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ABSTRACT

Data-Driven Modeling of Heterogeneous Multilayer Networks And Their

Community-Based Analysis Using Bipartite Graphs

Kanthi Komar, M.S.

The University of Texas at Arlington, 2019

Supervising Professor: Dr. Sharma Chakravarthy

Today, more than ever, data modeling and analysis play a vital role for en-

terprises in terms of finding actionable business intelligence. Data is being collected

on a large scale from multiple sources hoping they can be leveraged using big data

analysis techniques. However, challenges associated with the analysis of such data

are numerous and depends on the characteristics of the data being collected. In many

real-world applications, data sets are becoming complex as they are characterised by

multiple entity types and multiple features (termed relationships) between entities.

There is a need for an elegant approach to not only model such data but also their

efficient analysis with respect to a given set of analysis objectives.

Traditionally, graphs have been used for modeling data that has structure in

terms of relationships. Single graph models (both simple and attributed) have been

widely used as there are a number of packages for their analysis. However, with

the increased number of entity types and features, it becomes quite cumbersome to

model and difficult (also inefficient) to analyze these complex data sets. Multilayer

networks (or MLNs) have been proposed as an alternative. This thesis addresses
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elegant modeling and efficient analysis of one type of MLNs called Heterogeneous

Multilayer Networks (or HeMLNs).

This thesis addresses modeling of complex data sets using HeMLNs for a given

set of analysis objectives of a data set using the popular entity-relationship (or ER)

model to meet the analysis objectives. Then it proposes a community-based approach

for analyzing and computing the objectives. For this analysis, a new community def-

inition is used for HeMLNs as it currently available only for single graphs. A decom-

position approach is proposed for efficiently computing communities in a HeMLN.

Since a bipartite graph is part of the community computation of HeMLNs, the role

of bipartite graph and algorithms for their use are proposed and elaborated. As the

use of bipartite graphs becomes a matching problem, different types of weight metrics

are proposed for HeMLN community detection.

This thesis has also conducted extensive experimental analysis for the proposed

community computation of HeMLNs using two widely-used data sets: IMDb, an

international movie database and DBLP, a computer science bibliography database.

Experimental analysis show the efficacy of our modeling and efficient computation of

a HeMLN community for analysis.
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CHAPTER 1

INTRODUCTION

Data-driven analysis entails modeling of data sets based on analysis objectives

and computation of each objective using appropriate functions in an efficient manner.

This is especially important when the data sets are complex with multiple entity types

and relationships (or features) and a large number of analysis objectives need to be

computed. Many approaches and techniques have been used both for modeling and

computations. For transactional data, relational model has been widely used from a

querying perspective as well as for managing data over a period of time. A number

of traditional mining approaches (e.g., decision trees to association rules) have been

used based on the type of analysis performed.

Relational databases are used for extracting exact results for a query and for

generating reports. In this model, it is difficult to capture the relationships between

entities in an elegant manner. If graphs are mapped to relations, some structured

information is likely to be lost. Also, the computation of a query will be inefficient

due to large number of joins (due to relational representation and normalization.)

Operations offered by relational databases are not enough to perform in-exact (or

approximate) aggregate analysis such as community and hub detection to discern

trends in the underlying data. Hence, Graphs have been used for modeling data that

has embedded relationships among entities. This is exemplified by the social network

and web data. As the data collected today includes a number of relationships between

entities, these relationships need to be taken into account while analyzing the data

for extracting information.
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Graph or network data structure has been used for modeling and analyzing

complex systems in different fields such as social, biological, physical, and informa-

tion and engineering sciences. A graph or a network can be described as collection of

nodes (or vertices) representing some entity or agent, and edge (or link) representing

a relationship or interaction between a pair of nodes. This edge can be weighted

or unweighted. In network structure, not only entities but also the connections or

interactions between the entities are given equal importance. Just by adding a new

node and edges, without affecting older ones we can define more elements and rela-

tionships between them to discover new insights. This shows the flexibility of network

structures.

Traditional approach to modeling structured data is through single/simple graph

(also called a Monoplex). Only a single relationship or feature can be modeled through

single layer graphs effectively. Even though there are many well known methods for

analysing single graphs, capturing multiple features in a single graph is non-trivial.

For example, consider the International Movie Database(IMDb) in which two actors

can exhibit various types of relationships. Two actors may be co-actors in movies,

they might be related because of the genre of their movies, they might have worked

with same directors, they might have won Oscars in similar categories, or their movies

might have earned similar ratings and reviews. If we want to analyze these type of

data taking into account different kinds of relationships, one has to move beyond sim-

ple graphs. To capture multiple features elegantly, an attribute graph can be used as

an alternative to capture node types and multiple relationships using multiple edges

between nodes. In order to analyze attribute graphs, one has to convert them into

multiple simple graphs as algorithms widely available to analyze simple graphs cannot

handle attribute graphs.
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A multilayer network (or MLN) is a network which has multiple layers of simple

graphs where each simple graph represents a different relationship. This can be used

to model and analyze multi-featured data. For example, if the first layer captures

co-actor relationship between two actors, a second layer may capture two actor’s

relationship based on the similarity of movie genres they act in, then a more infor-

mative structure can be modeled. A single graph can not handle multiple features

effectively and attribute graphs need to be converted to single graphs for analysis

purpose. Hence, it is more desirable to model multi-featured data using multi-layer

network.

Multilayer Networks can be of different types. Homogeneous multilayer net-

works are used to model the distinct relationships that exist among the same type

of entities and inter-layer edge sets are implicit as the same set of nodes are present

in every layer. Relationships among different types of entities are modeled through

heterogeneous multilayer network. The inter-layer edges are explicitly represented

to show the relationship across layers between different types of entities. In addi-

tion, for modeling multi-featured data that capture multiple relationships within and

across different types of entity sets, a combination of homogeneous and heterogeneous

multilayer networks can be used, called hybrid multilayer network.

Most of the graphs exhibit many interesting properties that can be used for

aggregate analysis. For example, a highly connected group of nodes (termed a com-

munity) indicates strong similarity among the nodes for that relationship. Similarly,

hubs (or centrality) indicate strong interaction of a node with neighboring nodes. We

can analyze these properties further to understand the data better and infer useful

aggregate information. We focus on the use of communities for analysis in this thesis.

A community is a set of nodes which are densely connected to each other relatively

from other nodes. Community structures are quite common in real networks. For

3



example communities in gene correlation networks indicate genes that have similar

functionality [1]. Similarly, citation networks form communities by research topic [2].

Finding an underlying community structure in a network is important as communi-

ties allow us to create a large scale map of a network since individual communities

act like meta-nodes in the network which makes its study easier. [3] Hence analyz-

ing these communities becomes important. Many algorithms, such as Minimum-cut

method, Girvan Newman algorithm, Modularity maximization are developed which

uses different strategies to detect communities [4]. There are widely-used packages

to community detection such as Infomap [5] and Louvain [6] in a single layered net-

work. Modeling real time data into a multilayer network and detecting communities

for analysis of that network, without losing any powerful information is a non trivial

task.

The definition of a community is well established for a single graph and commu-

nity definition is also extended to multilayer homogeneous MLNs to some extent, but

work on heterogeneous MLN community detection is lacking. Currently, in hetero-

geneous multilayer networks, communities are detected by aggregating all individual

layer information into a single layer which might lead to loss of information.There is

need to extend the definition of the communities to heterogeneous multilayer graphs.

Hence, This thesis focuses on significant aspects of modeling and computing com-

munities in heterogeneous multilayer networks also denoted as HeMLN for

achieving analysis objectives.

.

1.1 Problem Statement

The problem being addressed in this thesis is that, For a given complex data

set with F features (explicit or derived) and T entity types along with a set of analysis
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objectives, i) model the data set as HeMLN, that is determine the HeMLN layers (with

entities of a specific type as nodes and feature-based relationship as simple edges) and

inter-layer edges (corresponding to relationship among entities with different types)

based on the analysis requirements and ii) compute desired communities, that is, de-

velop composition-based community detection algorithms for analysis of objectives on

arbitrary combinations of layers as needed.

The main contributions of this thesis are:

• Establish the effectiveness of MLNs with respect to alternative modeling ap-

proaches, and apply ER-based modeling to derive a HeMLN for the chosen

complex data set

• Use of structure- and semantics-preserving k-community for a HeMLN,

• detailed explanation of k-community detection algorithm using the decoupling

approach using the maximal flow-based bipartite match.

• Use of traditional pairing bipartite graph algorithm for HeMLN community

detection and a new bipartite match algorithm (termed Maximum Weighted

Bipartite Coupling or MWBC) for composing layers,

• identification of useful weight metrics and their uniqueness

• Mapping of detailed analysis requirements of the data set using the k-community

and weight choices,

• Experimental analysis using the IMDb and DBLP data sets to establish the

validity of the proposed approach along with performance analysis.

1.2 Thesis Organization

Rest of the thesis is organized as follows -
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• Chapter 1 introduces the need for novel approaches for modeling and analyz-

ing (i.e., efficient computation) complex data sets for a given set of analysis

objectives.

• chapter 2 elaborates on complex data sets used and analysis objectives to be

addressed.

• Chapter 3 discusses the related research relevant to the problems addressed in

this thesis

• Chapter 4 Discusses the justification for our approach – use of Multilayered

Network (MLN) and provides details on building MLNs using ER modeling

approach.

• Chapter 5 gives an overview on computation and analysis of complex multi-

featured data

• Chapter 6 discusses the decomposition approach to analysis and its appropri-

ateness and benefits and also discusses the lack of community definition for

HeMLNs and our proposed bipartite graph-based approach.

• Chapter 7 contains the algorithms used in this thesis and its brief explanations.

• Chapter 8 discusses the need for weights for bipartite graph edges along with

five distinct metrics for accommodating diverse analysis objectives.

• Chapter 9 has implementation details of the community detection algorithm for

HeMLNs.

• Chapter 10 provides analysis of several data sets using the modeling and com-

putation approach proposed along with drill-down analysis

• Chapter 11 includes Conclusions and future work

6



CHAPTER 2

COMPLEX DATA SETS AND ANALYSIS OBJECTIVES

Data-driven analysis requires a model for representing the complex data as

well as computations appropriate for the model for analysis. In this thesis, we use

the following three data sets to illustrate analysis-driven modeling and computation.

The choice of data sets is not for demonstrating scalability using large data sets, but

for showcasing modeling and analysis of the model. These data sets have been chosen

based on user-familiarity of the domains as well as the presence of the ground

truth from independent sources for validation.

2.1 International Movie Database (IMDb) data set

IMDb data set contains various information about movies produced around the

world. It has entities such as movies, actors, directors, etc. Relationships among

the entities can be formulated using average ratings, year in which the movie was

released, genres of the movie etc.This data set has been chosen for its versatility in

that it can be modeled using HeMLN based on analysis requirements.

In the IMDb data set, two types of data sets have been derived. First set

contains a random set of 1000 movies that were released anywhere in the world in

the period from 2001 to 2015 and the second set has been derived based on the top

500 actors. The movies they have worked in (7500+ movies with 4500+ directors)

were extracted. The actor set was repopulated with the co-actors from these movies,

giving a total of 9000+ actors.

7



2.1.1 IMDb, Random 1000 Movie Data Set

The analysis goals for this data set is to analyze the three important groups

(entity types) in this data set: actors, directors, and movies where actors are related

to each other on the basis of co-acting feature, directors are related on the basis of

directing movies of similar genres and movies are related on the basis of their average

ratings. Given these three entity types, directs-actor relationship, acts-in-a-movie

with a specific-rating relationship, and directs-movie can be analyzed.

for IMDb Random 1000 Movie data Set (termed IMDb-random-1000M), fol-

lowing analysis objectives were posed:

• Find co-actor groups that have maximum interaction with director groups who

have directed similar genres?

• Identify the strongly connected co-actor groups where most of the actors have

worked with most of the directors who have directed similar genres

• Identify versatile director groups who work with most sought after actors among

co-actors

• For the group of directors (who direct similar genres) having maximum interac-

tion with members of co-actor groups, identify the most popular rating for the

movies they direct?

• For the most popular actor groups from each movie rating class, which are the

director groups with which they have maximum interaction?

• Find the co-actor groups with strong movie ratings that have high interaction

with those director groups who also make movies with similar ratings (as that

of co-actors.)

8



2.1.2 IMDb, Top 500 Actors Data Set

Analysis goal for this data set (termed IMDb-top-500A) is similar to the above

data set but entity type Actor is related using their genre as a feature. Two actors

are connected if the genres of the movies they act in is similar. Threshold is kept to

be 50% for the similarity. This shows that, different features of the data set can be

used, based on user’s requirement and analysis objectives.

for this data set, following are the analysis objectives were posed:

• Based on similarity of genres, which are the actor groups whose members have

maximum interaction with the director groups?

• For movie rating classes, which are the most popular actor and director groups

that have strong interaction among them?

• Based on similarity of genres, for each director group which are the actor groups

whose majority of the most versatile members interact?

• For the most popular actor groups, for each movie rating class, find the director

groups with which they have maximum interaction and who also make movies

with similar ratings.

2.2 DBLP Computer Science Bibliography data set

DBLP data set (termed DBLP-cs-bib) has many features such as papers pub-

lished, authors of various papers, conference in which those papers were published

and also year in which papers were published. it can be elegantly modeled as a hetero-

geneous multilayer network. Analysis objecives for DBLP involves entity type such

as Authors, Paper and Years. Authors are related on the basis of their co-authorship.

Two authors are said to be related if they have co-authored at least three papers.Two

paper entities is related if two papers are published in the same conference are con-
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nected with an edge. Six major conferences like SIGMOD, VLDB, KDD, ICDM,

DAWAK, DASFAA are selected for experiments and analysis. Years are related to

each other if they fall in the same defined year ranges. For this data set, following

are the analysis objectives were posed:

• For each conference, which is the most cohesive group of authors who publish

frequently?

• For the most popular collaborators from each conference, which are the 3-year

period(s) when they were most active?

In the rest of the thesis, we will show how the above data sets are modeled

for the analysis objectives proposed and also elaborate on the computation aspects

of the objectives using the HeMLN community definition and the bipartite matching

alternatives.
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CHAPTER 3

RELATED WORK

As the focus of this thesis is community definition and its efficient detection

in HeMLNs, we present relevant work on single or simple graphs (monoplexes) and

MLNs (both homogeneous and heterogeneous.) The advantages of modeling using

MLNs are discussed in [7–10].

Community Detection in Simple/Single Layer Network: involves identi-

fying groups of vertices that are more connected to each other than to other vertices in

the network. This objective is often translated into the problem of optimizing network

parameters such as modularity [11] or conductance [12]. The combinatorial opti-

mization problems for community detection are NP-complete [13]. A large number

of competitive approximation algorithms exist (see reviews in [14–16]). Algorithms

for community detection have been developed for a wide range of inputs including

directed [17,18], weighted [19], and dynamic networks [20,21]. Recently there have

also been algorithms for identifying overlapping communities [22, 23]. Parallel algo-

rithms on different platforms (distributed, shared memory, GPU and MapReduce)

have also been implemented [24, 25]. Only a few of these many algorithms are well

known and used by researchers in application domains. However, to the best of our

knowledge, there is no work on community detection that include node and edge

labels, node weights as well as graphs with self-loops and multiple edges between

nodes In contrast, subgraph mining [26–28], querying [29,30], and search [31,32] have

used graphs with node and/or edge labels including multiple edges between nodes,
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cycles, and self-loops. Even the most popular community detection packages such as

Infomap [5] or Louvain [6], do not take these parameters into consideration.

Community Detection in Multilayer Networks: In case of multiplexes,

most of the community detection work has been done with respect to the homoge-

neous variant, that is the one where every layer has the same set of nodes and there

are no inter-layer edges. It includes algorithms based on matrix factorization [33,34],

pattern mining [35,36], cluster expansion philosophy [37], Bayesian probabilistic mod-

els [38] and regression [39]. Techniques for determining communities in temporal ho-

mogeneous multilayer networks using spectral optimization of the modularity func-

tion based on the supra-adjacency representation have also been proposed [40, 41].

Moreover, to study the combinations of different layers in the network some efficient

approaches have been proposed where communities obtained from individual layers

are combined to obtain communities in any Boolean operation based combined layer

multilayer network [42,43]. All these techniques analyze by either aggregating all the

layers of the multiplex or by considering the entire multiplex as a whole. However, in

order to holistically study entities and relationships of multilayer networks, we also

have to study the combinations of different layers in the network. Although, tech-

niques based on information theory have been proposed for multilayer protein-protein

interactions [44], this is only for reducing the number of redundant layers through

aggregation, but not as a generalized approach for composing different layers that is

possible using our proposed network composition approach. Here we propose novel

approaches by which communities or central entities obtained from individual layers

can be easily combined to obtain communities or central entities present in any com-

posed multilayer network. To the best of our knowledge, this technique of inferring

the communities or central entities of the combined network from communities or

central entities of individual layers has not been studied before.
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Community Detection in Heterogeneous Multilayer Network: Major-

ity of the work on analyzing HeMLN (reviewed in [45, 46]) focuses on developing

meta-path based techniques for determining the similarity of objects [47], classifica-

tion of objects [48], predicting the missing links [49], ranking/co-ranking [50] and

recommendations [51]. An important aspect to be noted here is that most of them

do not consider the intra-layer relationships and concentrate mainly on the bipartite

graph formed by the inter-layer edges and concentrate more on the bipartite-type of

graph formed by the inter-layer edges while proposing the techniques. Moreover, we

believe most of these operations will benefit from some version of community detec-

tion, centrality computation or subgraph mining. Further, they either consider the

multilayer network as a whole or remove the type information of nodes or project

one layer onto another while proposing the approaches, thus neglecting the effect

of different combinations. Companies such as Google, Amazon and LinkedIn have

built very large knowledge graphs that connect different types of entities (persons,

places, etc.) via multiple edges that describe the relationship through the edge labels.

Such graphs can be easily modeled as heterogeneous multilayer networks. However,

the analysis of these knowledge graphs is limited to developing search-oriented tech-

niques ( [52], [53]). Further, the main challenges in achieving high level information

fusion [54,55] is to link information over different collections so that user queries can be

answered and patterns can be identified based on information extracted from images,

videos, and correlated with other sources to understand frauds, money-laundering,

terrorist activities etc.

The type-independent [44] and projection-based [46, 56] approaches used for

HeMLNs do not preserve the structure or types and labels (of nodes and edges) of

the community. The type independent approach collapses all layers into a single

graph keeping all nodes and edges (including inter-layer edges) sans their types and
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labels. Similarly, as the name suggests, the projection-based approach projects the

nodes of one layer onto another layer and uses the layer neighbor and inter-layer edges

to collapse the two layers into a single graph with a single entity type instead of two.

The presence of different sets of entities in each layer and the presence of intra-layer

edges makes structure-preserving definition more challenging for HeMLNs. A few

existing works have proposed techniques for generating clusters of entities [57–59],

but they have only considered the inter-layer links and not the networks themselves.

However, there does not exist a consensus on the definition of communities

for heterogeneous multilayer networks. The presence of different sets of entities,

inter- and intra-layer edges makes these tasks more challenging. Few existing works

have proposed techniques for generating clusters of entities [57–59], but they have only

considered the inter-layer links and not the networks themselves. Thus, the combined

effect of intra and inter-layer relationships have not been utilized for determining

the multilayer communities. Thus, the combined effect of layer communities, entity

types, intra- and inter-layer relationships (types) have not been included in defining

a community in a HeMLN. This thesis hopes to fill that gap.

Further, to define communities in HeMLN, an already existing matching algo-

rithm has been used [60]. This method is based on the blossom method and the

primal-dual method for finding a matching of maximum weight. This algorithm pro-

vides one to one matching. The problem of one node equally being be a best match

to multiple nodes, has not been addressed. Hence, another algorithm which gives one

to many matching based on weights has been introduced. Experimental analysis has

been shown using both algorithms.
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CHAPTER 4

ER APPROACH TO MODELING MULTI-FEATURED DATA

Many real world data sets are have multiple entity types and multiple features

spanning the entities. The first step is to model the complex data set as a MLN

(in our case HeMLN) based on the objectives posed. Instead of doing it in an ad

hoc manner, we use the widely-popular Entity-Relationship (or ER) approach for

modeling. This makes it easier to go from an English description to a formal model

which can be used for mapping objectives. Note that ER model is not unique for a

given data set and analysis objectives.

Before we explain our ER-based approach to modeling a HeMLN, we discuss

the modeling alternatives and why the use of MLNs is better from both the modeling

and analysis perspectives.

4.1 Modeling Complex Data Sets Using Graphs

The traditional approach (termed single graph or simple graph or a mono-

plex) models entities as nodes (including labels) and features as edges (including

labels and/or weights, if present) of the graph. This model gives rise to graphs with

single node types (entity types are not distinguished even when multiple node types

are modeled using this approach) and single edges between nodes (either for a single

feature or for a combination of features).

This approach is the most popular representation as large number of compu-

tations exist f or simple graphs. There are several algorithms for analyzing simple

graphs, such as detecting cliques, communities, hubs, mining subgraphs, triangles etc.
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Most of these are applied on the entire graph and typically ignore labels and weights

in the graph. Although combining multiple features for creating simple graphs is

possible, it is not straightforward. If features are of different types (e.g., numerical

and categorical), combining them in a meaningful way may not be correct or fea-

sible. In addition, assigning importance to different features could be daunting as

well. Finally, if one wants to analyze a subset of entities and associated feature types,

separate simple graphs have to be created (or separated) for each such combination

or analysis.

The second alternative is an attribute graph. Additional aspects of the data

set can be captured by including node types in terms of labels (even multiple labels)

and multiple edges corresponding to relationships for different features again with or

without labels and/or weights. Subgraph mining [28], by default, have used attribute

graphs including multiple edges between nodes, cycles, and self-loops. Also, most

of the other algorithms available for simple graphs do not handle attribute graphs.

In order to use these graphs on combinations of features, one needs to create sep-

arate graphs for each such analysis. Given F features, this may entail creating 2F

simple/attribute graphs for analysis. Although attribute graphs retain more seman-

tic information than simple graphs, aggregation algorithms (e.g.,community and hub

detection) are not available for processing general attribute graphs. In order to use

extant graph algorithms, a single graph (i.e., single edges between nodes, and only

one type of nodes) may have to be created even for data sets with multiple entity and

features types.

The Third alternative is the use of MLNs as discussed in this thesis. In

this thesis, it is argued that a MultiLayer Network (or MLN) is better-suited for

modeling if the associated analysis can be done on MLNs without transforming them.

Although MLNs have been used in the literature for modeling [7, 10], the current
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analysis approaches map them to an equivalent single graph form. Due to this process

many of the information in the multilayer graphs are lost. they are reduced to the

traditional representation for analysis losing the effectiveness of modeling. Further,

three types of multiplexes – homogeneous, heterogeneous, and hybrid can be used

– that are useful for modeling data sets based on analysis needs [8]. Overview of

MLN and Its Major Types: Briefly, a MLN is a collection of layers (each layer is

a simple graph) whose nodes are connected within each layer (intra-layer edges) and

in addition, nodes from different layers can also be connected explicitly (as inter-layer

edges) if they are of different types. The choice and semantics of nodes for modeling

layers and intra-layer edges as well as inter-layer edges are analysis-driven. Layers are

formed based on the analysis objectives with respect to the number of entities and

features needed. Once the layers are formed, they can be analyzed for feature-wise

and aggregate (combinations of feature and/or entity types) analysis. It is easy to

visualize that in some MLNs, every layer has the same node set.

Airlines provide flights between cities can be represented as a graph. Capturing

all the airlines in the same graph requires an attributed graph (to show flights from

different airlines between the same cities!), makes it complicated and difficult to

analyze individually or as combinations. On the other hand, it can be elegantly

modeled as a MLN as nodes in each layer are the same (cities) and each layer can

represent an individual airline. Within a layer, two nodes (cities) are connected if

there is a direct flight between them. This type of MLN where each layer has the same

set and type of nodes is termed a Homogeneous MultiLayer Network (or HoMLN.)

The inter-layer edges are implicit as the node sets of all layers are identical and are

not drawn. Figure 4.1 (a) shows the HoMLN example for the Airline data set.

Another option using a MLN is to model a data set using layers except that

each layer has a different entity type as its nodes (e.g., actors, directors, and movies).
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Figure 4.1: MLN Modeling Alternatives

The graph of a layer is defined with respect to chosen features and entity types (e.g.,

co-acting.) Additional aspects of the data set can be captured using this model

by including node types in terms of labels (and even multiple labels) and multiple

edges corresponding to relationships corresponding to different features again with or

without labels and/or weights (termed attribute graphs in the literature.) directing

similar genres, similar rating range). In this case, the inter-layer links are not implicit,

but are defined explicitly based on feature semantics that corresponds to an edge (e.g.,

directs-actor, directs-movie, acts-in-a-movie). This type of MLN where each layer has

a different set and type of nodes is termed a Heterogeneous MultiLayer Network (or

HeMLN.) Figure 4.1 (b) shows an example from the IMDb data set. A data set

may need to be modeled in both ways based on analysis requirements. Again the
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choice of HoMLN or HeMLN is driven by the data set and analysis objectives. It is

possible to model the same data set using both of the above alternatives depending

on the analysis needs. It is also possible to have a combination of these two types

of multiplexes for a given data set and is termed a Hybrid MultiLayer Network or

HyMLN. For example, combining the two data sets indicating the city in which

actors and directors live results in a hybrid MLN. Interesting analysis, such as the

“Number of airlines needed to reach a shooting location using a direct flight for actors

and directors”, can be formulated.

4.1.1 Advantages of MLNs for Modeling

From a modeling perspective, especially for a data set with multiple entity,

feature, and relationship types, a MLN is a more natural and elegant choice. MLNs

allow features to be separately modeled as a layer for understanding and preserving

the semantics of the data set with respect to analysis objectives. This is not the

case for the other representations. It is flexible for combining features for aggregate

analysis without having to collapse or aggregate them as discussed below. Incremental

changes for each layer can be accommodated without extensive re-modeling.

.

4.2 Modeling Data Sets into Multilayer Networks

Any analysis objective which is achieved by data involving entities, relationships

can potentially benefit from a data model. The three real world data sets used in the

thesis as described in chapter 2 (Data sets and analysis objectives) are multi-featured

and have heterogeneous entities. The analysis objectives to be achieved can greatly

benefit from multilayer model. Hence, it is shown how a data set having multiple

features and complex relationships can be modeled. Entity Relation diagrams are
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well-established and have been used to model and design relational databases for

generating schema. An entity-relationship (ER) diagram is crucial to creating a good

database design. It is used as a high-level logical data model, which is useful in

developing a conceptual design for databases. Below, we show how an ER model can

be used to derive the ER diagram for multi featured IMDb and DBLP data sets.

4.2.1 Modeling IMDb Dataset

IMDb data set contains, movie information, actors and directors in those movies,

movie ratings, year in which it was released and genres of the movie. Gathering the

information present in the IMDb dataset and our set of analysis questions, one can

build an Entity Relationship diagram as described below:

• Actor can be considered as an entity type with attributes, actor id, name, where

actor id acts as primary key.

• Director can be considered as the second entity with attributes, director id and

name. Here, director id acts primary key.

• Movie can be considered to be another entity type with attributes such as Movie

ID, name, genres, rating and year with movie ID acting as primary key.

• In Actor entity type, the entity type participates in a relationship with itself.

In such cases it becomes essential to show recursive relationships. Hence a

relationship Acts with is established. If two actors are co-actors in a movie they

are said to be related.

• Similarly, it is necessary to establish recursive relationship among directors. If

two directors have directed movies of similar genres, then a works in similar

genre is created.

• One has to connect similar movies together based on the movie’s rating to

achieve above mentioned objectives. This can be achieved by establishing a
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recursive relationship in movies. Two movies will be related if both movies fall

in the same range of ratings. It can be named as falls in same rating range

• A relationship type can be established between actor entity and director entity.

If a director has directed that actor, a relationship directs actor, is established

between them.

• To establish relationship between actor and movie entities, Acts in movie rela-

tionship is created to denote which actors work in a movie

• Similarly relationship between director and movie entities is established to show

director’s work in a movie and relationship called Directs movie

• Acts with recursive relationship has cardinality ratio as M:N, meaning that each

actor can be related to any number of actors.Works in similar genre recursive

relationship has cardinality M:N, showing that one director can work with mul-

tiple directors. Cardinality of relationship falls in similar ratings is also M:N

which shows that, a movie can be related to one or more movies.

• Binary relationship directs actors between actor and director entity has M:N

relationship which means that, a director can direct one or more actors and

also actors can work under one or more directors. Similarly other two binary

relationships acts in movie and directs movie also has M:N cardinality.

A complete entity relationship (ER) diagram is as show in figure 4.1

21



Figure 4.2: IMDb ER Diagram

We can verify whether all the analysis objectives are covered once the ER

diagram of a HeMLN is developed. Essentially, this corresponds to making sure

all relationships – both recursive and non-recursive have been modeled to cover the

analysis objectives. if new analysis objectives need to be taken into consideration, it

amounts to extending the current Er diagram with possibly new relationships and/or

entities.

Once the ER diagram is modeled, mapping now is to generate MLNs instead

of relations as in the traditional sense. Below are the detailed steps to convert a ER

diagram into a MLN.

• Each entity in the entity relationship diagram is modeled as a separate layer

in multilayer network (MLN). Hence, actor, director, and movie entities will

become distinct layers. Entity set of an entity becomes nodes of the layer. For

example, actor entity set will be denoted as actor nodes in the actor layer.

Similarly, directors nodes and movie nodes will be generated in director and

movie layer respectively. Attributes of entities typically becomes labels of nodes
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and it cab be chosen, again, based on the specifications in the analysis objectives.

In the case of IMDb data set, three layers will be generated.

• Each layer in a multilayer network also has intra-layer edges in between those

nodes. Recursive relationship of each entity will be made as intra-layer edges

in MLN model. If there are multiple recursive relationships for an entity, they

become separate layers with the entity se or nodes being the same. we do not

discuss this further as it corresponds to a homogeneous MLN.

Acts with relationship will act as edges between actors. If two actors have co-

acted, there will be an edge between them. If two directors works in similar

genres, they will have an edge between them in the director layer. Similarly, in

movie layer if two movies fall in the same range of ratings, that is, has similar

ratings, the movies will have an edge between them

• Binary relationships in the ER diagram correspond to the inter-layer edges

between two layers. directs actor relationship between director and actor will

form an inter layer edges between director and actor. If a directer has directed

an actor, those two actor and director nodes will have an edge between them.

acts in movie relationship between actor and movie helps us in building inter-

layer edges between actor and movie. If an actor has acted in a movie, the

actor and the movie node will have an edge between them. The same logic can

be applied to the relationship directs movie between director and movie. If a

director directs that movie, that director and movie will have an edge between

them.

• Both recursive and non-recursive relationships can be one-to-one, one-to-many,

or many-to-many depending upon the semantics of the relationship.

Using the above steps, a multilayer network can be built. It has three layers namely,

actor, director and movie and three sets of inter layer edges, as show in figure 4.3
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Figure 4.3: IMDb Multi Layer Network

4.2.2 DBLP dataset Modeling

DBLP dataset also exhibits heterogeneous characteristics and can be modeled

as a multilayer network.

• Author can be an entity type with attributes such as Author ID, name, with

Author ID acting as primary key.

• Paper can be considered to be another entity type with attributes such as Paper

ID, name with paper ID acting as primary key.

• Year is also considered as an entity which has an year ID as primary key.
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• In Author entity type, the inter-layer relationship can be exhibited as recur-

sive relationship, where author collaboration is described. Hence a relationship

Collaborates with is established.

• Similarly, it is necessary to establish recursive relationship among papers. If two

papers are published in same conference, then a published in same conference is

created. The intra-layer edges in year can be represented by creating recursive

relationship falls in same range among year if they fall in the same range. (for

example 2001-2003 can be defined as one range).

• To connect Authors and Papers, a relationship between these two entities can

be established called writes if an author has published the paper.

• To establish relationship between author and year entities, active in relationship

is created to denotes if an author was active in that year.

• Similarly relationship between paper and year entities is established to show in

which year the papers were published and it is called published in.

• Collaborates with recursive relationship has cardinality ratio as 0:N, meaning

that each author can work individually or with any number of authors.published

in same conference recursive relationship has cardinality M:N, showing that one

paper can be related to one more paper. Cardinality of relationship falls in same

range range is also M:N which shows that, a year can be related to as many

number of years depending on the range defined.

• Binary relationship writes between author and paper entity has M:N relation-

ship which depicts that, a author can publish one or more papers and also paper

can have one or more authors. Binary relationships active in has cardinality as

0:N as author may not be active in any years or can be active in many years. and

published in binary relationship also has 1:N cardinality as paper can published

only in one year but many papers can be published in a year.
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completed extended entity relationship(ER) diagram is as show in figure 4.1

Figure 4.4: DBLP ER Diagram

As described in the IMDb example, DBLP ER diagram can also be converted

into a multilayer network model. Following are the steps to be followed.

• Author entity can be converted into a layer in which authors act as nodes

and recursive relationships co-authors acts as edges. Two author nodes can be

connected if they have worked together as co-authors.

• Paper entity can be added as a second layer where paper acts as nodes and

edges represents the recursive relationship published in similar conference.

• Similarly, year forms another layer which has years as nodes and edges between

the year denotes the recursive relationship published in same year.

• Binary relationships such as writes, published in, active in forms intra edges

layers between author-paper, paper-year, author-year respectively.
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Figure 4.5: DBLP Multi Layer Network
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CHAPTER 5

EFFICIENT COMPUTATION AND ANALYSIS OF

MULTI-FEATURED DATA

Once the data set has been modeled using one of the MLN alternatives, the

goal is to use efficient algorithms for computing communities on individual layers and

compose them as needed for meeting analysis objectives. This thesis, concentrates

on communities in HeMLNs. Other types of analysis, such as centrality, subgraph

mining, even querying and search are applicable.. If the model is a simple graph

(first alternative), a number of algorithms for community and hub detection are

available (e.g., Infomap [5], Louvain [6] being prominent ones for community detec-

tion). Computationally, the options for a single graph approach for complex data

sets are: i) combine features in some way and use extant simple graph algorithms, ii)

aggregate or collapse the MLN into a simple graph (type independent [44], projection-

based [46, 56]) and apply extant algorithms, Both approaches do not preserve either

the structure or semantics of MLNs as they aggregate layers into a simple graph in

different ways. Importantly, aggregation approaches are likely to result in some in-

formation loss [10] or distortion of properties [10] or hide the effect of different entity

types and/or different intra- or inter-layer relationship combinations as elaborated

in [61].

If the model is an attributed graph (second alternative), the choice of ag-

gregate computations (e.g., community, hub) is limited or even not available. Some

approaches use the multilayer network as a whole [62] and use inter-layer edges, but

do not preserve the layer semantics completely.
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It is possible to model a complex data set as a MLN and analyze it as a MLN

without aggregating or collapsing. The decoupling approach used in this thesis (in

third alternative) accomplishes this. It also preserves the structure and semantics

of the results. This is important for further drill-down analysis of results as we shall

elaborate later.

Current approaches, such as using the multilayer network as a whole [62], Cur-

rent approaches for aggregation, such as type-independent and projection-based, do

not accomplish this as they aggregate layers into a single graph in different ways.

Importantly, the above aggregation approaches are likely to result in some informa-

tion loss [10] or distortion of properties [10] or hide the effect of different entity types

and/or different intra- or inter-layer relationship combinations as elaborated in [61].

Modeling a data set as MLNs and analyzing using structure-preserving. Preserving

the structure of a community of a MLN entails preserving not only their multilayer

network structure but also node/edge types, labels, and importantly inter-layer rela-

tionships. In other words, for example, each community should be a MLN in its own

right. computations avoids these and further facilitates drill-down of each community

for detailed analysis.

Briefly, for using the decoupling approach [42,63], each layer is analyzed in-

dependently and the results are composed using functions to generate highly accurate

(and in many cases loss-less) results. This approach has also the advantage of lever-

aging single graph algorithms on each layer independently. The decoupling approach

has been shown to be more efficient than traditional approaches for analyzing MLNs.

If this is to be leveraged for aggregate analysis, techniques need to be developed

to combine partial results from each layer. This has to be done either in a loss-less

manner or with high or bounded accuracy. This is the primary challenge for using

this modeling alternative. Modeling in terms of layers provides a natural ”divide and
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conquer” capability which is amenable to parallel processing as well. With the avail-

ability of layers, combinations of features can be analyzed without having to re-create

a new graph for each such analysis which is exponential in the number of features to

be handled. Also, combining partial results is likely to be computationally small as

compared to layer analysis. Hence, efficiency can also be significantly improved using

this modeling if efficient concomitant composing functions are developed.

In summary, modeling alternatives give rise to new computational challenges

as discussed above. In spite of that, we argue that overcoming these challenges

will result in solutions to big data analysis that are flexible, efficient, and scalable.

Once the layers have been identified and their analysis is available, computing ”what-

if” analysis is quite straightforward. Even if modeling results in multiple sets of

MLNs, analysis can be performed across layers from different MLNs equally easily.

Furthermore, updating the data set results in updating corresponding layers and

recomputing only updated layers, or just updating the partial results. Even here

incremental techniques (existing and new ones) can be applied. Temporal analysis is

possible by creating MLNs for desired periods and they can be cross analyzed without

incurring expensive computations again. In summary, the proposed approach has

significant benefits as compared to the alternatives.

more importantly each layer can be analyzed using extant algorithms. As we

shall see later, MLN modeling is also amenable to efficient processing. There are

other advantages as well for this modeling. if one wants to find out the collaboration

between actors and directors we can represent such information in heterogeneous

multilayer graphs. One layer captures the interaction between actor entities, while the

second later captures the interaction between director entities. The inter layer links

captures the interaction between two different entities like actor and director entities.
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Similarly there are many other datasets which might require this representations for

better seizure of information.
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CHAPTER 6

COMMUNITY DEFINITION FOR A HeMLN

A graph G is an ordered pair (V,E), where V is a set of vertices and E is a

set of edges. An edge (u, v) is a 2-element subset of the set V . The two vertices that

form an edge are said to be adjacent or neighbors. In this thesis we only consider

graphs that are undirected. A multilayer network, MLN(G,X), is defined by two

sets of graphs: i) The set G = {G1, G2, . . . , GN} contains graphs of N individual

layers as defined above, where Gi(Vi, Ei) is defined by a set of vertices, Vi and a

set of edges, Ei. An edge e(v, u) ∈ Ei, connects vertices v and u, where v, u ∈ Vi

and ii) A set X = {X1,2, X1,3, . . . , XN−1,N} consists of bipartite graphs. Each graph

Xi,j(Vi, Vj, Li,j) is defined by two sets of vertices Vi and Vj, and a set of edges (also

called links or inter-layer edges) Li,j, such that for every link l(a, b) ∈ Li,j, a ∈ Vi and

b ∈ Vj, where Vi (Vj) is the vertex set of graph Gi (Gj.) For a HeMLN, X is explicitly

specified.

Without loss of generality, we assume unique numbers for nodes across layers

and disjoint sets of nodes across layers Heterogeneous MLNs can also be defined

with overlapping nodes across layers (see [10]) which is not considered in this thesis.

We propose a decoupling approach for HeMLN community detection. Our

algorithm is defined for combining communities from two layers of a HeMLN using a

composition function and is extended to k layers (by applying pair-wise composition

repeatedly.) We define a serial k-community to be a multilayer community where

communities from k distinct connected layers of a HeMLN are combined in a specified

order Technically, this should be expressed as ((Ψ(G2) Θ2,1 Ψ(G1)) Θ2,3 Ψ(G3).)
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Figure 6.1: Illustration of decoupling approach for computing a 3-community ((G2

Θ2,1 G1) Θ2,3 G3)

However, we drop Ψ for simplicity. In fact, Θ with its subscripts is sufficient for our

purpose due to pre-defined precedence (left-to-right) of Θ. We retain G for clarity

of the expression. ωe is a weight metric discussed in chapter weight metrics Our

proposed decoupling approach for finding HeMLN communities is as follows;

(i) First use the function Ψ (here community detection) to find communities in

each of the layers individually,

(ii) for any two chosen layers, construct a bipartite graph using their commu-

nities as meta nodes and create meta edges that connect the meta nodes (using an

appropriate element of X) and assign weight (ω). ω reflects the number of edges con-

stituting a meta edge as well as properties of participating communities as discussed

in Section 8, and

(iii) compose the partial results from each layer by representing each community

as a meta node of the bipartite graph and using a function Θ which computes 2-

community as pairs using the weight information of edges in the bipartite graph.)

Figure 6.1 illustrates the decoupling approach for specifying and computing a

community of a larger size from partial results. It illustrates how a set of distinct
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communities from a layer is used for computing a 2-community (for 2 layers) and

further a 3-community (for 3 layers) using partial results. 1-community is the set of

communities generated for a layer (simple graph.)

6.1 Community Definition for a HeMLN

We first motivate the need for defining a structure- and semantics-preserving

communities. For the IMDb data set, consider the HeMLM shown in Figure 6.1

and the analysis “Find groups of actors for every director group such that the most

versatile members interact? Note that the actor and director layers can only compute

groups of actors and directors, who act in or direct similar genre, respectively. The

connection (or coupling) between directors and actors only come from inter-layer

edges. It is only by preserving the structure of both the communities in actor and

director as well as the inter-layer edges, can we compute the answer that indicates the

semantics of which actor groups are paired with the director groups. The inter-layer

edges preserve the relationships of individual actors and directors as well.

Clearly, multiple relationships can exist in such a collection of layers, such as

co-acting, similar genres and who-directs-whom. An analysis requirement may also

want to use preferences for community interactions. As an example, one may be

interested in groups (or communities) where the most important actors and directors

interact.

Our definition of community for a HeMLN uses coupling of communities based

on the connection strength (expressed as a weight) and is consistent with the simple

graph definition of a community. Further, it also preserves the structure and seman-

tics due to composition which is also shown to be efficient!. Table 6.1 lists all notations

used in the thesis and their meaning for quick reference.

34



Gi(Vi, Ei) Simple Graph for layer i

Xi,j(Vi, Vj, Li,j) Bipartite graph of layers i and
j

MLN(G,X) Multilayer Network of layer
graphs (set G) and Bipartite
graphs (set X )

Ψ Analysis function for Gi (com-
munity)

Θi,j Maximum Weighted Bipartite
Coupling (MWBC) function

CBGi,j Community bipartite graph for
Gi and Gj

Ui Meta nodes for layer i 1-
community

L′i,j Meta edges between Ui and Uj

cmi mth community of Gi

vc
m

i , ec
m

i Vertices and Edges in commu-
nity cmi

xi,j {Expanded(meta edge < cmi ,
cnj >)}

0 and φ null community id and empty
xi,j

ωe, ωd, ωh Weight metrics for meta edges

Table 6.1: Notations used in this thesis

6.1.1 Formal Definition of Community in a HeMLN

A 1-community is a set of communities of the simple graph corresponding to

a layer.

A community bipartite graph CBGi,j(Ui, Uj, L
′
i,j) is defined between two

disjoint and independent sets Ui and Uj. An element of Ui (Uj) is a 1-community id

from Gi (Gj) that is represented as a single meta node. L′i,j is the set of meta edges

between the nodes of Ui and Uj (or bipartite graph edges.) For any two meta nodes,

a single edge is included in L′i,j, if there is an inter-layer edge between any pair of
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nodes from the corresponding communities (acting as meta nodes in CBG) in layers

Gi and Gj. Note that there may be many inter-layer edges between the communities

from the two layers. Also note that Ui (Uj) need not include all community ids of

Gi (Gj.) This is a different bipartite graph between two sets of nodes (termed meta

nodes) from two distinct layers that correspond to communities in each layer. A

single bipartite edge (termed meta edge) is drawn between distinct meta node pairs

as defined. CBGi,j(Ui, Uj, L
′
i,j) is defined between two disjoint and independent

sets Ui and Uj. An element of Ui (Uj) is a 1-community id from Gi (Gj) that is

represented as a single meta node. L′i,j is the set of meta edges between the nodes

of Ui and Uj (or bipartite graph edges.) For any two meta nodes, a single edge is

included in L′i,j, if there is an inter-layer edge between any pair of nodes from the

corresponding communities (acting as meta nodes in CBG) in layers Gi and Gj. Note

that there may be many inter-layer edges between the communities from the two

layers. Also note that Ui (Uj) need not include all community ids of Gi (Gj.) The

strength (or weight) component of the meta edges is elaborated in Section 8.

A serial 2-community is defined on the community bipartite graph CBGi,j(Ui,

Uj, L
′
i,j) corresponding to layers Gi and Gj A 2-community is a set of tuples each

with a pair of elements < cmi , c
n
j >, where cmi ∈ Ui and cnj ∈ Uj, that satisfy the

Maximum Weighted Bipartite Coupling (MWBC) or traditional approach (composi-

tion function Θ explained in 7) for the bipartite graph of Ui and Uj, along with the

set of inter-layer edges between them. The pairing is done from left-to-right (hence

it is not commutative) and a single community from the left layer can pair with

zero or several communities from the right layer. That is, one-to-many or many-

to-one pairings are possible. The lower bound on the number of 2-community is

|Ui| − number of Ui nodes that have no outgoing edges.
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A serial k-communityk represents the number of layers used for computing

the community, not the number of compositions. The “serial” prefix used for defining

a k-community indicates the order used (but can be arbitrary) in its specification. A

k-community corresponds to a connected subgraph of k layers. Our definition assumes

left-to-right precedence for the composition function Θ. It is possible to define a k-

community with explicit precedence specification for Θ. Also, other definitions are

possible that may be order agnostic. For k layers of a HeMLN is defined as the

application of serial 2-community definition recursively to compose a k-community.

The base case corresponds to applying the definition of 2-community for any two

layers. The recursive case corresponds to applying 2-community composition for a

t-community with another Gj.

For each recursive step, there are two cases for the 2-community under consid-

eration: i) the Ui is from a layer Gi already in the t-community and the Uj is from

a new layer Gj. This bipartite graph match is said to extend a t-community (t <

k) to a (t+1)-community, or ii) both Ui (Uj) from layers Gi (GJ) are already in the

t-community. This bipartite graph match is said to update a t-community (t < k),

not extend it.

In both cases i) and ii) above, a number of outcomes are possible. Either a

meta node from Ui: a) matches one or more meta nodes in Uj resulting in a (or

many) consistent match, or b) does not match a meta node in Uj resulting in a

no match, or c) matches a node in Uj that is not consistent with a previous match

termed inconsistent match.

Structure preservation is accomplished by retaining, for each tuple of t-community,

either a matching community id (or 0 if no match) and xi,j (or φ for empty set) rep-

resenting inter-layer edges corresponding to the meta edge between the meta nodes

(termed expanded(meta edge).)
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Space of Analysis Alternatives: Given a HeMLN with k layers, the num-

ber of possible k-community (or analysis space) is quite large. For a HeMLN-graph,

the number of potential k-community is a function of the number of unique connected

subgraphs of different sizes and the number of possible orderings for each such con-

nected subgraph. With the inclusion of 3 weight metrics (see chapter 8), it gets even

larger. It is important to understand that each subgraph of a given size (equal to

the number of edges in the connected subgraph) along with the ordering represents a

different analysis of the data set and provides a different perspective thereby support-

ing a large space of analysis alternatives. Finally, the composition function Θ defined

above is not commutative (due to left-to-right pairing) and also not associative Due

to the use of a subset of meta nodes rather than the entire 1-community during any

recursive step.. Hence, for each k-community, the order in which a k-community is

defined has a bearing on the result (semantics) obtained.
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CHAPTER 7

ALGORITHMS

This chapter contains algorithms used to implement community detection in

HeMLN. First algorithm, makes use of traditional approach for bipartite matching.

The second algorithm, uses the proposed Maximum Weight Based Coupling algorithm

for bipartite matching, which has property of one to many matching.

7.1 k-Community detection using traditional bipartite matching

Algorithm 1 is an iterative algorithm that accepts a linearized specification of a

k-community and computes the result as described earlier. The input is an ordering

of layers, composition function indicating the community bipartite graphs to be used

and the type of weight to be used (elaborated below in 8) The output is a set whose

elements are tuples corresponding to distinct, single elements of k-community for that

specification. The size (i.e., number of tuples) of this set is bound by the base case.

The layers for any 2-community bipartite graph composition are identifiable from the

input specification.

The algorithm iterates until there are no more compositions to be applied. The

number of iterations is equal to the number of Θ in the input (including Θ for the

base case.) For each layer, we assume that its 1-community has been computed.

The bipartite graph for the base case and for each iteration is constructed for

the participating layers (either one is new or both are from the t-community for some

t) and maximal network flow algorithm is applied. The result is used to either extend

or update the tuples of the t-community for all the cases as described in Table 7.2.
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Note that the k-community size k is incremented only when a new layer is composed

(case i).) For case ii) (cyclic k-community) k is not incremented when both layers

are part of the t-community. When the algorithm terminates, we will have the set of

tuples each corresponding to a single, distinct element of k-community for the given

specification.

Algorithm 1 k-community Detection Algorithm (using traditional approach)

Require: -

1: INPUT: HeMLN, (Gn1 Θn1,n2 Gn2 ... Θni,nk Gnk), and a weight metric (wm).

2: OUTPUT: Set of tuples with two components

3: input processed from left to right

4: Initialize: k = 2, Ui = φ, Uj = φ, L = φ

5: result ← initialize(2-community(Gn1,Gn2),HeMLN,wm)

6: left ← next left subscript (Θ)

7: right ← next right subscript(Θ)

8: while left 6= null && right 6= null do

9: Ui ← subset of 1-community(Gleft)

10: Uj ← subset of 1-community(Gright) subsets (3,4) if layer has been

processed

11: MP ← max flow pairs(Ui, Uj, HeMLN, wm)

12: a set of pairs < cpleft, cqright >

13: for each tuple t ∈ result do

14: if both cxleft and cyright are part of t and ∈ MP [case ii (processed

layer): consistent match] then

15: Update t with (xleft,right)
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16: else if cxleft is part of t and ∈ MP and Gright layer has been processed [case

ii (processed layer): no and inconsistent match] then

17: Update t with φ

18: else if cxleft is part of t and ∈ MP [case i (new layer): consistent

match] then

19: Extend t with paired cyright ∈ MP and xleft,right

20: k = k + 1

21: else if cxleft is part of t and /∈MP [case i (new layer): no match] then

22: Extend t with 0 (community id) and φ

23: k = k + 1

24: end if

25: end for

26: left ← next left subscript (Θ) or null

27: right ← next right subscript(Θ) or null

28: end while
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(Gleft, Gright) out-
come

Effect on tuple t

case (i) - one processed and one new layer

a) consistent

match

Extend t with paired
community id and
xi,j

b) no match Extend t with 0 and
φ

case (ii) - both are processed layers

a) consistent

match

Update t only with
x

b) no match Update t only with
φ

c) inconsistent

match

Update t only with
φ

Table 7.1: Cases and outcomes for a maximal network flow match (Algorithm 1)

Need for a new pairing algorithm: In a traditional bipartite graph (used for

dating, hiring etc.), each node is a simple node. The goal is to find maximum number

of matches (bipartite edges) such that no two matches share the same node. Hence, a

node from one set is paired with at most one node from the other set. This has been

extended to include weights for the edges without changing the pairing semantics [64].

On the other hand, for maximal network flow algorithms [65], a source and a sink is

assumed and weights have to be given from source to each node which is impractical

in our case.

In contrast, each meta node in our case is a community representing a group

of entities with additional characteristics. For a k-community to be meaningful, we

need to associate weights with edges to capture not only the number of edges but also

characteristics of the participating communities as well. To capture this, we discuss
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a number of alternatives for weights (termed weight metrics ω) in Section 8, derived

from real-world scenarios.

For pairing nodes of the bipartite graph, since traditional approaches are not

suited for our coupling, we propose a edge weight-based coupling which reflects the

semantics of the community. Each node from the first set is paired with zero, one

or more nodes from the second set solely based on the outgoing edge weights of

that node. This is repeated for each node from the first set. Most importantly, unlike

current alternatives in the literature for community of a MLN, there is no information

loss or distortion or hiding the effect of different entity types or relationships in our

definition.

7.2 k-Community detection using maximum weight based coupling ap-

proach

Algorithm 2 accepts a linearized specification of a k-community and computes

the result as described earlier. The input is an ordering of layers, composition function

indicating the community bipartite graphs to be used and the type of weight to be

used. The output is a set whose elements are tuples corresponding to distinct, single

HeMLN k-community for that specification. The size (i.e., number of tuples) of this

set is determined by the pairs obtained during computation. The layers for any 2-

community bipartite graph composition are identifiable from the input specification.

The algorithm iterates until there are no more compositions to be applied. The

number of iterations is equal to the number of Θ in the input (corresponds to the

number of inter-layer connections.) For each layer, we assume that its 1-community

has been computed.

The bipartite graph for the base case and for each iteration is constructed for

the participating layers (either one is new or both are from the t-community for some
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t) and MWBC algorithm is applied. The result obtained is used to either extend

or update the tuples of the t-community and add new tuples as well. All cases are

described in Table 7.2. Note that the k-community size k is incremented only

when a new layer is composed (case i).) For case ii) (cyclic k-community) k is not

incremented when both layers are part of the t-community. When the algorithm

terminates, we will have the set of tuples each corresponding to a single, distinct

k-community for the given specification.

Algorithm 2 HeMLN k-community Detection Algorithm

Require: -

1: INPUT: HeMLN, (Gn1 Θn1,n2 Gn2 ... Θni,nk Gnk), and a weight metric (wm).

2: OUTPUT: Set of distinct k-community tuples

3: Initialize: k=2, Ui = φ, Uj = φ, result′ = ∅

4: result ← MWBC(Gn1,Gn2, HeMLN, wm)

5: left, right ← left and right subscripts of second Θ

6: while left 6= null && right 6= null do

7: Ui ← subset of 1-community(Gleft, result)

8: Uj ← subset of 1-community(Gright, result)

9: MP ← MWBC(Ui, Uj, HeMLN, wm)

10: a set of comm pairs < cpleft,c
q
right >

11: for each tuple t ∈ result do

12: kflag = false

13: if both cxleft and cyright are part of t and ∈ MP [case ii (processed

layer): consistent match] then

14: Update a copy of t with (xleft, right) and append to result′
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15: else if cxleft is part of t and ∈ MP and Gright layer has been processed [case

ii (processed layer): no and inconsistent match] then

16: Update a copy of t with φ and append to result′

17: else if cxleft is part of t and for each cxleft ∈ MP [case i (new layer):

consistent match] then

18: copy and Extend t with paired cyright ∈ MP and xleft, right and append to

result′; kflag = true

19: else if cxleft is part of t and /∈MP [case i (new layer): no match] then

20: copy and Extend t with 0 (community id) and φ and append to result′;

kflag = true

21: end if

22: end for

23: left, right = next left, right subscripts of Θ or null

24: if kflag k = k + 1; result = result′; result′ = ∅

25: end while
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(Gleft, Gright) out-
come

Effect on tuple t

case (i) - one processed and one new layer

a) consistent

match

Copy & Extend t
with paired commu-
nity id and xi,j

b) no match Copy & Extend t
with 0 and φ

case (ii) - both are processed layers

a) consistent

match

Copy & Update t
only with x

b) no match Copy & Update t
only with φ

c) inconsistent

match

Copy & Update t
only with φ

Table 7.2: Cases and outcomes for MWBC (Algorithm 2)

7.3 Weight Based Coupling Algorithm

The proposed algorithm, relaxes restrictions of traditional matching approach

used in algorithm 1 and computes one to many matching. The Algorithm takes

bipartite layer as an input. Bipartite layer is in the form of < Cmi, Cnj >, weight.

Coupled Communities is the result set which is initialised to NULL at the beginning

and community matchings are being added to it during the algorithm execution. For

each edge in the bipartite layer, community of the left set of the layer is checked if it

is present in coupled communities result set. If it is not present it is directly added to

the result set. If it is already present, weight of previous coupling is compared with

weight of the present coupling. As the algorithm can give out multiple coupling for

left set of communities if the weights are equal, present community couple are added

to result set. If the previous weight is less than the present weight, the previous

coupling is replaced with present coupling.
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Algorithm 3 Weight Based Coupling Algorithm

Require: - INPUT: Ui,Uj, Lij, HeMLN, wm. OUTPUT: < Cmi, Cnj > where Cmi

belongs to Ui, Cnj belongs to Uj.

1: INITIALISATION: Coupled Communities = NULL

2: for each line in Lij < Cmi, x > do

3: if Cmi belongs to Coupled Communities then

4: Previous Weight = get the weight of already coupled communities

5: if previous weight = weight of < Cmi, Cnj > then

6: Add < Cmi, Cnj > to Coupled Communities

7: else if previous weight < weight of < Cmi, Cnj > then

8: Replace previous Cmi couple with < Cmi, Cnj >

9: end if

10: else Add < Cmi, x > to Coupled Communities

11: end if

12: end for
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CHAPTER 8

HeMLN Community Detection using Customized WEIGHT METRICS

Algorithms defined uses a bipartite graph match with a given weight metric.

As we indicated earlier, there is an important difference between simple and meta

nodes/edges that represent a community of nodes/set of edges. Without in-

cluding the characteristics of meta nodes and edges for the match, we cannot argue

that the pairing obtained represents analysis based on participating community char-

acteristics. Hence, it is important to identify how qualitative community character-

istics can be mapped quantitatively to a weight metric (that is, weight of the meta

edge in a community bipartite graph) to influence the bipartite matching.

The strength or weights can have different meaning in different situations. For

example, in IMDb dataset, if one needs to know what group of actors interact the

most with what groups of directors, weights can be determined by simply identify the

number edges between every group of actors and directors. If the analysis objective

changes, now one wants to also consider internal strength of each community of every

layer(or meta nodes of bipartite layer), weight metric has to take into account meta

node’s density information. To address various considerations of weights during the

analysis, we have define 5 weight matrices. Each weight matrices can be used to fetch

the answer for different analysis question. Once the analysis is defined the by the

user, he/she can decide which weight matrices fits perfectly to achieve the goal and

proceed with the analysis.
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8.1 Simple Edge Weighted Metrics (ωe)

This weight metrics is determined by counting the number of edges between

two meta nodes of a community bipartite layer. The edges between two communities

are the edges between internal vertices of two communities. Lets consider IMDb data

set, community bipartite layer is formed by community of actors and community of

directors. The weight for this community bipartite layer is measured by counting

the edges between each actor node of a actor community and each director node

of director community. These are the inter layer edges between actor and director

layer. In the figure 4.1. Actor communities and director communities make two sets of

nodes in the bipartite layer. It consists of Inter layer edges between actor and director

vertices are shown. Actor community A1 and director community D1 has two edges

between them, hence weight is 2. Similarly there is one edge between A2 and D1,

one edge between A1 and D2. We can represent simple edge weighted community

bipartite graph as follows: If one wants to find for each actor community a director

Actor Community Director Community Weight
A1 D1 2
A1 D2 1
A2 D1 1
A2 D2 1
A3 D2 2

Table 8.1: Simple Edge Weights

community with which it most interacts we can use simple edge weighted metrics.

Here interactions are determined by the edge count.
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Figure 8.1: Actor Director Bipartite Graph

8.2 Edge Fraction Weighted Metrics(ωf)

Edge fraction metrics not only considers number of edges between two meta

nodes but also the number of vertices present in each meta nodes. By taking into

account number of vertices in each meta nodes, one can calculate total number of

possible edges between those meta nodes. Having more number of vertices in the meta

nodes and less edges between them decreases the strength of the coupling between

meta nodes. Hence, The fraction shows the actual strength of the coupling between

two meta nodes. Formula for calculating edge fraction weight is as follows:

Edge fraction weight =
Number of edges between meta nodes

V1 ∗ (V2)
(8.1)

Where,

V1 is the number of vertices in meta node of layer 1
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V2 is the number of vertices in meta node of layer 2

For the figure 8.1, edge fraction weights would be as follows:

Actor Community Director Community Weight
A1 D1 0.166
A1 D2 0.05
A2 D1 0.11
A2 D2 0.066
A3 D2 0.2

Table 8.2: Edge Fraction Weights

8.3 Participation Weighted Metrics(ωp)

participation weight captures number of participating nodes between the meta

nodes. This is to differentiate situation where a single node is participating to form

multiple edges from, multiple nodes are participating to form multiple edges. Partici-

pation weight takes into node participation and edge fraction to derive the strength of

the connectivity. Hence this weight gives more weightage to such meta nodes where

more nodes are participating in the interactions. Formula used to derive participation

weight is:

participation weight =
P1

V1
∗ Edge fraction ∗ P2

V2
(8.2)

Where,

P1 is the number of participating vertices in meta node of layer 1

V1 is the number of vertices in meta node of layer 1

P2 is the number of participating vertices in meta node of layer 2

V2 is the number of vertices in meta node of layer 2
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Actor Community Director Community Weight
A1 D1 0.0053
A1 D2 0.0025
A2 D1 0.0012
A2 D2 0.0044
A3 D2 0.02

Table 8.3: Edge Fraction Weights

8.4 Density Weighted Metrics (ωd)

The intuition behind this metric is to not only bring the edge contribution

as a fraction (instead of the total number of edges as in ωe.), but also participating

community characteristics. Density which captures internal structure of a community

is used. Clearly, higher the densities and larger the edge fraction, the stronger is the

interaction between two meta nodes (or communities.) Since each of these three

components (each being a fraction) increases the strength of the inter-layer coupling,

they are multiplied to generate the weight of the meta edge. The domain of this

weight will be (0, 1]. Formally, using the density formula,

density weight = Community Node1 density ∗ edge fraction ∗ Community Node2 density

(8.3)

density weight =
E1

V1 ∗ (V1 − 1)
∗ Edge fraction ∗ E2

V2 ∗ (V2 − 1)
(8.4)

Where,

E1 is the edges in meta node of layer 1

V1 is the number of vertices in meta node of layer 1

E2 is the number of edges in meta node of layer 2

V2 is the number of vertices in meta node of layer 2
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Figure 8.2: Actor-Director Bipartite Graph

For the figure 8.2 following are density weights for actor-director bipartite graph.

Actor Community Director Community Weight
A1 D1 0.0277
A2 D1 0.0034
A2 D2 0.04166

Table 8.4: Density Weights

8.5 Hub Participation Weighted Metrics (ωh)

The ωe metric captures only interaction between two communities and the met-

ric ωd includes the effect of community structure, but not the characteristics of the

nodes that interact. (ωp) captures number of participating nodes, but doesn’t show

how important those participating nodes are. Typically, we are interested in knowing

whether highly influential nodes within a community also interact across the commu-
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nity. This can be translated to the participation of influential nodes within and across

each participating community for analysis. This can be modeled by using the notion

of hubHigh centrality nodes (or hubs) have been defined based on different metrics,

such as degree centrality (vertex degree), closeness centrality (mean distance of the

vertex from other vertices), betweenness centrality (fraction of shortest paths passing

through the vertex), and eigenvector centrality. participation within a community

and their interaction across layers. In this paper, we have used degree centrality for

this metric to connote higher influence. Again, ratio of participating hubs from each

community and the edge fraction are multiplied to compute ωh.

Hub participation weight = H1 ∗ Edge fraction ∗ H2 (8.5)

Where,

H1 is hub participation in meta node of layer 1

H2 is hub participation in meta node of layer 2

Hub participation =
Participating Hubs in meta node

Total Hubs in meta node
(8.6)

table 8.5 shows the Participating hub weights are as follows for the diagram

8.2

Actor Community Director Community Weight
A1 D1 0.06925
A2 D1 0(No hubs are participating)
A2 D2 0.01388

Table 8.5: Participating Hubs Weights
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CHAPTER 9

IMPLEMENTATION DETAILS

This chapter contains the implementation details of each method used to model

and analyse the heterogeneous multilayer graphs. First step before executing this pro-

gram is to build the layers of graphs. Any dataset has to be cleaned and preprocessed

into layers of graphs. For example, IMDb dataset is in the form of CSV files which

contains various information. Only relevant information and feature has to be picked

which can satisfy the business requirements or analysis objectives. For IMDb dataset,

actor, genres the actors worked in, director, genres the directors worked in, movie,

rating of the movie, has been picked to build the layers. These individual layers

can be used to compute communities using Infomap [5] or Louvain [6]. Decoupling

approach is applied to find communities across layers.

Figure 9.1: HeMLN Community Computation Architecture and Flow
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The above architecture shows the flow of the implementation and process in-

volved in community computation of HeLMN. The driver function takes two input

configuration file as input. First configuration file contains multi layer network in the

form of inter layer edges and intra layer edges. User can mention his/her choice of

community detection algorithm. Based upon user’s choice, appropriate community

detection algorithm(Infomap/Louvain) will be invoked. Expression Evaluator pro-

cess the second configuration file contains equations to be evaluated which represents

the analysis objective. Expression contains weight metrics to be applied. This file also

contains the choice of matching algorithm to be applied(Traditional Maximal Match-

ing/Maximal Weighted Bipartite Coupling). Next Bipartite Graph Generator

creates a skeleton for the bipartite graph and Meta edge weight generator adds

weight mentioned in the configuration file. Match Generator process the weighted

bipartite graph and applies the matching algorithm. Matching algorithm, traditional

maximal matching or maximal weight bipartite coupling is applied. If matching algo-

rithm has to be applied for more than 2 layers, Match Extendor takes into account

the previous matches obtained to extend it to the new matches obtained in the new

layers.

These components are implemented using Python 3 programming. Below are

the methods implemented for each above described components.

9.1 Building Edge Weighted Bipartite Graph

Edge weights are easiest weight metrics to compute. Edge weights denote the

number edges between two nodes present in a bipartite set as explained in the weight

metrics section. As edge weight do not include any characteristics of a inner commu-

nity structure, intra-layer edges have no significance in this metrics. Only inter-layer

edges between two layers has to be considered. For example, to compute edge met-
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rics between actor and director layer, actor-director inter-layer edges are considered.

As the calculation of edge weights are on meta node, that is, a community becomes

a meta node in the bipartite graph, a node’s community information is considered.

Hence for this method, inter-layer edges file and community info file are given as in-

put. A result file containing community number bipartite set 1, community number

bipartite set2 and number of edges between the communities is produced. In this

program, three methods are implemented and are as follows:

9.1.1 Method: mapNodesToCommunityNumber

This method as name given, maps each node to the community it belongs to.

It takes community info file as input. It reads the file and creates a dictionary called

communityInfo. Dictionary key is node number and value is community number it

belongs to. This method takes O(|V|) time as each vertices in the community info

file has to be mapped to it community number.

9.1.2 Method: getCommunityInfo

Given a community dictionary and node number, returns the community num-

ber the node belongs to.

9.1.3 Method: computeEdgeWeights

This method, takes intra-layer info file as input. This file contains node number

of layer 1, node number of layer 2 which denotes that there exists an edge between

between those two nodes. Method reads the file line by line and calls getCommu-

nityInfo, and gets community number for each node. It creates a dictionary called

edgesBetweenCommunities which contains a tupple (community number 1, commu-

nity number 2) where community number 1 is the community number of layer 1
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similarly community number 2 is the community number of layer 2 as key and the

edges between them as value. As a result it creates a edge weighted bipartite layer

file using the edgesBetweenCommunities. This method takes O(|E|) time where E

denotes the intra-layer edges. getCommunityInfo takes O(1) as it is simply retrival

of value from dictonary.

9.2 Building Edge Fraction Weighted Bipartite Graph

Edge fraction metrics not only considers edges between two meta nodes but

also number of vertices in each meta node. This method needs to compute number

of vertices in each community using community info file. Most of the implementation

for metrics edge fraction is same as edge weighted metrics. Implementation details is

as follows:

9.2.1 Method: mapCommunityInfo

This method takes community info file as input and creates two dictionaries.

Dictionary communityNumber contains vertices as key and community it belongs to

as value. Dictionary numberofVerticesInCommunity has community number as key

and number of vertices as value.

9.2.2 Method: getCommunityInfo

This method has two use cases. If communityInfo dictionary and node number

is passed, it gives out community number the node belongs to. If numberofVertices

dictionary and community number is sent, it returns the number of vertices present

in that particular community.
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9.2.3 Method: computeEdgeFractionWeights

This method is similar to the method computeEdgeWeights. It creates dictio-

nary called edgesBetweenCommunities. While creating the result file, it computes

edge fraction by getting number of vertices of each meta node and number of edges

between the two meta nodes.

edge fraction weight =
Number of edges between metanode1 and metanode2

number of vertices in metanode1 ∗ number of vertices in metanode2

(9.1)

The above formula is applied. The resultant edge fraction bipartite file contains meta

node1, meta node 2, edge fraction weight.

9.3 Building Density Weighted Bipartite Graph

In density weighted metrics, both intra layer edge characteristics and individual

meta node’s characteristics is considered. These functionalities’ implementation is

similar to edge fraction metrics computation. Method: mapCommunityInfo,

Method: getCommunityInfo, Method: computeEdgeFractionWeights are

adopted from above.

9.3.1 Method: computeDensityWeights

This method computes density of each meta nodes in the layer. It takes layer

info file as input and counts the edges in each meta node. Density is calaculated using

the formula:

Density =
sum of edges present in meta node

all possible edges in meta node
(9.2)

all possible edges in meta node = sum of nodes in meta node∗

(1 − sum of nodes in meta node)
(9.3)
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Calculated density is stored in a dictionary called densityWeights where meta node

number is a key and its density is value. The output file can be created by applying

the following formula using density.

D W = Density of meta node 1 ∗ edge fraction ∗Density of meta node 2 (9.4)

The result file density weighted bipartite layer is created, which contains, meta node

1, meta node 2, density weight.

9.4 Building Participation Weighted Bipartite Graph

In participation weighted metrics, edge fraction is considered similar to the

above to metrics and it also considers number of participating nodes between the two

meta nodes. Methods such as computeEdgeFractionWeights, mapCommuni-

tyInfo and getCommunityInfo remains the same.

9.4.1 fMethod: computeParticipationWeights

This method takes intra-layer edges file as input. It creates two dictionaries,

layer1ParticipationWithLayer2 and layer2ParticipationWithLayer1. These dictionar-

ies contains a tupple of (meta node of layer1, meta node of layer 2) as key and list of

nodes from (meta node of layer1) participating with (meta node of layer2). Number

of participating nodes from meta node of layer 1 to meta node of layer 2 is nothing

but the length of the list the dictionary holds as value. To compute this, the method

has to scan entire intra-layer edges file hence it takes O(| E |) time where E is the intra

layer edges. Once the information is scanned and stored in the form of dictionary,

the participation weight formula is applied to compute participation weight(PW).

P W =
participating nodes in meta node 1

total number of nodes in meta node 1
∗ edge fraction ∗

participating nodes meta node 2

total number of nodes in meta node 2

(9.5)
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The resultant file called participation weighted bipartite graph is generated which

will have results in the format: meta node 1, meta node 2, participation weight

9.5 Building Participating Hubs Weighted Bipartite Graph

In participating hubs metrics, participation of a node is considered only if it

qualifies to be a hub. A hub node has greater degree than the average degree of its

meta node. Hence, we need to calculate degree of each node in a meta node and aver-

age degree of the meta node. Other computations to achieve participating hubs weight

can be adopted from previous methods. Methods computeEdgeFractionWeights,

mapCommunityInfo , getCommunityInfo and Method: computeParticipa-

tionWeights are as is explained above.

9.5.1 Method: computeDegree

This method takes layer info file as input. It scans the input file’s each line to

creates a dictionary called degreeOfEachNode. In this dictionary, node number acts

as key and its degree acts the value. For each edge encountered its vertices’ degree is

incremented. Each meta node’s average degree is computed by computing

average degree =
sum of degree of nodes of a meta node

number of node in a meta node
(9.6)

and is stored in dictionary communityAverageDegree where meta node number is the

key and its average degree is the value. To check if a node in a meta node is a

participating hub, dictionary degreeOfEachNode is iterated and degree is compared

with it’s meta node’s average degree. It’s meta node’s number and avergae degree is

fetched from getCommunityInfo by passing appropriate dictionary. If the node

qualifies as a hub, the hub count of that meta node is incremented and stored in

dictionary called communityHubCount. The qualifying hub is also checked if it is
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participating with other layer’s meta node. Hubs participation is registered in another

dictionary called participatingHubs where a tupple (meta node1, meta node2) acts

as key and its count acts as value. The result weight is calculated by applying the

formula:

H W =
participating hubs in meta node 1

total number of hubs in meta node 1
∗ edge fraction ∗

participating hubs in meta node 2

total number of hubs in meta node 2

(9.7)

The resultant file is created which contains result in the format meta node 1, meta

node2, participating hubs weight.

9.6 Fining community structure in multi-layer bipartite graphs

9.6.1 Traditional Matching

Once the desired weighted bipartite graph is created, Maximum Weight Match-

ing can be applied to get the best matching of meta nodes. maximum weight match-

ing is the problem of finding, in a weighted graph, a matching in which the sum

of weights is maximized. The algorithm has many implementations and is being

extensively. Hence, an already implemented algorithm has been used in this the-

sis. A package called Networkx provides an efficient implementation and it also has

many functionalities that is most appropriate for the input. In Networkx, maximum

weighted matching is based on the blossom method for finding augmenting paths and

the primal-dual method for finding a matching of maximum weight, both methods

invented by Jack Edmonds. [60]

This method takes bipartite file in the form, meta node1, meta node2, weight as

input. The first step is to create a bipartite graph from the input file. Inbuilt method,

Graph() present in the Networkx creates a graph and graph.add node() can be used

to add vertices/nodes can be added to graph. graph.add weighted edges from(E)
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method can be used to add edges to the graph where E is list of edges acts as

input. While adding the edge, bipartite set number is also has to be mentioned.

max weight matching(G) inbuilt method takes Graph G of type Networkx as input

and the matching is returned as a dictionary such that mate[v] == w if node v is

matched to node w. Unmatched nodes do not occur as a key in mate. Networkx

package also offers plot method to represent the matches in the form of figures.

9.6.2 Maximum Weight Based Coupling

This section includes the implementation detail of the proposed algorithm Max-

imum Weight Based Coupling for finding best matches across the bipartite layer. The

algorithm, is simple and has been implemented efficiently. Program is called by in-

putting layers of graphs and a weight metrics to be considered. From the provided

weight metrics, one of the above described methods are called to construct the bi-

partite graph. For example if Actor layers, Director layers and density was given as

weight metric, density weighted actor-director bipartite layer will be generated.

Bipartite layer consists information in the format: actor meta node, director

meta node, density weight. This file is processed line by line. A dictionary called

layerMatchingTable is created where the layer 1 meta node is the key and value is a

list containing weight in its first index following by all the matched layer two meta

nodes. Layer 1 meta node is matched with more than layer 2 meta nodes if there the

weight between those nodes are equal. Input might consist of more than two layers of

graphs. Hence, another list called matchedCommunities is maintained which contains

previously matched communities of already processed layers. For example, if actor

layer, director layer and movie layer is considered and density is given as a metrics,

density weighted Actor-Director layer is processed. As this is the first iteration, all the

actor meta nodes are considered as matchedCommunities for actors is empty. After
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processing, matched director meta nodes are stored in the matchedCommunities list

which is taken into account while processing Density weighted Director-movie bipar-

tite graph. At this time only director meta nodes present in the matchedCommnuties

list is considered for processing the weight based coupling algorithm. Once all the

given input layer is processed, output is produced which represents the heterogeneous

communities across the layers.

This method scans the entire generated bipartite layer, which contains all the

edges between two layers, hence take O(| E |) time.

As it has to process every layer given in the input time taken would be

O(N-1)(| E |)

where N is the number of input layer and N-1 is number of generated bipartite

layer.
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CHAPTER 10

EXPERIMENTAL ANALYSIS

10.1 IMDb, Random 1000 Movie Data Set

Actors(A) forms the first layer multilayer network where two actors are con-

nected if they have acted in the same movies. Similarly the second layer is formed by

the directors(D) and two directors are connected if the genres of movies they directed

are similar above the threshold. Third layer is built using movies(M). Two movies are

connected if they fall in the same range of ratings. The range of ratings are defined

as 0-2, 2-4, 4-6, 6-8, 8-10. Inter layer edges are also present in the multilayer graphs.

An actor is connected to the director, if they have worked together. A director is

connected to a movie if he/she directs that movie. An actor is connected to the

movie, if he/she have worked in that movie. A strongly connected group of actors

are formed in the actor layer if there is many overlaps in the genres the actors have

worked in. Same can be seen in the director layer. In the movie layer, all movies of a

range are connected to each other forming cliques of movies. For the purposes of this

analysis, we generated disjoint 1-community for each individual layer. with a setting

which assigns any node to at most one community (i.e. computes disjoint commu-

nities). Infomap works in a hierarchical fashion while optimizing the map equation,

which exploits the information-theoretic duality between the problem of compressing

data, and the problem of detecting and extracting significant patterns or structures

(communities) within those data based on information flow. The statistics for each

layer are shown in Table 10.1.
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A number of insights can be gleaned from layer analysis. The average actor

community size are 5.3. There is only 1 large group (51) of co-actors. Further,

790 (92%) clique communities indicate that actors who co-act do it with the same

group. In contrast, the number of communities is proportionately less (with respect

to the number of nodes) in the director layer indicating that directors do not limit

themselves to directing a small set of genres. The lower number of communities in

the Movie (rating) layer is expected as it is a layer of 5 non-overlapping rating ranges.

Also, 35% of movies (major chunk) have ratings in the range [6-8), A small number

of movies (community M5) has the lowest range of rating [0, 2). Also, we know that

all of them are cliques.

Actor Director Movie
#Nodes 4588 1091 1000
#Edges 10255 91991 87492

#Communities (Size > 1) 862 18 5
Avg. Community Size 5.3 60.61 132.5

Table 10.1: 1-community Statistics for IMDb, random 1000 movies data set

10.1.1 Analysis objectives result:

For all the IMDb, random 1000 movie data set analysis objectives Infomap

community detection algorithm has been used. To map the communities between two

layers, maximum weight matching algorithm has been applied which is, one to one

mapping of communities.

A(1) Find co-actor groups that have maximum interaction with director

groups who have directed similar genres?

2-community: A ΘA,D D; ωe; order does not matter.

66



A(2) Identify the strongly connected co-actor groups where most of the

actors have worked with most of the directors who have directed

similar genres

2-community: A ΘA,D D; ωd; order does not matter.

A(3) Identify versatile director groups who work with most sought after

actors among co-actors

2-community: A ΘA,D D; ωh; order does not matter.

A1, A2 and A3 analysis results are as follows:

A(1), ωe

cA cD
A6 D1
A252 D2
A577:c D3
A2 D4
A555:c D5
A100:c D6
A374:c D7:c
A484:c D8
A10 D9
A683:c D10
A83:c D11
A89:c D12:c
A46:c D13:c
A161:c D14:c
A220:c D15
A85:c D16:c
A188 D17:c
A53:c D18:c

(a)

A(2), ωd

cA cD
A511:c D1
A204:c D2
A577:c D3
A483:c D4
A555:c D5
A332:c D6
A374:c D7:c
A484:c D8
A158:c D9
A683:c D10
A83:c D11
A89:c D12:c
A46:c D13:c
A824:c D14:c
A220:c D15
A310:c D16:c
A330:c D17:c
A793:c D18:c

(b)

A(3), ωh

cA cD
A511:c D1
A204:c D2
A577:c D3
A483:c D4
A555:c D5
A332:c D6
A374:c D7:c
A484:c D8
A381:c D9
A828:c D10
A83:c D11
A89:c D12:c
A46:c D13:c
A824:c D14:c
A220:c D15
A310:c D16:c
A330:c D17:c
A793:c D18:c

(c)

All Communities, c indicates a clique, 44.4% common pairings (862 A
Communities, 18 D Communities)
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A(1), ωe

cA cD
A374 D7
A89 D12
A46 D13
A161 D14
A85 D16

A330 D17
A53 D18

(d)

A(2), ωd

cA cD
A374 D7
A89 D12
A46 D13
A824 D14
A310 D16
A330 D17
A793 D18

(e)

A(3), ωh

cA cD
A374 D7
A89 D12
A46 D13
A824 D14
A310 D16
A330 D17
A793 D18

(f)

Clique Communities only, 57.14% common pairings (790 A Communities, 7 D
Communities)

With 3 layers and 3 weight metrics, there are a total of 9 possible 2-community

specifications. As the movie-rating layer has very few (and only clique) communities,

we have chosen the A and D layers (with A as the left set of the bipartite match) for

analysis using different metrics as shown in A(1) to A(3). As each metric is based

on a different intuition for inter-layer coupling, they are expected to give different

results.

Table 10.2a, 10.2b, and 10.2c show the results of 2-community as community

pairings, respectively, for each metric. When the entire 1-community is used for each

layer, 44.4% pairings (8 out of the 18) (marked in green) are the same across

metrics. In all the common pairings, at least one of the participating community is a

clique.

To understand the analysis differences across ω, we grouped non-clique (density

< 1) communities from each layer for analysis. Table 10.2a-10.2c shows the results

for non-clique communities from each layer. Just one common pairing is found

(marked in cyan) validating the uniqueness of proposed metrics.
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A(1), ωe

cA cD
A6 D1

A252 D2
A1 D3
A2 D4

A187 D6
A4 D8
A10 D9
A17 D11
A129 D15

(a)

A(2), ωd

cA cD
A59 D1

A252 D2
A257 D3
A190 D4
A293 D6
A246 D8
A10 D9
A122 D11
A129 D15

(b)

A(3), ωh

cA cD
A59 D1

A252 D2
A184 D3
A190 D4
A293 D6
A4 D8
A16 D9
A122 D11

(c)

Non-clique Communities only, 11.11% common pairings (72 A Communities, 11
D Communities)

Table 10.2: 2-community results for (A ΘA,D D)

For completeness, Table 10.2d, 10.2e, and 10.2f show the community pairings

when only cliques are used from each layer. Every matched pair that appears for ωe

(Table 10.2d) and

We know that the metric ωe does not depend on the community characteristics,

such as density and hub participation, unlike ωd and ωh. This can also be validated

from the results. All the actor communities that are part of matches for ωd (Table

10.2b) and ωh (Table 10.2c) are cliques, marked by ‘c’, (which should be the case.)

However, for the Table 10.2a which uses ωe, it is not the case validating our intuition.

Even the removal of cliques does not effect the non-clique matches that were obtained

for ωe (Table 10.2a and Table 10.2a.)

A(4) For the group of directors (who direct similar genres) having maxi-

mum interaction with members of co-actor groups, identify the most

popular rating for the movies they direct?

Acyclic 3-community: A ΘA,D D ΘD,M M; ωe
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Figures 10.1 and A(5) show the 3-community analysis results diagrammatically

for A(4) and A(5), respectively. For analysis A(4), 18 elements (consistent matches)

are obtained after the first composition, bounded by the 18 communities in the di-

rector layer. For the second composition, although all the 18 communities from layer

director are carried over (as they paired during base case), only 5 produce consis-

tent matches with the movie layer, to get extended to become total elements (bold

blue line), whereas, for the other 13 there was a no match (broken blue lines), thus

becoming partial elements.

Figure 10.1: A4 Results: Acyclic 3-community (total and partial)
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A(5) For the most popular actor groups from each movie rating class,

which are the director groups with which they have maximum inter-

action?

Acyclic 3-community: M ΘM,A A ΘA,D D; ωe

For A(5), every pairing from the first composition got extended in the second compo-

sition to produce 5 total elements (bold blue lines), bounded by movie communities.

Moreover, for both the result sets, none of the total elements overlap. Thus, the or-

der in which k layers are specified to obtain k-community determines the set of partial

and total elements, providing insights corresponding to analysis specification.

Figure 10.2: A5 Results: Acyclic 3-community (no partial elements)

A(6) Find the co-actor groups with strong movie ratings that have high

interaction with those director groups who also make movies with

similar ratings (as that of co-actors.)

Cyclic 3-community: M ΘM,A A ΘA,D D ΘD,M M; ωe

Results of each successive pairings (there are 3) are shown in Figure 10.3 using the

same color notation. Coupling of movie-actor pairs (first composition) results in 5
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consistent matches bounded by the movie layer. Also, it is easy to see from the

figure that only one of them continues and becomes a total element for

the cyclic 3-community (bold blue triangle.) Further, the final result is

an extension (M-A-D-M instead of M-A-D) of the acyclic 3-community

result seen in Figure 10.2. When the base case is extended to the director layer

(second composition), we got 5 consistent matches as can be seen in Figure 10.2.

The final composition to complete the cycle uses the 5 communities of director layer

and 5 communities of the movie layer as left and right sets of community bipartite

graph, respectively. Only one consistent match is obtained to generate the

total element (M2-A2-D4-M2) for the cyclic 3-community. It is interesting to

see 3 inconsistent matches (red broken lines) between the communities which clearly

indicate that all couplings are not satisfied by these pairs. These result in 3

partial elements (M3-A36-D3, M4-A1-D7 and M5-A276-D1.)

The inconsistent matches also highlight the importance of order which

is fundamental to our k-community definition for analysis. If a different or-

der had been chosen (viz. director and actor layer as the base case), the result could

have included the inconsistent matches. In this example, we also see one no match

(broken blue line) in the final step, where D12 does not get matched to any movie

community, thus generating the partial element, M1-A60-D12.
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Figure 10.3: A6 Results: Progressive results of a cyclic 3-community

10.2 IMDb, Top 500 Actors Data Set

Actors(A) forms the first layer multilayer network where two actors are con-

nected if they have acted in the movies with similar genres. There should be a match

of more than or equal to 50% in list of genres. Similarly the second layer is formed

by the directors(D) and two directors are connected if the genres of movies they di-

rected are similar above the 50% threshold. Third layer is built using movies(M).

Two movies are connected if they fall in the same range of ratings. The range of

ratings are defined as 0-2, 2-4, 4-6, 6-8, 8-10. Inter layer edges are also present in

the multilayer graphs. An actor is connected to the director, if they have worked

together. A director is connected to a movie if he/she directs that movie. An actor

is connected to the movie, if he/she have worked in that movie. Individual Layer

Statistics: Table 10.3 shows the layer-wise statistics for IMDb HeMLN. 63 Actor
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(A) and 61 Director (D) communities based on similar genres are generated. Out of

the 10 ranges (communities) in the movie (M) layer, most of the movies were rated

in the range [6-7), while least popular rating was [1-2). No movie had a rating in the

range [0-1).

Actor Director Movie
#Nodes 9485 4510 7951
#Edges 996,527 250,845 8,777,618

#Communities (Size > 1) 63 61 9
Avg. Community Size 148.5 73 883.4

Table 10.3: IMDB HeMLN Statistics

10.2.1 Analysis Objectives Results

All IMDb, top 500 actor data set, analysis objectives have been experimented

with Louvain community detection algorithm. To map the communities between two

layers, traditional matching algorithm has been applied. It is an one to one mapping

algorithm.

A(7) Based on similarity of genres, which are the actor groups whose

members have maximum interaction with the director groups?

2-community: A ΘA,D D; ωe

For A(7), 49 A-D (Actor-Director) similar genre-based community pairs are obtained,

where most actor-director pairs have interacted with each other at least once. Intu-

itively, a group of actors that prominently works in some genre (say, Drama, Action,

Romance, ...) must pair up with the group of directors who primarily make movies in

the same genre. Due to space constraint, in Fig. 10.4 (a) we have shown A-D commu-

nity pairings for the Romance and Comedy genres. Few famous actors and directors

from each community have been listed. Such pairings may help production houses
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to sign up actors and directors for different movie genres. Recently, Vin Diesel

signed up for Avatar 2 and 3 (Action movie) which is being directed

by James Cameroon and this will be the first time they will be collab-

orating [66]. Interestingly, even though they did not work together ever, we paired

them together in the groups that corresponded to the Action genre on the basis of high

interaction among other similar actors and directors. Thus, potential actor-director

collaborations can be explored using MLN analysis.

Figure 10.4: A7 results
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A(8) For movie rating classes, which are the most popular actor and

director groups that have strong interaction among them?

Cyclic 3-community: A ΘA,M M ΘM,D D ΘD,A A; ωe

For A(8), we obtained the most popular actor (A) and director (D) community for

each movie rating (M) community, that also have high interaction among them,

through 3 iterations of MWBM. In Figure 10.5 (b) the most popular actor and director

groups for [6-7) movie rating are from different genres. Even though few actor-director

pairs from these two have collaborated on a few movies, it can be seen from Figure

10.5 (a) that D91 pairs (has maximum interaction) with A94. Thus, validating the

absence of pairing between D91 and A144. However, in case of Figure 10.5 (c), both

the popular groups for [7-8) rating are from Drama genre and many

actor-director pairs have collaborated on many movies like Leonardo Di-

Caprio, Kate Winslet with Sam Mendes for Revolutionary Road, Sean

Penn with Gus Van Sant for Milk and so on. Thus, the popular groups A175

and D106 are also paired with each other.

Figure 10.5: A8 results
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Following two analysis A(9) and A(10) are experimented with the proposed,

Weight Based Coupling Algorithm.

A(9) Based on similarity of genres, for each director group which are the

actor groups whose majority of the most versatile members inter-

act?

2-community: D ΘA,D A; ωh

A(9) Results: 34 D-A (Director-Actor) similar genre-based community pairs were

obtained, where majority of most versatile members interact. Intuitively, a group

of directors that prominently makes movies in some genre (say, Drama, Action, Ro-

mance, ...) must pair up with the group(s) of actors who primarily act in similar kind

of movies. Moreover, a director group may work with multiple actor groups and vice-

versa. For example, in Figure 10.6, the sample result shows that the director groups,

D28 and D91, with academy award winners like Damien Chazelle and Woody

Allen, respectively, pair up with the actor group with members like Di-

ane Keaton, Emma Stone and Hugh Grant. Members from these groups are

primarily known for movies from the Romance, Comedy and Drama genre.

Figure 10.6: A9 Analysis results
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A(10) For the most popular actor groups, for each movie rating class, find

the director groups with which they have maximum interaction and

who also make movies with similar ratings.

Cyclic 3-community: M ΘM,A A ΘA,D D ΘD,M M; ωe

A(10) Results: Here, the most popular actor groups for each movie rating class are

further coupled with directors. These director groups are coupled again with movies to

check whether the director groups also have similar ratings. Results of each successive

pairing (there are 3) are shown in Figure 10.7 (a) using the same color notation.

Coupling of movie and actor communities (first composition) results in 10 consistent

matches. When the base case is extended to the director layer (second composition)

using all director communities and the matched 4 actor communities, we got 4 con-

sistent matches. The final composition to complete the cycle uses 4 director commu-

nities and 9 movie communities as left and right sets of community bipartite graph,

respectively. Only one consistent match is obtained to generate the total

element (M3-A144-D102-M3) for the cyclic 3-community (bold blue tri-

angle.) The resulting total element is from the Action, Drama genre as can be

seen from the sample members shown in Figure 10.7 (b). It is interesting to see 3 in-

consistent matches (red broken lines) between the communities which clearly indicate

that all couplings are not satisfied by these pairs. These result in 9 partial elements

The inconsistent matches also highlight the importance of mapping an

analysis objective to a k-community specification for computation. If a

different order had been chosen (viz. director and actor layer as the base case), the

result could have included the inconsistent matches.
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Figure 10.7: A10 Analysis results

10.3 DBLP data set

In the first layer of MLN, Papers(P) form the nodes, where two papers which are

published in the same conference are connected with an edge. Six major conferences

like SIGMOD, VLDB, KDD, ICDM, DAWAK, DASFAA are selected for experiments

and analysis. This brings together all the papers published in a conference and forms a

clique. Second layer consists of Authors (Au) as nodes and two authors are connected

with an edge if they have co-authored at least three papers. This layer brings together

authors who have worked together. One can see strongly connected communities of

authors who have worked together in many publications. Third layer consists of years

as nodes and an edge is established between two years if it falls in the same range

of 5 years. The ranges of years are 2001-2003, 2004-2006, 2007-2009, 2010-2012,
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2013-2015, 2016-2018. Besides intralayer edges, there exist inter layer edges as well.

Authors in the first layer are connected to papers in the second, if the author is a part

of papers publication. Similarly, Paper in the second layer is connected to year in the

third, if the paper is published in that year

Individual Layer Statistics: DBLP HeMLN statistics are shown in Table 10.4.

591 Author (Au) communities are generated based on co-authorship. 6 Paper (P) com-

munities are formed by grouping papers published in same conference. KDD (2942)

and DASFAA (583) have highest and least published papers, respectively. Out of 6

ranges of years (Y) selected, the maximum and minimum papers were published in

2016-2018 (1978) and 2001-2003 (1421), respectively.

Author Paper Year
#Nodes 16,918 10,326 18
#Edges 2,483 12,044,080 18

#Communities (size > 1) 591 6 6
Avg. Community Size 3.3 1721 3

Table 10.4: DBLP HeMLN Statistics

10.3.1 Analysis Objectives Results

: All DBLP data set, analysis objectives have been experimented with Louvain

community detection algorithm. To map the communities between two layers, max-

imum weight based coupling(MWBC) algorithm has been applied. MWBC is a one

to many mapping algorithm.

A(11) For each conference, which is the most cohesive group of authors who

publish frequently?

2-community: P ΘP,Au Au; ωd
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A(11) Analysis: On applying MWBC on the CBG created with all Paper and

Author communities, we obtained 7 total elements that correspond to the most co-

hesive co-authors who also publish frequently in each conference (shown in Figure

10.8 with list of few prominent authors.) ICDM and DaWaK have multiple au-

thor communities that are equally important. Researchers George Karypis

and Michihiro Kuramochi are members of one of the frequently publishing

co-author groups (in the last 18 years) for ICDM (4 papers). Significance

of this result is validated from the fact that George Karypis has been a recipient

of IEEE ICDM 10-Year Highest-Impact Paper Award (2010) and IEEE

ICDM Research Contributions Award (2017). Moreover, multiple confer-

ences can have same cohesive co-author groups. For example, co-authors

Rajeev Rastogi and Minos N. Garofalakis are strongly associated with

SIGMOD (7 papers) and VLDB (4 papers) in the past 18 years Weights at

the layer level are not considered in this analysis. Hence, for an author (e.g., Jiawei

Han) who has authored large number of papers, his co-authors are distributed among

different co-author communities due to lack of weight and hence does not come out.

This clearly demonstrates the need for weighted communities at the layer level to

increase analysis space as has been shown with meta edge weights.
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Figure 10.8: A11 Analysis results

A(12) For the most popular collaborators from each conference, which are

the 3-year period(s) when they were most active?

3-community: P ΘP,Au Au ΘAu,Y Y; ωe

A(12) Analysis: For the required acyclic 3-community results, the most popular

author groups for each conference are obtained by MWBC (first composition). The

matched 6 author communities are carried forward to find the year periods in which

they were most active (second composition). 6 total elements are obtained (path

shown by bold blue lines in Figure 10.9.) Few prominent names have been shown

in the Figure 10.9 based on citation count (from Google Scholar profiles.) Clearly,
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multiple co-author groups can be active in the same year for different conferences as

seen from the results. For SIGMOD, VLDB and ICDM the most popular re-

searchers include Srikanth Kandula (15188 citations), Divyakant Agrawal

(23727 citations) and Shuicheng Yan (52294 citations), respectively who

have been active in different periods in the past 18 years.

An interesting point to be noticed here is that none of the 6 author groups

(obtained from first composition) had 2013-2015 and 2016-2018 as the most active

periods. This is where the relevance of order comes which is derived from the analysis

objectives.

Figure 10.9: A12 Analysis results
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CHAPTER 11

CONCLUSION AND FUTURE WORK

This thesis, provides a structure-preserving definition of a k-community for a

MLN, efficiency of its detection and versatility. We adapted a composition function

- traditional matching and also maximum weight based coupling approach with cus-

tomized weight metrics for a broader analysis. Finally, we used the approach for

demonstrating its analysis capability and versatility using the IMDb data set.

We have argued for using multiplexes for modeling as well as analysis. The

part of the hesitation to use multiplexes for modeling comes from lack of computa-

tion algorithms as compared to other modeling alternatives. Towards that end, we

have proposed and developed a community detection approach for HeMLN. We have

applied it on the IMDb data set to demonstrate its applicability for flexible analysis

as well as computational efficiency using the decoupling approach.

Future work includes applying this framework to Homogeneous MLNs. We

are also exploring alternate definitions of a MLN community with different analysis

characteristics. This decoupling approach also needs to be extended to other analysis

concepts, such as centrality detection, subgraph mining, and querying of multiplexes

for both types of MLNs.
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