energy dissipation properties

[34, 109] or global kinematic restitution properties [115].

The data analyzed in this example comes from [113,114], which reports experimental

data on different specimens of concrete blocks for the cases of free-rocking and rocking

with base excitation; herein, only the free-rocking block results are considered. The work

in [103] matched these experimental results while considering a planar block, using what is

known as the LZB model, which was proposed in [34, 35, 109–112]. The LZB model uses

local ECORs for each contact point and relates the local energy losses by a distributing law,

based on parameters defined as contact stiffness ratios and elasticity coefficients. The work

in [38] also matches the data from [113, 114] using a planar block model, and considering

different global ECOR values for single and multiple(two)-point impacts. The approach

used in [38] is essentially a planar version of the method proposed in this work.
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Table 6.1: Choice of effective width

Block Specimen Geometric LZB model CRB model
width(m) [114] width(m) [103] width(m)

1 0.25 0.23 0.23

2 0.17 0.155 0.155
4 0.16 0.115 0.115

Three different specimens were used for the free-rocking block experiments in [114]:

1) Specimen 1 with a width of 0.25 m, height of 1 m and mass of 503 kg, 2) Specimen 2

with width and height 0.17 m and 1 m respectively and a mass of 228 kg, and 3) Specimen

4 of width 0.16 m, height 0.457 m and mass 245 kg. The width of the block needs to

be calibrated, since the angular response to a rocking block problem is highly sensitive

to variations in width [116]. A detailed discussion on this presented in [103, 116]. The

effective width selected herein for all of the specimens are the same as in [103, 116], and

are tabulated in Table. 6.1. The length of the three specimens were selected to be the same

as in [114]: 0.7594m, 0.502m and 0.705m for Specimen 1, Specimen 2 and Specimen 4

respectively.

Fig. 6.11 compares the simulated and experimental angular response of the three

specimens. Here, Pena refers to the measured angular response from the experiments done

by Pena et.al [114], LZB refers to the simulated response using the LZB model [103],

which is based on a two-dimensional block, CRB-2D refers to the planar model proposed

in [38], and CRB-3D is the response using the three-dimensional model proposed in this

work. The static and dynamic coefficient of friction used for the simulation are µs = 0.577

and µd = 0.3 respectively, identical to [103].

The angular responses shown as CRB-2D in 6.11, from [38] were matched using

two ECOR values; a positive ECOR value for single point impact and a negative ECOR

value for two-point impacts. This work uses the same ECOR values as [38] to match the
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Figure 6.11: Angular Response for (a) Specimen 1 (CPU Time: 186.89 s) (b) Specimen 2
(CPU Time: 136.98 s) (c) Specimen 4 (CPU Time: 74.20 s). The angular response data for
Pena and LZB, were obtained from plots shown in Fig.5 of [103].

the angular response data. Here the positive ECOR values identical to [38] are chosen

for all 1-point and 2-point impact events, and the negative ECOR values are selected for

all 3-point and 4-point impact events. The angular response plots in Fig. 6.11 show very

little difference in results between the 2D and 3D models listed as CRB-2D and CRB-3D

respectively while using the same values of ECOR. Fig. 6.11 also shows the responses

from the planar LZB model from [103]. The LZB model also used two ECOR values to

match the angular response data, however these are local ECORs which had to be switched
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in the middle of the simulation. All of the simulation parameters used for the LZB and

CRB-2D/3D models are summarized in Table 6.2. Fig. 6.12 shows the energy dissipation

during rocking for all the specimen. The curved steps of the total energy plots indicate that

a considerable amount of energy is lost in friction during contact.

Table 6.2: Simulation Parameters

Specimen 1 Specimen 2 Specimen 4
LZB CRB-2D/3D LZB CRB-2D/3D LZB CRB-2D/3D

µd 0.3 0.3 0.3 0.3 0.3 0.3
µs 0.577 0.577 0.577 0.577 0.577 0.577

ECORs {0.97, 0.88} {−0.73, 0.8} 0.999 {−0.95, 0.8} {0.99, 0.87} {−0.96, 0.8}
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Figure 6.12: Energy consistency throughout the simulation for (a) Specimen 1 (b) Speci-
men 2 (c) Specimen 4 .
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CHAPTER 7

AUGMENTED IMPACT MODEL TO EVOLVE FORCES, DEFORMATIONS AND

TIME DURING COLLISIONS

A significant disadvantage of rigid collision models [22, 28, 38, 43, 48, 49], which

which analyze impacts in the impulse domain, is that they all lose critical information like

the force history and deformation history during the impact event. This work attempts to

reformulate the rigidity based impulse-domain equations in [41, 42] to derive a model of

impact that includes the force and deformation history during the impact. However, in

order to do this, it would be necessary to slightly relax the rigidity assumption and use

a deformation based force model from contact mechanics. The proposed model would

retain the rigidity property among the contact points within the impacting bodies, but relax

the intra-body non-penetration condition to allow tiny deformations, such that the forces

during the impact could be calculated. The rigid body constraints along with the frictional

constraints, as shown in [38, 42], help resolve all contact forces with respect to a single

independent normal force parameter. Hence, in the present work a force model is used

only for the independent force parameter, such that all other contact forces on the system

may be calculated in terms of the independent force parameter.

A vast variety of contact force models can be found in the literature. These con-

tact models may be broadly classified into a number of categories namely purely elas-

tic [58–60], visco-elastic [61–63], elastoplastic [55, 64, 65] and visco-elastoplastic models

[66, 67]. In purely elastic models, the forces depend solely on the deformation of the bod-

ies. A popular example of purely elastic model of contact is the Hertz’s contact model [58],

which was proposed by Hertz in 1882, and subsequently became the foundation for much
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of the later works in contact mechanics. Purely elastic contact force models are suitable

force static contacts, but they don’t capture very well the dynamic behaviour involved in

impacts. The visco-elastic models take into account the viscous(damping) effects involved

in contact dynamics. Some of the well-known examples of visco-elastic models would

include Hunt-Crossley [60,62], Kelvin-Voigt [60,61], Lankarani-Nikravesh [60,120], Flo-

res [60, 121], Gharib-Hurmuzlu [60, 122] models. Visco-elastic contact models have very

popular usage in the modeling of impacts in multibody dynamic simulations. However,

both purely elastic and visco-elastic models do not take into account the permanent de-

formations typically associated with impacts. Impacts between rigid bodies usually result

in observable permanent deformations in the bodies. In order to take into account the ef-

fects of permanent deformations, it is important to allow some plastic behaviour in the

contact models. Both elastoplastic and visco-elastoplastic models incorporate the effects

of plasticity in the contact force model. Elastoplastic and visco-elastoplastic models con-

sist of two phases: compression phase and restiutution phase. The contact forces increase

during the compression phase with respect to the induced deformation till contact point

accelerations reach zero. The compression phase is always followed by a restitution phase

where the forces decrease till they become zero. In elastoplastic and visco-elastoplastic

models the compression phase is typically subdivided into three parts: 1) elastic regime,

2) mixed elastic-plastic regime and 3) fully plastic regime. These three regimes within the

compression phase, capture both elastic and plastic behaviour of the material in contact.

The restitution phase unloads the maximum compressive force reached at the end of the

compression phase. Hence, the restitution phase is usually modelled as a purely elastic

phase. The elastoplastic models only dependent upon the deformation of the contact point

and do not consider the viscous behaviour of the materials in contact, so they are more ap-

propriate for static contacts. The visco-elastoplastic models of forces introduce a damping

term based on the deformation rates to the elastoplastic models, which make them more
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suitable for capturing the velocity dependent dynamic behavior involved in impacts. This

work uses a visco-elastoplastic model of contact force for the model of impact, similar to

the one proposed in [67]. Although this work uses the visco-elastoplastic contact force

model in [67] to define the independent force parameter, the general approach proposed in

this work can be applied to any contact force model from the contact mechanics literature,

viz. [55, 58, 62].

7.1 Contact Forces during Impact Event

The previous section showed that the contact point velocities of a rigid object may be

evolved in terms of a single independent impulse parameter. This type of treatment of the

impact problem discards certain information such as elapsed-time, force history and inden-

tations at the contact point. The goal of this section is to modify the non-smooth model of

impact shown in Sec. 5.1, with the help of a classical contact-mechanical model, such that

the forces at the various contact points during the impact event could be obtained. In con-

tact mechanics, the forces over a contact patch are defined in terms of the material stiffness

properties and the deformations associated with the applied contact force. Although the

impulse-domain model of impact, as presented in Sec. 5.1 assumes no change in configu-

ration during the impact event, in reality there are small deformations associated with each

contact point. In this work, we analyze these small deformations within the framework of

a rigid body collision analysis.

7.1.1 Contact Deformations

Consider the side-view schematic of the rigid block impacting the ground in Fig. 7.1.

The deformations associated with contact points i = {1, ..., 4} are represented by δi. In this

work, the deformation δi is defined as the relative displacement of the ground with respect

to the region around the contact points. Note that δi is not defined as the deformation of
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Figure 7.1: Side-view of the rigid block from N̂y − N̂z plane, showing the indentation of
the ground during an impact event

the ground, rather it is a value representing the combined deformation of both the ground

and the block. Adhering to the notation used in Sec. 5.1, the two tangential and one

normal force components at contact points i = {1, ..., 4} are fxi
, fyi , and fzi respectively.

The tangential forces fxi
and fyi are related to the normal forces fzi based on Coulomb

friction, similar to (5.10). The normal forces are non-adhesive and depend upon the local

deformation and deformation rates, fzi = fzi

(

δi, δ̇i

)

. In Sec. 5.1, the rigid impact model

was derived such that all impact states can be evolved with respect to an independent normal

impulse parameter pn. Hence, here it is necessary to identify the force and deformation

parameters associated with pn. Let the deformation and normal force associated with pn be

δn and fn = fn

(

δn, δ̇n

)

, respectively. Then the change in time during the impact event can

be expressed in terms of the deformation as,

vn = −dδn
dt

−→ dt = − 1

vn
dδn =

1

δ̇n
dδn (7.1)
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where, vn = −δ̇n is the normal velocity or the deformation rate of the contact point asso-

ciated with the independent normal impulse parameter. Also, the sign convention between

normal velocity and deformation is important in (7.1). Note that the relation (7.1) becomes

singular when vn → 0. Thus, an alternative definition for the change in time can be ex-

pressed in terms of the independent normal force,

dt =
1

fn
dpn (7.2)

Equation (7.2) becomes singular when fn → 0. Therefore, the definition of the change in

time needs to be switched from (7.1) to (7.2), when vn = 0, and vice-verse when fn = 0.

This would lead to two different sets of equations; one for each of these conditions. The

two sets of equations would be integrated with respect to two different variables i.e. δn and

pn. Hence it is more convenient represent the relationships in (7.1) and (7.2) in terms of a

new variable β, which is defined in differential form as,

dβ =







δ̇n

ǭ|δ̇n|
dδn if vn 6= 0 and fn = 0

dpn if fn > 0

(7.3)

Now the required integration for the two cases can be carried out in terms of this new

variable β. The advantage of deriving the differential equations in terms of this new variable

β is that they can be integrated without requiring an event-based scheme to account for the

change in the independent variable. Here the relationship (7.3) is designed such that the

equations in (7.1) and (7.2) could be integrated such that dβ is always positive. Note that

according to the first relationship of (7.3), dδn would change sign with respect to δ̇n
|δ̇n|

, if

dβ > 0. This takes care of the restitution phase of an impact; as it would be seen later δn

decreases during the restitution phase. In the first relationship, dβ is also inversely scaled

by an arbitrarily small scaling term ǭ. Typically in impacts the impulse values are larger

than the deformation values by several orders of magnitude, i.e. pn >> δn. Therefore,
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the addition of the small scaling term ǭ helps in the smooth transition between δn and pn.

Lastly, note that during an impact the condition vn = fn = 0 can only occur when the

contact point(s) enters a “stable contact” (no-rebound contact). In other words, the impact

event would terminate when vn = fn = 0 is reached.

7.1.1.1 Case: vn 6= 0 and fn = 0

In the case when vn 6= 0 and fn = 0, recall (7.3), the differential of the elapsed

time is expressed in terms of (7.1). The independent differential impulse parameter can be

expressed in terms of its corresponding deformation as,

dpn = fndt = −fn
vn

dδn (7.4)

The normal deformations for all of the contact points may be related to the deformation as-

sociated with the independent normal impulse. Let the normal deformations for all contact

points be δ =

[

δ1 . . . δ4

]T

, then by using (7.1), the differential of δ would be given

by,

dδ = δ̇dt =
vz

vn
dδn (7.5)

where vz are the normal velocity components for all contact points, and are related to the

normal deformation rates of the contact points as δ̇ = −vz . Using (7.4), the differential

equations associated with the velocities and the normal work from (5.5) and (5.49) respec-

tively, can be expressed in terms of the independent deformation parameter δn. Thus, the
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system states can be evolved with respect to the variable β when vn 6= 0 and fn = 0, and

the set of differential equations to be integrated for this case can be summarized as,

Velocities :







dϑcyl = −ǭPMC
fn
vn

δ̇n

|δ̇n|
dβ if Slipping

dϑ = −ǭMC
fn
vn

δ̇n

|δ̇n|
dβ if Sticking

Impulses : dp = −ǭC
fn
vn

δ̇n

|δ̇n|
dβ , Normal Work : dWn = −ǭvT

z Cz
fn
vn

δ̇n

|δ̇n|
dβ

Deformations : dδ = ǭ
vz

vn

δ̇n

|δ̇n|
dβ , Elapsed Time : dt = −ǭ

1

vn

δ̇n

|δ̇n|
dβ

(7.6)

where, P is a transformation matrix between Cartesian and cylindrical coordinate differen-

tial velocities.

7.1.1.2 Case:fn > 0

When fn > 0, the system can be integrated with respect to the independent normal

impulse parameter pn. The differential time expression in (7.2) is used for this case. Then,

the differential deformations for all contact points would be given by dδ = −vz

fn
dpn. Thus,

the system of equations to be integrated with respect to β = pn for this case, can be

summarized as,

Velocities :







dϑcyl = PMCdβ if Slipping

dϑ = MCdβ if Sticking

Impulses : dp = Cdβ , Normal Work : dWn = vT
z Czdβ

Deformations : dδ = −vz

fn
dβ , Elapsed Time : dt =

1

fn
dβ

(7.7)
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Hence, evolving the sets of equations given for the two cases in (7.6) and (7.7),

would yield the deformations of the contact points and elapsed time of impact, along with

the the other quantities with respect to the integration variable β, as defined in (7.3). Fig-

ure 7.2 shows an example of impact states viz. velocities, normal work, deformation and

time being integrated together with respect to β. Since, fn is the force associated with the

independent impulse parameter pn, the forces at all the contact points can be projected in

terms of fn using the force gradient vector C as, F = Cfn. However, doing so would

imply that the forces at all contact points are proportional to fn. Although the rigid hy-

pothesis proposed in [38, 42] and used in this work, states that the differential impulses

of all points may be resolved in terms of the differential impulse of a single point, as in

dp = Cdpn, the forces calculated the same way can yield incorrect force-history results

for certain impacts. Projecting the independent force parameter fn to calculate the force

F assumes that the maximum compression (or minimum normal work at the end of com-

pression phase) coincides for the forces at all contact points. This is actually an artifact

of the rigid-body assumption as it simplifies the multi-point impact analysis by reducing

the problem in terms of a single contact point and simultaneously characterizing the com-

pression and restitution phases of all points in terms of the global normal work. In reality,

the compression and restitution phases of each point depend upon their respective defor-

mations and velocities. Hence, the forces at all contact points needs to be calculated, as a

post-process, explicitly in terms of the deformations and velocities obtained from the pro-

posed model. The contact force model used in this work (discussed in Sec.7.1.2) yields

only the normal force component based on the deformations and velocities. Since, the tan-

gential forces are to be modeled using Coulomb’s friction law which has been embedded in

C = [Cx1
Cy1 Cz1 · · · Cx4

Cy4 Cz4 ]
T , the correct contact forces for all point F can be

calculated by re-scaling the relationship F = Cfn such that all normal forces are indepen-
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dent and are explicitly defined in terms of deformations and velocities of individual points.

Thus, the expression for all contact forces can be expressed as,

F = C̄ Fz =






















Cx1
/Cz1 · · · 0

Cy1/Cz1

...

1
...

0
. . .

...
... Cx4

/Cz4

... Cy4/Cz4

0 · · · 1






























fz1(δ1, δ̇1)

...

fz4(δ4, δ̇4)









(7.8)

Note that although the forces at each contact point in (7.8) may appear to be independent of

the deformation and velocity histories of all other contact points, they actually do depend

upon the deformations and velocities of all contact points. This is because the deformations

and velocities obtained from the model in (7.6) and (7.7) are constrained by the rigid-body

constraints, such that the deformation and velocity each point depends on every other point.

Thereby the forces F calculated using (7.8) also implicitly depend upon the rigid body con-

straints and the overall deformation and velocity history during an impact. Nevertheless it

is important to note that this approach is only an approximation for the very complicated

dynamics associated with multi-point impact analysis. In reality, there would be some rel-

ative displacement between the contact points depending upon the stiffness of the material.

The relative displacement between the points are negligible for very stiff materials. There-

fore, the proposed approach is a good approximation for objects with very high stiffness,

which allow minimal deformation upon impact.

So far in this work, the focus has been on the development of an augmented model for

rigid-body impacts that utilizes the Darboux-Keller based impact model shown in [41,42].

When provided with a normal contact-force model fzi = fzi(δi, δ̇i), the deformation and

force histories during the impact event can also be calculated. Now having defined the
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framework for the augmented impact model, the following sections discuss the contact-

force model used in this work.

7.1.2 Contact Force Model

This work uses the visco-elastoplastic contact force model, given in [55,67], to model

the normal contact force. However, in order to apply this model to the example problem of

the rigid block that has been analyzed thus far, it is necessary to consider some geometric

and material properties of the block. Although the block has been said to be impacting at

the four dimensionless corner points labeled in i = {1, ..., 4} in Fig. 5.1, in reality each

of these contact points on the body represent a small contact patch on the surface, such

that the forces at each point depends upon the contact patch area and the stiffness of the

material. The shape of the contact patch depends upon the surface profiles of the body

near the contact points. In this work, the region around the contact points is assumed

to have a spherical surface profile that yields a circular contact patch of radius a during

impact. This assumption allows for the usage of hertzian contact theory for the analysis of

the forces. In the literature, one can find more exact models for different types of surface

profiles [14, 123, 124]. However the goal of this work is to determine an approximate

solution of the forces during impacts, therefore a simpler spherical contact model is used

here. Let the radii of the spherical corner points of the block have the radii R1, and the

radius for the flat ground be R2 = ∞. The Young’s moduli for the block and the ground

are E1 and E2, respectively. Similarly, let ν1 and ν2 be the Poisson’s ratio of the block and

the ground, respectively. Then, the equivalent Young’s modulus and radius to be used for

the contact model are given by,

E =

(
1− ν2

1

E1

+
1− ν2

2

E2

)−1

and R =

(
1

R1

+
1

R2

)−1

(7.9)
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Let, Sy1 be the yield strength for the block, and likewise Sy2 be the yield strength of the

ground. Then, the equivalent yield strength for the contact Sy is considered to be the same

as the yield strength of the material that yields first,

Sy = min [Sy1, Sy2] (7.10)

Similarly, the equivalent Poisson’s ratio, ν is the same as the poisson ratio of the material

that yields first. At any point during an impact event, the contact points may either be in

compression or restitution. Note that the compression and restitution of individual contact

points may not coincide with the global compression and restitution phases defined based

on the global normal work Wn, shown in Figs. 5.3b, 7.2b and 7.3. Hence to make this dis-

tinction, the compression and restitution phases of individual contact points will be referred

to as Local Compression Phase and Local Restitution Phase. Similarly, the compression

and restitution phases of the entire system would be referred to as the Global Compression

Phase and Global Restitution Phase. Figure 7.3 shows an example of a normal work plot

for a 2-point impact-event where the Local Compression and Local Restitution phases do

not coincide with the Global Compression and Global Restitution. The normal works at

the end of local compression phases for the two points in Fig. 7.3 are labeled as Wc1 and

Wc2, whereas the normal work at the end of global compression phase is labeled as Wnc.

According to the rigid impact model in Sec. 5.1, every impact event consists of a

global compression phase, which may be followed by a global restitution phase if e∗ > 0.

However, it is worth noting that this pattern does not necessarily apply, when considering

compression and restitution of individual points. For example, if in a multi-point impact

some of the points being considered are already in contact with zero pre-impact velocities,

then these contacting points will not have a local compression phase. Instead the contacting

points will locally restitute through the impact event. This happens because the contacting

points are pre-loaded with compression forces during the contact phase before the onset
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of the impact event. Therefore, these contact forces get unloaded throughout the impact-

event, in the form of a local restitution phase, such that these points come out of contact

at the end of the impact event. On the other hand, if a point is impacting with negative

pre-impact normal velocity, there would always exist a local compression phase that may

be followed by a local restitution phase.

7.1.2.1 Force Model for Local Compression Phase

The visco-elastoplastic force model used in this work is based on [67], where the

contact force fzi

(

δzi , δ̇zi

)

during a local compression phase contains a stiffness part and a

damping part, similar in form to that of the Hunt-Crossley model,

fzi

(

δzi, δ̇i

)

= fs(δi) + fd(δ̇i) (7.11)

where fs(δi) is the force due to the stiffness, which depends only on the deformation of the

contact point δi. The damping portion of the force fd(δ̇i), has a constant functional form

throughout the local compression and is given by,

fd(δ̇n) = bδ̇
3

2

n
δ̇n

|δ̇n|
(7.12)

Unlike the damping term, the stiffness term fs(δi) does not have a fixed functional form

throughout the impact; it is peicewisely defined across different regimes of the local com-

pression phase. The various regimes within the local compression phase considered here

are 1) Elastic, 2) Elastic-Plastic and 3) Plastic regimes. One drawback of the force model

presented in [67] is that the nonlinear stiffness model is not guaranteed to be continuous,

and may yield discontinuous forces. Hence, in this work the nonlinear stiffness portion

is updated with the model presented in [55], which guarantees smooth force profiles. Ac-

cording to the nonlinear stiffness model presented in [55], the compression phase begins

with the elastic phase and persists till the material starts to yield. The deformation at the
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yield point is given by δy, which can be calculated using the yield strength Sy, is used to

determine end of the elastic regime. The force due to the stiffness during elastic phase is

calculated using hertz contact model [55, 67]. The elastic regime is usually followed by a

mixed elastic-plastic regime, which acts as a transition phase between the perfectly elastic

and perfectly plastic phases [55, 67]. Finally, the contact enters a perfectly plastic regime,

during which the deformations are considered to be permanent [55, 67]. The details of this

stiffness model during the three regimes are summarized below,

• Elastic Regime (0 ≤ δi < δy) : The contact force at point i during the elastic regime

is given by the Hertz model for spherical contact,

fs =
4

3
ER

1

2 δi
3

2 when 0 ≤ δi < δy (7.13)

where, the initiation of yield, δy is the deformation at the end of the elastic regime,

which is given by,

δy =
R

F (ν)

(
πSy

2E

)2

The functionF (ν) defines the maximum amplitude stress, according to the von Mises

criteria, and is given by,

F (ν) = max
u∈R

(

−(1 + ν)

(

1− uatan

(
1

u

)

+
3

2

1

1 + u2

))2

The maximum amplitude stress function F (ν), cannot be solved analytically. How-

ever, the solution can be approximated via a curve fit proposed by Jackson and

Green [125, 126],

F (ν) ≈ 1

C
where C = 1.295e0.736ν

The force at the end of the elastic regime is given by,

fy =
4

3
ER2

(
3πνSy

4E

)3

The derivative of the force at yield is given by,

f ′
y = 2E(Rδy)

1

2

118



• Elastic-Plastic Regime (δy ≤ δi < δp): As shown in [55], the force function during

the elastic-plastic regime may be approximated as a cubic hermite interpolation, such

that the contact force smoothly transitions between elastic and plastic regimes. The

interpolation force model for the elastic-plastic phase is given by,

fs =
(
2fy − 2fp + (δp − δy)

(
f ′

y + f ′
p

)) ( δi−δy
δp−δy

)3

+
(
−3fy + 3fp + (δp − δy)

(
−2f ′

y − f ′
p

)) ( δi−δy
δp−δy

)2

+(δp − δy)f
′
y

(
δi−δy
δp−δy

)

(7.14)

where fp is the forces at the onset of the plastic regime and f ′
p is it’s derivative.

δp is the deformations at the onset of the plastic regime, respectively. Based on the

analysis presented in [55], the formulas for these quantities are:

fp =

(
3R

4E

)2

(πp0)
3 f ′

p = 2Rπp0 δp =
(

p0
Sy

)2

δy

where, the quantity of p0 is the uniform contact pressure on the contact patch during

the plastic regime. p0 depends upon the hardness of the material, and is given by,

p0 = H̄g(106)

where H̄ is the effective hardness of the two materials, g = 9.8m/s2 is the gravita-

tional constant.

• Plastic Regime (δi ≥ δp): During plastic regime the contact pressure p0, over the con-

tact patch remains constant, while the area of the contact patch changes. Thus, the

force is defined in terms of the area of the circular contact patch as,

fs = p0πa
2 (7.15)

where, a is the radius of the circular contact patch. During the plastic regime, the

contact patch radius can be defined in terms of the deformation,

a =
(
2R(δi − δp) + a2p

) 1

2
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where ap is the contact patch radius at the initiation of the plastic regime, and is given

by

ap = R
3π

4

p0
E

A given point undergoing local compression may not enter all three possible regimes de-

fined for local compression. The end of local compression occurs when the normal work

induced by the given point reaches its minimum value. Hence for a given point i, the end

of its local compression phase is reached when,

d

dβ

∫ zi

0

fzidzi =
d

dβ

∫ zi

0

vzidpzi = 0 Or equivalently, vzi = 0

The force model changes to the local restitution phase model after the maximum local

compression is reached.

7.1.2.2 Force Model for Local Restitution Phase

The local restitution phase takes place after the end of local compression phase for

a given point i, if the pre-impact normal velocity is negative, i.e. vzi(β = 0) < 0. On

the other hand, if the point i was initially in contact, i.e. vzi(β = 0) = 0, then the point

enters the impact event in local restitution. The forces approach zero at the end of the

restitution phase (end of the impact event). During the restitution phase, the forces are

usually modeled as elastic unloading forces [55, 67]. In this work, a purely elastic hertzian

model is used to characterize the restitution force, similar to [67]. Thus, at a contact point

i, the force fzi , during the restitution phase is given by,

fzi = f0

(
δi − δif
δic − δif

)3/2

(7.16)

where f0 is the force at the onset of the local restitution phase. If the pre-impact normal

velocity of the point i is negative f0 takes the value of the force at end of compression
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phase fzic , whereas if the point i was initially in contact it takes the value of the pre-impact

contact constraint force,

f0 = fzic if vzi(β = 0) < 0

f0 = fzi(β = 0) if vzi(β = 0) = 0

The pre-impact contact constraint forces fzi(β = 0) can be calculated by imposing the

non-penetration and frictional constraints of the point i to the general equations of motion

(5.2), and then solving for the forces. [38, 42] shows a method for doing this using a co-

ordinate partitioning technique. δic and δif are the deformations of point i at the end of

local compression phase and local restitution phase, respectively. Note that in this work

the forces at all contact points are calculated as a post-process, with the help of (7.8), after

the full deformation-history is obtained. So the local restitution force model in (7.16) is

only used when the values of δic and δif is known from the deformation history. However,

this raises the question: how can the deformations be evolved using the independent force

model fn during the global restitution phase, if fn itself depends upon the final-value of the

deformation? This question is answered in the following section.

7.1.2.3 Independent Force Model during Global Restitution Phase

As shown in the augmented impact model in (7.6) and (7.7), the impact states, which

include the deformations δi, is evolved with the help of an independent force parameter,

fn. If for a given impact event, the global ECOR value is positive, e∗ > 0, then the impact

event enters a global restitution phase. The force model for the local restitution phase

shown in (7.16) uses the final value of the deformation δif , which is unknown during the

evolution of the augmented impact model. δif are essentially some unknown boundary

conditions that influence the force trajectories during the restitution phase. The unknown

boundary conditions of δif are also constrained by the total energy dissipation Wnf , which
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is calculated a priori using the e∗ (ECOR) parameter. This type of problems are commonly

known as Two Point Boundary Value Problems (TPBVP), and can be solved using well-

known numerical techniques viz. Shooting Method [127]. However in this case, as it

shall be seen, it is actually possible to eliminate the permanent deformation δif from the

restitution force equations in (7.17), by making an intuitive approximation.

The force associated with the independent impulse parameter fn, during the global

restitution phase is given by,

fn = fnc

(
δn − δnf
δnc − δnf

)3/2

(7.17)

where fnc is the maximum force at the end of the local compression phase for the point as-

sociated with independent normal impulse parameter pn. δnc and δnf are the deformations

associated pn, at the end of the local compression phase and at the end of the local resti-

tution phase, respectively. Similarly, the normal force component fzi at any given contact

point i, also follows the purely elastic unloading model during local restitution phase,

fzi = fzic

(
δi − δif
δic − δif

)3/2

(7.18)

where, fzic is the normal force at point i at the end of the compression phase. δi is the

deformation associated with contact point i during the restitution phase. Let the normal

work corresponding to a deformation δn be given by Wn(δn). Then, the normal work till

the end of the restitution phase can be derived using the normal force component expression

shown in (7.18) as,

∫ Wnf

Wn(δn)

dWn =

4∑

i=1

∫ zif

zi

fzidzi = −
4∑

i=1

∫ δif

δi

fzic

(
δi − δif
δic − δif

)3/2

dδi (7.19)

which yields,

Wnf −Wn(δn) =
2

5

4∑

i=1

fzic (δic − δif)

(
δi − δif
δic − δif

)5/2

(7.20)
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Now, lets consider the normal force component for a given point i = {1, ..., 4}, in terms of

the force component associated with the independent normal impulse parameter. As shown

in Chapter 5, using the rigid hypothesis, the forces at all contact points are constrained

by the frictional and rigid body constraints. Hence, by using (5.19), the normal force

component at any contact point i = {1, ..., 4} can be defined as,

dpzi = Czidpn → fzi = Czifn (7.21)

where Czi is the normal component of the force gradient vector C, associated with the ith

contact point. Similarly, at the end of the compression phase, the normal force of any point

i, can be described in terms of the normal force associated with the independent impulse

parameter at the end of the compression phase,

dpzic = Czicdpnc → fzic = Czicfnc (7.22)

where Czic is the ith normal component of C at the end of the local compression phase of

i. Now, solving the equations (7.17), (7.18), (7.21), and (7.22) yields the relationship,

(
δi − δif
δic − δif

)3/2

=
Czi

Czic

(
δn − δnf
δnc − δnf

)3/2

(7.23)

The relationship in (7.23) can be used to redefine the forces at all contact points i =

{1, ..., 4}, in terms of the independent displacement parameter δn. Likewise, the change

in normal work from Wn(δn) to the final normal work Wnf , as shown in (7.20), could be

redefined in terms of δn. Hence, substituting (7.23) to (7.20) yields,

Wnf −Wn(δn) =
2

5

[
4∑

i=1

Czic (δic − δif )

(
Czi

Czic

)5/3
](

δn − δnf
δnc − δnf

)5/2

(7.24)

Czi and Czic are elements of the force gradient vector C at the δi and δic. Note that the

force gradient vector C varies only if the contact points are slipping; C is constant if all

contact points are slipping. However, during the global restitution phase the changes in
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the normal components of C are typically very small, and their effect on the normal work,

according to the formulation in (7.24) is diminished by the very small deformation quantity

(δic − δif) ∼ 0. Hence,
Czi

Czic

can be approximated as,

Czi

Czic

≈ 1 →
(
Czi

Czic

)5/3

≈ 1 (7.25)

Thus, after applying this approximation, (7.24) can be simplified as,

Wnf −Wn(δn) =
2

5

[
4∑

i=1

Czic (δic − δif)

](
δn − δnf
δnc − δnf

)5/2

(7.26)

Now using the formulation of normal work as in (7.26), the change in normal work through

the local restitution phase, starting from the end of maximum local compression of the

independent point δnc, is given by,

Wnf −Wn(δnc) =
2

5

[
4∑

i=1

Czic (δic − δif)

]

(7.27)

Note here Wn(δnc) is the total normal work at the end of the local compression phase for the

independent point, associated with the independent impulse parameter pn. Now, dividing

(7.26) by (7.27), yields the relationship,

Wnf −Wn(δn)

Wnf −Wn(δnc)
=

(
δn − δnf
δnc − δnf

)5/2

(7.28)

Hence, the expression for the force associated with the independent impulse parameter fn

during the local restitution phase, as given in (7.17), can be rewritten as,

fn = fnc

(
Wnf −Wn(δn)

Wnf −Wn(δnc)

)3/5

(7.29)

The definition of the independent force during the restitution phase in terms of the normal

work, as shown in (7.29) is much more advantageous compared to (7.17), which requires

an a priori estimate of the permanent deformation δnf , which is difficult to obtain accu-

rately. The independent force during the restitution phase, fn obtained using (7.29), is used
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to evolve the augmented impact model given in (7.6) and (7.6). Once, the deformation

histories of all contact points are obtained, the forces at these points can be calculated us-

ing (7.8). Figure 7.4 shows an example of the force history during an impact event. The

compression and restitution phase force models presented in (7.11), (7.13), (7.14), (7.15)

and (7.29) respectively, causes the force to initially increase (loading) during the impact

till a point of maximum compression and then decrease (unloading) to become zero, as

shown in Fig. 7.4a. Note that in Fig. 7.4a, the deformation at the end of restitution phase

does not reach zero; there exists some permanent deformation. The permanent deformation

during the impact event contribute towards the hysteresis typically observed in rigid body

collision, and is characterized by the choice of global coefficient of restitution. Figure 7.4b

shows an example of the time-history of the forces during an impact.
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Figure 7.2: Evolution of (a) velocities, (b) normal work, (c) normal deformation and (d)
time with respect to β, during the first impact event
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Figure 7.3: An hypothetical example of normal work plot showing the maximum global
compression, Wnc and two maximum local compression for two distinct points labeled
Wc1 and Wc2
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Figure 7.4: Force history during the impact in terms of (a) normal deformation and (b) time
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CHAPTER 8

SIMULATIONS USING AUGMENTED IMPACT MODEL

8.1 Simulation Technique

The previous sections derived a model for rigid impacts that retains the force and

deformation history during the impact, while performing impulse-domain impact analysis.

The proposed model augments the purely rigid impact model presented in [38,41] with a set

of additional differential equations used to evolve the states of contact point deformations

and elapsed time of impact. The differential equations associated with the deformation and

time are based on the visco-elastoplastic contact force model presented in Sec. 7.1.2, which

in turn depends upon the deformations and the velocities of the contact point. Hence, the

contact force can be thought of as a closed-loop feedback input to the dynamic system

that governs the evolution of the impact states. The impact states during an impact can be

written as,

x =
[
ϑT

cyl pT δT t Wn

]T
(8.1)

then the set of differential equations representing the state dynamics from (7.6) and (7.7) is

given by,

dx

dβ
= f(x, fn), x(0) =

[
ϑT

cyl(0) pT (0) δT (0) t(0) Wn(0)
]T

(8.2)

where fn is the normal force at the independent contact point, and acts as the input to the

impact state dynamics. The initial conditions x(0) consists of ϑcyl(0) and t(0), which are

known at the beginning of the impact event. The deformations and impulses are zero at

initially, p(0) = δ(0) = 0. Also there is no energy loss due to normal forces at the start of
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an impact event, so Wn(0) = 0. Based on the contact force model presented in Sec. 7.1.2,

the force fn can be written as,

fn = h(y)

where, y =






δn

δ̇n




 =






δn

−vn




 =






0 · · · 0 0 0 · · · 0 1 0 · · · 0

0 · · · 0 −1 0 · · · 0 0 0 · · · 0






︸ ︷︷ ︸

Dδ

x = Dδx

(8.3)

In (8.3), h(y) represents the visco-elastoplastic contact force model used in this work. The

vector y consists the deformation and the rate of deformation at the independent contact

point, and is treated as an output obtained from the state dynamics in (8.2). The output y

is selected from the states x, using the an output coefficient matrix Dδ, as shown in (8.3).

Similarly, the normal work Wn and the sliding speeds si during the impact can be defined

in terms of an output coefficient matrix Dw and Dsi respectively such that,

Wn = [0 · · · 0 1]
︸ ︷︷ ︸

Dw

x = Dwx si = [0 · · · 0 1 0 · · · 0]
︸ ︷︷ ︸

Dsi

x = Dsix

The overall system defined in (8.2) and (8.3) very closely resembles closed-loop feedback

system, it can be visualized in block-diagram form, as shown in Fig. 8.1. When a contact

point enters stick-slip transition, at si = 0, the slip-direction is reset to a new unique

slip-direction that depends only on the configuration of the impacting body. Details on

the method for determining this new slip-direction at stick-slip transition can be found

in [41]. The impact process, as presented in block diagram format in Fig. 8.1, terminates

when the normal work Wn(β) reaches the final normal work Wnf . The final value of

normal work at the end of an impact event Wnf is calculated using the global coefficient of

restitution e∗ parameter and the normal work value at maximum compression Wnc. After

the impact process, as shown in Fig. 8.1 ends, the deformation and velocity histories are

used to recalculate the force-histories of all points during the collision.
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dx

dβ
= f (x, fn)Wn(β) = Wnf

Terminate

Start

si = 0

fn = h(y)

y = Dδx

Wn = Dwx

si = Dsi
x

Reset      in 

Stick-Slip Transition:

ϕi x(β)

yes

no

x(β)

yes

x(β)

no

x(β)

x(0)

y(β), x(β)

fn, x(β)

x(β)

Wn(β)

x(β)

x(β)

si(β)

if:

if:

Figure 8.1: Block Diagram representation of the proposed impact analysis method

8.2 Results

This section presents a number of simulation results based on the augmented rigid

impact model proposed in this article. The examples shown here are identical to the ones in

shown in [42]. Since, the model proposed here is an extension of the rigid impact model in

[42], all results of velocities, normal work and generalized coordinates shown ahead exactly

match the ones from [42]. In addition to these matching results, the simulation results here

also demonstrate the evolution deformations, forces and time during the impacts. Also,

some of the examples here rely on transitioning between contacts and impacts, which are

modeled as a hybrid dynamic system that switches dynamics between contact constraints

in the time-domain and β-domain. This hybrid dynamics setup and contact constraints are
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not discussed in this article, in the interest of space. These are nevertheless same as in [42],

hence the readers are referred to [42] for the related discussion on rigid contact modeling

and the hybrid dynamics modeling.

The simulations presented here were implemented on MATLAB with the help of

ode45, which is an adaptive Runge-Kutta integrator that uses the Dormand-Prince al-

gorithm [98, 99]. Lastly, the value of the scaling parameter ǭ used in (7.6), was chosen to

be the floating-point relative accuracy value in MATLAB. This can be obtained by using the

eps command on MATLAB, which yields the value 2.204× 10−16.

8.2.1 Example-1: 3D Block 2-point Impact

The example problem analyzed here is that of a block rocking against the ground.

In this example, two consecutive collisions between the block and the ground is analyzed,

over a span of 6 seconds long simulation. Both the block, and the ground is assumed to

be composed of SUJ2 Steel, with density of ρ = ρ1 = ρ2 = 7825 kg/m3, Young’s

modulus of E = E1 = E2 = 206 GPa, Poisson’s ratio of ν = ν1 = ν2 = 0.3, Hardness

of barH = H̄1 = H̄2 = 290 kgf/mm2 and Yield’s strength of σy = σy1 = σy2 = 350

MPa. The damping coefficient pertaining to the visco-elastoplastic force model used in

this result is b = 0.1 kg ·m− 1

2 · s− 1

2 . As shown in Sec. 7.1, the contact force model used in

this work is based on the hertzian theory of contact, where all contact points are assumed to

be of spherical geometry. In this example, the impacts between the block and the ground is

analyzed at the four corner points of the bottom face of the block. These corner points are

assumed to be of spherical shape with the radius R1 = 0.001 m. The ground is assumed

to be perfectly flat with a radius of R2 = ∞. The dimensions used for the block are

0.6 × 0.8 × 0.4 m3, hence the mass is calculated using the volume and the density ρ1. All

simulation parameters are listed in Table 8.1.
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Parameters Block Ground

Mass m = 1502 kg -

Radius R1 = 0.001 m R2 = ∞ m

Young’s Modulus E1 = 206 GPa E2 = 102 GPa

Poisson’s Ratio ν1 = 0.3 ν2 = 0.3

Yield Strength σy1 = 350 MPa σy2 = 120 MPa

Hardness H̄1 = 290 kgf/mm2 H̄1 = 290 kgf/mm2

Damping Coefficient b = 0.1 kg ·m− 1

2 · s− 1

2

Coefficient of friction µs = 0.6, µd = 0.35

ECOR e∗ = 0.50

Table 8.1: Parameters used to simulate 2-point consecutive block-ground impacts

(a) (b)

Figure 8.2: (a) Initial configuration of the block and (b) motion capture of the rocking block
simulation

In this example, the steel block is dropped on the ground from a configuration as

shown in Fig. 8.2(a). The block is also given an initial transnational velocity along the N̂y

direction. Hence, the initial generalized coordinates and speeds of the block is given by,

q(0) =

[

0 −0.5 1 π
6

0 0

]T

and q̇(0) =

[

0 1 0 0 0 0

]T

The block undergoes two consecutive impact events during the 6 seconds long simulation.

Fig. 8.2 shows the motion of the block throughout the simulation period. Given, the initial

condition, first a time-domain simulation of the equations of motion is performed, until

the block comes in contact with the ground. An event based approach is used to stop the
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Figure 8.3: Evolution of the velocities at (a) point 1 and (b) point 2, and the deformation
histories of (c) point 1 and (d) point 2 with respect to β, during the first impact event

time-domain integration of the equations of motion upon collision detection. The impulse

domain analysis presented in Sec. 5.1 and [38,41] can be used to analyze the impact events.

However, the impact model proposed in this work augments the impulse-domain impact

model in [41] with a force based model, as presented in Sec. 7.1 to determine the force and

deformation histories during the impact event.

The model used to evolve the impact states during an impact-event is concisely pre-

sented in equations (7.6) and (7.7). In these models the impact states are evolved with

respect to the independent parameter β, which either takes the value of the independent de-
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Figure 8.4: Normal forces at (a) point 1 and (b) point (2) varying with the corresponding
deformations, during the first impact event

formation parameter δn or the independent impulse parameter pn, depending upon whether

the independent normal force is zero or not. The value of the independent normal force

can be calculated based on the deformation or normal work, along with the deformation

rates using the contact force model presented in Sec. 7.1.2. The impact states evolved us-

ing the models in (7.6) and (7.7) include the velocities, deformations, the impulses of the

contact points, the elapsed time of impact and the normal work. Figures 8.3(a) and 8.3(b)

show evolution of the velocities of the contact points during the first impact event. Sim-

ilarly, figures 8.3(c) and 8.3(d) show the deformations during the first impact event. The

velocities shown in Fig. 8.3(a) and 8.3(b) are in cylindrical coordinates, where si and φi are

the sliding speeds and sliding directions, respectively. Note, that in these plots the sliding

speed si starts at a positive non-zero value and then reaches zero (stick-slip transition), and

continues to be a zero till the end of impact event. Hence, the contact points initially slip

and then sticks after entering stick-slip transition. The normal velocities are also affected

as the contact points transition from slipping to sticking.
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The deformations at the contact points evolved by integrating (7.6) or (7.7) with re-

spect to β, allow for the computation of the independent normal force parameter, fn(δnδ̇n).

The deformation rates at the contact points can be expressed in terms of the normal ve-

locity components of the same points δ̇n = −ϑn. The contact force model, defined in

the most general form in (7.11), changes according to different contact regimes namely,

elastic, elastic-plastic, and plastic regimes during compression, as shown in (7.13), (7.14)

and (7.15). A separate contact force model for the restitution phase developed in this work

(7.29), is used as the collision enters the restitution phase. The force distribution (gradient)

vector C is used to calculate the forces at all contact points from the independent force

parameter using (7.8). Fig. 8.4(a) and (b) shows the normal force components at the two

contact points with respect to the deformations during the impact event. Note that the nor-

mal forces shown Fig. 8.4 has a loading phase (during which the forces increase), and the

unloading phase (during which the forces decrease). The loading and unloading phases cor-

respond to the compression and restitution phases of the impact model. The normal forces

first increase to a maximum along with maximum deformation of the contact points. After

reaching maximum compression the normal forces and the associated deformations start

decreasing, and the normal forces reach zero and the end of the restitution phase, where

the impact event terminates. The residual deformation at the end of the impact event is the

permanent deformation the contact point experiences due to the plasticity of the material,

at end of impact. The permanent deformation induced in this model also characterizes the

hysteresis in Fig. 8.4, such that the total area under the normal force curves (both points

combined) represent the amount of energy lost due to the normal forces during the impact

event. However, note that the proposed model does not depend upon a priori determination

of the permanent deformation, rather in this work, the net energy loss (in terms of the global

energetic coefficient of restitution, e∗) is used to determine the permanent deformation.

135



0.358 0.3585 0.359 0.3595 0.36

-2

0

2

4

6

8

10

12

14

16

18
105

(a)

0.358 0.3585 0.359 0.3595 0.36

-2

0

2

4

6

8

10

12

14

16

18
105

(b)

0.358 0.3585 0.359 0.3595 0.36

0

500

1000

1500

2000

2500

(c)

0.358 0.3585 0.359 0.3595 0.36

0

500

1000

1500

2000

2500

(d)

Figure 8.5: Evolution of (a) forces at point 1, (b) forces at point 2, (c) impulses at point 1,
(d) impulses at point 2 with respect to time, during the first impact event

Time:0.3579s
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Figure 8.6: Visualization of the contact forces on the block at different times block during
the first impact event (time increases from left (a) to right (e))
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Figure 8.7: Evolution of Normal Work with respect β, during the first impact event

The impact states evolved by integrating (7.6) or (7.7), also includes the elapsed time

of impact, impulses at all contact points and the normal work done by the block. Therefore,

the time-histories of the forces and impulses is also known. Fig. 8.5(a) and (b) shows how

the forces change with time during the event. Similarly, Fig. 8.5(a) and (b), shows the

trajectories of the impulses at the two contact points with respect to the time of impact.

The forces on the block at different times during impact can also be visually depicted, as

shown in Fig. 8.6(a)-(e). In Fig. 8.6, time increases left (a) to right (e), and the force at

each contact point is represented with an arrow whose length is scaled according to the

magnitude of the force. Note, that the arrow is not visible at the beginning, Fig. 8.6(a) and

the end, Fig. 8.6(e) of the impact event. The length of the arrow in Fig. 8.6 first increases

and then decreases during the restitution phase. Also note the change in the arrow direction

between Fig. 8.6(c) and 8.6(d), indicating the change in force directions at the stick-slip

transition. Fig. 8.7 shows the evolution of the normal work with respect to β, during the

impact event. As seen in the prior studies [38, 41], the normal work follows a parabolic

trajectory with respect to β, whose minima represent the maximum compression, and the
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Figure 8.8: Evolution of the velocities at (a) point 3 and (b) point 4, and the deformation
histories of (c) point 1 and (d) point 2 with respect to β, during the second impact event

normal work value at the maximum compression is used to determine the end of the impact

event.

Similar to the results of the first impact event, the results from the second impact

analysis is also presented here. The second impact event also involves two contact points

named point 3 and point 4. Fig. 8.8(a) and 8.8(b) show the evolution of the velocities,

and Fig. 8.8(c) and 8.8(d) show the evolution of deformations with respect to β, during the

second impact event. It can be seen from Fig. 8.8(a) and 8.8(b), that both contact points

slip throughout the impact event. The normal forces in terms of the deformations during
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Figure 8.9: Normal forces at (a) point 1 and (b) point (2) varying with the corresponding
deformations, during the second impact event

the second impact event is shown in Fig. 8.9(a) and 8.9(b). The time-histories of the forces

and impulses are presented in Fig. 8.10. Fig. 8.11 presents a visual representation of the

forces at the contact points during the impact event, and Fig. 8.12 shows the evolution of

normal work with respect to the parameter β during the second impact event.

The post-impact states computed using the proposed impact analysis method was

used to reset the generalized speeds of the system after collision and resume time domain

integration. Fig. 8.13(a) and 8.13(b) show the generalized coordinates and the generalized

speeds throughout the simulation. Notice, that the discontinuities in the generalized coor-

dinates q(t), correspond with the sharp changes in generalized speeds q̇(t). Fig. 8.14(a)

shows the contact forces applied to the four corner points throughout the simulation. The

spikes on the contact force plot indicate the applied contact forces during impact events.

Fig. 8.14(b) shows the kinetic, potential and total energies during the impact event. Each

stepped decrease in total energy of the system indicate the net energy loss during impacts.

Also, note that the total energy of the system never increases during the simulation. Hence
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Figure 8.10: Evolution of (a) forces at point 1, (b) forces at point 2, (c) impulses at point 1,
(d) impulses at point 2 with respect to time, during the second impact event
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Figure 8.11: Visualization of the contact forces on the block at different times block during
the second impact event (time increases from left (a) to right (e))
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Figure 8.12: Evolution of Normal Work with respect β, during the second impact event

it may be concluded that the proposed approach for impact analysis is energetically consis-

tent.

8.2.2 Example-2: 3D Sphere 3-point Impact

This section presents a simulation example of a three-dimensional model of the

sphere is shown in Fig. 8.15, undergoing impact at three separate points denoted by 1,

2, and 3, against two walls and a ground. This system has six degrees-of-freedom (DOF)

defined by six generalized coordinates - three translation q1, q2, q3 and three orientation q4,

q5, q6 coordinates. The sphere is assumed to be made out of SUJ2 Steel, which has a

mass of m = 1 kg and a radius of R1 = 0.50 m. The sphere has a Young’s modulus of

E1 = 206 GPa, Poisson’s Ratio of ν1 = 0.3 and a Yield’s strength of σy1 = 350 MPa. The

wall and the ground is assumed to be composed of a material whose Young’s modulus is

E2 = 102 GPa, Poisson’s Ratio is ν2 = 0.4 and Yield strength is σy2 = 120 MPa. The wall

and the ground are assumed to be completely flat and therefore have the radii, R2 = ∞. The

effective hardness values for the sphere, wall and the ground is considered to be H̄ = 290

kgf/mm2. The damping coefficient used for this impact was b = 0.1 kg · m− 1

2 · s− 1

2 . All

parameters used in this simulation are summarized in Tab. 8.2.
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Figure 8.13: Generalized (a) coordinates and (b) speeds with respect to time, throughout
the simulation

An arbitrary initial position and translational velocity was used for the sphere simula-

tion with no initial angular velocity. The simulation of the sphere is depicted in Fig. 8.16a,

as it impacts a corner formed by the ground and two wall planes, and ends when a second

impact is captured with the ground. This corner impact event is an indeterminate collision

involving points 1, 2, and 3. An ECOR of e∗ = 0.50 is used. The static and dynamic

coefficients of restitution are chosen to be µs = 0.6 and µd = 0.35. After impacting the

corner, the position of the impact points 1, 2, and 3 change which demonstrate the sphere’s

post-impact angular velocity as a result of impact. A plot of the system energy is shown in

Fig. 8.16b to show energy consistency throughout the simulation.

After impact, the sphere follows a lower trajectory which suggests that the system

lost energy from the impact. This is supported by the energy plot in Fig. 8.16b, which is

further used to determine that no energy gains were encountered throughout the simulation.

The result of this three-dimensional case was obtained using the proposed method.

The augmented impact model in (7.6) and (7.7) is used along with an independent force

model fn(δn, δ̇n) from Sec. 7.1, to evolve the velocities and deformations of the three points
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Figure 8.14: (a) Forces and (b) Energies with respect to time throughout the simulation
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Figure 8.15: Three dimensional model of a sphere impacting a corner.

along with the normal work and elapsed time of impact. The end of the global compression

phase is determined by checking the slope of normal work as it is being evolved. The global

ECOR parameter, e∗ = 0.5 is used to determine the end of impact event. The evolution of

the normal work and the velocities during the impact with respect to β is shown in plots

Fig. 8.17a and Fig. 8.17b. These results are identical to the ones shown in [42].
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Parameters Sphere Ground/Wall

Mass m = 1 kg -

Radius R1 = 0.50 m R2 = ∞ m

Young’s Modulus E1 = 206 GPa E2 = 102 GPa

Poisson’s Ratio ν1 = 0.3 ν2 = 0.4

Yield Strength σy1 = 350 MPa σy2 = 120 MPa

Hardness H̄1 = 290 kgf/mm2 H̄1 = 290 kgf/mm2

Damping Coefficient b = 0.1 kg ·m− 1

2 · s− 1

2

Coefficient of friction µs = 0.6, µd = 0.35

ECOR e∗ = 0.50

Table 8.2: Parameters used to simulate 3-point sphere impact
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Figure 8.16: (a) Simulation results and (b) Energy consistency of the 3D sphere example
impacting a corner.

Evolution of systems in (7.6) and (7.7) also yield the deformation histories of the

three contact points and the elapsed time of impact. These quantities depend upon the

independent force model which is characterized by the material properties. After obtaining

the deformation history of all contact points during the impact, the forces at these points

can be calculated based on 7.8. Fig. 8.18 shows the normal force-deformation curves of

the three contact points during the impact. Note, that both the normal and the deformation
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Figure 8.17: (a) Normal work done and (b) evolution of sliding velocities, sliding direc-
tions, and normal velocities throughout the impact event for the 3D sphere example.

increases during the compression phase and then decreases during the restitution phase.

Also, notice that the force increases to a very high value in the order of 104, whereas the

deformation changes by a very small value in the order 10−4. Hence, these plots represent

characteristic properties of rigid-body impacts which negligible deformations and very high

forces. Fig. 8.18 also highlights a hysteresis phenomenon which leads to some permanent

deformations at the contact points. Fig. 8.19a and Fig. 8.19b show the evolution of

all impulses and forces with respect to the elapsed time during the impact. As it is to be

expected from rigid-body impacts, the elapsed time during the impact event is very small

ans is in the order of 10−5. Note that there exist some discontinuities in the tangential

forces shown in Fig. 8.19b. These discontinuities are associated with stick-slip transition,

and coincide with the discontinuities seen in the velocities plot in 8.17b. The forces during

the impact event is can be visualized using Fig. 8.20, which give a sense of the direction

and magnitude of the forces during the impact at various time instances. FIg. 8.21 shows

the forces at the three points throughout the simulation. The collision of the ball with the

wall-ground corner is marked by a sharp spike in forces at 1 second time into the simulation.
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Figure 8.18: Normal Force-Deformation curves for (a) point 1 (b) point 2 and (c) point 3

8.2.3 Example-3: 3D Block 4-point Impact

This section revisits the example of a three-dimensional block model impacting a

ground from [42], as shown in Fig.5.1. The block impacts the ground at four different

points, denoted by 1, 2, 3, and 4, which are located at the corner points of the impacting

surface of the block and its center of mass at point O. The system has six DOFs described

by three translation q1, q2, q3 and three orientation q4, q5, q6 coordinates. The block has

length l = 0.1m, width b = 0.2m, and height h = 0.05m with mass m = 0.25 kg. The
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Figure 8.19: Changes in (a) impulses and (b) forces with respect to time during the impact
event.
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Figure 8.20: Visualization of the contact forces on the 3D sphere at different times block
during the impact event (time increases from left (a) to right (e))

four corners of the bottom face of the block, where the points 1, 2, 3 and 4 are located are

assumed to be rounded with a radius of R1 = 0.01 m. The block is considered to be made

out of SUJ2 Steel which has a Young’s modulus of E1 = 206 GPa, Poisson’s Ratio of

ν1 = 0.3 and a Yield’s strength of σy1 = 350 MPa. The ground is assumed to be composed

of a material whose Young’s modulus is E2 = 102 GPa, Poisson’s Ratio is ν2 = 0.4 and

Yield’s strength is σy2 = 120 MPa. Also, since the ground is perfectly flat, the radius is

selected as, R2 = ∞. The hardness values for both the ball and the wall is selected to be

H̄ = 290 kgf/mm2. The damping coefficient used in this impact is b = 10 kg ·m− 1

2 · s− 1

2 .
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Figure 8.21: Forces vs. Time for the ball throughout the simulation

The static and dynamic coefficient of friction of µs = 0.6 and µd = 0.35, respectively are

used in this simulation The global ECOR value for this impact is chosen to be e∗ = 0.50.

All parameters used for this simulation are listed in Tab. 8.3

Parameters Block Ground

Mass m = 0.25 kg -

Radius R1 = 0.01 m R2 = ∞ m

Young’s Modulus E1 = 206 GPa E2 = 102 GPa

Poisson’s Ratio ν1 = 0.3 ν2 = 0.4

Yield Strength σy1 = 350 MPa σy2 = 120 MPa

Hardness H̄1 = 290 kgf/mm2 H̄2 = 290 kgf/mm2

Damping Coefficient b = 10 kg ·m− 1

2 · s− 1

2

Coefficient of friction µs = 0.6, µd = 0.35

ECOR e∗ = 0.50

Table 8.3: Parameters used to simulate 4-point impact of the 3D block

The simulation is started at time t = 0s with points 3 and 4 of the block in contact

with the ground, at an initial angle of −15◦, such that the block drops with a pivots along the
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edge defined by points 3 and 4 and undergoes a 4-point collision. Contact constraints based

on [42] are imposed on points 3 and 4 such that they remain in contact with the ground till

the 4-point collision (involving points 1, 2, 3 and 4) takes place. During the drop, points 3

and 4 also go through a number of 2-point collisions with the ground. The 4-point collision

of the block with the ground takes place such that the points 3 and 4 are in contact with the

ground initially. The results in this example primarily focus on the analysis of this 4-point

collision, with two of the points in contact initially. After the 4-point collision the block

resumes its motion with a new set of generalized speeds The simulation is ended at time

t = 0.12s. A motion capture of this 3D block trajectory is shown in Fig. 8.22a, which

demonstrate the overall motion of the block. The kinetic, potential and total energies of

the system throughout this motion has been shown in Fig. 8.22b. Evidently, it can be seen

from Fig. 8.22b, that the system loses energy during its trajectory till the 4-point collision.

This loss in energy is due to slipping frictional contact constraints imposed on points 3

and 4, based on [42]. There is also some minor loss in energy due to a number of 2-point

collisions involving points 3 and 4, which take place during this part of the block motion.

One can see in Fig. 8.22b, the 4-point collision also results in a significant loss in energy

of the system. This loss of energy takes place instantaneously (during the time-period of

the collision), and can be characterized by the global ECOR e∗ values during the impact

events. Energy is again lost due to frictional contact constraints, as the motion of the block

resumes after the 4-point collision.

The 4-point collision between points 1, 2, 3, and 4 of the 3D block and the ground

consists of two separate impact events. In the 1st impact event all four points are simul-

taneously analyzed for impact. Since, points 3 and 4 come into the impact event while

in contact, they have zero normal velocities initially, whereas points 1 and 2 have nega-

tive normal velocities initially. The velocities, normal work, deformations and the elapsed

time are evolved using the augmented impact model in (7.6) and (7.7). The global ECOR,
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Figure 8.22: (a) Simulation of the 3D rocking block example with four corner impact points
and (b) energy consistency for the simulation.

e∗ = 0.5 value characterizes the termination criteria for this impact event. Fig. 8.23a and

Fig. 8.23b shows the evolution of the velocities and normal work with respect to the pa-

rameter β. It can be seen from Fig. 8.23, that the velocities and normal work plots for this

1st impact event is identical to the results in [42], which is based on only the rigid impact

model. The contact points during this 1st impact event undergo stick-slip transition, exhibit

slip-reversal, similar to the result obtained in [42]. Stick-slip transitions and slip-reversal

phenomenon are discussed in great details in [42]. The normal work plot in Fig. 8.23b

shows a decrease in the energy of the system during the 1st impact event. Note, that the

normal velocities of all contact points do not reach positive values by the end of the 1st

event. Hence, after the end of the 1st impact event there is a 2nd impact event that follows

immediately. Only the points whose normal velocities did not reach a positive vale at the

end of the 1st impact event, are analyzed in the 2nd impact event, with e∗ = 0.5. Fig. 8.24a

and Fig. 8.24b shows the evolution of the normal work respectively. Once again the veloc-

ities and normal work plots in Fig. 8.24 are very similar to the ones obtained in [42]. Note

that the normal velocities of the two contact points at the end of the 2nd impact event reach
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positive values. Hence, the 4-point collision ends with the 2nd impact event, and the new

post-impact velocities and impulses are used to restart the simulation.
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Figure 8.23: (a) Evolution of the cylindrical velocities and (b) Normal work done during
the 1st impact event for the 3D rocking block example with four corner impact points.
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Figure 8.24: (a) Evolution of cylindrical velocities and (b) Normal work done during the
2nd impact event for the 3D rocking block example with four corner impact points.
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The augmented impact model also gives the deformation histories and elapsed time

during the 1st and 2nd impact events. The deformation histories of all contact points are

used to calculate the force-history throughout the collision. Fig. 8.25 shows the normal

force - deformation curves for all four contact points throughout the collision (inclusive of

both 1st and 2nd impact event). Since, points 1 an 2 have negative initial normal velocities,

the points undergo a local compression phase followed by a local restitution phase. Note

that normal forces of points 1 and 2 increases with increase in the deformation during

their local compression phases. Although it may not be easily visible from Fig. 8.25a and

Fig. 8.25b, the deformations of points 1 and 2 decrease with the decreasing restitution force

during their local restitution phases. The restitution force curves for points 1 and 2 are very

steep in Fig. 8.25a and Fig. 8.25b because the local restitution for these points take place

during the 2nd impact event which involves only two points. Also, from Fig. 8.24 it can

be seen that the normal velocity changes by a small amount during the 2nd impact event.

Points 3 and 4, on the other hand, has zero initial normal velocities and only participates

in the 1st impact event. Fig. 8.25c and Fig. 8.25 shows the force-deformation curve for the

points 3 and 4. Since, points 3 and 4 start with zero initial normal velocities, these points

do not have local compression phases. Instead these points have local restitution phase at

the beginning of the 1st impact event. Points 3 and 4 unloads the contact constraint force to

zero during their local restitution phase. Since, points 3 and 4 begins with local restitution

and initially the deformations are assumed to be zero. Hence, in Fig. 8.25c and Fig. 8.25d

the deformations start at zero and ends at small negative values.

The overall elapsed time of impact obtained from augmented impact model is very

small, and in the order of 10−5. Fig. 8.26a and Fig. 8.26b shows how the impulses on

the system varies with respect to time during the 1st and the 2nd impact event. Fig. 8.27

shows how the forces at all contact points change through out the collision (which includes

the 1st and 2nd impact events). Since, the normal force at points 3 and 4 starts with a
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relatively small values due to contact and then unloads to zero during the 1st impact event,

the forces on points 3 and 4 are barely visible in the plot shown in Fig. 8.27, due to the

scale of the forces at points 1 and 2. Note the discontinuities in the tangential forces, which

demonstrate the effects of stick-slip transition on the forces, as seen earlier in case of the

velocities in Fig. 8.23a and Fig. 8.24a.

Figure 8.28a shows the forces at all contact points throughout the simulation. The

large spike at approximately time t = 0.08s indicate forces on the block due to the 4-point

collision. Notice that the elapsed time of impact is not discernible in the Fig. 8.28a, which

agree with the assumption that impact occurs over negligibly small time-periods for rigid

bodies. In Fig. 8.28a, it is hard to see a number of significantly smaller spikes of forces

associated several 2-point collisions that takes place before the block undergoes the 4-point

collision. These 2-point collisions can be clearly observed in the log-magnitude plot of

these forces in Fig. 8.28b.

Lastly, the forces on the block during the 4-point collision can visualized using

Fig. 8.20. Fig. 8.20 shows scaled magnitude of the forces at different collision points.

The forces at contact points 1 and 2 can be clearly seen, but the forces at points 3 and 4

cannot be seen as their magnitudes are significantly smaller.

8.2.4 Example-4: 3D Block Surface-Surface Contact and Impact

In [42], it was shown that the rigidity based impact model can be used to analyze

surface-surface impacts. It was also shown that impacts between flat surfaces is indepen-

dent of the number of points used to analyze impacts, if the rigid hypothesis is maintained

in analyzing these collisions. This was shown by considering rigid block model and ana-

lyzing it for four different cases: (a) 4-point, (b) 8-point (c) 16-point and (d) 25-point grid

model of the bottom surface of the block. It was found that given the same initial condition,

simulation results are identical for all of these cases. In this section, the same example is
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repeated. As seen from earlier results, the augmented impact model proposed in this work,

yields the same results as the purely rigid impact model presented in [42]. This fact is true

here as well, however the main goal of redoing this example using the augmented impact

model is to get an approximate estimate of the force distribution over an impacting surface.

However, one hindrance towards this is to find appropriate radii for each contact point. In

this work, the force model used to augment the rigid impact model only works for objects

with spherical geometry. In the previous example of the block the collision was assumed

to be taking place at the four corner points, therefore an assumption could be made re-

garding the roundness of the corners of the block, such that a radius of curvature could be

selected. In this example, some of the cases involve analyzing impacts within the flat plane

of contact, where the radii are infinite. Hence, some approximations are necessary here in

order to use the same model of impact for all cases in this problem. The approximation

used here is to consider that the rigid block is composed of a number of spheres, such that

each contact point on the bottom face of the block could be associated with a sphere. The

maximum number of points used to model the bottom face of the block in this example is

25 points, as shown in Fig. 8.30a. Hence, the bottom face of the block must be composed

of 25 spheres. Thus, the entire block can be modeled as a lattice structure composed of

75 spheres, as shown in Fig. 8.30b. Of course, this type of a block model would not yield

exact forces. Nevertheless, this approach can yield a decent approximation of the forces

with a relatively simple model of contact force.

Hence, in this example the block model analyzed for contact and impact with variable

number of contact points. Fig. 8.31 shows the block model with various number of contact

points, positioned and oriented according to the constant initial conditions used in these

simulations. The block model has a mass of 2.5 kg and has the dimensions 1.5m× 1.5m×

1m. The block is dropped from a height of 1.5m (the distance between the center of mass

and the ground), with a roll angle of −0.2rad. The radii of each contact point is chosen
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as the radii of the spheres shown in Fig. 8.30, which is R1 = 0.1875m. Again the block

is assumed to be made out of SUJ2 Steel with a Young’s modulus of E1 = 206 GPa,

Poisson’s Ratio of ν1 = 0.3 and a Yield’s strength of σy1 = 350 MPa. The ground is

assumed to be composed of a material whose Young’s modulus is E2 = 102 GPa, Poisson’s

Ratio is ν2 = 0.4 and Yield’s strength is σy2 = 120 MPa. The ground is considered to have

radius of R2 = ∞. The hardness values for both the block and the ground is selected to be

H̄ = 290 kgf/mm2. The damping coefficient used in this impact is b = 10 kg ·m− 1

2 · s− 1

2 .

The values for static and dynamic coefficients of friction are selected to be µs = 0.5 and

µd = 0.4, respectively. The global ECOR value is chosen to be e∗ = 0.5. All parameters

used in these simulations are listed in Tab. 8.4. The bottom face of the block interacts with

the ground throughout the simulation. Simulation results. over a 2 seconds period, are

generated for each of the four different cases, using the proposed augmented impact model

along with the contact constraints, as proposed in [42].

Parameters Block Ground

Mass m = 2.5 kg -

Radius R1 = 0.1875 m R2 = ∞ m

Young’s Modulus E1 = 206 GPa E2 = 102 GPa

Poisson’s Ratio ν1 = 0.3 ν2 = 0.4

Yield Strength σy1 = 350 MPa σy2 = 120 MPa

Hardness H̄1 = 290 kgf/mm2 H̄1 = 290 kgf/mm2

Damping Coefficient b = 10 kg ·m− 1

2 · s− 1

2

Coefficient of friction µs = 0.5, µd = 0.4

ECOR e∗ = 0.50

Table 8.4: Parameters used to simulate 3-point sphere impact

Figure 8.32 shows the evolution of the generalized coordinates for the 1) Four Point,

2) Eight Point, 3) Sixteen Point, and 4) Twenty-Five Point cases for the 2 second simulation.
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It is clear from these plots, that the trajectories of the generalized coordinates for these cases

remains very close to one another throughout the simulation period. Note that, again these

results here obtained using the proposed augmented impact model is identical to the ones

generated using purely rigid impact model in [42]. The augmented impact model used

here also gave the deformation history of the contact points and the elapsed time for each

impact event. These deformation histories, along with the velocity histories of the contact

points were used to generate the force histories at each contact point. During the contact

phases, the forces were calculated based on the rigid contact model shown in [42]. Finally,

these forces at all contact points are plotted with respect to time for each of the four cases

i.e. (a) 4-point, (b) 8-point, (c) 16-point, and (d) 25-point grid bottom surface model in

Fig. 8.33. Notice, that the force-time plots in Fig. 8.33a-8.33d, the magnitude of the forces

decreases as the number of contact points to the block model is increased. Also, note

that in Fig. 8.33, the force-histories obtained for different number of points have a very

similar pattern of evolution. This is due to the fact that the block impacts with the same

configuration regardless of the number of points used to model its bottom surface. This

pattern is more clearly visible in the log-magnitude plots in Fig. 8.34. All force-histories

obtained in this experiment are visualized in Figs. 8.35, 8.36, Fig. 8.37 and Fig. 8.38. The

magnitude of the forces in these plots are scaled down. Notice, that the forces on the

block for (a) 4-point, (b) 8-point, (c) 16-point, and (d) 25-point grid bottom surface model

mostly takes place at the edges of the block. In Fig. 8.37 and Fig. 8.38, specific instances

are shown where the forces on the contact points are within the bottom face, such that a

force distribution can be observed over the entire surface of impact. The energy dissipation

exhibited by the system during all these simulations are shown in Fig. 8.39. Again the

energy dissipation plots reaffirm that the overall behavior of the simulation is not affected

due to the redundant number of points used for the contact and impact analysis. The steps

on the total energy plot reflect the energy dissipation due to impact.
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Figure 8.25: Normal Forces-Deformation curve for (a) point 1, (b) point 2, (c) point 3 and
(d) point 4 during the collision
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Figure 8.26: Change in the impulses on the block with respect to time during (a) 1st and
(2) 2nd impact events

0.08018 0.08019 0.0802 0.08021 0.08022 0.08023

-1000

-500

0

500

1000

1500

2000

Figure 8.27: Evolution of forces with respect to time throughout the collision (1st and 2nd
impact events combined)
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Figure 8.28: (a) Forces and (b) log-magnitude of the forces at all points throughout the
simulation
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Figure 8.29: Visualization of the contact forces on the block at different times block during
the first impact event (time increases from left (a) to right (e))

(a) (b)

Figure 8.30: (a) 3D rigid block model with 25 contact points and (b) Approximated block
model as a lattice structure composed of 75 spheres
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Figure 8.31: Block with (a) four points (b) eight points (c) sixteen points (d) twenty-five
points
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Figure 8.32: Comparison of the generalized coordinates of the block
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Figure 8.33: Forces on (a) 4 points, (b) 8 points, (c) 16 points, and (d) 25 points block
model with respect to time
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Figure 8.34: Log-magnitude of forces on (a) 4 points, (b) 8 points, (c) 16 points, and (d) 25
points block model with respect to time
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Figure 8.35: Visualization of the contact forces on the block at different times block during
the first impact event (time increases from left (a) to right (e))
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time increasing−−−−−−−−→

Figure 8.36: Visualization of the contact forces on the block at different times block during
the first impact event (time increases from left (a) to right (e))

8.2.5 Example-5: 3D Rocking Block Angular Response

In [38, 42], the angular response of various specimens of 3D rocking block are an-

alyzed. The rocking block problem has been an important benchmark problem related to

earthquake engineering, and has been studied extensively over the years [34, 54, 103, 109–

115]. Unlike various other studies which modeled the rocking block problem with some

stiffness properties, [38,42] showed that the dynamics of the rocking block problem can be

modeled reasonably well using a purely rigidity based impact model. [38, 42] showed this

by first matching experimental data from [113, 114], while using a rigid impact model. At

first this data was matched using a planar impact model in [38] by appropriately selecting

the global ECOR values. Then a 3D model of impact was used to match theses results

in [42], while using the same values of global ECOR. Since, the present work is an exten-

sion of the work in [42], it is expected that the experimental data from [113, 114] could be
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Figure 8.37: Visualization of the contact forces on the block at different times block during
the first impact event (time increases from left (a) to right (e))
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Figure 8.38: Visualization of the contact forces on the block at different times block during
the first impact event (time increases from left (a) to right (e))

matched using the proposed augmented impact model, with the same parameters as in [42].

However, the main goal here is to redo the examples of angular rocking block response as

in [42], while using the augmented impact model to simultaneously calculate deformation

and force histories throughout these simulations.

Three different specimens were used for the free-rocking block experiments in [114]:

1) Specimen 1 with a width of 0.25 m, height of 1 m and mass of 503 kg, 2) Specimen 2

with width and height 0.17 m and 1 m respectively and a mass of 228 kg, and 3) Specimen

4 of width 0.16 m, height 0.457 m and mass 245 kg. The width of the block needs to

be calibrated, since the angular response to a rocking block problem is highly sensitive

to variations in width [116]. A detailed discussion on this presented in [103, 116]. The

effective width selected herein for all of the specimens are the same as in [38,42,103,116],

which are 0.23m for Specimen 1, 0.155m for Specimen 2, and 0.115m for Specimen 4.
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Figure 8.39: Energy Dissipation for (a) Four Point, (b) Eight Point, (c) Sixteen Point and,
(d) Twenty-Five Point Cases

The length of the three specimens were selected to be the same as in [114]: 0.7594m,

0.502m and 0.705m for Specimen 1, Specimen 2 and Specimen 4 respectively. According to

[114], the specimens used in this experiment are composed of granite which has a Young’s

Modulus of E1 = 70 GPa. Unfortunately some of the other material properties required

for the force model used in this work does not exist for a non-metallic brittle material such

as granite. Hence, all the other material property values used in this example are assumed.

The Poisson’s Ratio for the specimens are assumed to be ν1 = 0.3 and the Yield’s strength

is assumed to be σy1 = 2200 MPa. Similar to the 3D Block example, here the corners of the
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specimen are assumed to be rounded with a radius of R1 = 0.005m. The ground is assumed

to be composed of a material whose Young’s modulus is E2 = 102 GPa, Poisson’s Ratio is

ν2 = 0.4 and Yield’s strength is σy2 = 120 MPa. The ground is considered to have radius of

R2 = ∞. The hardness values for both the block and the ground is selected to be H̄ = 290

kgf/mm2. The damping coefficient used in this impact is b = 104 kg · m− 1

2 · s− 1

2 . Lastly

the values for static and dynamic coefficients of friction are selected to be µs = 0.577 and

µd = 0.3, respectively. Using these parameters the simulations were performed for the

three specimens. The global ECOR, e∗ values were selected to be same as [38, 42]. These

were e∗ = −0.73, 0.8 for Specimen 1, e∗ = −0.95, 0.8 for Specimen 2, and e∗ = −0.96, 0.8

for Specimen 4, where all the negative values of ECORs were used for 4-point or 3-point

impact events and all positive values of ECORs were used for 2-point and 1-point impacts.

The list of all parameters for the three specimens is summarized in Tab. 8.5

Parameters Specimen 1 Specimen 2 Specimen 4 Ground

Mass m = 0.7594 kg m = 0.502 kg m = 0.705 kg -

Radius R1 = 0.005 m R1 = 0.005 m R1 = 0.005 m R2 = ∞ m

Young’s Modulus E1 = 70 GPa E1 = 70 GPa E1 = 70 GPa E2 = 102 GPa

Poisson’s Ratio ν1 = 0.3 ν1 = 0.3 ν1 = 0.3 ν2 = 0.4

Yield Strength σy1 = 2200 MPa σy1 = 2200 MPa σy1 = 2200 MPa σy2 = 120 MPa

Hardness H̄1 = 290 kgf/mm2 H̄1 = 290 kgf/mm2 H̄1 = 290 kgf/mm2 H̄2 = 290 kgf/mm2

ECOR e∗ = −0.73, 0.8 e∗ = −0.95, 0.8 e∗ = −0.96, 0.8 -

Damping Coefficient b = 104 kg ·m− 1

2 · s− 1

2

Coefficient of friction µs = 0.6, µd = 0.35

Table 8.5: Parameters used to simulate 3-point sphere impact

Fig. 8.40 compares the simulated and experimental angular response of the three

specimens. Here, Pena refers to the measured angular response from the experiments done

by Pena et.al [114], LZB refers to the simulated response using the LZB model [103], and

CBGB refers to the response obtained using the proposed augmented impact model, and
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Figure 8.40: Angular Response for (a) Specimen 1 (b) Specimen 2 (c) Specimen 4. The
angular response data for Pena and LZB, were obtained from plots shown in Fig.5 of [103].

is identical to the results obtained using the purely rigid models in [38, 42]. Based on the

deformation histories obtained using the augmented impact model the forces associated

with all collisions were calculated. Fig. 8.41, shows the forces at the four contact points

for (a) Specimen 1, (b) Specimen 2 and (c) Specimen 4. Note that in Fig. 8.41, a pattern

can be observed where several collisions (represented by the force spikes) take place in

quick succession before some points enter contact and rocking is resumed. Fig. 8.42

shows the energy dissipation of the block throughout the simulation. Notice, the steps in
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(a) (b)

(c)

Figure 8.41: Forces at the four contact points during the rocking response

the total energy plot, which indicate energy losses due to every collision. The total energy

of the system always decreases in this simulation, this shows that these simulation results

are energetically consistent.

8.3 Discussion

The purpose of the augmented impact model developed in this work is to obtain an

approximation of the forces experienced by rigid objects during collision. The forces dur-

ing collisions are always related to the induced deformations using a variant of the Hertzian

169



contact model. Yet for hard objects (which can be assumed to be rigid) the deformations

are negligibly small. Hence it is more convenient to use an approximate model for the col-

lision forces based on rigidity, compared to developing an exact model based on the tiny

deformations. The proposed method uses an indirect approach for solving the collision

forces based on an existing analytic contact force model. The contact force model used in

this work is ideally used to model contact between spherical surfaces. However, as shown

in some of the examples, rigid non-spherical objects can be approximated as a collection

of rigidly-attached spheres.
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Figure 8.42: Energy consistency throughout the simulation for (a) Specimen 1 (b) Speci-
men 2 (c) Specimen 4
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APPENDIX A

PROJECTION OF VELOCITY-CONSTRAINTS AS FORCE-CONSTRAINTS
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In order to demonstrate, how a rigid body constraint expressed in terms of velocity

can be projected in terms of impulses. Lets consider a two-point contact involving the

points i and j. Let the velocity-level rigid body constraints between the two points be

expressed as,

wϑ = (vxi
− vxj

)ηx + (vyi − vyj )ηy + (vzi − vzj)ηz = 0 (A.1)

Then the velocity vector may be rewritten as,

ϑ =



















vxj
− (vyi − vyj)

ηy
ηx

− (vzi − vzj )
ηz
ηx

vyi

vzi

vxj

vyj

vzj



















=



















−α −β 1 α β

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



















︸ ︷︷ ︸
P

ϑs (A.2)

where ϑs are independent velocities, P is a matrix representing the rigid body constraint,

and α = ηy
ηx

and β = ηz
ηx

. This may be also expressed as,

ϑ = J q̇ = Pϑs (A.3)

This yields,

ϑs = P+J q̇ (A.4)

where P+ = (P TP )
−1
P T is the generalized inverse of the matrix P . As shown in [128],

the virtual work due to the contact forces yields the relation,

FTϑ = ΓT q̇ (A.5)
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Let Fs be a vector containing the constrained force terms corresponding to the independent

velocities ϑs. Enforcement of the velocity level rigid body constraints shouldn’t cause any

change in the virtual work of the system. Hence,

Fs
Tϑs = ΓT q̇ (A.6)

Now substituting the relation Γ = JTF and (A.4) into (A.6) yields,

Fs
TP+J q̇ =

(
JTF

)T
q̇ (A.7)

This yields the constrained force relationships,

F = (P+)TFs Fs = P TF (A.8)

Therefore, from (A.8), a projection of rigid body constraints onto the force space can be

obtained as,
(

I −
(
P+

)T
P T

)

F = 0 (A.9)

Note that in (A.9), (P+)
T
P T 6= I . The matrix (P+)

T
P T projects the forces F to a space

orthogonal to the velocity-level constraint such that it is equal to F. Now using the coeffi-

cients of P from (A.2), the matrix I − (P+)
T
P T can be symbolically obtained as,

I −
(
P+

)T
P T =

1

2 (α2 + β2 + 1)



















1 α β −1 −α −β

α α2 αβ −α −α2 −αβ

β αβ β2 −β −αβ −β2

−1 −α −β 1 α β

−α −α2 −αβ α α2 αβ

−β −αβ −β2 β αβ β2



















(A.10)

It can be seen that all equations obtained by substituting (A.10) into (A.9), yields the same

force constraint:

fxi
+ αfyi + βfzi − fxj

− αfyj − βfzj = 0 (A.11)
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Now substituting back α = ηy
ηx

and β = ηz
ηx

, and rearranging gives the rigid body constraint,

(fxi
− fxj

)ηx + (fyi − fyj)ηy + (fzi − fzj )ηz = wF = 0 (A.12)

or in terms of differential impulses as,

wdp = 0 (A.13)
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APPENDIX B

SOLVING MULTI-POLYNOMIAL ROOTS USING MACAULAY MATRIX
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In the literature, one can find two main approaches for solving multipolynomial sys-

tem of equations. These are either homotopy-continuation based approaches [129–133] or

elimination-theory based approaches [134–137]. The homotopy-continuation based meth-

ods essential transform the the multipolynomial root problem into an ordinary differential

equation initial value problem, by harnessing some topological properties. The initial val-

ues here are some known roots of a polynomial system of the same degree. The idea

is to perform numerical integration to reach the solution set for the desired multipolyno-

mial system The elimination based approaches on the other hand make use of the algebraic

structure of the multipolynomial system to simplify the problem in terms of an independent

variable. These approaches may be further classified in to two categories which either use

1) Gröbner Basis [134–136, 138] or use 2) Resultants [135, 137, 139–142]. The Gröbner

basis of a multipolynomial system is analogous to the row-reduced echelon obtained for

linear systems after performing the Gaussian elimination process. If there exists finitely

many solutions to any given system, then the Gröbner basis for this system would yield a

unique set of equations (known as ideals) such that it contains atleast one univariate equa-

tion. Thus, the root-finding methods which use Gröbner basis first find the roots in terms

of a single variable and perform repeated substitution to obtain all roots [134, 136, 138].

One of the drawbacks of Gröbner basis based approaches is that it requires a great deal of

symbolic manipulation, which makes this process computationally expensive [140].

Another class of elimination based root-finding methods use resultants for simulta-

neously calculating all possible roots for a given system of polynomials. Resultants were

originally proposed for two univariate polynomial systems, and was defined as the de-

terminant of what is known as the Sylvester matrix. The Sylvester matrix contains the

coefficients of the two polynomials. If there exist a common root for any two univariate

polynomial system, the resultant of these polynomial must be zero [140, 142]. Resultants

for two polynomial systems can be also formulated as the determinant of Bezout-Cayley
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matrix [142]. In addition to determining the existence of a common root for univariate

bi-polynomial systems, resultants may be also used calculating the common roots of two

multivariate polynomials. This is usually done by forming a Sylvester matrix while treating

one of the two variables (known as the hidden variable) to be part of the coefficients of the

polynomial. This yields the resultant to be a function of the hidden variable included as

coefficient. The value(s) of this hidden variable at the common roots are then calculated

by setting the resultant to zero, and solving for the unknown. Subsequently, the other vari-

ables may be treated as the hidden variable to find their values at the common roots. This

method of calculating the common roots of two polynomial system may be extended for

more general multivariate polynomial system by repeated resultant computation by select-

ing any two polynomials at a time. However, such a method yields misleading roots, since

any two polynomials picked from a set of polynomials may not necessarily have a com-

mon root. A more standard way of extending the resultant formulation for multipolynomial

system is expressed as the ratio of the determinant of two matrices, which are known as

the Macaulay matrices. Similar to the Sylvester resultants, the Macaulay resultants can be

used to determine the existence of any common roots in the multipolynomial system. The

Macaulay matrix may be also used to calculate the roots of a multipolynomial system. This

can be done by calculating what is known as the U-resultant of the multipolynomial sys-

tem. The U-resultant can be calculated by augmenting the given polynomial system with

a symbolic coefficient linear equation, and taking the determinant of its Macaulay matrix.

The symbolic expression given by the U-resultant can then be used to calculate all roots of

the system. Despite the simplicity of the U-resultant technique, the symbolic computation

involved makes this method computationally expensive.

This work uses a more popular and comparatively inexpensive method for solving the

multipolynomial system in (5.45). This method extends the idea of hiding variable using

the Macaulay matrix form, to transform the root-finding problem to a polynomial eigen-
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value problem (PEP). However, this transformation can only be performed for a system

with same number of variables as equations. Note the system in (5.45) is a over-determined

system of polynomials with the same degree. Hence, before transforming (5.45) into a PEP,

one needs to find the minimal basis set of equations. This can be done by simply perform-

ing a Gauss-Jordan elimination on the coefficients of the system. Let the reduced set of

equations, after performing the G-J elimination on the coefficients of (5.45) be,

f̄1(u1, u2, u3) = . . . = f̄3(u1, u2, u3) = 0 (B.1)

The reduced system of polynomials (B.1) has 3 equations and 3 unknowns, and have roots

identical to (5.45). Now the first step in transformation of (B.1) to PEP is to formulate the

macaulay matrix by hiding one of the variables into the coefficient field, or in other words,

treating one of the variables to be part of the coefficient of the system. Let us choose u1 as

the hidden variable. Then the multipolynomial system in (B.1) is given by,

f̄1(u2, u3) = . . . = f̄4(u2, u3) = 0 (B.2)

The equations (B.2) are defined using the variables u2, and u3. Let the degrees of the

polynomials f̄1, f̄2, and, f̄3 be d1,d2 and d3. These degrees are counted while disregarding

u1 as a variable. The method of hidden variable only works for homogeneous polynomials

so (B.2) needs to be homogenized by adding an extra variable u4. The homogenized set of

equations are given by,

Fi(u2, u3, u4) = . . . = Fi(u2, u3, u4) = 0 (B.3)

where,

Fi = u4
di f̄i

(
u2

u4
, u3

u4

)

i = 1, . . . , 3

Note, that the polynomial system given in (5.45) is already homogenous, so the homoge-

nization has not effect on the original polynomial system. The total degree d of the mul-
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tipolynomial system is calculated using the degrees of each polynomial di in the system

as,

d =

n=3∑

i=1

(di − 1) + 1 (B.4)

The next step is to take the set of all monomials of degree d using the variables u2, u3,

and u4 and partition them into n = 3 subsets. Let the set of all monomials of degree d be

represented as uα = u2
α2u3

α3u4
α4 , such that |α| = ∑n+1=4

i=2 αi = d. The set of monomials

uα is then partitioned into n = 3 subsets as,

S1 =
{
uα : u2

d1 divides uα
}

S2 =
{
uα : u2

d1 doesn’t divide uα, but u3
d2 does

}

S3 =
{
uα : u2

d1 , u3
d2 doesn’t divide uα, but u4

d3 does
}

(B.5)

Now a new set of polynomials equivalent to (B.3) can be created using these partitions,

uα

u2
d1

F1 = 0 for all uα ∈ S1

uα

u3
d2

F2 = 0 for all uα ∈ S2

uα

u4
d3

F3 = 0 for all uα ∈ S3

(B.6)

Note that the functions Fi have the hidden variable u1 included in its coefficient field.

Hence, the homogeneous system of polynomials in (B.6) also contains the hidden variable

u1. Now, the polynomials in (B.6) can be dehomogenized by setting the additional variable

u4 = 1. Thus after dehomogenization (B.6) may be represented as,

M(u1)ν = 0 (B.7)

where M(u1) is the Macaulay matrix for the multipolynomial system (5.45) with the vari-

able u1 hidden in the coefficient field, such that the elements of M(u1) are univariate
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functions of u1. ν is a vector containing all possible monomials in variables u2 and u3.

Since, the elements of M(u1) contains powers of u1, it may be also represented as a matrix

polynomial. Thus, (B.7) can be posed as a polynomial eigenvalue problem (PEP),

(
λkMk + λk−1Mk−1 + . . .+ λM1 +M0

)
ν = 0 (B.8)

where k is the highest power of u1 in M(u1). Note, that Mk are matrices with numeric

elements. PEPs such as (B.8) can be easily solved by transforming the problem into a

generalized eigenvalue problem. However, this work uses a built in command in MATLAB

called polyeig() to obtain the solutions of PEPs. Solving the PEP in (B.8) yields the

eigenvalues λ and eigenvectors ν. The eigenvalues λ take the values of the hidden variable

u1 at the roots of the multipolynomial system (5.45). The eigenvectors ν would contain the

variables u2 and u3, which can be selected for corresponding values of u1 = λ.

Now it is noteworthy, that solution of PEPs such as (B.8) by transformation to gen-

eralized eigenvalue problem, generates matrices of very large dimensions for large values

of n and d. The eigenvalue problems for very large matrices are usually difficult to com-

pute and can be numerically unstable. However, in the context of this work the eigenvalue

problem encountered involve only moderately large dimensioned matrices, (since n = 3

and d =
∑n=3

i=1 (di − 1) + 1 = 4) that are typically easy to compute. The accuracy of the

solution can usually be improved by a method known as “Root Polishing”, which involve

using the solutions from the eigenvalue problem as initial guesses and performing Newton-

Raphson iterations [139]. However, in this work, this wasn’t necessary due to the relatively

low dimension of the PEP.
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