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ABSTRACT

COMPUTATIONAL APPROACHES FOR FINDING DISEASE RELATED

GENES AND RNAS

Negin Fraidouni, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professors: Gergely Zaruba

Finding candidate genes that could cause specific diseases has been the subject

of many studies. This is an important research task, however in the biological exper-

imentation domain it can be very expensive and time consuming. So an alternative

way is to find gene expression values from partial measurements and try to predict

the rest. By using computational methods, we can statistically estimate these rela-

tionships faster and in a more efficient way, providing domain experts suggestions on

what exploration of likely relationships they should be focusing. One common com-

putational approach is to model the gene expression data as a matrix (where each row

represents a gene and each column a subject); the entries of the matrix can then be

mRNA measurements that show the extent of gene expressions. Since entries of the

dataset are based on partial measurements, the dataset has missing values, and the

problem is then to estimate the missing values and thus to recover the global matrix

based on the known values. The main aim of this research is to investigate matrix

completion methods for predicting gene expression values.
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CHAPTER 1

Introduction
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1.1 Gene expression

In the center of all living cells, there is a nucleus and each nucleus contains 46

thread-like structures called chromosomes. Chromosomes are made of DNA that carry

the genetic information. A gene is the basic unit of heredity and act as instructions

to make molecules called proteins. The Human Genome Project has estimated that

humans have between 20,000 and 25,000 genes.

Gene expression is a very sophisticated and highly regulated biological mecha-

nism as it is responsible for the function of every living cell. Thousands of genes are

expressed in every cell; every step of this expression process (making RNA from DNA

and later making proteins from RNA) has a control point that determines which pro-

teins are present in a particular cell and in what quantity. The amount of messenger

RNA (mRNA) molecules in cells depends on the cell’s function, so measuring the

quantity of mRNA molecules can reflect gene expression. There are biological exper-

imental methods to measure gene expression in biological samples. These methods

have given researchers new opportunities to study the relationships between genes

and diseases. Some example methods are Reporter gene [1], Microarray, and RNA

sequencing [2, 3].

Generally speaking, a single gene is usually not responsible for regulating any

complex process. If we consider the definition of a gene as DNA sequence that makes

RNA or proteins, every process in the body would be the result of interactions between

Figure 1.1. Structure of cell nucleus, chromosomes and genes.
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these gene products. In other words, groups of genes must always work together in

order to regulate any process in the body. Biologists believe that some proteins

that have roles in the transcription of DNA molecules, named transcription factors,

may have caused this and as a result the expression levels of genes are significantly

correlated [4]. Recently the costs of data storage have reduced but the process of

capturing data is still expensive and also the overall time needed for the whole process

(preparing samples, measurements, storing data ...) is excessive. Computational

methods relying on statistical forecasting can provide promising directions for these

studies; thus there is a high demand for novel, efficient techniques and algorithms to

predict gene expressions. Gene expression data can be stored in matrices in order

to create a model, where the rows and columns correspond to different subjects and

genes respectively. The entries of the matrix are the RNA levels found in the tissue

samples of the different subjects. This model also makes the implicit assumption

that similar expressions are present for people with similar diseases, making this

matrix heavily over determined and thus considerably low-ranked. As we mentioned

before, we can find a fraction of the data by partial measurements and predict the

rest by computational approaches. Thus, the main goal is to complete or recover the

matrix (i.e., to find the best representation for the missing values) when we can only

observe a subset of the matrix’s values, which is significantly less than the total size

of the matrix. The most promising way to do this is to rely on the assumption that

the resulting matrix has to be of low rank. By predicting missing values we could

indeed predict gene expression patterns of which the most promising could be then

investigated using biological experimentation.
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1.2 MicroRNA (MiRNA)

MiRNAs are small (about 21 to 24 nucleotides), non-coding, single strand RNA

molecules; they are involved in gene expression regulation. MiRNAs are found in

most eukaryotes including those of humans, and they tend to bind target mRNA

and prevent protein production [5]. MiRNA-directed gene expression regulation is

a very active area of research. Hundreds of miRNAs have been discovered and the

recent development of sequencing techniques and bioinformatics prediction methods

significantly enhanced our information about miRNAs, including possible functions

and regulatory targets [6–8]. MiRNAs have been found to be responsible for differ-

ent processes including cell death, cell proliferation, neural patterning, immunity, fat

metabolism, and hematopoietic differentiation [9]. Computational methods for find-

ing genes regulated by miRNAs have suggested that all these examples only represent

a few samples and thus they cannot describe the whole miRNA system [10]. Dysreg-

ulation of miRNAs have been shown to be the main reason of abnormal cell behavior

and hence some human diseases. More and more miRNAs have been confirmed to be

responsible for the development of human diseases [11,12]. For instance studies con-

firmed that the miR-200 family has a strong association with breast cancer [13]; also,

leukemia is one of the human cancers confirmed to be related to miR-15 and miR-16

dysregulation [14]. So recognizing miRNA-disease associations can help in diagnosing,

treating, and preventing human diseases. However, it is prohibitive to find the asso-

ciations one-by-one due to the significant amount of resources that have to be spent

in performing such experiments. Meanwhile, known miRNA-disease associations are

stored in databases like HMDD v.2.0 [15], dbDEMC [16] and miR2Disease [17] but

there is a high demand for identifying new associations. Using computational meth-

ods to prioritize potential miRNAs for any specific miRNA-disease study could signif-
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icantly reduce the time and financial resources needed for these experiments. Many

computational methods that have been developed by scientists, are based on the

assumption that similar miRNAs are likely to be related to similar diseases [18–20].

1.3 Long non-coding RNA(lncRNA)

Recent studies of transcriptomes have shown that a much greater part of the

genome is transcribed than we knew and expected. The results of the transcrip-

tion process are mostly non-protein coding RNAs [21] including Long non-coding

RNAs(lncRNAs). LncRNAs are usually larger than 200 nucleotides and they are less

expressed and more tissue-specific compared to protein-coding RNAs [22]. LncRNAs

are thought to have almost 30,000 different types in humans and they consist the ma-

jority of the non-coding transcriptome. Although our knowledge about lncRNAs are

very limited, they could have a very significant effect on regulation of transcription

process [23, 24]. LncRNAs also can be responsible for cell differentiation, apoptosis

and cell differentiation. Mutations and dysfunctions of lncRNAs are thought to be

the reason of some human complex diseases like diabetes [25], neurodegeneration dis-

ease [26], cardiovascular diseases [27], colon cancer [28], prostate cancer [29], kidney

cancer [30] and AIDS [31]. Computational methods can provide more efficient direc-

tions for these studies; so there is a high demand for novel, efficient techniques to

predict lncRNA-disease association.

1.4 Matrix Completion Techniques

Probably the most often cited example for applied matrix completion is movie

raters and recommenders for online streamers, like Netflix. The problem model con-

tains an M*N matrix where each row represents a user and each column stands for a

5



specific movie; each entry (m, n) then represent a rating that user m has for movie n.

Although some of these values are provided by the users themselves, most entries are

likely missing (as having the complete matrix would mean that all users have watched

and explicitly rated all movies, and thus no prediction on how well a user would like

a yet non-viewed movie would be needed). The goal is to predict missing values in

order to make good movie recommendations for users (relying on the assumptions

that similar users like similar movies and that these similarities are represented by

similar ratings on the same movies). The goal of Matrix completion then is to find

estimates for the missing values that result in the lowest rank matrix. The Matrix

completion problem has been shown to be NP-hard but there are heuristic algorithms

that can be used to recover the matrix with high probability [6].

1.5 Robust Principal Component Analysis

Principal component analysis (PCA) is a statistical tool that is mainly used for

dimensionality reduction. Given a data matrix E , using PCA, we can find the most

significant orthogonal vectors that show most variability in the data. For a

noise-free dataset, we can easily perform PCA using singular value decomposi-

tion (SVD). In the presence of noise, we can use another approach called robust PCA

(RPCA) [33]. The presence of this noise is common in many applications such as

image processing [34] and bioinformatics [35]. Robust PCA has the ability to recover

a low rank matrix from sparse noise. Assume that our data matrix E is denoted by:

E = Y + S (1.1)

Where Y is a low-rank matrix capturing the noiseless data and S is a sparse

matrix (i.e., for capturing noise, where most values are zero except for a small set

6



of values that can be non-zero). The goal is then to estimate Y and S given some

constraints on noise and data magnitude. For RPCA to work efficiently we need to

know the location of the non-zero elements in S . We consider the problem of low

rank matrix recovery using RPCA, where our goal is to recover Y , given a matrix

E with missing values and knowing the location of those missing values (forming our

matrix S ). Our RPCA problem can be solved by:

minY,S(‖Y ‖∗ + λ‖PΩ(S)‖1) (1.2)

such that: E = Y + S

where λ is a parameter. There is a plethora of algorithms for solving convex

optimization problems. One of the more robust iterative algorithms is known as the

Alternating Direction Method of Multipliers (ADMM [36]).

1.6 Datasets

In chapter 2 and 3, we used the genomic data repositories of NCBI (National

Center for Biotechnology Information). The GEO-NCBI (Gene Expression Omnibus)

is a public repository of genomic data. GEO profiles show expression profiles for indi-

vidual genes. We used the gene expression datasets of three studies that measured the

mRNA levels of different genes in different subjects (the amount of mRNA levels show

the gene expression values). We used the complete dataset as a reference and in each

part of the experiment we removed some random portion (between 10% and 90%) of

the data and then tried to recover the missing values. We then compared the original

and the reconstructed matrix to measure how well the algorithm is performing.

The database we have used for chapter 4, contains data of the associations

between human miRNA and disease from the Human microRNA Disease Database
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(HMDD). The database includes about 579 miRNAs, 384 diseases and 10,381 exper-

imentally confirmed associations between miRNAs and diseases. Using this data, we

can construct matrix Y to capture the associations between miRNAs and diseases.

Each row of matrix Y represents a different miRNA and each column represents a

different disease. Based on the datasets, the elements of

matrix Y can only be either 0 or 1. If miRNA mi is associated with disease dj,

then Yij is 1. Yij Is 0 in the cases where there is no known association between mi and

dj(this does not mean that there is no relationship but merely that the relationship

is unknown).

1.7 Methods

In chapter 2 we present the correlation based matrix completion model. As

described earlier, there is strong evidence that genes are highly correlated and work

in groups. In most biological processes we can find groups of genes that work together

so if we measure gene expressions on a set of tissue samples, we should find groups

of genes that are correlated to each other. Having this in mind, we can assume that

our gene expression measurements can be a low rank matrix

so we can predict the missing values and complete the matrix. In neighborhood

based approaches for collaborative filtering in recommendation systems, the main goal

is to find similarities between neighbors. When there is a missing value, the system

tries to make a prediction based on other users’ ratings (for the movies); the more

similar a user is to the one that has a missing value, the more impact his/her rating

should have on the prediction. Our problem in gene expression prediction is very

similar to neighborhood based approach of collaborating filtering, with the main task

to find similarity (correlation) between genes. We will thus investigate using Pearson

correlation coefficient and Cosine similarity to measure linear dependencies between

8



genes. In chapter 3 we described how Robust Principal Component Analysis (RPCA)

can be applied and used on NCBI-GEO biological data to find (artificially introduced)

missing values and recover the datasets. After describing the RPCA approach, we

presented the Alternating Direction Method of Multipliers (ADMM) algorithm.

We then described three well known algorithms that can be used when recover-

ing low rank matrices and we compared the performances of the four approaches. To

do this, we removed random elements from the datasets as represented by matrices

and predicted them based on the assumption that genes have similar behaviors in

similar conditions. Our study provides an insight for future work especially in bio-

medicine but also has implications to recommender systems. We found that ADMM

approach outperforms the other three approaches, i.e., it predicted more accurate val-

ues. We hope that this study can open new opportunities to gene expression studies.

As we stated earlier, gene expression experiments are very expensive and time con-

suming so using such computational methods can help biologists identify promising

directions for studies based on partial measurements in gene expression experiments.

In chapter 4 we investigated a graph regularized matrix factorization approach

for miRNA-disease association prediction. We assumed that similar miRNAs (func-

tionally) tend to be related to similar diseases (phenotypically). We used miRNA

functional similarity, disease semantic similarity, and known miRNA-disease associa-

tions form the HDMM v.2.0 database. To verify the accuracy of the GRMF method,

we used five repetitions of 6-fold cross validation. We compared the result of the

GRMF method with three state-of-the- art methods and concluded that GRMF out-

performs the other three in terms of AUC. We also selected Breast Neoplasm as a case

study in order to show the performance of GRMF for diseases which have no related

miRNAs and based on the results, we could confirm all 50 miRNAs as identified by

miR2Disease, dbDEMC and HDMM. As the second case study we chose Lymphoma

9



to demonstrate the performance of GRMF and based on the results, we could confirm

45 miRNAs out of 50 as identified by dbDEMC, miR2Disease and experimental liter-

ature in PubMed. The GRMF method could provide an effective approach to study

miRNA-disease associations. We also recognize that GRMF has some limitations

which can be improved in future research. For example, the sequence information

of miRNAs is used to measure miRNA similarity but some studies show that the

structural information can be more effective. Furthermore, expression information of

miRNAs could also be used to measure this similarity.
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2.1 Abstract

Finding candidate genes that could cause specific diseases has been the subject

of many studies. This is an important research task, however in the biological exper-

imentation domain it can be very expensive and time consuming. So an alternative

way is to find gene expression values from partial measurements and try to predict

the rest. By using computational methods, we can statistically estimate these rela-

tionships faster and in a more efficient way, providing domain experts suggestions on

what exploration of likely relationships they should be focusing. One common com-

putational approach is to model the gene expression data as a matrix (where each row

represents a gene and each column a subject); the entries of the matrix can then be

mRNA measurements that show the extent of gene expressions. Since entries of the

dataset are based on partial measurements, the dataset has missing values, and the

problem is then to estimate the missing values and thus to recover the global matrix

based on the known values. In this paper, we present a correlation based approach

to the matrix completion task (CMC) and discuss its functionality. The CMC based

algorithm is then compared to a state-of-the-art nuclear-norm minimization iterative

algorithm. Our results show that the CMC based algorithm significantly outperforms

the iterative algorithm and even shows a better tendency when the amount of missing

values grow. We argue that the CMC based algorithm can provide good estimates

for missing values, possibly guiding time consuming biological gene expression profil-

ing as to which values should be confirmed. Although our primary focus is on gene

expression prediction, the strategy discussed is applicable to any highly correlated

dataset where missing values need to be estimated/recovered.
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2.2 Introduction

Gene expression is a very sophisticated and highly regulated biological mecha-

nism as it is responsible for the function of every living cell. Thousands of genes are

expressed in every cell; every step of this expression process (making RNA from DNA

and later making proteins from RNA) has a control point that determines which pro-

teins are present in a particular cell and in what quantity. The amount of messenger

RNA (mRNA) molecules in cells depends on the cell’s function, so measuring the

quantity of mRNA molecules can reflect gene expression. There are biological exper-

imental methods to measure gene expression in biological samples. These methods

have given researchers new opportunities to study the relationships between genes

and diseases. Some example methods are Reporter gene [1], Microarray, and RNA

sequencing [2, 3]. Recently the costs of data storage have reduced but the process of

capturing data is still expensive and also the overall time needed for the whole pro-

cess (preparing samples, measurements, storing data,...) is excessive. Computational

methods relying on statistical forecasting can provide promising directions for these

studies; thus there is a high demand for novel, efficient techniques and algorithms to

predict gene expressions.

This paper discusses a Correlation based Matrix Completion algorithm (CMC)

with which such forecasting can be done. More precisely, we describe how the CMC

algorithm can be applied to gene expression data so missing values can be predicted

computationally. We use two approaches to calculate correlation between genes,

the Pearson Correlation Coefficient (PCC) and the Cosine Similarity (CS). We then

compare the result of these two methods to a state-of-the-art iterative matrix rank

minimization algorithm [4] and show their performance advantages.

The rest of the paper is organized as follows. Section 2 describes the background

information and related work with an emphasis on the low rank matrix completion ap-

17



proach of Kapur et al. [4]. Section 3 describes the dataset and the CMC approach. In

Section 4, we present our computational experiment comparing the three approaches.

Finally, section 5 concludes the paper.

2.3 Background

In this section we will describe gene expression data and the ideas behind matrix

completion. Then we will provide an overview of similar works; finally we will provide

a short overview of the nuclear norm minimization based matrix completion method

of Kapur et al. [4].

Genes make proteins while proteins regulate all cell functions. Generally speak-

ing, a single gene is usually not responsible for regulating any complex process. If we

consider the definition of a gene as DNA sequence that makes RNA or proteins, every

process in the body would be the result of interactions between these gene products.

In other words, groups of genes must always work together in order to regulate any

process in the body. Biologists believe that some proteins that have roles in the tran-

scription of DNA molecules, named transcription factors, may have caused this and

as a result the expression levels of genes are significantly correlated [5].

Gene expression data can be stored in matrices in order to create a model,

where the rows and columns correspond to different subjects and genes respectively.

The entries of the matrix are the RNA levels found in the tissue samples of the differ-

ent subjects. This model also makes the implicit assumption that similar expressions

are present for people with similar diseases, making this matrix heavily overdeter-

mined and thus considerably low-ranked. As we mentioned before, we can find a

fraction of the data by partial measurements and predict the rest by computational

approaches. Thus, the main goal is to complete or recover the matrix (i.e., to find

the best representation for the missing values) when we can only observe a subset of
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the matrix’s values, which is significantly less than the total size of the matrix. The

most promising way to do this is to rely on the assumption that the resulting matrix

has to be of low rank. By predicting missing values we could indeed predict gene

expression patterns of which the most promising could be then investigated using

biological experimentation.

Probably the most often cited example for applied matrix completion is movie

raters and recommenders for online streamers, like Netflix. The problem model con-

tains an M*N matrix where each row represents a user and each column stands for a

specific movie; each entry(m,n) then represent a rating that user-m has for movie-n.

Although some of these values are provided by the users themselves, most entries are

likely missing (as having the complete matrix would mean that all users have watched

and explicitly rated all movies, and thus no prediction on how well a user would like

a yet non-viewed movie would be needed).The goal is to predict missing values in

order to make good movie recommendations for users (relying on the assumptions

that similar users like similar movies and that these similarities are represented by

similar ratings on the same movies). The goal of Matrix completion then is to find

estimates for the missing values that result in the lowest rank matrix. The Matrix

completion problem has been shown to be NP-hard but there are heuristic algorithms

that can be used to recover the matrix with high probability [6].

2.3.1 Related work

Researchers always look for more effective approaches to extract relevant infor-

mation from biological data. There is a vast and diverse amount of biological data

available in online repositories and effective algorithms to make use of these data are

highly sought after [7]. In the previous decade several machine learning algorithms

have been developed or improved, causing a significant advancement in many aspects
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of finding gene relations (as they do not need tedious biological experimentation).

There are studies that are based on developing tools for prioritizing disease genes;

not surprisingly, they mostly use machine learning techniques. This is useful when

we know which genes are responsible for which diseases but we do not actually know

which ones play a more important role in causing that specific disease [8].

In some other studies researchers model the available biological data as a low

rank matrix and then try to complete the matrix and find the missing values. Kapur

et al. [4] showed that a known gene expression matrix can be artificially recovered

using convex optimization methods. They show the applicability of their solution by

removing some of the known values from matrix-contained biological datasets and

then predict these values. By employing this recovery method, they can calculate

an error between the predicted and actual value; the assumption then is that the

algorithm will perform similarly well on a matrix with true unknown data. Natarajan

et al. [21] used characteristics (or features) for diseases (extracted using methods like

text mining) and genes to find a better prediction for gene-disease relations.

Collaborative filtering methods have been mainly developed to be used for rec-

ommendation systems. The neighborhood based collaborative filtering method [10] is

based on collecting information about users’ similarities so that this information can

be used to make a prediction about movies that users will probably enjoy watching.

Some component algorithms that are useful for collaborative filtering are K- Nearest

Neighbors [11] and Pearson Correlation [12]. For example, El Alami et al. [13] em-

ployed Pearson correlation combined with a Jaccard similarity index for the purpose

of similarity measures between neighbors.
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2.3.2 Nuclear Norm Minimization Based Matrix Completion

In this subsection we will be briefly review the low-rank matrix recovery ap-

proach proposed in [4]. This low-rank minimization method is an iterative method,

where better and better candidate solutions are found based on an error norm (the

rank of the reconstructed matrix) and a gradient that helps calculating the next can-

didate solution. To be able to keep track which elements are missing we define Ω; if

an element xi,j of matrix X is known then (i, j) ∈ Ω. The objective here is to:

min(rank(Y ))

where

y(i,j) = x(i,j) ∀(i, j) ∈ Ω

The rank minimization problem is known to be NP-hard, to make the problem

tractable, Kapur et al. minimize the nuclear norm instead of the rank. More precisely,

the following minimization problem is solved (including a soft threshold operation):

minimise(τ ‖X‖∗ +
1

2
‖X‖F )

where is is the nuclear norm, τ is a threshold parameter with a recommended

τ = 5 ∗
√
M ∗N (where M and N are matrix X’s number of rows and columns

respectively).

Matrix X is iteratively reconstructed by applying a shrinkage method. In each

iteration matrix Y is deconstructed into its singular representation, the singular values

that are smaller than τ are set to zero; and then matrix Y is reconstructed from the

new singular values and the original singular vectors. This process is repeated until the

difference between original matrix and reconstructed matrix is less than a threshold
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tolerance value(ε): ε =
‖PΩ(Xk−M)‖

F

‖PΩ(M)‖F
. The pseudo code provided in Algorithm-1

presents pseudo code for the nuclear norm minimization based matrix completion

approach.

Algorithm 1: Nuclear Norm Minimization Based Matrix Completion

Y = shrink (X, τ):
(U,Σ,V) = SVD(X)

for every singular value σ in Σ
if σ < τ:

σ = 0

Y = U Σ V ∗

M = minimization_MC(X, Ω)
δ = 1.2 * m * n / |Ω|
for each row i of X:

for each column j of X:

if (i,j) in Ω :

PΩ(X) = X

else

PΩ(X) = 0

Y 0 = 0

k = 1

while error < ε:
Xk = shrink ( Y k−1 , τ)
Y k = Y k−1 + PΩ(M - Xk) * δ
k++

2.4 Correlation based matrix completion Model

In this section we will be describing the neighborhood approach of collaborative

filtering. Then we will explain Pearson correlation coefficient, Cosine similarity, and

Correlation based matrix completion.

As described earlier, there is strong evidence that genes are highly correlated

and work in groups. In most biological processes we can find groups of genes that

work together so if we measure gene expressions on a set of tissue samples, we should

find groups of genes that are correlated to each other. Having this in mind, we
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can assume that our gene expression measurements can be a low rank matrix so

we can predict the missing values and complete the matrix. In neighborhood based

approaches for collaborative filtering in recommendation systems, the main goal is

to find similarities between neighbors. When there is a missing value, the system

tries to make a prediction based on other users’ ratings (for the movies); the more

similar a user is to the one that has a missing value, the more impact his/her rating

should have on the prediction. Our problem in gene expression prediction is very

similar to neighborhood based approach of collaborating filtering, with the main task

to find similarity (correlation) between genes. We will thus investigate using Pearson

correlation coefficient and Cosine similarity to measure linear dependencies between

genes. A more detailed description of the Pearson correlation is provided in the next

section.

2.4.1 Pearson Correlation Coefficient

A common measure of correlation between two variables is the Pearson Cor-

relation Coefficient (PCC), aka, Pearson Product-Moment Correlation Coefficient

(PPMCC). The PCC: r, indicates the strength of a linear association between two

variables. Suppose that we have two datasets X and Y so thatX = {x1, ..., xn}andY =

{y1, ..., yn}, we can calculate the PCC as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

or using a shorthand notation:

r =
n(Σxy)− (Σx)(Σy)√

[nΣx2 − (Σx)2][nΣy2 − (Σy)2]
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The PCC can take on values from the range: [−1, 1]. A value of 0 indicates

no association between two variables. A positive value shows a positive association

meaning that the values for two variables increase and decrease together. On the

other hand a negative value shows a negative association and it means when the

value of one variable increases, the value of the other one decreases and vice versa. A

PCC closer to +1 or -1 means a stronger association (correlation).

2.4.2 Cosine Similarity

Cosine similarity measures the similarity between two vectors by calculating

the cosine of the angle between them. This metric measures orientation and not

magnitude so it can be seen as comparison on a normalized space that only the angle

between two vectors matters and not their magnitude. One of the reasons for the

popularity of cosine similarity is that it is very efficient to evaluate, especially for

sparse vectors, as only the non-zero dimensions need to be considered.The cosine

similarity can be calculated as shown below:

cosθ =
~x.~y

‖~x‖.‖~y‖
=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

with the dot product:

~x.~y = ‖~x‖.‖~y‖.cosθ

The resulting similarity ranges from -1 (meaning exactly opposite) to 1 (mean-

ing exactly the same), with 0 indicating orthogonality, and in-between values indi-

cating intermediate similarity or dissimilarity. The cosine similarity is independent

of the two vectors’ magnitudes.
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2.4.3 Correlation based Matrix Completion

In this section we will describe the correlation based method used to complete

partial matrices. Let us denote a known low-rank matrix as X. All of the values of

X are assumed to be known; we acknowledge that this is not the case in real-life but

for the sake of the denotation we will assume that this matrix actually exists (and

thus we can use it as the ground truth). The problem then becomes how to recreate

matrix X (or rather estimate matrix X) when some of its values are missing, erased

or unknown; We will refer to the matrix with the missing values as X
′
. Finally, we

will refer to the reconstructed matrices as XP and XC when using PCC and CS in

the reconstruction process, respectively. The ultimate goal is for XP and XC to be

as close to X as possible (see section on error calculation).

To use the notation from [4] we define a set of indices Ω such that if the matrix

element xi,j is known then (i, j) ∈ Ω.

We will calculate a PCC value and a CS value for every pair of rows. More

precisely if (i, j) /∈ Ω then we will calculate all PCCk and CSk values between row i

and all other rows k (k 6= i). To do this, we will have to skip using a value in column

j if either (i, j) /∈ Ω or (k, j) /∈ Ω. Thus for each pair of rows i and k we will have two

scalars PCC(i, k) and CS(i, k) describing how similar they are in their non-missing

values. To estimate a missing value at (i, j) then we will calculate:

XPi,j =

∑N
k=1 PCC

′
(i, j, k) ∗ x′′

k,j∑N
k=1 y(k, j)

(2.1)

XCi,j =

∑N
k=1 CS

′
(i, j, k) ∗ x′′

k,j∑N
k=1 y(k, j)

(2.2)
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where

x
′′

k,j =


x

′

k,j (k, j) ∈ Ω

0 (k, j) /∈ Ω

(2.3)

PCC
′

i,j,k =


PCC(i, k) (k, j) ∈ Ω

0 (k, j) /∈ Ω

(2.4)

CS
′

i,j,k =


CS(i, k) (k, j) ∈ Ω

0 (k, j) /∈ Ω

(2.5)

y(k, j) =


1 (k, j) ∈ Ω

0 (k, j) /∈ Ω

(2.6)

Essentially what Equation 2.1 represents is a mean value over all known values

in the column weighted by how similar two rows are based on PCC values and also

Equation 3.2 represents a mean value over all known values in the column weighted

based on CS values. To help normalize the mean,
∑

k y(k, j) is the number of rows

that do contain a value in column j. The pseudo code provided in Algorithm-2

presents an algorithmic view on the correlation based matrix completion calculation

as described above.

2.5 Evaluation

In this section we will be describing error calculation and performance of PCC

based approach and CS based approach compared to nuclear norm minimization

based matrix completion.
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Algorithm 2: Correlation based Matrix Completion

X_P,X_C = CMC(X, Ω)
for each row i of X

for each row k of X

if i != k :

calculate PCC(k,i)

calculate CS(k,i)

for each row i of X

for each column j of X

if (i,j) in Ω :

x_p(i,j) = x(i,j)

x_c(i,j) = x(i,j)

else if (i,j) not in Ω :

x_p(i,j) = 0

x_c(i,j) = 0

y = 0

for each row k of X

if (k,j) in Ω :

x_p(i,j) += x_p(k,j)*PCC(i,k)

x_c(i,j) += x_c(k,j)*CS(i,k)

y ++

x_p(i,j) /= y

x_c(i,j) /= y

2.5.1 Error Calculation

In order to determine how well the matrix completion algorithm works, we

are going to calculate a scalar error that increases with an increase in the difference

between the original matrix X and the reconstructed matrix X ′ (i.e., matrices XP

and XC). More precisely, we define the relative error (RE) as the Frobenius Norm of

the difference of the original and reconstructed matrices normalized with respect to

the Frobenius Norm of the original matrix:

RE =
‖X −X ′‖F
‖X‖F

(2.7)

The Frobenius norm is defined as the square root of the sum of the squares of

all values in the matrix.
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We will also use mean squared error (MSE) to evaluate the performance of

the aforementioned methods; MSE can be an important metric when measuring the

performance of a predictor. The MSE between N-element vectors x and y is defined

as:

MSE =

∑N
i=1(xi − yi)2

N
(2.8)

2.5.2 Datasets

In our experiment we will use the genomic data repositories of NCBI (National

Center for Biotechnology Information). The GEO-NCBI (Gene Expression Omnibus)

is a public repository of genomic data. GEO profiles show expression profiles for

individual genes. We will use the gene expression datasets of three studies that

measured the mRNA levels of different genes in different subjects (the amount of

mRNA levels show the gene expression values).

1. Bladder cancer study : ”Combination of a novel gene expression signature

with a clinical nomogram improves the prediction of survival in high-risk bladder

cancer”. In this study, Riester et al. evaluated microarrayed data from 93 patients

with bladder cancer that had cystectomy to determine gene expression patterns. This

dataset has 54675 rows and 93 columns [14].

2. Leukemia study : ”Identification of genes with abnormal expression

changes in acute myeloid leukemia”. In this study, Stirewalt et al. compared gene

expression profiles between normal hematopoietic cells from 38 healthy donors and

leukemic blasts from 26 leukemia patients. This data set has 22283 rows and 64

columns [15].

3. Lung cancer study : ”Gene expression signature of cigarette smoking and

its role in lung adenocarcinoma development and survival”. In this study, Landi et

28



al. performed gene expression analysis on 135 fresh frozen tissue samples of adeno-

carcinoma and non-involved lung tissue from current, former and never smokers, with

biochemically validated smoking information.This data set has 22283 rows and 107

columns [16].

2.5.3 Performance

We used the complete dataset as a reference and in each part of the experiment

we removed some random portion (between 10% and 90%) of the data and then tried

to recover the missing values. We then compared the original and the reconstructed

matrix to measure how well the algorithm is performing.

In order to compare the low-rank nuclear iterative matrix completion algorithm

of [4] to the proposed approach, we had to implement both approaches and feed the

same data to both of them. For nuclear norm minimization algorithm, we used

parameters τ = 5
√
MN and δ = 1.2MN

|Ω| as stated in [4]. We used Python with

the numpy, scipy and sklearn packages for implementation and visualization of the

data. Each datapoint in our figures is an average over 10 separate experiments where

different entries where randomly removed from the original matrix.

One important question is, how these algorithms perform at varying degrees of

missing information. We made this a factor in our experimentation, i.e., we varied the

percentage of data removal in the matrix. More precisely, we varied the proportion of

missing data (to all values) in our experiments from 10% to 90% with 10% increments

(nine measurement values each) percentage of the values.

Figure 2.1 shows the aggregated performance of the three approaches in Bladder

cancer, Leukemia and Lung cancer studies. The vertical axis in plots A, C and E

represents the relative error (RE) as described in Equation 2.7 and the vertical axis

in plots B, D and F represents MSE as described in equation 2.8. The horizontal axis
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in all plots (A - F) shows the percentage of the missing values (the factor). The green

line depicts the performance of the nuclear norm matrix completion approach, while

the dotted red line depicts the PCC based correlation approach and the dotted blue

line shows the CS based correlation approach detailed earlier. We can observe that the

PCC based correlation approach not only consistently outperforms the minimization

based approach in all three settings, but also has a different trend. While the green

line shows a progressively increasing error, the error presented by the red curve depicts

a decreasing tendency. The CS based approach also shows better results compared to

nuclear norm minimization. When the proportion of missing elements is increased,

the RE and MSE of PCC based CMC grew much slower than that of the nuclear norm

minimization approach. The difference between PCC based CMC and CS based CMC

Figure 2.1. Comparison of matrix recovery methods on 3 studies from NCBI-GEO.
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Dataset 1 Dataset 2
Method 30% Un-

knowns
60% Un-
knowns

90% Un-
knowns

30% Un-
knowns

60% Un-
knowns

90% Un-
knowns

K = 50 0.321 0.452 0.524 0.354 0.386 0.498
K = 100 0.152 0.232 0.387 0.232 0.264 0.358
K = 150 0.095 0.151 0.212 0.098 0.136 0.274
K = 250 0.115 0.145 0.259 0.112 0.124 0.255
K = 400 0.121 0.215 0.309 0.235 0.265 0.365
K = 550 0.132 0.265 0.354 0.322 0.398 0.471
K = 700 0.354 0.422 0.521 0.458 0.487 0.548
PCC-based-
CMC

0.0421 0.061 0.079 0.05 0.069 0.082

Table 2.1. The relative error of PCC based method versus KNN for 450K array
methylation datasets.

could be explained by the Pearson correlation coefficient being better in capturing

the correlation between genes compared to cosine similarity.

We also applied the PCC-based method to two 450K methylation datasets [17,

18] to predict missing values and to compare performance with KNN, which is the

most used method for predicting missing values in methylation data. Table 1 shows

the relative error of predicted values versus actual ones for 30%, 60% and 90% missing

entries with the K values ranging from 50 to 700. When the number of neighbors

is around 150-250, the relative error of KNN is the least. As Table 1 shows, the

PCC-based approach outperforms KNN in the both methylation datasets for the all

experiments with 30%, 60% and 90% data removal. Also KNN is very slow in case of

large datasets.

2.6 Conclusions

In this paper we investigated how Pearson Correlation Coefficient and Cosine

Similarity could be applied and used on NCBI-GEO biological data to find (artificially
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introduced) missing values in the datasets. After describing the matrix completion

algorithms, we compared the performances of the two approaches to that of a recent

nuclear-norm minimization based approach. To do this, we removed random elements

from the datasets as represented by matrices and predicted them based on the as-

sumption that subjects have similar tendencies; more precisely that characteristics

of genes where genes work in groups for any process in body are similar. Our study

provides an insight for future work especially in bio-medicine as well as recommender

systems. We found the correlation based approaches to outperform the low nuclear-

rank matrix completion approach, i.e., it predicted more accurate values. We have

also found that Pearson correlation coefficient provides more accurate reconstructions

when compared to cosine similarity when used on gene databases. We hope that this

study can open new opportunities to gene expression studies. As we states earlier,

gene expression experiments are very expensive and time consuming so biologists can

perform partial measurements in gene expression studies and find the rest in a more

fast and efficient way using computational approaches like the ones we employed in

this paper.
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3.1 Abstract

Gene expression is the main process responsible for the function of every living

cell. Thousands of genes expressed in a specific cell determine what that cell can

do. Gene expression values can be measured by measuring the amount of messenger

RNA (mRNA) molecules. There are biological methods to measure gene expression in

biological samples so researchers can find genes responsible for each disease. Some ex-

ample methods are Reporter gene, Microarray, and RNA sequencing. These methods

however are very costly and time consuming. Computational methods have the poten-

tial to help these studies by identifying reliable directions using prediction techniques

on incomplete data; so novel and efficient techniques and algorithms to predict gene

expressions are in high demand. In this paper, we describe a method to recover gene

expression dataset based on robust principal component analysis (RPCA). We treat

the differentially expressed genes as sparse noise S and non-differentially expressed

genes as low-rank matrix Y . We show how S and Y can be recovered from gene

expression data using RPCA. We also used existing implementations of three other

iterative optimization based matrix completion methods to provide a comparative

analysis of their performances. We show that this approach consistently outperforms

the other methods with reaching improvement factors beyond 7.9 in measured mean

squared error.

3.2 Introduction

Gene expression is the process by which the instructions contained in a gene

are used in the synthesis of a functional product (i.e., RNA or proteins). Proteins are

responsible for regulating all cell functions. We can measure the gene expression level

by measuring the amount of RNA that is generated inside the cell. We can capture the
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gene expression data in matrices, where the rows and columns correspond to different

genes and samples respectively; the entries of the matrix are the RNA levels found (in

the given tissue sample of the given subject). It is generally believed that groups of

genes work together so every process in the body would be the result of interactions

between gene products. This means that the expression levels of genes should be

highly correlated and the aforementioned matrix should be considerably low-ranked.

Since gene expression measurements are highly expensive and time consuming, an

alternative way is to find gene expression values from partial measurements and try

to predict the rest based on computational approaches. Thus, a main goal here could

be to find the best prediction for the missing values, when we can only observe a small

subset of the matrix’s values. Fortunately, there are many promising approaches to

this matrix completion problem. In this paper we will investigate iterative solutions

based on complex relaxation formulations to the matrix completion problem; more

precisely, we will focus on a promising combination of Robust Principal Component

Analysis (RPCA) and an efficient solver and show the benefits of this combined

approach.

3.2.1 Low Rank Matrix Completion

Low rank matrix completion can be achieved by nuclear norm based non-convex

optimization. One way of solving non-convex optimization problems is to use convex

approximations instead of the original problem. Let E ∈ Rn1×n2 be a low rank matrix.

The location of the known values can be encoded in Ω, where (i, j) ∈ Ω if the value at

indices (i,j) is known. We can define a function PΩ(X) that returns a matrix where

values in Ω are the same as the input matrix while it set the others to zero:
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PΩ(X)i,j


Xi,j (i, j) ∈ Ω

0 (i, j) 6∈ Ω

(3.1)

To estimate the missing values we usually assume that the matrix is low rank.

Essentially we are then trying to assign values to the missing entries to minimize the

rank of the matrix. Rank minimization problem is NP-hard and a more computation-

ally feasible version to rank minimization is minimizing the sum of singular values of

data matrix X, as the sum of singular values has a direct relationship to the rank

(the sum of the singular values is also known as nuclear norm or trace norm). Thus

to find a good approximation, we can minimize the nuclear norm of matrix X instead

of minimizing its rank:

min(‖X‖∗) (3.2)

such that: PΩ(X) = PΩ(E)

where:

‖X‖∗ =
∑r

i=1 σi , is the nuclear norm of matrix X, with σi denoting the ith

nonzero singular value of X.

There are many efficient iterative algorithms to solve problem 3.2. One way is

to apply the singular value thresholding algorithm (SVT) [1]:

min(τ ‖X‖∗ +
1

2
‖X‖F ) (3.3)

such that: PΩ(X) = PΩ(E)

where:

• ‖X‖F =
√∑M

i=1

∑N
j=1 (xij)2 , is the Frobenius norm of matrix X
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• τ > 0, is a threshold parameter.

The Frobenius norm is used as a regularization in the above function, trying to

control the magnitude of the values in the recovered matrix.

The rest of the paper is organized as follows. Section 2 describes the background

information and related work with an emphasis on the robust PCA approach. Section

3 describes the alternating direction method of multipliers (ADMM) approach for

solving convex optimization problems. Section 4 describes the convex optimization

formulation of the ADMM matrix completion method. In section 5 we describe three

competitive methods that used RPCA. In Section 6, we provide the datasets that

we used and present our computational experiments comparing it with three RPCA

based approaches. Section 7 concludes the paper.

3.3 Background

Principal component analysis (PCA) is a statistical tool that is mainly used for

dimensionality reduction. Given a data matrix E, using PCA, we can find the most

significant orthogonal vectors that show most variability in the data. For a noise-free

dataset, we can easily perform PCA using singular value decomposition (SVD). In the

presence of noise, we can use another approach called robust PCA (RPCA) [2]. The

presence of this noise is common in many applications such as image processing [3]

and bioinformatics [4]. Robust PCA has the ability to recover a low rank matrix from

sparse noise. Assume that our data matrix E is denoted by:

E = Y + S (3.4)

where Y is a low-rank matrix capturing the noiseless data and S is a sparse

matrix (i.e., for capturing noise, where most values are zero except for a small set
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of values that can be non zero). The goal is then to estimate Y and S given some

constraints on noise and data magnitude. For RPCA to work efficiently we need to

know the location of the non-zero elements in S.

In this paper we consider the problem of low rank matrix recovery using RPCA,

where our goal is to recover Y , given a matrix E with missing values and knowing

the location of those missing values (forming our matrix S). Our RPCA problem can

be solved by :

minY,S(‖Y ‖∗ + λ‖PΩ(S)‖1) (3.5)

such that: E = Y + S

Where λ is a parameter. There is a plethora of algorithms for solving convex

optimization problems. One of the more robust iterative algorithms is known as the

Alternating Direction Method of Multipliers (ADMM). Before we dwell more into

solving our optimization problem, in the next section we will revisit ADMM; then in

section 4 we will investigate the solution to problem 3.5 in detail.

3.4 The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is an iterative con-

vex optimization solver. It has the robustness of the Method of Multipliers but can

also decompose the search space into smaller pieces, each of which is then easier to

handle. ADMM solves convex optimization problems of the following form:

minx,zf(x) + g(z)

such that: Ax+Bz = c
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The augmented Lagrangian function, for a parameter ρ > 0 with the Lagrangian

multiplier m, can then be defined as:

Lρ(x, z,m) = f(x) + g(z) +mT (Ax+Bz − c)+
ρ

2
‖Ax+Bz − c‖2

F

(3.6)

With these definitions we can now perform an iterative algorithm, where at

iteration k+1:

xk+1 = argxminLρ(x
k, zk,mk)

zk+1 = argzminLρ(x
k+1, zk,mk)

mk+1 = mk + ρ(Axk+1 +Bzk+1 − c)

The algorithm is performed until a predefined convergence criteria is met [5].

3.5 Convex optimization formulation

Let us now continue the exploration of problem 3.5 by applying the ADMM

optimization to it. The resulting ADMM formulation of problem 3.5 is:

Lρ(Y, S,m) = ‖Y ‖∗ + λ‖PΩ(S)‖1+

mT (PΩ(E − Y − S)) +
ρ

2
‖PΩ(E − Y − S)‖2

F

(3.7)

where m is the Lagrangian multiplier and ρ > 0 is the penalty parameter. At

iteration k=1, each variable can then be calculated as:
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Y k+1 = arg
Y
minLρ(Y

k, Sk,mk)

Sk+1 = arg
S
minLρ(Y

k+1, Sk,mk)

mk+1 = mk + ρ(E − Y k+1 − Sk+1)

3.5.1 Updating Y:

In each iteration k + 1 we can find Y through:

Y k+1 = minY ‖Y ‖∗ +mT (PΩ(E − Y k − Sk))

+
ρ

2
‖PΩ(E − Y k − Sk)‖2

F

(3.8)

which is the solution of:

minY ‖Y ‖∗ +
ρ

2
‖PΩ(Y k + Sk − E)− m

ρ
‖2
F (3.9)

we can use a soft thresholding operation (from [6,7]) to solve problem 3.9. This

way in each iteration we can update Y through:

Y k+1 = shrink(Ak,
1

ρ
)

Ak = (E − Sk +
m

ρk
)

(3.10)

where shrink is a soft thresholding operator:
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shrink(A, b) :=
r∑
i=1

ui,max(σi − b, 0)vTi

A =
r∑
i=1

(uiσiv
T
i )

(3.11)

here σi are the singular values and ui, vi are the singular vectors of matrix A.

The value of 1
ρ

determines the amount by which the singular values of matrix A are

decreased.

3.5.2 Updating S:

In iteration k + 1 we can find S via:

Sk+1 = minSλ‖PΩ(Sk)‖1 +mT (PΩ(E − Y k+1 − Sk))

+
ρ

2
‖PΩ(E − Y k+1 − Sk)‖2

F

(3.12)

which is the solution of:

minSλ‖PΩ(Sk)‖1 +
ρ

2
‖PΩ(Y k+1 + Sk − E)− m

ρ
‖2
F (3.13)

We can use a shrinkage operator to solve problem 3.13:


Sij = Hλ

ρ
(E − Y k+1 + m

ρ
) (i, j) ∈ Ω

Sij = 0, (i, j) 6∈ Ω

(3.14)
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where Hλ
ρ

is the shrinkage operator discussed in [8] as calculated via:

Hσ(Sij) =


Sij − σ, Sij > σ

Sij + σ, Sij < −σ

0, Otherwise

(3.15)

to be able to solve the problem efficiently, we can assume that S is zero at the

indices that represent unknown values [9]. Combining all the above descriptions, we

provide a pseudo-code for solving problem 3.5 in Algorithm 1.

Algorithm 1: Solving problem 3.5 via ADMM

Input: E, ρ , λ, ε

m0 = Y0 = S0 = 0

while ‖ E − Y k+1 − Sk+1 ‖F > ε:

Updating Y:

Y k+1 = arg
Y
min Lρ(Y

k, Sk,mk)

Y k+1 = shrink ((E − Sk + m
ρ ), ρ−1):

(U,Σ, V ) = SV D(E − Sk + m
ρk

)

for every singular value σ in Σ

if σ < ρ−1:

σ = 0

Y k+1 = U Σ V
T

Updating S:

Sk+1 = arg
S
min Lρ(Y

k+1, Sk,mk)

for each row i of S:

for each column j of S:

if (i,j) in Ω :
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Sij = Hλ
ρ

(E − Y k+1 + m
ρ )

else

Sij = 0

Updating m:

mk+1 = mk + ρ (E − Y k+1 − Sk+1)

Output: Y k+1 and Sk+1

3.6 Competitive methods

To evaluate and compare the ADMM approach, we measure the recovery of the

gene expression data matrix to the recovery provided by three similar approaches:

1. Singular Value Thresholding algorithm (SVT): The singular value

thresholding algorithm is a baseline for the matrix completion task proposed in [6]

and it solves the robust PCA relaxation of:

minA,E‖A‖∗ + λ‖E‖1 +
1

2τ
‖A+ E‖2

F (3.16)

subject to: A+ E = D

A pseudo-code to SVT is provided in Algorithm 2, where:


USτ [S]V

T
= argminxτ‖X‖∗ + 1

2
‖X −W‖2

F

Sτ [W ] = argminxτ‖X‖1 + 1
2
‖X −W‖2

F

USV ∗ is the SVD of W.

(3.17)

Algorithm 2: Singular value thresholding algorithm(SVT)
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Input: Observation matrix D, τ, λ

while not converged do:

(U, S, V ) = svd(Yk)

Ak+1 = USτ [S]V ∗

Ek+1 = Sλτ [Yk]

yk+1 = yk + σk(D −Ak+1 − Ek+1)

end while

Output: A = Ak+1 , E = Ek+1

2. Exact Augmented Lagrangian Multiplier (EALM): This method was

proposed in [10], the formulation of the problem is:

f(X) = ‖A‖∗ + λ‖E‖1

h(X) = D − A− E
(3.18)

and the Lagrangian function of the problem is:

L(A,E, y, µ) = ‖A‖∗ + λ‖E‖1+

yT (D − A− E) +
µ

2
‖D − A− E‖2

F

(3.19)

A pseudo-code representation of ELAM is shown in Algorithm 3.

Algorithm 3: Exact ALM algorithm(ELAM)

Input: Observation matrix D, λ

while not converged do:

(AK+1, EK+1) = arg minA,E L(A,E, yk, µk)

while not converged do:

U, S, V = svd(D − Ejk+1 + yk
µk

)

Aj+1
k+1 = US 1

µk

[S]V T
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Ej+1
k+1 = S λ

µk

[D −Aj+1
k+1 + yk

µk
]

j++

end while

yk+1 = yk + µk(D −Ak+1 − Ek+1)

k++

end while

Output: A = Ak+1 , E = Ek+1

3. Inexact Augmented Lagrangian Multiplier (IALM): This method

was described in detail in [9], the formulation of the problem is:

minA‖A‖∗

subject to: A+ E = D

and πΩ(E) = 0

(3.20)

where πΩ is a linear operator that keeps all the entries in Ω unchanged and sets

others (/∈ Ω) to zeros. This simply means that the unknown values of D will be set

to zeros. The Lagrangian function of the problem is:

L(A,E, y, µ) = ‖A‖∗ + yT (D − A− E)+

+
µ

2
‖D − A− E‖2

F

(3.21)

A pseudo-code for the ILAM method is provided in Algorithm 4.

Algorithm 4: Inexact ALM algorithm(ILAM)

Input: Observation matrix D, (i, j) ∈ Ω

while not converged do:
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(AK+1, EK+1) = arg minA,E L(A,E, yk, µk)

U, S, V = svd(D − Ek + yk
µk

)

Ak+1 = US 1
µk

[S]V T

Ek+1 = π 6Ω(D −Ak+1 + yk
µk

)

πΩ(E) = 0

yk+1 = yk + µk(D −Ak+1 − Ek+1)

k++

end while

Output: A = Ak+1 , E = Ek+1

3.7 Evaluation

In this section we evaluate the accuracy and effectiveness of the ADMM al-

gorithm as it applies to biomedical data matrix completion. All of the following

experiments were performed using Python 2.7 and Matlab(2016) on an Intel Core i7

PC running Windows 10 with 16GB main memory.

3.7.1 Error Calculation

In order to determine how well the matrix completion algorithm works, we are

going to start with a known matrix X, remove a random portion of it (i.e., simulating

missing entries), and then trying to reconstruct the matrix(X ′). We define the relative

error (RE) as the Frobenius Norm of the difference of the original and reconstructed

matrices normalized with respect to the Frobenius Norm of the original matrix:

RE =
‖X −X ′‖F
‖X‖F

(3.22)
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We will also use mean squared error (MSE) to evaluate the performance of the

methods; MSE can be an important metric when measuring the performance of a

predictor. The MSE between X and X ′ (where X, X ′ ∈ Rn1×n2) is:

MSE =
‖X −X ′‖F
n1 ∗ n2

(3.23)

3.7.2 Datasets

In our experiment we will use the genomic data repositories of the NCBI

(National Center for Biotechnology Information). The NCBI-GEO (Gene Expression

Omnibus) is a public repository of genomic data. GEO profiles show expression values

for individual genes. We will use the following gene expression datasets that measured

the mRNA levels of different genes in different subjects (the amount of mRNA levels

show the extent of gene expressions).

1. Autism study: ”Autism and increased paternal age related changes in

global levels of gene expression regulation”. In this study, Alter et al. compared gene

expression profiles from peripheral blood lymphocytes of children with autism (n=82)

and controls(n=64). This data set has 54613 rows and 146 columns [11].

2. Psoriasis study: ”Shrinking the Psoriasis Assessment Gap: Early Gene-

Expression Profiling Accurately Predicts Response to Long-Term Treatment”. In this

study, Skin biopsy samples (n=170) were collected at baseline for RNA extraction

and microarray analysis from 85 patients with moderate-to-severe psoriasis without

receiving active psoriasis therapy. This data set has 54675 rows and 170 columns [12].

3. Dementia study: ”Variations in the progranulin gene affect global gene

expression in frontotemporal lobar degeneration”. In this study postmortem brain

samples were isolated from normal controls, FTLD-U patients with progranulin gene
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mutations and FTLD-U patients without progranulin gene mutations. This data set

has 22277 rows and 56 columns (i.e., 56 subjects) [13].

4. Lung cancer study: ”Gene expression signature of cigarette smoking and

its role in lung adenocarcinoma development and survival”. In this study, Landi et

al. performed gene expression analysis on fresh frozen tissue samples of adenocar-

cinoma and non-involved lung tissue from current, former and never smokers, with

biochemically validated smoking information. This data set has 22283 rows and 107

columns [14].

3.7.3 Performance

We used the complete datasets as starting points for all experiments and re-

moved a random set of values from the data matrices. The resulting incomplete

matrices were then used as inputs to the algorithms to recover the missing values.

We compared the original and the reconstructed matrices to measure how well the

algorithms are performing. One important question is, how the algorithms perform

at varying degrees of missing information. We made this a factor in our experiment.

More precisely, we varied the proportion of missing data in our experiments from

10% to 90% with 10% increments (nine measurement sets each). Each data-point in

our figures is an average over ten separate experiments where different entries were

randomly removed from the original matrix.

Figure 3.1 shows the aggregated performance of the four approaches in Autism,

Psoriasis, Dementia and Lung cancer studies. The vertical axes in plots A, C, E, and

G represents the relative error (RE) as described in Equation 3.22 and the vertical axes

in plots B, D, F, and H represents MSE as described in Equation 3.23. The horizontal

axes in all plots (A - H) shows the percentage of the missing values (the experiment’s

factor). The black lines depict the performance of the SVT approach, the dotted blue
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lines represent the ELAM approach, the green lines show the ILAM approach, and

the dotted red lines depict the performance of the featured ADMM approach. We can

observe that the ADMM approach not only consistently outperforms the other three

approaches in all four settings, but when it comes to the MSE, it also has a different

trend. While the black, blue and green lines show progressively increasing errors, the

errors presented by the red curves depict a decreasing acceleration tendency. When

the proportion of missing elements is increased, the MSE of the ADMM approach

grows much slower than that of the other three.

Figure 3.1. Comparison of matrix recovery methods on 4 different studies from NCBI-
GEO.
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Based on our results, The ADMM approach has higher accuracy especially in

the cases where the matrix has more missing values. In the case of 90% missing values

for relative error, in the best case, ADMM outperforms ILAM, ELAM, and SVT by

a factor of 5.7, 6.5, and 7 respectively. In the worst case ADMM outperforms ILAM,

ELAM, and SVT by a factor of 2, 3.5, and 4.5 respectively. When looking at MSE,

ADMM outperforms the other three approaches by as much as a factor of 5.7, 6.6,

and 7.9 respectively (for the same order as previously) and in the worst case we get

an improvement factor of 3.4, 5.7, and 7 respectively.

3.8 Conclusion

In this paper we described how Robust Principal Component Analysis(RPCA)

can be applied and used on NCBI-GEO biological data to find (artificially introduced)

missing values and recover the datasets. After describing the RPCA approach, we

presented the Alternating Direction Method of Multipliers(ADMM) algorithm. We

then described three well known algorithms that can be used when recovering low

rank matrices and we compared the performances of the four approaches. To do

this, we removed random elements from the datasets as represented by matrices and

predicted them based on the assumption that genes have similar behaviors in similar

conditions. Our study provides an insight for future work especially in bio-medicine

but also has implications to recommender systems. We found that ADMM approach

outperforms the other three approaches, i.e., it predicted more accurate values. We

hope that this study can open new opportunities to gene expression studies. As we

stated earlier, gene expression experiments are very expensive and time consuming so

using such computational methods can help biologists identify promising directions

for studies based on partial measurements in gene expression experiments.
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4.1 Abstract

MicroRNAs (miRNAs) are a small, non-coding class of RNAs; they are involved

in the development and progression of many human diseases. Although many miRNA-

disease associations have already been discovered, there are many more which are still

unknown. Unfortunately, experimental verification of miRNA-disease associations is

very expensive and time consuming. So, computational methods and bioinformat-

ics algorithms can be applied to help scientists pinpoint the most likely associations

for more experimental verification, thus making such future discoveries less time and

energy consuming. In this paper we investigate the Graph Regularized Matrix Fac-

torization (GRMF) method for miRNA-disease prediction. This method combines

miRNA functional similarity, disease semantic similarity, and known miRNA-disease

associations to determine the likelihood of unknown miRNA-disease associations. Us-

ing 6-fold cross validation, we show that the GRMF method can reach a mean AUC

(area under the curve) of 0.91, outperforming three state-of-the-art methods. To test

the performance of GRMF for diseases with no known associations, we used Breast

Neoplasm, removing all related miRNAs; the 50 predicted miRNAs by GRMF was

verified by the databases: HMDD v.2.0, dbDEMC, and miR2Disease. For another

case study, we used Lymphoma using known associations from HMDD v.2.0; 45 out of

50 (90%) of the GRMF predicted miRNAs were verified by dbDEMC, miR2Disease

and PubMed literature. Therefore, we believe that GRMF could be an effective

method to predict miRNA-disease associations.

4.2 Introduction

miRNAs are small (about 21 to 24 nucleotides), non-coding, single strand RNA

molecules; they are involved in gene expression regulation. miRNAs are found in
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most eukaryotes including those of humans, and they tend to bind target mRNA

and prevent protein production [1]. miRNA-directed gene expression regulation is

a very active area of research. Hundreds of miRNAs have been discovered and the

recent development of sequencing techniques and bioinformatics prediction methods

significantly enhanced our information about miRNAs, including possible functions

and regulatory targets [2–4]. miRNAs have been found to be responsible for differ-

ent processes including cell death, cell proliferation, neural patterning, immunity, fat

metabolism, and hematopoietic differentiation [5]. Computational methods for find-

ing genes regulated by miRNAs have suggested that all these examples only represent

a few samples and thus they can not describe the whole miRNA system [6].

Dysregulation of miRNAs have been shown to be the main reason of abnor-

mal cell behavior and hence some human diseases. More and more miRNAs have

been confirmed to be responsible for the development of human diseases [7, 8]. For

instance studies confirmed that the miR-200 family has a strong association with

breast cancer [9]; also, leukemia is one of the human cancers confirmed to be related

to miR-15 and miR-16 dysregulation [10]. So recognizing miRNA-disease associations

can help in diagnosing, treating, and preventing human diseases. However, it is pro-

hibitive to find the associations one-by-one due to the significant amount of resources

that have to be spent in performing such experiments. Meanwhile, known miRNA-

disease associations are stored in databases like HMDD v.2.0 [11], dbDEMC [12]

and miR2Disease [13] but there is a high demand for identifying new associations.

Using computational methods to prioritize potential miRNAs for any specific miRNA-

disease study could significantly reduce the time and financial resources needed for

these experiments. Many computational methods that have been developed by sci-

entists, are based on the assumption that similar miRNAs are likely to be related to

similar diseases [14–16].
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In this paper we will investigate how the Graph Regularized Matrix Factoriza-

tion (GRMF) method could be used to discover miRNA-disease relationships. The

rest of the paper is organized as follows: Section 2 describes the GRMF method in

detail. In Section 3 we describe our GRMF experiments and compare our result with

three state-of-the-art methods for predicting miRNA-disease associations. Finally,

Section 4 concludes the paper.

4.3 Methods

In this section, we first describe the datasets used, then we provide a description

of Graph Regularized Matrix Factorization as it applies to miRNA-disease associa-

tions.

4.3.1 Human miRNA-Disease Association

The database we have used for our study contains data of the associations

between human miRNA and disease from the Human microRNA Disease Database

(HMDD [11]). The database includes about 579 miRNAs, 384 diseases and 10,381

experimentally confirmed associations between miRNAs and diseases. Using this

data, we can construct matrix Y to capture the associations between miRNAs and

diseases. Each row of matrix Y represents a different miRNA and each column

represents a different disease. Based on the datasets, the elements of matrix Y can

only be either 0 or 1. If miRNA mi is associated with disease dj, then Yij is 1. Yij is

0 in the cases where there is no known association between mi and dj (this does not

mean that there is no relationship but merely that the relationship is unknown).
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4.3.2 miRNA Functional Similarity

miRNA functional similarity scores are were calculated under the assumption

that if two miRNAs are functionally similar, they are more likely to be related to

phenotypically similar diseases. Wang et al. developed a method called MISIM [17]

for measuring the similarity between two different miRNAs. MISIM has 4 main

steps: first, diseases associated with two miRNAs are recognized, denoted as d1 and

d2. In the next step the semantic values of diseases were calculated. In the third

step the semantic similarity were calculated between every pair of the diseases be-

tween d1 and d2. And finally the functional similarity of two miRNA were calculated

based on the semantic similarity of d1 and d2. We downloaded the scores from:

http://www.cuilab.cn/files/images/cuilab/misim.zip

4.3.3 Disease Semantic Similarity

For the purpose of calculating disease semantic similarities, diseases can be

described as a Directed Acyclic Graph (DAG). Each disease represents a node in

the graph while edges represent relationship between diseases. Disease d1 can be

described as DAG(d1) = (d1, Sd1 , Ed1) where Sd1 is the set of all nodes including all

ancestors of node d1 including d1 itself and Ed1 is the set of all corresponding links,

this includes all direct edges from parents to child nodes. So the contribution of

disease d in disease d1 can be calculated as:

Sd1(d) =


1 d1 = d

max{∆ ∗ Sd1(d′)|d′ ∈ children of d} d1 6= d

(4.1)

Here ∆ is the contribution factor for all connection links from disease d to

disease d′. The contribution of disease d1 to its own semantic value is 1 so the farther
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the nodes from disease d1, the less effect they have on the d1’s semantic value. Thus,

the value of ∆ should be between 0 and 1. Wang et al. suggested that when the value

of ∆ = 0.5 then the results show better correlation with the expression similarity [17].

The semantic value(SV) of disease d1 can be described as:

SV (d1) =
∑
d∈Dd1

Sd1(d) (4.2)

If two diseases have much in common in the DAG then their similarity value

would become larger. The semantic similarity between diseases d1 and d2 can be

calculated as:

SV (d1, d2) =

∑
d∈(Sd1∩Sd2 )(Sd1(d) + Sd2(d))

SV (d1) + SV (d2)
(4.3)

where Sd1(d) is the semantic value of disease d related to disease d1 and Sd2(d)

is the semantic value of disease d related to disease d2. What equation 5.3 calculates,

is the semantic similarity between two different diseases based on their location in

DAG and the common links in their ancestors.

4.3.4 Weighted K-nearest Known Neighbors

Our miRNA-disease association matrix Y ∈ Rn∗m has n rows representing miR-

NAs and m columns representing diseases. Matrix Y is a sparse matrix and most of

it’s values are zero although many of these zeros are unknown interactions that could

potentially be true. Our aim is to replace zeros with a continuous value between 0 and

1; in the preprocessing step, we use the weighted k-nearest known neighbor algorithm

to estimate an association likelihood based on the known associations. Algorithm 1

describes the process in detail. In a nutshell, first we calculate the weighted average

of the k nearest neighbors to miRNA mi, then we calculate the weighted average of
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the k nearest neighbors to disease dj; in the final step we replace the entries in Y that

are 0 by the average likelihood of mi and dj.

Algorithm 1: Weighted K-nearest Known Neighbors

Input: Y , Sm, Sd, k, η

Ym = Yd = 0

for q = 1 to n:

knn = k-nearest neighbors of row q from Sm

for i > k:

wi = ηi−1 ∗ Sm(q, knni)

end for

Pq =
∑k
i=1 S

m(q, knni)

Ym(q) = 1
Pq

∑k
i=1 wiY (knni)

end for

for r = 1 to m:

dnn = k-nearest neighbors of row r from Sd

for j > k:

wj = ηj−1 ∗ Sd(r, dnnj)

end for

Pr =
∑k
j=1 S

d(r, dnnj)

Yd(r) = 1
Pr

∑k
j=1 wiY (dnnj)

end for

Y = max(Y , Ym+Yd
2 )

Output: Y
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4.3.5 Graph Regularized Matrix Factorization

A linear approximation of our miRNA-disease association matrix Y ∈ Rn∗m can

be shown by Y ≈ W.HT where W ∈ Rn∗f , H ∈ Rm∗f and f is the number of latent

features in W (in miRNAs) and H (in diseases).

Given a data matrix Y , the choice of W and H have to be such to minimize

the reconstruction error between Y and WHT . Among the various error functions

that have been proposed [18], the most widely used is the squared error or euclidean

distance with respect to the Frobenius norm. So the problem can be written as:

minW,H‖Y −WHT‖2
F (4.4)

The objective function in Eq. 4.4 is convex in W only or H only, but it is not

convex in both of them together. For the aim of preventing overfitting, we can add

linear and graph regularization terms. Linear regularization term minimizes norms

of both W and H while graph regularization terms minimize the distance between

latent feature vectors of two neighbor miRNAs and diseases. So our objective function

becomes:

min
W,H
‖Y −WHT‖2

F

+λa(‖W‖2
F + ‖H‖2

F )

+λb

n∑
i=1

n∑
q=1

(Smi,q)‖wi − wq‖2

+λc

m∑
j=1

m∑
r=1

(Sdj,r)‖hj − hr‖2

(4.5)

62



where λa, where λb and where λc are all positive parameters, wi and wq are ith

and qth row of W , hj and hr are jth and rth row of H. We can rewrite Eq. 4.5 as:

min
W,H
‖Y −WHT‖2

F

+λa(‖W‖2
F + ‖H‖2

F )

+λbTr(W TLbW )

+λcTr(HTLcH)

(4.6)

where Tr is the trace of a matrix, Lb = Db − Sm and Lc = Dc − Sd are the

graph Laplacians for Sm and Sd respectively and Db
ii =

∑
q S

m
iq and Dc

jj =
∑

r S
d
jr are

diagonal matrices. (We refer the reader to [19] for more details on obtaining Eq. 4.6

from Eq. 4.5.)

We provide a pseudocode for the Graph Regularized Matrix Factorization (GRMF)

in Algorithm 2. We use singular value decomposition (SVD) to obtain U ∈ Rn∗f ,

Σ ∈ Rf∗f and V ∈ Rm∗f from Y . Then we initialize W and H as W = U
√

Σ and

H = V
√

Σ. We used alternating least squares to update W and H in each iteration.

If we denote the objective function of Eq. 4.6 as J, we set ∂J
∂W

= 0 and ∂J
∂H

= 0 so we

can update W and H through:

W = (Y H − λbLbW )(HTH + λaIk)
−1 (4.7)

H = (Y TW − λcLcH)(W TW + λaIk)
−1 (4.8)

Algorithm 2: Graph Regularized Matrix Factorization (GRMF)

Input: Y , Sm, Sd, f, λa, λb, λc
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U Σ V T = SV D(Y , f)

W = U
√

Σ

H = V
√

Σ

Lb = Db − Sm

Lc = Dc − Sd

while not converged:

W = (Y H − λbLbW )(HTH + λaIk)−1

H = (Y TW − λcLcH)(WTW + λaIk)−1

end while

Y Y = WH

Output: Y Y

4.4 Evaluation

To evaluate the proposed GRMF-based method we compared its performance

to three state-of-the-art miRNA-disease prediction methods.

4.4.1 Competitive Methods

4.4.1.1 RLSMDA

Chen et al. [14] developed the method of Regularized Least Squares for MiRNA-

Disease Association (RLSMDA) to find miRNAs associated with different diseases

using a semi-supervised learning method. RLSMDA is designed using a continuous

classification function to reflect the probability with which each miRNA is associated

with a specific disease. RLSMDA can predict miRNAs related to diseases that have no

known associated miRNA and it does not need negative miRNA-disease associations.

However the ways of combining classifiers in different spaces and also the choice of

parameters can affect the prediction performance of this method.
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4.4.1.2 NetCBI

In this study Chen et al. [15] constructed the miRNA-disease association net-

work (NetCBI) using a representation of for bipartite graphs, where the nodes corre-

spond to either diseases or miRNAs, and edges correspond to the associations between

them. The main idea behind NetCBI is that if a given miRNA is related to a disease,

other miRNAs that are similar to it, will be chosen and recommended to be related

to that disease as well. Also if a miRNA is related to a disease, that miRNA will also

be likely classified to be related to similar diseases.

4.4.1.3 NBI

Li et al. [16] developed a computational method (NBI) to predict new miRNA-

disease associations by integrating environmental factor (EF) similarity and disease

phenotypic similarity. More precisely, in NBI, three comprehensive bipartite networks

are constructed, i.e., the EF-disease, the EF-miRNA, and the miRNA-disease asso-

ciations. This method uses known associations to obtain predicted candidates. The

miRNAs that are related to EFs, average their resources to all of their neighbors and

thus they distribute the associations to every miRNA neighbor.

4.4.2 Performance

We plotted Receiver Operating Characteristics curve (ROC) and used Area

Under the ROC curve (AUC) as the main metric for evaluating their performance.

The area under ROC curve is calculated as an index of the prediction power of the

GRMF method. The value of AUC is between 0 and 1 and higher amounts shows

more prediction power. If the value is equal to 0.5, it means the performance is equal

to a random prediction.
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For an specific disease d1, all the known d1 related miRNAs are defined as

labeled nodes and the remaining miRNAs (on which there is no relevance information)

are defined as unlabeled nodes. Given a threshold δ, if the result prediction of a

labeled node is greater than δ, then the node is identified as positive sample. If the

result prediction of a an unlabeled node is less than δ, then the node is a considered as

a negative sample. To plot a ROC curve we calculated the true positive rates (TPR

or sensitivity) and false positive rates (FPR, 1-specificity) through:

TPR =
TP

TP + FN

FPR =
FP

TN + FP

(4.9)

where:

• TP : Number of correctly identified positive samples.

• TN : Number of correctly identified negative samples.

• FP : Number of misidentified positive samples.

• FN : Number of misidentified negative samples.

Sensitivity means the percentage of the positive samples that are correctly iden-

tified among all the positives and specificity means the percentage of the negative

samples correctly identified among all negatives.

We conducted five repetitions of a 6-fold cross validation for each of the meth-

ods. The 6-fold cross validation is implemented using the known miRNA-disease

association in the HMDD V2.0 database. So in each repetition, we divided our as-

sociation matrix Y in to six parts and each parts, one-by-one , was left out as the
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test set while we used the remaining five parts as the training set. All of unknown

miRNA-disease association pairs can be seen as candidate samples. After applying

GMRF, scores of the test samples were compared with the all scores of the candidates

samples. In order to make the validation more accurate, we repeated this process 5

times. Figure 4.1 depicts the ROC curve and the calculated AUC of each fold in

6-fold cross validation for GRMF method.

Figure 4.1. Performance of each fold in 6-fold cross validation for GRMF method.
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Figure 4.2. Comparison of 4 different studies on miRNA-disease association predic-
tion.

We compare the performance of GRMF approach with three state-of-the-art

methods for miRNA-disease association prediction. Figure 4.2 shows the predic-

tion performance of GRMF, NBI [16], RLSMDA [14] and NetCBI [15]. The GRMF

achieves the AUC value of 0.91 compared with other methods: NBI: 0.77, RLSMDA:

0.80 and NetCBI: 0.82 and outperforms the other three.
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4.4.3 Case studies

In order to demonstrate the performance of GMRF, we evaluated the prediction

ability of GMRF for miRNAs related to Breast Neoplasm and Lymphoma. Two

miRNA-disease datasets (dbDEMC [12] and miR2Disease [13]) and previous PubMed

studies were used to confirm the correctness of the prediction.

4.4.3.1 Breast Neoplasm

Breast Neoplasm (BN or breast cancer) is the second most common cancer in

American women; dysregulation of miRNAs play an important role in this disease [22].

We used BN in order to show the performance of GRMF for diseases which have no

related miRNAs. The total number of miRNAs related to BN was 202 so we removed

all 202 related miRNAs in our dataset to ensure that only the information from other

diseases would be used to predict the related miRNAs to BN. We then ranked the

predicted scores for all candidate miRNAs so the top 50 miRNAs was selected and

they are shown in Table 4.1 Based on our results, we could confirm all 50 miRNAs

by miR2Disease, dbDEMC and HDMM.

4.4.3.2 Lymphoma

Lymphoma is recognized as the fifth most common cancer type and is cancer

of lymphatic system (Blood B and T cells). It includes Hodgkin Lymphoma (HL)

and Non-Hodgkin Lymphoma (NHL) [20]. B-cells Lymphoma is the most common

type of NHL in the United states and worldwide. Because Lymphoma can be derived

form B-cells at different stages of cell cycle, miRNAs can be both target genes and

specific markers [21]. For the second case study, we chose Lymphoma and the results
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are summarized in Table 4.2 We could confirm 45 miRNAs out of 50 as shown by by

dbDEMC, miR2Disease and experimental literature in PubMed.

Table 4.1. Prediction of the top 50 predicted miRNAs associated with Breast Neo-
plasm based on the known associations in HDMM V.2.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-10b dbDEMC; miR2Disease; HMDD hsa-mir-210 dbDEMC; miR2Disease; HMDD

hsa-mir-372 dbDEMC hsa-mir-516a HMDD

hsa-mir-134 dbDEMC hsa-mir-146b dbDEMC; miR2Disease; HMDD

hsa-mir-143 dbDEMC; miR2Disease; HMDD hsa-mir-192 dbDEMC

hsa-let-7e dbDEMC; HMDD hsa-mir-183 dbDEMC; HMDD

hsa-mir-1 dbDEMC; HMDD hsa-mir-320a HMDD

hsa-mir-499a HMDD hsa-mir-499a HMDD

hsa-mir-150 dbDEMC hsa-mir-182 dbDEMC; miR2Disease; HMDD

hsa-let-7i dbDEMC; miR2Disease; HMDD hsa-mir-152 dbDEMC; miR2Disease; HMDD

hsa-mir-137 dbDEMC; HMDD hsa-mir-221 dbDEMC; miR2Disease; HMDD

hsa-mir-19b dbDEMC; HMDD hsa-mir-184 dbDEMC

hsa-mir-125a dbDEMC; miR2Disease; HMDD hsa-mir-32 dbDEMC

hsa-mir-214 dbDEMC; HMDD hsa-mir-325 dbDEMC

hsa-mir-302b dbDEMC; HMDD hsa-mir-30b dbDEMC; HMDD

hsa-mir-219 dbDEMC; HMDD hsa-mir-106a dbDEMC

hsa-mir-204 dbDEMC; miR2Disease; HMDD hsa-mir-205 dbDEMC; miR2Disease; HMDD

hsa-mir-20b HMDD hsa-mir-181c dbDEMC

hsa-mir-101 dbDEMC; miR2Disease; HMDD hsa-let-7b dbDEMC; HMDD

hsa-mir-302c dbDEMC; HMDD hsa-mir-212 dbDEMC

hsa-mir-20a miR2Disease; HMDD hsa-mir-506 HMDD

hsa-let-7d dbDEMC; miR2Disease; HMDD hsa-mir-140 dbDEMC; HMDD

hsa-mir-25 dbDEMC; HMDD hsa-mir-708 HMDD

hsa-mir-195 dbDEMC; miR2Disease; HMDD hsa-mir-433 dbDEMC

hsa-mir-107 dbDEMC; HMDD hsa-mir-153 dbDEMC; HMDD

hsa-mir-187 dbDEMC; HMDD hsa-mir-141 dbDEMC; miR2Disease; HMDD
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4.5 Conclusion

Finding the molecular mechanism of diseases can help exploring disease patho-

genesis and finding effective treatments. miRNAs as a class of non-coding RNAs are

responsible for regulating gene expression so they can cause various diseases [23, 24].

Some computational approaches have been proposed to capture miRNA-disease as-

sociation [14–16]. However, these methods have limitations.

In this paper we presented a Graph Regularized Matrix Factorization method

(GRMF) to predict miRNA-disease associations based on the assumption that similar

miRNAs (functionally) tend to be related to similar diseases (phenotypically). We

used miRNA functional similarity, disease semantic similarity, and known miRNA-

disease associations form the HDMM v.2.0 database. To verify the accuracy of the

GRMF method, we used five repetitions of 6-fold cross validation. We compared the

result of the GRMF method with three state-of-the-art methods and concluded that

GRMF outperforms the other three in terms of AUC.

We selected Breast Neoplasm as a case study in order to show the performance

of GRMF for diseases which have no related miRNAs and based on the results, we

could confirm all 50 miRNAs as identified by miR2Disease, dbDEMC and HDMM.

As the second case study we chose Lymphoma to demonstrate the performance of

GRMF and based on the results, we could confirm 45 miRNAs out of 50 as identified

by dbDEMC, miR2Disease and experimental literature in PubMed. The GRMF

method could provide an effective approach to study miRNA-disease associations.

We also recognize that GRMF has some limitations which can be improved in future

research. For example, the sequence information of miRNAs is used to measure

miRNA similarity but some studies show that the structural information can be more

effective [25,26]. Furthermore, expression information of miRNAs could also be used

to measure this similarity.
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Table 4.2. Prediction of the top 50 predicted miRNAs associated with Lymphoma.

miRNA Evidence miRNA Evidence

hsa-mir-141 dbDEMC hsa-mir-182 dbDEMC

hsa-mir-10b dbDEMC hsa-let-7e dbDEMC; miR2Disease

hsa-mir-30a dbDEMC hsa-mir-335 dbDEMC

hsa-mir-193b PMID:22235305 hsa-mir-183 dbDEMC

hsa-mir-151a Unconfirmed hsa-mir-148a dbDEMC

hsa-mir-106a dbDEMC; miR2Disease hsa-mir-34a dbDEMC

hsa-mir-221 dbDEMC hsa-mir-9 dbDEMC

hsa-mir-7 dbDEMC hsa-mir-125b PMID:23527180

hsa-mir-195 dbDEMC hsa-mir-429 Unconfirmed

hsa-mir-214 dbDEMC hsa-mir-100 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-132 dbDEMC

hsa-mir-219b dbDEMC hsa-let-7i dbDEMC

hsa-mir-196a dbDEMC hsa-mir-205 dbDEMC

hsa-mir-378a Unconfirmed hsa-mir-192 dbDEMC

hsa-mir-191 dbDEMC hsa-mir-223 dbDEMC

hsa-mir-133a dbDEMC hsa-mir-30e dbDEMC

hsa-mir-103a Unconfirmed hsa-mir-145 dbDEMC; miR2Disease

hsa-mir-146b PMID:24931464 hsa-mir-194 dbDEMC

hsa-mir-30C dbDEMC hsa-mir-15b dbDEMC

hsa-mir-34b dbDEMC hsa-mir-142 Unconfirmed

hsa-mir-152 dbDEMC hsa-mir-30d dbDEMC

hsa-mir-26b dbDEMC hsa-mir-143 dbDEMC; miR2Disease

hsa-mir-338 dbDEMC hsa-mir-22 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-96 dbDEMC

hsa-mir-27b dbDEMC hsa-mir-222 dbDEMC

72



REFERENCES

[1] L. MacFarlane and P. R. Murphy, MicroRNA: Biogenesis, Function and Role in

Cancer, Current Genomics, vol.11, no.7, 2010.

[2] E. C. Lai, P. Tomancak, R. W. Williams, G. M. Rubin, Computational identifi-

cation of Drosophila MicroRNA genes, Genome Biology, 4, 2003.

[3] J. W. Nam, K. R. Shin, J. Han, Y. Lee, V. N. Kim, B. T. Zhang, Human mi-

croRNA prediction through a probabilistic co-learning model of sequence and struc-

ture, Nucleic Acids Research., 33, 3570-3581, 2005.

[4] S. C. Li, C. Y. Pan, W. C. Lin, Bioinformatics discovery of microRNA precursor

from human ESTs and introns,BMC Genomics, 7, 2006.

[5] L. He, G. J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation,

Nature Reviews Genetics, 5, 522-531, 2004.

[6] F. Wahid, A. Shehzad, T. Khan and Y. YoungKim, MicroRNAs: Synthesis,

mechanism, function, and recent clinical trials, Biochimica et Biophysica Acta

Vol.1803, no.11, 1231-1243, 2010.

[7] N. Lynam-Lennon, S. G. Maher and J. V. Reynolds, The roles of microRNA in

cancer and apoptosis., Biological Reviews of the Cambridge Philosophical Society

vol.84, 55-71, 2009.

[8] N. Meola, V. A. Gennarino and S. Banafi, MicroRNAs and genetic diseases.,

Pathogenetics vol.2, no.7, 2009.

[9] Y. Y. Lim, J. A. Wright, J. L. Attema, P. A. Gregory, A. G. Bert, E. Smith, et

al., Epigenetic modulation of the miR-200 family is associated with transition to a

breast cancer stem-cell-like state.,Journal of Cell Science vol.126, 2256-2266, 2013.

73



[10] G. A. Callin, et al., Frequent deletion and down-regulation of micro-RNA genes

miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.,Proceedings of the

National Academy of Sciences of the United States of America vol.199, 15524-

15529, 2002. Res 37:D98-104, 2009.

[11] Y. Li, et al. HMDD v.2.0: a database for experimentally supported human mi-

croRNA and disease associations. Nucleic Acids Research. 42(D1):D1070-D1074,

2013.

[12] Z. Yang, L. Wu, A. Wang, et al. dbDEMC 2.0: updated database of differentially

expressed miRNAs in human cancers. Nucleic Acids Research. 45(D1):D812-D818,

2017.

[13] Q. Jiang, Y. Wang, Y. Hao, L. Juan, M. Teng, X. Zhang, M. Li, G. Wang and

Y. Liu Jiang Q., Wang Y., Hao Y., Juan L., Teng M., Zhang X., Li M., Wang G.,

Liu Y., miR2Disease: a manually curated database for microRNA deregulation in

human disease. Nucleic Acids, 2009.

[14] X. Chen and G. Y. YanSemi-supervised learning for potential human microRNA-

disease associations inference, Scientific Reports, vol.40, no.1, 2014.

[15] H. Chen, Z. Zhang, Similarity-based methods for potential human microRNA-

disease association prediction., BMC Med Genomics vol.6 no.12, 2013.

[16] J. Li, Z. Wu, F. Cheng, W. Li, G. Liu and Y. Tang Computational prediction

of microRNA networks incorporating environmental toxicity and disease etiology,

Scientific Reports, vol.4, 2014.

[17] D. Wang, J. Wang, M. Lu, F. Song and Q. Cui, Inferring the human microRNA

functional similarity and functional network based on microRNA-associated dis-

ease, Bioinformatics, vol.26, no.13, pp 1644-1650, 2010.

[18] P. Hoyer, Non-negative Matrix Factorization with sparseness constraints, Journal

of machine learning research, vol.5, pp 1457-1469, 2004.

74



[19] Q. Gu, J. Zhou and C. Ding Collaborative filtering: Weighted Nonnegative Matrix

Factorization incorporating user and item graphs, SIAM International Conference

of Data Mining, pp 199-210, 2010.

[20] M. Fernandez-Mercado, L. Manterola and C. Lawrie. MicroRNAs in Lymphoma:

Regulatory Role and Biomarker Potential. Current Genomics 16(5):349-358, 2015.

[21] F. Jardin and M. Figeac. MicroRNAs in lymphoma, from diagnosis to target

therapy. Current Opinion in Oncology. 25(5):480–486, 2013.

[22] W. Wang and Y. Luo MicroRNAs in breast cancer: oncogene and tumor sup-

pressors with clinical potential. Journal of Zhejiang University Science B. 16(1),

2015.

[23] T. Ideker and R. Sharan, Protein networks in disease. Genome research vol.18,

no.4, 644-652, 2008.

[24] L. Hood, J. R. Heath, M. E. Phelps and B. Lin Systems biology and new tech-

nologies enable predictive and preventative medicine. Science vol.306, no.5956,

640-643, 2004.

[25] W. Lan, Q. F. Chen, T. S. Li, C. G. Yuan, S. Mann and B. S. Chen , Identification

of important positions within miRNAs by integrating sequential and structural

features. Current Protein & Peptide Science vol.15, no.6, 591-597, 2014.

[26] X. Zeng, X. Zhang and Q. Zou Integrative approaches for predicting microRNA

function and prioritizing disease-related microRNA using biological interaction

networks. Brief Bioinform, 2016.

75



CHAPTER 5

A Matrix Completion Approach for Predicting lncRNA-disease

association

Negin Fraidouni, Gergely Zaruba

Manuscript submitted to:

International Conference on Bioinformatics and Computational Biology

(BIOCOMP) Jul 29-Aug 01, 2019, Las Vegas, NV USA.

76



5.1 Abstract

The most part of the human genome is known as Long non-coding RNAs (lncR-

NAs) which have been thought to be responsible for many developmental processes

and diseases. Finding the potential functions of lncRNAs is very important for fur-

ther study of human complex diseases. Computational methods can be effective in

order to make predictions based on the known information [1]. In this study we de-

scribe the LncRNA-disease association prediction method (LDAPM) and show the its

performance compared to three state-of-the-art methods. To do this, we employ the

ILNCSIM method [16] to compute functional similarities of lncRNAs. In next step

we measure the semantic similarities of diseases. Then we extract feature vectors for

lncRNAs and diseases and finally we recover the lncRNA-disease association matrix

and find new potential associations.

We used three lncRNA-disease association datasets from LncRNADisease database.

For dataset 1, the LDAPM obtained the AUC of 0.88 which is significantly higher

than the AUC of other methods which are 0.60, 0.68 and 0.75 for RWRLncD, RWRH

and LRLSLDA respectively. For dataset 2, the LDAPM obtained the AUC of 0.81

which is significantly higher than the AUC of other methods which are 0.65, 0.60

and 0.62 for RWRLncD, RWRH and LRLSLDA respectively. Likewise for dataset 3,

the LDAPM obtained the AUC of 0.83 which is significantly higher than the AUC of

other methods which are 0.69, 0.64 and 0.63 for RWRLncD, RWRH and LRLSLDA

respectively.

5.2 Introduction

Recent studies of transcriptomes have shown that a much greater part of the

genome is transcribed than we knew and expected. The results of the transcrip-
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tion process are mostly non-protein coding RNAs [2] including Long non-coding

RNAs(lncRNAs). LncRNAs are usually larger than 200 nucleotides and they are

less expressed and more tissue-specific compared to protein-coding RNAs [3]. LncR-

NAs are thought to have almost 30,000 different types in humans and they consist the

majority of the non-coding transcriptome. Although our knowledge about lncRNAs

are very limited, they could have a very significant effect on regulation of transcrip-

tion process [4,5]. LncRNAs also can be responsible for cell differentiation, apoptosis

and cell differentiation. Mutations and dysfunctions of lncRNAs are thought to be

the reason of some human complex diseases like diabetes [6], neurodegeneration dis-

ease [7], cardiovascular diseases [8], colon cancer [9], prostate cancer [10], kidney

cancer [11] and AIDS [12]. Computational methods can provide more efficient direc-

tions for these studies; so there is a high demand for novel, efficient techniques to

predict lncRNA-disease association.

Computational methods that have been proposed before belong to three dif-

ferent groups. First group consists of methods that use machine learning models to

find lncRNA-disease association. An example of this approach is a study by Lan et

al. which they used multiple data sources and employed a SVM classifier to find new

lncRNA-disease association [13]. Second groups take advantage of this assumption

that functionally similar lncRNAs can be related to phenotypically similar diseases

and vice versa. An example of this approach is a study by Zhang et al. which they ap-

plied a propagation algorithm on a constructed network and combined all information

from proteins, lncRNAs and diseases [14]. Methods in third group utilize biological

information on lncRNAs in order to find lncRNA-disease association. The examples

of biological information are tissue specificity, genome location and expression pro-

file. An example of this approach is a study by Chen et al. which they proposed

LRLSLDA, a semi supervised learning method to find associations lncRNAs and dis-
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eases by using Laplacian regularized least squares [15]. Despite previous studies on

lncRNAs, there is still a high demand for new methods to predict lncRNA-disease

associations more accurately.

This paper discusses a matrix completion algorithm in order to predict unknown

lncRNA-disease association. We describe how the this algorithm can be applied

to lncRNA-disease data so missing values can be predicted computationally. We

compare the result of this method to some state-of-the-arts approaches and show

their performance advantages.

The rest of the paper is organized as follows. Section 2 describes the LDAPM ap-

proach in details. Section 3 describes the data set and the competitive approaches. In

Section 4, we present our computational experiment comparing the three approaches.

Finally, section 5 concludes the paper.

5.3 Methods

LncRNA-disease association prediction method (LDAPM) has four steps. In

step 1, we employ the ILNCSIM method [16] to compute functional similarities of

lncRNAs. In step 2, we measure the semantic similarities of diseases. In step 3, we

extract feature vectors for lncRNAs and diseases and in the last step we recover the

lncRNA-disease association matrix and find new potential associations. Here we first

introduce the lncRNA-disease association data and then we show how LDAPM can

be apply to lncRNA-disease association data in order to predict new associations.

5.3.1 LncRNA-Disease Association Data

In order to create a model, known lncRNA-disease association data can be

stored in a matrix A ∈ Rm∗n, where each row corresponds to a different lncRNA

and each column corresponds to a different disease and m and n are the numbers of
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lncRNAs and diseases respectively. The entries of the matrix A can be either 0 or 1.

If the entry Ai,j is 1 it means there is an association between lncRNA i and disease

j and if the entry is 0, it means there is no known relationship between those. The

main goal here is to complete or recover the matrix (i.e., finding the best prediction

for the unknown relations). The most promising way to do this is to rely on the

assumption that the resulting matrix has to be of low rank. By predicting missing

values we could indeed predict gene expression patterns of which the most promising

could be then investigated using biological experimentation.

5.3.2 LncRNA Functional Similarity

For measuring lncRNA functional similarity scores, Huang et al. developed a

method called ILNCSIM [16]. Scores were calculated based on this assumption that

two functionally similar lncRNAs are more likely to be related to functionally similar

diseases. ILNCSIM consists of two steps. In step 1, ILNCSIM finds the common

ancestors of each pairs of the diseases and then based on their directed acyclic graph

(DAG), it calculates their functional similarities. In step 2, for each pair of lncRNAs,

the lncRNA functional similarity was calculated using the semantic similarities of all

diseases that are related to these two lncRNAs.

5.3.3 Disease Semantic Similarity

Diseases can be described as a Directed Acyclic Graph (DAG)in order to cal-

culate disease semantic similarities. Each node in the graph represents a disease and

edges of the graph show the relationship between diseases. Disease d1 can be de-

scribed as DAG(d1) = (d1, Sd1 , Ed1) where Sd1 is the set of all nodes including all

ancestors of node d1 including d1 itself and Ed1 is the set of all corresponding links,
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this includes all direct edges from parents to child nodes. So the contribution of

disease d in disease d1 can be calculated as:

Sd1(d) =


1 d1 = d

max{∆ ∗ Sd1(d′)|d′ ∈ children of d} d1 6= d

(5.1)

Where ∆ is the contribution factor for all links from disease d to disease d′.

The contribution of disease d1 to its own semantic value is 1 so the farther the nodes

from disease d1, the less effect they have on the d1’s semantic value. So, the value

of ∆ should be between 0 and 1. Wang et al. suggested that when the value of

∆ = 0.5 then the results show better correlation with the expression similarity [17].

The semantic value(SV) of disease d1 can be described as:

SV (d1) =
∑
d∈Dd1

Sd1(d) (5.2)

When two diseases are much more similar in the DAG, their similarity value

would become larger. The semantic similarity between diseases d1 and d2 can be

calculated as:

SV (d1, d2) =

∑
d∈(Sd1∩Sd2 )(Sd1(d) + Sd2(d))

SV (d1) + SV (d2)
(5.3)

where Sd1(d) is the semantic value of disease d related to disease d1 and Sd2(d)

is the semantic value of disease d related to disease d2. What equation 5.3 calculates,

is the semantic similarity between two different diseases based on their location in

DAG and the common links in their ancestors [18].
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5.3.4 Feature Extraction for LncRNAs and Diseases

For the aim of extracting primary features for both lncRNAs and diseases, we

use singular value decomposition (SVT) to perform PCA. If we denote the lncRNA

similarity matrix as R and disease similarity matrix as D, and because R and D are

symmetric, if we perform SVT on R and D, we have:

R = UrΣrU
∗
r (5.4)

D = UdΣdU
∗
d (5.5)

where Ud and Ur are unitary matrices and Σ is a diagonal matrix with non-

negative values in descending order on the diagonal. For finding the most significant

singular values of matrices R and D, we use the energy approach explained in [19].

Based on this study, the energy energy of a matrix A is defined as:

E(A) = ‖A‖F =
r∑
i=1

σi (5.6)

where σi are the singular values of matrix A. In the same way, the energy of a

k-rank approximation UaΣaV
∗
a is:

E(UaΣaV
∗
a ) = ‖UaΣaV

∗
a ‖F (5.7)

so the percentage of the energy occupied by the k-rank approximation with

respect to the overall energy of A becomes:

P =
‖UaΣaV

∗
a ‖F

‖A‖F
=

∑k
i=1 σai∑r
i=1 σi

(5.8)
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where σai is the ith non-zero diagonal elements of Σa. Then we can find the

proper parameters Pr and Pd for lncRNAs and diseases respectively:

pr = argkmin(

∑k
i=1 σii∑r
j=1 σjj

≥ αr) (5.9)

pd = argkmin(

∑k
i=1 σii∑d
j=1 σjj

≥ αd) (5.10)

where αr and αd are parameters. After we find the proper value for both pr and

pd, we construct feature matrices using top singular vectors corresponding to the pr

and pd singular values for both lncRNAs and diseases. Our feature matrices become:

R = (Vr1, Vr2, ..., Vpr)

D = (Vd1, Vd2, ..., Vpd)

5.3.5 LncRNA-Disease Association Matrix Completion

The location of the known values can be encoded in Ω, where (i, j) ∈ Ω if the

value at indices (i,j) is known. We can define a function PΩ(A) that returns a matrix

where values in Ω are the same as the input matrix while it set the others to zero:

PΩ(A)i,j


Ai,j (i, j) ∈ Ω

0 (i, j) 6∈ Ω

(5.11)

We formulate the LDAPM problem based on inductive matrix completion (IMC) [20].

IMC formulation combines side information associated with rows and columns (in our

case, lncRNAs and diseases respectively). The goal here is to complete data matrix

A using matrices R and D so we can consider the following IMC problem:

83



A = RMDT (5.12)

where R is the feature matrix for lncRNAs, D is the feature matrix for diseases

and M is an unknown matrix. The process is illustrated in Figure 5.1. The problem

here is to find a low rank matrix M based on the known values of lncRNA disease

association matrix A. We can denote M as M = WHT , where W ∈ Rpr×k and

H ∈ Rpd×k and k is small. In order to relax the low rank constraint of M , we replace

it with nuclear norm of M = WHT which we can rewrite as 1
2
(‖W‖2

F + ‖H‖2
F ) [21].

We can obtain W and H by solving the following optimization problem:

min
W,H

∑
(i,j)

L(Ai,j, r
T
i WHTdj) +

λ

2
(‖W‖2

F + ‖H‖2
F ) (5.13)

where λ is regularization parameter and L is the loss function and is: L(x, y) =

(x− y)2 so the problem becomes:

Figure 5.1. The process of LDAPM using lncRNA and disease features..
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min
W,H

∑
(i,j)

(Ai,j − rTi WHTdj)
2 +

λ

2
(‖W‖2

F + ‖H‖2
F ) (5.14)

Here an entry Ai,j is modeled as rTi Mdj where M can be recovered by solving

Eq.5.14. So M becomes the result of multiplication of matrices W and H. Eq.5.14

can be solved using Algorithm 1.

Algorithm 1: LncRNA-Disease Association Matrix Completion

Input: A

Output: W, H

Extract lncRNA features and store it in matrix R

Extract disease features and store it in matrix D

Initialize W and H with random numbers such that

the constraint should be met:

Wi,j ≥ 0
Hi,j ≥ 0
while not converged do:

Hjk = Hk (DTATRW )jk
(DTDHWTRTRW+λ.H)jk

W ik = W k (RTATDH)ik
(RTRWHTDTDH+λ.W )ik

end while

return W, H

5.4 Evaluation

In this section we will be first describing lncRNA-disease datasets and then we

compare the performance of LDAPM approach to three state-of-the-art methods to

see how well each methods perform.

5.4.1 Datasets

We used three lncRNA-disease association datasets from LncRNADisease database.

First dataset contains 256 lncRNAs and 189 diseases with the total of 685 known as-
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sociation. Second dataset contains 145 lncRNAs and 176 diseases with the total of

293 known associations. Last dataset contains 156 lncRNAs and 189 diseases with

the total of 351 known associations. then we removed the repeating data and also

those that were not belong to human beings. The final statistics of our datasets is

summarized in table 5.1.

Number of lncR-
NAs

Number of dis-
eases

Number of known asso-
ciations

Dataset 1 285 226 621

Dataset 2 112 150 276

Dataset 3 131 169 319

Table 5.1. The statistics of datasets after removing repeating and non-human data.

5.4.2 Parameters Pr and Pd

αr and αd are the number of feature vectors for lncRNAs and diseases respec-

tively so choosing the proper amount for them is important. To find the proper

amount for αr and αd, we measure the AUC of LDAPM when 0.1 ≤ αr, αd ≤ 0.9.

We see that when 0.6 ≤ αr ≤ 0.8, the performance becomes much stronger but above

0.8, the AUC decreases rapidly. For αd, the AUC is maximum when αd = 0.6. Based

on these result we choose αr = 0.7 and αd = 0.6 as default.

5.4.3 Convergence

Matrix M is reconstructed iteratively until the error in the convergence of the

known associations is lower than a threshold:
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∥∥PΩ(Wk+1H
T
k+1 −Mk)

∥∥
F

‖|PΩ(Mk)‖F
≤ ε (5.15)

In our implementation, we set the threshold to 10−6. Also we set the upper

limit of the number of iterations to 500.

5.4.4 Competitive Methods

We compare the performance of LDAPM with three state-of-the-art methods

on the same three datasets that we mentioned before.

1. LRLSLDA: The first method is LRLSLDA proposed by Chen et al. [15].

They developed a model of Laplacian Regularized Least Squares, a semi-supervised

learning method for predicting LncRNA–Disease Association (LRLSLDA). LRLSLDA

prioritizes lncRNAs for any specific disease by integrating known lncRNA-disease

association obtained from the LncRNADisease database, disease similarity network

and lncRNA similarity network.

2. RWRlncD: The second method was proposed by Sun et al. [22], in which

they proposed a global network-based computational framework to infer potential hu-

man lncRNA-disease associations. To do this, they implemented the random walk on

a lncRNA functional similarity network. They evaluated the performance of RWRl-

ncD by experimentally verified lncRNA-disease associations, based on leave-one-out

cross-validation.

3. RWRH: The third method proposed by Li ae al. [23], in which they used

the OMIM database in order to construct a heterogeneous network. This was done by

connecting the phenotype network and gene network using the phenotype–gene asso-

ciation. They extended the random walk with restart algorithm to the heterogeneous

network. RWRH prioritizes the genes and phenotypes and they used leave-one-out

cross-validation to evaluate the ability of gene–phenotype association prediction.
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5.4.5 Performance

We plotted Receiver Operating Characteristics curve (ROC) and used Area

Under the ROC curve (AUC) as the main metric for evaluating their performance.

The area under ROC curve is calculated as an index of the prediction power of the

LDAPM method. The value of AUC is between 0 and 1 and higher amounts shows

more prediction power. If the value is equal to 0.5, it means the performance is equal

to a random prediction.

For an specific disease d1, all the known d1 related lncRNAs are defined as

labeled nodes and the remaining lncRNAs (on which there is no relevance information)

are defined as unlabeled nodes. Given a threshold δ, if the result prediction of a

labeled node is greater than δ, then the node is identified as positive sample. If the

result prediction of a an unlabeled node is less than δ, then the node is a considered as

a negative sample. To plot a ROC curve we calculated the true positive rates (TPR

or sensitivity) and false positive rates (FPR, 1-specificity) through:

TPR =
TP

TP + FN

FPR =
FP

TN + FP

(5.16)

where:

• TP : Number of correctly identified positive samples.

• TN : Number of correctly identified negative samples.

• FP : Number of misidentified positive samples.

• FN : Number of misidentified negative samples.
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Sensitivity means the percentage of the positive samples that are correctly iden-

tified among all the positives and specificity means the percentage of the negative

samples correctly identified among all negatives.

5.5 Results

We conducted five repetitions of a 5-fold cross validation for each of the meth-

ods. The 5-fold cross validation is implemented using the known lncRNA-disease

association in the LncRNADisease database. So in each repetition, we divided our

association matrix A in to 5 parts and each parts, one-by-one , was left out as the

test set while we used the remaining four parts as the training set. All of unknown

lncRNA-disease association pairs can be seen as candidate samples. After applying

LDAPM, scores of the test samples were compared with the all scores of the can-

didates samples. In order to make the validation more accurate, we repeated this

process 5 times. Figures 3, 4 and 5 depicts the ROC curve and the calculated AUC of

different methods in dataset 1, 2 and 3 respectively. We set λ = 0.2 in the optimiza-

tion problem 5.14. We use the best value for parameters obtained by cross-validation

for LDAPM method.

As it shows in figure 5.2, we can see that for dataset 1, the LDAPM obtained the

AUC of 0.88 which is significantly higher than the AUC of other methods which are

0.60, 0.68 and 0.75 for RWRLncD, RWRH and LRLSLDA respectively. for dataset 2

(figure 5.3), the LDAPM obtained the AUC of 0.81 which is significantly higher than

the AUC of other methods which are 0.65, 0.60 and 0.62 for RWRLncD, RWRH and

LRLSLDA respectively. Likewise for dataset 3 (figure 5.4), the LDAPM obtained the

AUC of 0.83 which is significantly higher than the AUC of other methods which are

0.69, 0.64 and 0.63 for RWRLncD, RWRH and LRLSLDA respectively. These results
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suggest that the LDAPM outperforms other methods and can achieve more accurate

associations.

Figure 5.2. Evaluation the performance of different methods on Dataset 1.

5.6 Conclusion

Finding the molecular mechanism of diseases can help exploring disease pre-

vention, prognosis, diagnosis and also effective treatments. LncRNAs as a class of

non-coding RNAs are responsible for regulating gene expression so they can cause

various diseases [24–26]. Some computational approaches have been proposed to cap-

ture lncRNA-disease association. However most of these methods have limitations in

finding accurate associations.
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Figure 5.3. Evaluation the performance of different methods on Dataset 2.

Figure 5.4. Evaluation the performance of different methods on Dataset 3.
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In this paper we investigated LDAPM approach to predict lncRNA-disease as-

sociations based on this assumption that similar diseases tend to be related to func-

tionally similar lncRNAs. We used three datasets from LncRNADisease dataset and

calculated lncRNA similarity and disease similarity. We also extracted lncRNA and

disease features using PCA. The idea behind the LDAPM is to find a low rank ma-

trix that can integrate lncRNA and disease features to recover the lncRNA-disease

association matrix. We compared the performance of LDAPM to three state-of-the-

art-method and saw that the LDAPM outperforms other approaches in case of finding

more accurate associations.

LncRNAs are regulate gene expression so mutation and dysfunction of lncRNAs

can lead to several diseases. Computational methods have been proposed to find

the relationship between lncRNAs and diseases. We hope that this study can open

new opportunities to lncRNA-disease studies. lncRNA-disease experiments are very

expensive and time consuming so computational methods can help biologists in this

manner.
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CHAPTER 6

Conclusion
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6.1 First Project

In the first project, we investigated how Pearson Correlation Coefficient and

Cosine Similarity could be applied and used on NCBI-GEO biological data to find

(artificially introduced) missing values in the datasets. The GEO-NCBI (Gene Ex-

pression Omnibus) is a public repository of genomic data. GEO profiles show ex-

pression profiles for individual genes. We used the gene expression datasets of three

studies that measured the mRNA levels of different genes in different subjects (the

amount of mRNA levels show the gene expression values). We used the data infor-

mation of Bladder cancer, Leukemia and Lung cancer study. We modeled the gene

expression data as a matrix (where each row represents a gene and each column a

subject); the entries of the matrix can then be mRNA measurements that show the

extent of gene expressions. Since entries of the dataset are based on partial mea-

surements, the dataset has missing values, and the problem is then to estimate the

missing values and thus to recover the global matrix based on the known values.

If we measure gene expressions on a set of tissue samples, we should find groups

of genes that are correlated to each other. Having this in mind, we can assume that

our gene expression measurements can be a low rank matrix so we can predict the

missing values and complete the matrix. In neighborhood based approaches for col-

laborative filtering in recommendation systems, the main goal is to find similarities

between neighbors. When there is a missing value, the system tries to make a pre-

diction based on other users’ ratings (for the movies); the more similar a user is to

the one that has a missing value, the more impact his/her rating should have on the

prediction. Our problem in gene expression prediction is very similar to neighborhood

based approach of collaborating filtering, with the main task to find similarity (cor-

relation) between genes. We used two approaches to calculate correlation between
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genes, the Pearson Correlation Coefficient (PCC) and the Cosine Similarity (CS).

We then compared the performances of the two approaches to that of a recent

nuclear-norm minimization based approach. To do this, we removed random elements

from the datasets as represented by matrices and predicted them based on the as-

sumption that subjects have similar tendencies; more precisely that characteristics

of genes where genes work in groups for any process in body are similar. Our study

provides an insight for future work especially in bio-medicine as well as recommender

systems. We found the correlation based approaches to outperform the low nuclear-

rank matrix completion approach, i.e., it predicted more accurate values. We have

also found that Pearson correlation coefficient provides more accurate reconstructions

when compared to cosine similarity when used on gene databases.

6.2 Second Project

In this project we described how Robust Principal Component Analysis (RPCA)

can be applied and used on NCBI-GEO biological data to find (artificially introduced)

missing values and recover the datasets. For a noise-free dataset, we can easily per-

form PCA and find the most significant orthogonal vectors by using singular value

decomposition (SVD). In the presence of noise, we can use another approach called

robust PCA (RPCA). The presence of this noise is common in many applications such

as image processing and bioinformatics. Robust PCA has the ability to recover a low

rank matrix from sparse noise. We used the Alternating Direction Method of Multi-

pliers (ADMM) to solve the objective function. We then described three well known

algorithms that can be used when recovering low rank matrices and we compared the

performances of the four approaches. To do this, we removed random elements
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from the datasets as represented by matrices and predicted them based on

the assumption that genes have similar behaviors in similar conditions. Our study

provides an insight for future work especially in bio-medicine but also has implications

to recommender systems. We found that ADMM approach outperforms the other

three approaches, i.e., it predicted more accurate values.

6.3 Third Project

Finding the molecular mechanism of diseases can help exploring disease patho-

genesis and finding effective treatments. MiRNAs as a class of non-coding RNAs are

responsible for regulating gene expression so they can cause various diseases. Some

computational approaches have been proposed to capture miRNA- disease associa-

tion. However, these methods have limitations. In this paper we presented a Graph

Regularized Matrix Factorization method (GRMF) to predict miRNA-disease associ-

ations based on the assumption that similar miRNAs (functionally) tend to be related

to similar diseases (phenotypically). We used miRNA functional similarity, disease

semantic similarity, and known miRNA-disease associations form the HDMM v.2.0

database. To verify the accuracy of the GRMF method, we used five repetitions of

6-fold cross validation. We compared the result of the GRMF method with three

state-of-the-art methods and concluded that GRMF outperforms the other three in

terms of AUC. We selected Breast Neoplasm as a case study in order to show the

performance of GRMF for diseases which have no related miRNAs and based on the

results, we could confirm all 50 miRNAs as identified by miR2Disease, dbDEMC and

HDMM. As the second case study we chose Lymphoma to demonstrate the perfor-

mance of GRMF and based on the results, we could confirm 45 miRNAs out of 50

as identified by dbDEMC, miR2Disease and experimental literature in PubMed. The

GRMF method could provide an effective approach to study miRNA-disease associa-
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tions. We also recognize that GRMF has some limitations which can be improved in

future research. For example, the sequence information of miRNAs is used to mea-

sure miRNA similarity but some studies show that the structural information can be

more effective. Furthermore, expression information of miRNAs could also be used

to measure this similarity.

6.4 Fourth Project

LncRNAs as a class of non-coding RNAs are responsible for regulating gene

expression so they can cause various diseases. Some computational approaches have

been proposed to capture lncRNA-disease association. However most of these meth-

ods have limitations in finding accurate associations.

In this paper we investigated LDAPM approach to predict lncRNA-disease as-

sociations based on this assumption that similar diseases tend to be related to func-

tionally similar lncRNAs. We used three datasets from LncRNADisease dataset and

calculated lncRNA similarity and disease similarity. We also extracted lncRNA and

disease features using PCA. The idea behind the LDAPM is to find a low rank ma-

trix that can integrate lncRNA and disease features to recover the lncRNA-disease

association matrix. We compared the performance of LDAPM to three state-of-the-

art-method and saw that the LDAPM outperforms other approaches in case of finding

more accurate associations.

LncRNAs are regulate gene expression so mutation and dysfunction of lncRNAs

can lead to several diseases. Computational methods have been proposed to find the

relationship between lncRNAs and diseases.
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I hope that this study can open new opportunities to gene-disease studies.

gene-disease experiments are very expensive and time consuming so computational

methods can help biologists in this manner.
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