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ABSTRACT

MARS KNOT POSITIONING AND GLOBAL OPTIMIZATION

Xinglong Ju, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professors: Victoria Chen, Jay Rosenberger

Multivariate adaptive regression splines (MARS) is a statistical modeling

approach with wide real-world applications. In the MARS model building

process, knot positioning is a critical step that potentially affects the accuracy

of the final MARS model. Identifying well-positioned knots entails assessing

the quality of many knots in each model building iteration, which requires

much computation efforts. By exploring the change in the residual sum of

squares (RSS) within MARS, we find that local optima from previous iterations

can be very close to those of the current iteration. In our approach, the

prior change in RSS information is used to “warm start” an optimal knot

positioning. We propose two methods for MARS knot positioning. The first

method is a hill climbing method (HCM), which ignores prior change in RSS

information. The second method is a hill climbing method using prior change

in RSS information (PHCM). Numerical experiments are conducted on data

with up to 30 dimensions. Our results show that both versions of hill climbing

methods outperform Chen’s MARS knot selection method on datasets with

different noise levels. Further, PHCM using prior change in RSS information

performs best in both accuracy and computational speed.

Multivariate adaptive regression splines (MARS) is a flexible statistical

v



modeling method that has been popular for data mining applications. MARS

has also been employed to approximate unknown relationships in optimization

for complex systems, including surrogate optimization, dynamic programming,

and two-stage stochastic programming. Given the increasing desire to optimize

real world systems, this paper presents an approach to globally optimize a

MARS model that allows up to two-way interaction terms that are products

of truncated linear univariate functions (TITL-MARS). Specifically, such a

MARS model consists of linear and quadratic structure. This structure is

exploited to formulate a mixed integer quadratic programming problem (TITL-

MARS-OPT). To appreciate the contribution of TITL-MARS-OPT, one must

recognize that popular heuristic optimization approaches, such as evolutionary

algorithms, do not guarantee global optimality and can be computationally

slow. The use of MARS maintains the flexibility of modeling within TITL-

MARS-OPT while also taking advantage of the linear modeling structure of

MARS to enable global optimality. Computational results compare TITL-

MARS-OPT with a genetic algorithm for two types of cases. First, a wind

farm power distribution case study is described and then other TITL-MARS

forms are tested. The results show the superiority of TITL-MARS-OPT over

the genetic algorithm in both accuracy and computational time.
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CHAPTER 1

Introduction

1.1 MARS knot positioning

Various regression methods are used to build statistical models of real world

problems to study relationships between some potential factors and corre-

sponding results, which include simple linear regression method (SLR), mul-

tiple linear regression method (MLR), logistic regression method, deep neural

network, etc. Multivariate adaptive regression splines (MARS) [1] is one of the

most popular regression methods which performs very well when dealing with

high dimensional data and it has been used within many applications, such

as predicting mobile radio channels [2], predicting distributions of freshwater

diadromous fish [3], analyzing relationships between the distributions of 15

freshwater fish species and their environment [4], mining the customer credit

[5], modeling direct response behavior [6], etc.

The MARS regression process is iterative where usually in each iteration a
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CHAPTER 1. INTRODUCTION

pair of basis function bending over a knot will be added to the MARS model.

But if the knot is at the margin, only one basis function will be added to the

model because the other basis function is simply 0.

Knot positioning is a time-consuming component in MARS, especially for

estimating more complex forms, and highly affects the accuracy of the resulting

MARS model. In this research, it is desired to reduce the computational effort

of knot positioning, while maintaining an accurate model [7]. Friedman [1]

used all data values in the input data as candidate knot locations and used a

greedy algorithm to select specific knot positions among the candidates. The

knot position that provided the greatest improvement in the residual sum of

squares was selected in each iteration of the MARS algorithm. Selecting a knot

position from all possible data values is time-consuming when the data set is

large. Chen et al. [8] used a fixed number of candidate knots that was a subset

of the data values, such that the candidate knots were equally spaced. It is also

possible to select a subset of the data values, such that candidate knots have

some minimum number of data values between them (referred to as MinSpan

in the R code “earth”). This speeds up the knot positioning process, but

may miss some potentially superior knot positions that could achieve a more

accurate MARS model. Koc and Iyigun [9] introduced a mapping approach

to use more representative data points as candidate knots in the MARS knot

positioning process. This approach can yield efficiency in knot positioning

when the data are not evenly scattered over the input space. Miyata and

Shen [10] proposed knot optimization using an evolutionary algorithm. Their

approach can be generally applied for various forms of spline basis functions,

2



CHAPTER 1. INTRODUCTION

but was only demonstrated for one input dimension and required additional

computational effort over existing approaches. Of interest for the current work

was the positioning of knots between data values, which greatly expanded the

knot search space [10].

We propose two new methods for MARS knot positioning that seek to

reduce the computational effort of knot positioning without degrading the

quality of fit. We refer to these methods as the hill climbing method (HCM)

and the climbing method using prior information (PHCM) where the objective

is to decrease the residual sum of squares (RSS). Numerical experiments using

different dataset sizes and different numbers of candidate knots with different

noise levels are investigated in this paper.

1.2 MARS global optimization

Global optimization is to find the best solution for a given objective, bounds

and criteria where different global optimization methods are applied to dif-

ferent problems. For a network problem, Dijkstra’s algorithm can be used to

find shortest path. Simplex, dual simplex and big-M methods are used to get

a global optimum for the assignment problem. Gradient descent methods are

used to solve convex problems.

It is also of paramount importance to find an analytical way to optimize

on the achieved MARS model when making decisions based on the model.

Martinez et al. [11] proposed a global optimization method using mixed in-

teger programming for piece-wise linear MARS, which is used in a car crash

3



CHAPTER 1. INTRODUCTION

problem as an application. However, this method could not be applied to two-

way interaction truncated linear MARS (TITL-MARS) optimization problem

because TITL-MARS is a quadratic problem.

We propose a novel mixed integer quadratic programming method to solve

the global optimization problem of two-way interaction MARS with truncated

linear basis function (TITL-MARS-OPT). We compare the proposed optimiza-

tion method with genetic algorithm under different wind farm power distribu-

tion functions and other mathematical functions and the results show TITL-

MARS-OPT method works better than genetic algorithm in both accuracy

and time efficiency.
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CHAPTER 2. FAST KNOT OPTIMIZATION FOR MULTIVARIATE ADAPTIVE
REGRESSION SPLINES USING HILL CLIMBING METHODS

2.1 Abstract

Multivariate adaptive regression splines (MARS) is a statistical modeling ap-

proach with wide real-world applications. In the MARS model building pro-

cess, knot positioning is a critical step that potentially affects the accuracy of

the final MARS model. Identifying well-positioned knots entails assessing the

quality of many knots in each model building iteration, which requires much

computation efforts. By exploring the change in the residual sum of squares

(RSS) within MARS, we find that local optima from previous iterations can be

very close to those of the current iteration. In our approach, the prior change

in RSS information is used to “warm start” an optimal knot positioning. We

propose two methods for MARS knot positioning. The first method is a hill

climbing method (HCM), which ignores prior change in RSS information. The

second method is a hill climbing method using prior change in RSS informa-

tion (PHCM). Numerical experiments are conducted on data with up to 30

dimensions. Our results show that both versions of hill climbing methods out-

perform Chen’s MARS knot selection method on datasets with different noise

levels. Further, PHCM using prior change in RSS information performs best

in both accuracy and computational speed.

2.2 Introduction

As a popular non-parametric regression technique, multivariate adaptive re-

gression splines (MARS) algorithm was first introduced by Friedman in 1991 [1].

Because of its flexibility and accuracy, MARS has been used in many studies

8
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including predicting distributions of freshwater diadromous fish [2], analyz-

ing relationships between the distributions of 15 freshwater fish species and

their environment [3], mining the customer credit [4], modeling direct response

behavior [5], building a decision-making framework for ozone pollution con-

trol [6], assessment of gully erosion susceptibility [7], estimating heating load

in buildings [8], modeling daily dissolved oxygen concentration [9] etc.

Knot positioning is a time-consuming step in the MARS building process-

ing, and it highly affects the accuracy of the final MARS model. The situation

can getting worse for high dimensional regression model. In this research,

it is desirable to reduce the computational cost of knot positioning, while

maintaining an accurate model. Friedman [1] used all values from the pre-

dictive variables as candidate knot locations and used a greedy algorithm to

select specific knot positions among all the candidates. The knot position that

provides the greatest improvement in the residual sum of squares (RSS) was

selected in each iteration of the MARS algorithm. Selecting a knot position

from all possible data values is time-consuming when the data set is large.

Chen et al. [10] used a fixed number of candidate knots that was a subset of

the data values, such that the candidate knots were equally spaced. It is also

possible to select a subset of the data values, such that candidate knots have

the minimum number of data values between them (referred to as MinSpan

in the R code “earth”), which can speed up the knot positioning process, but

may miss some potentially superior knot positions that could achieve a more

accurate MARS model. Koc and Iyigun [11] introduced a mapping approach

to use more representative data points as candidate knots in the MARS knot

9
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(a) Training dataset (b) Model 1: R2=0.94 (c) Model 2: R2=0.99

Figure 2.1: MARS model with different knot positions

positioning process. This approach can yield efficiency in knot positioning

when the data are not evenly scattered over the input space. Miyata and

Shen [12] proposed knot optimization using an evolutionary algorithm. Their

approach can be generally applied for various forms of spline basis functions,

but was only demonstrated for one input dimension and required additional

computational effort compared to existing approaches.

If knots are not positioned well, the MARS model may not represent the

relationships properly because basis functions will only bend at these positions.

Suppose we fit two input dimensions, as illustrated in Figure 2.1a, where x1

and x2 are the input variables, and the surface has multiple peaks and valleys.

MARS models with different knot positions are shown in Figures 2.1b and 2.1c.

MARS model 1 achieved a coefficient of determination of R2 = 0.94, and

MARS model 2 achieved R2 = 0.99, which indicates that MARS model 2 is

better fit to the data than MARS model 1, as can be seen visually in the

figures. Hence, limiting the set of candidate knots can degrade the model fit;

however, an exhaustive search of knot positions is computational expensive.

In this research, we propose improved knot positioning mechanisms dur-

ing the MARS building process. We propose two new methods for MARS

10
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knot positioning that seek to reduce the computational effort of knot position-

ing without degrading the quality of fit. We refer to these methods as the hill

climbing method (HCM) and the hill climbing with prior information (PHCM)

where the objective is to decrease the RSS. Numerical experiments using dif-

ferent dataset sizes and different numbers of candidate knots with different

noise levels are investigated in this paper.

The rest of the paper are organized as follows. In Section 2.3, the original

MARS algorithm is introduced. Section 2.4 provides the description of the

datasets. In Section 2.5, the knot optimization for MARS using hill climbing

methods is described in detail. Section 2.6 presents the experimental results,

and, finally, concluding remarks are given in Section 2.7.

2.3 MARS background

MARS is introduced for the regression setting with multiple input variables

and a response variable. In MARS model, the approximated MARS function

is composed from a linear model of basis functions, which is defined from

hinge functions or multiplication of hinge functions. The MARS model can be

written as follows:

f̂(x) =
M∑
m=0

{am ·Bm(x)} , (2.1)

where f̂(x) is the MARS model and Bm(x) is called the basis function. Here

m denotes the index of the basis function and M indicates the total number

of basis functions in the MARS model. The coefficient of m-th basis function

is denoted as am and x ∈ Rn denotes the predicting variable vector. MARS

11
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uses a product form for the basis function:

Bm(x) =
Km∏
k=1

bk,m. (2.2)

Here bk,m is the k-th univariate function in Bm(x) and Km denotes the total

number of univariate functions in Bm(x). When Km = 1, then the basis

function is univariate. Otherwise, Km is the degree of the interaction term.

In each basis function, the refraction points are the knots for the basis

function. The bk,m are truncated linear functions of the form:

b(x|t) = [+(x− t)]+ = max{+(x− t), 0}, (2.3)

or

b(x|t) = [−(x− t)]+ = max{−(x− t), 0}, (2.4)

where the location t is called knot for the basis function.

Let {xi, yi}Ni=1 represent a dataset, where xi ∈ Rn denotes the i-th data

point in predicting variable dataset, and the i-th data point for the response

variable is defined as yi. The sample size is denoted as N and i is the index

of the data point (i = 1, 2, 3, . . . , N).

The residual sum of squares between the observed value and the predicted

value, denoted as e, is defined as:

e =
1

N

N∑
i=1

[
yi − f̂(xi)

]2

. (2.5)

In general, a smaller e is considered to be a better fit to the data. In MARS, a

12
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penalty term with e is used to avoid overfitting, but e alone is used for selecting

among knot positions within the MARS algorithm.

The MARS forward stepwise algorithm [1] using the truncated linear uni-

variate basis function is given in Algorithm 1 where {xi, yi}Ni=1 is the input

dataset and Mmax is the maximum number of basis functions. In each MARS

iteration, the algorithm seeks a pair of basis functions to add to its current set.

Candidate basis functions can be new univariate terms or interaction terms

that are split from the current set. The innermost loop of the algorithm (line

5-11) considers all possible knot positions for a univariate term or additional

split of an interaction term. In line 1 of Algorithm 1, the MARS model starts

with a constant. The current best residual sum of squares e∗ is initialized to

be∞. From line 2 to line 17, it adds basis functions until Mmax basis functions

are added to the MARS model. From line 3 to line 13, the regression process

tries to split on all already added basis functions. The set {v(k,m)}Km
k=1 is

the variable index set of the basis function Bm(x) and v denotes the variable

index. For example, if

Bm(x) = [+(x1 − 0.2)]+ · [−(x3 − 0.6)]+, (2.6)

then the set

{v(k,m)}Km
k=1 = {1, 3}. (2.7)

The candidate knot set of the basis function Bm(x) at v-th variable is denoted

as {xj,v|Bm(xj) > 0}Nj=1 and it consists of the v-th variable values of the data

points which make the basis function positive. In line 7, the new e for MARS

13
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model with new basis functions is calculated . From line 8 to 10, e is compared

with e∗. If e is less than e∗, it indicates the new model is better, and we store

the related information, e∗, the index of the basis function m∗, the variable

index v∗ and the knot value t∗. In line 14 and line 15, two new basis functions

are added to the MARS model.

Algorithm 1: MARS forward stepwise algorithm

Input: {xi, yi}Ni=1,Mmax

Result: MARS regression model f̂(x)
1 B1(x) = 1,M = 1, e∗ =∞
2 while M < Mmax do
3 for m = 1 toM do

4 for v /∈ {v(k,m)}Km
k=1 do

5 for t ∈ {xj,v|Bm(xj) > 0}Nj=1 do

6 f̂ =
∑M

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

7 e = mina1,...,aM+2 e(f̂)
8 if e < e∗ then
9 e∗ = e,m∗ = m, v∗ = v, t∗ = t

10 end

11 end

12 end

13 end
14 BM+1(x) = Bm∗(x)[+(xv∗ − t∗)]+
15 BM+2(x) = Bm∗(x)[−(xv∗ − t∗)]+
16 M = M + 2

17 end

2.4 Datasets

In this paper, 7 datasets are used to investigate and verify the proposed new

methods. The first 6 datasets are generated from 6 functions and the Sobol

sequence is used to sample values in the input space [13]. The seventh dataset
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Figure 2.2: fL(x1, x2) d = 2

is a wind farm power distribution dataset [14].

The first dataset DL is generated from the Levy function fL(x) [15] as

fL(x) =sin2(πw1) +
d−1∑
i=1

(wi − 1)2
[
1 + 10sin2(πwi + 1)

]
+ (wd − 1)2 [ 1+

sin2(2πwd) ] , wi = 1 +
xi − 1

4
, for all i = 1, . . . , d

− 10 6 xi 6 10, (2.8)

where x is the independent variable. The dimension of x is denoted as d, and

in this paper, d = 30 which indicates x is 30-dimensional. Figure 2.2 is the

surface of Levy function when d = 2.

Datasets D1, D2, D3, D4 and D5 are generated from functions f1, f2, f3, f4

and f5 [11], respectively. In dataset D1, x has 7 dimensions. In dataset D2, x

is 10-dimensional. For D3, x has 10 dimensions and for D4, x is 3-dimensional.

For D5, x is 21-dimensional with α = {0.15, −0.96, 0.09, 0.84, 0.55, −0.58,

0.21, 0.50, 0.1, −0.90} and x of D6 is also 2-dimensional. Figure 2.3 shows the
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function surfaces when limiting the dimension to 2.

f1(x) =
7∑
i=1

[
ln2(xi − 2) + ln2(10− xi)

]
−

(
7∏
i=1

xi

)2

2.1 6 xi 6 9.9, i = 1, 2, 3, . . . , 7 (2.9)

f2(x) =
10∑
j=1

exp(xj)

(
cj + xj − ln

10∑
k=1

exp(xk)

)

c = [−0.6089,−17.164,−34.054,−5.914,−24.721,−14.986,−24.100,

− 10.708,−26.662,−22.179]

− 10 6 xi 6 10 (2.10)

f3(x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 − 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + 2(x10 − 7)2 + 45

− 10 6 xi 6 10 (2.11)

f4(x) = sin
(πx1

12

)
cos
(πx2

16

)
− 10 6 x1 6 10,−20 6 x2 6 20 (2.12)

f5(x,y) =
d∑
i=1

αi[3(1− xi)2 exp(−x2
i − (yi + 1)2)− 10(

x

5
− x3

i − y5
i )

exp(−x2
i − y2

i )−
1

3
exp(−(xi + 1)2 − y2

i ) + 2xi],
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d∑
i=1

αi = 1, for all i = 1, . . . , d,

− 2 6 xi 6 2,−2 6 yi 6 2 (2.13)

In the experiments, we added Gaussian noise with different levels (5%,

10%, and 20%) to the datasets to investigate and verify the robustness of

the proposed methods HCM and PHCM. The signal-to-noise ratio (SNR) is

defined as

SNR =
Psignal

Pnoise
(2.14)

where Psingal is the average power of the signal and Pnoise is the average

power of the noise [16]. Figure 2.4 and Figure 2.5 show D4 and D6 with

different noise levels.

2.5 Knot optimization for MARS using hill

climbing methods

In our proposed MARS knot positioning process, we define the change in RSS

as the objective function, given as

∆e = ep − ec,

where ep and ec are the RSS values of the prior iteration and the current it-

eration, respectively. If ∆e is negative, it indicates that the current MARS

model is less accurate than the prior MARS model. If ∆e is positive, it indi-
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(a) f1(x1, x2) other xi = 4.0 (b) f2(x1, x2) other xi = 3.0

(c) f3(x1, x2) other xi = 4.0 (d) f4(x1, x2)

(e) f5(x1, y1) d = 1
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(f) f6(x1, y1) d = 1

Figure 2.3: Surfaces of dataset functions
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Figure 2.4: D4 with different levels of noise
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Figure 2.5: D6 with different levels of noise
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cates that the current MARS model is more accurate and is an improvement

over the prior MARS model. The larger the value of ∆e, the more accurate

the current MARS model is. Hence, we seek to maximize ∆e to find the best

fitting MARS model under current settings (adding one knot to the current

MARS model).

2.5.1 Exploring the change in residual sum of squares

function

In the MARS knot positioning process, when we use ∆e, lines 8 to 10 in in

Algorithm 1 will become:

8 ∆e = e∗ − e
9 if ∆e > 0 then

10 e∗ = e,m∗ = m, v∗ = v, t∗ = t
11 end

The ∆e will be calculated repeatedly for different basis functions to choose the

knot with the largest ∆e value. Figure 2.6 shows ∆e functions of variable x1

in MARS from subsequent iterations on a representative dataset DL. Assume

x1 is the variable that we are considering in creating the next basis function

Bm(x). Figure 2.6a is generated when there are no basis functions in the

MARS model. Figures 2.6b and 2.6e are generated when there are already two

and four basis functions, respectively, in the MARS model. From Figure 2.6a to

Figure 2.6e, the three local maxima move only a little, and the global maximum

is almost the same position, which is around 0.25. The principle that the local

maxima of ∆e functions move very little from iteration to iteration also applies

21



CHAPTER 2. FAST KNOT OPTIMIZATION FOR MULTIVARIATE ADAPTIVE
REGRESSION SPLINES USING HILL CLIMBING METHODS

to other cases. We refer to these local maxima as key knots, and we will use

this principle in our new knot positioning methods.

2.5.2 Hill climbing method

In this section, we introduce the hill climbing method for MARS knot po-

sitioning [17]. If a function is concave, then hill climbing will find a global

maximum, if one exists. However, the ∆e function may not be concave, so we

require multiple starting points to get closer to the global maximum, as shown

in Figure 2.7.

Figure 2.7 shows how the hill climbing method works on an example ∆e

function, where the vertical axis is the ∆e value and the horizontal axis is the

knot value. Suppose S0, S1, and S2 are three candidate knot positions that are

arbitrarily chosen from the candidate knot set (line 5 in Algorithm 1). If we

start from S0, S1, and S2 and try to maximize ∆e, then we will end with knot

values M0, M1, and M2, respectively. Only the knot values in [S0, M0], [S1,

M1] and [S2, M2] will be traversed, and the other knot values in the domain

of ∆e will be ignored, so using hill climbing methods will speed up the knot

positioning process by reducing the search process.

The starting points play an important role in the hill climbing method,

which heavily affects the convergence speed and the last achieved optimum

value. If the starting points are very close to a local maximum, the optimiza-

tion process will end up at a local optimum, as shown in Figure 2.7 where we

are trying to maximize ∆e. Fortunately, by exploring ∆e functions of differ-

ent datasets, we find that the current key knots move a little from the prior
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Figure 2.6: Explore the change in the residual sum of squares (∆e) function for
v = x1
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Figure 2.7: Illustration of the hill climbing method

key knots. Intuitively, we can use the key knots from a prior iteration as the

starting points of the current iteration. By doing experiments on different

datasets, we find that it works the same way on other datasets. This pattern

of the key knots’ changes can be helpful when a basis function is added using

that x-variable.

2.5.3 Hill climbing method without using prior change

in RSS information for MARS knot positioning

The first new method we propose for MARS knot positioning is a general hill

climbing method with multiple starting points, called HCM. The HCM algo-

rithm starts with multiple starting points and converges to the local maxima

of ∆e. Then the knot with the largest ∆e from the local maxima is chosen as

the new knot to be added to the MARS model.

Algorithm 2 shows the HCM knot positioning algorithm. The initial step in

line 2 sorts the candidate knots in ascending order, and the knots are referenced

by their ordered knot index. An positive integer step size r is defined to

increment the knot index, which allows the algorithm to traverse the candidate
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Figure 2.8: Illustration of candidate knots

knots. As recommended by Friedman [1], candidate knots are located only

at data values. Figure 2.8 is an illustration of candidate knots for x1. If

the current knot index is 4 (knot value, -0.32) and the next knot index is

6 (knot value, 0.23), then r = |6 − 4| = 2. When r takes a large number,

the knot positioning process will converge fast, but it is not stable because

it may skip and miss an optimal knot. When r takes a small number, the

knot selection process will converge slowly but is stable. Line 5 in Algorithm 2

follows the original MARS algorithm to define the potential candidate knot

set for Bm(xj) for the v-th input variable. In Algorithm 2, we refer to this

set as Φ. Let Φ = {−0.81,−0.7,−0.6,−0.32, 0.01, 0.23, 0.46, 0.55, 0.68, 0.76}

as shown in Figure 2.8. The starting knot set is ΦS, where S is the knot index

set of the starting knots, and we generate ΦS by taking equally indexed knots

for a given starting knot number. As shown in Figure 2.8, if the starting knot

number is 3, then S can be {1, 5, 9} and ΦS is {−0.81, 0.01, 0.68}.

Lines 8 to 30 conduct HCM, which starts from each starting knot value in

ΦS. Line 9 obtains a starting knot value ts, and line 10 calculates the new

MARS model with two new basis functions by using the new knot value ts.

Line 11 calculates the es value, where es is the RSS value for the new MARS

model by using knot value ts. From lines 12 to 20, knots are traversed to

the left of the starting knot, while from lines 21 to 29, knots are traversed

to the right of the starting knot. As illustrated in Figure 2.8, if ts is 0.01,

25



CHAPTER 2. FAST KNOT OPTIMIZATION FOR MULTIVARIATE ADAPTIVE
REGRESSION SPLINES USING HILL CLIMBING METHODS

the knots to the left are {−0.7,−0.6,−0.32} and the knots to the right are

{0.23, 0.46, 0.55}. In line 12, when traversing knots to the left of ts, the knot

index s− is initialized to s, and the current e for knot Φ[s−] is ec. In line 14, the

e value ec for the prior knot becomes the prior e value eP for the current knot.

Line 15 updates the information on the best knot. Line 16 moves the current

knot index to the left by r and updates the current knot value t to Φ[s−].

Lines 17 and 18 update the MARS model with the current knot and calculate

the e value ec for the current knot. Line 19 calculates the decrease in e value

∆e. If ∆e is greater than a predefined small positive scalar ε, the current knot

index will move to the left by r and repeat line 14 to 19 again. Otherwise, the

algorithm will stop traversing to the left and will begin traversing to the right

of the starting knot Φ[s], and in this case, the process will skip a part of knots

and save time. Lines 22 to 29 traverse knots to the right of the starting knot

Φ[s]. The knot sets ΦS divides the whole searching space into intervals, and if

a knot t has already been traversed, the current search stops.

2.5.4 Hill climbing method using prior change in RSS

information for MARS knot positioning

In HCM, all candidate knots are equally likely to be chosen for the starting

point set. As was shown earlier in Figure 2.6 shows that the local optima

do not move much from iteration to iteration and the local optima should be

considered with much higher priority [18]. The second new method is a hill

climbing method using the prior ∆e information (PHCM), where the starting

point set consists of the key knots from the prior iteration. By exploring the

26



CHAPTER 2. FAST KNOT OPTIMIZATION FOR MULTIVARIATE ADAPTIVE
REGRESSION SPLINES USING HILL CLIMBING METHODS

Algorithm 2: HCM method for MARS knot positioning
Data: x, y,Mmax, ε, r
Result: MARS regression model f̂(x)

1 B1(x) = 1,M = 1, e∗ =∞
2 sort {xj,v} → {x(j),v} ascending
3 while M < Mmax do
4 for m = 1 toM do

5 for v /∈ {v(k,m)}Km

k=1 do
6 Φ = {xj,v|Bm(xj) > 0}Nj=1

7 random ΦS ⊆ Φ
8 foreach ts ∈ ΦS do
9 t = ts (ts = Φ[s])

10 f̂ =∑M−1
i=1 aiBi(x)+aM+1Bm(x)[+(xv−t)]++aM+2Bm(x)[−(xv−t)]+

11 es = mina1,...,aM+2
e(f̂)

12 s− = s, ec = es
13 do
14 ep = ec
15 if ep < e∗ then e∗ = ep,m

∗ = m, v∗ = v, t∗ = t
16 s− = s− − r, t = Φ[s−]

17 f̂ =
∑M−1

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

18 ec = mina1,...,aM+2
e(f̂)

19 ∆e = ep − ec
20 while ∆e > ε
21 t = ts, s+ = s, ec = ets
22 do
23 ep = ec
24 if ep < e∗ then e∗ = ep,m

∗ = m, v∗ = v, t∗ = t
25 s+ = s+ + r, t = Φ[s+]

26 f̂ =
∑M−1

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

27 ec = mina1,...,aM+2
e(f̂)

28 ∆e = ep − ec
29 while ∆e > ε

30 end

31 end

32 end
33 BM+1(x) = Bm∗(x)[+(xv∗ − t∗)]+
34 BM+2(x) = Bm∗(x)[−(xv∗ − t∗)]+
35 M = M + 2

36 end
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∆e function in Section 2.5.2, we find that local maxima from the prior iteration

are usually near those of the current iteration, so we expect PHCM to converge

faster than HCM.

The difference between HCM and PHCM is how to determine ΦS. In

HCM, ΦS is generated by taking equally indexed knots for all iterations in

Algorithm 2 line 7. In PHCM, for the first iteration, all candidate knots are

chosen as ΦS, and for the other iterations, ΦS is the local maxima set of ∆e

identified in the prior iteration. For example as shown in Figure 2.8, in the

first iteration for x1,

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

ΦS = {−0.81,−0.7,−0.6,−0.32, 0.01, 0.23, 0.46, 0.55, 0.68, 0.76},
(2.15)

and for the second iteration for x1,

S = {3, 9},

ΦS = {−0.6, 0.68}.
(2.16)

In this way, PHCM converges faster to the local maxima, so PHCM has supe-

riority in dealing large datasets.

2.6 Experiments and results

In this section, we test the MARS knot selection method from Chen et al. [10]

and our new methods, HCM and PHCM, on different datasets with varying

noise levels.

28



CHAPTER 2. FAST KNOT OPTIMIZATION FOR MULTIVARIATE ADAPTIVE
REGRESSION SPLINES USING HILL CLIMBING METHODS

2.6.1 Exploration of candidate knot numbers

In this section, the MARS knot selection method from Chen et al. [10] (CM),

HCM, and PHCM methods are applied to six datasets under different can-

didate knot number settings, 10, 30, 50, 100, 200, 500 and 1000. Table 2.1

summarizes the training and testing R2 results on dataset D1 under different

candidate knot number settings, 10, 30, 50, 100, 200, 500 and 1000. Let R2
P ,

R2
H , and R2

C be the coefficients of determination for the PHCM method, the

HCM method, and the knot positioning method from Chen et al. [10], respec-

tively, where a higher R2 indicated a better fit to the data. The number of

candidate knot number is denoted as Nk.

From Table 2.1, we can see that as the candidate knot number increases,

the R2 value is going up. The table also shows there is no significant R2

difference between training and testing dataset, so overfitting is not a problem.

However, the computational time is also going up with the candidate knot

number increasing. Under the same candidate knot number settings, the R2

values for the CM method, the HCM method, and the PHCM method are

almost the same.

Let TC denote the computational time for CM method, TH for HCM

method and TP for PHCM method. The computational time ratio of three

methods are defined as follows:

Computation time ratio of CM =
TC
TC

= 1 (2.17)

Computation time ratio of HCM =
TH
TC

(2.18)

29



CHAPTER 2. FAST KNOT OPTIMIZATION FOR MULTIVARIATE ADAPTIVE
REGRESSION SPLINES USING HILL CLIMBING METHODS

Table 2.1: R2 comparison on datasetD1 over different candidate knot numbers:
training vs testing

Noise Nk 10 30 50 100 200 500 1000

0%

Train
R2
C 0.769 0.809 0.860 0.871 0.884 0.920 0.941

R2
H 0.781 0.799 0.846 0.860 0.882 0.912 0.938

R2
P 0.769 0.805 0.860 0.870 0.884 0.920 0.940

Test
R2
C 0.738 0.780 0.832 0.840 0.855 0.892 0.913

R2
H 0.752 0.769 0.817 0.829 0.852 0.883 0.910

R2
P 0.738 0.775 0.832 0.841 0.855 0.892 0.914

5%

Train
R2
C 0.769 0.825 0.834 0.854 0.880 0.895 0.909

R2
H 0.760 0.814 0.830 0.842 0.862 0.875 0.902

R2
P 0.769 0.816 0.832 0.852 0.880 0.895 0.906

Test
R2
C 0.742 0.799 0.808 0.829 0.856 0.872 0.886

R2
F 0.734 0.789 0.806 0.817 0.838 0.851 0.877

R2
P 0.742 0.790 0.807 0.827 0.856 0.872 0.883

10%

Train
R2
C 0.769 0.816 0.831 0.843 0.853 0.869 0.891

R2
H 0.766 0.813 0.825 0.836 0.847 0.861 0.875

R2
P 0.769 0.804 0.831 0.838 0.853 0.869 0.890

Test
R2
C 0.750 0.794 0.812 0.824 0.834 0.851 0.873

R2
F 0.746 0.790 0.805 0.816 0.827 0.842 0.856

R2
P 0.750 0.785 0.812 0.819 0.834 0.851 0.870

20%

Train
R2
C 0.761 0.792 0.802 0.825 0.834 0.860 0.887

R2
F 0.759 0.786 0.800 0.816 0.830 0.857 0.884

R2
P 0.761 0.792 0.802 0.822 0.834 0.860 0.887

Test
R2
C 0.744 0.776 0.794 0.808 0.817 0.844 0.872

R2
F 0.741 0.768 0.793 0.798 0.814 0.840 0.870

R2
P 0.744 0.776 0.794 0.805 0.817 0.844 0.872
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Computation time ratio of PHCM =
TP
TC
. (2.19)

The computational time of CM method is the benchmark. If the computational

time is less than 1, it implies that the methods uses less computational time

than CM method.

Figures 2.9, 2.10 and 2.11 summarize the computational time ratios of three

methods on datasets D6, D1 and D5 under different candidate knot number

settings. The input variable x forD6 is 2 dimensional, x forD1 is 7 dimensional

and x for D5 is 20 dimensional. Under most cases, the HCM and PHCM

methods used less computational time than CM method. The ratio of HCM

over different candidate knot numbers remained relatively stable compared to

the ratio of PHCM, around 0.60 to 0.70, which indicates only 60% to 70% of

the computational time of CM method was used in HCM method. The ratio of

PHCM on D1 dropped dramatically with increasing candidate knot numbers

from 0.80 to 0.25, which indicates that the PHCM method used about 80% of

the computational time of CM method when the candidate knot number was

10, and 25% of the CM computational time when the candidate knot number

was 1000. The ratio for PHCM is going down when the candidate knot number

increases, which means PHCM is more computationally efficient when dealing

with a large size dataset. The figures also show that the proposed methods

HCM and PHCM can perform very well with different levels of noise.
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Figure 2.9: Computational time ratios of three methods on D6 under different
knot number settings with four noise levels: x is 2 dimensional
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Figure 2.10: Computational time ratio of three methods on D1 under different
knot number settings with four noise levels: x is 7 dimensional
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Figure 2.11: Computational time ratios of three methods on D5 under different
knot number settings with four noise levels: x is 20 dimensional

2.6.2 Exploration of different datasets

In this section, we tested our methods on six different datasets with the can-

didate knot number setting being 1000. The CM method, the HCM method,

and the PHCM method are used on these six datasets.

Table 2.2 summarizes the R2 values of three methods on six different

datasets under four levels of noises. Under the same settings, the final achieved

R2 are almost the same. It also shows there is little difference in R2 between

the training set and the testing set, so no overfitting is again not a problem..

Figure 2.12 is the comparison of the computational time ratios of three

methods on six different datasets. Comparing datasets with different dimen-

sions, we saw that for datasets with 7, 10, 10, and 20 dimensions, the PHCM

method has dramatically lower computational time ratio than HCM method.
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Table 2.2: R2 comparison on six different datasets: training vs testing

Noise
f(x) D1 D2 D3 D4 D5 D6

Nk 1000 1000 1000 1000 1000 1000

0%

Train
R2
O 0.941 0.999 0.999 0.999 0.944 0.971

R2
H 0.938 0.999 0.999 0.999 0.945 0.971

R2
P 0.940 0.999 0.999 0.999 0.943 0.971

Test
R2
O 0.913 0.994 0.999 0.998 0.940 0.946

R2
H 0.910 0.994 0.999 0.998 0.936 0.946

R2
P 0.914 0.999 0.999 0.998 0.932 0.946

5%

Train
R2
O 0.909 0.995 0.993 0.996 0.935 0.952

R2
H 0.902 0.995 0.993 0.996 0.935 0.953

R2
P 0.906 0.995 0.993 0.996 0.940 0.952

Test
R2
O 0.886 0.991 0.992 0.995 0.940 0.929

R2
H 0.877 0.991 0.999 0.995 0.940 0.927

R2
P 0.883 0.998 0.999 0.995 0.938 0.929

10%

Train
R2
O 0.891 0.985 0.973 0.991 0.933 0.906

R2
H 0.875 0.985 0.973 0.991 0.933 0.906

R2
P 0.890 0.985 0.973 0.991 0.933 0.906

Test
R2
O 0.873 0.989 0.953 0.997 0.918 0.897

R2
H 0.856 0.989 0.953 0.997 0.918 0.897

R2
P 0.870 0.989 0.949 0.997 0.930 0.890

20%

Train
R2
O 0.887 0.948 0.898 0.965 0.904 0.794

R2
H 0.884 0.948 0.898 0.965 0.904 0.794

R2
P 0.887 0.948 0.898 0.965 0.903 0.794

Test
R2
O 0.872 0.955 0.895 0.950 0.909 0.778

R2
H 0.870 0.955 0.896 0.950 0.908 0.778

R2
P 0.872 0.951 0.897 0.950 0.910 0.778
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Figure 2.12: Computational time ratios of three methods on six datasets with
different dimensions under four noise levels

For datasets with 2 dimensions, the differences in the ratio are not as dra-

matic as those for high dimensional datasets. The phenomenon indicates that

PHCM should be the preferred method for high-dimensional data.

2.7 Conclusion

In this paper, we proposed two new methods for MARS knot positioning, the

hill climbing method (HCM) and the hill climbing method using key knots.

The HCM and PHCM achieved a reduction in computational time compared

to CM, while maintaining similar quality of fit. The PHCM achieved the

most significant savings with over 80% reduction in computational time for

the higher-dimensional data sets. By using different datasets with different

noise levels, we show that PHCM and HCM are robust dealing with noisy
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datasets.
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Appendix

2.A Other results tables and charts

Table 2.A.1 summarizes the training results on dataset D1 under different

candidate knot number settings, 10, 30, 50, 100, 200, 500 and 1000. Define Nk

to be the number of candidate knots. Let NC be the total number of knots in

which ∆e was calculated using the CM, NH be that using the HCM, and NP

be that using the PHCM, where fewer calculated ∆e values usually result in a

lower computational time. Let RP be the ratio of NP to NC , and RH be the

ratio of NH to NC , where a lower ratio indicates lower computational effort.

Let R2
P , R2

H , and R2
C be the coefficients of determination for the PHCM, the

HCM, and the CM, respectively, where a higher R2 indicated a better fit to

the data. Let T be the computational time in seconds of the MARS algorithm

with TP for the PHCM, TH for the HCM, and TC for the CM.

We also tested our methods on six different datasets with the candidate

knot number setting being 1000. The CM method, the HCM method, and the

PHCM method are used on these six datasets.

Table 2.A.2 summarizes the training results on six different datasets with
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Table 2.A.1: Comparison of three methods on dataset D1 over different can-
didate knot numbers: training results

Noise Nk 10 30 50 100 200 500 1000

0%

NC 17,197 53,675 93,610 181,336 370,894 1,086,174 2,090,062
NH 12,521 33,630 58,586 119,062 242,323 656,259 1,339,374
NP 13,032 31,134 46,381 69,180 130,477 320,969 590,287
RH 0.73 0.63 0.63 0.66 0.65 0.60 0.64
RP 0.76 0.58 0.50 0.38 0.35 0.30 0.28
R2
C 0.769 0.809 0.860 0.871 0.884 0.920 0.941

R2
H 0.781 0.799 0.846 0.860 0.882 0.912 0.938

R2
P 0.769 0.805 0.860 0.870 0.884 0.920 0.940

R2
aC 0.744 0.790 0.845 0.853 0.873 0.913 0.936

R2
aH 0.757 0.778 0.830 0.843 0.872 0.905 0.932

R2
aP 0.744 0.785 0.845 0.842 0.873 0.913 0.929
TC 3.40 7.94 13.27 24.36 46.60 146.38 259.29
TH 2.85 4.96 8.06 15.66 30.72 87.61 165.16
TP 2.90 5.11 6.89 9.72 16.77 42.01 70.25

5%

NC 17,282 56,015 86,755 192,700 348,157 869,325 1,988,368
NH 12,610 35,746 56,893 125,606 218,216 535,707 1,266,933
NP 13,110 31,609 42,310 82,831 121,907 257,309 518,964
RH 0.73 0.64 0.66 0.65 0.63 0.62 0.64
RP 0.76 0.56 0.49 0.43 0.35 0.30 0.26
R2
C 0.769 0.825 0.834 0.854 0.880 0.895 0.909

R2
H 0.760 0.814 0.830 0.842 0.862 0.875 0.902

R2
P 0.769 0.816 0.832 0.852 0.880 0.895 0.906

R2
aC 0.743 0.807 0.818 0.835 0.868 0.875 0.900

R2
aH 0.740 0.794 0.811 0.831 0.846 0.865 0.881

R2
aP 0.743 0.801 0.815 0.833 0.865 0.874 0.897
TC 3.46 8.51 11.54 26.94 45.66 102.34 259.35
TH 2.85 5.62 7.84 17.09 27.10 62.49 166.78
TP 3.07 5.31 6.02 11.99 15.88 40.25 59.66

10%

NC 17,222 52,221 85,520 188,521 381,650 879,351 1,336,330
NH 13,084 33,790 53,963 113,931 253,330 585,591 909,954
NP 12,965 29,753 42,885 78,657 136,553 275,360 341,559
RH 0.76 0.65 0.63 0.60 0.66 0.67 0.68
RP 0.75 0.57 0.50 0.42 0.36 0.31 0.26
R2
C 0.769 0.816 0.831 0.843 0.853 0.869 0.891

R2
H 0.766 0.813 0.825 0.836 0.847 0.861 0.875

R2
P 0.769 0.804 0.831 0.838 0.853 0.869 0.890

R2
aC 0.744 0.796 0.814 0.826 0.838 0.857 0.880

R2
aH 0.741 0.793 0.811 0.821 0.833 0.852 0.861

R2
aP 0.744 0.784 0.814 0.823 0.838 0.857 0.878
TC 3.49 7.72 11.85 26.70 51.18 110.18 253.85
TH 2.54 5.26 9.25 15.57 32.21 70.33 155.65
TP 2.95 4.90 6.19 10.87 18.10 33.66 55.67

20%

NC 17,762 50,280 84,420 172,248 354,203 799,428 1,755,070
NH 12,856 34,745 61,390 94,171 237,130 497,342 1,246,389
NP 13,976 29,537 43,982 74,961 128,663 254,856 514,569
RH 0.72 0.69 0.73 0.55 0.67 0.62 0.71
RP 0.79 0.59 0.26 0.44 0.36 0.32 0.29
R2
C 0.761 0.792 0.802 0.825 0.834 0.860 0.887

R2
H 0.759 0.786 0.800 0.816 0.830 0.857 0.884

R2
P 0.761 0.792 0.802 0.822 0.834 0.860 0.887

R2
aC 0.735 0.771 0.790 0.805 0.818 0.848 0.877

R2
aH 0.733 0.770 0.789 0.792 0.820 0.844 0.874

R2
aP 0.735 0.771 0.787 0.801 0.821 0.851 0.877
TC 3.56 7.70 10.16 23.13 47.44 83.5 199.02
TH 2.98 5.35 8.58 11.95 29.76 52.94 141.16
TP 3.21 4.85 5.99 10.34 16.48 27.61 57.05
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the candidate knot number setting being 1000.
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Figure 2.A.1: Computational time ratios of three methods on D2 under differ-
ent knot number settings with four noise levels: x is 10 dimensional
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Table 2.A.2: Result comparison of three methods on six different datasets:
training results

Noise
D1 D2 D3 D4 D5 D6

Nk 1000 1000 1000 1000 1000 1000

0%

NC 2,090,062 11,051,248 10,871,840 376,966 12,382,743 353,038
NH 1,339,374 7,581,651 8,527,864 275,526 9,603,147 265,990
NP 590,287 2,806,414 2,773,136 240,948 2,290,161 231,107
RH 0.64 0.69 0.78 0.73 0.78 0.75
RP 0.28 0.25 0.26 0.64 0.18 0.65
R2
C 0.941 0.999 0.999 0.999 0.944 0.971

R2
H 0.938 0.999 0.999 0.999 0.945 0.971

R2
P 0.940 0.999 0.999 0.999 0.943 0.971

R2
aC 0.936 0.999 0.999 0.999 0.938 0.970

R2
aH 0.932 0.999 0.999 0.999 0.940 0.970

R2
aP 0.929 0.999 0.999 0.999 0.938 0.970
TC 259.29 1149.26 960.37 30.36 1340.91 28.20
TH 165.16 755.43 758.20 22.48 1052.71 21.10
TP 70.25 273.41 224.10 19.48 235.69 19.00

5%

NC 1,988,368 10,710,274 7,174,956 319,140 12,515,344 361,014
NH 1,266,933 7,404,639 5,800,284 220,277 9,540,538 269,215
NP 518,964 2,621,238 1,712,336 203,052 2,208,984 236,997
RH 0.64 0.69 0.81 0.69 0.76 0.75
RP 0.26 0.24 0.24 0.64 0.18 0.66
R2
C 0.909 0.995 0.993 0.996 0.935 0.952

R2
H 0.902 0.995 0.993 0.996 0.935 0.953

R2
P 0.906 0.995 0.993 0.996 0.940 0.952

R2
aC 0.900 0.995 0.992 0.996 0.929 0.949

R2
aH 0.881 0.995 0.992 0.996 0.929 0.950

R2
aP 0.897 0.995 0.992 0.996 0.933 0.949
TC 259.35 1096.25 648.71 25.68 1406.60 29.33
TH 166.78 749.59 574.37 17.52 1028.94 21.80
TP 59.66 254.78 146.67 16.47 225.57 20.36

10%

NC 1,336,330 9,364,412 5,505,934 377,963 12,363,800 325,122
NH 909,954 6,365,090 4,421,255 268,752 9,462,023 242,482
NP 341,559 2,264,578 1,360,088 240,343 2,202,486 208,351
RH 0.68 0.68 0.80 0.71 0.77 0.75
RP 0.26 0.24 0.25 0.64 0.18 0.64
R2
C 0.891 0.985 0.973 0.991 0.933 0.906

R2
H 0.875 0.985 0.973 0.991 0.933 0.906

R2
P 0.890 0.985 0.973 0.991 0.933 0.906

R2
aC 0.880 0.984 0.971 0.990 0.927 0.900

R2
aH 0.861 0.984 0.971 0.990 0.927 0.900

R2
aP 0.878 0.984 0.970 0.990 0.926 0.900
TC 253.85 1051.80 525.21 31.62 1368.79 25.20
TH 155.65 676.18 436.86 22.11 1015.08 19.28
TP 55.67 230.08 120.25 19.78 222.06 16.64

20%

NC 1,755,070 6,510,958 4,491,985 411,861 11,454,536 331,104
NH 1,246,389 4,458,339 3,600,931 313,356 8,692,736 242,237
NP 514,569 1,477,733 1,061,862 280,717 1,987,142 213,803
RH 0.71 0.68 0.80 0.76 0.76 0.73
RP 0.29 0.23 0.24 0.68 0.17 0.65
R2
C 0.887 0.948 0.898 0.965 0.904 0.794

R2
H 0.884 0.948 0.898 0.965 0.904 0.794

R2
P 0.887 0.948 0.898 0.965 0.903 0.794

R2
aC 0.877 0.942 0.887 0.963 0.894 0.781

R2
aH 0.874 0.942 0.887 0.963 0.894 0.781

R2
aP 0.877 0.942 0.887 0.963 0.893 0.781
TC 199.02 772.69 418.99 33.97 1243.55 26.18
TH 141.16 526.57 340.56 25.89 922.75 19.42
TP 57.05 158.24 92.90 23.50 195.84 17.24
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Figure 2.A.2: Computational time ratios of three methods on D3 under differ-
ent knot number settings with four noise levels: x is 10 dimensional
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Figure 2.A.3: Computational time ratios of three methods on D3 under differ-
ent knot number settings with four noise levels: x is 2 dimensional
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3.1 Abstract

Multivariate adaptive regression splines (MARS) is a flexible statistical mod-

eling method that has been popular for data mining applications. MARS has

also been employed to approximate unknown relationships in optimization for

complex systems, including surrogate optimization, dynamic programming,

and two-stage stochastic programming. Given the increasing desire to opti-

mize real world systems, this paper presents an approach to globally opti-

mize a MARS model that allows up to two-way interaction terms that are

products of truncated linear univariate functions (TITL-MARS). Specifically,

such a MARS model consists of linear and quadratic structure. This struc-

ture is exploited to formulate a mixed integer quadratic programming problem

(TITL-MARS-OPT).

To appreciate the contribution of TITL-MARS-OPT, one must recognize

that popular heuristic optimization approaches, such as evolutionary algo-

rithms, do not guarantee global optimality and can be computationally slow.

The use of MARS maintains the flexibility of modeling within TITL-MARS-

OPT while also taking advantage of the linear modeling structure of MARS to

enable global optimality. Computational results compare TITL-MARS-OPT

with a genetic algorithm for two types of cases. First, a wind farm power

distribution case study is described and then other TITL-MARS forms are

tested. The results show the superiority of TITL-MARS-OPT over the ge-

netic algorithm in both accuracy and computational time.
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3.2 Introduction

Optimization for complex systems often involves fitting a system prediction

model to estimate how a system performs and then optimizing the decisions

based on the system prediction model as shown in Figure 3.1. Two major tasks

in optimization of complex systems include training or meta-modeling a sta-

tistical or system model and optimizing input or decisions based on statistical

model.

Figure 3.1: Optimization of complex systems

In real world complex systems, underlying relationships are commonly un-

known and are approximated from data using empirical models. Wu et al. [1]

applied support vector regression in travel time prediction and proved sup-

port vector regression was applicable in traffic data analysis. Lv et al. [2]

applied a deep learning approach with autoencoders in traffic flow prediction.

Ohlmacher and Davis [3] used logistic regression to generate a landslide-hazard

map to predict landslide hazards. Leathwick et al. [4] used multivariate adap-

tive regression splines to predict the distributions of freshwater diadromous
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fish.

If one seeks to optimize a complex system, the optimization method would

need to be able to handle the data-driven approximation models. Given the

wide range of possible approximation models, such as machine learning algo-

rithms, the most commonly employed optimization approach in these situa-

tions is a heuristic approach, such as an evolutionary algorithm, that cannot

guarantee global optimality. Rather than having the approximation model

dictate the need for a heuristic optimization method, the research in this pa-

per seeks a balance that utilizes a flexible approximation model with structure

that can be exploited to enable true global optimization. In other words, the

“best of both worlds” is sought, by achieving global optimality while still main-

taining a flexible approximation model. The approximation model of choice

in this paper is multivariate adaptive regression splines (MARS), introduced

by machine learning pioneer Jerome Friedman in 1991 [5]. The structure of

MARS is based on a linear statistical spline model and provides a flexible fit

to data while also achieving a parsimonious model.

The desire to conduct global optimization is seen in many applications,

and there are a number of approaches classified as global optimization meth-

ods [6]. The primary challenge in achieving global optimality is that many real

world applications involve multiple local optima. Finding a global optimum

requires sifting through the local optima and recognizing when one is subopti-

mal. The vast majority of applications employ heuristic search algorithms seek

to overcome the challenge of local optima, but do not guarantee global opti-

mality. Examples include heuristics based on evolutionary algorithms [7, 8, 9],
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particle swarm optimization [10], the grasshopper optimization method [11],

and the weighted superposition attraction method [12]. In order to guarantee

global optimality, the approach in this paper takes advantage of well-known

properties of mixed integer and quadratic programming (MIQP) [13].

Some recent applications in which MARS has been employed for empirical

modeling include a water pollution prediction problem [14], the head load in a

building [15], the estimation of landfill leachate [16], and the damage identifica-

tion for web core composite bridges [17], In optimization problems, MARS has

been employed as the empirical model to approximate unknown relationships

in a variety of applications. For stochastic dynamic programming, the use of

MARS to approximate the value function was introduced by Chen et al. in

1999 [18]. Since then, the MARS value function approximation approach has

been used to numerically solve a 30-dimensional water reservoir management

problem [19], a 20-dimensional wastewater treatment system [20, 21, 22], and

a 524-dimensional nonstationary ground-level ozone pollution control prob-

lem [23]. In revenue management, MARS was employed to estimate upper

and lower bounds for the value function of a Markov decision problem [24, 25],

and MARS was used to represent the revenue function in airline overbooking

optimization [26]. In two-stage stochastic programming, MARS was used to

efficiently represent the expected profit function for an airline fleet assignment

problem [27]. This fleet assignment research was extended to utilize a cutting

plane method with MARS to conduct the optimization [28].

The contribution of this current work extends the approach of Martinez

et al. [29], who developed a piece-wise linear MARS structure and formulated
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a mixed integer and linear programming problem to globally optimize vehicle

design parameters to improve performance in crash simulations. The piece-

wise linear MARS function may be nonconvex, and the approach of Martinez

et al. will yield a global optimum. However, restricting to piece-wise linear

forms limits the flexibility of the empirical model. Hence, in the current work,

the MARS form employed is based on the original MARS model. The pri-

mary challenge for an optimization method is handling the nonconvex MARS

interaction terms, which are products of univariate terms. By restricting to

two-way interactions, we can utilize quadratic programming methods. In real

world applications, two-way interactions are commonly sufficient for empirical

modeling [30]

In summary, the contribution of the presented approach is a MIQP global

optimization method for a MARS model that allows up to two-way interac-

tion terms that are products of truncated linear univariate functions (TITL-

MARS). This approach is referred to as TITL-MARS-OPT and is compared

against a genetic algorithm for two types of cases. First, a wind farm power

distribution case study is described, and then other TITL-MARS forms are

tested.

The rest of this paper is organized as follows. Section 3.3 describes back-

ground on TITL-MARS. Section 3.4 presents the MIQP formulation for TITL-

MARS-OPT. The computational study is given in Section 3.5, and Section 3.6

concludes the paper.
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3.3 Background of two-way interaction trun-

cated linear multivariate adaptive regres-

sion splines

This section introduces the two-way interaction truncated linear MARS (TITL-

MARS) model. The two-way interaction truncated linear MARS regression

model with the response variable f(xi) is to be built on the independent vari-

able xi and can be written in the form of the linear combination of the basis

functions as [5]

f̂(x) = a0 +
∑M

m=1 {am ·Bm(x)} . (3.1)

The MARS model is denoted as f̂(x), and a0 is the constant term of the model.

The basis function is denoted as Bm(x), and am is the coefficient of Bm(x).

The index of the basis function is denoted as m, and M is the total number

of basis functions. The basis function Bm(x) using the truncated linear term

has the following form

Bm(x) =
∏Km

k=1[sk,m · (xv(k,m) − tv(k,m))]+. (3.2)

The truncated linear term is denoted as [sk,m · (xv(k,m) − tv(k,m))]+, and the

basis function Bm(x) is the product of truncated linear terms. The index of

the truncated linear term in Bm(x) is denoted as k, and Km is the total number

of truncated linear terms in Bm(x). The sign of the truncated linear term is

sk,m, which can be +1 or −1. The v-th component of x is denoted as xv(k,m),
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and tv(k,m) is the corresponding knot value. TITL-MARS is the special case of

MARS in which Km 6 2.

3.4 Formulation of two-way interaction trun-

cated linear MARS using mixed integer

quadratic programming

The general mixed integer quadratic programming problem [13] is given as

min 1
2
zTQz + cTz

s.t. Az = b

l 6 z 6 u

z ∈ RP × ZD−P ,

(3.3)

while the two-way interaction truncated linear MARS is given in Section 3.3.

In (3.3), the decision variable is z, and the quadratic coefficients matrix is Q.

The coefficients of the linear terms in the objective function are in vector c.

The linear constraints are denoted as Az = b. The lower bound and upper

bound of z are l and u, respectively. The dimension of z is D. There are P

dimensions of real values, and D − P dimensions of integers. Problem in the

form 3.3 can be solved using the CPLEX solver.

The TITL-MARS optimization problem is given as follows.

min f̂(x) = a0 +
∑M

m=1 {am ·Bm(x)} (3.4)
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s.t. l 6 x 6 u (3.5)

x ∈ RP × ZD−P (3.6)

Bm(x) =
∏Km

k=1[sk,m · (xv(k,m) − tv(k,m))]+ (3.7)

[sk,m · (xv(k,m) − tv(k,m))]+ = max{sk,m · (xv(k,m) − tv(k,m)), 0} (3.8)

The objective function (3.4) is the TITL-MARS model. The constraint set (3.5)

is the boundary of x. The constraint set (3.6) specifies the data types. Con-

straints (3.7) and (3.8) specify the basis functions and the truncated linear

terms.

LetM denote an upper bound of |xv(k,m)−tv(k,m)| and |tv(k,m)−xv(k,m)|. Let

yk,m be an indicator variable for the nonnegativity of sk,m · (xv(k,m) − tv(k,m)),

an let ηk,m denote the univariate truncated linear function, given as

ηk,m = [sk,m · (xv(k,m) − tv(k,m))]+ = max{sk,m · (xv(k,m) − tv(k,m)), 0}. (3.9)

Specifically, when sk,m · (xv(k,m) − tv(k,m)) > 0, yk,m = 1 and ηk,m = sk,m ·

(xv(k,m) − tv(k,m)), otherwise yk,m = 0 and ηk,m = 0.

The TITL-MARS optimization problem can be formulated into a general

mixed integer quadratic programming problem as follows.

min a0 +
∑M

m=1

{
am ·

∏Km
k=1 ηk,m

}
(3.10)

s.t. sk,m · (xv(k,m) − tv(k,m)) 6 ηk,m 6 sk,m · (xv(k,m) − tv(k,m)) +M · (1− yk,m),

∀k = 1, . . . , Km,∀m = 1, . . . ,M (3.11)

0 6 ηk,m 6M · yk,m,∀k = 1, . . . , Km,∀m = 1, . . . ,M (3.12)
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l 6 x 6 u (3.13)

x ∈ RP × ZD−P (3.14)

ηk,m ∈ R,∀k = 1, . . . , Km,∀m = 1, . . . ,M (3.15)

yk,m ∈ B,∀k = 1, . . . , Km,∀m = 1, . . . ,M. (3.16)

The objective (3.10) is the TITL-MARS model. Equations (3.11) - (3.16) for-

mulate the basis functions into linear constraints and specifying the boundaries

and data types.

TITL-MARS-OPT is an optimization process as shown in Figure 3.1. The

process has two steps. The first step is to fit TITL-MARS model, and the

second step optimizes TITL-MARS model using MIQP. The benefits of the

optimization process has two aspects. First, TITL-MARS can be fit using

most commercial MARS software. Second, MIQP can be globally optimized

using CPLEX [31].

Fit two-way interaction truncated 
linear MARS

Optimize decisions of TITL-MARS 
using MIQP model

Figure 3.1: TITL-MARS-OPT optimization process
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3.5 Experiments and results

In this section, first the genetic algorithm for TITL-MARS optimization is

given, and then the presented TITL-MARS-OPT is tested on wind farm power

distribution TITL-MARS models and other mathematical models with the

genetic algorithm (TITL-MARS-GA) as a benchmark.

3.5.1 Genetic algorithm

The genetic algorithm can also be used as an optimization method to optimize

the function (TITL-MARS-GA), as given in Algorithm 3 [32], where the input

is the two-way interaction MARS model and the maximum generation number

Mmax, and the output is an optimum and an optimum value. In the “initial-

ization” step (line 1 in Algorithm 3), we generate a population and code the

individuals from the decimal form to the binary form. In the “fitness value”

step (line 2), we decode the individuals from the binary form to the decimal

form and evaluate each of the individual’s decimal values in the MARS model

function to obtain the fitness value. In the “keep the best” step (line 3), we

sort the individuals by their fitness values and store the individual with the

best fitness value. The “selection” step (line 6) selects parents from the prior

population. The “crossover” (line 7) chooses two parents and produces a new

population. The “mutation” (line 8) chooses one point within an individual

and changes it from 1 to 0 or from 0 to 1. In this paper, the TITL-MARS-

GA algorithm is used as a benchmark compared with the TITL-MARS-OPT

method.
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Algorithm 3: Genetic algorithm for TITL-MARS optimization

Data: f̂(x) = a0 +
∑M

m=1

{
am ·

∏Km
k=1[sk,m · (xv(k,m) − tv(k,m))]+

}
,Mmax

Result: xmax, f(xmax)
1 Initialization: Generate a population and code the individuals from decimal

to binary.
2 Fitness value: Decode individuals from binary to decimal and get function

value.
3 Keep the best: Store the individual with highest or lowest fitness value.
4 gen = 1
5 while gen< Mmax do
6 Selection: Select parents from prior population.
7 Crossover: Choose two parents and produce a new population.
8 Mutation: Choose one point and 1→ 0 or 0→ 1.
9 Fitness value: Decode individuals from binary to decimal and get

function value.
10 Keep the best: Store the individual with highest or lowest fitness value.
11 gen = gen + 1

12 end

The parameters of TITL-MARS-GA in this paper are from the literature

[32] and given in Table 3.1.

Table 3.1: Parameter settings of TITL-MARS-GA

Parameter Value

Population size 50
Maximum number of generations 1000

Crossover rate 0.8
Mutation rate 0.15

The TITL-MARS-GA optimization process has two steps as shown in Fig-

ure 3.1. The first step fits a two-way interaction truncated linear MARS model,

and the second step optimizes decisions of TITL-MARS using the genetic algo-

rithm. The drawback of TITL-MARS-GA is that it does not guarantee global

optimality.
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Fit two-way interaction truncated 
linear MARS

Optimize decisions of TITL-MARS 
using genetic algorithm

Figure 3.1: TITL-MARS-GA optimization process

3.5.2 Experimental environment

The experiments are run on a workstation with 64 bit Windows 10 Enterprise

system. The CPU version is an Intel(R) CPU E3-1285 v6 @ 4.10GHz, and the

RAM has 32 GB.The programming code is written in Python version is 3.6,

and the CPLEX solver version is 12.8.

3.5.3 Optimization of wind farm power distribution func-

tion

Wind farm power is of paramount significance as a renewable energy source. In

this paper, the Monte Carlo method [33] is used to generate random wind farm

layouts, and the TITL-MARS method is used to study the power distribution

under certain wind speeds and directions. After the TITL-MARS model is

generated, the TITL-MARS-OPT method is used to study the best turbine

position and the worst position. We use the following steps to generate the

wind farm power distribution function, as shown in Figure 3.2. First, we

randomly generate N wind farm layouts. Second, we calculate average power

output at each location. Third, we use the data from second step to build the
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TITL-MARS power distribution model.

Randomly generate N layouts

Calculate average power output at 
each location

Build power distribution function 
using TITL-MARS 

Figure 3.2: Steps to generate a TITL-MARS wind farm power distribution
model

After the wind passes through a wind turbine j, a part of the wind energy

will be absorbed by turbine j and leave the downstream wind with the reduced

speed, which is called the wake effect [34], and the wake effect model is shown

in Figure 3.3. Wind speed at turbine i with the wake effect of turbine j is vi,j

(a) Wind wake effect model (b) Wake effect illustration

Figure 3.3: Wake effect
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and can be calculated as

vi,j = v0

(
1− 2

3
·
R2
j

r2
j

)
. (3.17)

Rj is the radius of the wind turbine j, and rj is the wake radius of the wind

turbine j. The final wind speed vi at turbine i with multiple wake effects is

given as

vi = v0

[
1−

√∑
j∈Φi

(
1− vi,j

v0

)2
]
, (3.18)

where Φi is the index set of the turbines which are upwind of the turbine i.

Afterwards, the actual power of turbine i can be obtained as [35]

p(vi) =



0, vi < 2

0.3vi
3, 2 6 vi < 12.8

629.1, 12.8 6 vi 6 18

0, vi > 18,

(3.19)

and the power curve is shown in Figure 3.4. which is the relationship between

the wind turbine power and the wind speed.

The wind farm power distribution is generated using the Monte Carlo meth-

ods for a given wind farm and a specific wind distribution.

fw1 is generated from a wind farm where there is only one wind speed and

one direction. The wind farm is divided into 41 by 41 cells, and each cell has

a width of 308 m. The wind is from northeast (π
4
) at 15 m/s.

fw2 is generated from a wind farm where the wind has only one wind speed

and four directions. The wind farm has the same dimension as that of fw1.
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Figure 3.4: Relationship of wind speed with output power of a wind turbine

The wind is from north (0), south (π), east (π
2
), and west (3π

2
) at 15 m/s.

fw3 is generated from a wind farm where the wind has only one wind speed

at 15 m/s and six directions, 0, π
3
, 2π

3
, π, 4π

3
, and 5π

3
.

fw4 is generated from a wind farm where the wind has three wind speeds,

12 m/s, 10 m/s, and 8 m/s, and 12 directions, 0, π
6
, π

3
, π

2
, 2π

3
, π, 7π

6
, 4π

3
, 3π

2
,

5π
3

, and 11π
6

.

TITL-MARS-OPT and TITL-MARS-GA are used to optimize on the wind

farm power distribution models to find a global maximum and a minimum,

and the results are shown in Figure 3.5 and summarized in Table 3.2. The

results are the average value of 30 executions. The table shows the optimal

values derived from the TITL-MARS-OPT and TITL-MARS-GA, as well as

the computation time in seconds. The result shows that the TITL-MARS-

OPT method finds better solutions than the genetic algorithm and uses less

time. The maximum value and minimum value are very useful before actually

building the wind turbines. The maximum location indicates that it is the
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Table 3.2: Comparison of TITL-MARS-OPT and TITL-MARS-GA on wind
farm power distribution TITL-MARS models

Function Measurement TITL-MARS-OPT TITL-MARS-GA

fw1

Maximum 636.76 628.12
Time(seconds) 0.15 5.32
Minimum 578.30 579.61
Time(seconds) 0.32 5.46

fw2

Maximum 588.10 586.61
Time(seconds) 0.15 5.22
Minimum 545.90 543.81
Time(seconds) 0.40 5.36

fw3

Maximum 622.10 619.22
Time(seconds) 0.15 5.18
Minimum 599.50 601.20
Time(seconds) 0.85 5.56

fw4

Maximum 393.80 391.46
Time(seconds) 0.04 2.12
Minimum 303.21 303.62
Time(seconds) 0.51 2.26

best location to build a wind turbine based on the given requirements. The

minimum location indicates that this location is the worst location on the

wind farm, and if the budget is tight, the piece of land around the minimum

location can be neglected.

3.5.4 Optimization of other functions

TITL-MARS-OPT method and TITL-MARS-GA are tested to optimize other

six TITL-MARS models to find the global maximum and minimum. The first

two TITL-MARS models f1 and f2 are two-dimensional [36]. The f3 and

f4 are 10-dimensional TITL-MARS models. f5 is 19-dimensional, and f6 is

21-dimensional [37]. The results are shown in Figure 3.6 and summarized in

Table 3.3. The results are the average value of 30 runs and show TITL-MARS-
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(a) Case 1 : fw1 (b) Case 2 : fw2

(c) Case 3 : fw3
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(d) Case 4 : fw4

Figure 3.5: One run result comparison of TITL-MARS-OPT and TITL-MARS-GA
on wind farm power distribution TITL-MARS model
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Table 3.3: Result comparison of TITL-MARS-OPT and TITL-MARS-GA on
six other TITL-MARS mathematical models

Function Measurement TITL-MARS-OPT TITL-MARS-GA

f1

Maximum 8.30 8.03
Time(seconds) 0.70 5.42
Minimum -8.20 -6.36
Time(seconds) 1.65 5.56

f2

Maximum 1.81 1.66
Time(seconds) 0.31 5.26
Minimum -2.20 -2.13
Time(seconds) 0.32 5.42

f3

Maximum 5774.08 5532.56
Time(seconds) 0.02 30.12
Minimum -1126.39 -102.21
Time(seconds) 0.02 30.11

f4

Maximum 48800.26 10201.13
Time(seconds) 96.32 34.52
Minimum -3952146.24 -3326800.69
Time(seconds) 0.41 32.27

f5

Maximum 97679.99 94091.71
Time(seconds) 0.02 53.61
Minimum -15439.62 -6720.36
Time(seconds) 2.46 53.71

f6

Maximum 111225.22 100258.76
Time(seconds) 0.02 54.13
Minimum -14215.61 -3102.45
Time(seconds) 0.04 54.32

OPT is superior to TITL-MARS-GA. The result shows that TITL-MARS-

OPT achieves better solutions than TITL-MARS-GA and uses less time, which

is consistent with the prior result. The results also show that TITL-MARS-

OPT is robust in dealing both low-dimensional and high-dimensional TITL-

MARS models.
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Figure 3.6: One run result comparison of TITL-MARS-OPT and TITL-MARS-GA
on f1 and f2 TITL-MARS models

3.6 Conclusion

In this paper, a new method (TITL-MARS-OPT) is proposed to globally op-

timize analytically on the two-way interaction truncated linear MARS (TITL-

MARS) by using mixed integer quadratic programming. We verified the pre-

sented TITL-MARS-OPT method on the wind farm power distribution TITL-

MARS models and six other mathematical TITL-MARS models. The applica-

tion on wind farm power distribution models gives the best location and worst

location information on the wind farm. The testing TITL-MARS models are

from 2-dimensions to up to 21-dimensions, and it shows the TITL-MARS-OPT

method is robust in dealing with TITL-MARS models with varied dimensions.

We also compared the TITL-MARS-OPT method with TITL-MARS-GA in

TITL-MARS model optimization, and it shows that the new method can

achieve better accuracy and time efficiency. TITL-MARS-OPT can achieve

as high as 500% and on average 300% better solution quality and is on aver-

age 67% faster than TITL-MARS-GA. In addition, the Python code and the
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testing models of this paper are made open source, and it will contribute to

the study of TITL-MARS models and optimization.
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Appendix

3.A Supplemental materials

3.A.1 f1, f2, f3 and f4 functions

f1(x1, x2) =3(1− x1)2 exp(−x2
1 − (x2 + 1)2)− 10(

x1

5
− x3

1 − x5
2) exp(−x2

1 − x2
2)

(3.20)

− 1

3
exp(−(x1 + 1)2 − x2

2) + 2x1,

− 2 6 x1 6 2,−2 6 x2 6 2

f2(x1, x2) = sin
(πx1

12

)
cos
(πx2

16

)
(3.21)

− 10 6 x1 6 10,−20 6 x2 6 20
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f3(x) =
10∑
j=1

exp(xj)

(
cj + xj − ln

10∑
k=1

exp(xk)

)
(3.22)

c = [−0.6089,−17.164,−34.054,−5.914,−24.721,−14.986,−24.100,−10.708,

− 26.662,−22.179]

− 10 6 xi 6 10

f4(x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 − 4(x4 − 5)2 + (x5 − 3)2

(3.23)

+ 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + 2(x10 − 7)2 + 45

− 10 6 xi 6 10

3.A.2 f5 and f6 functions

The datasets to generate f5 and f6 are from Ariyajunya [37]. Ariyajunya [37]

applied adaptive dynamic programming for high-dimensional, multicollinear

state space and used an Atlanta ozone pollution problem as the case study.

The datasets used in this paper are from the fourth stage and the third stage

with low variance inflation factors.
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CHAPTER 4

Conclusion

First, We proposed two new methods for MARS knot positioning, the hill

climbing method (HCM) and the hill climbing method using key knots. The

HCM and PHCM achieved a reduction in computational time compared to

CM, while maintaining similar quality of fit. The PHCM achieved the most

significant savings with over 80% reduction in computational time for the

higher-dimensional data sets. By using different datasets with different noise

levels, we show that PHCM and HCM are robust dealing with noisy datasets.

Second, a new method (TITL-MARS-OPT) is proposed to globally opti-

mize analytically on the two-way interaction truncated linear MARS (TITL-

MARS) by using mixed integer quadratic programming. We verified the pre-

sented TITL-MARS-OPT method on the wind farm power distribution TITL-

MARS models and six other mathematical TITL-MARS models. The applica-

tion on wind farm power distribution models gives the best location and worst

location information on the wind farm. The testing TITL-MARS models are
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from 2-dimensions to up to 21-dimensions, and it shows the TITL-MARS-OPT

method is robust in dealing with TITL-MARS models with varied dimensions.

We also compared the TITL-MARS-OPT method with TITL-MARS-GA in

TITL-MARS model optimization, and it shows that the new method can

achieve better accuracy and time efficiency. TITL-MARS-OPT can achieve

as high as 500% and on average 300% better solution quality and is on aver-

age 67% faster than TITL-MARS-GA. In addition, the Python code and the

testing models of this paper are made open source, and it will contribute to

the study of TITL-MARS models and optimization.
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