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ABSTRACT 

OPTIMAL CONTROL STRATEGIES AND REINFORCEMENT LEARNING FOR DYNAMICAL 

MULTIAGENT SYSTEMS IN GRAPHICAL GAMES 

  

 

 

VICTOR G. LOPEZ MEJIA 

The University of Texas at Arlington, 2019 

 

Suppervising professor: Frank L. Lewis 

As the number of artificial autonomous agents increases in industrial and urban areas, 

the development of formal protocols to analyze their behavior as they interact with each other 

becomes of central interest in control systems research. Each agent in this setting is interested 

in completing a specific task with considerations of an optimal performance. Game theory has 

become one of the most useful tools in multiagent systems analysis due to its rigorous 

mathematical representation of optimal decision making. The analysis of dynamical systems 

has been developed in the branch of game theory regarded as differential games. The set of 

graphical games consider also limited sensing capabilities among the agents, such that they 

can only measure the state of their closest neighbors. 

This dissertation presents the formulation of different solutions for differential graphical 

games. The proposed solutions represent various scenarios for the interactions of multiagent 

systems, on which the agents face different conditions in their environments, their goals or their 

ability to speculate about the behavior of their neighbors. First, Bayesian Games are formulated 

to describe the case on which an agent is uncertain about the intentions of its neighbors. 

Conditions for Bayes-Nash equilibrium are provided. Then, Minmax strategies are analyzed for 
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graphical games as an alternative for Nash equilibrium. Stability and robustness properties are 

thoroughly investigated. We prove that Minmax strategies improve the robustness properties of 

the single-agent LQR controller. As a particular application of the applicability of Minmax 

strategies, Pursuit-Evasion Games are then analyzed. In these games, different behaviors are 

obtained between both multiagent teams by varying the individual performance indices. Finally, 

Minmax Regret and Projection Strategies are proposed as two additional solution concepts that 

allow the agents to make assumptions about the information available to their neighbors. 
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INTRODUCTION 

Game theory has become one of the most useful tools in multiagent systems analysis 

due to its rigorous mathematical representation of optimal decision making [1]-[3]. In a game-

theoretic setting, a group of players, here regarded as agents, must decide the appropriate 

actions they must perform to complete specific tasks with considerations of maximizing their 

rewards or minimizing their costs. Most applications of game theory consider static agents 

pondering which action from a discrete set is optimal [1]. In contrast, differential game theory is 

the area of mathematics that studies the interactions of agents with continuous-time dynamics, 

and that obtain from their behavior a payoff that evolves along time [4], [5]. 

The modern approach to differential game theory has been described in [5]. It is shown 

that the agents must solve a set of coupled partial differential equations, regarded as the 

Hamilton-Jacobi (HJ) equations, to reach a Nash equilibrium. Nash equilibrium is the most 

important solution concept in game theory. If this equilibrium is achieved, no agent can 

unilaterally modify its control policy without negatively affect its own performance. This 

characteristic provides an incentive for the stability of the equilibrium.  

The two main classifications of differential games are the zero-sum and nonzero-sum 

games [5]-[10]. In the former, any improvement in the performance of an agent is obtained at 

the cost of a decrease in the performance, in the same magnitude, by another agent. This 

represents strictly conflictive goals between the players. In the more general nonzero-sum 

games, the agents do not necessarily require someone else’s decreased performance to 

achieve a better payoff in the game. Thus, nonzero-sum games allow the presence of 

cooperative goals among the agents. 

The usual formulation of nonzero-sum games, however, assumes that all agents 

possess global information about the states of interest in the game. This assumption does not 

hold in many practical applications of multiagent systems, where the access to state information 
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can be restricted. Consider, for example, practical applications of multiagent systems like 

platoons of self-driving cars or swarms of unmanned aerial vehicles (UAVs). Each of these 

autonomous vehicles is provided with multiple sensors to detect and recognize objects in their 

surroundings. Such sensors can only provide a limited area of sensing, allowing the vehicle to 

interact only with its closest neighbors. The agents must now use their limited information about 

the world to complete their tasks with an optimal performance. 

Graphical games are the branch of game theory that considers limited sensing 

capabilities among the agents, such that they can only measure the state of a subset of the 

players in the game. In graphical games, the agents are taken as nodes in a communication 

graph with a well defined topology. This graph represents the flow of information from an agent 

to another, such that their sensing abilities are appropriately modeled. The literature available 

for control of networked agents is extensive (see [11]-[19] and references therein). Game-

theoretic approaches have been recently proposed to provide optimality to the cooperative ([20], 

[21]) and non-cooperative ([22], [23]) interactions of networked agents. 

The limited state information addressed by graphical games is not the only practical 

consideration required to properly model real-world interactions. In reality, any autonomous 

agent performing a task must consider the possibility to face uncertain environments, and it is 

desirable to provide it with the ability to succeed at achieving its goals as best as possible. An 

important source of uncertainty is presented when an individual needs to interact with an 

unknown agent. Consider the example of a UAV delivering a package and finding a second 

UAV approaching it. Our agent would be expected to ask itself the following questions: ‘Is that 

individual an adversary trying to steal the package? Or is it an uninterested agent heading to its 

own destination?’ The optimal behavior of the UAV will, of course, depend on the answer to 

these questions. The assumption made in most game theoretic models is that an agent has 

precise knowledge about the ojective functions of all other agents. As the number of 
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autonomous agents increases in urban areas, it becomes likely that the true objectives or 

intentions of other agents will be unknown. 

A solution proposed in the literature to address the uncertain objectives in a multiagent 

system consists of the formulation of Bayesian games [24]-[27]. In Bayesian games, or games 

with incomplete information, the agents are allowed to have beliefs about the possible 

objectives of the other players. The optimal strategies of each agent are then computed using 

their beliefs about the game being played. In this dissertation, the Bayesian games formulation 

is incorporated into the differential graphical games control structure, providing the agents with 

optimal strategies in scenarios with different sources of uncertainty or lack of knowledge.  

The rest of this dissertation addresses a different challenge in differential graphical 

games. The concept of Nash equilibrium requires that every agent performs its optimal strategy 

with respect to the optimal strategies of all other agents. Thus, individual variations from the 

Nash solution are by definition unfavorable for the performance of an agent. Clearly, an agent 

can only compute its optimal strategy by simultaneously computing also the optimal strategies 

of the players around it. This fact reveals a significant disadvantage of graphical games. If an 

agent can only use its local information to design its control policy, then it will not be able to 

determine the best strategy of its neighbors. Such neighbors will be using their own local 

information, unavailable to anyone else. As it is analyzed in subsequent chapters, Nash 

equilibrium is in general not attainable in graphical games. 

Different solution concepts can be defined that can be reached using the limited state 

information available in differential graphical games. The main solution here proposed is 

regarded as Minmax strategies. The concept of minmax strategies has been thoroughly studied 

for zero-sum games, where its application is natural due to the dynamics of the game [1], [22], 

[28]. The formulation presented in this dissertation, however, is applied to general non-

adversarial games. In minmax strategies, an agent decides to ignore the actual objectives of its 
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neighbors, and assumes that they will perform their worst-case behavior against it. That is, an 

agent attempts to minimize a cost function that its neighbors try to maximize. 

The resulting control protocol obtained from minmax strategies is related to the H  

formulation for disturbance attenuation [28]-[32]. The H  controller is designed to prepare a 

system against the worst-case disturbances that it may face. If the system is well-prepared 

against the worst disturbances, then it will also address properly less severe perturbations. The 

H  design is thus well-known for its robustness properties. In the minmax formulation here 

presented, each agent treats the influence of its neighbors as a disturbance to be rejected. This 

control scheme provides each individual player with a robust policy against the unknown 

behavior of its neighbors. The obtained value of the game for an agent represents a guaranteed 

performance value, and an agent can expect its real value to be improved from this upper 

bound. 

Besides minmax strategies, three other solution concepts are defined for multiagent 

systems in graphs. First, the concept of regret of an agent is explored in the so-called Minmax 

Regret strategies. It is said that an agent regrets its decision when it uses a control policy that is 

not optimal given the actual behavior of its neighbors. In graphical games, the behavior of the 

neighbors is in general unknown, and an agent can expect to have a degree of regret from any 

control policy it selects. Minmax regret strategies consist in making an agent select the control 

policy with which it avoids the worst possible regret. 

The last two solutions proposed in this dissertation are regarded as Projection 

strategies. The local information of the neighbors is unknown to an agent in graphical games, 

but it can attempt to minimize a cost function by making assumptions about those neighbors. 

The projection strategies are obtained when an agent makes the assumption that its neighbors 

possess similar information as itself. In one case, an agent assumes that its neighbors possess 

its same state information, thus solving a nonzero-sum game against them. In the second 
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scenario, the agent assumes that its neighbors desire to move in a similar trajectory as itself. 

Any of these assumptions allow the agents to successfully determine their corresponding 

solution of the game. 

An additional requirement for a practical solution of graphical games is the 

consideration of uncertainties in the system dynamics. The usual solutions for differential games 

and optimal control designs require complete knowledge of the mathematical model of the 

system. Various reinforcement learning (RL) algorithms have been proposed to solve multiagent 

optimal control problems with partial or no knowledge of the system dynamics [6], [33]-[35]. Off-

policy RL algorithms have been proposed in the literature to solve control optimization problems 

in an adaptive and efficient manner, without any knowledge of the model of the system [36]-[38]. 

These capabilities of off-policy algorithms are used in this dissertation to determine the optimal 

policies of the agents without knowledge of the neighbor control policies. Thus, the analysis 

performed about the proposed solutions guarantee the existence of the solutions to the HJ 

equations, and then RL is employed to determine those solutions. 

The rest of the dissertation is organized as follows. 

• In Chapter 2, preliminary definitions and notations that are used throughout the 

dissertation are presented. In particular, the mathematical notion of game 

theory is first described. Then, the basic definitions for graph theory are 

introduced. Finally, the state variables and the system dynamics for the 

multiagent systems studied in this research are presented. 

• In Chapter 3, Bayesian games are presented to solve differential graphical 

games with incomplete information. An agent in these games can possess 

individual information, known only to itself. This formulation leads to the 

definition of epistemic types. To solve the Bayesian graphical games, the 

concept of Bayes-Nash equilibrium is introduced for dynamical systems, and 

this solution is shown to be obtained by solving a set of HJB equations that 
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include the epistemic beliefs of the agents as a parameter. The beliefs of the 

agents are constantly updated throughout the game using the Bayesian rule to 

incorporate new evidence to the individual current estimates of the types. Two 

belief update methodologies that do not require the full knowledge of the graph 

topology are developed. The first of these approaches is a direct application of 

the Bayesian rule, and the second is a modification regarded as a non-

Bayesian update.  

• In Chapter 4, minmax strategies are proposed to solve non-adversarial 

differential graphical games as an alternative to Nash equilibrium. Minmax 

strategies are proven to provide distributed control policies under mild 

conditions in the system dynamics and the performance functions. The 

conditions for stability of the global multiagent system when all agents use their 

minmax policies are studied. Robustness of the control policy of each agent is 

also analyzed. The gain and phase margins of the minmax policies are 

determined, and these properties are shown to improve the corresponding 

characteristics of the linear quadratic regulator (LQR). Finally, an off-policy RL 

algorithm is designed to solve the minmax problem without any knowledge of 

the system dynamics. 

• Chapter 5 presents the analysis of multiagent pursuit-evasion games in 

communication graphs. First, a different formulation of the graph topology is 

introduced. Three communication graphs are presented to represent, 

respectively, the interactions among the pursuers, interactions among the 

evaders, and interactions between pursuers and evaders. Conditions for Nash 

equilibrium with respect to individual performance indices are stated. Then, a 

natural formulation of minmax strategies is obtained due to the intrinsic 

characteristics of the pursuit-evasion game. A novel analysis of emergent 
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behaviors, obtained by making particular modifications to the cost functions of 

the agents, is finally presented. Finite-time interception and asymptotic 

behaviors are studied as variations of the individual goals of an agent with 

respect to its teammates and opponents. The containment control problem with 

static and moving leaders is also solved as a special case of the MPE games.  

• Chapter 6 formulates additional solution concepts for differential graphical 

games to cope with the general unattainability of Nash equilibrium. Minmax 

regret strategies are obtained by defining the regret of an agent for not using its 

optimal control policy against its neighbors. Then, two projection strategies are 

introduced, on which each agent projects some of its personal information onto 

its neighbors. First, the agents project their information about their neighbors’ 

states. Alternatively, the agents project their local error information. The 

conditions for stability of these strategies are provided, and their robustness 

properties are studied. 

• Chapter 7 presents the conclusion of this work and describes present and 

future lines of research that can be considered to extend and improve the 

results in this dissertation. 

• An Appendix is included at the end of the dissertation to describe the obtained 

results about the use of reinforcement learning for multiobjective optimization 

problems. These results are relevant to obtain the solutions of Bayesian games 

that, as explained in Chapter 3, can be determined from the convex 

combination of the possible cost functions of the agents.  
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PRELIMINARIES  

2.1. Introduction 

In this chapter, relevant background subjects are reviewed in preparation for the main 

contents of the dissertation. This is the current state-of-the-art of the topics of interest found in 

the literature on which this work is based. First, the main concepts of graph theory are 

described, along with the definition of variables that are used throughout this research. Then, 

the formal definitions of the state variables for multiagent dynamical systems are presented. 

This includes the description of local error variables and synchronization objectives. A brief 

review on game theory is then presented, for both static and differential games. The results 

presented in this dissertation are extensions to the differential game theory concepts presented 

in this chapter. Finally, miscellaneous definitions and notations, useful for our purposes in the 

remaining chapters of this work, are introduced.  

 

2.2. Graph Theory 

A graph is a pair ( , )V E  with 
1
, ,

N
V v v  a set of N  nodes or vertices and E  a 

set of edges or arcs. Let the set V  describe a set of N  agents, each agent being represented 

by a node 
i
v V  of . The set E V V  expresses the flow of information from one agent to 

another. The notation ( , )
i j
v v E  means that there is flow of information from node 

i
v  to node 

j
v . Graphically, this interaction is represented by an arrow with tail at 

i
v  and head at 

j
v  (see 

Fig. 2.1).  The graph is assumed to have no self-loops, that is, ( , )
i i
v v E .  
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The edge weights of the graph are represented as 
ij
a , with 0

ij
a  if ( , )

j i
v v E  and 

0
ij
a  otherwise. Notice the order of the subindices; 0

ij
a  if agent i  receives information 

from agent j . Because the graph has no self-loops, we have 0
ii
a  for all 1, ,i N . The set 

of neighbors of node 
i
v  is : 0

i j ij
v a . The set of all nodes that are not neighbors of 

node 
i
v  is represented as 

i
. The weighted in-degree of node i  is defined as the sum of the 

edge weights incoming to 
i
v , i.e., 

1

N

i ijj
d a . Define the graph adjacency matrix as 

ij
a

, and the in-degree matrix of the graph as diag
i i

D d . The graph Laplacian matrix is 

L D . Matrix L  has all row sums equal to zero, and many properties of the graph  can 

be studied by analyzing its Laplacian matrix. 

 A graph is said to be undirected if 
ij ji
a a  for all nodes i , j . This means that all 

edges are bi-directional and, if agent i  can receive information from agent j , then agent j  can 

also receive information from i . If the graph  is not undirected, then it is said to be a directed 

graph, or a digraph. A directed path is a sequence of nodes 
1 2
, , ,

r
v v v  such that 

1
( , )
i i
v v E  

for {1, , 1}i r . Node 
i
v  is said to be connected to node 

j
v  if there is a directed path from 

 
Fig. 2.1.  Examples of graph topologies. a) A directed graph. b) A subset of the edges of the first graph forms a directed tree. 
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i
v  to 

j
v . A graph is strongly connected if 

i
v  and 

j
v  are connected for all nodes ,

i j
v v V . A 

graph is said to have a spanning tree if a subset of its edges forms a directed tree that connects 

all the nodes of the graph (Fig. 2.1-b). 

Further information about graph theory, as well as a detailed analysis of multiagent 

systems can be found in [13]. 

 

2.3. Game Theory 

Game theory is the mathematical analysis of optimal decision making. Its rigorous 

representation of the interaction of many agents makes the game-theoretical framework a fitting 

structure in our search for optimal behavior in dynamical multiagent systems. This section 

presents a brief review on the basic concepts of games in normal form. Many of the results in 

this dissertation can be seen as extensions of these concepts to differential graphical games. 

Game theory was formally introduced by the work of von Newman and Morgenstern 

with the particular interest of solving economic decision problems [39]. Few years later, the 

analysis performed by John Nash yielded the most significant solution concept in game theory 

to date, now regarded as Nash equilibrium [2], [3], [40]-[42]. Besides economics, game theory 

has now found applications in many areas of research including logic, computer science, social 

analysis, evolutionary biology and control theory. 

The most common formulation of a game consists on a set of N  players that wish to 

select their most appropriate actions in order to achieve a specific goal. The goals of a player 

are represented by means of a utility function which may be designed to represent selfish 

objectives, collective objectives, or a combination of both. The final payoff of a player usually 

depends on its own actions and the actions of all other players in the game. Thus, game theory 

studies the reasoning an agent must perform to select its optimal action against the other 

players to maximize its utility function. The formal definition of a game in normal form is now 
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presented. Most of the definitions in this section are taken from [1], with some notational 

modifications to make them coherent with the rest of the dissertation. 

Definition 2.1 (Game in normal-form). An N -person normal-form game is a tuple 

( , , )U J , where: 

•  is a finite set of N  players; 

• 
1 N

U U U , where 
i
U  is a finite set of actions available to player i ; 

• 
1
, ,

N
J J J , where :

i
J U  is a real-valued utility function for player i . 

 

A strategy in a game is the policy selected by an agent to determine the action from the 

set 
i
U  to play at each instance of the game. For example, an agent can choose a specific 

action and play it without further operations; this is regarded as a pure strategy. In contrast, an 

agent can apply a randomization procedure to determine the action to play. This is called a 

mixed strategy. The object of study in game theory is the design of strategies that allow the 

agents achieve their goals. 

Depending on the objectives of the players, two main distinctions of games can be 

described. A zero-sum game is defined such that 
1

0
N

J J  for any strategies played by 

the agents. The dynamics of a zero-sum game can be clearly noticed for the case of two-player 

games, on which we have 
1 2

0J J , or 
1 2
J J . This means that the utility received by an 

agent is necessarily lost by the other. These games describe strictly conflictive goals among the 

players. A game that allows for cooperative objectives between the agents is regarded as a 

non-zero sum game. 

The solution concepts in a game are the set of strategies that provide useful behaviors 

for the players. Many solution concepts have been proposed in game theory that depend on the 

assumptions made by the agents, the information they have available, or the priorities they 



13 

assign to each outcome. As stated before, the most important solution concept in game theory 

is Nash equilibrium, defined as follows.  

Let 
i
s  represent any strategy available for agent i , and let 

i
s  be the set of strategies 

for all players except i . The best response of agent i  to the strategies 
i
s  is defined as the 

strategy *

i
s  such that *( , ) ( , )

i i i i i i
J s s J s s  for all strategies 

i
s . This implies that the best 

response of agent i  is the strategy that provides it with a utility at least as good as any other 

strategy. Nash equilibrium is obtained in the game if all players play their best strategies 

simultaneously. 

Definition 2.2 (Nash equilibrium). A strategy profile 
1
( , , )

N
s s s  is a Nash 

equilibrium if, for all agents i , 
i
s  is a best response to 

i
s ; that is, 

 * * *( , ) ( , )
i i i i i i
J s s J s s .  

 

An important characteristic of Nash equilibrium is the stability it provides to the behavior 

of the agents, in the sense that no agent can individually modify its own strategy without 

decreasing its utility obtained in the game. Therefore, all agents are compelled to use their Nash 

strategies as long as the equilibrium is maintained. 

A different solution concept, particularly suitable to study strictly conflictive games, is 

known as the maxmin strategy. This solution is obtained when agent i  decides to maximize its 

worst-case payoff. Such worst-case scenario occurs when all other players have as objective to 

cause the greatest harm to i . The maxmin strategy is defined below. 

Definition 2.3 (Maxmin strategy). The maxmin strategy for player i  is obtained as 

 maxmin argmaxmin ( , )
i i

i i i is s
s J s s .  
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The maxmin strategy provides a minimum guaranteed performance, such that the agent 

that employs it can expect its utility to be larger than or equal to the maxmin value. It can be 

easily shown that in two-player zero-sum games, the maxmin strategies are exactly the same 

as the Nash equilibrium strategies. 

A final solution concept described in this review is known as the Minimax regret 

strategy. Define the regret of agent i  for playing action 
i
u  when the other players perform the 

actions 
i

u  as 

 
'

( , ) max ( ' , ) ( , )
i i

i i i i i i i i iu U
u u J u u J u u . (2.1) 

That is, the regret is the amount of payoff lost by an agent for not using its best response 

against the strategies of the other agents. The minimax regret policy can now be defined. 

Definition 2.4 (Minimax regret). The minimax regret policy of agent i  is defined as 

 regret argminmax ( , )
i i

i i i iu u
u u u  

with 
i
 as in (2.1).  

This section is concluded with the definition of a game that allows the consideration of 

uncertainties in the environment of the players. Many practical applications of game-theoretic 

models require considering players with incomplete knowledge about the payoff they will 

receive after playing a particular action. The category of games that studies this scenario is 

regarded as Bayesian games, or games with incomplete information. 

In a Bayesian game, the players are presented with a set of possible games, one of 

which is actually being played. Being aware of their lack of knowledge, the agents must define a 

probability distribution over the set of all possible games they may be engaged on. We call 

these probabilities the beliefs of an agent. At the beginning of the game, the agents possess 

some personal information, only known by themselves, and regarded as their epistemic type. 

The objective of an agent during the game depends on its current type and the types of the 
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other agents. A Bayesian game is formally defined as follows. 

Definition 2.5 (Bayesian games). An N -person Bayesian game is defined as a tuple 

( , , , , )U P J , where: 

•  is a finite set of N  players; 

• 
1 N

U U U , where 
i
U  is a finite set of actions available to player i ; 

• 1 N =    , with 1{ , , }iM
i i i  =  the type space of player i ; 

• : [0,1]P →  expresses the probability of finding every agent i  in type k
i

 for all 

possible types k ; 

• 
1
, ,

N
J J J , where :

i
J U  is a real-valued utility function for player i . 

 

In the following section, the extensions of these game theoretic concepts for dynamical 

agents are described. 

 

2.4. Differential Graphical Games 

The canonical leader-follower synchronization game is described in this section. Let 

each agent in the graph  defined in Section 2.2 be a dynamical system with linear dynamics 

as 

 i i ix Ax Bu= +  (2.2) 

for all agents 1, ,i N= , where ( ) n
ix t   is the vector of state variables and m

iu   is the control 

input vector of agent i . The pair ( , )A B  is assumed to be stabilizable throughout this 

dissertation. Consider also an additional node, regarded as the leader or target node, with state 

dynamics 

 0 0.x Ax=  (2.3) 

The leader is connected to the other nodes by means of the pinning gains 0ig  . This 
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dissertation studies the behavior of the agents with the general objective of achieving 

synchronization with the leader node 
0
x . 

Each agent is assumed to observe the full state vector of its neighbors in the graph. 

The local synchronization error for agent i  is defined as 

 0

1

( ) ( )
N

i ij i j i i

j

a x x g x x
=

= − + −  (2.4) 

and the local error dynamics are 

 

0

1

1

( ) ( )

( )

N

i ij i j i i

j

N

i i i i ij j

j

a x x g x x

A d g Bu a Bu





=

=

= − + −

= + + −





 (2.5) 

where the dynamics (2.2) - (2.3) have been incorporated. 

Each agent i  expresses its objective in the game by defining a performance index as 

 
0

( , , , ) ( , , , )i i i i i i i i i iJ u u r u u dt   


− − − −=   (2.6) 

where ( , , , )i i i i ir u u − −  is selected as a positive definite scalar function of the variables expected 

to be minimized by agent i , with 
i
 and 

i
u  the local errors and control inputs of the neighbors 

of agent i , respectively. For synchronization games, 
i
r  can be selected as 

 ( )
0

( , , , )
N

T T T
i i i i i ij ij ij ij i ii i j ij j

j

r u u a Q u R u u R u   − −

=

= + +  (2.7) 

with 0T
ij ijQ Q=  , 0T

ii iiR R=  , 0i ia g= , 0 0
T

T T
i i  =   , 

T
T T

ij i j   =    for 0j , and 
0
0u . 

Function 
i
r  can also presented in a simplified form, 

 
1

( , , )
N

T T T
i i i i i i i i ii i ij j ij j

j

r u u Q u R u a u R u  −

=

= + +  (2.8) 

which is widely employed in the differential graphical games literature [20], [33]. 

The dependence of 
i
J  on 

i
 and 

i
u  does not imply that the optimal control policy, *

i
u , 

requires these variables to be computed by agent i  [20]. The definition of 
i
J , therefore, can 
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yield a valid distributed control policy as solution of the game. 

The best response of agent i  for fixed neighbor policies 
i

u  is defined as the control 

policy *
i
u  such that the inequality *( , , ) ( , , )i i i i i iJ u u J u u − −  holds for all policies iu . Nash 

equilibrium is achieved if every agent plays its best response with respect to all its neighbors, 

that is, 

 * * *( , , ) ( , , )i i i i i iJ u u J u u − −  (2.9) 

for all agents 1, ,i N . 

A differential version of the performance index (2.6) is regarded as the Bellman 

equation, obtained by means of the Hamiltonian function 
i
H  as 

 0 ( , , ) ( )i i i i ir u u V H −= +  (2.10) 

where ( )
i
V  is a scalar function regarded as the value function of the game. The optimal control 

policy for agent i  can now be obtained by means of the stationary condition 0i

i

H

u
. The 

following assumption provides a condition to obtain distributed control policies for the agents. 

Assumption 2.1. Let the value functions ( )
i
V  in (2.10) be distributed, in the sense that 

they contain only local information, i.e., ( ) ( )
i i i
V V . 

It is proven in [20] that, if Assumption 2.1 holds, the best response of agent i  with cost 

function (2.6) and function 
i
r  as in (2.8) is given by 

 * 11
( ) ( ).

2

T
i i i ii i iu d g R B V −= − +   (2.11) 

Substituting the control policies (2.11) for all agents 1, ,i N  in the Bellman equations (2.10), 

yields the set of coupled partial differential equations 

 * *

1

( , , ) ( ) 0
N

T
i i i i i i i i i ij j

j

r u u V A d g Bu a Bu −

=

 
+  + + − =  

 
  (2.12) 
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known as the Hamilton-Jacobi (HJ) equations. The procedure to obtain the optimal control 

inputs *
i
u  for the agents now consists in solving for the value functions ( )

i i
V  from the coupled 

HJ equations (2.12), and substituting these functions in the policies (2.11). When all agents 

simultaneously use their best policies (2.11), Nash equilibrium is achieved in the game. 

  

2.5. Further Notations 

This chapter is concluded with few additional definitions that will simplify the notation in 

subsequent chapters [43], [44]. 

The space 
2
n  is defined as the set of all piecewise continuous functions : [0, ) nx  

such that 

 
2

1/2

0
( ) ( )Tx x t x t dt  (2.13) 

that is, the space 
2
n  defines the set of all square-integrable functions ( )x t . 

The extended space 
2

n
e
 is defined by 

 
2 2

| , 0n n
e

x x  

where x  is a truncation of x  defined by 

 
( ), 0

( )
0,

x t t
x t

t
 (2.14) 

  Define the inner-product in space 
2
[0, )n  as 

 
0

, ( ) ( )Tx y x t y t dt  (2.15) 

where 
2

, [0, )nx y . 

 A mapping 
2 2

: n n
e e

H  is finite-gain 
2
 stable if there exist nonnegative constants  

and  such that 
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2 2

( )Hu u  (2.16) 

for all 
2
m
e

u  and [0, ) . 

 When inequality (2.16) is satisfied for some 0 , the mapping is said to have 
2
 gain 

less than or equal to . 
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EPISTEMIC BELIEFS AND BAYESIAN GRAPHICAL GAMES 

3.1. Introduction 

The general approach to differential games in the current literature is to expand the 

single-agent optimal control techniques to groups of agents with both common and conflicting 

interests. It is proven in [5] that, if the solutions of the set of coupled partial differential equations 

known as the Hamilton-Jacobi (HJ) equations exist, then Nash equilibrium is achieved in the 

game and no agent can unilaterally change its control policy without producing a decreased 

performance for itself. A more general case has been described with the study of graphical 

games [15], [20], [33], [34], [46], on which, as described in Chapter 2, the agents are taken as 

nodes in a communication graph, such that each agent can only measure the state of the 

agents connected to it through the graph links, regarded as its neighbors. 

A downside of these standard differential games solutions is the assumption that all 

agents are fully aware of all the aspects of the game being played. In complex practical 

applications, the agents operate in fast-evolving and uncertain environments which provide 

them with incomplete information about the game. A dynamical agent facing other agents for 

the first time, for example, may not be certain of their real intentions or objectives. 

Bayesian games [1], [24]-[27], also called games with incomplete information, describe 

the situation on which the agents participate in an unspecified game. The true intentions of the 

other players may be unknown, and each agent must adjust its objectives accordingly. The 

initial information of each agent about the game, and the personal experience gained during its 

interaction with other agents, form the basis for the epistemic analysis of the dynamical system. 

The agents must collect the evidence provided by their environment and use it to update their 

beliefs about the state of the game. Thus, the aim is to develop belief assurance protocols, 

distributed control protocols and distributed learning mechanisms to induce optimal behaviors 

with respect to an expected cost function. 
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In [1], [24] and [25], Bayesian games are defined for static agents and it is shown that 

the solution of the game consist on the selection of specific actions with a given probability. In 

this work, Bayesian games are defined for dynamic systems and the optimal control policies 

vary as the belief of the agents change. The ex post stability in Bayesian games is studied in 

[26] and [27], consisting in a solution that would not change if the agents were fully aware of the 

conditions of the game. Our results are shown not to be ex post stable because we allow the 

agents to improve their policies as they collect new information. Different learning algorithms for 

static agents in Bayesian games have been studied [42], [47]-[49], but not for differential 

graphical games. 

Potential applications for the proposed Bayesian games for dynamical systems include 

collision avoidance in automatic transport systems, sensible decision making against possibly 

hostile agents and optimal distribution of tasks in cooperative environments. As the number of 

autonomous agents increase in urban areas, the formulation of optimal strategies for unknown 

scenarios becomes a necessary development. 

The rest of the chapter is structured as follows. Section 3.2 presents the formal 

mathematical definitions of Bayesian games and differential graphical games, which form the 

basis for the rest of the chapter. Section 3.3 presents the formulation of Bayesian games for 

dynamical systems in a graph topology; the best response strategies for the minimization of the 

expected costs and the minmax strategies of every agent are obtained. Section 3.4 is focused 

on the Bayesian methodology for the belief updates, while Section 3.5 presents the application 

of a non-Bayesian methodology. Finally, a simulation of the proposed control scheme is 

presented in Section 3.6, and Section 3.7 includes a brief conclusion. 

  

3.2. Bayesian Graphical Games for Dynamical Systems 

In Section 2.3, Bayesian games where defined for normal-form, static games. This 

section presents our main results on the formulation of Bayesian games for multiagent 
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dynamical systems connected by a communication graph and the analysis of the conditions to 

achieve Bayes-Nash equilibrium in the game. 

 

3.2.1. Game formulation 

Consider a system of N  agents with linear dynamics (2.2) distributed on a 

communication graph , and a leader with state dynamics (2.3). The local synchronization 

errors are defined as in (2.4) - (2.5). 

The desired objectives of an agent can vary depending on its current type and the types 

of its neighbors. This condition can be expressed by defining the performance index of agent i  

as 

 
0

( , , ) ( , , )i i i i i ii iJ u u r u u dt  


− −=   (3.1) 

where  refers to the set of current types of all the agents in the game, 1 N  =   , as 

defined in Section 2.3, and each function 
i
r  is defined for that particular combination of types. 

With this information, we define a new category of game as follows. 

Definition 3.1 (Bayesian graphical game). A Bayesian graphical game for dynamical 

systems is defined as a tuple ( , , , , , )X U P J  where: 

•  is the set of agents in the game; 

• 1 NX X X=   , with 
i
X  the set of reachable states of agent i ; 

• 1 NU U U=   , with 
i
U  the set of admissible controllers for agent i , 

• 1 N =    , with 
i
 the type space of player i ; 

• : [0,1]P →  is the common prior over types that describes the probability of 

finding every agent i  in type k
ii  , 1, , ik M= , at the beginning of the game.  

• 1( , , )NJ J J=  are the performance indices, where :iJ X U → , is the cost 

paid by agent i  for using a given control policy while the game is in a state 
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value and a combination of types. 

 

Define the set 1
i i

i NX X =   , where i
jX  is the set of possible states of the j th 

neighbor of agent i ; that is, 
i
 represents the set of states that agent i  can observe from the 

graph topology. 

It is assumed that the sets , X , U , P  and J  are of common prior for all the agents 

before the game starts. However, the set of states 
i
 and the actual type 

i
 are known only by 

agent i . The objective of every agent in the game is now to use their (limited) knowledge about 

i
 and  to determine the control policies *( , )i iu   , such that every agent expects to minimize 

the cost he pays during the game according to the cost functions (3.1). 

To fulfill this objective, a different cost index formulation is required to allow the agents 

to determine their optimal policies according to their current beliefs about the global type . 

This requirement is addressed by defining the expected cost of agent i , as studied in the 

following subsection. 

 

3.2.2. Expected cost 

In the Bayesian games’ literature, three different concepts of expected cost are usually 

defined, namely the ex post, the ex interim, and the ex ante expected costs, that differ in the 

information available for their computation [1], [26], [27]. 

The ex post expected cost of agent i  considers the actual types of all agents of the 

game. For a given Bayesian game ( , , , , , )N X U P J , where the agents play with policies 
i
u  and 

the global type is ,  the ex post expected utility is defined as 

 ( , , , ) ( , , )i i i i i i iiEJ u u J u u  − −=  (3.2) 

The ex interim expected cost of agent i  is computed when i  knows its own type, but 

the types of all other agents are unknown to it. Note that this case applies if the agents calculate 
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their expected costs once the game has started. Given a Bayesian game ( , , , , , )N X U P J , where 

the agents play with policies 
i
u  and the type of agent i  is 

i
, the ex interim expected cost is 

 ( , , , ) ( | ) ( , , )i i i i i i i i iiEJ u u p J u u



    − −



=   (3.3) 

where ( | )ip    is the probability of having global type  given that agent i  has type 
i
, and the 

summation index  indicates that all possible combination of types in the game must be 

considered. 

We can finally define the ex ante expected cost for the case when agent i  is ignorant of 

the type of every agent, including itself. This can be seen as the expected cost that is computed 

before the game starts, such that the agents do not know their own types. For a given Bayesian 

game ( , , , , , )N X U P J  and given the control policies 
i
u  for all the agents, the ex ante expected 

cost for agent i  is defined as 

 ( , , ) ( ) ( , , ).i i i i i i iiEJ u u p J u u



  − −



=   (3.4) 

Throughout this dissertation we use the ex interim expected cost as the objective for 

minimization of every agent, such that they can compute it during the game. 

In the following subsection, the optimal control policy *
i
u  for every agent is obtained, 

and conditions for Bayes-Nash equilibrium are provided. 

 

3.2.2. Best response policy and Bayes-Nash equilibrium 

The best response of an agent in a Bayesian game for given fixed neighbor strategies 

i
u , is defined as the control policy that makes the agent pay the minimum expected cost. 

Formally, agent i ’s best response to control policies 
i

u  are given by 

 * arg min ( , , , )
i

i i i i i
u

u EJ u u −=  (3.5) 

Now, it is said that a Bayes-Nash equilibrium is reached in the game if each agent plays 
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a best response to the strategies of the other players during a Bayesian game. The Bayes-Nash 

equilibrium is the most important solution concept in Bayesian graphical games for dynamical 

systems. Definition 3.2 formalizes this idea. 

Definition 3.2 (Bayes-Nash equilibrium). A Bayes-Nash equilibrium is a set of control 

policies 1 Nu u u=    that satisfies *
i iu u= , as in (3.5), for all agents i , such that 

 * * *( , , ) ( , , )i i i i i i i iEJ u u EJ u u − −  (3.6) 

for any control policy 
i
u .  

Following an analogous procedure to single-agent optimal control, define the value 

function of agent i , given the types of all agents , as 

 ( , , ) ( , , )i i i i i ii it
V u u r u u d   



− −=   (3.7) 

with 
i
r  as defined in (3.1). The expected value function for a control policy 

i
u  is defined as 

 ( , , , ) ( | ) ( , , )i i i i i i i iiEV u u p V u u



    − −



=   (3.8) 

where agent i  knows its own epistemic type.  

Function (3.8) can be used to define the expected Hamiltonian of agent i  as 

 ( )1
( , , ) ( | ) ( , ) ( ) .

NT
i i i i i i i i ij ji i j

EH u p r u V A d g Bu a Bu 



     
=



 = + + + −
  

   (3.9) 

The expected Hamiltonian (3.9) is now employed to determine the best response control policy 

of agent i , by computing its derivative with respect to 
i
u  and equating it to zero. This procedure 

yields the optimal policy 

 

1

* 1
( ) ( | ) ( | ) .

2

T
i i i i iii iu d g p R p B V 

 

   

−

 

 
= − +  

 
   (3.10) 

As in the deterministic multiplayer nonzero-sum games [5], the functions ( )iiV   are the 

solutions of a set of coupled partial differential equations. For the setting of Bayesian games, we 

introduce the novel concept of the Bayes-Hamilton-Jacobi (BHJ) equations, given by 
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 ( )* * *
1

( | ) ( , ) ( ) 0.
NT

i i i i i i ij ji i j
p r u V A d g Bu a Bu 



   
=



 + + + − =
  

   (3.11) 

Remark 3.1. The optimal control policy (3.10) establishes for the first time, the relation 

between belief and distributed control in multi-agent systems with unawareness. Each agent 

should compute its best response by observing only its immediate neighbors. This is distributed 

computation with bounded rationality imposed by the communication network. 

Remark 3.2. Notice that the probability terms in (3.10) have the properties 0 ( | ) 1ip     

and ( | ) 1ip


 


= . Therefore, Equation (3.9) is a convex combination of the Hamiltonian 

functions defined for each performance index (3.1) for agent i , and (3.10) is the solution of a 

multiobjective optimization problem using the weighted sum method (see Appendix) [50], [51]. 

Remark 3.3. The solution obtained by means of the minimization of the expected cost, 

does not represent an increase in complexity when compared to the optimization of a single 

performance index. Only the number of sets of coupled HJ equations increases according to the 

total number of combination of types of the agents. 

Remark 3.4. If there is a time 
f
t  at which agent i  is convinced of the global type  with 

probability 1, then the problem is reduced to a single objective optimization problem and the 

solution is given by the deterministic control policy 

 ( )
1

* 1
( ).

2

T
i iii iu R B V  

−
= −   

In the particular case when the value function associated with each 
i
J  has the 

quadratic form 

 T
i ii iV P  =  (3.12) 

the optimal policy (3.10) can be written in terms of the states of agent i  and its neighbors as 

 

1

* ( ) ( | ) ( | ) .T
i i i i i iii iu d g p R p B P 

 

    

−

 

 
= − +  

 
   (3.13) 

The next technical lemma shows that the Hamiltonian function for general policies 
i
u , 
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i
u  can be expressed as a quadratic form of the optimal policies *

i
u  and *

i
u  defined in (3.10). 

Lemma 3.1. Given the expected Hamiltonian function (3.9) for agent i  and the optimal 

control policy (3.10), then 

 * * *( , , ) ( , , ) ( | )( ) ( ).T
i i i i i i i i i i i i iiiEH u u EH u u p u u R u u



   − −



= + − −  (3.14) 

Proof. The proof is similar to the proof of Lemma 10.1-1 in [5], performed by completing 

the squares in (3.9) to obtain 

 

* * * *

1

* *

1

( , , ) ( | )

( ) ( ) ( )

N
T T T T T

i i i i i i i ij j j i i i ii ii ij ii ii

j

N
T T T

i i i i i i i i i i ij ji i i

j

EH u p Q u R u a u R u u R u u R u

d g V Bu d g V Bu V A d g Bu a Bu

    



  

     



 =

=


= + + + −



 
+ +  − +  + + + −   

 

 



(3.15) 

and conducting algebraic operations to obtain (3.14).   

The following theorem extends the concept of Bayes-Nash equilibrium to differential 

Bayesian games, and shows that this Bayes-Nash equilibrium is achieved by means of the 

control policies (3.10). The proof is performed using the quadratic cost functions as in (2.8), but 

it can easily be extended to other functions as (2.7). 

Theorem 3.1. Consider a multiagent system on a communication graph, with agents’ 

dynamics (2.2) and target node dynamics (2.3). Let *( )iiV  , 1, ,i N= , be the solutions of the 

BHJ equations (3.11). Define the control policy *
i
u  as in (3.10) and let Assumption 2.1 hold. 

Then, control inputs *
i
u  make the dynamics (2.5) asymptotically stable for all agents. Moreover, 

all agents are in Bayes-Nash equilibrium as defined in Definition 3.2, and the corresponding 

expected costs of the game are 

 * *( (0)).i iiEJ V =  

Proof. (Stability) Take the expected value function (3.8) as a Lyapunov function 

candidate. Its derivative is given by 

 ( | ) ( | ) .T
i i i ii iEV p V p V 

 

    
 

= =    
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The BHJ equation (3.11) is a differential version of the value functions (3.8) using the 

optimal control policies (3.10) [5]. Then, as 
i
V  satisfies (3.11) we get 

 
1

( | ) 0
N

T T T
i i i i i i ij j ji ii ij

j

EV p Q u R u a u R u  



   
 =

 
= − + +   

 
   

and the dynamics (2.5) are asymptotically stable. 

(Bayes-Nash equilibrium) Note that ( ( )) (0) 0ii iV V   = =  because of the asymptotic 

stability of the system. Now, the expected cost of the game for agent i  is expressed as 

0 0
1

0

( | ) ( | ) ( | ) ( (0))

( , , ) ( | ) ( (0)).

N
T T T

i i i i i i ij j j i i ii ii ij i i

j

i i i i i ii

EJ p Q u R u a u R u dt p V dt p V

EH u u dt p V

    

  





        

   

 

 =  



−



 
= + + + +  

 

= +

    



 

By Lemma 1, this expression becomes 

 * * *

0 0
( | ) ( (0)) ( , , ) ( | ) ( ) ( )T

i i i i i i i i i i ii i iiEJ p V EH u u dt p u u R u u dt

 

     
 

−

 

= + + − −    

for all 
i
u  and 

i
u . Assume all the neighbors of agent i  are using their best response strategies 

*

i
u . Then, as the BHJ equations (3.11) hold, we have 

 * *

0
( | ) ( ) ( ) ( (0))T

i i i i ii i i iiEJ p u u R u u dt V 



  




 = − − +
  

   

We conclude that *
i
u  minimizes the expected cost of agent i  and the value of the game is 

( (0))iiEV  .  

It is of our interest to determine the influence of the graph topology in the stability of the 

synchronization errors given by the control policies (3.13). To make this analysis, define the 

matrix diag{ } Nn
iK K=   with 1( ) T

i i i iiK d g R B P−= + . 

Theorem 3.2 relates the stability properties of the game with the communication graph 

topology . 
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Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then, the eigenvalues of matrix 

  ( )( ) (( ) ) n N MI A L G B K + − +    have all negative real parts, i.e., for 1, ,k nN= , 

 ( )Re{ ( ) (( ) ) } 0.k I A L G B K  − +    (3.16) 

Proof. Define the vectors  1 , ,
TT T

N  =  and  1 , ,
TT T

Nu u u= . Using the local error 

dynamics (2.5), we can write 

 ( ) (( ) )I A L G B u =  + +   (3.17) 

Control policies (3.13) can be expressed as i pi iu K = − , with 1( ) T
i i i iiK d g R B P−= + . Now we get, 

 .u K= −  (3.18) 

Substitution of (3.18) in (3.17) yields the global closed-loop dynamics 

  ( ) (( ) )I A L G B K =  − +   (3.19) 

Theorem 3.1 shows that if matrices 
i
P  satisfy (3.11) then the control policies (3.13) 

make the gents achieve synchronization with the leader node. This implies that the system 

(3.19) is stable, and the condition (3.16)  holds.   

 

3.3. Bayesian Belief Updates 

Two approaches to perform the belief update of the agents are developed in this 

dissertation. In this section we study the use of the Bayesian rule to compute a new estimate 

given the evidence provided by the states of the neighbors. Section 3.4 analyzes a non-

Bayesian approach to perform the belief updates. 

 

3.3.1. Epistemic type estimation 

Let every agent in the game to revise its beliefs every T  units of time. Then, using its 

knowledge about its type 
i
, the previous states of its neighbors ( )

i
x t , and the current state of 
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the neighbors ( )
i
x t T , agent i  can perform its belief update at time t T  using the 

Bayesian rule as 

 
( ( ) | ( ), ) ( | ( ), )

( | ( ), ( ), )
( ( ) | ( ), )

i i i i
i i i

i i i

p x t T x t p x t
p x t T x t

p x t T x t

  
 



− − −
− −

− −

+
+ =

+
 (3.20) 

where ( | ( ), ( ), )i i ip x t T x t − −+  is agent i ’s belief at time t T  about the types , ( | ( ), )i ip x t −  is 

agent i ’s beliefs at time t  about , ( ( ) | ( ), )i ip x t T x t − −+  is the likelihood of the neighbors 

reaching the states ( )ix t T− +  T   time units after being in states ( )
i
x t  given that the global type 

is , and ( ( ) | ( ), )i i ip x t T x t − −+  is the overall probability of the neighbors reaching ( )ix t T− +  from 

( )
i
x t  regardless of every other agent’s types. 

Remark 3.5. Although the agents know only the state of their neighbors, they need to 

estimate the type of all agents in the game, for this combination of types determines the 

objectives of the game being played. 

Remark 3.6. In the previous sections we defined the Bayesian games using the 

probabilities ( | )ip   . In this section, we make explicit the fact that agent i  uses the behavior of 

its neighbors as evidence of the global type  by expressing the probabilities ( | ( ), )i ip x t − . 

It is of our interest to find an expression for the belief update (3.20) that explicitly 

displays distributed update terms for the neighbors and non-neighbors of agent i . In the 

following, such expressions are obtained for the three terms ( | ( ), )i ip x t − , ( ( ) | ( ), )i ip x t T x t − −+  

and ( ( ) | ( ), )i i ip x t T x t − −+ . 

The likelihood function ( ( ) | ( ), )i ip x t T x t − −+  in the Bayesian belief update (3.20) can be 

expressed in terms of the individual positions of each neighbor of agent i  as the joint probability 

 1( ( ) | ( ), ) ( ( ), , ( ) | ( ), )
i

i i
i i iNp x t T x t p x t T x t T x t − − −+ = + +  (3.21) 

where ( )i
j
x t  is the state of the j th neighbor of i . Notice that ( )ix t T+  is dependent of ( )

i
x t  and 

of ( )
i
x t  by means of the control input 

i
u , for all agents i . However, the current state value of 
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agent i , ( )ix t T+ , is independent of the current state value of its neighbors, ( )ix t T− + , for there 

has been no time for the values ( )ix t T− +  to affect the policy 
i
u . Independence of the state 

variables at time t T  allows computing the joint probability (3.21) as the product of factors 

 ( ( ) | ( ), ) ( ( ) | ( ), ).
i

i i j i

j N

p x t T x t p x t T x t − − −



+ = +  (3.22) 

Using the same procedure, we can express the denominator of (3.20), 

( ( ) | ( ), )i i ip x t T x t − −+ , as the product 

 ( ( ) | ( ), ) ( ( ) | ( ), ).
i

i i i j i i

j N

p x t T x t p x t T x t − − −



+ = +  (3.23) 

Notice that the value of ( ( ) | ( ), )j i ip x t T x t −+  can be computed from the likelihood function 

( ( ) | ( ), )j ip x t T x t −+  as 

 ( ( ) | ( ), ) ( | ( ), ) ( ( ) | ( ), ).j i i i i j ip x t T x t p x t p x t T x t


   − − −



+ = +  (3.24) 

Finally, the term ( | ( ), )i ip x t −  in (3.20) expresses the joint probability of the types of 

each individual agent, that is, 1( | ( ), ) ( , , | ( ), )i i N i ip x t p x t    − −= . Two cases must be considered 

to compute the value of this probability. In the general case, the types of the agents are 

dependent on each other; in particular applications, the types of all agents may be independent 

and, therefore, the knowledge of an agent about one type does not affect its belief in the others.  

Dependent epistemic types. If the type of an agent depends on the types of other 

agents, the term ( | ( ), )i ip x t −  can be computed in terms of conditional probabilities using the 

chain rule 

 

1 2

1 2 1 1 1

1 1

1

( | ( ), ) ( , , , | ( ), )

( | ( ), ) ( | ( ), , ) ( | ( ), , , , )

( | ( ), , , , )

i i N i i

i i i i N i i N

N

j i i j

j

p x t p x t

p x t p x t p x t

p x t

     

        

   

− −

− − − −

− −

=

=

=

=

 (3.25) 

We can further separate the products of (3.25) in terms of the neighbors and non-neighbors of 

agent i  as 
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1 1

1

1 1 1 1

( | ( ), , , , )

( | ( ), , , , ) ( | ( ), , , , )
i i

N

j i i j

j

j i i j k i i k

j N k N

p x t

p x t p x t

   

       

− −

=

− − − −

 

=

 
 (3.26) 

Using expressions (3.22), (3.23) and (3.26), the Bayesian update (3.20) can be written as 

 

1 1

1 1

( ( ) | ( ), ) ( | ( ), , , , )
( | ( ), ( ), )

( ( ) | ( ), )

( | ( ), , , , )

i

i

j i j i i j
i i i

j i ij N

k i i k

k N

p x t T x t p x t
p x t T x t

p x t T x t

p x t

    
 



   

− − −
− −

−

− −



+
+ =

+







 (3.27) 

where the belief update with respect to the position of each neighbor is explicitly expressed, as 

desired. 

Independent epistemic types. In this case, agent i  updates its beliefs about the other 

agents’ types based only on its local information about the states of its neighbors. Thus, we 

obtain the expression 

 
1 2

1 2

( | ( ), ) ( , , , | ( ))

( | ( )) ( | ( )) ( | ( ))

i i N i

i i N i

p x t p x t

p x t p x t p x t

    

  

− −

− − −

=

=
 (3.28) 

Again, using expressions (3.22), (3.23) and (3.28), the belief update of agent i  can be written 

as the product of the inference of each of its neighbors and its beliefs about its non-neighbors’ 

types, as 

 

( | ( ), ( ), )

( ( ) | ( ), ) ( | ( ))
( | ( )).

( ( ) | ( ), )
i i

i i i

j i j i
k i

j i ij N k N

p x t T x t

p x t T x t p x t
p x t

p x t T x t

 

 




− −

− −
−

− 

+ =

+


+
 

 (3.29) 

As equations (3.27) or (3.29) grow in number of factors, computing their value becomes 

computationally expensive. A usual solution to avoid this inconveniency is to calculate the log-

probability to simplify the product of probabilities as the sum of their logarithms. This is 

expressed as 

 
( ( ) | ( ), ) ( | ( ))

log ( | ( ), ( ), ) log log ( | ( ))
( ( ) | ( ), )

i i

j i j i
i i i k i

j i ij N k N

p x t T x t p x t
p x t T x t p x t

p x t T x t

 
  



− −
− − −

− 

+
+ = +

+
    

for the independent types case (3.29). A similar result can be obtained for the dependent types 

version (3.27). 
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3.3.2. Naïve likelihood approximation 

A significant difficulty in computing the value of the expression (3.29) is the limited 

knowledge of the agents due to the communication graph topology. It is desired to design a 

method to estimate the likelihood function (3.22) for agents that know only the state values of 

their neighbors, and are unaware of the graph topology except for the links that allow them to 

observe such neighbors. 

From (3.22), agent i  needs to compute the probabilities ( ( ) | ( ), )j ip x t T x t −+  for all its 

neighbors j . This can be done if agent i  can predict the position ( )jx t T+  for each possible 

combination of types  and given the current states ( )
i
x t . However, i  does not know if the 

value ( )jx t T+  depends on the states of its neighbors ( )
i
x t  because the neighbors of agent j  

are unknown. The states of i ’s neighbors may or may not affect j ’s behavior.  

Furthermore, the control policy (3.10) that agent j  uses at time t  depends not only on 

its type, but on its beliefs about the types of all other agents. The beliefs of agent j  are also 

unknown to agent i . Due to these knowledge constraints, agent i  must make assumptions 

about its neighbors to predict the state ( )
j
x t T  using only local information. 

Let agent i  make the naïve assumption that its other neighbors and itself are the 

neighbors of agent j . Thus, player i  tries to predict the state of its neighbor j  at time t T  for 

the case where i  and j  have the same state information available. Besides, agent i  assumes 

that j  is certain (i.e., assigns probability one) of the combination of types in question, . 

Under these assumptions, agent i  estimates the local synchronization error of agent j  

to be 

 0

1

ˆ ( ) ( ) ( )
N

i
ik j k i j j ij

k

a x x g x x x x
=

= − + − + −  (3.30) 

which means that i  expects the control policy of agent j  with types  to be 
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   ( ) ( )
11 ˆ

2

T i
i j jj j jE u R B V   

−
= −   (3.31) 

where the expected value operator is employed here in the sense that this is the value of 
j
u  

that agent i  expects given its limited knowledge. If we consider a quadratic value function as in 

(3.12), then the expected policy (3.31) is written as 

   ( )
11 ˆ

2

T i
i j jj j jE u R B P  

−
= −  

with ˆi
j  defined in (3.30). 

Now, the probabilities ( ( ) | ( ), )j ip x t T x t −+  can be determined by defining a probability 

distribution for the state ( )jx t T+ . If a normal distribution is employed, then it is fully described 

by the mean ij
  and the covariance ijCov , for neighbor j  and types . In this case, the mean 

of the normal distribution function is the prediction of the state of agent j  at time t T , that is 

 ˆ ( )ij jx t T  = +  (3.32) 

where ˆ ( )jx t T +  is the solution of the differential equation (2.2) for agent j  at time t T , with 

control policy (3.31), i. e., 

  ( ) ( )ˆ ( ) ( ) ( ) .
t T

A t T A t T
j ij jt

x t T e x t e BE u d    
+

+ − − −+ = +   

The covariance ijCov  represents the lack of confidence of agent i  about the previous 

naïve assumptions, and is selected according to the problem in hand. 

Remark 3.7. The intuition behind the naïve likelihood approximation for multiagent 

systems in graphs is inspired in the Naïve Bayes method for classification [52]. However, the 

proposed assumptions made by the agents in this chapter are different in nature and must not 

be confused. 

Depending on the graph topology and the settings of the game, the proposed method 

for the likelihood calculation can differ considerably from reality. The effectiveness of the naïve 

likelihood approximation depends on the degree of accuracy of the assumptions made by the 
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agents in a limited information environment. A measure of the uncertainty in the game is 

therefore useful in the analysis of the performance of the players. 

In the following we introduce an uncertainty measure, the Bayesian game’s index of 

uncertainty of agent i  with respect to its neighbor j . For simplicity, assume in this subsection 

that the graph weights are binary, i.e., 1
ij
a  if agents i  and j  are neighbors, and 0

ij
a  

otherwise; the general case when 0
ij
a  can be obtained with few modifications. The index of 

uncertainty is defined by comparing the center of gravity of the true neighbors of agent j , and 

the neighbors that agent i  assumes for agent j . 

Define the center of gravity of j 's neighbors as 

 1

1

.

N

jk k

k
j N

jk

k

a x

c

a

=

=

=




 (3.33) 

When considering the virtual neighbors that agent i  assigned to agent j , we can acknowledge 

two mutually exclusive sets: the assigned true neighbors, which are actually neighbors of j , 

and the assigned false neighbors, which are not neighbors of j . Let the center of gravity of the 

assigned true neighbors be 

 1

1

ˆ ,

N

ik jk k ji i

true k
ij iN

ik jk ji

k

a a x a x

c j N

a a a

=

=

+

= 

+




 (3.34) 

and the center of gravity of the assigned false neighbors is 

 1

1

(1 ) (1 )

ˆ ,

(1 ) (1 )

N

ik jk k ji i

false k
iij N

ik jk ji

k

a a x a x

c j N

a a a

=

=

− + −

= 

− + −




 (3.35) 

Finally, let *  be the actual combination of types of the agents in the game, and *( )jp   

the belief of agent j  about  * . The index of uncertainty is now defined as follows. 
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Definition 3.4 (Index of uncertainty). Define the index of uncertainty of agent i  about 

agent j  as 

 
*

*

ˆ ˆ 1 ( )1 1
.

ˆ2 2 ( )

falsetrue
j ij ij j

ij true
jij

c c c p

pc






− + −
= +  (3.36) 

 

Thus, index 
ij

 measures how correct agent i  was about the beliefs and the states of 

the neighbors of agent j . The following lemma shows that the index of uncertainty is a 

nonnegative scalar, with 0
ij

 if i  is absolutely correct about j ’s neighbors and beliefs, and 

ij
 if the factors that influence j ’s behavior are completely unknown to i . 

Lemma 3.2. Let the index of uncertainty of agent i  about its neighbor, agent j , in a 

Bayesian game be as in (3.36). Then,  )0,ij   . 

Proof. Notice that ˆtrue
j ijc c−  is a pseudo-center of gravity of all agents that are neighbors 

of agent j  but are not neighbors of i . Therefore, ˆ ˆ falsetrue
j ij ijc c c− +  is a measure of all the agents 

that agent i  got wrong in its assumptions. If all of i 's assignments are true, then 

ˆ ˆ 0falsetrue
j ij ijc c c− + = . On the contrary, if all alleged neighbors of j  were wrong, then ˆ 0true

ijc = . 

Similarly, it can be seen that the second term in (3.36) is zero if *( ) 1jp  = , and it tends 

to infinity if *( ) 0jp  = .   

Theorem 3.4 uses the index of uncertainty (3.36) to determine a sufficient condition for 

the beliefs of an agent to converge to the actual types of the game * . Lemma 3.3 is used in 

the proof of this theorem. 

Lemma 3.3. Let *  be the actual combination of types in the game and consider the 

likelihood ( ( ) | ( ), )i ip x t T x t − −+  in (3.20). If the inequality 

 *( ( ) | ( ), ) ( ( ) | ( ), ')i i i ip x t T x t p x t T x t − − − −+  +  (3.37) 
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holds for every combination of types *'  at time instant t T , then 

 * *( | ( ), ( ), ) ( | ( ), ).i i i i ip x t T x t p x t   − − −+   

Proof. Let ( ) ( ( ) | ( ), )i i ip x t T x t − − = +  be the likelihood of agent i  for types . 

Because ( | ( ), ) 1i ip x t


 −


= , we have 

 

* *

* 1 *

1 1

( ) ( ) ( | ( ), )

( ) ( | ( ), ) ( ) ( | ( ), )

( ) ( | ( ), ) ( ) ( | ( ), )

( ) ( | ( ), )

( ( ) | ( ), )

i i i i

M
i i i i i i

M M
i i i i i i

i i i

i i i

p x t

p x t p x t

p x t p x t

p x t

p x t T x t





   

     

     
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

−



− −

− −

−



− −
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= 
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where inequality (3.37) was used in the third step, and the expression (3.24) was used in the 

last step. Now, from the Bayes rule (3.20) we can write 

 

* *
*

*

( ) ( | ( ), )
( | ( ), ( ), )

( ( ) | ( ), )

( | ( ), )

i i i
i i i

i i i

i i

p x t
p x t T x t

p x t T x t

p x t

  
 



 

−
− −

− −

−


+ =

+



 

which completes the proof.    

Theorem 3.4. Let the beliefs of the agents about the epistemic type  be updated by 

means of the Bayesian rule (3.20), with the likelihood computed by means of a normal 

probability distribution with mean ij
  as in (3.32), and covariance ijCov . Then, the beliefs of 

agent i  converge to the correct combination of types *  if the index of uncertainty (3.36) is 

close to zero for all its neighbors j . 

Proof. Consider the case where 0
ij

; this occurs when the actual neighbors of agent 

j  are precisely agent i  and agent i ’s neighbors, and agent j  assigns probability one to the 

combination of types * . This implies that the state value ( )jx t T+  will be exactly the estimation 

*

ˆ ( )jx t T +  and the highest probability of the normal distribution is obtained for the likelihood 

*( ( ) | ( ), )j ip x t T x t −+ . By Lemma 3.3, the belief in type *  is increased at every time step T , 
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converging to 1. 

If 
ij

 is an arbitrarily small positive number, then the center of gravity of the assigned 

neighbors is close to the center of gravity of the real neighbors of agent j . Furthermore, the 

beliefs of j  in the combination of types *  is close to 1. Now, the estimation of the state 

*

ˆ ( )jx t T +  is arbitrarily close to the actual state ( )jx t T+ , making the likelihood 

*( ( ) | ( ), )j ip x t T x t −+  larger than the likelihood of any other type . Again, the conditions of 

Lemma 3.3 hold and the belief in the type *  converges to 1 at each iteration.    

Remark 3.8. A large value for the index of uncertainty expresses that an agent lacks 

enough information to understand the behavior of its neighbors. This implies that the beliefs of 

the agent cannot be corrected properly. 

Remark 3.9. The index of uncertainty is defined for analysis purposes and is unknown 

to the agents during the game. It allows to determine if the agents have enough information to 

find the actual combination of types of the game. 

 

3.4. Non-Bayesian Belief Updates 

The Bayesian belief update method presented in the previous section starts with the 

assumption that every agent knows its own type at the beginning of the game. In some 

applications, however, an agent can be uncertain about its type, or the concept of type can be 

ill-defined. In these cases, it is still possible to solve the Bayesian graphical game problem if we 

allow more information to flow through the communication topology. In [47], a non-Bayesian 

belief update algorithm is shown to efficiently converge to the type of the game . In this 

section, we use this method as an alternative to the Bayesian update in Section 3.3 when every 

agent can communicate its beliefs about  to its neighbors. 

Let the belief update of player i  to be computed as 
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1

( ( ) | ( ), )
( | ( ), ( )) ( | ( )) ( )

( ( ) | ( ))

N
i i i

i i i ii i i ij j

i i i j

p x t T x t
p x t T x t b p x t a p

p x t T x t


  

− −
− − −

− − =

+
+ = +

+
  (3.38) 

where ( )
j
p  are the beliefs of agent j  about , and the constant 0iib   is the weight that 

player i  gives to its own beliefs relative to the graph weights 
ij
a  assigned to its neighbors. 

Notice that it is required that 
1

1
N

ij iij
a b

=
+ =  for ( | ( ), ( ), )i i i ip x t T x t − −+  to be a well-defined 

probability distribution. 

Equation (3.38) expresses that the beliefs of agent i  at time t T  is a linear 

combination of its own Bayesian belief update, and the beliefs of its neighbors at time t . This is 

regarded as a non-Bayesian belief update of the epistemic types. 

Notice that (3.38) does not consider the knowledge of 
i
 by agent i . The assumption 

that the agents can communicate their beliefs to their neighbors is meaningful if we consider the 

case when the agents are uncertain about their own types; otherwise they would be able to 

inform to their neighbors about their actual type through the communication topology.  

Similar to (3.27), the factors in the first term of (3.38) can be decomposed in terms of 

the states and types of i  neighbors as and non-neighbors, such that 

 

1 1

1 1

1

( ( ) | ( ), )
( | ( ), ( )) ( | ( ), , , )

( ( ) | ( ))

( | ( ), , , ) ( )

i

i

i j i
i i i ii j i j

i j ij N

N

k i k ij j

jk N

p x t T x t
p x t T x t b p x t

p x t T x t

p x t a p


   

   

−
− − − −

−

− −

=

+
+ =

+

 +





 (3.39) 

where dependent epistemic types have been considered. 

 

3.5. Simulation Results 

In this section, two simulations are performed to show the behavior of the agents during 

a Bayesian graphical game using a Bayesian and a non-Bayesian belief updates. The solutions 

of the BHJ equations for Nash equilibrium are given. 
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3.5.1. Parameters for simulation 

Consider a multiagent system with 5 agents and one leader, connected in a directed 

graph as shown in Fig. 3.1. All agents are taken with single integrator dynamics, as 

 
,1 ,1

,2 ,2

i i
i

i i

x u
x

x u

   
= =   
   

 

In this game, only agent 1 has two possible types, and all other agents start with the same prior 

knowledge of the probabilities of each type. Let agent 1 have type 1 40% of the cases, and type 

2 60% of the cases. 

The cost functions of the agents are taken in the form (2.7), considering the same 

weighting matrices for all agents, that is, 
ij kl
Q Q , 

ii jj
R R  and 

ij kl
R R  for 

, , , {0,1,2,3,4,5}i j k l . For type 
1
, the weighting matrices are taken as 

 1
4

,
210

ij

I I
Q

I I


− 

=  
− 

 

1 10
ii
R I and 1 20

ij
R I  for i j , where I  is the identity matrix. The matrices of the cost 

functions for type 
2
 are taken as 

 
Fig. 3.1.  Graph topology employed in simulation of Bayesian games. 
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 2
16 16

,
16 32

ij

I I
Q

I I


− 

=  
− 

 

2

ii
R I  for all agents i , and 2 2

ij
R I  for i j . 

To solve this game, we start by considering a general formulation for the value 

functions of the game, and then we show that the control policies of the agents are optimal and 

distributed. Propose a value function with the form 
0

N T
ij iji ij ij

V a P  
=

= , where 0i ia g= , 

0 0
T

T T
i i  =    and 

T
T T

ij i j   =    for 0j , as solution for the cost function (2.6) - (2.7) for type 

. Notice that this value function is not necessarily distributed because it depends on the local 

information of the neighbors of agent i . We prove below that, for type 1, matrix 1

iP  has the 

form 

 1
0

0 0
i

I
P  

=  
 

 (3.40) 

and, for type 2, 

 2
2 0

0 0
i

I
P  

=  
 

 (3.41) 

for all agents, and hence distributed policies are obtained.  

Express the expected Hamiltonian for agent i  as 

 ( )
2

1 0

( ) 2
N

T T T T
i ij ij i j ijij ij i ii j ij ij i

j

EH p a Q u R u u R u P   



    
= =

= + + +  

where the derivative ij  when 0j  is given by 

 1

1

( )
.

( )

N
i i i i ik ki k

N
j j j j j jk k

k

A d g Bu a Bu

A d g Bu a Bu



 

=

=

 + + − 
 = 
   + + − 




 

From the expected Hamiltonian, the optimal control policies are obtained as 

 

12 2
*

1 0 1

( ) ( ) ( )
N

ij T T
i i i ji ijii i

i ij

a
u p R d g B a B p P

d g
 

 

  

−

= = =

   
= − + −     

+   
    (3.42) 
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which, as mentioned before, are not necessarily distributed. Using the policies *
i
u  for all agents, 

we find that the BHJ equations that must be solved by matrices 
i
P  are 

 ( )
2

* * * * *

1 1

( ) 2 0.
N

T T T T
ij ij i j ijij ij i ii j ij ij i

j

p a Q u R u u R u P   



    
= =

+ + + =  (3.43) 

To show that (3.42) with 
i
P  as in (3.43) is the optimal policy for agent i , express the 

expected cost of agent i  as 

 ( )
0 0

1

( ) ( ) ( ) ( (0)).
N

T T T
i ij ij ij i i j jij ii ij i i

j

EJ p a Q u R u u R u dt p V dt p V    

  

     
 

 =  

= + + + +     

Similarly as in Lemma 3.1, it is easy to show that 

 

( )* *

0
1

* *

0 0

( )

( ) ( ) ( ) ( ) ( ) ( (0))

N
T T T

i ij ij ij i i j jij ii ij
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 

  

= + +

+ + − − +



   

 

for all 
i
u  and 

i
u . As (3.43) holds, if all neighbors of agent i  use their best strategies *

i
u , then 

 * *

0
( ) ( ) ( ) ( (0))T

i i i ii i i iEJ p u u R u u dt V 



 




 = − − +
  

   

and *
i
u  in (3.42) is indeed the optimal strategy of agent i .  

To show that (3.40) and (3.41) solve the equations (3.43) for all agents, substitute the 

matrices in the value functions 
i
V  and the policies *

i
u  of the agents. Thus, for type 

1
, we can 

write 1 ( ) T
i i ii iV d g  = + ;  for type 

2
, 2 2( ) T

i i ii iV d g  = + ; and the optimal control policies are 

given by 

 ( )
12

*
1 2

1

( ) ( ) ( ) 2 ( ) .T
i i i iiiu d g p R B p I p I



   

−

=

 
= − + + 

 
  

Notice that matrices (3.40) and (3.41) make *
i
u  distributed. Using the expressions (3.42) and 

(3.43) and the cost functions of the game, we obtain the following result for type 
1
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Substituting *
i
u  and *

j
u  we get 

 
1

0 0

1
0

4 8 8 4 8 8 4

10 10 10 10 10 10 10

4 8 8 4 8 8 8
0

10 10 10 10 10 10 10

N N
NT T T T T T T

ij i i i j j j i i j j ij i i ij i jj
j j

N
NT T T T T T T

ij i i i j j j i i j j i i ij i jj
j

a a a

a a

             

             

=
= =

=
=

   
− + + − − +   

   

 
= − + + − − + = 

 

  

 

 

Similarly, for type 
2
 we have 
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 Finally, the BHJ equations for all agents, 1,...,5i = , can be written as  
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Therefore, matrices 1

i
P  and 2

i
P  are the solutions of the game. As the control policies obtained 

from these matrices are distributed, this numerical example has shown a system for which 

Assumption 2.1 holds. 
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3.5.2. Bayesian belief update 

With the exception of agent 1, let all players update their beliefs about the type  every 

0.1 seconds, using a Bayesian belief update (3.29) with naïve likelihood approximation, as 

described in Section 3.3. During this simulation, agent 1 is in type 1. 

The state dynamics of the agents are shown in Fig. 3.2. In Fig. 3.3, the evolution of the 

beliefs of every agent is displayed. Note that all beliefs approach probability one for type 
1
, and 

all agents end up playing the same game. 

 

3.5.3. Non-Bayesian Belief Update 

The simulation is now repeated using (3.39) for the non-Bayesian belief update. Agent 

1 is again in type 1, and agents 2 to 5 share their individual beliefs about 
1
 with their neighbors 

according to the communication graph topology.  

Figure 3.4 shows the convergence of the beliefs in type 1 of the four agents. 

Convergence is faster in this case, due to the additional flow of information about the beliefs of 

the agents. 

 

 
Fig. 3.2.  Trajectories for both states of the five agents in Bayesian games. 
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3.6. Conclusion 

Multiagent systems analysis was performed for dynamical agents engaged on 

interactions with uncertain objectives. We reveal for the first time the tight relationship between 

the beliefs of an agent and its distributed best response control policy. Minmax strategies were 

shown to be a practical solution to overcome the lack of information of the agents to achieve 

Bayes-Nash equilibrium. Under appropriate circumstances, the proposed naïve likelihood 

approximation is a useful method to deal with the limited knowledge of the agents about the 

graph topology. 

 
Fig. 3.3.  Evolution of beliefs in type 1 of the agents with Bayesian update. 

  

 
Fig. 3.4.  Evolution of beliefs in type 1 of the agents with non-Bayesian update. 
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Simulations with two different belief update algorithms show the applicability of the 

proposed methods. The Bayesian belief update achieves convergence of the beliefs using 

solely measurements of the states of their neighbors. The non-Bayesian updates take 

advantage of supplementary information to achieve a faster and more robust convergence of 

the beliefs to the true type of the game. 

Further lines of research about Bayesian graphical games include the proposition of 

new solution concepts that yield distributed control policies for the agents. Also, new belief 

update methods can be developed to improve their convergence in environments with 

incomplete information. 
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Chapter 4 

MINMAX SOLUTIONS FOR DIFFERENTIAL GRAPHICAL GAMES 

4.1. Introduction 

Every admissible solution for a graphical game requires the use of distributed control 

policies. This means that the agents are allowed to use only local information received through 

the communication graph to design their control strategies. The distributed-policy requirement, 

however, makes Nash equilibrium generally unattainable among the agents. This fact can be 

intuitively explained by noticing that an agent needs to know its neighbors’ best strategies to 

determine its own best response against them, but the neighbors’ best policies are unknown 

without global state information. Thus, the information restriction imposed by the graph topology 

prevents the multiagent system from reaching an equilibrium. 

The unattainability of Nash equilibrium in graphical games can be addressed by 

proposing alternative solution concepts as objectives for the agents. Even with incomplete 

knowledge about their environment, the agents can be expected to determine a best policy for 

the information they have available. In this chapter, we analyze the behavior of the agents 

connected in a communication graph when they use minmax strategies [1], [28] to achieve their 

goals. Using minmax strategies, each agent assumes the worst possible behavior from its 

neighbors and prepares its best response to oppose them. This assumption is formalized by 

making every agent determine the control policy of its neighbors that would maximize its own 

cost function. From the perspective of an individual agent, the resulting formulation of this 

graphical game is the same as an H  control problem [29]. In turn, the H  formulation can be 

solved as the zero-sum game between a system and a disturbance term [5], [28]. The H  

controller has been thoroughly studied due to its attractive robust characteristics [30]- [32]. 

Thus, minmax strategies provide robust control policies for the networked agents due to their 

conservative assumption about the worst neighbor behavior. 
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A useful method to solve H  problems has been proposed with the use of 

reinforcement learning (RL) algorithms [33]-[36]. An off-policy RL algorithm [36] is also 

proposed in this chapter to solve the minmax problem without any knowledge of the model of 

the agents, nor any knowledge about the neighbor control policies. Off-policy RL has been used 

to solve H  problems in [37], [38]. 

In the remainder of this chapter, Section 4.2 presents the minmax strategies problem 

and its solution is obtained. The stability of minmax policies is studied in Section 4.3. Section 

4.4 analyzes the robustness of minmax strategies. An off-policy RL algorithm is presented in 

Section 4.5 to solve the minmax problem. Simulation studies are presented in Section 4.6. 

 
 

4.2. Minmax Strategies for Graphical Games   

In this section, we first formally present the disadvantages of the Nash equilibrium 

solution for games in communication graphs. Then, we remedy these inconveniences by 

defining the minmax strategies for differential graphical games. 

 

4.2.1. Drawbacks in Nash equilibrium 

In Section 2.4, it was presented that in a graphical game with agent dynamics (2.2) - 

(2.3), and performance indices (2.6) - (2.8) Nash equilibrium is obtained by means of the control 

policies (2.11), repeated here for completeness, 

 * 11
( ) ( )

2

T
i i i ii i iu d g R B V −= − +   (4.1) 

where the value function ( )
i i
V  is obtained as the solution of the HJ equation (2.12). 

Substituting the policies (4.1) in (2.12) for all agents i , j  in the game, we obtain the explicit HJ 

equations  
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2
1

2 1 1

1 1

( )

4
1 1

( ) ( ) 0.
4 2

T T T Ti i
i i i i i i i i

N N
T T T T

ij j j j j j ij j j i j j
j j

d g
Q V A V BR B V

a d g V BR B V a d g V BR B V

 (4.2) 

A valid distributed control policy (4.1) requires that the value function for agent i  

employs only local information. For this reason, we made Assumption 2.1 in Chapter 2, stating 

that ( ) ( )
i i i
V V . Using this assumption, and rearranging the HJ equation (4.2), we obtain 

 

1

1

1 1

1

1

4

1
( )

4

N T
T

ij i j j i j
j

N
T T T T

ij i i i i j i i i i i i
j

a V V BR B V V

a V B d g R R B V Q V A

 (4.3) 

where ( )
j j j j
V d g V . This equation has the form 

1 2
( , ) ( )
i i i

f f , with 
i
 the local 

errors of the neighbors of i , and in most cases it will not hold true for all possible neighbor 

trajectories 
i
. 

In general, there may not exist a set of functions ( )
i i
V  that solve the HJ equations 

(4.2) and provide distributed control policies for the agents. This is an expected result due to the 

limited knowledge of the agents connected in the communication graph. If agent i  does not 

know the local information of its neighbors, 
j
, then it cannot determine their best responses in 

the game and prepare its best strategy accordingly. 

We are now in a position to propose minmax strategies as a practical alternative to the 

Nash equilibrium solution. 

 

4.2.2. Formulation of minmax strategies 

Let agent i  prepare its minmax strategy by making the conservative assumption that 

the goal of its neighbors is to maximize its own performance index, 
i
J . The following definition 

formalizes the concept of minmax strategy employed in this dissertation. 
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Definition 4.1 (Minmax strategies for graphical games). In a differential graphical 

game, the minmax strategy of agent i  is given by 

 
* argminmax , , .

i i
i i i i iu u
u J u u  (4.4) 

 

The performance index (2.6) - (2.7) requires to be modified to formulate a zero-sum 

game between agent i  and its neighbors. To this end, define the function 

 2

0
1

( )
N

T T T
i i i i i i i i i ij j j j

j

J Q d g u Ru a u R u dt  (4.5) 

where 0
i
Q , , 0

i j
R R  and  is a positive scalar. To determine its minmax strategy, agent i  

assumes that the goal of its neighbors is to maximize its cost function (4.5). 

Define the Hamiltonian function associated with the cost index (4.5) as 

 

2

1

1

( )

( ) .

N
T T T

i i i i i i i i i ij j j j
j

N
T
i i i i i ij j

j

H Q d g u Ru a u R u

V A d g Bu a Bu

 (4.6) 

If the value function 
i
V  has a quadratic form as 

 ( ) T
i i i i i
V P  (4.7) 

then (4.6) can be expressed as 

 

2

1

1

( )

2 ( ) .

N
T T T

i i i i i i i i i ij j j j
j

N
T
i i i i i i ij j

j

H Q d g u Ru a u R u

P A d g Bu a Bu

 (4.8) 

The optimal control policy for agent i  is now obtained by means of the stationary 

condition 0i

i

H

u
, which yields 

 * 1 .T
i i i i
u R B P  (4.9) 
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Similarly, the worst-case policy of the neighbors of agent i  can be obtained as 

 * 1

2

1
.T

j j i i
R B P  (4.10) 

Notice that *

j
 is not necessarily the actual control policy employed by agent j , represented by 

j
u . 

The HJ equation to be solved for matrix 
i
P  is finally obtained by substituting the policies 

(4.9) and (4.10) in (4.8), and equating it to zero. This procedure yields the algebraic Riccati 

equations (ARE) 

 1 1

2
1

1
( ) 0

N
T T T

i i i i i i i i ij i j i
j

Q PA A P d g PBR B P a PBR B P  (4.11) 

The following theorem shows that control policy (4.9) with 
i
P  obtained as the solution of (4.11) 

provides the minmax strategy for agent i . The proof of this theorem assumes stability of the 

error dynamics (2.5); such stability will be analyzed in the next section. 

Theorem 4.1. Let the agents of a differential graphical game with dynamics (2.2) and a 

leader with dynamics (2.3) use the control policies (4.9) where matrices 
i
P  are the solutions of 

the AREs (4.11). Moreover, assume these control policies stabilize the local synchronization 

errors (2.5) for all agents i . Then, all agents follow their minmax strategies as defined in 

Definition 4.1, and the minmax value of the game is ( (0))
i i
V . 

Proof. Consider the value function (4.7) and express the performance index (4.5) as 

 

2

0 0
1

0
1

( ) ( )

2 ( ) .

N
T T T

i i i i i i i i i ij j j j i i
j

N
T
i i i i i i ij j

j

J Q d g u Ru a u R u dt V dt

P A d g Bu a Bu dt

 

Using the inner-product notation (2.15), we can express 
i
J  as 
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2

1

1

, ( ) , , ( (0)) 2 ,

2( ) , 2 ,

N

i i i i i i i i i ij j j j i i i i i
j

N

i i i i i ij i i j
j

J Q d g u Ru a u R u V PA

d g Pu a PBu

 

where we have used the fact that 
0
( ) ( ( )) ( (0))
i i i i i i
V dt V V , and that, because the 

system is stable, ( ( )) 0
i i
V  in the limit as . As 

i
P  makes the ARE (4.11) hold, we get 

 

* * 2 * *

1

2 * 2 *

1 1

* * 2 * *

1

( ) , , ( ) ,

, 2( ) , 2 ,

( (0))

( ) , ( ) , ( )

( (0))

N

i i i i i i ij j j j i i i i i
j

N N

ij j j j i i i i i ij j j j
j j

i i

N

i i i i i i i ij j j j j j
j

i i

J d g u Ru a R d g u Ru

a u R u d g u Ru a R u

V

d g u u R u u a u R u

V

 (4.12) 

Therefore, *
i
u  in (4.9) with 

i
P  as in (4.11) is the minmax strategy of agent i , (4.10) represents 

the worst-case policies of the neighbors, and the value of the game is given by ( (0))
i i
V .       

Remark 4.1. Control policies (4.9) are always distributed, in contrast to the policies 

based in the Nash solution given by (4.1). 

Remark 4.2. Equations in the form of (4.11) are known to have solutions for 
i
P  if 

( , )
i

A Q  is observable, ( , )A B  is stabilizable, and 1 1

2 1

1
( ) 0

N

i i i ij jj
d g R a R . 

In the following section we analyze the stability properties of the minmax policies (4.9). 

 

4.3. Stability of Minmax Strategies   

Two stability concepts are analyzed in this section for minmax strategies. First, it is 

proven that the system (2.5) with control policies *
i
u  in (4.9) is finite-gain 

2
 stable. Then, 

conditions for asymptotic stability of the global multiagent system are provided. 



53 

 

4.3.1. 
2
 stability 

When using minmax strategies, an agent with error dynamics (2.5) considers the effect 

of its neighbors policies, 
1

N

ij jj
a Bu , as a disturbance term to be rejected. The nominal system 

for agent i  can then be defined as 

 ( ) .
i i i i i
A d g Bu  (4.13) 

This idea provides the foundation of the following stability analysis. 

Define the performance output of agent i  as 

 
2

( ) ( ) .T T
i i i i i i i i i
z t Q d g u Ru  (4.14) 

Similarly, the disturbance input produced by the neighbors of agent i  is defined as 

 
2

1

( ) .
N

T
i ij j j j

j

t a u R u  (4.15) 

According to (2.16), the output (4.14) is 
2
 stable if 

 
2 2

( ) ( )
i i
z t t  (4.16) 

for some , 0 . The following theorem shows the 
2
 stability properties of the minmax 

policies (4.9). 

Theorem 4.2. The system (2.5) with policy *
i
u  as in (4.9) and 

i
P  as the solution of 

(4.11) is 
2
 stable with 

2
-gain bounded by  according to (4.16). 

Proof. In the proof of Theorem 4.1, the final step (4.12) showed that 

 

2

1

* * 2 * *

1

, ( ) , ,

( ) , ( ) , ( ) ( (0)).

N

i i i i i i i i i ij j j j
j

N

i i i i i i i ij j j j j j i i
j

J Q d g u Ru a u R u

d g u u R u u a u R u V
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Because 
2
 stability must hold for all initial conditions, select (0) 0

i
. This implies 

( (0)) 0
i i
V . Let *

i i
u u  to obtain 

 2 2 * *

1 1

, ( ) , , , ( ) 0
N N

i i i i i i i i ij j j j ij j j j j j
j j

Q d g u Ru a u R u a u R u  

which implies 

 2

1

, ( ) , ,
N

i i i i i i i i ij j j j
j

Q d g u Ru a u R u  

Taking the square root of both sides of the inequality shows that (4.16) holds.  

The asymptotic stability of minmax strategies is studied in the following subsection. 

 

4.3.2. Asymptotic stability 

It is now of our interest to determine the conditions for asymptotic stability of the global 

system, i.e., the simultaneous stability of the dynamics (2.5) for all agents 1, ,i N . To 

analyze the influence of the neighbors of agent i  in the stability properties of the system, 

substitute the control policies of the form (4.9) in the error dynamics (2.5) to get 

 1 1

1

( ) .
N

T T
i i i i i i ij j j j

j

A d g BR B P a BR B P  (4.17) 

System (4.17) can be expressed in global form by defining the variable 
1
, ,

T
T T

N
, 

such that 

 1( ) ( ) ( )I A L B R I B P  (4.18) 

where I  is an identity matrix of appropriate dimensions,  represents the Kronecker product, 

diag { }
i i

R R  and diag { }
i i

P P . Fig. 4.1 shows the block diagram of the feedback global 

system in a communication graph. 

Two additional assumptions will be considered to complete the asymptotic stability 

analysis of the global system (4.18). 
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Assumption 4.1. The matrices 
i
R  in the performance indices (4.5) are selected such 

that 
i j
R R R  for all agents i  and j . 

Assumption 4.2. The graph weights 
ij
a  and 

i
g  have sufficiently small magnitudes for 

all paris ,i j , such that 

 1

min max2

1
( ) 1 T
i i i i i
Q d g PBR B P  (4.19) 

with all matrices defined in the ARE (4.11), and where 
min
( )  and 

max
( )  are, respectively, the 

minimum and maximum eigenvalues of a matrix. 

If Assumption 4.1 holds, then we can write 1 1R I R , and the global dynamics 

(4.18) can be expressed as 

 1( ) ( ) .TI A L BR B P  (4.20) 

Similarly, the ARE (4.11) can be written as 

 1

2

1
1 .T T

i i i i i i i i
Q PA A P d g PBR B P  (4.21) 

 
Fig. 4.1.  Closed-loop multiagent system in graphs. 
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The following lemmas are consequences of Assumptions 4.1 and 4.2, and will be used in our 

main proof of stability below. 

Lemma 4.1. Let L  be the Laplacian matrix of a strongly connected graph, and define 

the matrix diag { }
i i

W w  where 
1
, ,T

N
w w w  is the left eigenvector of L  associated with 

the eigenvalue 0 . Let R  be a symmetric, positive definite matrix. Then, 

 1 1

1

T T TWL BR B LW BR B S  (4.22) 

with 
1 1

0TS S . 

Proof. It is proven in [53] that 0TWL LW S  for strongly connected graphs.By 

properties of the Kronecker product [54] and the fact that 1 TBR B  is a symmetric, positive 

semidefinite matrix, (4.22) holds.  

Lemma 4.2. If matrix A  has all its eigenvalues with non-positive real parts, matrix 
i
P  

solves the ARE (4.21) and Assumption 4.2 holds, then 

 
2

T
i i
PA A P S  (4.23) 

for some 
2 2

0TS S . 

Proof. Express the ARE (4.21) as 

 1

2

1
1 .T T

i i i i i i i i
PA A P Q d g PBR B P  (4.24) 

If (4.19) holds, it is clear that the right-hand side of (4.24) is a positive semidefinite matrix, which 

is a sufficient condition for (4.23).  

We are ready to prove that the minmax policies (4.9) make the global system (4.20) 

asymptotically stable. The following theorem is the main result in this section. 

Theorem 4.3. Let the conditions in Theorem 4.1 hold, and make Assumptions 4.1 and 

4.2. Furthermore, let the graph  have a spanning tree with the leader node as the root. Then, 

control policies (4.9) make the system (4.20) asymptotically stable. 
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Proof. The proof of this theorem is divided in two parts. First, we prove that asymptotic 

stability is achieved for strongly connected graphs. Then, we generalize the result for graphs 

with a spanning tree. 

Thus, assume first that the graph  is strongly connected, and notice that Lemmas 4.1 

and 4.2 hold from Assumptions 4.1 and 4.2. Premultiplying and postmultiplying both sides of the 

inequality (4.22) by 1W I , we obtain 

 1 1 1 1

1

T T TW L BR B LW BR B S  

where 1 1

1 1
( ) ( )S W I S W I . Following a similar procedure, from (4.23) we can obtain 

 1 1 1 1

2

T
i i i i
w AP w P A S  

with 1 1 1
2 2i i i
S w P S P . 

Define now the matrix ( ) diag { }
w i i i
P W I P w P  with 

i
w  the i th element of the left 

eigenvector w  of L . Because the graph is strongly connected, 0
i
w  for all i  [16]. Now, 

 

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

0

T
T T

w w

T T T T

w w

T T T T
w w

P I A L BR B P I A L BR B P P

P I A W I L BR B I A P L BR B W I

P I A W L BR B I A P LW BR B

S S

 

Notice that this is a Lyapunov equation and the system (4.20) is stable. Moreover, using 

LaSalle’s extension and noticing that 0  only when synchronization has been achieved, we 

conclude that the system is asymptotically stable. 

Consider now the case when the graph  has a spanning tree with the leader as a 

root. If  has a spanning tree but is not strongly connected, then the Laplacian matrix is 
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reducible and can be expressed by means of a permutation transformation as the Forbenius 

form [13] 

 

11

21 22

1 2

0 0

0

M M MM

L

L L

L L L

 

where each submatrix 
kk
L  is irreducible. Irreducibility of matrix 

kk
L  implies that the subgraph 

connecting only the agents in the k th block row of L  is strongly connected. This immediately 

shows, due to the first part of this proof, that the dynamics of the agents in the first block row 

are asymptotically stable. 

We can now prove stability of the global system by induction. Assume that all agents in 

the block rows 1 to 1k  have stable dynamics. Thus, as t , the influence of their local 

errors 
j
 over the dynamics (4.17) of the agents in the k th block row vanishes. This leaves 

only the strongly connected interaction of the agents in the k th block row, which is proven to be 

stable.   

In the following section, we study the guaranteed robustness properties of minmax 

strategies. 

 

4.4. Robustness Analysis for Minmax Strategies   

In this section, we are particularly interested in determining the gain and phase margins 

of the agents provided by the minmax policies (4.9). Our approach to perform this analysis is to 

consider each individual agent using its minmax input (4.9) and determine how the neighbor 

policies, seen as a disturbance, affect its stability. 

Let the perturbed version of the nominal system (4.13) be given by the dynamics 

 ˆ ˆ ( )( )
i i i i i
A d g B u  (4.25) 
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where the disturbance   is assumed to be a finite-gain operator with 0 0 , and ˆ
i
 

represents the state trajectories of the perturbed system. We let ˆ(0) (0)
i i

. 

The subsequent robustness analysis follows a similar procedure as in [44]. The 

following lemma shows a sufficient condition on the disturbance   that guarantees the stability 

of ˆ
i
. Notice that guaranteeing the stability of ˆ

i
 implies the stability of 

i
. 

Lemma 4.3. If the perturbation   of the system (4.25) is such that 

 1 1

2 1

1
,[( )(2 ) ] 0

N

i i i i ij j ij
u d g I R a R u  

for all 
2
[0, )m

i
u , then 

 ˆ ˆ(0) (0) , .T
i i i i i i
P Q  (4.26) 

If, additionally, [ , ]
i

A Q  is detectable, then ˆ
i
 is asymptotically stable. 

Proof. Using the definition of the perturbed system (4.25) and the ARE (4.21), we have 

for every , 

 

0

1

1

1 1

2

ˆ ˆ ˆ ˆ(0) (0) ( ) ( ) ( ) ( )

ˆ ˆ2 , ( ( ) )

ˆ ˆ ˆ ˆ,( ) ,2( )

1ˆ ˆ ˆ,( ) ( ) , ( )

T T T
i i i i i i i i i

T
i i i i i i i

T T
i i i i i i i i i i i

T T
i i i i i i i i ij i i i

d
P P t P t dt

dt
P A d g B R B P

PA A P d g PB R B P

d g PB I R B P a PB I R B P





 
1

ˆN

i ij
Q

 

where ˆ
i

 is the truncation of ˆ
i
 as defined in (2.14). Define the expression 

1 2 1

1
( )(2 ) (1 / )

N

i i i i ij jj
d g I R a R , and write 

 

ˆ ˆ ˆ ˆ(0) (0) , ,

ˆ ˆ,

, 0

T T
i i i i i i i i i i i

T T
i i i i i

i

P Q PB B P

B P B P

u u

 



60 

where ˆT
i i

u B P  and the last inequality holds by assumption. In the limit , it follows 

that ˆ ˆ(0) (0) ,T
i i i i i i
Q Q , which implies that ˆ ˆ,

i i i
Q  is bounded. As [ , ]

i
A Q  is detectable, 

ˆ
i
 is square-integrable. Because   has finite gain, so does the matrix 1( ) T

i i i i
A d g B R B P . 

From (4.25), we notice that ˆ
i
 is also square-integrable. Since both ˆ

i
 and ˆ

i
 are square-

integrable, ˆ
i
 is asymptotically stable [44].  

The following theorem establishes the result in Lemma 4.3 for the case when the 

disturbance   is a linear operator. 

Theorem 4.4. Let   be a finite-gain linear time-invariant operator  with transfer 

matrix ( )H s . If for all  

 1 1 * 1 1

2
1

1
( ) ( ) ( ) 0

N

i i i i i ij j
j

d g H j R R H j R a R  (4.27) 

and if [ , ]
i

A Q  is detectable, then the system (4.25) is asymptotically stable. 

Proof. Expressing   as a linear operator  and using Parseval’s theorem, we get 

 

1 2 1

1

1 2 1

1

* 1 1 * 1 2 1

1

,[( )(2 ) (1 / ) ]

,[( )(2 ) (1 / ) ]

1
( )[( )( ( ) ( ) ) (1 / ) ] ( )

2
0

N

i i i i ij j ij

N

i i i i ij j ij

N

i i i i i i ij jj

u d g I R a R u

u d g I R a R u

j d g H j R R H j R a R j d



 

where the last inequality holds by the assumption in (4.27). The proof is completed by Lemma 

4.3.  

From Theorem 4.4 we derive our main robustness results. The following corollary holds 

for a particular selection of matrices 
i
R  and disturbance  . 

Corollary 4.1. Let 
,

diag { }
i k i k
R r  for positive scalars 

,i k
r , and let the disturbance   be 

such that 
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1 ,1

,

i

i

m i m

u

u

u







 (4.28) 

If each of the perturbations 
k

  is linear time-invariant with proper transfer function ( )
k
H s , 

Re{ } 0
j
s  for all poles 

j
s  of ( )

k
H s , and 

 
,

2
1 ,

1 1
Re{ ( )} 1

2 ( )

N
i k

k ij
j j ki i

r
H j a

rd g
 (4.29) 

for all , then the system (4.25) is asymptotically stable. 

Proof. Re{ } 0
j
s  assures that   has finite gain. Take ( ) diag { ( )}

k k
H s H s . Now, 

 

1 * 1

, ,2
1

1 1 1

, , ,2
1

,1 1 1

, , ,2 2
1 1,

1
( ) ( ( ) ( ) 1)

1
2( )( Re{ ( )} )

1 1 1 1
2( ) ( )

2 2

0

N

i i i k k k ij j k
j

N

i i i k k i k ij j k
j

N N
i k

i i i k ij i i i k ij j k
j ji i j k

d g r H j H j a r

d g r H j r a r

r
d g r a d g r a r

d g r

 

As the conditions of Theorem 4.4 are satisfied, (4.25) is asymptotically stable.   

We can finally determine the phase and gain margins of minmax strategies by means of 

the following result, which follows from Corollary 4.1. 

Corollary 4.2. Let the conditions of Corollary 4.1 hold. A phase shift 
i
, with 

60
i

, where 2arc cos(0.25( 12 3 ))c c  and 1 2 1
, ,1

1 ( )
N

i i ij i k j kj
c d g a r r , in 

the respective feedback loops of each of the controls 
i
u  will leave an asymptotically stable 

system. Moreover, inserting a gain of 
k

 such that  

 
,

2
1 ,

1 1
1
2 ( )

N
i k

k ij
j j ki i

r
a
rd g

 (4.30) 

in the feedback loop of the controllers 
,i k
u , leaves the system asymptotically stable. 
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Proof. Expressing the complex number ( )
k
H j  in polar form, it is clear from Corollary 

4.1 that the condition for stability is 

 
,1 2

1 ,

1 1
cos ( ) ( )

2 2

N
i k

k i i ij
j j k

r
d g a

r
 

or  

 
,1 2

1 ,

1 1
( ) arccos ( )

2 2

N
i k

k i i ij
j j k

r
d g a

r
 

Using trigonometric identities, we can express this result as 

 
21 12 3

( ) arccos arccos
2 4k

c c
 

with the constant c  defined in the corollary statement. This proves the minimum phase margin 

of minmax policies. 

Furthermore, it is clear from Corollary 4.1 that if ( )
k
H j  represents a scalar gain 

k
, 

then (4.30) guarantees stability of the system.   

Remark 4.3. Corollary 4.2 shows that the minmax strategies have infinite gain margin, 

gain reduction tolerance of more than 50% and a phase margin of more than 60°. The amount 

of additional phase delay and the amount of additional gain reduction tolerance depend on the 

selection of matrices 
i
R , parameter  and the graph topology. This is an improved result from 

the LQR robustness properties, which are known to have infinite gain margin, 50% gain 

reduction tolerance and 60° of phase margin. 

 

4.5. Off-Policy Learning for Minmax Strategies   

In this section, an off-policy RL algorithm is proposed to determine the solutions of the 

Riccati equations (4.11) and obtain the control policies (4.9) that solve the minmax strategies 
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problem. This method is designed such that the agents learn their optimal policies using only 

data measured from their environment, without any knowledge of the system dynamics (2.2). 

To design the off-policy RL algorithm, define the variables k
i
u  and k

j
 as auxiliary 

control policies and express the system dynamics (2.5) as 

 
1 1

( ) ( ) ( ) ( ).
N N

k k k k
i i i i i ij j i i i i ij j j

j j

A d g Bu a B d g B u u a B u  (4.31) 

Here, the variables k
i
u  and k

j
 are the policies to be updated. Notice here that the input 

j
u  

corresponds to the actual policy employed by agent j , while k
j

 is agent i ’s estimation of the 

worst-case neighbor policy. 

Let k T k
i i i i
V P  represent the value function 

i
V  at the k th iteration of our algorithm, 

and notice that the expression 

 ( ( )) ( ( )) ( ) 2
t T t T

k k k T k
i i i i i i i i it t
V t T V t V d P d  (4.32) 

holds. Using the dynamics (4.31) in (4.32), we obtain 

 1

1

1 1
( ( )) ( ( )) ( )

2 2

( ) ( ) ( )

Nt T
k k T k k k
i i i i i i i i i i ij jt

j

Nt T t T
T k k T k k

i i i i i i i i ij j jt t
j

V t T V t P A d g Bu a B d

d g P B u u d P a B u d

 (4.33) 

From the Hamiltonian (4.8), we can obtain the k th iteration Bellman equation as 

 

2

1

1

0 ( )

2 ( ) .

N
T kT k kT k
i i i i i i i i ij j j j

j

N
T k k k
i i i i i i ij j

j

Q d g u Ru a R

P A d g Bu a B

 (4.34) 

Using (4.34) in (4.33) yields 

 

2

1

1, 1,

1

( ( )) ( ( )) ( )

2( ) ( ) 2 ( )

Nt T
k k T kT k kT k
i i i i i i i i i i i i ij j j jt

j

Nt T t T
k T k k T k

i i i i i i ij j j j jt t
j

V t T V t Q d g u Ru a R d

d g u R u u d a R u d

(4.35) 
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where we have also used the fact that the control policies 1k
i
u  and 1k

j
 at iteration 1k  are 

defined as 

 1 1k T k
i i i i
u R B P  (4.36) 

and 

 1 1

2

1k T k
j j i i

R B P  (4.37) 

respectively. Lemma 4.4 shows the equivalence between (4.35) and (4.34). 

Lemma 4.4. The solution k T k
i i i i
V P  of (4.35) is equivalent to the solution of the 

Bellman equation (4.34) in the sense that matrix k
i
P  makes (4.34) hold. 

Proof. Using (4.32), we can express (4.35) as 

 

1, 1,

1

2

1

( ) 2( ) ( ) 2 ( )

( ) .

Nt T
k k T k k T k

i i i i i i i i ij j j j jt
j

Nt T
T kT k kT k

i i i i i i i i ij j j jt
j

V d g u R u u a R u d

Q d g u Ru a R d

 

Let k k
i i i
V V  and use (4.31), (4.36) and (4.37) to get 

 

1

1

2

1

( )

( ) .

Nt T
k k k

i i i i i ij jt
j

Nt T
T kT k kT k

i i i i i i i i ij j j jt
j

V A d g Bu a B d

Q d g u Ru a R d

 

which clearly holds if and only if k T k
i i i i
V P  satisfies (4.34).  

Now, the off-policy RL algorithm consists in solving (4.35) for k
i
V , 1k

i
u  and 1k

j
 

simultaneously. Finding such solutions does not require any knowledge about the system 

dynamics (2.2). A useful method to solve (4.35) using measured data along the system 

trajectories is described in [37]. 

Algorithm 4.1 presents the iterative procedure for each agent i  to determine its minmax 

policy (4.9). 
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The following theorem shows the convergence properties of Algorithm 4.1. 

Theorem 4.5. Algorithm 4.1 converges to the policies (4.9) - (4.10), where matrix 
i
P  

solves the AREs (4.11). 

Proof. Follows directly from Lemma 4.4 and the proof of convergence of the iterative 

procedure consisting of solving the Bellman equation (4.34) and updating the policies (4.36) - 

(4.37) presented in [55].   

 

4.6. Simulation Results   

A numerical example is here presented to test the validity of our theoretical results. 

Consider a set of 5 agents and one leader connected in a communication graph as shown in 

Fig. 4.2. If 
i

j , let 1
ij
a . Each agent is taken with linear dynamics given by (2.2), where 

 
1 2 3 0

, .
2 1 0 3

A B  

The minmax performance indices of the agents are defined by (4.5) with 
1 3

2Q Q I , 
4
Q I  

and 
2 5

3Q Q I , where I  is the identity matrix. Let all agents use the same values for 

2R I  and 2 .  

Algorithm 4.1 is used to learn the solution of the Riccati equations (4.11). The resulting 

matrices 
i
P  are shown below. 

Algorithm 4.1 (Off-Policy RL for Minmax Strategies) 

1: Select initial stabilizing control policies 0
i
u  and 0

j
 for all 

i
j . 

2: Apply a fixed policy k
i i
u u  and collect the required system 

information at M  different sampling intervals. 
3: Use the information collected in Step 2 to solve the Bellman 

equation (4.35) for k
i
V , 1k

i
u  and 1k

j
 for all 

i
j . 

4: Go to Step 2. On convergence, stop. 
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1 2

0.5055 0.0314 1.1928 0.1314
, ,

0.0314 0.3537 0.1314 0.7597
P P  

 
3 4

0.6756 0.0612 0.4991 0.0707
, ,

0.0612 0.4441 0.0707 0.3068
P P  

 
5

0.8049 0.0542
.

0.0542 0.5558
P  

The minmax control policies are now given by (4.9) with the appropriate matrix 
i
P  for 

each agent. Using these policies, the agents successfully achieve synchronization with 

trajectories shown in Fig. 4.3. Figure 4.4 shows the trajectories of the agents also along a time 

axis. 

 

4.7. Conclusion 

Minmax strategies were designed and analyzed as an alternative solution concept for 

differential graphical games. The assumption made by each agent about the worst intentions of 

its neighbors yields robust control policies. Such policies are always distributed in the sense that 

the agents use only local information obtained from the graph topology.  

 
Fig. 4.2.  Graph topology for simulation of minmax strategies. 
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The proposed off-policy RL algorithm is a practical method to determine the minmax 

strategies of the agents without any knowledge about the system dynamics; moreover, this 

algorithm allows to compute the worst-case neighbor policy 
j
 even when this is not the control 

policy used by the neighbors.  

Despite its attractive features, the robustness properties of minmax may be too 

conservative for certain applications. For this reason, research about differential graphical 

games is continued by considering different solution concepts that still allow solutions using 

distributed input policies as described in subsequent chapters. 

 
Fig. 4.3.  State trajectories with minmax policies. 

  

 
Fig. 4.4.  Synchronization in time with minmax policies. 
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Chapter 5 

MULTIAGENT PURSUIT-EVASION GAMES: FINITE-TIME CAPTURE AND ASYMPTOTIC 

BEHAVIORS 

5.1. Introduction 

In the previous chapter, the minmax strategies problem was solved for multiagent 

graphical games. This chapter presents pursuit-evasion games as a specific set of applications 

on which minmax strategies is implemented. 

Pursuit-evasion games are one of the most interesting and widely studied interactions 

in multi-agent systems. Their applications include aircraft control and missile guidance in 

military implementations, as well as in civilian applications such as collision avoidance designs 

in intelligent transportation systems, wireless sensors networks and sport game strategies. 

Animal behavior in hunting scenarios can also be studied using differential game analysis. 

Thus, the agents in pursuit-evasion games can be autonomous mobile robots, unmanned air 

vehicles, spacecraft, wireless sensors or living organisms.  

The single-pursuer single-evader game has been studied in detail since R. Isaac’s 

development of strategic policies for both players [4]. The single-pursuer single-evader case is a 

zero-sum game that can be solved using an extension of the well-known Bellman equations, 

known as the Hamilton-Jacobi-Isaacs (HJI) equations [5]. A closed-form solution of the game 

was obtained by Bryson and Ho, [56]. Extensions of these results have been obtained for the 

case of two pursuers versus one evader [57], and for the multiple-pursuer single-evader case 

[41], [58]-[61]. In [59], a pursuit-evasion game between aircraft is solved by differentiation of a 

particular value function. The discrete-time multiple-pursuer single-evader game is solved in 

[60]. In [7] a thorough survey about the studies on multiple-pursuer single-evader games is 

presented. 

In recent years, modern interacting multiagent systems have motivated the study of 

general multiple-pursuer multiple-evader games. In [61], the pursuit-evasion game with two 
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multi-agent teams was analyzed with a distributed hybrid approach using time potential fields. In 

[62] conditions to guarantee capture or evasion are determined by defining level-set functions 

as objectives for the players. Suboptimal strategies are studied in [63] by decomposing the 

game into multiple two-player games. The possibility of the players being connected in a 

communication graph is considered in [64], where the pursuit-evasion game is formulated as a 

connectivity control problem.  

In the pursuit-evasion game, performance functions are used to represent the interest 

of the pursuers in reaching the evaders’ position and the interest of the evaders in avoiding 

capture. These individual performance indices are then used to define Nash equilibrium and 

other solution concepts for the game [56], [1]. 

As it has been described in this dissertation, the mathematical techniques to analyze 

the behavior of multiagent systems with limited sensing capabilities have been developed in the 

field of graph theory. The most studied interaction for multi-agent systems control using graph 

theory is consensus [65]; some results in this chapter can be seen as a generalization of the 

consensus-seeking protocol. Multiagent systems controllers rely on the implementation of 

distributed algorithms on which each agent computes its feedback controller using only the state 

information it can perceive from its neighbors [13]. Stability analysis of multi-agent systems in 

graphs has been studied in [53], [66].  

The general multiagent pursuit evasion (MPE) games present some interesting 

challenges in designing coordinated strategies among all the pursuers to accomplish the goal of 

capturing the evaders. This requires the development of strategies that combine the tools in 

both differential game theory and cooperative control theory to solve the distributed pursuit-

evasion game. Cooperation among agents has been well studied [67], [68], and their extensions 

when considering a well-defined minimax performance index was recently developed using a 

differential game approach [20]. 
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This chapter is organized as follows. The different graphs and variables that are used 

throughout the chapter are defined in Section 5.2. MPE games on directed graphs are 

formulated in Section 5.3, where Nash equilibrium and minmax strategies are studied as 

possible solutions of the games. In Section 5.4, an algorithm for target selection is proposed, 

and conditions for finite-time capture are stated. Asymptotic behaviors are analyzed in Section 

5.5. Finally, the proposed control policies are tested via simulation studies in Section 5.6. 

 

5.2.Definition of Graphs and System Variables  

This section presents the basic notions and definitions required to analyze the MPE 

game on graphs. Although these definitions are based on the notation presented in Chapter 2, 

they differ by adding useful features to the variables used in this chapter. 

 

5.2.1. Three graphs for MPE game interactions 

The distributed MPE game involves players with limited sensing range, that is, each 

agent is able to measure only the position of its closest neighbors. In this subsection, three 

different graphs are proposed to analyze the MPE game problem. 

Define the graph ( , )p p pV E=  with the N  pursuers as the set of nodes 

1{ , , }p p pNV v v=  and a set of edges p p pE V V  . Let aik be the connectivity weights of graph 

p
, with 1

ik
a  if ( , )pk pi pv v E  and 0

ik
a  otherwise. Define the in-degree of pursuer i  as 

1

Np
iki k

d a
=

=  and the in-degree matrix of the graph diag{ }p
p iD d= . The weighted adjacency 

matrix is [ ]p ika= . Finally, define the graph Laplacian matrix p p pL D= − . 

Similarly, the graph ( , )e e eV E=  represents the interactions among the M  evaders as 

the nodes 1{ , , }e e eMV v v= . The graph weights are 
jl
b , with 1

jl
b  if

 
( , )el ej ev v E , and 0

jl
b  

otherwise. The in-degree of evader j  is 
1

Me
j jll

d b
=

= . Define the matrices diag{ }e
e jD d= , 
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[ ]e jlb=  and e e eL D= − . 

Finally, define the bipartite graph ( , )pe pe peV E=  that includes every player in the game, 

with the set of N  pursuers as one partition and the set of M  evaders as the other. Graph 
pe

 

captures the information exchange among the agents in different partitions. Specifically, edge 

weights 
ij
c  represent the knowledge of pursuer i  about the position of evader j , with 1

ij
c  if 

pursuer i  can measure evader j  and 0
ij
c  otherwise. Similarly, 

ji
e  stands for the knowledge 

of evader j  about the position of pursuer i . The in-degree of pursuer i  in graph 
pe

 is defined 

as 
1

Mpe
iji j

d c
=

= , and the in-degree of evader j  is 
1

Nep
jij i

d e
=

= . Define the pursuer-partition 

matrices diag{ }pe
pe iD d=  and [ ]pe ijc= , and the evader-partition matrices diag{ }ep

ep jD d=  and 

[ ]ep jie= . 

 

5.2.2. Local errors and dynamics 

Consider a team of N  dynamical agents, regarded as the pursuers, each with linear 

dynamics 

 
i i ix Ax Bu= +  (5.1) 

1, ,i N= , where n
ix   is the position of pursuer i  in the n -dimensional space of the game. 

Consider also a set of M  agents as the evader team, with dynamics 

 
j j jy Ay Bv= +  (5.2) 

1, ,j M= , where n
jy   is the position of the j -th evader. 

Similar to Chapter 2, the local error variable i  is defined as the position difference of 

pursuer i  with respect to its neighbors, 

 
1 1

( ) ( ).
N M

i ik i k ij i j

k j

a x x c x y
= =

= − + −   (5.3) 
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The error dynamics can be found from (5.3), using the system dynamics (5.1) - (5.2), as 

 
1 1

( ) .
N M

p pe
i i i ik k ij ji i

k j

A d d Bu a Bu c Bv 
= =

= + + − −   (5.4) 

Similarly, we define the local position error for evader j  as 

 
1 1

( ) ( )
M N

j jl j l ji j i

l i

b y y e y x 
= =

= − − −   (5.5) 

where 0   is a scalar gain, and the local error dynamics are 

 
1 1

( ) .
M N

epe
j j j j jl l ji ij

l i

A d d Bv b Bv e Bu   
= =

= + − − +   (5.6) 

The center of gravity of the agents is now defined to facilitate the analysis developed in 

this chapter. In particular, the center of gravity for pursuer i , ix− , is defined as the weighted 

average of the positions of pursuer i ’s neighbors, 

 
1 1

1
.

N M

i ik k ij jp pe
k ji i

x a x c y
d d

−

= =

 
= + 

+  
   (5.7) 

Then we can determine the center of gravity dynamics as 

 

1 1

1
( ) ( )

,

N M

i ik k k ij j jp pe
k ji i

i i

x a Ax Bu c Ay Bv
d d

Ax Bu

−

= =

− −

 
= + + + 

+  

= +

 

 

where 

 
1 1

1
.

N M

i ik k ij jp pe
k ji i

u a u c v
d d

−

= =

 
= + 

+  
   (5.8) 

We can now represent the local position error of pursuer i  (5.3), and its dynamics (5.4), in 

terms of the center of gravity as follows 

 ( )( ),p pe

i i i i id d x x −= + −  (5.9) 

 ( ) ( ) .p pe p pe

i i i i i i i iA d d Bu d d Bu  −= + + − +  (5.10) 
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Similarly, the pseudo-center of gravity for evader j , jy− , is defined based on the 

neighbors of evader j  as 

 
1 1

1 M N

j jl l ji ie ep
l ij j

y b y e x
kd d

−

= =

 
= − 

−  
   (5.11) 

with dynamics 

 

1 1

1
( ) ( )

M N

j jl l l ji i ie ep
l ij j

j j

y b Ay Bv e Ax Bu
d d

Ay Bv


−

= =

− −

 
= + − + +  

= +

 

 

where 

 
1 1

1
.

M N

j jl l ji ie ep
l ij j

v b v e u
d d

−

= =

 
= − 

−  
   (5.12) 

Using this definition, the local position error of evader j  (5.5) and its dynamics (5.6) can be 

written as 

 ( )( ),e ep

j j j j jd d y y  −= − −  (5.13) 

 ( ) ( ) .e ep e ep

j j j j j j j jA d d Bv d d Bv    −= + + − +  (5.14) 

 

5.3.Formulation and Solutions for Multiagent Pursuit-Evasion Games  

This section presents the formal definition of multiagent pursuit-evasion games. 

Conditions for asymptotic capture are analyzed. New definitions for Nash equilibrium and 

Minmax strategies as main solution concepts for the MPE games are also introduced. 

 

5.3.1. Definitions for MPE games on graphs 

Consider the following formulation for MPE games. Let the evaders have the objective 

of maximizing their distances from their neighboring pursuers. Moreover, the evaders also 

desire to maintain their group cohesion, that is, to stay close to their teammates. The 
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justification for this objective is that, in many practical applications, the agents of a team may 

want to perform their tasks without losing contact with each other. Similarly, the pursuers desire 

to collectively intercept as many evaders as possible while remaining close to their teammates. 

In Section 5.4, we explore a different scenario where the agents do not have the group 

cohesion objective.  

The goals of each pursuer can be represented by means of a scalar function ( , )pi i iJ u , 

regarded as the performance index of the game for pursuer i . The performance index of 

pursuer i  can now be defined as 

 
0

( ) ( )T T
pi i pi i i i p i iJ Q u R u dt   


 = +
   (5.15) 

where ( ) ( ) 0T
pi i ipiQ Q =   and ( ) ( ) 0T

p i p iR R =  . 

Pursuer i  is thus concerned with the minimization of piJ . From (5.9), the dependence 

of piJ  on the local position errors i  can be seen as the goal of pursuer i  to minimize its 

distance with respect to the center of gravity of all its neighbors. 

On the other side, evader j  desires to minimize its cost represented by the 

performance index ( , )ej j jJ v . Considering its goals of fleeing from the pursuers while 

remaining close to the evaders in its neighborhood, the performance index for evader j  can be 

defined as 

 
0

( ) ( )T T
ej j ej j j j e j jJ Q v R v dt   


 = +
   (5.16) 

where ( ) ( ) 0T
ej j jejQ Q =  , ( ) ( ) 0T

e j e jR R =   and j  is expressed in (5.13). Notice that the 

pseudo-center of gravity (5.11), used in (5.13), considers the opposite sign of the relative 

position of the pursuers such that minimization of the errors j  implies escaping from the 

pursuers, as desired. 

The scalar   in (5.5) can now be seen as the priority of the evaders to stay close to 

each other, against their drive to escape from the pursuers. The value of   can be selected 
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according to the objectives of the game.  

Using these definitions, the MPE differential games on communication graphs is 

defined as follows. 

Definition 5.1 (Multi-agent pursuit-evasion game). Define the MPE game as 

 

( ) min ( , )

( ) min ( , )

i

j

pi i pi i i
u

ej j ej j j
v

V J u

V J v

 

 

=

=
 (5.17) 

where 
piV  and 

ejV  are the values of the game for pursuer i  and for evader j , respectively. 

Pursuers and evaders must now determine the control policies 
i
u  and jv , respectively, 

that solve the MPE game (5.17).  

To state the following definition, notice that the performance index of an agent depends 

not only on its own behavior, but also on the behavior of its neighbors. Let iu−  be the set of 

control policies of the pursuers neighbors of pursuer i , and iv−  represent the policies of all the 

evaders neighbors of i . Thus, although we have defined functions ( , )pi i iJ u  and ( , )ej j jJ v  in 

terms of the local variables, we can represent explicitly their dependence on neighbor policies 

as ( , ) ( , , , )pi i i pi i i i iJ u J u u v  − −=  for the pursuers, and ( , ) ( , , , )ej j j ej j j j jJ v J v u v  − −=  for the 

evaders. Using these expressions, Nash equilibrium for MPE games  is defined as follows. 

Definition 5.2. (Nash equilibrium in MPE games). Control policies iu , 1, ,i N= , and 

jv , 1, ,j M= , form a Nash equilibrium if the inequalities 

 
( ) ( )

( ) ( )

* * * * *

* * * * *

, , , , , , ,

, , , , , , ,

pi i i i i pi i i i i

ej j j j j ej j j j j

J u u v J u u v

J v u v J v u v

 

 

− − − −

− − − −




 

hold for all agents in the game. 

In Nash equilibrium, every agent uses its optimal policy against the optimal policy of its 

neighbors. In the following subsection, Nash equilibrium is studied as the most important 

solution concept for the MPE games (5.17). 
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5.3.2. Nash equilibrium solution for MPE games 

Given neighbor policies 
k
u  and jv , the optimal control policy of pursuer i  can be 

obtained by means of the i th Hamiltonian function defined as 

 

1 1

( )

( ) ( )

T T
pi i pi i i p i pi i

N M
T T T p pe
i pi i i p i pi i i i i i ik k ij j

k j

H Q u R u V

Q u R u V A d d Bu a Bu c Bv

  

   
= =

= + +

 
= + +  + + − − 

 
 

 
 

where ( )pi iV   is the value function of the game for pursuer i , and the dynamics (5.4)  has been 

used. The optimal policy of pursuer i  minimizes 
pi
H , and is found to be 

 * 11
( ) ( ) ( )

2

p pe T

i i i p i pi iu d d R B V −= − +   (5.18) 

Using the same procedure, define the Hamiltonian function for evader j  as 

 

1 1

( )

( ) ( )

T T
ej j ej j j e j ej j

M N
T T T e ep
j ej j j e j ej j j j j j jl l ji i

l i

H Q v R v V

Q v R v V A d d Bv b Bv e Bu

  

     
= =

= + +

 
= + + + − − + 

 
 

 

and the optimal policy for evader j  is given by 

 * 11
( ) ( ) ( )

2

e ep T

j j j e j ej jv d d R B V  −= − −   (5.19) 

The functions 
pi
V  and 

ej
V  are obtained as the solutions of the coupled HJI equations of 

the game, 

 * * * * *

1 1

( ) 0
N M

T T T p pe
i pi i i p i pi i i i i ik k ij j

k j

Q u R u V A d d Bu a Bu c Bv  
= =

 
+ + + + − − = 

 
 

   (5.20) 

and 

 * * * * *

1 1

( ) 0
M N

T T T e ep
j ej j j e j ej j j j j jl l ji i

l i

Q v R v V A d d Bv b Bv e Bu    
= =

 
+ + + − − + = 

 
   (5.21) 

for 1, ,i N= , 1, ,j M= . Substituting control policies (5.18) and (5.19) in (5.20) and (5.21), we 

obtain 
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1

1

1

1

1
( )

2

1
( ) 0

2

N
T cl T p pe T T
pi pi i pi i ik k k pi p pk

k

M
e ep T T

ij j j pi e ej

j

V A Q a d d V BR B V

c d d V BR B V

 



−

=

−

=

 + + +  

+ −   =





 (5.22) 

and 

 

1

1

1

1

( )
2

1
( ) 0

2

M
T cl T e ep T T
ej ej j ej j jl l l ej e el

l

N
p pe T T

ji i i ej p pi

i

V A Q b d d V BR B V

e d d V BR B V


   −

=

−

=

 + + −  

− +   =





 (5.23) 

respectively, where the closed loop matrices are 

 2 11
( )

4

cl p pe T
pi i i i p piA A d d BR B V −= − +   

and 

 2 11
( )

4

cl e ep T
ej j j j e ejA A d d BR B V  −= − −   

The following theorem states the conditions in the MPE game to achieve Nash 

equilibrium as defined in Definition 5.2. 

Theorem 5.1. Let the pursuers with dynamics (5.1) and the evaders with dynamics 

(5.2) be connected in a communication graph topology with local error dynamics (5.4) and (5.6). 

Let (5.18) and (5.19) be the control policies for pursuers i and evaders j, respectively, where the 

functions Vpi and Vej are the solutions of the HJI equations (5.22) - (5.23), such that 

(0) (0) 0pi ejV V= = . Then, capture occurs in the MPE game (5.17) in the sense that dynamics 

(5.4) are stable. Moreover, game (5.17) is in Nash equilibrium, the value of the game for 

pursuer i  is given by ( (0))pi iV  , and the value of the game for evader j  is ( (0))ej jV  . 

Proof. To prove capture, select the function ( ( ))pi iV t  as a Lyapunov function 

candidate. Its derivative is given by 
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 * * *

1 1

* *

( )

T

pi pi i

N M
T p pe

pi i i i i ik k ij j

k j

T T

i pi i i p i

V V

V A d d Bu a Bu c Bv

Q u R u





 

= =

= 

 
=  + + − − 

 

= − −

   

because equation (5.20) holds. Thus, we conclude that dynamics (5.4) is stable and every 

pursuer captures its neighbors. 

To prove Nash equilibrium, notice that we can write the performance index (5.15) as 

 
0 0

( ) ( ) ( (0)) ( ( ))T T
pi i pi i i i p i i pi i pi iJ Q u R u dt V V t dt     

 
 = + + +
    

because ( ( )) (0) 0pi i piV V  = = . For convenience we omit the explicit dependence of matrices 

Qpi and Rp on the local errors i  in the remaining procedure. Notice that ( ) T
pi i ipiV V =   for any 

trajectory of ( )i t .  Thus, using (5.4) we get 

 
0

0
1 1

( (0))

( )

T T
pi i pi i i p i pi i

N M
T p pe
pi i i i i ik k ij j

k j

J Q u R u dt V

V A d d Bu a Bu c Bv dt

  







= =

 = + +
 

 
+  + + − − 

 
 



 
 

Completing the squares, and using the fact that *( ) 2p pe T T
i i pi i i p id d V Bu u R u+  = −  with *

iu  

in (5.18), yields 

 

* * * *

0

*

0 0
1 1

* * * *

0

1 1

( (0)) 2

( ) ( )

T T T T
pi i pi i i p i i p i i p i

N M
T T

pi i pi i ik k ij j i p i

k j

T T T
i pi i i i p i i i p i

N M
T
pi i ik k ij j

k j

J Q u R u u R u u R u dt

V V A a Bu c Bv dt u R u dt

Q u u R u u u R u

V A a Bu c Bv

 

 

 





 

= =



= =

 = + + −
 

 
+ +  − − − 

 
 

= + − − −



+ − −





  



  ( (0))pi idt V 


+ 
 

 

As * * * * * * *2 ( )p peT T T T
p i p i p i ii i i i i piu R u u R u u R u d d V Bu− = − + = +  +  * *T

p iiu R u , we finally get 
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* * *

0
1 1

* *

0

( )

( ) ( ) ( (0))

N M
T T T p pe

pi i pi i i p i pi i i i i ik k ij j

k j

T
i i p i i pi i

J Q u R u V A d d Bu a Bu c Bv dt

u u R u u dt V

  





= =



 
= + + + + − −     

+ − − +

 



 

As equation (5.20) holds, the first integral in this expression is equal to zero for neighbor 

policies *
k ku u=  and *

j jv v= . The remaining expression, 

 
* *

0
( ) ( ) ( (0))T

pi i i p i i pi iJ u u R u u dt V 


= − − +  

shows that control policy *
iu  minimizes the performance function of pursuer i  against neighbor 

policies *
ku  and *

jv , and its value of the game is ( (0))pi iV  . 

The same procedure can be performed to show that 

 
* *

0
( ) ( ) ( (0))T

ej j j e j j ej jJ v v R v v dt V 


= − − +  

for evader j  and, therefore, control policy *
jv  minimizes 

ej
J . As these conditions hold for all 

agents in the game, Nash equilibrium is achieved.       

Remark 5.1. Notice that if there exist matrices 
pi
P  and 

ej
P , for all i  and j  in the game, 

such that the value functions 
pi
V  and 

ej
V  have the form 

 ( ) T
pi i pi iiV P  =  (5.24) 

and 

 ( ) T
ej j ej jjV P  =  (5.25) 

then the control policies (5.18) and (5.19) take the form 

 
* 1( ) ( )p pe T

i i i p i pi iu d d R B P −= − +  (5.26) 

and 

 
* 1( ) ( )e ep T

j j j e j ej jv d d R B P  −= − −  (5.27) 

respectively. In (5.26) and (5.27) the distributed property of the control policies is clear. 
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5.3.3. Minmax strategies in MPE games 

It has been explained in previous chapters that, in the general case, there may not exist 

a set of functions ( )pi iV   and ( )ej jV   that solve the HJI equations (5.22) - (5.23) to provide 

distributed control policies as in (5.26) - (5.27). In this subsection we use the minmax strategies 

developed in Chapter 4. The following definition states the concept of minmax strategy for MPE 

games. 

Definition 5.3 (Minmax strategies for MPE games). In an MPE game, the minmax 

strategy of pursuer i  is given by 

 *

,
arg min max

i i i

i pi
u u v

u J
− −

=  (5.28) 

and the minmax strategy for evader j  is 

 *

,
arg min max .

j j j

j ej
v u v

v J
− −

=  (5.29) 

To determine the minmax strategy for pursuer i , we can redefine the performance 

index (5.15) and formulate a zero-sum game between agent i  and a virtual target. Considering 

the center of gravity (5.7) as the target of agent i , we can define the performance index 

 
0

T T T
pi i pi i i p i i i iJ Q u R u u R u dt 



− − −
 = + −
   (5.30) 

In order to define a meaningful weighting matrix iR−  in (5.30), consider the expressions 

(5.8) and (5.18), and select 

 1 1 1

1 1

1 N M

ik p ij ei p pe
k ji i

R a R c R
d d

− − −
−

= =

 
= +  +  

   (5.31) 

The solution of the zero-sum game is now determined by (5.18), where the value function 
pi
V  is 

the solution of the HJI equation 

 1 1( ) ( ) 0T T p pe T T p pe T T
pi i i pi i i i pi p pi i i pi i piV A Q d d V BR B V d d V BR B V   − −

− + − +   + +   =  (5.32) 

If the value function has a quadratic form as in (5.24), then the control policy is 

expressed as in (5.26) and matrix 
pi
P  is the solution of the Riccati equation 
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2 1 1( ) ( ) 0T p pe T

pi pi pi i i pi p i piQ P A A P d d P B R R B P− −

−+ + − + − =  (5.33) 

Similarly, define the zero-sum game 

 
0

T T T
ej j ej j j e j j j jJ Q v R v v R v dt 



− − −
 = + −
   (5.34) 

with 

 1 1 1

1 1

1
.

M N

jl e ji pj epe
l ij j

R b R e R
d d

− − −
−

= =

 
= + 

+  
   (5.35) 

Assuming a quadratic value function (5.25), the minmax strategy for evader j  is the control 

policy (5.27) where matrix 
ej
P  solves the ARE 

 
2 1 1( ) ( ) 0T e ep T

ej ej ej j j ej e j ejQ P A A P d d P B R R B P − −

−+ + − − − =  (5.36) 

The following theorem formalizes these results. 

Theorem 5.2. Let the agents with dynamics (5.1) and (5.2) use control policies (5.26) 

and (5.27), respectively. Moreover, let matrices 
pi
P  and 

ej
P  be the solutions of the Riccati 

equations (5.33) and (5.36). Then, policy (5.26) is the minmax strategy of pursuer i  as defined 

in (5.28), and policy (5.27) is the minmax strategy of evader j  as in (5.29). 

Proof. The Hamiltonian function associated with the performance index (5.30) is 

T T T
pi pi i p i i i pii i iH Q u R u u R u V  − −−= + − + . For a quadratic value function (5.24), the optimal control 

policy for the pursuer is (5.26) and for its target is 
* 1( )p pe T

i i i i pi iv d d R B P −

− −= − + . Substituting these 

control policies in 
pi
H  and equating to zero, we obtain the ARE (5.33). Following a similar 

procedure as in the proof of Theorem 5.1, and considering dynamics (5.10), we can complete 

the squares and write the performance index (5.30) as 

 ( )
0

0

* * * *

0

( (0))

( ) ( )

( ) ( ) ( ) ( ) ( (0))

T T T
pi i pi i i p i i i i pi i

T p pe p pe
pi i i i i i i i

T T
i i p i i i i i i i pi i

J Q u R u u R u dt V

V A d d Bu d d Bu dt

u u R u u u u R u u dt V

  







− − −



−



− − − − −

 = + − +
 

+  + + − +

 = − − − − − +
 






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Therefore, (5.26) with 
pi
P  as in (5.33) is the minmax strategy of pursuer i . The same procedure 

can be used to prove that control policy (5.27) with 
ej
P  as the solution of equation (5.36) is the 

minmax strategy for evader j .   

Remark 5.2. Minmax strategies provide distributed control policies for the agents as 

long as there exist positive definite solutions 
pi
P  and 

ej
P  for the equations (5.33) and (5.36), 

respectively. Riccati equations of this form are known to have positive definite solutions if ( , )A B  

is stabilizable, ( , )piA Q  and ( , )ejA Q  are observable, and 
1 1 0p iR R− −

−−   and 
1 1 0e jR R− −

−−  . 

 

5.4.Target Selection and Finite-Time Capture  

In the previous section, the evaders had the objective of maintaining their group 

cohesion while escaping from the pursuers. In this section, we modify the formulation of the 

game to obtain different behaviors among the agents. Let the evaders have the objective of 

increasing their distances with respect to each other, to force the pursuers to separate as well. 

Now, each pursuer must select a single target among the evaders in its neighborhood. 

Moreover, the control strategies of the agents are designed to achieve capture in finite-time. 

 

5.4.1. Target selection by the pursuers 

Consider a game on which each pursuer can initially observe several evaders 

according to the communication graph topology. In most real-world applications, it can be 

impractical to expect each pursuer to chase many evaders simultaneously. Instead, each 

pursuer can select only one target among the evaders, disregarding the position of all other 

agents. If each pursuer targets a different evader, their objective of capturing as many evaders 

as possible is fulfilled. 

In this section, we assume that the numbers of pursuers and evaders are the same, i.e., 
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N M . If there were more evaders, some of them would be able to escape unchallenged and 

therefore are not part of this analysis. If there were more pursuers, some of them would need to 

chase already-targeted evaders and their participation would be trivial. 

Algorithm 5.1 presents a procedure for pursuer i  to select a target among the evaders. 

Initially, the graph weights for pursuer i  are set as 0ika   and 0ijc  . Algorithm 5.1 relies on 

setting 0ika =  for all pursuers k, and 0ijc =  for all evaders but one. This one evader becomes 

the target of pursuer i .  

In the ideal scenario, every pursuer targets its closest evader. If two pursuers have the 

same closest evader, additional criteria is needed to decide which pursuer will change its target. 

We propose to change the target of the pursuer with shortest distance to its second-closest 

evader. Thus, long distances between a pursuer and its target are avoided. Algorithm 5.1 

generalizes this idea using an iterative procedure that eliminates the longest distances between 

the agents, until each pursuer is left with only one target. 

Pursuer i  is assumed to be unaware of the initial topologies in graphs 
p
 and 

pe
 

except for the links that connect it to its neighbors. Thus, to perform Algorithm 5.1 pursuer i  

must assume that its neighbors have the same state information as itself. Pursuer i  can define 

virtual (or assumed) connectivity weights for its neighbors as 1kha =  if , ik h  for pursuers k  

and h , and 1kjc =  if , ik j  for pursuer k  and evader j . In the following procedure, all 

agents are pursuer i ’s neighbors. 

Define 0ij   as the distance between pursuer i  and a neighboring evader j , i.e., 

ij ij i jc x y = − . Define also kj kj k jc x y = −  for all pursuers and evaders , ik j . Let 

max,i  be the longest distance between any pursuer ik i   and its possible targets, that is, 

max,
,

max( )i kj
k j

 =  for ik i  , ij . With these definitions Algorithm 5.1 can now be used 

for pursuer i  to select its target. 
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Algorithm 5.1 (Target selection by the pursuers) 

1: If cij = 1 for only one evader j, stop. 

2: Determine the pursuer k and evader j such that max,i kj = , 

and set 0kjc = . 

3: If for some pursuer k, 1klc =  for only one evader l, set 0hlc =  

for all pursuers h k  and cil = 0 if i k . 

4: Go to Step 1. 

 

In Algorithm 5.1, pursuer i  assigns targets to its teammates in order to discard those 

evaders for itself in benefit of the collective goals of the team. Notice that these virtual 

assignments may not be correspond to the actual selection of targets of the other pursuers. 

Step 2 in Algorithm 5.1 indicates that, as long as there are other options, the longest distance 

between a pursuer and an evader must be avoided. Step 3 expresses that once a pursuer 

targets an evader, the other pursuers discard that evader as a possible objective. The following 

theorem shows that if every agent in the game is each other neighbors, then target selection by 

Algorithm 5.1 minimizes the longest distance between a pursuer and its target. 

Theorem 5.3. Consider the MPE game where every pursuer selects its target using 

Algorithm 5.1. If the graphs 
p
 and 

pe
 are complete, then every pursuer selects a different 

target. Moreover, this selection of targets minimizes the longest distance between a pursuer 

and its target. 

Proof. If the graph topologies are complete, then all agents possess the same state 

information and each pursuer selects precisely the same target that was assigned to it by all of 

its neighbors. By the construction of Algorithm 5.1, each pursuer selects a unique target. 

Consider now the pursuer i  that travels the longest distance to capture its target. Let i  

change its selection of target such that its distance to travel is reduced. Pursuer i  can only 

have discarded this closer target in Algorithm 5.1 because it was the only option for another 

pursuer k  to chase. Pursuer k  had selected its target either because its other options had the 

longest distances max , or because other pursuers had previously selected those evaders. This 

consecutive change of targets must eventually lead to a pursuer left to chase an evader with a 
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travel distance longer than the original longest distance produced by Algorithm 5.1.    

Using Algorithm 5.1, every pursuer modifies its perception of the environment such that 

its local error measurement focuses only on its target, i.e., if pursuer i  targets evader j , then 

( )i ij i jc x y = − . Notice that the target selection procedure is also useful if the evaders change 

their objectives in the game and decide to separate from their teammates as well as from the 

pursuers. 

Another practical consideration in MPE games consists in designing the agents to use a 

sustained control effort throughout the game, which allows achieving finite-time capture as 

studied in the following subsection. 

 

5.4.2. Finite-time intercept 

In practical applications, pursuers and evaders are expected to use their maximum 

effort to achieve their goals. In this case, a pursuer is able to intercept its target in finite-time 

because its velocity is not decreased when approaching the target. 

To generate this behavior, let the i th pursuer use Algorithm 5.1 to target only one 

evader, and use the control policy (5.26) with matrix ( )p iR   selected as 

 ( )p i i pR r I =  (5.37) 

as long as 0i  , where 
p
r  is a positive scalar and I  is the identity matrix. Similarly, evader j  

uses the policy (5.27) with ( )e jR   as 

 ( ) ( )e ep

e j j j j eR d d r I = +  (5.38) 

where 
e
r  is a positive scalar and e

jd  and ep
jd  are defined in Section 5.2.  

The following theorem shows that the selection of matrices (5.37) and (5.38) produce 

finite-time interception if the pursuer is allowed to use a greater control effort than the evader, 

and if the Lyapunov equation 
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 ,T
pi pi sP A A P Q+ = −  (5.39) 

with 0sQ  , holds for matrix 
pi
P . Notice that (5.39) is solvable if the real parts of the 

eigenvalues of matrix A are non-positive. Condition (5.39) is further studied in subsection 5.4.3. 

Theorem 5.4. Consider an MPE game (5.17) where pursuer i  and evader j  have 

dynamics (5.1) and (5.2), respectively, with a marginally stable system matrix A. Pursuer i  

selects evader j  as its only target. Let the control policies be (5.26) and (5.27), with weight 

matrices (5.37) and (5.38). Let the gain matrix ' 'T
pi pipiP P P=  be such that the Lyapunov equation 

(5.39) holds. Then, finite-time capture occurs if 

 1 1 .p pi e ejr P r P− −  (5.40) 

Proof. Define the candidate Lyapunov function ( ) ( )
2'1/ 2 1/ 2 T

L pi i i pi iV P P  = = . Thus, 

 

111 1

111 1

1
( )

2

T T T T T T

L i pi pi i p i i pi pi i e j i pi ej j

T T T T

p i i pi pi i e j i pi ej j

V P A A P r P BB P r P BB P

r P BB P r P BB P

       

     

−−− −

−−− −

= + − −

 − −

 

because (5.39) holds. As 
T T

i pi pi iP BB P   is a positive scalar, it is equal to its norm. Now, 

 

111 1

111 ' ' 1 ' '

' 2

T T T T

L p i i pi pi i e j i pi ej j

T T

p i pi i pi pi i e j pi i pi ej j

i pi i i L

V r P BB P r P BB P

r P P BB P r P P BB P

P V

     

     

  

−−− −

−−− −

 − +

 − +

= − = −

 

where 

 ( )1 1 ' T

i p pi e ej pir P r P P BB − −= −  

Clearly, if (5.40) holds, then 0LV   and capture occurs. Furthermore, we can solve the 

differential equation 1/2 2L L iV V − = −  to obtain ( )1/2 1/2( ) 2 / 2 (0)L i LV t t V= + . This shows that, if 

capture occurs, then VL is equal to zero for a finite time t.   
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5.4.3. Inverse optimal control for finite-time capture 

If matrix 
pi
P  is selected first such that the Lyapunov equation (5.39) holds, then it is not 

directly obtained as the solution of the ARE equation (5.33). An optimality result can still be 

obtained if the performance index (5.30) is selected accordingly by means of inverse optimal 

control. Theorem 5.5 shows an inverse optimal result by selecting the matrix 
pi
Q  in (5.30) as 

 
1 1 .T T

pi s pi p pi pi e piQ Q P BR B P P BR B P− −= + −  (5.41) 

Theorem 5.5. Let the pursuer i  with dynamics (5.1) use control policy (5.26), where 

matrix 
pi
P  is selected such that (5.39) holds for a given matrix 0sQ  . Then, pursuer i  uses its 

minmax strategy with respect to the performance index (5.30) with matrix 
pi
Q  as in (5.41). 

Proof. Substitute the matrix 
pi
Q  in (5.41) into the ARE (5.33) to obtain 

 
1 1 1 1 0T T T T T

s pi p pi pi e pi pi pi pi p pi pi e piQ P BR B P P BR B P P A A P P BR B P P BR B P− − − −+ − + + − + =  

and note that the equality holds because
 

T
pi pi sP A A P Q+ = − . The proof is now completed as in 

the proof of Theorem 5.2.    

Although target selection and finite-time capture are studied for their broad range of 

practical implementations, interesting behaviors arise in the MPE games when the agents 

employ asymptotic strategies. These new scenarios are analyzed in the following section. 

 

5.5. Extensions and Asymptotic Behaviors  

This section is concerned with the analysis of asymptotic capture in MPE games. 

Rendezvous and containment control are studied as particular cases of this scenario. 

 

5.5.1. Rendezvous or asymptotic capture 

In this section, let the pursuers maintain their local errors as defined in (5.3), without the 
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use of the target selection algorithm. Furthermore, let the matrices ( )p iR   and ( )e jR   be 

constant throughout time, such that ( )p i pR R =  and ( )e j eR R = . In the asymptotic version of 

the MPE games, capture occurs when all pursuers reach the position of all evaders. 

Few definitions are required for the analysis performed in this section. Using the graph 

matrices defined in Section 5.2.1, define the generalized Laplacian matrix L as 

 
p pe pe

ep e ep

L D
L

L D

+ − 
=
 − 

 (5.42) 

Define also the matrix K as the block matrix 

 
diag( ) 0

0 diag( )
pi

ej

K
K

K
 

=
  

 (5.43) 

where 1( )p pe T
pi p pii iK d d R B P−= +  for 1, ,i N= , and 1( )epe T

ej e ejj jK d d R B P −= − −  for 1, ,j M= . 

Theorem 5.6 states the conditions for capture relating the stability properties of the 

game with the three communication graph topologies employed in (5.42). 

Theorem 5.6. Consider the MPE game (5.17) with system dynamics (5.1) - (5.2) and 

performance indices (5.15) - (5.16). Define matrix K as in (5.43). If there exist matrices 
pi
P  and 

ej
P  such that the value functions (5.24) - (5.25) satisfy the AREs (5.22) - (5.23) and the agents 

use control policies (5.26) - (5.27), then the eigenvalues of the matrix 

  ( )( ) ( ) n N MI A L B K + −    have all negative real parts, i. e., 

 ( )Re{ ( ) ( ) } 0k I A L B K  −    (5.44) 

for 1, , ( )k n M N= + . 

Proof. Define the vectors  1 1, , , , ,
TT T T T

N M    =  and  1 1, , , , ,
TT T T T

N Mu u u v v= . 

Using the local error dynamics (5.4) and (5.6), we can write 

 ( ) ( )I A L B u =  +   (5.45) 
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Control policies (5.26) and (5.27) can be expressed as i pi iu K = −  and j ej jv K = − , 

respectively, where matrices 
pi
K  and 

ej
K  are defined as for (5.43). Now we can write 

 .u K= −  (5.46) 

Substitution of (5.46) in (5.45) yields the global closed-loop dynamics 

  ( ) ( ) .I A L B K =  −   (5.47) 

Theorem 1 shows that if matrices 
pi
P  and 

ej
P  satisfy the equations (5.22) - (5.23) then the 

control policies (5.26) and (5.27) make the pursuers achieve capture. This is equivalent to state 

that the system (5.47) is stable, and thus the condition (5.44) holds.  

The following behaviors are corollaries for Theorem 5.2. 

 

5.5.2. 
2
 gain bound 

The 
2
 gain bound in MPE games refers to the problem of determining a feedback 

policy ( )i iu   for pursuer i  such that when (0) 0i =  and for all neighbor policies 2[0, )ku    

and 2[0, )jv   , the inequality 

 
0 0

( )
T T

T T
pi i p i i ii iQ u R u dt r u dt  − −+    (5.48) 

where iu−  is defined in (5.8), holds for a scalar 0ir−  . 

Corollary 5.1. Let the conditions of Theorem 5.2 hold and let matrix iR−  in (5.30) be 

i iR r I− −= . Then the 
2
 gain of pursuer i  is bounded above by the 

2
 gain of its neighbors 

according to the inequality (5.48). 

Proof. If i iR r I− −= , then the Hamiltonian function for pursuer i  can be written as 

 ( , ) ( ).T T T
pi i i i pi i i p i i i i pi iH u v Q u R u r u u V  − − − −= + − +  (5.49) 



90 

Let 
pi
V  be the solution to the HJI equation * *( , ) 0pi i iH u u− = . Considering the policies (5.26) and 

* 1( )p pe T

i i i i pi iu d d R B P −

− −= − +   complete the squares in (5.49) to obtain 

 

* * * * * * * *

* * * *

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T T
pi i pi i i p i i i i pi i i p i i i i i i i

T T
i i p i i i i i i i

H Q u R u u R u V u u R u u u u R u u

u u R u u u u R u u

  − − − − − − − −

− − − − −

= + − + + − − − − −

= − − − − −
 

Select *
i iu u=  to obtain * *( ) ( ) 0T

pi i i i i iH u u R u u− − − − −= − − −  , which from (5.49) implies 

 ( ) 0.T T T
i pi i i p i i i i pi iQ u R u r u u V  − − −+ − +   (5.50) 

Integrating the inequality (5.50), we get 

 
0

( ) ( ( )) ( (0)) 0.
T

T T
pi i p i i i pi i pi ii iQ u R u r u dt V T V   − −+ − + −   

Now, (0) 0i =  implies ( (0)) 0piV  = . As ( ( )) 0pi iV T   for all ( )i T , inequality (5.48) is directly 

obtained.  

 

5.5.3. Containment control 

In this subsection the multi-agent pursuit-evasion behaviors are related to the 

containment control problem [46]. Define the global vector of pursuers’ positions as 

1[ , , ]T T T
Nx x x=  and the global position vector of the evaders as 1[ , , ]T T T

My y y= . Corollary 5.2 

shows that, for the special case of static evaders and taking the system matrix 0A , the 

solution of the MPE games recovers the containment control results. 

Corollary 5.2. Let the conditions of Theorem 5.2 hold, with system matrix 0A  in 

(5.1) and (5.2). Select matrix 
e e
R r I  in performance index (5.34) and consider the matrix 

pi
K  

defined as for (5.43). Let the graph topologies be such that there is a directed path from at least 

one evader to each pursuer. In the limit er → , the convex hull of the evaders’ positions, 

according to the expression 

 1[( ) ] .p pe pex L D I y−= +   (5.51) 
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is an equilibrium set for the pursuers dynamics. Furthermore, if the matrix 

  ( )diag( ) ( )pi p peI B K L D I +   (5.52) 

is nonsingular, then (5.51) is the only stable equilibrium set for the pursuers dynamics. 

Proof. Notice that control policies (5.27) with er →  produce static evaders. Using 

control policies i pi iu K = − , the global pursuer dynamics is given by 

    ( )diag( ) ( ) ( )diag( )pi p pe pi pex I B K L D I x I B K I y= −  +  +    (5.53) 

Substituting (5.51) in (5.53), and using the properties of the Kronecker product [54], we get 

0x = . Therefore, the points in (5.51) are equilibrium points for the pursuers.  It is easy to prove 

that, if there is a directed path from at least one evader to each pursuer, all eigenvalues of 

p pe
L D  are positive, all the elements of 1( )p pe peL D −+  are nonnegative, and matrix 

1( )p pe peL D −+  has all row sums equal to one [69]. This shows that (5.51) is the convex hull of 

the evaders’ positions. 

Now, let 0x =  in (5.53). The resulting linear equation has (5.51) as its unique solution if 

matrix (5.52) is nonsingular.  

Remark 5.3. From the definition of 
pi
K , notice that matrix (5.52) is nonsingular for the 

special case of single integrator dynamics, that is, if B I . 

Corollary 5.3 shows a similar result, allowing the evaders to be moving in a formation 

with a constant velocity. 

Corollary 5.3. Let the conditions in Corollary 5.2 hold, and let all the evaders move with 

constant velocities, jy = , 1, ,j M= . Control inputs 

 
1( ) ( )p pe T

i i i p i pi iu d d R B P  −= − + +  (5.54) 

make the pursuers converge to the convex hull of the evaders according to the expression 

(5.51) if matrix (5.52) is nonsingular. 

Proof. Using control policies (5.54), the global pursuer dynamics is 
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 

 

( )diag( ) ( ) (1 )

( )diag( )

pi p pe N

pi pe

x I B K L D I x

I B K I y

= −  +  + 

+  
 (5.55) 

where 11 N
N

  is a vector of ones. The derivative of (5.55) is given by 

    ( )diag( ) ( ) ( )diag( ) (1 )pi p pe pi pe Mx I B K L D I x I B K I = −  +  +     

where 11 M
M

 . If  1( ) (1 )p pe pe Mx L D I −= +   , then we get 0x = , and this result is 

unique if matrix (5.52) is nonsingular. Furthermore, by properties of the Kronecker product and 

of the graph matrices 
p
L , 

pe
D  and pe ,  1( ) (1 ) 1p pe pe M NL D I  −+   =  . Substitute the 

derivative 1Nx =   in (5.55) to obtain 

    0 ( )diag( ) ( ) ( )diag( ) .pi p pe pi peI B K L D I x I B K I y= −  +  +    

Again, (5.51) is the unique solution of this equation.  

 

5.6. Simulation Results  

Numerical simulations for finite-time intercept, asymptotic capture and containment 

control are presented below. 

 

5.6.1. Finite-time capture 

Consider an MPE game with three pursuers and three evaders in 2  with single 

integrator dynamics, i.e., 0A  and B I  in (5.1) - (5.2), connected in a communication graph 

such that 

 

1 1 0 2 1 1

1 2 1 , 0 1 1 ,

1 1 2 1 1 2

1 1 0 0 0 1

1 0 1 , 0 1 1 .

0 0 1 1 0 1

p e

pe ep

L L

− − −   
   = − − = −
   − − − −   

   
   = =
   
   
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A simulation of this system is performed, using performance indices (5.15) and (5.16) with 

5Q I , and input weighting matrices as in (5.37) and (5.38) with 1
p
r  and 3

e
r .  

Effectiveness of control policies (5.26) and (5.27) is tested. Furthermore, let the evaders try to 

separate from each other, besides escaping from the pursuers, to force the pursuers to 

separate as well. The pursuers use Algorithm 5.1 to select a target among the evaders. The 

result of this game is shown in Fig. 5.1. Each pursuer achieves capture of its target. 

 

5.6.2. Asymptotic capture 

Asymptotic minmax strategies are simulated for the same systems above. The evaders 

are now interested in maintaining their team cohesion and the pursuers do not select an 

individual target. To show the effect of the value of  in the behavior of the agents, two cases 

are considered. First, a value of 3  is taken. The result of this simulation is shown in Figure 

5.2, which shows that capture occurs, verifying the theoretical results. Then, a value of 1.2  

is used. This smaller value represents a lower priority of the evaders to remain together. Figure 

5.3 displays this result, where the evaders do not converge to a single point in the state space. 

 

5.6.3. Containment control 

 
Fig. 5.1. MPE game with finite-time capture. 
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Using the same parameters as in the asymptotic capture simulation above, let the 

evaders remain static throughout the game.  

The behavior of the pursuers under these circumstances is displayed in Figure 5.4. The 

pursuers can be seen converging to the convex hull of the positions of the evaders, as stated in 

Corollary 5.2. 

Finally, let the evaders move in a formation with constant speeds, and let the pursuers 

use the control inputs (5.54). Take the vector  2, 1
T

 =  as the constant velocity of the evaders. 

 
Fig. 5.2.  Asymptotic behavior in a MPE game. A large κ makes the evaders attract each other. 

  

 
Fig. 5.3.  Asymptotic behavior in a MPE game with small κ. The evaders have a low priority to remain together. 
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Figure 5.5 shows that the pursuers reach the convex hull of the positions of the evaders and 

maintain their positions thereafter. 

 

5.7. Conclusion  

Performance of the players in MPE games on communication graphs was studied for 

performance indices that can include both cooperative and adversarial objectives among the 

agents. Nash equilibrium is guaranteed if the solutions of the coupled HJI equations exist. 

Otherwise, it is still possible to design the control policies of the agents to obtain a minimum 

 
Fig. 5.4.  Containment behavior of the agents. The evaders are static and the pursuers converge to their convex hull. 

  

 
Fig. 5.5.  Containment behavior with moving evaders. The evaders move in a formation with constant speed. 
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guaranteed performance value, using minmax strategies. Conditions for capture were found to 

depend on the structure of the graph topologies and on different control design parameters, like 

the difference between the relative speeds of the teams or the inclination of the evaders of 

either staying together or escaping from the pursuers. Different emergent behaviors arise from 

changes in the goals of the players. Simulation plots show the differences between these 

behaviors, verifying the obtained results. 
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Chapter 6 

FURTHER SOLUTION CONCEPTS FOR DIFFERENTIAL GRAPHICAL GAMES 
 

6.1. Introduction  

In Chapter 4, minmax strategies were proposed to address the inconveniences of Nash 

equilibrium in graphical games. Different from the Nash solution, minmax provides optimal 

distributed control policies to the agents under mild conditions related to the system dynamics 

and the performance indices of the game. Minmax strategies were proven to have strong 

robustness properties, improving the well-known gain and phase margin results of the single-

agent LQR. This is an expected characteristic of minmax strategies due to its parallel 

formulation with the H  control problem. 

Minmax strategies, however, may not provide the ideal policies for different applications 

of graphical games. The assumption that the neighbors will perform their worst-case behavior 

may be too conservative. Consider, for example, the application of a platoon of autonomous 

vehicles in a straight-line formation. In this case, each agent desires to keep a safe distance 

with respect to the vehicle in front. A direct application of minmax strategies may imply that the 

worst-case behavior of the front vehicle is to drive backwards, reducing the safety distance. This 

assumption leads to an absurd behavior that would yield inadequate control policies in the 

vehicles trying to avoid a collision. 

The minmax formulation has both advantages and inconveniences that make it suitable 

for many but not all applications. Other solution concepts can also be proposed to solve 

differential graphical games and provide different characteristics to the control policies.  In this 
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chapter we define and solve three alternative formulations of graphical games: minmax regret, 

graph-weight projection strategies and local-error projection strategies. 

Minmax regret was already defined for normal-form games in Chapter 2. It consists of 

defining the regret of an agent as the difference between the payoff obtained after playing a 

particular strategy and the payoff that would have been received if the agent had played 

optimally. This formulation seems naturally suitable for graphical games, because the limited 

knowledge of the agents prevent them from playing an optimal strategy against each other as in 

Nash equilibrium. If the optimal policy not achievable, the concept of regret becomes relevant. 

In minmax regret strategies, an agent simply prepares itself to avoid the worst possible regret. 

The differential games version of this strategy is obtained by finding an integral expression for 

the regret of the agent, and solving a minmax problem with it. 

The other two methods presented in this chapter enter the category we call projection 

strategies. Projection is a term used in psychology to describe the natural mechanism by means 

of which a person assumes that the people around him possess the same behavioral 

characteristics as himself. This is the reason why an aggressive person is also usually on the 

defensive, expecting the same behavior from his peers. 

In projection strategies, the agents make the assumption that some aspect of their 

personal knowledge is shared by their neighbors. Two cases are here considered. First, we 

define the graph-weight projection strategies, on which an agent assumes that its neighbors are 

all the agents in the game and that they can also observe each other. In this sense, they project 

their knowledge about the graph information onto others. Under this formulation, the agents 

solve a nonzero-sum game with their neighbors, expecting them to do the same. 

The second projection strategy is regarded as local-error projection. In this case, agent 

i  acknowledges that its neighbor, agent j , has neighbors of its own, but assumes that those 

neighbors have the opposite relative position with respect to j  than all the neighbors of i  with 

respect to i  itself. In other words, agent i  assumes that the values of the local errors for both 



99 

agents have the same magnitude and opposite sign. Using this assumption, an agent can solve 

a game formulated as for Nash equilibrium, although such equilibrium is not reached.  

The rest of this chapter is organized as follows. Section 6.2 formulates the minmax 

regret graphical game by extending the normal-form game definitions in Chapter 2. Section 6.3 

introduces the graph-weight projection strategies, and Section 6.4 solves the local-error 

projection game. In all this cases, the resulting policies of the agents are analyzed for their 

robustness characteristics. Section 6.5 presents numerical simulations of the proposed 

solutions to test their applicability in graphical games. The conclusions of the chapter are finally 

presented in Section 6.6. 

 

6.2. Minmax Regret for Differential Graphical Games  

The normal-form version of minmax regret was presented in Section 2.3. The essence 

of this solution can be intuitively explained as follows. Against every policy of agent j , there is 

an optimal policy for agent i . If agent i  does not play that optimal action, it will have a regret, 

which is defined as the difference between the optimal payoff and the suboptimal reward 

obtained. Furthermore, for every action of agent i , there is a particular action of agent j  that 

makes i ’s regret as large as possible. The minmax regret policy of an agent is then defined as 

the action it has to play to minimize its worst possible regret. 

In this section, we formulate the minmax regret strategies for differential games in 

communication graphs. Again, the objective is to obtain an expression for the regret of an 

agent, and determine the policies of its neighbors that could maximize such regret. Agent i  has 

only to act optimally against those policies. Consider the system dynamics and local errors 

defined in (2.2) - (2.5). The regret of an agent is formally defined as follows. 

Definition 6.1 (Regret). Let *
i
u  be the best response of agent i  against given 

strategies 
i

u  of its neighbors. The regret of agent i  for playing any other policy 
i
u  is given by 
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 *( , ) ( , ) ( , )
i i i i i i i i i
u u J u u J u u  (6.1) 

 

In Definition 6.1, we use the fact that agent i  will pay a higher cost for playing a non-

optimal strategy to define the regret as the difference of that cost with respect to the optimal 

value of 
i
J . 

To determine an analytical expression for the regret (6.1), consider a general cost 

function with quadratic control term for agent i  as 

  (6.2) 

It has been proven ([5], [20] and proof of Theorem 4.1 in this thesis) that for optimal neighbor 

strategies, the final cost of an agent is given by 

 * *

0
( (0)) ( ) ( )T

i i i i i i i i
J V u u R u u dt  

where ( )
i i
V  is the value function of agent i . This implies that if agent i  uses its optimal policy, 

i.e., *
i i
u u , then the optimal cost is 

 * ( (0)).
i i i
J V  (6.3) 

Assume, on the contrary, that agent i  uses a suboptimal strategy, deviating from the 

optimal control such that 

 *

i i i
u u u  (6.4) 

then, the cost paid after the game is 

 

* * * *

0

0

( (0)) ( ) ( )

( (0))

T
i i i i i i i i i i

T
i i i i i

J V u u u R u u u dt

V u R u dt

 (6.5) 

Thus, the regret (6.1) can be obtained as the subtraction of (6.3) from (6.5), which yields, 

0
( , ) T

i i i i i i i
J r u u Ru dt
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*

0

0

( (0)) ( (0))

.

i i i

T

i i i i i i i

T
i i i

J J

V u R u dt V

u R u dt

 (6.6) 

Integral (6.6) is the regret of agent i  for playing the policy (6.4). Notice that if the 

optimal inputs of the agents are linear state-feedback policies as * *

i i i
u K , and agent i  uses 

the linear policy 

 *( )
i i i i
u K K  (6.7) 

then the regret (6.6) takes the form 

 
0

.T T
i i i i i i

K R K dt  (6.8) 

Expression (6.8) is used here to define the minmax regret strategy for agent i . 

Ideally, to define minmax regret strategies we would consider first the worst possible 

regret for each admissible control policy 
i
u . Then we would select the minmax regret policy *

i
u  

as the control input that leads to the smallest of all such regrets. This approach is useless, 

however, because the worst possible regret for any policy 
i
u  is always infinite in magnitude. To 

show this, consider any policy of the form 
i i i
u K . Substituting in the dynamics (2.5), we get 

 
1

1

( )

( )

N

i i i i i i ij j
j

N

i i i i ij j
j

A d g BK a Bu

A d g BK a Bu

 (6.9) 

As the system (6.9) is stabilizable by assumption, we can always select the control policies 
j
u  

to arbitrarily relocate its poles. This can be accomplished by selecting 
j j i
u K , such that 

 
1

( )
N

i i i i ij j i
j

A d g BK a BK . (6.10) 



102 

Because we are interested only in admissible policies, we assume the poles of the 

system (6.10) will be left with negative real parts. However, these poles can be left arbitrarily 

close to zero, decreasing the rate of convergence of 
i
 and, therefore, increasing the value of 

the integral (6.8). In the limit, the worst regret is found to happen when the neighbors 
j
u  make 

the system (6.9) marginally stable, which leads to an infinite regret.  

An adequate formulation of minmax regret strategies for differential games requires us 

to modify the normal-form games definition using the regret in (6.8) as follows. 

Definition 6.2 (Minmax regret for graphical games). The minmax regret strategy of 

agent i  in a differential graphical game is given by  

 *

0
1

argmin max ( )
i j

N
T T T T

i i i i i i i i i i i ij j j ju u
j

u K R K d g u Ru a u R u dt  (6.11) 

where * *

i i i
u K , * *

j j i
u K , *

i i i
K K K  and 

i
K  is the control feedback that makes all 

the controllable poles of the matrix *

1
( )

N

i i i ij jj
A d g BK a BK  equal to zero.   

According to Definition 6.2, the objective of agent i  is to minimize the regret of using 

the worst possible deviation from its optimal policy *
i
u  against the neighbor policies that 

maximize such regret. Using a similar reasoning as before, the worst possible deviation from 

the optimal policy of i  is taken such that the final closed loop system (6.10) is marginally stable. 

By now, it is clear to us that the control policies *
i
u  and *

j
 that solve the problem (6.11) 

have the form 

 * 1 T
i i i i
u R B P  (6.12) 

and  

 * 1 T
j j i i

R B P  (6.13) 

Substituting * 1 T
j j i
K R B P  in the system dynamics (6.10) we obtain 
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 1

1

( )
N

T
i ij j i i i i i

j

A a BR B P d g BK . (6.14) 

The matrix 
i
K  that makes system marginally stable is now given by 

 1

1

1 N
T

i i ij j i
ji i

K K a R B P
d g

 (6.15) 

where matrix  
i
K  locates all the controllable poles of the system matrix ( )

i i i
A d g BK  over 

the imaginary axis. The following lemma formalizes this result.  

Lemma 6.1. Consider a multiagent system with dynamics (2.5) and let all the neighbors 

of agent i  use the control policies (6.13) for a given matrix 
i
P . Then, the policy 

i i i
u K  with 

i
K  as in (6.15) makes the closed-loop system (6.14) marginally stable.  

Proof. Follows trivially from substituting (6.15) in (6.14).   

The following theorem shows that the control input (6.12) corresponds to the minmax 

regret policy of agent i  as defined in Definition 6.2 if matrix 
i
P  solves the Riccati equation 

 
1 1

1

( ) 0

TT

i i i i i i i i i i i

N
T

i i i i ij j i i i i
j

K RK P A BRRK A BRRK P

PB d g R a R RRR B P
 (6.16) 

with 1 1

1

1 N

i ij j i
ji i

R a R R
d g

. 

Theorem 6.1. Consider a multiagent system with dynamics (2.5). The minmax regret 

problem (6.11) is solved when agent i  uses the policy (6.12), where matrix 
i
P  solves the 

algebraic Riccati equation (6.16). 

Proof. Similar to the solution of minmax strategies in Section 4, the minmax problem 

(6.11) is solved by the policies (6.12) - (6.13) with matrix 
i
P  as the solution of the ARE 

 1 1

1

( ) 0
N

T T T T
i i i i i i i i i i ij i j i

j

K R K PA A P d g PBR B P a PBR B P  (6.17) 
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From (6.12), * 1 T
i i i
K R B P , and by Lemma 6.1, 

i
K  is given by (6.15). Then, 

i
K  computed 

as * T
i i i i i i
K K K K RB P , with 

i
K  defined for (6.15) and 

i
R  defined for (6.16). 

Substituting this result in (6.17) and performing algebraic operations, (6.16) results.  

The formulation of the minmax regret game in (6.11) has an evident parallel to the 

minmax strategies and, therefore, we can obtain a direct result about the robustness properties 

of the control policies (6.12). This result is stated in the following theorem. The proof is omitted 

for being identical to the robustness analysis procedure in Chapter 4. 

Theorem 6.2. Consider the perturbed system (4.25) with the control policy (6.12) where 

i
P  solves the ARE (6.16), and let the conditions of Corollary 4.1 hold. Then, a phase shift of 

60
i

, where 2arc cos(0.25( 12 3 ))c c  and 1 2 1
, ,1

1 ( )
N

i i ij i k j kj
c d g a r r , in 

the respective feedback loops of each of the controls 
i
u  will leave an asymptotically stable 

system. Moreover, inserting a gain of 
k

 as in (4.30) in the feedback loop of the controllers 
,i k
u , 

leaves the system asymptotically stable.   

The next two sections present and analyze the solution concepts regarded as projection 

strategies. 

 

6.3. Projection Strategies: Graph-Weights Projection  

Both the minmax policy and the minmax regret policy prepare an agent to face some 

type of worst-case adversity. In contrast, Section 6.3 and 6.4 propose two different strategies as 

alternative solution concepts on which the assumptions made by an agent are of a cooperative 

nature. In this section, graph-weights projection strategies are introduced to solve graphical 

games. The following definition states the assumptions made by each agent i  about the 

information available to its neighbors. 
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Definition 6.3 (Graph-weights projection). Let ˆi
jk
a  be the assumed graph weight that 

agent i  assigns to its neighbor 
i

j  about a third agent k . In particular, define ˆi
jk ik
a a  for 

,k i j , ˆi
ji ij
a a  and ˆ 0i

jj
a . Similarly, let the assumed pinning gain of j  be ˆi

j i
g g .   

Remark 6.1. Definition 6.3 describes the assumptions that an agent i  makes about its 

neighbors in order to compute an optimal control policy. In the general case, these values do 

not correspond to the actual values of the graph weights 
jk
a  and 

j
g .   

The interpretation of Definition 6.3 is for agent i  to assume that agent j  can see 

exactly the same agents and leader as itself, with the same weight in the links. 

The local error variable of agent j , 
i

j , as assumed by agent i , is given by 

 
0

1

ˆ ˆ ˆ( ) ( ).
N

i i i

j jk j k j j
k

a x x g x x  (6.18)  

Operating from (6.18) and using Definition 6.3, we can obtain a relation between î
j
 and 

i
 as 

 

0
1

ˆ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ).

N
i

j ik j k ij j i i j i i i i i i
k

i i i j ij j i i i i

i i i ij j i

a x x a x x g x x d g x d g x

d g x a x x d g x

d g a x x

 

Therefore, if agent j  had the graph information as assumed by agent i , it would be able to 

compute the value of 
i
 as 

 ˆ ( )( ).i
i j i i ij j i

d g a x x  (6.19) 

Let agent i  use these information to define a nonzero-sum game between its neighbors 

and itself. This is achieved by considering the error dynamics (2.5) as the variable of concern by 

agent i  and its neighbors, where the neighbors obtain the information 
i
 from (6.19). 

Notice that we can also express the dynamics (2.5) as 

 ˆ

i

i
i i j j

j i

A B u  (6.20) 
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where ˆi
j ij
B a B  for j i , and ˆ ( )i

i i i
B d g B . The form of the dynamics (6.20) is commonly 

used to represent multiagent systems for nonzero-sum games [5]. Definition 6.4 below 

formalizes the game solved in this section. 

Definition 6.4 (Graph-weights projection graphical game). Let the objective of agent 

i  be the minimization of the cost function 

 *

0
argmin argmin ( )

i i
i

T T T
i i i i i i i i ii i ij j ij ju u

j

u J Q d g u R u a u R u dt  (6.21) 

when its neighbors 
i

j  use the policies 

 *

0

ˆargmin argmin ( ) .
j j

i

i T T T
j j i j i i i i ji i ik k jk ku u

k

J Q d g u R u a u R u dt  (6.22) 

 

In Theorem 6.3, it is proven that the solution of the game (6.21) - (6.22) is given by the 

optimal policy 

 * 1 T
i ii i i
u R B P  (6.23) 

where matrix 
i
P  solves a set of 1

i
N  coupled Riccati equations. One of the AREs is given by 

 

1 1 1

1 1

ˆ ˆ( )

ˆ ˆ 0
i

i i

T T i T i

i i i i i i ii i ij j jj ij jj j
j

T i i T
ij i jj j ij j jj i

j j

Q PA A P d g PBR B P a P BR R R B P

a PBR B P a P BR B P
 (6.24) 

and the other 
i
N  AREs have the form 

 

1 1 1 1

1 1 1

1

ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ 0

i

i

i

i T i T i T i
j j j i i i ii ji ii i ik k kk jk kk k

k

i T T i i T i
i i j ii i i i i ii j ik j kk k

k

i T i
ik k kk j

k

Q P A A P d g PBR R R B P a P BR R R B P

d g P BR B P d g PBR B P a P BR B P

a P BR B P

 (6.25) 

for all 
i

j . The notation ˆi
j
P  expresses the solutions of (6.24) - (6.25) under the assumptions 

of agent i . 
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Theorem 6.3. Consider a multiagent system with dynamics (6.20). Then, the control 

policy (6.23), where 
i
P  solves the set of 1

i
N  coupled Riccati equations (6.24) - (6.25), 

solves the graph-weight projection game defined by (6.21) - (6.22). 

Proof. The associated Hamiltonian for the optimization problem (6.21) is 

 ˆ( ) 2
i i

T T T T i
i i i i i i i ii i ij j ij j i i i j j

j j i

H Q d g u R u a u R u P A B u  (6.26) 

and the optimal policy for agent i  is obtained from 
i
H  using the stationary condition 0i

i

H

u
, 

which yields * 1 ,1 ˆi T
i ii i i i

i i

u R B P
d g

. Using the definition ˆ ( )i
i i i
B d g B  from (6.20), we get 

(6.23). Similarly, the assumed behavior of the neighbors of i  is given by the problem (6.22) with 

associated Hamiltonian 

 ˆ ˆ ˆ( ) 2
i i

i T T T T i i
j i j i i i i ji i ik k jk k i j i k k

k k i

H Q d g u R u a u R u P A B u  (6.27) 

from which, using the values ˆi
j ij
B a B  for 

i
j , we get the neighbor policies 

 * 1 ˆT i
j jj j i
R B P  (6.28) 

Substituting the policies (6.23) and (6.28) in (6.26) and equating to zero, we obtain the 

HJ equations 

 

1 1 1

1 1

ˆ ˆ( )

ˆ ˆ 0

i

i i

T T T i T i
i i i i i i i ii i ij j jj ij jj j

j

T i i T
ij i jj j ij j jj i i

j j

Q PA A P d g PBR B P a P BR R R B P

a PBR B P a P BR B P

 

that are solved for all 
i
 if the Riccati equation (6.24) is satisfied by 

i
P  and ˆi

j
P , 

i
j . 

Similarly, each of the 
i
N  neighbors of i  define their own corresponding HJ equations from 
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(6.27), which yield the AREs (6.25). The proof of optimality of the control policies (6.23) and 

(6.28) follows similarly as in the proof of Theorem 4.1 in this dissertation.    

Remark 6.2. The graph weight projection strategies provide cooperative control policies 

for the agents, at the cost of an increase in the computational complexity required to compute 

the solution of the 1
i
N  AREs (6.24) - (6.25). 

The formulation of the graph-weight projection game does not allow to obtain the gain 

and phase margin of the control policies (6.23) as performed in Chapter 4 for minmax 

strategies. However, we can still obtain some results about the robustness properties of the 

graph-weight projection strategies. 

Consider the perturbed version of the system (2.5) as 

 
1

ˆ ˆ ( ) ( ) ( )
N

i i i i i i ij j j

j

A d g B u a B u 
=

= + +  −   (6.29) 

The robustness properties of the control policies (6.23) in the system (6.29) are now presented. 

Theorem 6.4. If the perturbations 
j

 , 
i

j i , of the system (6.29) are such that 

 

1 1

1

ˆ,[( ) (2 ) ( )

ˆ ( ) ] 0

i

i

T T i

i i i i i ii i ij i j jj jj

i T

ij j jj j i ij

d g PB I R B P a PB I R B P

a P BR I B P

 

  (6.30)

 

for all 
i
, and if, additionally, 1 1 1/2ˆ ˆ,( )

i

i T i

i ij j jj ij jj jj
A Q a P BR R R B P  is detectable, then 

i
 is 

asymptotically stable. 

Proof. Using the control policies *
i
u  and *

j
 in (6.23) and (6.28), and the ARE (6.24) in 

the perturbed system (6.29), then for every , 
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0

1 1

1 1

1

ˆ ˆ ˆ ˆ(0) (0) ( ) ( ) ( ) ( )

ˆ ˆ ˆ2 , ( ( ) )

ˆ ˆ ˆ,( 2( ) 2 )

ˆ ˆ,(

i

i

T T T
i i i i i i i i i

T T i
i i i i i ii i ij j jj j ij

T T T i
i i i i i i i ii i ij i j jj j ij

i

i i ij j jj

d
P P t P t dt

dt

P A d g B R B P a B R B P

PA A P d g PB R B P a PB R B P

Q a P BR

 

 

1 1

1 1

ˆ ( ) (2 )

ˆ ˆ ˆ( ) ( ) )

i

i i

T i T

ij jj j i i i i ii ij

T i i T T
ij i j jj j ij j jj j i ij j

R R B P d g PB I R B P

a PB I R B P a P BR I B P



 

 

where ˆ
i

 is the truncation of ˆ
i
 as in (2.14). Similar to the proof of Lemma 4.3, the inequality 

1 1ˆ ˆ ˆ ˆ(0) (0) ,( )
i

T i T i

i i i i i ij j jj ij jj j ij
P Q a P BR R R B P  holds for the condition (6.30). The rest of 

the proof follows as in Lemma 4.3.  

The following section presents our last proposed solution concept for differential 

graphical games. 

 

6.4. Projection Strategies: Local-Error Projection  

We can define a different solution concept when all agents in the game are aware of the 

graph topology that links them together, even if each agent is unable to measure the states of 

any agent but its neighbors. In this case, an agent can make assumptions about the position of 

its neighbors’ neighbors, and use this information to determine a solution to the corresponding 

 
Fig. 6.1.  a) The vector points from agent 1 to the center of gravity of its neighbors. b) Agent 1 assumes all its neighbors have their 

center of gravity in the opposite relative position as itself. 
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HJ equations. This idea motivates the local-error projection strategy, on which agent i  projects 

its private information, 
i
, onto its neighbors. In particular, let agent i  assume 

j i
.  

This assumption has a clear geometrical interpretation. To describe it, define the center 

of gravity of the neighbors of agent i  as 

 
0

1

1 N

i ij j i
ji i

x a x g x
d g

 (6.31) 

Using (6.31), we can express the local error variable of agent i  as 

 

0
1

0
1

( ) ( )

( )

( ) ( )

( )( )

N

i ij i j i i
j

N

i i i ij j i
j

i i i i i i

i i i i

a x x g x x

d g x a x g x

d g x d g x

d g x x

 

This expression shows that 
i
 is a vector that points from the state 

i
x  to the center of gravity of 

i ’s neighbors, 
i
x , weighted by the factor 

i i
d g . The objective of agent i  of minimizing 

i
 is 

equivalent to state that agent i  has the center of gravity 
i
x  as actual target. Now, the 

assumption 
j i

 implies that agent j  and its target have the opposite relative position with 

respect to each other as the position of agent i  and its own target, as shown in Fig. 6.1. 

The formulation of the local-error projection strategies is considerably simpler than the 

formulation in Section 6.3, and is formalized in the following definition. 

Definition 6.5 (Local-error projection graphical game). Let each agent i  have as 

objective to determine the control policy *
i
u  that solves the minimization problem 

 *

0
1

argmin argmin ( )
i i

N
T T T

i i i i i i i i i i ij j j ju u
j

u J Q d g u Ru a u R u dt  (6.32) 

while making the assumption 
j i

.   

Theorem 6.5 shows that the control policy  
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 * 1 T
i i i i
u R B P  (6.33) 

where 
i
P  is the solution of the set of coupled AREs 

 

1 1

1

1 1

1 1

( )

0

N
T T T

i i i i i i i i ij j j j
j

N N
T T

ij i j j ij j j i
j j

Q PA A P d g PBR B P a PBR B P

a PBR B P a PBR B P

 (6.34) 

for 1, ,i N , solves the game (6.32). 

Theorem 6.5. Consider a multiagent system with dynamics (2.5) and let agent i  make 

the assumption 
j i

. Then, the control policy (6.33), where 
i
P  is the solution of the set of 

N  coupled Riccati equations (6.34), solves the local-error projection graphical game (6.32). 

Proof. The control policy (6.33) is obtained by using the stationary condition from the 

Hamiltonian of problem (6.32) given by 

 
1 1

( ) 2 ( ) .
N N

T T T T
i i i i i i i i i ij j j j i i i i i i ij j

j j

H Q d g u Ru a u R u P A d g Bu a Bu  

By defining the Hamiltonian for agent j  as 

 
1 1

( ) 2 ( )
N N

T T T T
j j j j j j j j j jk k k k j j j j j j jk k

k k

H Q d g u R u a u R u P A d g Bu a Bu  

we can determine that its optimal control policy is given by 

 * 1 .T
j j j j
u R B P  

By means of the assumption 
j i

, agent i  considers that the policy of its neighbors is then 

given by  

 * 1 T
j j j i
R B P  (6.35) 

Using (6.33) and (6.35) in 
i
H , we obtain the HJ equations 
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1 1

1

1 1

1 1

( )

0

N
T T T T

i i i i i i i i i ij j j j
j

N N
T T

ij i j j ij j j i i
j j

Q PA A P d g PBR B P a PBR B P

a PBR B P a PBR B P

 

which imply the AREs (6.34). Optimality of the control policy (6.33) is finally proven using a 

similar procedure as in the proof of Theorem 4.1   

Remark 6.3. Notice that, in local-error projection games, each agent must solve a set of 

up to N  coupled algebraic Riccati equations of the form (6.34). This is because each ARE uses 

neighbor information from each agent; thus, for agent i  to solve the ARE of its neighbor j , it 

must also solve j ’s neighbors equations. For the same reason, all agents must have enough 

information about the graph topology expressed by the weights 
ij
a  and 

i
g  required in the AREs.  

The robustness analysis of the local-error projection strategies is performed similarly as 

in the previous section. Consider the perturbed system 

 
1

ˆ ˆ ( ) .
N

i i i i i i ij j j
j

A d g B u a B u   (6.36) 

Theorem 6.6. If the perturbations 
j

 , 
i

j i ,  of the system (6.36) are such that 

 

1 1

1

ˆ,[( ) (2 ) ( )

ˆ( ) ) 0

i

i

T T

i i i i i i i ij i j j jj

T T
ij j j j j ij

d g PB I R B P a PB I R B P

a PBR I B P

 


 (6.37) 

Proof. Follows similarly as in the proof of Theorem 6.4.   

The comparison between the robustness properties of these solution concepts is left for 

Section 6.6. First, we present the simulation results of the methods presented in this chapter. 

  



113 

6.5. Simulation Results  

A numerical example is here presented to test the validity of the solutions presented 

above. Consider a set of 5 agents and one leader connected in a communication graph as 

shown in Fig. 4.2. If 
i

j , let 1
ij
a . Each agent is taken with linear dynamics with 

 
1 2 3 0

, .
2 1 0 3

A B  

For all cases, the performance indices of the agents are defined using the matrices 3
i
Q I  and 

2
i
R I , for all agents i . Minmax regret requires to determine the matrix 

i
K  that makes the 

closed-loop system marginally stable. This matrix is found to be  

 
0.1667 0.3333

0.3333 0.1667i
K  

for agents 1, 3, 4,5i . For agent 2 , the result is 

 
2

0.1111 0.2222
.

0.2222 0.1111
K  

The matrices 
i
P  that solve the Riccati equations are given by 

 
Fig. 6.2.  Graph topology for simulation of graphical games strategies. 
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1 3 4 5 2

0.1089 0.0544 0.1029 0.0514
, .

0.0544 0.1089 0.0514 0.1029
P P P P P  

The state trajectories of this simulation are shown in Fig. 6.2 and Fig. 6.3. 

Graph-weight projection strategies are simulated using the same values of 2
ij
R I  for 

all agents i , j . The corresponding set of Riccati equations (6.24) - (6.25) is solved for each 

agent. The solutions of the AREs are now given as 

 
0.4635 0.0140

0.0140 0.36i
P  

for all agents i . The state trajectories in this case are shown in Fig. 6.4 and 6.5. 

Finally, the local-error projection strategies are solved. The same values of 3
i
Q I  and 

2
ij
R I  are used for all agents i , j . The simulation results are shown in Fig. 6.6 and Fig. 6.7. 

For the selection of performance indices in these examples, the solutions of the coupled AREs 

are identical to the graph-weight projection case above, given by 
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0.4635 0.0140

.
0.0140 0.3600i

P  

 

6.6. Conclusions  

Three alternative solutions for differential graphical games were proposed in this 

chapter. Each of these solution concepts presents different characteristics that make it suitable 

for a particular set of graphical games problems. Depending on the assumptions made by the 

 
Fig. 6.3.  State trajectories for the agents using minmax regret policies. 

  

 
Fig. 6.4.  Evolution of the state trajectories with respect to time for minmax regret policies. 
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agents, the computational complexity, the number of equations required to be solved and the 

robustness properties of the control policies may vary. 

The minmax regret policy is obtained by solving a single, decoupled Riccati equation as 

in the minmax strategies case. The conditions for such solution to exist, however, are less 

evident. Furthermore, additional computation steps are employed like, for example, the 

calculation of the matrix 
i
K  that makes the system marginally stable. The main advantage of 

 
Fig. 6.5.  State trajectories for the agents using graph-weight projection strategies. 

  

 
Fig. 6.6.  Evolution of the state trajectories with respect to time for graph-weight projection strategies. 
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minmax regret is provided by its formulation. After all, it may be more natural for an agent to 

have the objective of minimizing its regret than to assume the worst behavior of its neighbors. 

Graph-weight projection strategies provide control policies on which the agents make 

cooperative assumptions. The main consequence of this scenario is the fact that the agents 

must solve a set of coupled AREs, on which they employ the assumed collaborative policies of 

the neighbors. The number of Riccati equations that must be simultaneously solved is limited by 

the total number of neighbors of the agent. Furthermore, the agents do not need any knowledge 

of the graph topology, except the edges that link them to their neighbors. 

 
Fig. 6.8.  Evolution of the state trajectories with respect to time for local-error projection strategies. 

  

 
Fig. 6.7.  State trajectories for the agents using local-error projection strategies. 
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Finally, the local-error projection strategies, were presented. To design these strategies, 

all agents need a complete knowledge of the graph topology. Then, they need to solve a set of 

coupled AREs with as many equations as the total number of agents in the game. Comparing 

the conditions (6.30) and (6.37), we notice the similarities overcome any minor difference 

between them. The simulation results, indeed, show that the solutions for graph-weight 

projection and local-error projection strategies may coincide under the appropriate selection of 

weighting matrices in the performance indices of the agents. 
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Chapter 7 

CONCLUSION AND FUTURE WORK 
 

 

This dissertation presented the formulation and solutions of different graphical games 

for dynamical systems. The most important solution concept in game theory, Nash equilibrium, 

is in general not attainable in graphical games due to the limited information that the players 

receive through the graph topology. To overcome this lack of knowledge, it is argued in this 

work that the agents must make assumptions about their neighbors’ objectives, or about the 

information the neighbors have available. 

The first game formulated, Bayesian games, addresses the problem of games between 

agents that are uncertain about each other’s intentions. Each agent is designed to have beliefs 

about its surroundings, to update those beliefs in accordance to the evidence it obtains from its 

environment, and to perform its optimal behavior dependent on its beliefs. It is important to 

notice that, although the Bayesian games formulation was described specifically for a Bayes-

Nash equilibrium result, the same belief structure can be used for any of the new solution 

concepts proposed in this research.  

Four solution concepts were then introduced as alternatives for Nash equilibrium. 

These solutions can be immediately separated in two main categories: minmax solutions and 

projection solutions. The minmax solutions include the minmax strategies and the minmax 

regret strategies. In both cases, an agent makes the assumption that its neighbors will perform 

their worst-case policies to negatively affect its performance. The optimal policies for these 

strategies are provided by the solution of a single, decoupled Riccati equation. The conservative 

assumption that the neighbors will attempt to maximize a cost function generate robust policies 

in the agents.  

The projection solutions include the graph-weight projection strategies and the local-

error projection strategies. These solutions are characterized by the fact that an agent assumes 

that its neighbors and itself share the same information of some sort. Both strategies use more 
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general formulations of the graphical game, and require the solution of many coupled Riccati 

equations. The graph-weight projection solution formulates a game including only its neighbors, 

which require solving the same number of AREs as the number of neighbors the agent has. The 

local-error projection strategy requires an increased number of AREs to solve. Each of these 

strategies is better for certain applications, depending on the total number of agents and the 

expected number of neighbors per agent. 

The following are some of the directions for continuation of this work. 

1. Design different belief-update algorithms Bayesian games to reduce the computational 

complexity of the Bayes rule, or to increase its efficiency in the uncertain environments 

provided by a graph topology.  

2. Extend the proposed results for multiagent systems with nonlinear dynamics. 

3. Formulate non-synchronization games in graphs to increase the scope of applicability of the 

proposed methods. Richer dynamics can be allowed for the agents that do not involve 

following the same target. 

4. Consider practical implementations of the solution concepts here designed. The increasing 

interest in swarms of UAVs or in autonomous vehicles, for example, provide the opportunity 

to test the reliability of these results.   
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Appendix 

DYNAMIC MULTIOBJECTIVE CONTROL USING REINFORCEMENT LEARNING 
 

A.1. Introduction  

In Chapter 3 of this dissertation, it was shown that the solution of a Bayesian game can 

be determined as the solution of a multiobjective optimization problem. Similarly, many 

engineering problems require describing the goals of a system by means of two or more 

performance indices, rather than the single cost function employed in classical optimal control. 

Using several performance indices provides more flexibility to represent the expected behavior 

of the system in ways that are difficult to express otherwise. Examples of these applications can 

be found in [74]. The study of multiobjective optimization control is therefore a natural extension 

of the usual analysis in the current literature [75].  

Multiobjective optimal control has been studied in [75]-[77] where the concept of Pareto 

domination is employed to compare the desirability of two vector functions. Using this notion, 

the control input is designed such that improving an objective function unilaterally implies 

making another worse [50], [78]. Most of the papers in the literature deal with static 

multiobjective optimization. In this appendix, we present a practical method of policy iteration to 

solve the multiobjective optimization problem for nonlinear dynamical continuous-time systems.  

Several methods exist to compute a Pareto optimum. These include numerical methods 

embedded in software packages, as well as analytic procedures such as the weighted sum, or 

scalarization, technique [50]. The weighted sum method consists of combining the different cost 

indices into a single scalar function by computing their convex sum. This is a practical method in 

many applications, but it presents many technical drawbacks. These include the presence of 

unreachable Pareto optimal results, a strong, non-intuitive dependence on the selected sum 

weights, and a large computational burden as the number of desired solutions increases [50]. 

For these reasons, this appendix presents a general approach for multiobjective control that can 

be applied with any of the existing multiobjective optimization methods. 
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Reinforcement learning is a set of artificial intelligence methods that has had an 

increasing success in the last decade for providing a system with the ability to improve its 

performance as it gains experience while attempting to achieve its goals [70]-[72], [5]. In the last 

few years, reinforcement learning approaches have been adopted in control theory where the 

performance of a dynamical system is measured by means of a scalar function that represents 

the cost spent by the system along time. Reinforcement learning techniques, properly defined 

for control of dynamical systems, are described in [73]. 

The main motivation of this Appendix is to design a control strategy that allows to solve 

optimization problems that cannot be expressed by a single cost function. When the objectives 

of the system are conflicting with each other, a tradeoff must be achieved. The controller is 

based on reinforcement learning methods to avoid the difficult task of solving the Hamilton-

Jacobi-Bellman equation [5] and to relax the need of full knowledge of the dynamic model of the 

system. 

The appendix is organized as follows. Basic definitions for multiobjective optimization 

and for the multiobjective optimal control problem are described in Section A.2. Section A.3 

shows the basic transformations employed to obtain an iterative suboptimal control sequence. 

In Section A.4, a policy iteration algorithm to solve the multiobjective optimization problem is 

designed, with considerations to allow its implementation in practical applications. Section A.5 

studies the linear systems case. Finally, Section A.6 concludes with a numerical example. 

 

A.2. Multiobjective Performance of a Dynamical System  

Multiobjective optimization deals with the problem of minimizing two or more objective 

functions simultaneously [78]. In mathematical terms, this problem is expressed as 

 min ( )
x X

V x


 (A.1) 

where nx  is selected inside a feasible set X  and : n MV →  is a vector with M  

elements,  1( ) ( ), , ( )
T

MV x V x V x= , with ( )iV x , 1, ,i M= , the functions to be minimized. In the 
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general case, there does not exist a solution x  that achieves the minimization of all functions 

( )iV x  simultaneously, and the concepts of Pareto domination and Pareto optimality must be 

introduced. 

Definition A.1 (Pareto domination). A vector MW   is said to Pareto dominate 

vector MV   if j jW V  for all 1, ,j M= , and j jW V  for at least one j , where jV  and jW  

are the j -th entries of vectors V  and W , respectively. Notation W V  for vectors MW   and 

MV  , indicate that W  is not Pareto dominated by V , i.e., either V W=  or there is at least 

one entry j  such that j jV W . Notation W V  means that j jW V  for all 1, ,j M= .  

Employing these definitions, the concept of Pareto optimality can be stated as follows. 

Definition A.2 (Pareto optimality). A solution *x  of problem (A.1) is said to be Pareto 

optimal if *( ) ( )V x V x  for all x X .  

The outcome *( )V x  of a Pareto optimal solution *x  is also said to be Pareto optimal. In 

general, a multiobjective optimization problem has multiple Pareto optimal outcomes, and the 

set of all Pareto optimal outcomes for a given problem is regarded as the Pareto front. Here, we 

represent the Pareto front as  , such that *( )V x  . 

Consider now a dynamical system with general nonlinear dynamics 

 ( , )x f x u=  (A.2) 

where nx  and mu  are the state vector and the control input of the system, respectively, 

and f  is a continuously differentiable function. In the multiobjective optimization problem, the 

performance of system (A.2) is evaluated with respect to M  different performance indices 

 
0

( (0), ) ( (0), )j jJ x u r x u dt


=   (A.3) 

1, ,j M= , where each jr  is a scalar, positive definite, continuously differentiable function. The 

feedback control function ( )u x  is said to be admissible if it is continuous, stabilizes the 
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dynamics (A.2) and makes ( , ( ))jJ x u x  finite for all 1, ,j M= . The class of functions satisfying 

these properties is denoted as 0U . Define the vector J  as  1, ,
T

MJ J J= . It is our interest to 

find a function 0( )u x U  such that vector J  is minimized in the Pareto sense. 

For a fixed control policy ( )u x , define the value functions 

 ( ( )) ( ( ), )j j
t

V x t r x u d 


=   (A.4) 

for 1, ,j M= . Furthermore, let  1, ,
T

MV V V= . A differential equivalent to the value function 

(A.4) is given by the Bellman equations 

 0 ( , ) ( , ) ( , , )T
j j j jr x u V f x u H x V u= +   (A.5) 

where jV  is the gradient of jV , and ( , , )j jH x V u  is the j th Hamiltonian function of the 

system. Note that the orbital derivative of ( )jV x  is given by 

 ( ) ( , ).j j jV x V x r x u=  = −  (A.6) 

Define also 

 
0

*( (0)) inf ( (0), )
u U

V x J x u


 (A.7) 

where, in general, *V  is not unique, and *
JV   with J

  the Pareto front of vector J . 

Define the Pareto optimal vector *H  as 

 
0

*( , ) min ( , , )
u U

H x V H x V u


 =   (A.8) 

where  1, ,
T

MH H H=  and  1, ,
T

MV V V =   . *H  is Pareto optimal in the sense that, for 

each state vector x  and vector V , *( , ) ( , , )H x V H x V u    for every control policy 0u U . 

In general, it is possible to select different control inputs, *1u  and *2u , such that 

*1( , , )H x V u  and *2( , , )H x V u  are both Pareto optimal. For this reason, we make the following 

assumption, useful for the analysis of the next section. 

Assumption A.1. If there exists *u  such that *( , ) 0H x V =  for all x  and a given 
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function ( )V x , then select *u u= . 

Assumption A.1 is a restriction on the procedure employed to find a Pareto optimal 

vector in (A.8), and states that if the vector of zeros is one of the possible Pareto optimal results 

for *H , then control policy u  must be selected accordingly. The consequences of Assumption 

A.1 are studied in Lemmas A.4 and A.5 in the following section. 

 

A.3. Multiobjective Suboptimal Control Sequences  

This section defines and analyzes transformations to design suboptimal control policies 

in an iterative manner. This is an extension for multiobjective optimization of the results in [71]. 

Considering the multiobjective optimal control problem described in Section A.2, define 

 as the set of all continuously differentiable functions : n MV →  such that (0) 0V = . Define 

also 0  as the subset of  such that 0( , )u x V U  , i.e., the feedback control policies based on 

the vector function V  are admissible. Define the transformations 1T , 2T  and T  as follows. 

Definition A.4 (Function transformations). 

1. Define the function 0 0
1 :T U→  as 1 1 1( ) ( , , )MT V T V V u= =  where 

 1, ,
T

MV V V=  and ( , )u u x V=  . 

2. Define the function 0
2 :T U →  as 2 ( )T u V= , where MV   and 

( ) ( , )j jV x J x u= , 1, ,j M= . 

3. Define the composite mapping 0:T →  as 

1 2 1 1( , , ) ( ( , , )) ( , )M MT V V T T V V J x u= = , where ( , )u u x V=  . 

 

Our objective now is to use these transformations to design a control sequence that 

converges to an optimal policy * 0( )u x U . We begin our analysis by studying some of the 
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properties of the vector functions defined in Section A.2, as well as  those of transformations 1T , 

2T  and T . 

Lemma A.1 allows to compare two vector functions, V  and W , with entries jV  and jW  

as in (A.4), when the respective Hamiltonian functions are known. 

Lemma A.1. If ( , , ) ( , , )H x V u H x W u    for given vector functions V , W , and control 

u , then W V . 

Proof. By Definition A.2, we have that either ( , , ) ( , , )H x V u H x W u =   or there exists an 

entry j  such that ( , , ) ( , , )j jH x V u H x W u   . Assume the latter case and consider this same 

entry j . By definition of jH  in (A.5), we have ( , ) ( , ) ( , ) ( , )T T
j j j jr x u V f x u r x u W f x u+  + , which 

implies ( , ) ( , )T T
j jV f x u W f x u   ; that is, j jV W . Integrating the inequality along the same 

motions yields j jW V  and, therefore, W V .  

Lemma A.2 and Theorem A.1 relate the Pareto optimality of vector V  with the Pareto 

optimality of vector H  in (A.8). 

Lemma A.2. Consider a control policy *u  such that (A.8) holds. If * ( )jV x , 1, ,j M= , 

solves the Bellman equation (A.5) for *u , then * ( )V x  is Pareto optimal. 

Proof. Consider a control policy u  such that *( , , ) ( , , )H x V u H x V u   . By Pareto 

optimality of *( , , )j jH x V u , there exists an entry j  such that 

 *( , , ) ( , , ).j j j jH x V u H x V u    (A.9) 

For this entry j , let *
jV  solve the Bellman equation for *u  and jV  solve the Bellman equation 

for u . Then, notice that * * *( , , ) ( , , ) ( , , ) 0j j j j j jH x V u H x V u H x V u   =  = . Now, by Lemma A.1, 

*( , , ) ( , , )j j j jH x V u H x V u    implies *
j jV V .   

Theorem A.1. Let the control policy *u  be such that (A.8) holds, and *V  such that *
jV  

solves the j th Bellman equation (A.5) for *u , for every entry 1, ,j M= . Then, *
JV   with 
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J
  the Pareto front of J as defined in (A.7). 

Proof. As *u  makes *H  Pareto optimal, then, by Lemma A.2, *V  is also Pareto optimal. 

Now, for all entries of vector J , we have 

 
0

* * *

0

( , )

( , , ) ( ( )) ( (0))

j j

j j j j

J r x u dt

H x V u dt V x V x





=

=  −  +




 

As * 0u U , then ( ( )) 0V x  = . Therefore, *( (0))j jJ V x=  for all entries j , and Pareto optimality of 

*V  implies Pareto optimality of J . This is *
JV   as in (A.7).  

The proof of Theorem A.1 shows that *V J=   when *V  solves the Bellman equation for 

*u . Lemma A.3 and Theorem A.2 show that solving the Bellman equation, regardless of the 

control function u , is a sufficient and necessary condition for a vector V  to satisfy the equality 

2 ( )V T u J= = . 

Lemma A.3. 2 ( )V T u=  if and only if jV  satisfies ( , , ) 0jH x V u = , for 1, ,j M= . 

Proof. If ( , , ) 0jH x V u = , then ( , )T
jV V f x u=   ( , , ) ( , ) ( , )j j j jH x V u r x u r x u J=  − = − = , 

and integrating both sides of the equality along the same motions for all entries of the vector, 

yields 2 ( )V J T u= = . Conversely, if V J= , then ( , )j j jV J r x u= = − , which implies 0jH = .       

Theorem A.2. Let 0V   and W  . Now, ( )W T V=  if and only if 

( , , ( , )) 0H x W u x V  = . 

Proof. Follows directly from Lemma A.3 and Definition A.4.   

Clearly, if V  is such that ( , , ) 0H x V u = , then *( , ) 0H x V  , which means that the 

vector of zeros does not Pareto dominates *H . However, this does not necessarily imply that all 

the elements of *H  are nonpositive. Lemma A.4 solves this inconvenience. 

Lemma A.4. Let Assumption A.1 hold. Then, *( , ) 0jH x V   for all entries of *H . 

Proof. By Assumption A.1, if the vector of zeros is Pareto optimal, then * 0jH =  for all 
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entries j . If 0H =  is not Pareto optimal, then by definition of Pareto optimality we have 

*( , ) 0jH x V   for all j  with at least one strict inequality.   

As studied below, Lemma A.4 allows guaranteeing that all the entries of a vector are at 

least as small as the entries of another (V W ) when an iterative algorithm is employed. 

The following theorem shows the recursion required later in this section to design a 

suboptimal control sequence. 

Theorem A.3. Let 0V   and ( )V T V= , and let Assumption A.1 hold. Then, 

*( , ) 0H x V  implies *V V V , with *V  Pareto optimal. 

Proof. Take *( , )u u x V=  . By Assumption A.1 and Lemma A.4, *( , ) 0jH x V   for every 

1, ,j M= . Then, we can express *( , ) ( , ) ( , )j j j j jV H x V r x u r x u J=  −  − = . 

As ( )j jV T V J= =  implies j jV J= , then j jV V . Integrating the inequality we get j jV V  

for all entries j .   

In the single objective optimization problem, it is clear that an iterative repetition of the 

operation in Theorem A.3 leads the function vector V  to the unique optimal value function *V . 

In the multiobjective optimization case, Assumption A.1 is required to prevent leaping among 

different Pareto optima at each iteration, as proven in Lemma A.5 and Theorem A.4. 

Lemma A.5. Let *V  be Pareto optimal and let Assumption A.1 hold. If *W  is any other 

Pareto optimal value function such that * *V W , then * *( )W T V . 

Proof. Assume 
*( )W T V . If Assumption A.1 holds, by Lemma A.4 we have 

*( , ) 0
j
H x V  for all entries j . By Theorem A.3, we have *

j j
W V   for all j . As * *

j j
W V  for 

some j , for any other Pareto optimal vector *W  , then *W  cannot be reached.    

Theorem A.4. If a Pareto optimal solution * 0V  exists, then 
* *( )V T V . 

Conversely, ( )V T V  implies *V V . 
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Proof. Consider two Pareto optimal vectors *V  and *W . By Theorem A.3, if *( )V T V= , 

then * *W V V ; by Lemma A.5 and definition of Pareto optimality, V V  implies *V V= . 

Conversely, if ( )V T V , by Theorem A.2 we have *( , ) 0H x V  and V   solves the Bellman 

equations (A.5); by Lemma A.2, *V V .   

We finally formalize the idea of using the result in Theorem A.3 to build a sequence of 

successive approximations that converge to a Pareto optimal solution *V V*. 

Theorem A.5. Take V 0∈ 0  and 1 ( )k kV T V . Then * 1 0kV V V+  for a Pareto 

optimal solution *V . 

Proof. The proof follows inductively from Theorem A.3, noting that the current estimate 

of the optimal value function at step k  is 
2
( )k kV T u  and taking the control policy at step 1k +  

based on kV , i.e.,  1

1
( , ) ( )k k ku u x V T V . Convergence to a single Pareto optimal result is 

provided by Theorem A.4.  

 

A.4. Integral Reinforcement Learning Algorithm for Multiobjective Suboptimal Control  

In this section, we use the analysis of Section A.3 to design an integral reinforcement 

learning (IRL) algorithm using the structure of policy iteration [70],  [73],  [79], that is shown to 

converge to a Pareto optimal solution of vector V , then used to generate the optimal policy 

*( , )u x V . Here, it is assumed that the state values of system (A.2) are known, even if part of 

its mathematical model is uncertain. 

In [79], an IRL algorithm that converges to the solution *V  of the Bellman equation for a 

single performance index was developed. This section presents the integral reinforcement 

learning in multiobjective optimization form. 

Notice that the j th value function (A.4) can be expressed as 
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 ( ( )) ( ( ), ) ( ( ))
t T

j j j
t

V x t r x u d V x t T 
+

= + +  (A.10) 

for any time interval 0T . Given the functions ( )
j
V x  and ( , )

j
r x u , equation (A.10) does not 

require knowledge about the system dynamics (A.2). Lemma A.6 shows that the solution ( )
j
V x  

of (A.10) is the value function (A.4) that solves equation (A.5). 

Lemma A.6. Assume the control policy ( )u x  stabilizes the system dynamics (A.2). 

Then, the solution ( )
j
V x  of equation (A.10) is equivalent to the solution of the Bellman equation 

(A.5). 

Proof. If equation (A.5) holds for 
j
V , then ( , ) ( , )T

j j jV V f x u r x u=  = − . Integrating both 

sides of the equation, we get 

 ( , ) ( ( )) ( ( )) ( ( ))
t T t T

j j j j
t t

r x u d V x d V x t T V x t  
+ +

= − = − + +   

which  is the same equation as (A.10).   

The following algorithm presents the multiobjective optimal controller by reinforcement 

learning. The policy evaluation step consists of solving Equation (A.10). This corresponds to the 

transformation 
2
T  in Definition A.4. The policy improvement step is based on Equation (A.8), 

and corresponds to the transformation 
1
T . Convergence of Algorithm A.1 is proven in Theorem 

A.6. 

Algorithm A.1 (IRL for Multiobjective Optimization) 

1: Select an admissible control policy 0u . 

2: Solve for kV  from the set of equations 

( ( )) ( ( ), ) ( ( ))
t T

k k
j j j

t
V x t r x u d V x t T 

+

= + +                               (A.11) 

3: Update the control policy as 
1 arg min ( , , )k k

u

u H x V u+ =                                                    (A.12) 

4: Go to Step 2. On convergence, stop. 

 

Theorem A.6. Assume there exists an admissible control input u  for system (A.2). 

Perform Algorithm A.1 such that Assumption A.1 holds in step 3. Then, Algorithm A.1 converges 
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to a Pareto optimal solution *V . Moreover, the control policy *( , )u x V  optimizes the 

performance index vector J .  

Proof. From equation (A.12) and Assumption A.1, we have that 1( , , ) 0k k
j j
H x V u  for 

all 1, ,j M= . As function 1k
j
V  solves equation (A.11), then by Lemma A.6 

1 1( , , ) 0k k
j j
H x V u . From both results we get 1 1 1( , , ) ( , , )k k k k

j j j j
H x V u H x V u . By 

Lemma A.1, this implies 1k k
j j
V V  and vector 1kV  is not Pareto dominated by kV . By 

Theorems A.5, these properties hold for every iteration until a Pareto optimal vector *V  is 

obtained. 

By Theorem A.1, if (A.11) holds for *V , then * *V J . Thus, *V  guarantees a Pareto 

optimal performance of the system.  

Remark A.1. Equation (A.11) avoids the use of the system dynamics (A.2) in the policy 

evaluation step of the algorithm, and equation (A.12) requires only partial knowledge of the 

mathematical model of the system [79]. 

In the following section it is shown how to use partial knowledge of a linear system with 

a particular Pareto optimization solver in Algorithm A.1. 

 

A.5. Multiobjective Linear Quadratic Regulator  

Consider a system with linear dynamics 

 .x Ax Bu= +  (A.13) 

The performance of the system is measured using M  different performance indices 

with quadratic terms, given by 

 ( )
0

T T
j j jJ x Q x u R u dt



= +  (A.14) 
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1, ,j M , where 0
j
Q  and 0

j
R  are symmetric matrices. Express each of the M  value 

functions in quadratic form as 

 T
j jV x P x=  (A.15) 

1, ,j M , with 0T
j jP P=  .  

In order to apply the multiobjective IRL algorithm, express the functions (A.15) in the 

form (A.10); that is, 

 ( )( ) ( ) ( ) ( ).
t T

T T T T
j j j j

t
x t P x t x Q x u R u d x t T P x t T

+

= + + + +  (A.16) 

Solving this equation becomes an easier task if we employ the Kronecker product to express 

the term T
jx P x  as ( ) ( ) vec( ) ( )T T

j jx t P x t P x x=  , where vec( )jP  is the column vector obtained by 

stacking the columns of 
j
P . Moreover, as matrix 

j
P   is symmetric and the expression x x  

includes all possible products of the entries of x , each of the vectors vec( )jP  and x x  include 

repeated terms. Represent these vectors after removing all the redundant terms as  
j
p  and x , 

respectively, which consist of ( 1)/ 2n n  components. Now, we can write 

 T T
j jx P x p x=  (A.17) 

Using the expression (A.17), we rewrite equation (A.16) as 

 ( )( ( ) ( ))
t T

T T T
j j j

t
p x t x t T x Q x u R u d

+

− + = +  (A.18) 

and the goal is to find the values of jp  that satisfy (A.18) given the measurements ( )x t  and 

( )x t T+ , and the employed control input u . This objective can be achieved using recursive least 

squares after collecting several samples of equation (A.18) [73]. 

The Hamiltonian functions for this system are 

 ( )2 .T T T
j j j jH x Q x u R u x P Ax Bu= + + +  (A.19) 

The optimal control policy *u  for system (A.13) is the input u Kx  that makes the vector 
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1
, ,

T

M
H H H  Pareto optimal. 

Several methods can be used to determine *u . Here, we propose a general procedure 

that allows this problem to be solved by any multiobjective optimization software package. 

Substitute the policy u Kx  in each of the Hamiltonian functions (A.19), to obtain 

 ( ) ( )
TT T T T T

j j j j jH x Q x x K R Kx x P A BK x x A BK P x= + + − + −  (A.20) 

It is well known that the minimization of each individual 
j
H  with respect to K  is 

achieved using the optimal gain matrix * 1 T
j j

K R B P . However, this optimization problem can 

be characterized differently to be programed in a multi-objective optimization solver. Theorem 

A.7 shows that minimizing (A.20) by means of matrix K  is equivalent to minimize the sum of 

the eigenvalues of the matrix T T T
j j j

K RK PBK K B P . To simplify the notation, define the 

variables 

 ( ) ( )
TT

j j j j jS Q K R K P A BK A BK P= + + − + −  (A.21) 

and 

 ' .T T T
j j j jS K R K P BK K B P= − −  (A.22) 

The i th eigenvalue of a matrix S  is denoted as ( )
i
S . 

Theorem A.7. Let T
j j
H x S x , where 

j
S  is the symmetric matrix (A.21). Then, solving 

the minimization problem 

 * arg min j
K

K H=  

is equivalent to solving the eigenvalue minimization problem 

 *

1

arg min ( ' ),
n

i j
K i

K S
=

=   

with '
j

S  as in (A.22).  
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Proof. Take the optimal matrix *K  such that * *T
j j
H x S x , with 

* * * * *( ) ( )T T
j j j j j
S Q K RK P A BK A BK P , is minimal; this means *T T

j j
x S x x S x  for 

j
S  

in (A.21) using any matrix K . Now we can write *( ) 0T
j j

x S S x  and, therefore, *

j j
S S  is a 

positive semidefinite matrix. Note that for the matrices (A.21) and (A.22), we have 

* *' '
j j j j
S S S S . As all the eigenvalues of *' '

j j
S S  are nonnegative, and the trace of a 

matrix is equal to the sum of its eigenvalues, then *tr( ' ' ) 0
j j

S S , which implies 

*tr( ' ) tr( ' )
j j

S S . We conclude that matrix *K  generates the matrix *'
j

S   with minimal sum of its 

eigenvalues.  

By Theorem A.7, minimization of the Hamiltonian vector H  can be achieved by finding 

the gain matrix *K  such that, for given matrices 
j
P , 1, ,j M  we have 

 

( )

( )

1 1 1

1*

1

arg min

n
T T T

i

i

n
K T T T

i M M M

i

K R K PBK K B P

K

K R K P BK K B P





=

=

 
− − 

 =
 

− − 
 





 (A.23) 

Remark A.2. Problem (A.23) is expressed without knowledge of matrix A  of the 

system dynamics (A.13). 

Algorithm A.2 expresses the policy iteration procedure presented in Algorithm A.1, 

modified for the linear systems case.  

 

Algorithm A.2 (IRL for Linear Multiobjective Optimization) 

1: Select an admissible control policy 0 0u K x . 

2: Solve the set of equations (A.11) for kV . 
3: Solve the multiobjective optimization problem (A.23) and 

update the control policies as 1 1k ku K x . 
4: Go to Step 2. On convergence, stop. 
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A.6. Simulation Results  

Algorithm 2 is now employed to achieve stabilization of the linearized double inverted 

pendulum in a cart [86], [87], represented by the dynamic equations (A.13), where 

 

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0
, ,

0 0 0 0 0 0 1

0 86.69 21.61 0 0 0 6.64

0 40.31 39.45 0 0 0 0.08

A B

   
   
   
   = =
   

−   
   −   

 

state 
1
x  is the position of the cart, 

2
x  and 

3
x  are the angles of both pendulums, and the 

remaining states are the velocities. As performance objectives, i) regulation of all states is 

required and ii) the values of 
2
x  and 

3
x  must be as close to each other as possible. The 

performance indices (A.14) can now be defined as 

 1 2

200 0 0 0 0 0 1 0 0 0 0 0

0 200 0 0 0 0 0 1 1 0 0 0

0 0 200 0 0 0 0 1 1 0 0 0
, ,

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

Q Q

   
   −
   −
   = =
   
   
      

 

and 1 2 1R R= = . The sample time per iteration is 0.05T = . 

 
Fig. A.1.  State trajectories of a linear system with multiobjective optimization. 
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The Matlab function for multiobjective optimization fgoalattain is employed in to 

determine the feedback control matrix K  at each iteration. fgoalattain allows to generate 

different points in the Pareto front of the problem. The state trajectories for 
1
x , 

2
x  and 

3
x  after 

implementation of Algorithm A.2 are shown in Figure A.1. All states are shown to be stabilized 

by the controller. The final gain matrix K  is  11.90 110.67 165.9 13.30 4.20 26.32K = − − . 
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