
i

OPTIMAL CONTROL STRATEGIES AND REINFORCEMENT LEARNING FOR DYNAMICAL
MULTIAGENT SYSTEMS IN GRAPHICAL GAMES

by

VICTOR GABRIEL LOPEZ MEJIA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2019

ii

Copyright © by Victor G. Lopez Mejia 2019

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I wish to express my gratitude to all the people that helped me complete the road of a

doctoral program. I deeply thank my thesis adviser and friend, Dr. Frank L. Lewis, for his

teachings, his guidance and the motivation he provided me during all these years. It has been

my honor to be his student. With the same emphasis I thank my coadviser, Dr. Yan Wan, for her

constant support and assistance to perform my research. Her passion for her work and her

attention to detail are exemplary among all researchers.

I also want to thank the members of my dissertation committee, Dr. William Dillon, Dr.

Ramtin Madani and Dr. Manfred Huber, for their helpful comments, their interesting insights and

their unreserved willingness to devote some of their time to evaluate my research.

With my whole heart I thank all of my friends and collaborators at UTA, people from all

around the world with goals similar to mine and whose support and friendship were invaluable

throughout this experience. It would be unfair not to explicitly mention my two closest friends,

Mushuang Liu and Patrik Kolaric. During these years, you guys made my worst moments

bearable and my best moments possible.

The pillar of my career will always be my family, to which I owe every bit of success I

may achieve. I thank my parents, Gabriel and Victoria, and my siblings, Melchor and Gabriela,

for their words of advice and encouragement, and the unconditional support I always get from

them. It is much easier to move forward when I know they have my back.

I finally thank the Mexican Council of Science and Technology (Conacyt) for the

economic support provided to perform my PhD studies. This research was also partially

supported by ONR grant N00014-17-1-2239, ONR Grant N00014-18-1-2221, NSF Grant ECCS-

1839804.

June 05, 2019

iv

ABSTRACT

OPTIMAL CONTROL STRATEGIES AND REINFORCEMENT LEARNING FOR DYNAMICAL

MULTIAGENT SYSTEMS IN GRAPHICAL GAMES

VICTOR G. LOPEZ MEJIA

The University of Texas at Arlington, 2019

Suppervising professor: Frank L. Lewis

As the number of artificial autonomous agents increases in industrial and urban areas,

the development of formal protocols to analyze their behavior as they interact with each other

becomes of central interest in control systems research. Each agent in this setting is interested

in completing a specific task with considerations of an optimal performance. Game theory has

become one of the most useful tools in multiagent systems analysis due to its rigorous

mathematical representation of optimal decision making. The analysis of dynamical systems

has been developed in the branch of game theory regarded as differential games. The set of

graphical games consider also limited sensing capabilities among the agents, such that they

can only measure the state of their closest neighbors.

This dissertation presents the formulation of different solutions for differential graphical

games. The proposed solutions represent various scenarios for the interactions of multiagent

systems, on which the agents face different conditions in their environments, their goals or their

ability to speculate about the behavior of their neighbors. First, Bayesian Games are formulated

to describe the case on which an agent is uncertain about the intentions of its neighbors.

Conditions for Bayes-Nash equilibrium are provided. Then, Minmax strategies are analyzed for

v

graphical games as an alternative for Nash equilibrium. Stability and robustness properties are

thoroughly investigated. We prove that Minmax strategies improve the robustness properties of

the single-agent LQR controller. As a particular application of the applicability of Minmax

strategies, Pursuit-Evasion Games are then analyzed. In these games, different behaviors are

obtained between both multiagent teams by varying the individual performance indices. Finally,

Minmax Regret and Projection Strategies are proposed as two additional solution concepts that

allow the agents to make assumptions about the information available to their neighbors.

vi

TABLE OF CONTENTS

Acknowledgement .. iii

Abstract .. iv

List of illustrations ... x

Chapter 1: INTRODUCTION .. 1

Chapter 2: PRELIMINARIES .. 9

2.1 Introduction .. 9

2.2 Graph Theory ... 9

2.3 Game Theory ... 11

2.4 Differential Graphical Games ... 15

2.5 Further Notations ... 18

Chapter 3: EPISTEMIC BELIEFS AND BAYESIAN GRAPHICAL GAMES 20

3.1. Introduction ... 20

3.2. Bayesian Graphical Games for Dynamic Systems 21

3.2.1. Game formulation .. 22

3.2.2. Expected cost .. 23

3.2.3. Best response policy and Bayes-Nash equilibrium 24

3.3. Bayesian Belief Updates ... 29

3.3.1. Epistemic type estimation .. 29

3.3.2. Naïve likelihood approximation .. 33

3.4. Non-Bayesian Belief Updates ... 38

3.5. Simulation Results .. 39

3.5.1. Parameters for simulation .. 40

3.5.2. Bayesian belief update ... 44

vii

3.5.3. Non-Bayesian belief update ... 44

3.6. Conclusion .. 45

Chapter 4: MINMAX SOLUTIONS FOR DIFFERENTIAL GRAPHICAL GAMES 47

4.1. Introduction ... 47

4.2. Minmax Strategies for Graphical Games .. 48

4.2.1. Drawbacks in Nash equilibrium .. 48

4.2.2. Formulation of minmax strategies .. 49

4.3. Stability of Minmax Strategies ... 52

4.3.1.
2
 stability .. 53

4.3.2. Asymptotic stability .. 54

4.4. Robustness Analysis for Minmax Strategies ... 58

4.5. Off-Policy Learning for Minmax Strategies .. 62

4.6. Simulation Results .. 65

4.7. Conclusion .. 66

Chapter 5: MULTIAGENT PURSUIT-EVASION GAMES: FINITE-TIME CAPTURE AND
ASYMPTOTIC BEHAVIORS .. 68

5.1. Introduction ... 68

5.2. Definition of Graphs and System Variables .. 70

5.2.1. Three graphs for MPE game interactions .. 70

5.2.2. Local errors and dynamics ... 71

5.3. Formulation and Solutions for Multiagent Pursuit-Evasion Games 73

5.3.1. Definitions for MPE games on graphs ... 73

5.3.2. Nash equilibrium solution for MPE games 76

5.3.3. Minmax strategies in MPE games ... 80

5.4. Target Selection and Finite-Time Capture .. 82

viii

5.4.1. Target selection by the pursuers .. 82

5.4.2. Finite-time intercept ... 85

5.4.3. Inverse optimal control for finite-time capture 87

5.5. Extensions and Asymptotic Behaviors .. 87

5.5.1. Rendezvous or asymptotic capture .. 87

5.5.2.
2
 gain bound .. 89

5.5.3. Containment control ... 90

5.6. Simulation Results .. 92

5.6.1. Finite-time capture ... 92

5.6.2. Asymptotic capture .. 93

5.6.3. Containment control ... 93

5.7. Conclusion .. 95

Chapter 6: FURTHER SOLUTION CONCEPTS FOR DIFFERENTIAL GRAPHICAL
GAMES .. 97

6.1. Introduction ... 97

6.2. Minmax Regret for Differential Graphical Games ... 99

6.3. Projection Strategies: Graph-Weight Projection .. 104

6.4. Projection Strategies: Local-Error Projection .. 109

6.5. Simulation Results .. 112

6.6. Conclusion .. 114

Chapter 7: CONCLUSION AND FUTURE WORK ... 118

Appendix: DYNAMIC MULTIOBJECTIVE CONTROL USING REINFORCEMENT
LEARNING ... 120

A.1. Introduction ... 120

A.2. Multiobjective Performance of a Dynamical System 121

A.3. Multiobjective Suboptimal Control Sequences ... 124

ix

A.4. Integral Reinforcement Learning Algorithm for Multiobjective Suboptimal
Control .. 128

A.5. Multiobjective Linear Quadratic Regulator .. 130

A.6. Simulation Results .. 133

REFERENCES ... 136

x

List of illustrations

Fig. 2.1. Examples of graph topologies. a) A directed graph. b) A subset of the edges of
the first graph forms a directed tree ... 10

Fig. 3.1. Graph topology employed in simulation of Bayesian games 40

Fig. 3.2. Trajectories for both states of the five agents in Bayesian games 44

Fig. 3.3. Evolution of beliefs in type 1 of the agents with Bayesian update 45

Fig. 3.4. Evolution of beliefs in type 1 of the agents with non-Bayesian update 45

Fig. 4.1. Closed-loop multiagent system in graphs ... 55

Fig. 4.2. Graph topology for simulation of minmax strategies ... 66

Fig. 4.3. State trajectories with minmax policies ... 67

Fig. 4.4. Synchronization in time with minmax policies ... 67

Fig. 5.1. MPE game with finite-time capture ... 93

Fig. 5.2. Asymptotic behavior in a MPE game. A large κ makes the evaders attract each
other ... 94

Fig. 5.3. Asymptotic behavior in a MPE game with small κ. The evaders have a low
priority to remain together .. 94

Fig. 5.4. Containment behavior of the agents. The evaders are static and the pursuers
converge to their convex hull .. 95

Fig. 5.5. Containment behavior with moving evaders. The evaders move in a formation
with constant speed .. 95

Fig. 6.1. a) The vector points from agent 1 to the center of gravity of its neighbors. b)
Agent 1 assumes all its neighbors have their center of gravity in the opposite relative
position as itself .. 109

Fig. 6.2. Graph topology for simulation of graphical games strategies 113

Fig. 6.3. State trajectories for the agents using minmax regret policies 114

Fig. 6.4. Evolution of the state trajectories with respect to time for minmax regret policies. 114

Fig. 6.5. State trajectories for the agents using graph-weight projection strategies 115

Fig. 6.6. Evolution of the state trajectories with respect to time for graph-weight projection
strategies .. 115

xi

Fig. 6.7. State trajectories for the agents using local-error projection strategies 116

Fig. 6.8. Evolution of the state trajectories with respect to time for local-error projection
strategies .. 116

Fig. A.1. State trajectories of a linear system with multiobjective optimization 134

1

INTRODUCTION

Game theory has become one of the most useful tools in multiagent systems analysis

due to its rigorous mathematical representation of optimal decision making [1]-[3]. In a game-

theoretic setting, a group of players, here regarded as agents, must decide the appropriate

actions they must perform to complete specific tasks with considerations of maximizing their

rewards or minimizing their costs. Most applications of game theory consider static agents

pondering which action from a discrete set is optimal [1]. In contrast, differential game theory is

the area of mathematics that studies the interactions of agents with continuous-time dynamics,

and that obtain from their behavior a payoff that evolves along time [4], [5].

The modern approach to differential game theory has been described in [5]. It is shown

that the agents must solve a set of coupled partial differential equations, regarded as the

Hamilton-Jacobi (HJ) equations, to reach a Nash equilibrium. Nash equilibrium is the most

important solution concept in game theory. If this equilibrium is achieved, no agent can

unilaterally modify its control policy without negatively affect its own performance. This

characteristic provides an incentive for the stability of the equilibrium.

The two main classifications of differential games are the zero-sum and nonzero-sum

games [5]-[10]. In the former, any improvement in the performance of an agent is obtained at

the cost of a decrease in the performance, in the same magnitude, by another agent. This

represents strictly conflictive goals between the players. In the more general nonzero-sum

games, the agents do not necessarily require someone else’s decreased performance to

achieve a better payoff in the game. Thus, nonzero-sum games allow the presence of

cooperative goals among the agents.

The usual formulation of nonzero-sum games, however, assumes that all agents

possess global information about the states of interest in the game. This assumption does not

hold in many practical applications of multiagent systems, where the access to state information

2

can be restricted. Consider, for example, practical applications of multiagent systems like

platoons of self-driving cars or swarms of unmanned aerial vehicles (UAVs). Each of these

autonomous vehicles is provided with multiple sensors to detect and recognize objects in their

surroundings. Such sensors can only provide a limited area of sensing, allowing the vehicle to

interact only with its closest neighbors. The agents must now use their limited information about

the world to complete their tasks with an optimal performance.

Graphical games are the branch of game theory that considers limited sensing

capabilities among the agents, such that they can only measure the state of a subset of the

players in the game. In graphical games, the agents are taken as nodes in a communication

graph with a well defined topology. This graph represents the flow of information from an agent

to another, such that their sensing abilities are appropriately modeled. The literature available

for control of networked agents is extensive (see [11]-[19] and references therein). Game-

theoretic approaches have been recently proposed to provide optimality to the cooperative ([20],

[21]) and non-cooperative ([22], [23]) interactions of networked agents.

The limited state information addressed by graphical games is not the only practical

consideration required to properly model real-world interactions. In reality, any autonomous

agent performing a task must consider the possibility to face uncertain environments, and it is

desirable to provide it with the ability to succeed at achieving its goals as best as possible. An

important source of uncertainty is presented when an individual needs to interact with an

unknown agent. Consider the example of a UAV delivering a package and finding a second

UAV approaching it. Our agent would be expected to ask itself the following questions: ‘Is that

individual an adversary trying to steal the package? Or is it an uninterested agent heading to its

own destination?’ The optimal behavior of the UAV will, of course, depend on the answer to

these questions. The assumption made in most game theoretic models is that an agent has

precise knowledge about the ojective functions of all other agents. As the number of

3

autonomous agents increases in urban areas, it becomes likely that the true objectives or

intentions of other agents will be unknown.

A solution proposed in the literature to address the uncertain objectives in a multiagent

system consists of the formulation of Bayesian games [24]-[27]. In Bayesian games, or games

with incomplete information, the agents are allowed to have beliefs about the possible

objectives of the other players. The optimal strategies of each agent are then computed using

their beliefs about the game being played. In this dissertation, the Bayesian games formulation

is incorporated into the differential graphical games control structure, providing the agents with

optimal strategies in scenarios with different sources of uncertainty or lack of knowledge.

The rest of this dissertation addresses a different challenge in differential graphical

games. The concept of Nash equilibrium requires that every agent performs its optimal strategy

with respect to the optimal strategies of all other agents. Thus, individual variations from the

Nash solution are by definition unfavorable for the performance of an agent. Clearly, an agent

can only compute its optimal strategy by simultaneously computing also the optimal strategies

of the players around it. This fact reveals a significant disadvantage of graphical games. If an

agent can only use its local information to design its control policy, then it will not be able to

determine the best strategy of its neighbors. Such neighbors will be using their own local

information, unavailable to anyone else. As it is analyzed in subsequent chapters, Nash

equilibrium is in general not attainable in graphical games.

Different solution concepts can be defined that can be reached using the limited state

information available in differential graphical games. The main solution here proposed is

regarded as Minmax strategies. The concept of minmax strategies has been thoroughly studied

for zero-sum games, where its application is natural due to the dynamics of the game [1], [22],

[28]. The formulation presented in this dissertation, however, is applied to general non-

adversarial games. In minmax strategies, an agent decides to ignore the actual objectives of its

4

neighbors, and assumes that they will perform their worst-case behavior against it. That is, an

agent attempts to minimize a cost function that its neighbors try to maximize.

The resulting control protocol obtained from minmax strategies is related to the H

formulation for disturbance attenuation [28]-[32]. The H controller is designed to prepare a

system against the worst-case disturbances that it may face. If the system is well-prepared

against the worst disturbances, then it will also address properly less severe perturbations. The

H design is thus well-known for its robustness properties. In the minmax formulation here

presented, each agent treats the influence of its neighbors as a disturbance to be rejected. This

control scheme provides each individual player with a robust policy against the unknown

behavior of its neighbors. The obtained value of the game for an agent represents a guaranteed

performance value, and an agent can expect its real value to be improved from this upper

bound.

Besides minmax strategies, three other solution concepts are defined for multiagent

systems in graphs. First, the concept of regret of an agent is explored in the so-called Minmax

Regret strategies. It is said that an agent regrets its decision when it uses a control policy that is

not optimal given the actual behavior of its neighbors. In graphical games, the behavior of the

neighbors is in general unknown, and an agent can expect to have a degree of regret from any

control policy it selects. Minmax regret strategies consist in making an agent select the control

policy with which it avoids the worst possible regret.

The last two solutions proposed in this dissertation are regarded as Projection

strategies. The local information of the neighbors is unknown to an agent in graphical games,

but it can attempt to minimize a cost function by making assumptions about those neighbors.

The projection strategies are obtained when an agent makes the assumption that its neighbors

possess similar information as itself. In one case, an agent assumes that its neighbors possess

its same state information, thus solving a nonzero-sum game against them. In the second

5

scenario, the agent assumes that its neighbors desire to move in a similar trajectory as itself.

Any of these assumptions allow the agents to successfully determine their corresponding

solution of the game.

An additional requirement for a practical solution of graphical games is the

consideration of uncertainties in the system dynamics. The usual solutions for differential games

and optimal control designs require complete knowledge of the mathematical model of the

system. Various reinforcement learning (RL) algorithms have been proposed to solve multiagent

optimal control problems with partial or no knowledge of the system dynamics [6], [33]-[35]. Off-

policy RL algorithms have been proposed in the literature to solve control optimization problems

in an adaptive and efficient manner, without any knowledge of the model of the system [36]-[38].

These capabilities of off-policy algorithms are used in this dissertation to determine the optimal

policies of the agents without knowledge of the neighbor control policies. Thus, the analysis

performed about the proposed solutions guarantee the existence of the solutions to the HJ

equations, and then RL is employed to determine those solutions.

The rest of the dissertation is organized as follows.

• In Chapter 2, preliminary definitions and notations that are used throughout the

dissertation are presented. In particular, the mathematical notion of game

theory is first described. Then, the basic definitions for graph theory are

introduced. Finally, the state variables and the system dynamics for the

multiagent systems studied in this research are presented.

• In Chapter 3, Bayesian games are presented to solve differential graphical

games with incomplete information. An agent in these games can possess

individual information, known only to itself. This formulation leads to the

definition of epistemic types. To solve the Bayesian graphical games, the

concept of Bayes-Nash equilibrium is introduced for dynamical systems, and

this solution is shown to be obtained by solving a set of HJB equations that

6

include the epistemic beliefs of the agents as a parameter. The beliefs of the

agents are constantly updated throughout the game using the Bayesian rule to

incorporate new evidence to the individual current estimates of the types. Two

belief update methodologies that do not require the full knowledge of the graph

topology are developed. The first of these approaches is a direct application of

the Bayesian rule, and the second is a modification regarded as a non-

Bayesian update.

• In Chapter 4, minmax strategies are proposed to solve non-adversarial

differential graphical games as an alternative to Nash equilibrium. Minmax

strategies are proven to provide distributed control policies under mild

conditions in the system dynamics and the performance functions. The

conditions for stability of the global multiagent system when all agents use their

minmax policies are studied. Robustness of the control policy of each agent is

also analyzed. The gain and phase margins of the minmax policies are

determined, and these properties are shown to improve the corresponding

characteristics of the linear quadratic regulator (LQR). Finally, an off-policy RL

algorithm is designed to solve the minmax problem without any knowledge of

the system dynamics.

• Chapter 5 presents the analysis of multiagent pursuit-evasion games in

communication graphs. First, a different formulation of the graph topology is

introduced. Three communication graphs are presented to represent,

respectively, the interactions among the pursuers, interactions among the

evaders, and interactions between pursuers and evaders. Conditions for Nash

equilibrium with respect to individual performance indices are stated. Then, a

natural formulation of minmax strategies is obtained due to the intrinsic

characteristics of the pursuit-evasion game. A novel analysis of emergent

7

behaviors, obtained by making particular modifications to the cost functions of

the agents, is finally presented. Finite-time interception and asymptotic

behaviors are studied as variations of the individual goals of an agent with

respect to its teammates and opponents. The containment control problem with

static and moving leaders is also solved as a special case of the MPE games.

• Chapter 6 formulates additional solution concepts for differential graphical

games to cope with the general unattainability of Nash equilibrium. Minmax

regret strategies are obtained by defining the regret of an agent for not using its

optimal control policy against its neighbors. Then, two projection strategies are

introduced, on which each agent projects some of its personal information onto

its neighbors. First, the agents project their information about their neighbors’

states. Alternatively, the agents project their local error information. The

conditions for stability of these strategies are provided, and their robustness

properties are studied.

• Chapter 7 presents the conclusion of this work and describes present and

future lines of research that can be considered to extend and improve the

results in this dissertation.

• An Appendix is included at the end of the dissertation to describe the obtained

results about the use of reinforcement learning for multiobjective optimization

problems. These results are relevant to obtain the solutions of Bayesian games

that, as explained in Chapter 3, can be determined from the convex

combination of the possible cost functions of the agents.

8

The publications resulted from this dissertation are listed below:

 [1] V.G. Lopez and F. L. Lewis, “Dynamical multiobjective control for continuous-time

systems using reinforcement learning,” Accepted for publication in IEEE

Transactions on Automatic Control. Online early access available.

 [2] V.G. Lopez, Y. Wan and F. L. Lewis, “Bayesian graphical games for synchronization

in dynamical networks,” Accepted for publication in IEEE Transactions on Control

of Network Systems, 2019.

[3] V. G. Lopez, F. L. Lewis, Y. Wan, M. Liu, G. Hewer and K. Estrabidris, “Stability and

robustness analysis of minmax solutions for differential graphical games”. Submitted

to Automatica, 2019.

[4] V. G. Lopez, F. L. Lewis, Y. Wan, E. N. Sanchez and L. Fan, “Solutions for

multiagent pursuit-evasion games on communication graphs: finite-time capture and

asymptotic behaviors”. Submitted to IEEE Transactions on Automatic Control, 2018.

9

PRELIMINARIES

2.1. Introduction

In this chapter, relevant background subjects are reviewed in preparation for the main

contents of the dissertation. This is the current state-of-the-art of the topics of interest found in

the literature on which this work is based. First, the main concepts of graph theory are

described, along with the definition of variables that are used throughout this research. Then,

the formal definitions of the state variables for multiagent dynamical systems are presented.

This includes the description of local error variables and synchronization objectives. A brief

review on game theory is then presented, for both static and differential games. The results

presented in this dissertation are extensions to the differential game theory concepts presented

in this chapter. Finally, miscellaneous definitions and notations, useful for our purposes in the

remaining chapters of this work, are introduced.

2.2. Graph Theory

A graph is a pair (,)V E with
1
, ,

N
V v v a set of N nodes or vertices and E a

set of edges or arcs. Let the set V describe a set of N agents, each agent being represented

by a node
i
v V of . The set E V V expresses the flow of information from one agent to

another. The notation (,)
i j
v v E means that there is flow of information from node

i
v to node

j
v . Graphically, this interaction is represented by an arrow with tail at

i
v and head at

j
v (see

Fig. 2.1). The graph is assumed to have no self-loops, that is, (,)
i i
v v E .

10

The edge weights of the graph are represented as
ij
a , with 0

ij
a if (,)

j i
v v E and

0
ij
a otherwise. Notice the order of the subindices; 0

ij
a if agent i receives information

from agent j . Because the graph has no self-loops, we have 0
ii
a for all 1, ,i N . The set

of neighbors of node
i
v is : 0

i j ij
v a . The set of all nodes that are not neighbors of

node
i
v is represented as

i
. The weighted in-degree of node i is defined as the sum of the

edge weights incoming to
i
v , i.e.,

1

N

i ijj
d a . Define the graph adjacency matrix as

ij
a

, and the in-degree matrix of the graph as diag
i i

D d . The graph Laplacian matrix is

L D . Matrix L has all row sums equal to zero, and many properties of the graph can

be studied by analyzing its Laplacian matrix.

 A graph is said to be undirected if
ij ji
a a for all nodes i , j . This means that all

edges are bi-directional and, if agent i can receive information from agent j , then agent j can

also receive information from i . If the graph is not undirected, then it is said to be a directed

graph, or a digraph. A directed path is a sequence of nodes
1 2
, , ,

r
v v v such that

1
(,)
i i
v v E

for {1, , 1}i r . Node
i
v is said to be connected to node

j
v if there is a directed path from

Fig. 2.1. Examples of graph topologies. a) A directed graph. b) A subset of the edges of the first graph forms a directed tree.

11

i
v to

j
v . A graph is strongly connected if

i
v and

j
v are connected for all nodes ,

i j
v v V . A

graph is said to have a spanning tree if a subset of its edges forms a directed tree that connects

all the nodes of the graph (Fig. 2.1-b).

Further information about graph theory, as well as a detailed analysis of multiagent

systems can be found in [13].

2.3. Game Theory

Game theory is the mathematical analysis of optimal decision making. Its rigorous

representation of the interaction of many agents makes the game-theoretical framework a fitting

structure in our search for optimal behavior in dynamical multiagent systems. This section

presents a brief review on the basic concepts of games in normal form. Many of the results in

this dissertation can be seen as extensions of these concepts to differential graphical games.

Game theory was formally introduced by the work of von Newman and Morgenstern

with the particular interest of solving economic decision problems [39]. Few years later, the

analysis performed by John Nash yielded the most significant solution concept in game theory

to date, now regarded as Nash equilibrium [2], [3], [40]-[42]. Besides economics, game theory

has now found applications in many areas of research including logic, computer science, social

analysis, evolutionary biology and control theory.

The most common formulation of a game consists on a set of N players that wish to

select their most appropriate actions in order to achieve a specific goal. The goals of a player

are represented by means of a utility function which may be designed to represent selfish

objectives, collective objectives, or a combination of both. The final payoff of a player usually

depends on its own actions and the actions of all other players in the game. Thus, game theory

studies the reasoning an agent must perform to select its optimal action against the other

players to maximize its utility function. The formal definition of a game in normal form is now

12

presented. Most of the definitions in this section are taken from [1], with some notational

modifications to make them coherent with the rest of the dissertation.

Definition 2.1 (Game in normal-form). An N -person normal-form game is a tuple

(, ,)U J , where:

• is a finite set of N players;

•
1 N

U U U , where
i
U is a finite set of actions available to player i ;

•
1
, ,

N
J J J , where :

i
J U is a real-valued utility function for player i .

A strategy in a game is the policy selected by an agent to determine the action from the

set
i
U to play at each instance of the game. For example, an agent can choose a specific

action and play it without further operations; this is regarded as a pure strategy. In contrast, an

agent can apply a randomization procedure to determine the action to play. This is called a

mixed strategy. The object of study in game theory is the design of strategies that allow the

agents achieve their goals.

Depending on the objectives of the players, two main distinctions of games can be

described. A zero-sum game is defined such that
1

0
N

J J for any strategies played by

the agents. The dynamics of a zero-sum game can be clearly noticed for the case of two-player

games, on which we have
1 2

0J J , or
1 2
J J . This means that the utility received by an

agent is necessarily lost by the other. These games describe strictly conflictive goals among the

players. A game that allows for cooperative objectives between the agents is regarded as a

non-zero sum game.

The solution concepts in a game are the set of strategies that provide useful behaviors

for the players. Many solution concepts have been proposed in game theory that depend on the

assumptions made by the agents, the information they have available, or the priorities they

13

assign to each outcome. As stated before, the most important solution concept in game theory

is Nash equilibrium, defined as follows.

Let
i
s represent any strategy available for agent i , and let

i
s be the set of strategies

for all players except i . The best response of agent i to the strategies
i
s is defined as the

strategy *

i
s such that *(,) (,)

i i i i i i
J s s J s s for all strategies

i
s . This implies that the best

response of agent i is the strategy that provides it with a utility at least as good as any other

strategy. Nash equilibrium is obtained in the game if all players play their best strategies

simultaneously.

Definition 2.2 (Nash equilibrium). A strategy profile
1
(, ,)

N
s s s is a Nash

equilibrium if, for all agents i ,
i
s is a best response to

i
s ; that is,

 * * *(,) (,)
i i i i i i
J s s J s s .

An important characteristic of Nash equilibrium is the stability it provides to the behavior

of the agents, in the sense that no agent can individually modify its own strategy without

decreasing its utility obtained in the game. Therefore, all agents are compelled to use their Nash

strategies as long as the equilibrium is maintained.

A different solution concept, particularly suitable to study strictly conflictive games, is

known as the maxmin strategy. This solution is obtained when agent i decides to maximize its

worst-case payoff. Such worst-case scenario occurs when all other players have as objective to

cause the greatest harm to i . The maxmin strategy is defined below.

Definition 2.3 (Maxmin strategy). The maxmin strategy for player i is obtained as

 maxmin argmaxmin (,)
i i

i i i is s
s J s s .

14

The maxmin strategy provides a minimum guaranteed performance, such that the agent

that employs it can expect its utility to be larger than or equal to the maxmin value. It can be

easily shown that in two-player zero-sum games, the maxmin strategies are exactly the same

as the Nash equilibrium strategies.

A final solution concept described in this review is known as the Minimax regret

strategy. Define the regret of agent i for playing action
i
u when the other players perform the

actions
i

u as

'

(,) max (' ,) (,)
i i

i i i i i i i i iu U
u u J u u J u u . (2.1)

That is, the regret is the amount of payoff lost by an agent for not using its best response

against the strategies of the other agents. The minimax regret policy can now be defined.

Definition 2.4 (Minimax regret). The minimax regret policy of agent i is defined as

 regret argminmax (,)
i i

i i i iu u
u u u

with
i
 as in (2.1).

This section is concluded with the definition of a game that allows the consideration of

uncertainties in the environment of the players. Many practical applications of game-theoretic

models require considering players with incomplete knowledge about the payoff they will

receive after playing a particular action. The category of games that studies this scenario is

regarded as Bayesian games, or games with incomplete information.

In a Bayesian game, the players are presented with a set of possible games, one of

which is actually being played. Being aware of their lack of knowledge, the agents must define a

probability distribution over the set of all possible games they may be engaged on. We call

these probabilities the beliefs of an agent. At the beginning of the game, the agents possess

some personal information, only known by themselves, and regarded as their epistemic type.

The objective of an agent during the game depends on its current type and the types of the

15

other agents. A Bayesian game is formally defined as follows.

Definition 2.5 (Bayesian games). An N -person Bayesian game is defined as a tuple

(, , , ,)U P J , where:

• is a finite set of N players;

•
1 N

U U U , where
i
U is a finite set of actions available to player i ;

• 1 N =    , with 1{ , , }iM
i i i  = the type space of player i ;

• : [0,1]P → expresses the probability of finding every agent i in type k
i

 for all

possible types k ;

•
1
, ,

N
J J J , where :

i
J U is a real-valued utility function for player i .

In the following section, the extensions of these game theoretic concepts for dynamical

agents are described.

2.4. Differential Graphical Games

The canonical leader-follower synchronization game is described in this section. Let

each agent in the graph defined in Section 2.2 be a dynamical system with linear dynamics

as

 i i ix Ax Bu= + (2.2)

for all agents 1, ,i N= , where () n
ix t  is the vector of state variables and m

iu  is the control

input vector of agent i . The pair (,)A B is assumed to be stabilizable throughout this

dissertation. Consider also an additional node, regarded as the leader or target node, with state

dynamics

 0 0.x Ax= (2.3)

The leader is connected to the other nodes by means of the pinning gains 0ig  . This

16

dissertation studies the behavior of the agents with the general objective of achieving

synchronization with the leader node
0
x .

Each agent is assumed to observe the full state vector of its neighbors in the graph.

The local synchronization error for agent i is defined as

 0

1

() ()
N

i ij i j i i

j

a x x g x x
=

= − + − (2.4)

and the local error dynamics are

0

1

1

() ()

()

N

i ij i j i i

j

N

i i i i ij j

j

a x x g x x

A d g Bu a Bu





=

=

= − + −

= + + −





 (2.5)

where the dynamics (2.2) - (2.3) have been incorporated.

Each agent i expresses its objective in the game by defining a performance index as

0

(, , ,) (, , ,)i i i i i i i i i iJ u u r u u dt   


− − − −=  (2.6)

where (, , ,)i i i i ir u u − − is selected as a positive definite scalar function of the variables expected

to be minimized by agent i , with
i
 and

i
u the local errors and control inputs of the neighbors

of agent i , respectively. For synchronization games,
i
r can be selected as

 ()
0

(, , ,)
N

T T T
i i i i i ij ij ij ij i ii i j ij j

j

r u u a Q u R u u R u   − −

=

= + + (2.7)

with 0T
ij ijQ Q=  , 0T

ii iiR R=  , 0i ia g= , 0 0
T

T T
i i  =   ,

T
T T

ij i j   =   for 0j , and
0
0u .

Function
i
r can also presented in a simplified form,

1

(, ,)
N

T T T
i i i i i i i i ii i ij j ij j

j

r u u Q u R u a u R u  −

=

= + + (2.8)

which is widely employed in the differential graphical games literature [20], [33].

The dependence of
i
J on

i
 and

i
u does not imply that the optimal control policy, *

i
u ,

requires these variables to be computed by agent i [20]. The definition of
i
J , therefore, can

17

yield a valid distributed control policy as solution of the game.

The best response of agent i for fixed neighbor policies
i

u is defined as the control

policy *
i
u such that the inequality *(, ,) (, ,)i i i i i iJ u u J u u − − holds for all policies iu . Nash

equilibrium is achieved if every agent plays its best response with respect to all its neighbors,

that is,

 * * *(, ,) (, ,)i i i i i iJ u u J u u − − (2.9)

for all agents 1, ,i N .

A differential version of the performance index (2.6) is regarded as the Bellman

equation, obtained by means of the Hamiltonian function
i
H as

 0 (, ,) ()i i i i ir u u V H −= + (2.10)

where ()
i
V is a scalar function regarded as the value function of the game. The optimal control

policy for agent i can now be obtained by means of the stationary condition 0i

i

H

u
. The

following assumption provides a condition to obtain distributed control policies for the agents.

Assumption 2.1. Let the value functions ()
i
V in (2.10) be distributed, in the sense that

they contain only local information, i.e., () ()
i i i
V V .

It is proven in [20] that, if Assumption 2.1 holds, the best response of agent i with cost

function (2.6) and function
i
r as in (2.8) is given by

 * 11
() ().

2

T
i i i ii i iu d g R B V −= − +  (2.11)

Substituting the control policies (2.11) for all agents 1, ,i N in the Bellman equations (2.10),

yields the set of coupled partial differential equations

 * *

1

(, ,) () 0
N

T
i i i i i i i i i ij j

j

r u u V A d g Bu a Bu −

=

 
+  + + − =  

 
 (2.12)

18

known as the Hamilton-Jacobi (HJ) equations. The procedure to obtain the optimal control

inputs *
i
u for the agents now consists in solving for the value functions ()

i i
V from the coupled

HJ equations (2.12), and substituting these functions in the policies (2.11). When all agents

simultaneously use their best policies (2.11), Nash equilibrium is achieved in the game.

2.5. Further Notations

This chapter is concluded with few additional definitions that will simplify the notation in

subsequent chapters [43], [44].

The space
2
n is defined as the set of all piecewise continuous functions : [0,) nx

such that

2

1/2

0
() ()Tx x t x t dt (2.13)

that is, the space
2
n defines the set of all square-integrable functions ()x t .

The extended space
2

n
e
 is defined by

2 2

| , 0n n
e

x x

where x is a truncation of x defined by

(), 0

()
0,

x t t
x t

t
 (2.14)

 Define the inner-product in space
2
[0,)n as

0

, () ()Tx y x t y t dt (2.15)

where
2

, [0,)nx y .

 A mapping
2 2

: n n
e e

H is finite-gain
2
 stable if there exist nonnegative constants

and such that

19

2 2

()Hu u (2.16)

for all
2
m
e

u and [0,) .

 When inequality (2.16) is satisfied for some 0 , the mapping is said to have
2
 gain

less than or equal to .

20

EPISTEMIC BELIEFS AND BAYESIAN GRAPHICAL GAMES

3.1. Introduction

The general approach to differential games in the current literature is to expand the

single-agent optimal control techniques to groups of agents with both common and conflicting

interests. It is proven in [5] that, if the solutions of the set of coupled partial differential equations

known as the Hamilton-Jacobi (HJ) equations exist, then Nash equilibrium is achieved in the

game and no agent can unilaterally change its control policy without producing a decreased

performance for itself. A more general case has been described with the study of graphical

games [15], [20], [33], [34], [46], on which, as described in Chapter 2, the agents are taken as

nodes in a communication graph, such that each agent can only measure the state of the

agents connected to it through the graph links, regarded as its neighbors.

A downside of these standard differential games solutions is the assumption that all

agents are fully aware of all the aspects of the game being played. In complex practical

applications, the agents operate in fast-evolving and uncertain environments which provide

them with incomplete information about the game. A dynamical agent facing other agents for

the first time, for example, may not be certain of their real intentions or objectives.

Bayesian games [1], [24]-[27], also called games with incomplete information, describe

the situation on which the agents participate in an unspecified game. The true intentions of the

other players may be unknown, and each agent must adjust its objectives accordingly. The

initial information of each agent about the game, and the personal experience gained during its

interaction with other agents, form the basis for the epistemic analysis of the dynamical system.

The agents must collect the evidence provided by their environment and use it to update their

beliefs about the state of the game. Thus, the aim is to develop belief assurance protocols,

distributed control protocols and distributed learning mechanisms to induce optimal behaviors

with respect to an expected cost function.

21

In [1], [24] and [25], Bayesian games are defined for static agents and it is shown that

the solution of the game consist on the selection of specific actions with a given probability. In

this work, Bayesian games are defined for dynamic systems and the optimal control policies

vary as the belief of the agents change. The ex post stability in Bayesian games is studied in

[26] and [27], consisting in a solution that would not change if the agents were fully aware of the

conditions of the game. Our results are shown not to be ex post stable because we allow the

agents to improve their policies as they collect new information. Different learning algorithms for

static agents in Bayesian games have been studied [42], [47]-[49], but not for differential

graphical games.

Potential applications for the proposed Bayesian games for dynamical systems include

collision avoidance in automatic transport systems, sensible decision making against possibly

hostile agents and optimal distribution of tasks in cooperative environments. As the number of

autonomous agents increase in urban areas, the formulation of optimal strategies for unknown

scenarios becomes a necessary development.

The rest of the chapter is structured as follows. Section 3.2 presents the formal

mathematical definitions of Bayesian games and differential graphical games, which form the

basis for the rest of the chapter. Section 3.3 presents the formulation of Bayesian games for

dynamical systems in a graph topology; the best response strategies for the minimization of the

expected costs and the minmax strategies of every agent are obtained. Section 3.4 is focused

on the Bayesian methodology for the belief updates, while Section 3.5 presents the application

of a non-Bayesian methodology. Finally, a simulation of the proposed control scheme is

presented in Section 3.6, and Section 3.7 includes a brief conclusion.

3.2. Bayesian Graphical Games for Dynamical Systems

In Section 2.3, Bayesian games where defined for normal-form, static games. This

section presents our main results on the formulation of Bayesian games for multiagent

22

dynamical systems connected by a communication graph and the analysis of the conditions to

achieve Bayes-Nash equilibrium in the game.

3.2.1. Game formulation

Consider a system of N agents with linear dynamics (2.2) distributed on a

communication graph , and a leader with state dynamics (2.3). The local synchronization

errors are defined as in (2.4) - (2.5).

The desired objectives of an agent can vary depending on its current type and the types

of its neighbors. This condition can be expressed by defining the performance index of agent i

as

0

(, ,) (, ,)i i i i i ii iJ u u r u u dt  


− −=  (3.1)

where refers to the set of current types of all the agents in the game, 1 N  =   , as

defined in Section 2.3, and each function
i
r is defined for that particular combination of types.

With this information, we define a new category of game as follows.

Definition 3.1 (Bayesian graphical game). A Bayesian graphical game for dynamical

systems is defined as a tuple (, , , , ,)X U P J where:

• is the set of agents in the game;

• 1 NX X X=   , with
i
X the set of reachable states of agent i ;

• 1 NU U U=   , with
i
U the set of admissible controllers for agent i ,

• 1 N =    , with
i
 the type space of player i ;

• : [0,1]P → is the common prior over types that describes the probability of

finding every agent i in type k
ii  , 1, , ik M= , at the beginning of the game.

• 1(, ,)NJ J J= are the performance indices, where :iJ X U → , is the cost

paid by agent i for using a given control policy while the game is in a state

23

value and a combination of types.

Define the set 1
i i

i NX X =   , where i
jX is the set of possible states of the j th

neighbor of agent i ; that is,
i
 represents the set of states that agent i can observe from the

graph topology.

It is assumed that the sets , X , U , P and J are of common prior for all the agents

before the game starts. However, the set of states
i
 and the actual type

i
 are known only by

agent i . The objective of every agent in the game is now to use their (limited) knowledge about

i
 and to determine the control policies *(,)i iu   , such that every agent expects to minimize

the cost he pays during the game according to the cost functions (3.1).

To fulfill this objective, a different cost index formulation is required to allow the agents

to determine their optimal policies according to their current beliefs about the global type .

This requirement is addressed by defining the expected cost of agent i , as studied in the

following subsection.

3.2.2. Expected cost

In the Bayesian games’ literature, three different concepts of expected cost are usually

defined, namely the ex post, the ex interim, and the ex ante expected costs, that differ in the

information available for their computation [1], [26], [27].

The ex post expected cost of agent i considers the actual types of all agents of the

game. For a given Bayesian game (, , , , ,)N X U P J , where the agents play with policies
i
u and

the global type is , the ex post expected utility is defined as

 (, , ,) (, ,)i i i i i i iiEJ u u J u u  − −= (3.2)

The ex interim expected cost of agent i is computed when i knows its own type, but

the types of all other agents are unknown to it. Note that this case applies if the agents calculate

24

their expected costs once the game has started. Given a Bayesian game (, , , , ,)N X U P J , where

the agents play with policies
i
u and the type of agent i is

i
, the ex interim expected cost is

 (, , ,) (|) (, ,)i i i i i i i i iiEJ u u p J u u



    − −



=  (3.3)

where (|)ip   is the probability of having global type given that agent i has type
i
, and the

summation index indicates that all possible combination of types in the game must be

considered.

We can finally define the ex ante expected cost for the case when agent i is ignorant of

the type of every agent, including itself. This can be seen as the expected cost that is computed

before the game starts, such that the agents do not know their own types. For a given Bayesian

game (, , , , ,)N X U P J and given the control policies
i
u for all the agents, the ex ante expected

cost for agent i is defined as

 (, ,) () (, ,).i i i i i i iiEJ u u p J u u



  − −



=  (3.4)

Throughout this dissertation we use the ex interim expected cost as the objective for

minimization of every agent, such that they can compute it during the game.

In the following subsection, the optimal control policy *
i
u for every agent is obtained,

and conditions for Bayes-Nash equilibrium are provided.

3.2.2. Best response policy and Bayes-Nash equilibrium

The best response of an agent in a Bayesian game for given fixed neighbor strategies

i
u , is defined as the control policy that makes the agent pay the minimum expected cost.

Formally, agent i ’s best response to control policies
i

u are given by

 * arg min (, , ,)
i

i i i i i
u

u EJ u u −= (3.5)

Now, it is said that a Bayes-Nash equilibrium is reached in the game if each agent plays

25

a best response to the strategies of the other players during a Bayesian game. The Bayes-Nash

equilibrium is the most important solution concept in Bayesian graphical games for dynamical

systems. Definition 3.2 formalizes this idea.

Definition 3.2 (Bayes-Nash equilibrium). A Bayes-Nash equilibrium is a set of control

policies 1 Nu u u=   that satisfies *
i iu u= , as in (3.5), for all agents i , such that

 * * *(, ,) (, ,)i i i i i i i iEJ u u EJ u u − − (3.6)

for any control policy
i
u .

Following an analogous procedure to single-agent optimal control, define the value

function of agent i , given the types of all agents , as

 (, ,) (, ,)i i i i i ii it
V u u r u u d   



− −=  (3.7)

with
i
r as defined in (3.1). The expected value function for a control policy

i
u is defined as

 (, , ,) (|) (, ,)i i i i i i i iiEV u u p V u u



    − −



=  (3.8)

where agent i knows its own epistemic type.

Function (3.8) can be used to define the expected Hamiltonian of agent i as

 ()1
(, ,) (|) (,) () .

NT
i i i i i i i i ij ji i j

EH u p r u V A d g Bu a Bu 



     
=



 = + + + −
  

  (3.9)

The expected Hamiltonian (3.9) is now employed to determine the best response control policy

of agent i , by computing its derivative with respect to
i
u and equating it to zero. This procedure

yields the optimal policy

1

* 1
() (|) (|) .

2

T
i i i i iii iu d g p R p B V 

 

   

−

 

 
= − +  

 
  (3.10)

As in the deterministic multiplayer nonzero-sum games [5], the functions ()iiV  are the

solutions of a set of coupled partial differential equations. For the setting of Bayesian games, we

introduce the novel concept of the Bayes-Hamilton-Jacobi (BHJ) equations, given by

26

 ()* * *
1

(|) (,) () 0.
NT

i i i i i i ij ji i j
p r u V A d g Bu a Bu 



   
=



 + + + − =
  

  (3.11)

Remark 3.1. The optimal control policy (3.10) establishes for the first time, the relation

between belief and distributed control in multi-agent systems with unawareness. Each agent

should compute its best response by observing only its immediate neighbors. This is distributed

computation with bounded rationality imposed by the communication network.

Remark 3.2. Notice that the probability terms in (3.10) have the properties 0 (|) 1ip   

and (|) 1ip


 


= . Therefore, Equation (3.9) is a convex combination of the Hamiltonian

functions defined for each performance index (3.1) for agent i , and (3.10) is the solution of a

multiobjective optimization problem using the weighted sum method (see Appendix) [50], [51].

Remark 3.3. The solution obtained by means of the minimization of the expected cost,

does not represent an increase in complexity when compared to the optimization of a single

performance index. Only the number of sets of coupled HJ equations increases according to the

total number of combination of types of the agents.

Remark 3.4. If there is a time
f
t at which agent i is convinced of the global type with

probability 1, then the problem is reduced to a single objective optimization problem and the

solution is given by the deterministic control policy

 ()
1

* 1
().

2

T
i iii iu R B V  

−
= − 

In the particular case when the value function associated with each
i
J has the

quadratic form

 T
i ii iV P  = (3.12)

the optimal policy (3.10) can be written in terms of the states of agent i and its neighbors as

1

* () (|) (|) .T
i i i i i iii iu d g p R p B P 

 

    

−

 

 
= − +  

 
  (3.13)

The next technical lemma shows that the Hamiltonian function for general policies
i
u ,

27

i
u can be expressed as a quadratic form of the optimal policies *

i
u and *

i
u defined in (3.10).

Lemma 3.1. Given the expected Hamiltonian function (3.9) for agent i and the optimal

control policy (3.10), then

 * * *(, ,) (, ,) (|)() ().T
i i i i i i i i i i i i iiiEH u u EH u u p u u R u u



   − −



= + − − (3.14)

Proof. The proof is similar to the proof of Lemma 10.1-1 in [5], performed by completing

the squares in (3.9) to obtain

* * * *

1

* *

1

(, ,) (|)

() () ()

N
T T T T T

i i i i i i i ij j j i i i ii ii ij ii ii

j

N
T T T

i i i i i i i i i i ij ji i i

j

EH u p Q u R u a u R u u R u u R u

d g V Bu d g V Bu V A d g Bu a Bu

    



  

     



 =

=


= + + + −



 
+ +  − +  + + + −   

 

 



(3.15)

and conducting algebraic operations to obtain (3.14).

The following theorem extends the concept of Bayes-Nash equilibrium to differential

Bayesian games, and shows that this Bayes-Nash equilibrium is achieved by means of the

control policies (3.10). The proof is performed using the quadratic cost functions as in (2.8), but

it can easily be extended to other functions as (2.7).

Theorem 3.1. Consider a multiagent system on a communication graph, with agents’

dynamics (2.2) and target node dynamics (2.3). Let *()iiV  , 1, ,i N= , be the solutions of the

BHJ equations (3.11). Define the control policy *
i
u as in (3.10) and let Assumption 2.1 hold.

Then, control inputs *
i
u make the dynamics (2.5) asymptotically stable for all agents. Moreover,

all agents are in Bayes-Nash equilibrium as defined in Definition 3.2, and the corresponding

expected costs of the game are

 * *((0)).i iiEJ V =

Proof. (Stability) Take the expected value function (3.8) as a Lyapunov function

candidate. Its derivative is given by

 (|) (|) .T
i i i ii iEV p V p V 

 

    
 

= =  

28

The BHJ equation (3.11) is a differential version of the value functions (3.8) using the

optimal control policies (3.10) [5]. Then, as
i
V satisfies (3.11) we get

1

(|) 0
N

T T T
i i i i i i ij j ji ii ij

j

EV p Q u R u a u R u  



   
 =

 
= − + +   

 
 

and the dynamics (2.5) are asymptotically stable.

(Bayes-Nash equilibrium) Note that (()) (0) 0ii iV V   = = because of the asymptotic

stability of the system. Now, the expected cost of the game for agent i is expressed as

0 0
1

0

(|) (|) (|) ((0))

(, ,) (|) ((0)).

N
T T T

i i i i i i ij j j i i ii ii ij i i

j

i i i i i ii

EJ p Q u R u a u R u dt p V dt p V

EH u u dt p V

    

  





        

   

 

 =  



−



 
= + + + +  

 

= +

    



By Lemma 1, this expression becomes

 * * *

0 0
(|) ((0)) (, ,) (|) () ()T

i i i i i i i i i i ii i iiEJ p V EH u u dt p u u R u u dt

 

     
 

−

 

= + + − −  

for all
i
u and

i
u . Assume all the neighbors of agent i are using their best response strategies

*

i
u . Then, as the BHJ equations (3.11) hold, we have

 * *

0
(|) () () ((0))T

i i i i ii i i iiEJ p u u R u u dt V 



  




 = − − +
  

 

We conclude that *
i
u minimizes the expected cost of agent i and the value of the game is

((0))iiEV  .

It is of our interest to determine the influence of the graph topology in the stability of the

synchronization errors given by the control policies (3.13). To make this analysis, define the

matrix diag{ } Nn
iK K=  with 1() T

i i i iiK d g R B P−= + .

Theorem 3.2 relates the stability properties of the game with the communication graph

topology .

29

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then, the eigenvalues of matrix

  ()() (()) n N MI A L G B K + − +   have all negative real parts, i.e., for 1, ,k nN= ,

 ()Re{ () (()) } 0.k I A L G B K  − +   (3.16)

Proof. Define the vectors  1 , ,
TT T

N  = and  1 , ,
TT T

Nu u u= . Using the local error

dynamics (2.5), we can write

 () (())I A L G B u =  + +  (3.17)

Control policies (3.13) can be expressed as i pi iu K = − , with 1() T
i i i iiK d g R B P−= + . Now we get,

 .u K= − (3.18)

Substitution of (3.18) in (3.17) yields the global closed-loop dynamics

  () (())I A L G B K =  − +  (3.19)

Theorem 3.1 shows that if matrices
i
P satisfy (3.11) then the control policies (3.13)

make the gents achieve synchronization with the leader node. This implies that the system

(3.19) is stable, and the condition (3.16) holds.

3.3. Bayesian Belief Updates

Two approaches to perform the belief update of the agents are developed in this

dissertation. In this section we study the use of the Bayesian rule to compute a new estimate

given the evidence provided by the states of the neighbors. Section 3.4 analyzes a non-

Bayesian approach to perform the belief updates.

3.3.1. Epistemic type estimation

Let every agent in the game to revise its beliefs every T units of time. Then, using its

knowledge about its type
i
, the previous states of its neighbors ()

i
x t , and the current state of

30

the neighbors ()
i
x t T , agent i can perform its belief update at time t T using the

Bayesian rule as

(() | (),) (| (),)

(| (), (),)
(() | (),)

i i i i
i i i

i i i

p x t T x t p x t
p x t T x t

p x t T x t

  
 



− − −
− −

− −

+
+ =

+
 (3.20)

where (| (), (),)i i ip x t T x t − −+ is agent i ’s belief at time t T about the types , (| (),)i ip x t − is

agent i ’s beliefs at time t about , (() | (),)i ip x t T x t − −+ is the likelihood of the neighbors

reaching the states ()ix t T− + T time units after being in states ()
i
x t given that the global type

is , and (() | (),)i i ip x t T x t − −+ is the overall probability of the neighbors reaching ()ix t T− + from

()
i
x t regardless of every other agent’s types.

Remark 3.5. Although the agents know only the state of their neighbors, they need to

estimate the type of all agents in the game, for this combination of types determines the

objectives of the game being played.

Remark 3.6. In the previous sections we defined the Bayesian games using the

probabilities (|)ip   . In this section, we make explicit the fact that agent i uses the behavior of

its neighbors as evidence of the global type by expressing the probabilities (| (),)i ip x t − .

It is of our interest to find an expression for the belief update (3.20) that explicitly

displays distributed update terms for the neighbors and non-neighbors of agent i . In the

following, such expressions are obtained for the three terms (| (),)i ip x t − , (() | (),)i ip x t T x t − −+

and (() | (),)i i ip x t T x t − −+ .

The likelihood function (() | (),)i ip x t T x t − −+ in the Bayesian belief update (3.20) can be

expressed in terms of the individual positions of each neighbor of agent i as the joint probability

 1(() | (),) ((), , () | (),)
i

i i
i i iNp x t T x t p x t T x t T x t − − −+ = + + (3.21)

where ()i
j
x t is the state of the j th neighbor of i . Notice that ()ix t T+ is dependent of ()

i
x t and

of ()
i
x t by means of the control input

i
u , for all agents i . However, the current state value of

31

agent i , ()ix t T+ , is independent of the current state value of its neighbors, ()ix t T− + , for there

has been no time for the values ()ix t T− + to affect the policy
i
u . Independence of the state

variables at time t T allows computing the joint probability (3.21) as the product of factors

 (() | (),) (() | (),).
i

i i j i

j N

p x t T x t p x t T x t − − −



+ = + (3.22)

Using the same procedure, we can express the denominator of (3.20),

(() | (),)i i ip x t T x t − −+ , as the product

 (() | (),) (() | (),).
i

i i i j i i

j N

p x t T x t p x t T x t − − −



+ = + (3.23)

Notice that the value of (() | (),)j i ip x t T x t −+ can be computed from the likelihood function

(() | (),)j ip x t T x t −+ as

 (() | (),) (| (),) (() | (),).j i i i i j ip x t T x t p x t p x t T x t


   − − −



+ = + (3.24)

Finally, the term (| (),)i ip x t − in (3.20) expresses the joint probability of the types of

each individual agent, that is, 1(| (),) (, , | (),)i i N i ip x t p x t    − −= . Two cases must be considered

to compute the value of this probability. In the general case, the types of the agents are

dependent on each other; in particular applications, the types of all agents may be independent

and, therefore, the knowledge of an agent about one type does not affect its belief in the others.

Dependent epistemic types. If the type of an agent depends on the types of other

agents, the term (| (),)i ip x t − can be computed in terms of conditional probabilities using the

chain rule

1 2

1 2 1 1 1

1 1

1

(| (),) (, , , | (),)

(| (),) (| (), ,) (| (), , , ,)

(| (), , , ,)

i i N i i

i i i i N i i N

N

j i i j

j

p x t p x t

p x t p x t p x t

p x t

     

        

   

− −

− − − −

− −

=

=

=

=

 (3.25)

We can further separate the products of (3.25) in terms of the neighbors and non-neighbors of

agent i as

32

1 1

1

1 1 1 1

(| (), , , ,)

(| (), , , ,) (| (), , , ,)
i i

N

j i i j

j

j i i j k i i k

j N k N

p x t

p x t p x t

   

       

− −

=

− − − −

 

=

 
 (3.26)

Using expressions (3.22), (3.23) and (3.26), the Bayesian update (3.20) can be written as

1 1

1 1

(() | (),) (| (), , , ,)
(| (), (),)

(() | (),)

(| (), , , ,)

i

i

j i j i i j
i i i

j i ij N

k i i k

k N

p x t T x t p x t
p x t T x t

p x t T x t

p x t

    
 



   

− − −
− −

−

− −



+
+ =

+







 (3.27)

where the belief update with respect to the position of each neighbor is explicitly expressed, as

desired.

Independent epistemic types. In this case, agent i updates its beliefs about the other

agents’ types based only on its local information about the states of its neighbors. Thus, we

obtain the expression

1 2

1 2

(| (),) (, , , | ())

(| ()) (| ()) (| ())

i i N i

i i N i

p x t p x t

p x t p x t p x t

    

  

− −

− − −

=

=
 (3.28)

Again, using expressions (3.22), (3.23) and (3.28), the belief update of agent i can be written

as the product of the inference of each of its neighbors and its beliefs about its non-neighbors’

types, as

(| (), (),)

(() | (),) (| ())
(| ()).

(() | (),)
i i

i i i

j i j i
k i

j i ij N k N

p x t T x t

p x t T x t p x t
p x t

p x t T x t

 

 




− −

− −
−

− 

+ =

+


+
 

 (3.29)

As equations (3.27) or (3.29) grow in number of factors, computing their value becomes

computationally expensive. A usual solution to avoid this inconveniency is to calculate the log-

probability to simplify the product of probabilities as the sum of their logarithms. This is

expressed as

(() | (),) (| ())

log (| (), (),) log log (| ())
(() | (),)

i i

j i j i
i i i k i

j i ij N k N

p x t T x t p x t
p x t T x t p x t

p x t T x t

 
  



− −
− − −

− 

+
+ = +

+
 

for the independent types case (3.29). A similar result can be obtained for the dependent types

version (3.27).

33

3.3.2. Naïve likelihood approximation

A significant difficulty in computing the value of the expression (3.29) is the limited

knowledge of the agents due to the communication graph topology. It is desired to design a

method to estimate the likelihood function (3.22) for agents that know only the state values of

their neighbors, and are unaware of the graph topology except for the links that allow them to

observe such neighbors.

From (3.22), agent i needs to compute the probabilities (() | (),)j ip x t T x t −+ for all its

neighbors j . This can be done if agent i can predict the position ()jx t T+ for each possible

combination of types and given the current states ()
i
x t . However, i does not know if the

value ()jx t T+ depends on the states of its neighbors ()
i
x t because the neighbors of agent j

are unknown. The states of i ’s neighbors may or may not affect j ’s behavior.

Furthermore, the control policy (3.10) that agent j uses at time t depends not only on

its type, but on its beliefs about the types of all other agents. The beliefs of agent j are also

unknown to agent i . Due to these knowledge constraints, agent i must make assumptions

about its neighbors to predict the state ()
j
x t T using only local information.

Let agent i make the naïve assumption that its other neighbors and itself are the

neighbors of agent j . Thus, player i tries to predict the state of its neighbor j at time t T for

the case where i and j have the same state information available. Besides, agent i assumes

that j is certain (i.e., assigns probability one) of the combination of types in question, .

Under these assumptions, agent i estimates the local synchronization error of agent j

to be

 0

1

ˆ () () ()
N

i
ik j k i j j ij

k

a x x g x x x x
=

= − + − + − (3.30)

which means that i expects the control policy of agent j with types to be

34

   () ()
11 ˆ

2

T i
i j jj j jE u R B V   

−
= −  (3.31)

where the expected value operator is employed here in the sense that this is the value of
j
u

that agent i expects given its limited knowledge. If we consider a quadratic value function as in

(3.12), then the expected policy (3.31) is written as

   ()
11 ˆ

2

T i
i j jj j jE u R B P  

−
= −

with ˆi
j defined in (3.30).

Now, the probabilities (() | (),)j ip x t T x t −+ can be determined by defining a probability

distribution for the state ()jx t T+ . If a normal distribution is employed, then it is fully described

by the mean ij
 and the covariance ijCov , for neighbor j and types . In this case, the mean

of the normal distribution function is the prediction of the state of agent j at time t T , that is

 ˆ ()ij jx t T  = + (3.32)

where ˆ ()jx t T + is the solution of the differential equation (2.2) for agent j at time t T , with

control policy (3.31), i. e.,

  () ()ˆ () () () .
t T

A t T A t T
j ij jt

x t T e x t e BE u d    
+

+ − − −+ = + 

The covariance ijCov represents the lack of confidence of agent i about the previous

naïve assumptions, and is selected according to the problem in hand.

Remark 3.7. The intuition behind the naïve likelihood approximation for multiagent

systems in graphs is inspired in the Naïve Bayes method for classification [52]. However, the

proposed assumptions made by the agents in this chapter are different in nature and must not

be confused.

Depending on the graph topology and the settings of the game, the proposed method

for the likelihood calculation can differ considerably from reality. The effectiveness of the naïve

likelihood approximation depends on the degree of accuracy of the assumptions made by the

35

agents in a limited information environment. A measure of the uncertainty in the game is

therefore useful in the analysis of the performance of the players.

In the following we introduce an uncertainty measure, the Bayesian game’s index of

uncertainty of agent i with respect to its neighbor j . For simplicity, assume in this subsection

that the graph weights are binary, i.e., 1
ij
a if agents i and j are neighbors, and 0

ij
a

otherwise; the general case when 0
ij
a can be obtained with few modifications. The index of

uncertainty is defined by comparing the center of gravity of the true neighbors of agent j , and

the neighbors that agent i assumes for agent j .

Define the center of gravity of j 's neighbors as

 1

1

.

N

jk k

k
j N

jk

k

a x

c

a

=

=

=




 (3.33)

When considering the virtual neighbors that agent i assigned to agent j , we can acknowledge

two mutually exclusive sets: the assigned true neighbors, which are actually neighbors of j ,

and the assigned false neighbors, which are not neighbors of j . Let the center of gravity of the

assigned true neighbors be

 1

1

ˆ ,

N

ik jk k ji i

true k
ij iN

ik jk ji

k

a a x a x

c j N

a a a

=

=

+

= 

+




 (3.34)

and the center of gravity of the assigned false neighbors is

 1

1

(1) (1)

ˆ ,

(1) (1)

N

ik jk k ji i

false k
iij N

ik jk ji

k

a a x a x

c j N

a a a

=

=

− + −

= 

− + −




 (3.35)

Finally, let * be the actual combination of types of the agents in the game, and *()jp 

the belief of agent j about * . The index of uncertainty is now defined as follows.

36

Definition 3.4 (Index of uncertainty). Define the index of uncertainty of agent i about

agent j as

*

*

ˆ ˆ 1 ()1 1
.

ˆ2 2 ()

falsetrue
j ij ij j

ij true
jij

c c c p

pc






− + −
= + (3.36)

Thus, index
ij

 measures how correct agent i was about the beliefs and the states of

the neighbors of agent j . The following lemma shows that the index of uncertainty is a

nonnegative scalar, with 0
ij

 if i is absolutely correct about j ’s neighbors and beliefs, and

ij
 if the factors that influence j ’s behavior are completely unknown to i .

Lemma 3.2. Let the index of uncertainty of agent i about its neighbor, agent j , in a

Bayesian game be as in (3.36). Then, )0,ij   .

Proof. Notice that ˆtrue
j ijc c− is a pseudo-center of gravity of all agents that are neighbors

of agent j but are not neighbors of i . Therefore, ˆ ˆ falsetrue
j ij ijc c c− + is a measure of all the agents

that agent i got wrong in its assumptions. If all of i 's assignments are true, then

ˆ ˆ 0falsetrue
j ij ijc c c− + = . On the contrary, if all alleged neighbors of j were wrong, then ˆ 0true

ijc = .

Similarly, it can be seen that the second term in (3.36) is zero if *() 1jp  = , and it tends

to infinity if *() 0jp  = .

Theorem 3.4 uses the index of uncertainty (3.36) to determine a sufficient condition for

the beliefs of an agent to converge to the actual types of the game * . Lemma 3.3 is used in

the proof of this theorem.

Lemma 3.3. Let * be the actual combination of types in the game and consider the

likelihood (() | (),)i ip x t T x t − −+ in (3.20). If the inequality

 *(() | (),) (() | (), ')i i i ip x t T x t p x t T x t − − − −+  + (3.37)

37

holds for every combination of types *' at time instant t T , then

 * *(| (), (),) (| (),).i i i i ip x t T x t p x t   − − −+ 

Proof. Let () (() | (),)i i ip x t T x t − − = + be the likelihood of agent i for types .

Because (| (),) 1i ip x t


 −


= , we have

* *

* 1 *

1 1

() () (| (),)

() (| (),) () (| (),)

() (| (),) () (| (),)

() (| (),)

(() | (),)

i i i i

M
i i i i i i

M M
i i i i i i

i i i

i i i

p x t

p x t p x t

p x t p x t

p x t

p x t T x t





   

     

     

  



−



− −

− −

−



− −

 = 

=  + + 

  + + 

= 

= +





where inequality (3.37) was used in the third step, and the expression (3.24) was used in the

last step. Now, from the Bayes rule (3.20) we can write

* *
*

*

() (| (),)
(| (), (),)

(() | (),)

(| (),)

i i i
i i i

i i i

i i

p x t
p x t T x t

p x t T x t

p x t

  
 



 

−
− −

− −

−


+ =

+



which completes the proof.

Theorem 3.4. Let the beliefs of the agents about the epistemic type be updated by

means of the Bayesian rule (3.20), with the likelihood computed by means of a normal

probability distribution with mean ij
 as in (3.32), and covariance ijCov . Then, the beliefs of

agent i converge to the correct combination of types * if the index of uncertainty (3.36) is

close to zero for all its neighbors j .

Proof. Consider the case where 0
ij

; this occurs when the actual neighbors of agent

j are precisely agent i and agent i ’s neighbors, and agent j assigns probability one to the

combination of types * . This implies that the state value ()jx t T+ will be exactly the estimation

*

ˆ ()jx t T + and the highest probability of the normal distribution is obtained for the likelihood

*(() | (),)j ip x t T x t −+ . By Lemma 3.3, the belief in type * is increased at every time step T ,

38

converging to 1.

If
ij

 is an arbitrarily small positive number, then the center of gravity of the assigned

neighbors is close to the center of gravity of the real neighbors of agent j . Furthermore, the

beliefs of j in the combination of types * is close to 1. Now, the estimation of the state

*

ˆ ()jx t T + is arbitrarily close to the actual state ()jx t T+ , making the likelihood

*(() | (),)j ip x t T x t −+ larger than the likelihood of any other type . Again, the conditions of

Lemma 3.3 hold and the belief in the type * converges to 1 at each iteration.

Remark 3.8. A large value for the index of uncertainty expresses that an agent lacks

enough information to understand the behavior of its neighbors. This implies that the beliefs of

the agent cannot be corrected properly.

Remark 3.9. The index of uncertainty is defined for analysis purposes and is unknown

to the agents during the game. It allows to determine if the agents have enough information to

find the actual combination of types of the game.

3.4. Non-Bayesian Belief Updates

The Bayesian belief update method presented in the previous section starts with the

assumption that every agent knows its own type at the beginning of the game. In some

applications, however, an agent can be uncertain about its type, or the concept of type can be

ill-defined. In these cases, it is still possible to solve the Bayesian graphical game problem if we

allow more information to flow through the communication topology. In [47], a non-Bayesian

belief update algorithm is shown to efficiently converge to the type of the game . In this

section, we use this method as an alternative to the Bayesian update in Section 3.3 when every

agent can communicate its beliefs about to its neighbors.

Let the belief update of player i to be computed as

39

1

(() | (),)
(| (), ()) (| ()) ()

(() | ())

N
i i i

i i i ii i i ij j

i i i j

p x t T x t
p x t T x t b p x t a p

p x t T x t


  

− −
− − −

− − =

+
+ = +

+
 (3.38)

where ()
j
p are the beliefs of agent j about , and the constant 0iib  is the weight that

player i gives to its own beliefs relative to the graph weights
ij
a assigned to its neighbors.

Notice that it is required that
1

1
N

ij iij
a b

=
+ = for (| (), (),)i i i ip x t T x t − −+ to be a well-defined

probability distribution.

Equation (3.38) expresses that the beliefs of agent i at time t T is a linear

combination of its own Bayesian belief update, and the beliefs of its neighbors at time t . This is

regarded as a non-Bayesian belief update of the epistemic types.

Notice that (3.38) does not consider the knowledge of
i
 by agent i . The assumption

that the agents can communicate their beliefs to their neighbors is meaningful if we consider the

case when the agents are uncertain about their own types; otherwise they would be able to

inform to their neighbors about their actual type through the communication topology.

Similar to (3.27), the factors in the first term of (3.38) can be decomposed in terms of

the states and types of i neighbors as and non-neighbors, such that

1 1

1 1

1

(() | (),)
(| (), ()) (| (), , ,)

(() | ())

(| (), , ,) ()

i

i

i j i
i i i ii j i j

i j ij N

N

k i k ij j

jk N

p x t T x t
p x t T x t b p x t

p x t T x t

p x t a p


   

   

−
− − − −

−

− −

=

+
+ =

+

 +





 (3.39)

where dependent epistemic types have been considered.

3.5. Simulation Results

In this section, two simulations are performed to show the behavior of the agents during

a Bayesian graphical game using a Bayesian and a non-Bayesian belief updates. The solutions

of the BHJ equations for Nash equilibrium are given.

40

3.5.1. Parameters for simulation

Consider a multiagent system with 5 agents and one leader, connected in a directed

graph as shown in Fig. 3.1. All agents are taken with single integrator dynamics, as

,1 ,1

,2 ,2

i i
i

i i

x u
x

x u

   
= =   
   

In this game, only agent 1 has two possible types, and all other agents start with the same prior

knowledge of the probabilities of each type. Let agent 1 have type 1 40% of the cases, and type

2 60% of the cases.

The cost functions of the agents are taken in the form (2.7), considering the same

weighting matrices for all agents, that is,
ij kl
Q Q ,

ii jj
R R and

ij kl
R R for

, , , {0,1,2,3,4,5}i j k l . For type
1
, the weighting matrices are taken as

 1
4

,
210

ij

I I
Q

I I


− 

=  
− 

1 10
ii
R I and 1 20

ij
R I for i j , where I is the identity matrix. The matrices of the cost

functions for type
2
 are taken as

Fig. 3.1. Graph topology employed in simulation of Bayesian games.

41

 2
16 16

,
16 32

ij

I I
Q

I I


− 

=  
− 

2

ii
R I for all agents i , and 2 2

ij
R I for i j .

To solve this game, we start by considering a general formulation for the value

functions of the game, and then we show that the control policies of the agents are optimal and

distributed. Propose a value function with the form
0

N T
ij iji ij ij

V a P  
=

= , where 0i ia g= ,

0 0
T

T T
i i  =   and

T
T T

ij i j   =   for 0j , as solution for the cost function (2.6) - (2.7) for type

. Notice that this value function is not necessarily distributed because it depends on the local

information of the neighbors of agent i . We prove below that, for type 1, matrix 1

iP has the

form

 1
0

0 0
i

I
P  

=  
 

 (3.40)

and, for type 2,

 2
2 0

0 0
i

I
P  

=  
 

 (3.41)

for all agents, and hence distributed policies are obtained.

Express the expected Hamiltonian for agent i as

 ()
2

1 0

() 2
N

T T T T
i ij ij i j ijij ij i ii j ij ij i

j

EH p a Q u R u u R u P   



    
= =

= + + +

where the derivative ij when 0j is given by

 1

1

()
.

()

N
i i i i ik ki k

N
j j j j j jk k

k

A d g Bu a Bu

A d g Bu a Bu



 

=

=

 + + − 
 = 
   + + − 





From the expected Hamiltonian, the optimal control policies are obtained as

12 2
*

1 0 1

() () ()
N

ij T T
i i i ji ijii i

i ij

a
u p R d g B a B p P

d g
 

 

  

−

= = =

   
= − + −     

+   
   (3.42)

42

which, as mentioned before, are not necessarily distributed. Using the policies *
i
u for all agents,

we find that the BHJ equations that must be solved by matrices
i
P are

 ()
2

* * * * *

1 1

() 2 0.
N

T T T T
ij ij i j ijij ij i ii j ij ij i

j

p a Q u R u u R u P   



    
= =

+ + + = (3.43)

To show that (3.42) with
i
P as in (3.43) is the optimal policy for agent i , express the

expected cost of agent i as

 ()
0 0

1

() () () ((0)).
N

T T T
i ij ij ij i i j jij ii ij i i

j

EJ p a Q u R u u R u dt p V dt p V    

  

     
 

 =  

= + + + +   

Similarly as in Lemma 3.1, it is easy to show that

()* *

0
1

* *

0 0

()

() () () () () ((0))

N
T T T

i ij ij ij i i j jij ii ij

j

T
i i ii i ii i

EJ p a Q u R u u R u dt

p V dt p u u R u u dt p V

  



 

  

  

   



 =

 

  

= + +

+ + − − +



   

for all
i
u and

i
u . As (3.43) holds, if all neighbors of agent i use their best strategies *

i
u , then

 * *

0
() () () ((0))T

i i i ii i i iEJ p u u R u u dt V 



 




 = − − +
  

 

and *
i
u in (3.42) is indeed the optimal strategy of agent i .

To show that (3.40) and (3.41) solve the equations (3.43) for all agents, substitute the

matrices in the value functions
i
V and the policies *

i
u of the agents. Thus, for type

1
, we can

write 1 () T
i i ii iV d g  = + ; for type

2
, 2 2() T

i i ii iV d g  = + ; and the optimal control policies are

given by

 ()
12

*
1 2

1

() () () 2 () .T
i i i iiiu d g p R B p I p I



   

−

=

 
= − + + 

 


Notice that matrices (3.40) and (3.41) make *
i
u distributed. Using the expressions (3.42) and

(3.43) and the cost functions of the game, we obtain the following result for type
1

43

() ()

()

1 1 1

1
0

1
0 0

()

04
10 20 2 2

2 0 010

4 8 8

10 10 10

N
NT T T T

ij ij ij i i j j i i i i ij jij ii ij i j
j

N N
NT T T T

ij ij ij i i j j ij ij i ij jj
j j

T T T
ij i i i j j

a Q u R u u R u V A d g Bu a Bu

I I I
a u u u u a u a u

I I

a

     

  

    

=
=

=
= =

+ + + + + −

   −   
= + − + −      

−      

= − +

 

  

()()1
0 0

10 20 2 (2
N N

NT T T
j i i j j ij i i ij jj

j j

u u u u a u a u 
=

= =

 
+ − + − 

 
  

Substituting *
i
u and *

j
u we get

1

0 0

1
0

4 8 8 4 8 8 4

10 10 10 10 10 10 10

4 8 8 4 8 8 8
0

10 10 10 10 10 10 10

N N
NT T T T T T T

ij i i i j j j i i j j ij i i ij i jj
j j

N
NT T T T T T T

ij i i i j j j i i j j i i ij i jj
j

a a a

a a

             

             

=
= =

=
=

   
− + + − − +   

   

 
= − + + − − + = 

 

  

 

Similarly, for type
2
 we have

() ()

()

2 2 2

1
0

1
0 0

()

16 16 2 0
2 2 2

16 32 0 0

16 32 32

N
NT T T T

ij ij ij i i j j i i i i ij jij ii ij i j
j

N N
NT T T T

ij ij ij i i j j ij ij i ij jj
j j

T T T
ij i i i j j

a Q u R u u R u V A d g Bu a Bu

I I I
a u u u u a u a u

I I

a

     

  

     

=
=

=
= =

+ + + + + −

   −   
= + − + −      

−      

= − +

 

  

() ()()

() ()

()

1
0 0

1
0 0

1
0

2 4 (2

16 32 32 16 32 32 16

16 32 32 16 32 32 32

N N
NT T T

j i i j j ij i i ij jj
j j

N N
NT T T T T T T

ij i i i j j j i i j j ij i i ij i jj
j j

N
NT T T T T T T

ij i i i j j j i i j j i i ij i jj
j

u u u u a u a u

a a a

a a



             

             

=
= =

=
= =

=
=

+ − + −

= − + + − − +

= − + + − − +

=

  

  

 

0

 Finally, the BHJ equations for all agents, 1,...,5i = , can be written as

() ()

() ()

1 1 1 1

2 2 2 2

1 1
0

2 1
0

() ()

() () 0

N
NTT T T

ij ij ij i i j j i i i i ij jij ii ij i j
j

N
NTT T T

ij ij ij i i j j i i i i ij jij ii ij i j
j

p a Q u R u u R u V A d g Bu a Bu

p a Q u R u u R u V A d g Bu a Bu

   

   

   

   

=
=

=
=


+ + + + + − 


+ + + + + + − = 

 

 

Therefore, matrices 1

i
P and 2

i
P are the solutions of the game. As the control policies obtained

from these matrices are distributed, this numerical example has shown a system for which

Assumption 2.1 holds.

44

3.5.2. Bayesian belief update

With the exception of agent 1, let all players update their beliefs about the type every

0.1 seconds, using a Bayesian belief update (3.29) with naïve likelihood approximation, as

described in Section 3.3. During this simulation, agent 1 is in type 1.

The state dynamics of the agents are shown in Fig. 3.2. In Fig. 3.3, the evolution of the

beliefs of every agent is displayed. Note that all beliefs approach probability one for type
1
, and

all agents end up playing the same game.

3.5.3. Non-Bayesian Belief Update

The simulation is now repeated using (3.39) for the non-Bayesian belief update. Agent

1 is again in type 1, and agents 2 to 5 share their individual beliefs about
1
 with their neighbors

according to the communication graph topology.

Figure 3.4 shows the convergence of the beliefs in type 1 of the four agents.

Convergence is faster in this case, due to the additional flow of information about the beliefs of

the agents.

Fig. 3.2. Trajectories for both states of the five agents in Bayesian games.

0 10 20 30 40 50 60 70 80
0

1

2

3

4

Time

S
ta

te
 1

0 10 20 30 40 50 60 70 80
0

1

2

3

4

Time

S
ta

te
 2

45

3.6. Conclusion

Multiagent systems analysis was performed for dynamical agents engaged on

interactions with uncertain objectives. We reveal for the first time the tight relationship between

the beliefs of an agent and its distributed best response control policy. Minmax strategies were

shown to be a practical solution to overcome the lack of information of the agents to achieve

Bayes-Nash equilibrium. Under appropriate circumstances, the proposed naïve likelihood

approximation is a useful method to deal with the limited knowledge of the agents about the

graph topology.

Fig. 3.3. Evolution of beliefs in type 1 of the agents with Bayesian update.

Fig. 3.4. Evolution of beliefs in type 1 of the agents with non-Bayesian update.

46

Simulations with two different belief update algorithms show the applicability of the

proposed methods. The Bayesian belief update achieves convergence of the beliefs using

solely measurements of the states of their neighbors. The non-Bayesian updates take

advantage of supplementary information to achieve a faster and more robust convergence of

the beliefs to the true type of the game.

Further lines of research about Bayesian graphical games include the proposition of

new solution concepts that yield distributed control policies for the agents. Also, new belief

update methods can be developed to improve their convergence in environments with

incomplete information.

47

Chapter 4

MINMAX SOLUTIONS FOR DIFFERENTIAL GRAPHICAL GAMES

4.1. Introduction

Every admissible solution for a graphical game requires the use of distributed control

policies. This means that the agents are allowed to use only local information received through

the communication graph to design their control strategies. The distributed-policy requirement,

however, makes Nash equilibrium generally unattainable among the agents. This fact can be

intuitively explained by noticing that an agent needs to know its neighbors’ best strategies to

determine its own best response against them, but the neighbors’ best policies are unknown

without global state information. Thus, the information restriction imposed by the graph topology

prevents the multiagent system from reaching an equilibrium.

The unattainability of Nash equilibrium in graphical games can be addressed by

proposing alternative solution concepts as objectives for the agents. Even with incomplete

knowledge about their environment, the agents can be expected to determine a best policy for

the information they have available. In this chapter, we analyze the behavior of the agents

connected in a communication graph when they use minmax strategies [1], [28] to achieve their

goals. Using minmax strategies, each agent assumes the worst possible behavior from its

neighbors and prepares its best response to oppose them. This assumption is formalized by

making every agent determine the control policy of its neighbors that would maximize its own

cost function. From the perspective of an individual agent, the resulting formulation of this

graphical game is the same as an H control problem [29]. In turn, the H formulation can be

solved as the zero-sum game between a system and a disturbance term [5], [28]. The H

controller has been thoroughly studied due to its attractive robust characteristics [30]- [32].

Thus, minmax strategies provide robust control policies for the networked agents due to their

conservative assumption about the worst neighbor behavior.

48

A useful method to solve H problems has been proposed with the use of

reinforcement learning (RL) algorithms [33]-[36]. An off-policy RL algorithm [36] is also

proposed in this chapter to solve the minmax problem without any knowledge of the model of

the agents, nor any knowledge about the neighbor control policies. Off-policy RL has been used

to solve H problems in [37], [38].

In the remainder of this chapter, Section 4.2 presents the minmax strategies problem

and its solution is obtained. The stability of minmax policies is studied in Section 4.3. Section

4.4 analyzes the robustness of minmax strategies. An off-policy RL algorithm is presented in

Section 4.5 to solve the minmax problem. Simulation studies are presented in Section 4.6.

4.2. Minmax Strategies for Graphical Games

In this section, we first formally present the disadvantages of the Nash equilibrium

solution for games in communication graphs. Then, we remedy these inconveniences by

defining the minmax strategies for differential graphical games.

4.2.1. Drawbacks in Nash equilibrium

In Section 2.4, it was presented that in a graphical game with agent dynamics (2.2) -

(2.3), and performance indices (2.6) - (2.8) Nash equilibrium is obtained by means of the control

policies (2.11), repeated here for completeness,

 * 11
() ()

2

T
i i i ii i iu d g R B V −= − +  (4.1)

where the value function ()
i i
V is obtained as the solution of the HJ equation (2.12).

Substituting the policies (4.1) in (2.12) for all agents i , j in the game, we obtain the explicit HJ

equations

49

2
1

2 1 1

1 1

()

4
1 1

() () 0.
4 2

T T T Ti i
i i i i i i i i

N N
T T T T

ij j j j j j ij j j i j j
j j

d g
Q V A V BR B V

a d g V BR B V a d g V BR B V

 (4.2)

A valid distributed control policy (4.1) requires that the value function for agent i

employs only local information. For this reason, we made Assumption 2.1 in Chapter 2, stating

that () ()
i i i
V V . Using this assumption, and rearranging the HJ equation (4.2), we obtain

1

1

1 1

1

1

4

1
()

4

N T
T

ij i j j i j
j

N
T T T T

ij i i i i j i i i i i i
j

a V V BR B V V

a V B d g R R B V Q V A

 (4.3)

where ()
j j j j
V d g V . This equation has the form

1 2
(,) ()
i i i

f f , with
i
 the local

errors of the neighbors of i , and in most cases it will not hold true for all possible neighbor

trajectories
i
.

In general, there may not exist a set of functions ()
i i
V that solve the HJ equations

(4.2) and provide distributed control policies for the agents. This is an expected result due to the

limited knowledge of the agents connected in the communication graph. If agent i does not

know the local information of its neighbors,
j
, then it cannot determine their best responses in

the game and prepare its best strategy accordingly.

We are now in a position to propose minmax strategies as a practical alternative to the

Nash equilibrium solution.

4.2.2. Formulation of minmax strategies

Let agent i prepare its minmax strategy by making the conservative assumption that

the goal of its neighbors is to maximize its own performance index,
i
J . The following definition

formalizes the concept of minmax strategy employed in this dissertation.

50

Definition 4.1 (Minmax strategies for graphical games). In a differential graphical

game, the minmax strategy of agent i is given by

* argminmax , , .

i i
i i i i iu u
u J u u (4.4)

The performance index (2.6) - (2.7) requires to be modified to formulate a zero-sum

game between agent i and its neighbors. To this end, define the function

 2

0
1

()
N

T T T
i i i i i i i i i ij j j j

j

J Q d g u Ru a u R u dt (4.5)

where 0
i
Q , , 0

i j
R R and is a positive scalar. To determine its minmax strategy, agent i

assumes that the goal of its neighbors is to maximize its cost function (4.5).

Define the Hamiltonian function associated with the cost index (4.5) as

2

1

1

()

() .

N
T T T

i i i i i i i i i ij j j j
j

N
T
i i i i i ij j

j

H Q d g u Ru a u R u

V A d g Bu a Bu

 (4.6)

If the value function
i
V has a quadratic form as

 () T
i i i i i
V P (4.7)

then (4.6) can be expressed as

2

1

1

()

2 () .

N
T T T

i i i i i i i i i ij j j j
j

N
T
i i i i i i ij j

j

H Q d g u Ru a u R u

P A d g Bu a Bu

 (4.8)

The optimal control policy for agent i is now obtained by means of the stationary

condition 0i

i

H

u
, which yields

 * 1 .T
i i i i
u R B P (4.9)

51

Similarly, the worst-case policy of the neighbors of agent i can be obtained as

 * 1

2

1
.T

j j i i
R B P (4.10)

Notice that *

j
 is not necessarily the actual control policy employed by agent j , represented by

j
u .

The HJ equation to be solved for matrix
i
P is finally obtained by substituting the policies

(4.9) and (4.10) in (4.8), and equating it to zero. This procedure yields the algebraic Riccati

equations (ARE)

 1 1

2
1

1
() 0

N
T T T

i i i i i i i i ij i j i
j

Q PA A P d g PBR B P a PBR B P (4.11)

The following theorem shows that control policy (4.9) with
i
P obtained as the solution of (4.11)

provides the minmax strategy for agent i . The proof of this theorem assumes stability of the

error dynamics (2.5); such stability will be analyzed in the next section.

Theorem 4.1. Let the agents of a differential graphical game with dynamics (2.2) and a

leader with dynamics (2.3) use the control policies (4.9) where matrices
i
P are the solutions of

the AREs (4.11). Moreover, assume these control policies stabilize the local synchronization

errors (2.5) for all agents i . Then, all agents follow their minmax strategies as defined in

Definition 4.1, and the minmax value of the game is ((0))
i i
V .

Proof. Consider the value function (4.7) and express the performance index (4.5) as

2

0 0
1

0
1

() ()

2 () .

N
T T T

i i i i i i i i i ij j j j i i
j

N
T
i i i i i i ij j

j

J Q d g u Ru a u R u dt V dt

P A d g Bu a Bu dt

Using the inner-product notation (2.15), we can express
i
J as

52

2

1

1

, () , , ((0)) 2 ,

2() , 2 ,

N

i i i i i i i i i ij j j j i i i i i
j

N

i i i i i ij i i j
j

J Q d g u Ru a u R u V PA

d g Pu a PBu

where we have used the fact that
0
() (()) ((0))
i i i i i i
V dt V V , and that, because the

system is stable, (()) 0
i i
V in the limit as . As

i
P makes the ARE (4.11) hold, we get

* * 2 * *

1

2 * 2 *

1 1

* * 2 * *

1

() , , () ,

, 2() , 2 ,

((0))

() , () , ()

((0))

N

i i i i i i ij j j j i i i i i
j

N N

ij j j j i i i i i ij j j j
j j

i i

N

i i i i i i i ij j j j j j
j

i i

J d g u Ru a R d g u Ru

a u R u d g u Ru a R u

V

d g u u R u u a u R u

V

 (4.12)

Therefore, *
i
u in (4.9) with

i
P as in (4.11) is the minmax strategy of agent i , (4.10) represents

the worst-case policies of the neighbors, and the value of the game is given by ((0))
i i
V .

Remark 4.1. Control policies (4.9) are always distributed, in contrast to the policies

based in the Nash solution given by (4.1).

Remark 4.2. Equations in the form of (4.11) are known to have solutions for
i
P if

(,)
i

A Q is observable, (,)A B is stabilizable, and 1 1

2 1

1
() 0

N

i i i ij jj
d g R a R .

In the following section we analyze the stability properties of the minmax policies (4.9).

4.3. Stability of Minmax Strategies

Two stability concepts are analyzed in this section for minmax strategies. First, it is

proven that the system (2.5) with control policies *
i
u in (4.9) is finite-gain

2
 stable. Then,

conditions for asymptotic stability of the global multiagent system are provided.

53

4.3.1.
2
 stability

When using minmax strategies, an agent with error dynamics (2.5) considers the effect

of its neighbors policies,
1

N

ij jj
a Bu , as a disturbance term to be rejected. The nominal system

for agent i can then be defined as

 () .
i i i i i
A d g Bu (4.13)

This idea provides the foundation of the following stability analysis.

Define the performance output of agent i as

2

() () .T T
i i i i i i i i i
z t Q d g u Ru (4.14)

Similarly, the disturbance input produced by the neighbors of agent i is defined as

2

1

() .
N

T
i ij j j j

j

t a u R u (4.15)

According to (2.16), the output (4.14) is
2
 stable if

2 2

() ()
i i
z t t (4.16)

for some , 0 . The following theorem shows the
2
 stability properties of the minmax

policies (4.9).

Theorem 4.2. The system (2.5) with policy *
i
u as in (4.9) and

i
P as the solution of

(4.11) is
2
 stable with

2
-gain bounded by according to (4.16).

Proof. In the proof of Theorem 4.1, the final step (4.12) showed that

2

1

* * 2 * *

1

, () , ,

() , () , () ((0)).

N

i i i i i i i i i ij j j j
j

N

i i i i i i i ij j j j j j i i
j

J Q d g u Ru a u R u

d g u u R u u a u R u V

54

Because
2
 stability must hold for all initial conditions, select (0) 0

i
. This implies

((0)) 0
i i
V . Let *

i i
u u to obtain

 2 2 * *

1 1

, () , , , () 0
N N

i i i i i i i i ij j j j ij j j j j j
j j

Q d g u Ru a u R u a u R u

which implies

 2

1

, () , ,
N

i i i i i i i i ij j j j
j

Q d g u Ru a u R u

Taking the square root of both sides of the inequality shows that (4.16) holds.

The asymptotic stability of minmax strategies is studied in the following subsection.

4.3.2. Asymptotic stability

It is now of our interest to determine the conditions for asymptotic stability of the global

system, i.e., the simultaneous stability of the dynamics (2.5) for all agents 1, ,i N . To

analyze the influence of the neighbors of agent i in the stability properties of the system,

substitute the control policies of the form (4.9) in the error dynamics (2.5) to get

 1 1

1

() .
N

T T
i i i i i i ij j j j

j

A d g BR B P a BR B P (4.17)

System (4.17) can be expressed in global form by defining the variable
1
, ,

T
T T

N
,

such that

 1() () ()I A L B R I B P (4.18)

where I is an identity matrix of appropriate dimensions, represents the Kronecker product,

diag { }
i i

R R and diag { }
i i

P P . Fig. 4.1 shows the block diagram of the feedback global

system in a communication graph.

Two additional assumptions will be considered to complete the asymptotic stability

analysis of the global system (4.18).

55

Assumption 4.1. The matrices
i
R in the performance indices (4.5) are selected such

that
i j
R R R for all agents i and j .

Assumption 4.2. The graph weights
ij
a and

i
g have sufficiently small magnitudes for

all paris ,i j , such that

 1

min max2

1
() 1 T
i i i i i
Q d g PBR B P (4.19)

with all matrices defined in the ARE (4.11), and where
min
() and

max
() are, respectively, the

minimum and maximum eigenvalues of a matrix.

If Assumption 4.1 holds, then we can write 1 1R I R , and the global dynamics

(4.18) can be expressed as

 1() () .TI A L BR B P (4.20)

Similarly, the ARE (4.11) can be written as

 1

2

1
1 .T T

i i i i i i i i
Q PA A P d g PBR B P (4.21)

Fig. 4.1. Closed-loop multiagent system in graphs.

56

The following lemmas are consequences of Assumptions 4.1 and 4.2, and will be used in our

main proof of stability below.

Lemma 4.1. Let L be the Laplacian matrix of a strongly connected graph, and define

the matrix diag { }
i i

W w where
1
, ,T

N
w w w is the left eigenvector of L associated with

the eigenvalue 0 . Let R be a symmetric, positive definite matrix. Then,

 1 1

1

T T TWL BR B LW BR B S (4.22)

with
1 1

0TS S .

Proof. It is proven in [53] that 0TWL LW S for strongly connected graphs.By

properties of the Kronecker product [54] and the fact that 1 TBR B is a symmetric, positive

semidefinite matrix, (4.22) holds.

Lemma 4.2. If matrix A has all its eigenvalues with non-positive real parts, matrix
i
P

solves the ARE (4.21) and Assumption 4.2 holds, then

2

T
i i
PA A P S (4.23)

for some
2 2

0TS S .

Proof. Express the ARE (4.21) as

 1

2

1
1 .T T

i i i i i i i i
PA A P Q d g PBR B P (4.24)

If (4.19) holds, it is clear that the right-hand side of (4.24) is a positive semidefinite matrix, which

is a sufficient condition for (4.23).

We are ready to prove that the minmax policies (4.9) make the global system (4.20)

asymptotically stable. The following theorem is the main result in this section.

Theorem 4.3. Let the conditions in Theorem 4.1 hold, and make Assumptions 4.1 and

4.2. Furthermore, let the graph have a spanning tree with the leader node as the root. Then,

control policies (4.9) make the system (4.20) asymptotically stable.

57

Proof. The proof of this theorem is divided in two parts. First, we prove that asymptotic

stability is achieved for strongly connected graphs. Then, we generalize the result for graphs

with a spanning tree.

Thus, assume first that the graph is strongly connected, and notice that Lemmas 4.1

and 4.2 hold from Assumptions 4.1 and 4.2. Premultiplying and postmultiplying both sides of the

inequality (4.22) by 1W I , we obtain

 1 1 1 1

1

T T TW L BR B LW BR B S

where 1 1

1 1
() ()S W I S W I . Following a similar procedure, from (4.23) we can obtain

 1 1 1 1

2

T
i i i i
w AP w P A S

with 1 1 1
2 2i i i
S w P S P .

Define now the matrix () diag { }
w i i i
P W I P w P with

i
w the i th element of the left

eigenvector w of L . Because the graph is strongly connected, 0
i
w for all i [16]. Now,

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 2

() () () ()

() ()() () ()()

() () () ()

0

T
T T

w w

T T T T

w w

T T T T
w w

P I A L BR B P I A L BR B P P

P I A W I L BR B I A P L BR B W I

P I A W L BR B I A P LW BR B

S S

Notice that this is a Lyapunov equation and the system (4.20) is stable. Moreover, using

LaSalle’s extension and noticing that 0 only when synchronization has been achieved, we

conclude that the system is asymptotically stable.

Consider now the case when the graph has a spanning tree with the leader as a

root. If has a spanning tree but is not strongly connected, then the Laplacian matrix is

58

reducible and can be expressed by means of a permutation transformation as the Forbenius

form [13]

11

21 22

1 2

0 0

0

M M MM

L

L L

L L L

where each submatrix
kk
L is irreducible. Irreducibility of matrix

kk
L implies that the subgraph

connecting only the agents in the k th block row of L is strongly connected. This immediately

shows, due to the first part of this proof, that the dynamics of the agents in the first block row

are asymptotically stable.

We can now prove stability of the global system by induction. Assume that all agents in

the block rows 1 to 1k have stable dynamics. Thus, as t , the influence of their local

errors
j
 over the dynamics (4.17) of the agents in the k th block row vanishes. This leaves

only the strongly connected interaction of the agents in the k th block row, which is proven to be

stable.

In the following section, we study the guaranteed robustness properties of minmax

strategies.

4.4. Robustness Analysis for Minmax Strategies

In this section, we are particularly interested in determining the gain and phase margins

of the agents provided by the minmax policies (4.9). Our approach to perform this analysis is to

consider each individual agent using its minmax input (4.9) and determine how the neighbor

policies, seen as a disturbance, affect its stability.

Let the perturbed version of the nominal system (4.13) be given by the dynamics

 ˆ ˆ ()()
i i i i i
A d g B u (4.25)

59

where the disturbance  is assumed to be a finite-gain operator with 0 0 , and ˆ
i

represents the state trajectories of the perturbed system. We let ˆ(0) (0)
i i

.

The subsequent robustness analysis follows a similar procedure as in [44]. The

following lemma shows a sufficient condition on the disturbance  that guarantees the stability

of ˆ
i
. Notice that guaranteeing the stability of ˆ

i
 implies the stability of

i
.

Lemma 4.3. If the perturbation  of the system (4.25) is such that

 1 1

2 1

1
,[()(2)] 0

N

i i i i ij j ij
u d g I R a R u

for all
2
[0,)m

i
u , then

 ˆ ˆ(0) (0) , .T
i i i i i i
P Q (4.26)

If, additionally, [,]
i

A Q is detectable, then ˆ
i
 is asymptotically stable.

Proof. Using the definition of the perturbed system (4.25) and the ARE (4.21), we have

for every ,

0

1

1

1 1

2

ˆ ˆ ˆ ˆ(0) (0) () () () ()

ˆ ˆ2 , (())

ˆ ˆ ˆ ˆ,() ,2()

1ˆ ˆ ˆ,() () , ()

T T T
i i i i i i i i i

T
i i i i i i i

T T
i i i i i i i i i i i

T T
i i i i i i i i ij i i i

d
P P t P t dt

dt
P A d g B R B P

PA A P d g PB R B P

d g PB I R B P a PB I R B P





 
1

ˆN

i ij
Q

where ˆ
i

 is the truncation of ˆ
i
 as defined in (2.14). Define the expression

1 2 1

1
()(2) (1 /)

N

i i i i ij jj
d g I R a R , and write

ˆ ˆ ˆ ˆ(0) (0) , ,

ˆ ˆ,

, 0

T T
i i i i i i i i i i i

T T
i i i i i

i

P Q PB B P

B P B P

u u

60

where ˆT
i i

u B P and the last inequality holds by assumption. In the limit , it follows

that ˆ ˆ(0) (0) ,T
i i i i i i
Q Q , which implies that ˆ ˆ,

i i i
Q is bounded. As [,]

i
A Q is detectable,

ˆ
i
 is square-integrable. Because  has finite gain, so does the matrix 1() T

i i i i
A d g B R B P .

From (4.25), we notice that ˆ
i
 is also square-integrable. Since both ˆ

i
 and ˆ

i
 are square-

integrable, ˆ
i
 is asymptotically stable [44].

The following theorem establishes the result in Lemma 4.3 for the case when the

disturbance  is a linear operator.

Theorem 4.4. Let  be a finite-gain linear time-invariant operator with transfer

matrix ()H s . If for all

 1 1 * 1 1

2
1

1
() () () 0

N

i i i i i ij j
j

d g H j R R H j R a R (4.27)

and if [,]
i

A Q is detectable, then the system (4.25) is asymptotically stable.

Proof. Expressing  as a linear operator and using Parseval’s theorem, we get

1 2 1

1

1 2 1

1

* 1 1 * 1 2 1

1

,[()(2) (1 /)]

,[()(2) (1 /)]

1
()[()(() ()) (1 /)] ()

2
0

N

i i i i ij j ij

N

i i i i ij j ij

N

i i i i i i ij jj

u d g I R a R u

u d g I R a R u

j d g H j R R H j R a R j d



where the last inequality holds by the assumption in (4.27). The proof is completed by Lemma

4.3.

From Theorem 4.4 we derive our main robustness results. The following corollary holds

for a particular selection of matrices
i
R and disturbance  .

Corollary 4.1. Let
,

diag { }
i k i k
R r for positive scalars

,i k
r , and let the disturbance  be

such that

61

1 ,1

,

i

i

m i m

u

u

u







 (4.28)

If each of the perturbations
k

 is linear time-invariant with proper transfer function ()
k
H s ,

Re{ } 0
j
s for all poles

j
s of ()

k
H s , and

,

2
1 ,

1 1
Re{ ()} 1

2 ()

N
i k

k ij
j j ki i

r
H j a

rd g
 (4.29)

for all , then the system (4.25) is asymptotically stable.

Proof. Re{ } 0
j
s assures that  has finite gain. Take () diag { ()}

k k
H s H s . Now,

1 * 1

, ,2
1

1 1 1

, , ,2
1

,1 1 1

, , ,2 2
1 1,

1
() (() () 1)

1
2()(Re{ ()})

1 1 1 1
2() ()

2 2

0

N

i i i k k k ij j k
j

N

i i i k k i k ij j k
j

N N
i k

i i i k ij i i i k ij j k
j ji i j k

d g r H j H j a r

d g r H j r a r

r
d g r a d g r a r

d g r

As the conditions of Theorem 4.4 are satisfied, (4.25) is asymptotically stable.

We can finally determine the phase and gain margins of minmax strategies by means of

the following result, which follows from Corollary 4.1.

Corollary 4.2. Let the conditions of Corollary 4.1 hold. A phase shift
i
, with

60
i

, where 2arc cos(0.25(12 3))c c and 1 2 1
, ,1

1 ()
N

i i ij i k j kj
c d g a r r , in

the respective feedback loops of each of the controls
i
u will leave an asymptotically stable

system. Moreover, inserting a gain of
k

 such that

,

2
1 ,

1 1
1
2 ()

N
i k

k ij
j j ki i

r
a
rd g

 (4.30)

in the feedback loop of the controllers
,i k
u , leaves the system asymptotically stable.

62

Proof. Expressing the complex number ()
k
H j in polar form, it is clear from Corollary

4.1 that the condition for stability is

,1 2

1 ,

1 1
cos () ()

2 2

N
i k

k i i ij
j j k

r
d g a

r

or

,1 2

1 ,

1 1
() arccos ()

2 2

N
i k

k i i ij
j j k

r
d g a

r

Using trigonometric identities, we can express this result as

21 12 3

() arccos arccos
2 4k

c c

with the constant c defined in the corollary statement. This proves the minimum phase margin

of minmax policies.

Furthermore, it is clear from Corollary 4.1 that if ()
k
H j represents a scalar gain

k
,

then (4.30) guarantees stability of the system.

Remark 4.3. Corollary 4.2 shows that the minmax strategies have infinite gain margin,

gain reduction tolerance of more than 50% and a phase margin of more than 60°. The amount

of additional phase delay and the amount of additional gain reduction tolerance depend on the

selection of matrices
i
R , parameter and the graph topology. This is an improved result from

the LQR robustness properties, which are known to have infinite gain margin, 50% gain

reduction tolerance and 60° of phase margin.

4.5. Off-Policy Learning for Minmax Strategies

In this section, an off-policy RL algorithm is proposed to determine the solutions of the

Riccati equations (4.11) and obtain the control policies (4.9) that solve the minmax strategies

63

problem. This method is designed such that the agents learn their optimal policies using only

data measured from their environment, without any knowledge of the system dynamics (2.2).

To design the off-policy RL algorithm, define the variables k
i
u and k

j
 as auxiliary

control policies and express the system dynamics (2.5) as

1 1

() () () ().
N N

k k k k
i i i i i ij j i i i i ij j j

j j

A d g Bu a B d g B u u a B u (4.31)

Here, the variables k
i
u and k

j
 are the policies to be updated. Notice here that the input

j
u

corresponds to the actual policy employed by agent j , while k
j

 is agent i ’s estimation of the

worst-case neighbor policy.

Let k T k
i i i i
V P represent the value function

i
V at the k th iteration of our algorithm,

and notice that the expression

 (()) (()) () 2
t T t T

k k k T k
i i i i i i i i it t
V t T V t V d P d (4.32)

holds. Using the dynamics (4.31) in (4.32), we obtain

 1

1

1 1
(()) (()) ()

2 2

() () ()

Nt T
k k T k k k
i i i i i i i i i i ij jt

j

Nt T t T
T k k T k k

i i i i i i i i ij j jt t
j

V t T V t P A d g Bu a B d

d g P B u u d P a B u d

 (4.33)

From the Hamiltonian (4.8), we can obtain the k th iteration Bellman equation as

2

1

1

0 ()

2 () .

N
T kT k kT k
i i i i i i i i ij j j j

j

N
T k k k
i i i i i i ij j

j

Q d g u Ru a R

P A d g Bu a B

 (4.34)

Using (4.34) in (4.33) yields

2

1

1, 1,

1

(()) (()) ()

2() () 2 ()

Nt T
k k T kT k kT k
i i i i i i i i i i i i ij j j jt

j

Nt T t T
k T k k T k

i i i i i i ij j j j jt t
j

V t T V t Q d g u Ru a R d

d g u R u u d a R u d

(4.35)

64

where we have also used the fact that the control policies 1k
i
u and 1k

j
 at iteration 1k are

defined as

 1 1k T k
i i i i
u R B P (4.36)

and

 1 1

2

1k T k
j j i i

R B P (4.37)

respectively. Lemma 4.4 shows the equivalence between (4.35) and (4.34).

Lemma 4.4. The solution k T k
i i i i
V P of (4.35) is equivalent to the solution of the

Bellman equation (4.34) in the sense that matrix k
i
P makes (4.34) hold.

Proof. Using (4.32), we can express (4.35) as

1, 1,

1

2

1

() 2() () 2 ()

() .

Nt T
k k T k k T k

i i i i i i i i ij j j j jt
j

Nt T
T kT k kT k

i i i i i i i i ij j j jt
j

V d g u R u u a R u d

Q d g u Ru a R d

Let k k
i i i
V V and use (4.31), (4.36) and (4.37) to get

1

1

2

1

()

() .

Nt T
k k k

i i i i i ij jt
j

Nt T
T kT k kT k

i i i i i i i i ij j j jt
j

V A d g Bu a B d

Q d g u Ru a R d

which clearly holds if and only if k T k
i i i i
V P satisfies (4.34).

Now, the off-policy RL algorithm consists in solving (4.35) for k
i
V , 1k

i
u and 1k

j

simultaneously. Finding such solutions does not require any knowledge about the system

dynamics (2.2). A useful method to solve (4.35) using measured data along the system

trajectories is described in [37].

Algorithm 4.1 presents the iterative procedure for each agent i to determine its minmax

policy (4.9).

65

The following theorem shows the convergence properties of Algorithm 4.1.

Theorem 4.5. Algorithm 4.1 converges to the policies (4.9) - (4.10), where matrix
i
P

solves the AREs (4.11).

Proof. Follows directly from Lemma 4.4 and the proof of convergence of the iterative

procedure consisting of solving the Bellman equation (4.34) and updating the policies (4.36) -

(4.37) presented in [55].

4.6. Simulation Results

A numerical example is here presented to test the validity of our theoretical results.

Consider a set of 5 agents and one leader connected in a communication graph as shown in

Fig. 4.2. If
i

j , let 1
ij
a . Each agent is taken with linear dynamics given by (2.2), where

1 2 3 0

, .
2 1 0 3

A B

The minmax performance indices of the agents are defined by (4.5) with
1 3

2Q Q I ,
4
Q I

and
2 5

3Q Q I , where I is the identity matrix. Let all agents use the same values for

2R I and 2 .

Algorithm 4.1 is used to learn the solution of the Riccati equations (4.11). The resulting

matrices
i
P are shown below.

Algorithm 4.1 (Off-Policy RL for Minmax Strategies)

1: Select initial stabilizing control policies 0
i
u and 0

j
 for all

i
j .

2: Apply a fixed policy k
i i
u u and collect the required system

information at M different sampling intervals.
3: Use the information collected in Step 2 to solve the Bellman

equation (4.35) for k
i
V , 1k

i
u and 1k

j
 for all

i
j .

4: Go to Step 2. On convergence, stop.

66

1 2

0.5055 0.0314 1.1928 0.1314
, ,

0.0314 0.3537 0.1314 0.7597
P P

3 4

0.6756 0.0612 0.4991 0.0707
, ,

0.0612 0.4441 0.0707 0.3068
P P

5

0.8049 0.0542
.

0.0542 0.5558
P

The minmax control policies are now given by (4.9) with the appropriate matrix
i
P for

each agent. Using these policies, the agents successfully achieve synchronization with

trajectories shown in Fig. 4.3. Figure 4.4 shows the trajectories of the agents also along a time

axis.

4.7. Conclusion

Minmax strategies were designed and analyzed as an alternative solution concept for

differential graphical games. The assumption made by each agent about the worst intentions of

its neighbors yields robust control policies. Such policies are always distributed in the sense that

the agents use only local information obtained from the graph topology.

Fig. 4.2. Graph topology for simulation of minmax strategies.

67

The proposed off-policy RL algorithm is a practical method to determine the minmax

strategies of the agents without any knowledge about the system dynamics; moreover, this

algorithm allows to compute the worst-case neighbor policy
j
 even when this is not the control

policy used by the neighbors.

Despite its attractive features, the robustness properties of minmax may be too

conservative for certain applications. For this reason, research about differential graphical

games is continued by considering different solution concepts that still allow solutions using

distributed input policies as described in subsequent chapters.

Fig. 4.3. State trajectories with minmax policies.

Fig. 4.4. Synchronization in time with minmax policies.

68

Chapter 5

MULTIAGENT PURSUIT-EVASION GAMES: FINITE-TIME CAPTURE AND ASYMPTOTIC

BEHAVIORS

5.1. Introduction

In the previous chapter, the minmax strategies problem was solved for multiagent

graphical games. This chapter presents pursuit-evasion games as a specific set of applications

on which minmax strategies is implemented.

Pursuit-evasion games are one of the most interesting and widely studied interactions

in multi-agent systems. Their applications include aircraft control and missile guidance in

military implementations, as well as in civilian applications such as collision avoidance designs

in intelligent transportation systems, wireless sensors networks and sport game strategies.

Animal behavior in hunting scenarios can also be studied using differential game analysis.

Thus, the agents in pursuit-evasion games can be autonomous mobile robots, unmanned air

vehicles, spacecraft, wireless sensors or living organisms.

The single-pursuer single-evader game has been studied in detail since R. Isaac’s

development of strategic policies for both players [4]. The single-pursuer single-evader case is a

zero-sum game that can be solved using an extension of the well-known Bellman equations,

known as the Hamilton-Jacobi-Isaacs (HJI) equations [5]. A closed-form solution of the game

was obtained by Bryson and Ho, [56]. Extensions of these results have been obtained for the

case of two pursuers versus one evader [57], and for the multiple-pursuer single-evader case

[41], [58]-[61]. In [59], a pursuit-evasion game between aircraft is solved by differentiation of a

particular value function. The discrete-time multiple-pursuer single-evader game is solved in

[60]. In [7] a thorough survey about the studies on multiple-pursuer single-evader games is

presented.

In recent years, modern interacting multiagent systems have motivated the study of

general multiple-pursuer multiple-evader games. In [61], the pursuit-evasion game with two

69

multi-agent teams was analyzed with a distributed hybrid approach using time potential fields. In

[62] conditions to guarantee capture or evasion are determined by defining level-set functions

as objectives for the players. Suboptimal strategies are studied in [63] by decomposing the

game into multiple two-player games. The possibility of the players being connected in a

communication graph is considered in [64], where the pursuit-evasion game is formulated as a

connectivity control problem.

In the pursuit-evasion game, performance functions are used to represent the interest

of the pursuers in reaching the evaders’ position and the interest of the evaders in avoiding

capture. These individual performance indices are then used to define Nash equilibrium and

other solution concepts for the game [56], [1].

As it has been described in this dissertation, the mathematical techniques to analyze

the behavior of multiagent systems with limited sensing capabilities have been developed in the

field of graph theory. The most studied interaction for multi-agent systems control using graph

theory is consensus [65]; some results in this chapter can be seen as a generalization of the

consensus-seeking protocol. Multiagent systems controllers rely on the implementation of

distributed algorithms on which each agent computes its feedback controller using only the state

information it can perceive from its neighbors [13]. Stability analysis of multi-agent systems in

graphs has been studied in [53], [66].

The general multiagent pursuit evasion (MPE) games present some interesting

challenges in designing coordinated strategies among all the pursuers to accomplish the goal of

capturing the evaders. This requires the development of strategies that combine the tools in

both differential game theory and cooperative control theory to solve the distributed pursuit-

evasion game. Cooperation among agents has been well studied [67], [68], and their extensions

when considering a well-defined minimax performance index was recently developed using a

differential game approach [20].

70

This chapter is organized as follows. The different graphs and variables that are used

throughout the chapter are defined in Section 5.2. MPE games on directed graphs are

formulated in Section 5.3, where Nash equilibrium and minmax strategies are studied as

possible solutions of the games. In Section 5.4, an algorithm for target selection is proposed,

and conditions for finite-time capture are stated. Asymptotic behaviors are analyzed in Section

5.5. Finally, the proposed control policies are tested via simulation studies in Section 5.6.

5.2.Definition of Graphs and System Variables

This section presents the basic notions and definitions required to analyze the MPE

game on graphs. Although these definitions are based on the notation presented in Chapter 2,

they differ by adding useful features to the variables used in this chapter.

5.2.1. Three graphs for MPE game interactions

The distributed MPE game involves players with limited sensing range, that is, each

agent is able to measure only the position of its closest neighbors. In this subsection, three

different graphs are proposed to analyze the MPE game problem.

Define the graph (,)p p pV E= with the N pursuers as the set of nodes

1{ , , }p p pNV v v= and a set of edges p p pE V V  . Let aik be the connectivity weights of graph

p
, with 1

ik
a if (,)pk pi pv v E and 0

ik
a otherwise. Define the in-degree of pursuer i as

1

Np
iki k

d a
=

= and the in-degree matrix of the graph diag{ }p
p iD d= . The weighted adjacency

matrix is []p ika= . Finally, define the graph Laplacian matrix p p pL D= − .

Similarly, the graph (,)e e eV E= represents the interactions among the M evaders as

the nodes 1{ , , }e e eMV v v= . The graph weights are
jl
b , with 1

jl
b if

(,)el ej ev v E , and 0

jl
b

otherwise. The in-degree of evader j is
1

Me
j jll

d b
=

= . Define the matrices diag{ }e
e jD d= ,

71

[]e jlb= and e e eL D= − .

Finally, define the bipartite graph (,)pe pe peV E= that includes every player in the game,

with the set of N pursuers as one partition and the set of M evaders as the other. Graph
pe

captures the information exchange among the agents in different partitions. Specifically, edge

weights
ij
c represent the knowledge of pursuer i about the position of evader j , with 1

ij
c if

pursuer i can measure evader j and 0
ij
c otherwise. Similarly,

ji
e stands for the knowledge

of evader j about the position of pursuer i . The in-degree of pursuer i in graph
pe

 is defined

as
1

Mpe
iji j

d c
=

= , and the in-degree of evader j is
1

Nep
jij i

d e
=

= . Define the pursuer-partition

matrices diag{ }pe
pe iD d= and []pe ijc= , and the evader-partition matrices diag{ }ep

ep jD d= and

[]ep jie= .

5.2.2. Local errors and dynamics

Consider a team of N dynamical agents, regarded as the pursuers, each with linear

dynamics

i i ix Ax Bu= + (5.1)

1, ,i N= , where n
ix  is the position of pursuer i in the n -dimensional space of the game.

Consider also a set of M agents as the evader team, with dynamics

j j jy Ay Bv= + (5.2)

1, ,j M= , where n
jy  is the position of the j -th evader.

Similar to Chapter 2, the local error variable i is defined as the position difference of

pursuer i with respect to its neighbors,

1 1

() ().
N M

i ik i k ij i j

k j

a x x c x y
= =

= − + −  (5.3)

72

The error dynamics can be found from (5.3), using the system dynamics (5.1) - (5.2), as

1 1

() .
N M

p pe
i i i ik k ij ji i

k j

A d d Bu a Bu c Bv 
= =

= + + − −  (5.4)

Similarly, we define the local position error for evader j as

1 1

() ()
M N

j jl j l ji j i

l i

b y y e y x 
= =

= − − −  (5.5)

where 0  is a scalar gain, and the local error dynamics are

1 1

() .
M N

epe
j j j j jl l ji ij

l i

A d d Bv b Bv e Bu   
= =

= + − − +  (5.6)

The center of gravity of the agents is now defined to facilitate the analysis developed in

this chapter. In particular, the center of gravity for pursuer i , ix− , is defined as the weighted

average of the positions of pursuer i ’s neighbors,

1 1

1
.

N M

i ik k ij jp pe
k ji i

x a x c y
d d

−

= =

 
= + 

+  
  (5.7)

Then we can determine the center of gravity dynamics as

1 1

1
() ()

,

N M

i ik k k ij j jp pe
k ji i

i i

x a Ax Bu c Ay Bv
d d

Ax Bu

−

= =

− −

 
= + + + 

+  

= +

 

where

1 1

1
.

N M

i ik k ij jp pe
k ji i

u a u c v
d d

−

= =

 
= + 

+  
  (5.8)

We can now represent the local position error of pursuer i (5.3), and its dynamics (5.4), in

terms of the center of gravity as follows

 ()(),p pe

i i i i id d x x −= + − (5.9)

 () () .p pe p pe

i i i i i i i iA d d Bu d d Bu  −= + + − + (5.10)

73

Similarly, the pseudo-center of gravity for evader j , jy− , is defined based on the

neighbors of evader j as

1 1

1 M N

j jl l ji ie ep
l ij j

y b y e x
kd d

−

= =

 
= − 

−  
  (5.11)

with dynamics

1 1

1
() ()

M N

j jl l l ji i ie ep
l ij j

j j

y b Ay Bv e Ax Bu
d d

Ay Bv


−

= =

− −

 
= + − + +  

= +

 

where

1 1

1
.

M N

j jl l ji ie ep
l ij j

v b v e u
d d

−

= =

 
= − 

−  
  (5.12)

Using this definition, the local position error of evader j (5.5) and its dynamics (5.6) can be

written as

 ()(),e ep

j j j j jd d y y  −= − − (5.13)

 () () .e ep e ep

j j j j j j j jA d d Bv d d Bv    −= + + − + (5.14)

5.3.Formulation and Solutions for Multiagent Pursuit-Evasion Games

This section presents the formal definition of multiagent pursuit-evasion games.

Conditions for asymptotic capture are analyzed. New definitions for Nash equilibrium and

Minmax strategies as main solution concepts for the MPE games are also introduced.

5.3.1. Definitions for MPE games on graphs

Consider the following formulation for MPE games. Let the evaders have the objective

of maximizing their distances from their neighboring pursuers. Moreover, the evaders also

desire to maintain their group cohesion, that is, to stay close to their teammates. The

74

justification for this objective is that, in many practical applications, the agents of a team may

want to perform their tasks without losing contact with each other. Similarly, the pursuers desire

to collectively intercept as many evaders as possible while remaining close to their teammates.

In Section 5.4, we explore a different scenario where the agents do not have the group

cohesion objective.

The goals of each pursuer can be represented by means of a scalar function (,)pi i iJ u ,

regarded as the performance index of the game for pursuer i . The performance index of

pursuer i can now be defined as

0

() ()T T
pi i pi i i i p i iJ Q u R u dt   


 = +
  (5.15)

where () () 0T
pi i ipiQ Q =  and () () 0T

p i p iR R =  .

Pursuer i is thus concerned with the minimization of piJ . From (5.9), the dependence

of piJ on the local position errors i can be seen as the goal of pursuer i to minimize its

distance with respect to the center of gravity of all its neighbors.

On the other side, evader j desires to minimize its cost represented by the

performance index (,)ej j jJ v . Considering its goals of fleeing from the pursuers while

remaining close to the evaders in its neighborhood, the performance index for evader j can be

defined as

0

() ()T T
ej j ej j j j e j jJ Q v R v dt   


 = +
  (5.16)

where () () 0T
ej j jejQ Q =  , () () 0T

e j e jR R =  and j is expressed in (5.13). Notice that the

pseudo-center of gravity (5.11), used in (5.13), considers the opposite sign of the relative

position of the pursuers such that minimization of the errors j implies escaping from the

pursuers, as desired.

The scalar  in (5.5) can now be seen as the priority of the evaders to stay close to

each other, against their drive to escape from the pursuers. The value of  can be selected

75

according to the objectives of the game.

Using these definitions, the MPE differential games on communication graphs is

defined as follows.

Definition 5.1 (Multi-agent pursuit-evasion game). Define the MPE game as

() min (,)

() min (,)

i

j

pi i pi i i
u

ej j ej j j
v

V J u

V J v

 

 

=

=
 (5.17)

where
piV and

ejV are the values of the game for pursuer i and for evader j , respectively.

Pursuers and evaders must now determine the control policies
i
u and jv , respectively,

that solve the MPE game (5.17).

To state the following definition, notice that the performance index of an agent depends

not only on its own behavior, but also on the behavior of its neighbors. Let iu− be the set of

control policies of the pursuers neighbors of pursuer i , and iv− represent the policies of all the

evaders neighbors of i . Thus, although we have defined functions (,)pi i iJ u and (,)ej j jJ v in

terms of the local variables, we can represent explicitly their dependence on neighbor policies

as (,) (, , ,)pi i i pi i i i iJ u J u u v  − −= for the pursuers, and (,) (, , ,)ej j j ej j j j jJ v J v u v  − −= for the

evaders. Using these expressions, Nash equilibrium for MPE games is defined as follows.

Definition 5.2. (Nash equilibrium in MPE games). Control policies iu , 1, ,i N= , and

jv , 1, ,j M= , form a Nash equilibrium if the inequalities

() ()

() ()

* * * * *

* * * * *

, , , , , , ,

, , , , , , ,

pi i i i i pi i i i i

ej j j j j ej j j j j

J u u v J u u v

J v u v J v u v

 

 

− − − −

− − − −





hold for all agents in the game.

In Nash equilibrium, every agent uses its optimal policy against the optimal policy of its

neighbors. In the following subsection, Nash equilibrium is studied as the most important

solution concept for the MPE games (5.17).

76

5.3.2. Nash equilibrium solution for MPE games

Given neighbor policies
k
u and jv , the optimal control policy of pursuer i can be

obtained by means of the i th Hamiltonian function defined as

1 1

()

() ()

T T
pi i pi i i p i pi i

N M
T T T p pe
i pi i i p i pi i i i i i ik k ij j

k j

H Q u R u V

Q u R u V A d d Bu a Bu c Bv

  

   
= =

= + +

 
= + +  + + − − 

 
 

 

where ()pi iV  is the value function of the game for pursuer i , and the dynamics (5.4) has been

used. The optimal policy of pursuer i minimizes
pi
H , and is found to be

 * 11
() () ()

2

p pe T

i i i p i pi iu d d R B V −= − +  (5.18)

Using the same procedure, define the Hamiltonian function for evader j as

1 1

()

() ()

T T
ej j ej j j e j ej j

M N
T T T e ep
j ej j j e j ej j j j j j jl l ji i

l i

H Q v R v V

Q v R v V A d d Bv b Bv e Bu

  

     
= =

= + +

 
= + + + − − + 

 
 

and the optimal policy for evader j is given by

 * 11
() () ()

2

e ep T

j j j e j ej jv d d R B V  −= − −  (5.19)

The functions
pi
V and

ej
V are obtained as the solutions of the coupled HJI equations of

the game,

 * * * * *

1 1

() 0
N M

T T T p pe
i pi i i p i pi i i i i ik k ij j

k j

Q u R u V A d d Bu a Bu c Bv  
= =

 
+ + + + − − = 

 
 

  (5.20)

and

 * * * * *

1 1

() 0
M N

T T T e ep
j ej j j e j ej j j j j jl l ji i

l i

Q v R v V A d d Bv b Bv e Bu    
= =

 
+ + + − − + = 

 
  (5.21)

for 1, ,i N= , 1, ,j M= . Substituting control policies (5.18) and (5.19) in (5.20) and (5.21), we

obtain

77

1

1

1

1

1
()

2

1
() 0

2

N
T cl T p pe T T
pi pi i pi i ik k k pi p pk

k

M
e ep T T

ij j j pi e ej

j

V A Q a d d V BR B V

c d d V BR B V

 



−

=

−

=

 + + +  

+ −   =





 (5.22)

and

1

1

1

1

()
2

1
() 0

2

M
T cl T e ep T T
ej ej j ej j jl l l ej e el

l

N
p pe T T

ji i i ej p pi

i

V A Q b d d V BR B V

e d d V BR B V


   −

=

−

=

 + + −  

− +   =





 (5.23)

respectively, where the closed loop matrices are

 2 11
()

4

cl p pe T
pi i i i p piA A d d BR B V −= − + 

and

 2 11
()

4

cl e ep T
ej j j j e ejA A d d BR B V  −= − − 

The following theorem states the conditions in the MPE game to achieve Nash

equilibrium as defined in Definition 5.2.

Theorem 5.1. Let the pursuers with dynamics (5.1) and the evaders with dynamics

(5.2) be connected in a communication graph topology with local error dynamics (5.4) and (5.6).

Let (5.18) and (5.19) be the control policies for pursuers i and evaders j, respectively, where the

functions Vpi and Vej are the solutions of the HJI equations (5.22) - (5.23), such that

(0) (0) 0pi ejV V= = . Then, capture occurs in the MPE game (5.17) in the sense that dynamics

(5.4) are stable. Moreover, game (5.17) is in Nash equilibrium, the value of the game for

pursuer i is given by ((0))pi iV  , and the value of the game for evader j is ((0))ej jV  .

Proof. To prove capture, select the function (())pi iV t as a Lyapunov function

candidate. Its derivative is given by

78

 * * *

1 1

* *

()

T

pi pi i

N M
T p pe

pi i i i i ik k ij j

k j

T T

i pi i i p i

V V

V A d d Bu a Bu c Bv

Q u R u





 

= =

= 

 
=  + + − − 

 

= − −

 

because equation (5.20) holds. Thus, we conclude that dynamics (5.4) is stable and every

pursuer captures its neighbors.

To prove Nash equilibrium, notice that we can write the performance index (5.15) as

0 0

() () ((0)) (())T T
pi i pi i i i p i i pi i pi iJ Q u R u dt V V t dt     

 
 = + + +
  

because (()) (0) 0pi i piV V  = = . For convenience we omit the explicit dependence of matrices

Qpi and Rp on the local errors i in the remaining procedure. Notice that () T
pi i ipiV V =  for any

trajectory of ()i t . Thus, using (5.4) we get

0

0
1 1

((0))

()

T T
pi i pi i i p i pi i

N M
T p pe
pi i i i i ik k ij j

k j

J Q u R u dt V

V A d d Bu a Bu c Bv dt

  







= =

 = + +
 

 
+  + + − − 

 
 



 

Completing the squares, and using the fact that *() 2p pe T T
i i pi i i p id d V Bu u R u+  = − with *

iu

in (5.18), yields

* * * *

0

*

0 0
1 1

* * * *

0

1 1

((0)) 2

() ()

T T T T
pi i pi i i p i i p i i p i

N M
T T

pi i pi i ik k ij j i p i

k j

T T T
i pi i i i p i i i p i

N M
T
pi i ik k ij j

k j

J Q u R u u R u u R u dt

V V A a Bu c Bv dt u R u dt

Q u u R u u u R u

V A a Bu c Bv

 

 

 





 

= =



= =

 = + + −
 

 
+ +  − − − 

 
 

= + − − −



+ − −





  



  ((0))pi idt V 


+ 
 

As * * * * * * *2 ()p peT T T T
p i p i p i ii i i i i piu R u u R u u R u d d V Bu− = − + = +  + * *T

p iiu R u , we finally get

79

* * *

0
1 1

* *

0

()

() () ((0))

N M
T T T p pe

pi i pi i i p i pi i i i i ik k ij j

k j

T
i i p i i pi i

J Q u R u V A d d Bu a Bu c Bv dt

u u R u u dt V

  





= =



 
= + + + + − −     

+ − − +

 



As equation (5.20) holds, the first integral in this expression is equal to zero for neighbor

policies *
k ku u= and *

j jv v= . The remaining expression,

* *

0
() () ((0))T

pi i i p i i pi iJ u u R u u dt V 


= − − +

shows that control policy *
iu minimizes the performance function of pursuer i against neighbor

policies *
ku and *

jv , and its value of the game is ((0))pi iV  .

The same procedure can be performed to show that

* *

0
() () ((0))T

ej j j e j j ej jJ v v R v v dt V 


= − − +

for evader j and, therefore, control policy *
jv minimizes

ej
J . As these conditions hold for all

agents in the game, Nash equilibrium is achieved.

Remark 5.1. Notice that if there exist matrices
pi
P and

ej
P , for all i and j in the game,

such that the value functions
pi
V and

ej
V have the form

 () T
pi i pi iiV P  = (5.24)

and

 () T
ej j ej jjV P  = (5.25)

then the control policies (5.18) and (5.19) take the form

* 1() ()p pe T

i i i p i pi iu d d R B P −= − + (5.26)

and

* 1() ()e ep T

j j j e j ej jv d d R B P  −= − − (5.27)

respectively. In (5.26) and (5.27) the distributed property of the control policies is clear.

80

5.3.3. Minmax strategies in MPE games

It has been explained in previous chapters that, in the general case, there may not exist

a set of functions ()pi iV  and ()ej jV  that solve the HJI equations (5.22) - (5.23) to provide

distributed control policies as in (5.26) - (5.27). In this subsection we use the minmax strategies

developed in Chapter 4. The following definition states the concept of minmax strategy for MPE

games.

Definition 5.3 (Minmax strategies for MPE games). In an MPE game, the minmax

strategy of pursuer i is given by

 *

,
arg min max

i i i

i pi
u u v

u J
− −

= (5.28)

and the minmax strategy for evader j is

 *

,
arg min max .

j j j

j ej
v u v

v J
− −

= (5.29)

To determine the minmax strategy for pursuer i , we can redefine the performance

index (5.15) and formulate a zero-sum game between agent i and a virtual target. Considering

the center of gravity (5.7) as the target of agent i , we can define the performance index

0

T T T
pi i pi i i p i i i iJ Q u R u u R u dt 



− − −
 = + −
  (5.30)

In order to define a meaningful weighting matrix iR− in (5.30), consider the expressions

(5.8) and (5.18), and select

 1 1 1

1 1

1 N M

ik p ij ei p pe
k ji i

R a R c R
d d

− − −
−

= =

 
= +  +  

  (5.31)

The solution of the zero-sum game is now determined by (5.18), where the value function
pi
V is

the solution of the HJI equation

 1 1() () 0T T p pe T T p pe T T
pi i i pi i i i pi p pi i i pi i piV A Q d d V BR B V d d V BR B V   − −

− + − +   + +   = (5.32)

If the value function has a quadratic form as in (5.24), then the control policy is

expressed as in (5.26) and matrix
pi
P is the solution of the Riccati equation

81

2 1 1() () 0T p pe T

pi pi pi i i pi p i piQ P A A P d d P B R R B P− −

−+ + − + − = (5.33)

Similarly, define the zero-sum game

0

T T T
ej j ej j j e j j j jJ Q v R v v R v dt 



− − −
 = + −
  (5.34)

with

 1 1 1

1 1

1
.

M N

jl e ji pj epe
l ij j

R b R e R
d d

− − −
−

= =

 
= + 

+  
  (5.35)

Assuming a quadratic value function (5.25), the minmax strategy for evader j is the control

policy (5.27) where matrix
ej
P solves the ARE

2 1 1() () 0T e ep T

ej ej ej j j ej e j ejQ P A A P d d P B R R B P − −

−+ + − − − = (5.36)

The following theorem formalizes these results.

Theorem 5.2. Let the agents with dynamics (5.1) and (5.2) use control policies (5.26)

and (5.27), respectively. Moreover, let matrices
pi
P and

ej
P be the solutions of the Riccati

equations (5.33) and (5.36). Then, policy (5.26) is the minmax strategy of pursuer i as defined

in (5.28), and policy (5.27) is the minmax strategy of evader j as in (5.29).

Proof. The Hamiltonian function associated with the performance index (5.30) is

T T T
pi pi i p i i i pii i iH Q u R u u R u V  − −−= + − + . For a quadratic value function (5.24), the optimal control

policy for the pursuer is (5.26) and for its target is
* 1()p pe T

i i i i pi iv d d R B P −

− −= − + . Substituting these

control policies in
pi
H and equating to zero, we obtain the ARE (5.33). Following a similar

procedure as in the proof of Theorem 5.1, and considering dynamics (5.10), we can complete

the squares and write the performance index (5.30) as

 ()
0

0

* * * *

0

((0))

() ()

() () () () ((0))

T T T
pi i pi i i p i i i i pi i

T p pe p pe
pi i i i i i i i

T T
i i p i i i i i i i pi i

J Q u R u u R u dt V

V A d d Bu d d Bu dt

u u R u u u u R u u dt V

  







− − −



−



− − − − −

 = + − +
 

+  + + − +

 = − − − − − +
 







82

Therefore, (5.26) with
pi
P as in (5.33) is the minmax strategy of pursuer i . The same procedure

can be used to prove that control policy (5.27) with
ej
P as the solution of equation (5.36) is the

minmax strategy for evader j .

Remark 5.2. Minmax strategies provide distributed control policies for the agents as

long as there exist positive definite solutions
pi
P and

ej
P for the equations (5.33) and (5.36),

respectively. Riccati equations of this form are known to have positive definite solutions if (,)A B

is stabilizable, (,)piA Q and (,)ejA Q are observable, and
1 1 0p iR R− −

−−  and
1 1 0e jR R− −

−−  .

5.4.Target Selection and Finite-Time Capture

In the previous section, the evaders had the objective of maintaining their group

cohesion while escaping from the pursuers. In this section, we modify the formulation of the

game to obtain different behaviors among the agents. Let the evaders have the objective of

increasing their distances with respect to each other, to force the pursuers to separate as well.

Now, each pursuer must select a single target among the evaders in its neighborhood.

Moreover, the control strategies of the agents are designed to achieve capture in finite-time.

5.4.1. Target selection by the pursuers

Consider a game on which each pursuer can initially observe several evaders

according to the communication graph topology. In most real-world applications, it can be

impractical to expect each pursuer to chase many evaders simultaneously. Instead, each

pursuer can select only one target among the evaders, disregarding the position of all other

agents. If each pursuer targets a different evader, their objective of capturing as many evaders

as possible is fulfilled.

In this section, we assume that the numbers of pursuers and evaders are the same, i.e.,

83

N M . If there were more evaders, some of them would be able to escape unchallenged and

therefore are not part of this analysis. If there were more pursuers, some of them would need to

chase already-targeted evaders and their participation would be trivial.

Algorithm 5.1 presents a procedure for pursuer i to select a target among the evaders.

Initially, the graph weights for pursuer i are set as 0ika  and 0ijc  . Algorithm 5.1 relies on

setting 0ika = for all pursuers k, and 0ijc = for all evaders but one. This one evader becomes

the target of pursuer i .

In the ideal scenario, every pursuer targets its closest evader. If two pursuers have the

same closest evader, additional criteria is needed to decide which pursuer will change its target.

We propose to change the target of the pursuer with shortest distance to its second-closest

evader. Thus, long distances between a pursuer and its target are avoided. Algorithm 5.1

generalizes this idea using an iterative procedure that eliminates the longest distances between

the agents, until each pursuer is left with only one target.

Pursuer i is assumed to be unaware of the initial topologies in graphs
p
 and

pe

except for the links that connect it to its neighbors. Thus, to perform Algorithm 5.1 pursuer i

must assume that its neighbors have the same state information as itself. Pursuer i can define

virtual (or assumed) connectivity weights for its neighbors as 1kha = if , ik h for pursuers k

and h , and 1kjc = if , ik j for pursuer k and evader j . In the following procedure, all

agents are pursuer i ’s neighbors.

Define 0ij  as the distance between pursuer i and a neighboring evader j , i.e.,

ij ij i jc x y = − . Define also kj kj k jc x y = − for all pursuers and evaders , ik j . Let

max,i be the longest distance between any pursuer ik i  and its possible targets, that is,

max,
,

max()i kj
k j

 = for ik i  , ij . With these definitions Algorithm 5.1 can now be used

for pursuer i to select its target.

84

Algorithm 5.1 (Target selection by the pursuers)

1: If cij = 1 for only one evader j, stop.

2: Determine the pursuer k and evader j such that max,i kj = ,

and set 0kjc = .

3: If for some pursuer k, 1klc = for only one evader l, set 0hlc =

for all pursuers h k and cil = 0 if i k .

4: Go to Step 1.

In Algorithm 5.1, pursuer i assigns targets to its teammates in order to discard those

evaders for itself in benefit of the collective goals of the team. Notice that these virtual

assignments may not be correspond to the actual selection of targets of the other pursuers.

Step 2 in Algorithm 5.1 indicates that, as long as there are other options, the longest distance

between a pursuer and an evader must be avoided. Step 3 expresses that once a pursuer

targets an evader, the other pursuers discard that evader as a possible objective. The following

theorem shows that if every agent in the game is each other neighbors, then target selection by

Algorithm 5.1 minimizes the longest distance between a pursuer and its target.

Theorem 5.3. Consider the MPE game where every pursuer selects its target using

Algorithm 5.1. If the graphs
p
 and

pe
 are complete, then every pursuer selects a different

target. Moreover, this selection of targets minimizes the longest distance between a pursuer

and its target.

Proof. If the graph topologies are complete, then all agents possess the same state

information and each pursuer selects precisely the same target that was assigned to it by all of

its neighbors. By the construction of Algorithm 5.1, each pursuer selects a unique target.

Consider now the pursuer i that travels the longest distance to capture its target. Let i

change its selection of target such that its distance to travel is reduced. Pursuer i can only

have discarded this closer target in Algorithm 5.1 because it was the only option for another

pursuer k to chase. Pursuer k had selected its target either because its other options had the

longest distances max , or because other pursuers had previously selected those evaders. This

consecutive change of targets must eventually lead to a pursuer left to chase an evader with a

85

travel distance longer than the original longest distance produced by Algorithm 5.1.

Using Algorithm 5.1, every pursuer modifies its perception of the environment such that

its local error measurement focuses only on its target, i.e., if pursuer i targets evader j , then

()i ij i jc x y = − . Notice that the target selection procedure is also useful if the evaders change

their objectives in the game and decide to separate from their teammates as well as from the

pursuers.

Another practical consideration in MPE games consists in designing the agents to use a

sustained control effort throughout the game, which allows achieving finite-time capture as

studied in the following subsection.

5.4.2. Finite-time intercept

In practical applications, pursuers and evaders are expected to use their maximum

effort to achieve their goals. In this case, a pursuer is able to intercept its target in finite-time

because its velocity is not decreased when approaching the target.

To generate this behavior, let the i th pursuer use Algorithm 5.1 to target only one

evader, and use the control policy (5.26) with matrix ()p iR  selected as

 ()p i i pR r I = (5.37)

as long as 0i  , where
p
r is a positive scalar and I is the identity matrix. Similarly, evader j

uses the policy (5.27) with ()e jR  as

 () ()e ep

e j j j j eR d d r I = + (5.38)

where
e
r is a positive scalar and e

jd and ep
jd are defined in Section 5.2.

The following theorem shows that the selection of matrices (5.37) and (5.38) produce

finite-time interception if the pursuer is allowed to use a greater control effort than the evader,

and if the Lyapunov equation

86

 ,T
pi pi sP A A P Q+ = − (5.39)

with 0sQ  , holds for matrix
pi
P . Notice that (5.39) is solvable if the real parts of the

eigenvalues of matrix A are non-positive. Condition (5.39) is further studied in subsection 5.4.3.

Theorem 5.4. Consider an MPE game (5.17) where pursuer i and evader j have

dynamics (5.1) and (5.2), respectively, with a marginally stable system matrix A. Pursuer i

selects evader j as its only target. Let the control policies be (5.26) and (5.27), with weight

matrices (5.37) and (5.38). Let the gain matrix ' 'T
pi pipiP P P= be such that the Lyapunov equation

(5.39) holds. Then, finite-time capture occurs if

 1 1 .p pi e ejr P r P− − (5.40)

Proof. Define the candidate Lyapunov function () ()
2'1/ 2 1/ 2 T

L pi i i pi iV P P  = = . Thus,

111 1

111 1

1
()

2

T T T T T T

L i pi pi i p i i pi pi i e j i pi ej j

T T T T

p i i pi pi i e j i pi ej j

V P A A P r P BB P r P BB P

r P BB P r P BB P

       

     

−−− −

−−− −

= + − −

 − −

because (5.39) holds. As
T T

i pi pi iP BB P  is a positive scalar, it is equal to its norm. Now,

111 1

111 ' ' 1 ' '

' 2

T T T T

L p i i pi pi i e j i pi ej j

T T

p i pi i pi pi i e j pi i pi ej j

i pi i i L

V r P BB P r P BB P

r P P BB P r P P BB P

P V

     

     

  

−−− −

−−− −

 − +

 − +

= − = −

where

 ()1 1 ' T

i p pi e ej pir P r P P BB − −= −

Clearly, if (5.40) holds, then 0LV  and capture occurs. Furthermore, we can solve the

differential equation 1/2 2L L iV V − = − to obtain ()1/2 1/2() 2 / 2 (0)L i LV t t V= + . This shows that, if

capture occurs, then VL is equal to zero for a finite time t.

87

5.4.3. Inverse optimal control for finite-time capture

If matrix
pi
P is selected first such that the Lyapunov equation (5.39) holds, then it is not

directly obtained as the solution of the ARE equation (5.33). An optimality result can still be

obtained if the performance index (5.30) is selected accordingly by means of inverse optimal

control. Theorem 5.5 shows an inverse optimal result by selecting the matrix
pi
Q in (5.30) as

1 1 .T T

pi s pi p pi pi e piQ Q P BR B P P BR B P− −= + − (5.41)

Theorem 5.5. Let the pursuer i with dynamics (5.1) use control policy (5.26), where

matrix
pi
P is selected such that (5.39) holds for a given matrix 0sQ  . Then, pursuer i uses its

minmax strategy with respect to the performance index (5.30) with matrix
pi
Q as in (5.41).

Proof. Substitute the matrix
pi
Q in (5.41) into the ARE (5.33) to obtain

1 1 1 1 0T T T T T

s pi p pi pi e pi pi pi pi p pi pi e piQ P BR B P P BR B P P A A P P BR B P P BR B P− − − −+ − + + − + =

and note that the equality holds because

T
pi pi sP A A P Q+ = − . The proof is now completed as in

the proof of Theorem 5.2.

Although target selection and finite-time capture are studied for their broad range of

practical implementations, interesting behaviors arise in the MPE games when the agents

employ asymptotic strategies. These new scenarios are analyzed in the following section.

5.5. Extensions and Asymptotic Behaviors

This section is concerned with the analysis of asymptotic capture in MPE games.

Rendezvous and containment control are studied as particular cases of this scenario.

5.5.1. Rendezvous or asymptotic capture

In this section, let the pursuers maintain their local errors as defined in (5.3), without the

88

use of the target selection algorithm. Furthermore, let the matrices ()p iR  and ()e jR  be

constant throughout time, such that ()p i pR R = and ()e j eR R = . In the asymptotic version of

the MPE games, capture occurs when all pursuers reach the position of all evaders.

Few definitions are required for the analysis performed in this section. Using the graph

matrices defined in Section 5.2.1, define the generalized Laplacian matrix L as

p pe pe

ep e ep

L D
L

L D

+ − 
=
 − 

 (5.42)

Define also the matrix K as the block matrix

diag() 0

0 diag()
pi

ej

K
K

K
 

=
  

 (5.43)

where 1()p pe T
pi p pii iK d d R B P−= + for 1, ,i N= , and 1()epe T

ej e ejj jK d d R B P −= − − for 1, ,j M= .

Theorem 5.6 states the conditions for capture relating the stability properties of the

game with the three communication graph topologies employed in (5.42).

Theorem 5.6. Consider the MPE game (5.17) with system dynamics (5.1) - (5.2) and

performance indices (5.15) - (5.16). Define matrix K as in (5.43). If there exist matrices
pi
P and

ej
P such that the value functions (5.24) - (5.25) satisfy the AREs (5.22) - (5.23) and the agents

use control policies (5.26) - (5.27), then the eigenvalues of the matrix

  ()() () n N MI A L B K + −   have all negative real parts, i. e.,

 ()Re{ () () } 0k I A L B K  −   (5.44)

for 1, , ()k n M N= + .

Proof. Define the vectors  1 1, , , , ,
TT T T T

N M    = and  1 1, , , , ,
TT T T T

N Mu u u v v= .

Using the local error dynamics (5.4) and (5.6), we can write

 () ()I A L B u =  +  (5.45)

89

Control policies (5.26) and (5.27) can be expressed as i pi iu K = − and j ej jv K = − ,

respectively, where matrices
pi
K and

ej
K are defined as for (5.43). Now we can write

 .u K= − (5.46)

Substitution of (5.46) in (5.45) yields the global closed-loop dynamics

  () () .I A L B K =  −  (5.47)

Theorem 1 shows that if matrices
pi
P and

ej
P satisfy the equations (5.22) - (5.23) then the

control policies (5.26) and (5.27) make the pursuers achieve capture. This is equivalent to state

that the system (5.47) is stable, and thus the condition (5.44) holds.

The following behaviors are corollaries for Theorem 5.2.

5.5.2.
2
 gain bound

The
2
 gain bound in MPE games refers to the problem of determining a feedback

policy ()i iu  for pursuer i such that when (0) 0i = and for all neighbor policies 2[0,)ku  

and 2[0,)jv   , the inequality

0 0

()
T T

T T
pi i p i i ii iQ u R u dt r u dt  − −+   (5.48)

where iu− is defined in (5.8), holds for a scalar 0ir−  .

Corollary 5.1. Let the conditions of Theorem 5.2 hold and let matrix iR− in (5.30) be

i iR r I− −= . Then the
2
 gain of pursuer i is bounded above by the

2
 gain of its neighbors

according to the inequality (5.48).

Proof. If i iR r I− −= , then the Hamiltonian function for pursuer i can be written as

 (,) ().T T T
pi i i i pi i i p i i i i pi iH u v Q u R u r u u V  − − − −= + − + (5.49)

90

Let
pi
V be the solution to the HJI equation * *(,) 0pi i iH u u− = . Considering the policies (5.26) and

* 1()p pe T

i i i i pi iu d d R B P −

− −= − + complete the squares in (5.49) to obtain

* * * * * * * *

* * * *

() () () ()

() () () ()

T T T T T
pi i pi i i p i i i i pi i i p i i i i i i i

T T
i i p i i i i i i i

H Q u R u u R u V u u R u u u u R u u

u u R u u u u R u u

  − − − − − − − −

− − − − −

= + − + + − − − − −

= − − − − −

Select *
i iu u= to obtain * *() () 0T

pi i i i i iH u u R u u− − − − −= − − −  , which from (5.49) implies

 () 0.T T T
i pi i i p i i i i pi iQ u R u r u u V  − − −+ − +  (5.50)

Integrating the inequality (5.50), we get

0

() (()) ((0)) 0.
T

T T
pi i p i i i pi i pi ii iQ u R u r u dt V T V   − −+ − + − 

Now, (0) 0i = implies ((0)) 0piV  = . As (()) 0pi iV T  for all ()i T , inequality (5.48) is directly

obtained.

5.5.3. Containment control

In this subsection the multi-agent pursuit-evasion behaviors are related to the

containment control problem [46]. Define the global vector of pursuers’ positions as

1[, ,]T T T
Nx x x= and the global position vector of the evaders as 1[, ,]T T T

My y y= . Corollary 5.2

shows that, for the special case of static evaders and taking the system matrix 0A , the

solution of the MPE games recovers the containment control results.

Corollary 5.2. Let the conditions of Theorem 5.2 hold, with system matrix 0A in

(5.1) and (5.2). Select matrix
e e
R r I in performance index (5.34) and consider the matrix

pi
K

defined as for (5.43). Let the graph topologies be such that there is a directed path from at least

one evader to each pursuer. In the limit er → , the convex hull of the evaders’ positions,

according to the expression

 1[()] .p pe pex L D I y−= +  (5.51)

91

is an equilibrium set for the pursuers dynamics. Furthermore, if the matrix

  ()diag() ()pi p peI B K L D I +  (5.52)

is nonsingular, then (5.51) is the only stable equilibrium set for the pursuers dynamics.

Proof. Notice that control policies (5.27) with er → produce static evaders. Using

control policies i pi iu K = − , the global pursuer dynamics is given by

    ()diag() () ()diag()pi p pe pi pex I B K L D I x I B K I y= −  +  +   (5.53)

Substituting (5.51) in (5.53), and using the properties of the Kronecker product [54], we get

0x = . Therefore, the points in (5.51) are equilibrium points for the pursuers. It is easy to prove

that, if there is a directed path from at least one evader to each pursuer, all eigenvalues of

p pe
L D are positive, all the elements of 1()p pe peL D −+ are nonnegative, and matrix

1()p pe peL D −+ has all row sums equal to one [69]. This shows that (5.51) is the convex hull of

the evaders’ positions.

Now, let 0x = in (5.53). The resulting linear equation has (5.51) as its unique solution if

matrix (5.52) is nonsingular.

Remark 5.3. From the definition of
pi
K , notice that matrix (5.52) is nonsingular for the

special case of single integrator dynamics, that is, if B I .

Corollary 5.3 shows a similar result, allowing the evaders to be moving in a formation

with a constant velocity.

Corollary 5.3. Let the conditions in Corollary 5.2 hold, and let all the evaders move with

constant velocities, jy = , 1, ,j M= . Control inputs

1() ()p pe T

i i i p i pi iu d d R B P  −= − + + (5.54)

make the pursuers converge to the convex hull of the evaders according to the expression

(5.51) if matrix (5.52) is nonsingular.

Proof. Using control policies (5.54), the global pursuer dynamics is

92

 

 

()diag() () (1)

()diag()

pi p pe N

pi pe

x I B K L D I x

I B K I y

= −  +  + 

+  
 (5.55)

where 11 N
N

 is a vector of ones. The derivative of (5.55) is given by

    ()diag() () ()diag() (1)pi p pe pi pe Mx I B K L D I x I B K I = −  +  +   

where 11 M
M

 . If  1() (1)p pe pe Mx L D I −= +   , then we get 0x = , and this result is

unique if matrix (5.52) is nonsingular. Furthermore, by properties of the Kronecker product and

of the graph matrices
p
L ,

pe
D and pe ,  1() (1) 1p pe pe M NL D I  −+   =  . Substitute the

derivative 1Nx =  in (5.55) to obtain

    0 ()diag() () ()diag() .pi p pe pi peI B K L D I x I B K I y= −  +  +  

Again, (5.51) is the unique solution of this equation.

5.6. Simulation Results

Numerical simulations for finite-time intercept, asymptotic capture and containment

control are presented below.

5.6.1. Finite-time capture

Consider an MPE game with three pursuers and three evaders in 2 with single

integrator dynamics, i.e., 0A and B I in (5.1) - (5.2), connected in a communication graph

such that

1 1 0 2 1 1

1 2 1 , 0 1 1 ,

1 1 2 1 1 2

1 1 0 0 0 1

1 0 1 , 0 1 1 .

0 0 1 1 0 1

p e

pe ep

L L

− − −   
   = − − = −
   − − − −   

   
   = =
   
   

93

A simulation of this system is performed, using performance indices (5.15) and (5.16) with

5Q I , and input weighting matrices as in (5.37) and (5.38) with 1
p
r and 3

e
r .

Effectiveness of control policies (5.26) and (5.27) is tested. Furthermore, let the evaders try to

separate from each other, besides escaping from the pursuers, to force the pursuers to

separate as well. The pursuers use Algorithm 5.1 to select a target among the evaders. The

result of this game is shown in Fig. 5.1. Each pursuer achieves capture of its target.

5.6.2. Asymptotic capture

Asymptotic minmax strategies are simulated for the same systems above. The evaders

are now interested in maintaining their team cohesion and the pursuers do not select an

individual target. To show the effect of the value of in the behavior of the agents, two cases

are considered. First, a value of 3 is taken. The result of this simulation is shown in Figure

5.2, which shows that capture occurs, verifying the theoretical results. Then, a value of 1.2

is used. This smaller value represents a lower priority of the evaders to remain together. Figure

5.3 displays this result, where the evaders do not converge to a single point in the state space.

5.6.3. Containment control

Fig. 5.1. MPE game with finite-time capture.

-1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Pursuer 1

Pursuer 2

Pursuer 3

Evader 1

Evader 2

Evader 3

94

Using the same parameters as in the asymptotic capture simulation above, let the

evaders remain static throughout the game.

The behavior of the pursuers under these circumstances is displayed in Figure 5.4. The

pursuers can be seen converging to the convex hull of the positions of the evaders, as stated in

Corollary 5.2.

Finally, let the evaders move in a formation with constant speeds, and let the pursuers

use the control inputs (5.54). Take the vector  2, 1
T

 = as the constant velocity of the evaders.

Fig. 5.2. Asymptotic behavior in a MPE game. A large κ makes the evaders attract each other.

Fig. 5.3. Asymptotic behavior in a MPE game with small κ. The evaders have a low priority to remain together.

95

Figure 5.5 shows that the pursuers reach the convex hull of the positions of the evaders and

maintain their positions thereafter.

5.7. Conclusion

Performance of the players in MPE games on communication graphs was studied for

performance indices that can include both cooperative and adversarial objectives among the

agents. Nash equilibrium is guaranteed if the solutions of the coupled HJI equations exist.

Otherwise, it is still possible to design the control policies of the agents to obtain a minimum

Fig. 5.4. Containment behavior of the agents. The evaders are static and the pursuers converge to their convex hull.

Fig. 5.5. Containment behavior with moving evaders. The evaders move in a formation with constant speed.

96

guaranteed performance value, using minmax strategies. Conditions for capture were found to

depend on the structure of the graph topologies and on different control design parameters, like

the difference between the relative speeds of the teams or the inclination of the evaders of

either staying together or escaping from the pursuers. Different emergent behaviors arise from

changes in the goals of the players. Simulation plots show the differences between these

behaviors, verifying the obtained results.

97

Chapter 6

FURTHER SOLUTION CONCEPTS FOR DIFFERENTIAL GRAPHICAL GAMES

6.1. Introduction

In Chapter 4, minmax strategies were proposed to address the inconveniences of Nash

equilibrium in graphical games. Different from the Nash solution, minmax provides optimal

distributed control policies to the agents under mild conditions related to the system dynamics

and the performance indices of the game. Minmax strategies were proven to have strong

robustness properties, improving the well-known gain and phase margin results of the single-

agent LQR. This is an expected characteristic of minmax strategies due to its parallel

formulation with the H control problem.

Minmax strategies, however, may not provide the ideal policies for different applications

of graphical games. The assumption that the neighbors will perform their worst-case behavior

may be too conservative. Consider, for example, the application of a platoon of autonomous

vehicles in a straight-line formation. In this case, each agent desires to keep a safe distance

with respect to the vehicle in front. A direct application of minmax strategies may imply that the

worst-case behavior of the front vehicle is to drive backwards, reducing the safety distance. This

assumption leads to an absurd behavior that would yield inadequate control policies in the

vehicles trying to avoid a collision.

The minmax formulation has both advantages and inconveniences that make it suitable

for many but not all applications. Other solution concepts can also be proposed to solve

differential graphical games and provide different characteristics to the control policies. In this

98

chapter we define and solve three alternative formulations of graphical games: minmax regret,

graph-weight projection strategies and local-error projection strategies.

Minmax regret was already defined for normal-form games in Chapter 2. It consists of

defining the regret of an agent as the difference between the payoff obtained after playing a

particular strategy and the payoff that would have been received if the agent had played

optimally. This formulation seems naturally suitable for graphical games, because the limited

knowledge of the agents prevent them from playing an optimal strategy against each other as in

Nash equilibrium. If the optimal policy not achievable, the concept of regret becomes relevant.

In minmax regret strategies, an agent simply prepares itself to avoid the worst possible regret.

The differential games version of this strategy is obtained by finding an integral expression for

the regret of the agent, and solving a minmax problem with it.

The other two methods presented in this chapter enter the category we call projection

strategies. Projection is a term used in psychology to describe the natural mechanism by means

of which a person assumes that the people around him possess the same behavioral

characteristics as himself. This is the reason why an aggressive person is also usually on the

defensive, expecting the same behavior from his peers.

In projection strategies, the agents make the assumption that some aspect of their

personal knowledge is shared by their neighbors. Two cases are here considered. First, we

define the graph-weight projection strategies, on which an agent assumes that its neighbors are

all the agents in the game and that they can also observe each other. In this sense, they project

their knowledge about the graph information onto others. Under this formulation, the agents

solve a nonzero-sum game with their neighbors, expecting them to do the same.

The second projection strategy is regarded as local-error projection. In this case, agent

i acknowledges that its neighbor, agent j , has neighbors of its own, but assumes that those

neighbors have the opposite relative position with respect to j than all the neighbors of i with

respect to i itself. In other words, agent i assumes that the values of the local errors for both

99

agents have the same magnitude and opposite sign. Using this assumption, an agent can solve

a game formulated as for Nash equilibrium, although such equilibrium is not reached.

The rest of this chapter is organized as follows. Section 6.2 formulates the minmax

regret graphical game by extending the normal-form game definitions in Chapter 2. Section 6.3

introduces the graph-weight projection strategies, and Section 6.4 solves the local-error

projection game. In all this cases, the resulting policies of the agents are analyzed for their

robustness characteristics. Section 6.5 presents numerical simulations of the proposed

solutions to test their applicability in graphical games. The conclusions of the chapter are finally

presented in Section 6.6.

6.2. Minmax Regret for Differential Graphical Games

The normal-form version of minmax regret was presented in Section 2.3. The essence

of this solution can be intuitively explained as follows. Against every policy of agent j , there is

an optimal policy for agent i . If agent i does not play that optimal action, it will have a regret,

which is defined as the difference between the optimal payoff and the suboptimal reward

obtained. Furthermore, for every action of agent i , there is a particular action of agent j that

makes i ’s regret as large as possible. The minmax regret policy of an agent is then defined as

the action it has to play to minimize its worst possible regret.

In this section, we formulate the minmax regret strategies for differential games in

communication graphs. Again, the objective is to obtain an expression for the regret of an

agent, and determine the policies of its neighbors that could maximize such regret. Agent i has

only to act optimally against those policies. Consider the system dynamics and local errors

defined in (2.2) - (2.5). The regret of an agent is formally defined as follows.

Definition 6.1 (Regret). Let *
i
u be the best response of agent i against given

strategies
i

u of its neighbors. The regret of agent i for playing any other policy
i
u is given by

100

 *(,) (,) (,)
i i i i i i i i i
u u J u u J u u (6.1)

In Definition 6.1, we use the fact that agent i will pay a higher cost for playing a non-

optimal strategy to define the regret as the difference of that cost with respect to the optimal

value of
i
J .

To determine an analytical expression for the regret (6.1), consider a general cost

function with quadratic control term for agent i as

 (6.2)

It has been proven ([5], [20] and proof of Theorem 4.1 in this thesis) that for optimal neighbor

strategies, the final cost of an agent is given by

 * *

0
((0)) () ()T

i i i i i i i i
J V u u R u u dt

where ()
i i
V is the value function of agent i . This implies that if agent i uses its optimal policy,

i.e., *
i i
u u , then the optimal cost is

 * ((0)).
i i i
J V (6.3)

Assume, on the contrary, that agent i uses a suboptimal strategy, deviating from the

optimal control such that

 *

i i i
u u u (6.4)

then, the cost paid after the game is

* * * *

0

0

((0)) () ()

((0))

T
i i i i i i i i i i

T
i i i i i

J V u u u R u u u dt

V u R u dt

 (6.5)

Thus, the regret (6.1) can be obtained as the subtraction of (6.3) from (6.5), which yields,

0
(,) T

i i i i i i i
J r u u Ru dt

101

*

0

0

((0)) ((0))

.

i i i

T

i i i i i i i

T
i i i

J J

V u R u dt V

u R u dt

 (6.6)

Integral (6.6) is the regret of agent i for playing the policy (6.4). Notice that if the

optimal inputs of the agents are linear state-feedback policies as * *

i i i
u K , and agent i uses

the linear policy

 *()
i i i i
u K K (6.7)

then the regret (6.6) takes the form

0

.T T
i i i i i i

K R K dt (6.8)

Expression (6.8) is used here to define the minmax regret strategy for agent i .

Ideally, to define minmax regret strategies we would consider first the worst possible

regret for each admissible control policy
i
u . Then we would select the minmax regret policy *

i
u

as the control input that leads to the smallest of all such regrets. This approach is useless,

however, because the worst possible regret for any policy
i
u is always infinite in magnitude. To

show this, consider any policy of the form
i i i
u K . Substituting in the dynamics (2.5), we get

1

1

()

()

N

i i i i i i ij j
j

N

i i i i ij j
j

A d g BK a Bu

A d g BK a Bu

 (6.9)

As the system (6.9) is stabilizable by assumption, we can always select the control policies
j
u

to arbitrarily relocate its poles. This can be accomplished by selecting
j j i
u K , such that

1

()
N

i i i i ij j i
j

A d g BK a BK . (6.10)

102

Because we are interested only in admissible policies, we assume the poles of the

system (6.10) will be left with negative real parts. However, these poles can be left arbitrarily

close to zero, decreasing the rate of convergence of
i
 and, therefore, increasing the value of

the integral (6.8). In the limit, the worst regret is found to happen when the neighbors
j
u make

the system (6.9) marginally stable, which leads to an infinite regret.

An adequate formulation of minmax regret strategies for differential games requires us

to modify the normal-form games definition using the regret in (6.8) as follows.

Definition 6.2 (Minmax regret for graphical games). The minmax regret strategy of

agent i in a differential graphical game is given by

 *

0
1

argmin max ()
i j

N
T T T T

i i i i i i i i i i i ij j j ju u
j

u K R K d g u Ru a u R u dt (6.11)

where * *

i i i
u K , * *

j j i
u K , *

i i i
K K K and

i
K is the control feedback that makes all

the controllable poles of the matrix *

1
()

N

i i i ij jj
A d g BK a BK equal to zero.

According to Definition 6.2, the objective of agent i is to minimize the regret of using

the worst possible deviation from its optimal policy *
i
u against the neighbor policies that

maximize such regret. Using a similar reasoning as before, the worst possible deviation from

the optimal policy of i is taken such that the final closed loop system (6.10) is marginally stable.

By now, it is clear to us that the control policies *
i
u and *

j
 that solve the problem (6.11)

have the form

 * 1 T
i i i i
u R B P (6.12)

and

 * 1 T
j j i i

R B P (6.13)

Substituting * 1 T
j j i
K R B P in the system dynamics (6.10) we obtain

103

 1

1

()
N

T
i ij j i i i i i

j

A a BR B P d g BK . (6.14)

The matrix
i
K that makes system marginally stable is now given by

 1

1

1 N
T

i i ij j i
ji i

K K a R B P
d g

 (6.15)

where matrix
i
K locates all the controllable poles of the system matrix ()

i i i
A d g BK over

the imaginary axis. The following lemma formalizes this result.

Lemma 6.1. Consider a multiagent system with dynamics (2.5) and let all the neighbors

of agent i use the control policies (6.13) for a given matrix
i
P . Then, the policy

i i i
u K with

i
K as in (6.15) makes the closed-loop system (6.14) marginally stable.

Proof. Follows trivially from substituting (6.15) in (6.14).

The following theorem shows that the control input (6.12) corresponds to the minmax

regret policy of agent i as defined in Definition 6.2 if matrix
i
P solves the Riccati equation

1 1

1

() 0

TT

i i i i i i i i i i i

N
T

i i i i ij j i i i i
j

K RK P A BRRK A BRRK P

PB d g R a R RRR B P
 (6.16)

with 1 1

1

1 N

i ij j i
ji i

R a R R
d g

.

Theorem 6.1. Consider a multiagent system with dynamics (2.5). The minmax regret

problem (6.11) is solved when agent i uses the policy (6.12), where matrix
i
P solves the

algebraic Riccati equation (6.16).

Proof. Similar to the solution of minmax strategies in Section 4, the minmax problem

(6.11) is solved by the policies (6.12) - (6.13) with matrix
i
P as the solution of the ARE

 1 1

1

() 0
N

T T T T
i i i i i i i i i i ij i j i

j

K R K PA A P d g PBR B P a PBR B P (6.17)

104

From (6.12), * 1 T
i i i
K R B P , and by Lemma 6.1,

i
K is given by (6.15). Then,

i
K computed

as * T
i i i i i i
K K K K RB P , with

i
K defined for (6.15) and

i
R defined for (6.16).

Substituting this result in (6.17) and performing algebraic operations, (6.16) results.

The formulation of the minmax regret game in (6.11) has an evident parallel to the

minmax strategies and, therefore, we can obtain a direct result about the robustness properties

of the control policies (6.12). This result is stated in the following theorem. The proof is omitted

for being identical to the robustness analysis procedure in Chapter 4.

Theorem 6.2. Consider the perturbed system (4.25) with the control policy (6.12) where

i
P solves the ARE (6.16), and let the conditions of Corollary 4.1 hold. Then, a phase shift of

60
i

, where 2arc cos(0.25(12 3))c c and 1 2 1
, ,1

1 ()
N

i i ij i k j kj
c d g a r r , in

the respective feedback loops of each of the controls
i
u will leave an asymptotically stable

system. Moreover, inserting a gain of
k

 as in (4.30) in the feedback loop of the controllers
,i k
u ,

leaves the system asymptotically stable.

The next two sections present and analyze the solution concepts regarded as projection

strategies.

6.3. Projection Strategies: Graph-Weights Projection

Both the minmax policy and the minmax regret policy prepare an agent to face some

type of worst-case adversity. In contrast, Section 6.3 and 6.4 propose two different strategies as

alternative solution concepts on which the assumptions made by an agent are of a cooperative

nature. In this section, graph-weights projection strategies are introduced to solve graphical

games. The following definition states the assumptions made by each agent i about the

information available to its neighbors.

105

Definition 6.3 (Graph-weights projection). Let ˆi
jk
a be the assumed graph weight that

agent i assigns to its neighbor
i

j about a third agent k . In particular, define ˆi
jk ik
a a for

,k i j , ˆi
ji ij
a a and ˆ 0i

jj
a . Similarly, let the assumed pinning gain of j be ˆi

j i
g g .

Remark 6.1. Definition 6.3 describes the assumptions that an agent i makes about its

neighbors in order to compute an optimal control policy. In the general case, these values do

not correspond to the actual values of the graph weights
jk
a and

j
g .

The interpretation of Definition 6.3 is for agent i to assume that agent j can see

exactly the same agents and leader as itself, with the same weight in the links.

The local error variable of agent j ,
i

j , as assumed by agent i , is given by

0

1

ˆ ˆ ˆ() ().
N

i i i

j jk j k j j
k

a x x g x x (6.18)

Operating from (6.18) and using Definition 6.3, we can obtain a relation between î
j
 and

i
 as

0
1

ˆ () () () () ()

() () ()

()().

N
i

j ik j k ij j i i j i i i i i i
k

i i i j ij j i i i i

i i i ij j i

a x x a x x g x x d g x d g x

d g x a x x d g x

d g a x x

Therefore, if agent j had the graph information as assumed by agent i , it would be able to

compute the value of
i
 as

 ˆ ()().i
i j i i ij j i

d g a x x (6.19)

Let agent i use these information to define a nonzero-sum game between its neighbors

and itself. This is achieved by considering the error dynamics (2.5) as the variable of concern by

agent i and its neighbors, where the neighbors obtain the information
i
 from (6.19).

Notice that we can also express the dynamics (2.5) as

 ˆ

i

i
i i j j

j i

A B u (6.20)

106

where ˆi
j ij
B a B for j i , and ˆ ()i

i i i
B d g B . The form of the dynamics (6.20) is commonly

used to represent multiagent systems for nonzero-sum games [5]. Definition 6.4 below

formalizes the game solved in this section.

Definition 6.4 (Graph-weights projection graphical game). Let the objective of agent

i be the minimization of the cost function

 *

0
argmin argmin ()

i i
i

T T T
i i i i i i i i ii i ij j ij ju u

j

u J Q d g u R u a u R u dt (6.21)

when its neighbors
i

j use the policies

 *

0

ˆargmin argmin () .
j j

i

i T T T
j j i j i i i i ji i ik k jk ku u

k

J Q d g u R u a u R u dt (6.22)

In Theorem 6.3, it is proven that the solution of the game (6.21) - (6.22) is given by the

optimal policy

 * 1 T
i ii i i
u R B P (6.23)

where matrix
i
P solves a set of 1

i
N coupled Riccati equations. One of the AREs is given by

1 1 1

1 1

ˆ ˆ()

ˆ ˆ 0
i

i i

T T i T i

i i i i i i ii i ij j jj ij jj j
j

T i i T
ij i jj j ij j jj i

j j

Q PA A P d g PBR B P a P BR R R B P

a PBR B P a P BR B P
 (6.24)

and the other
i
N AREs have the form

1 1 1 1

1 1 1

1

ˆ ˆ ˆ ˆ()

ˆ ˆ ˆ ˆ() ()

ˆ ˆ 0

i

i

i

i T i T i T i
j j j i i i ii ji ii i ik k kk jk kk k

k

i T T i i T i
i i j ii i i i i ii j ik j kk k

k

i T i
ik k kk j

k

Q P A A P d g PBR R R B P a P BR R R B P

d g P BR B P d g PBR B P a P BR B P

a P BR B P

 (6.25)

for all
i

j . The notation ˆi
j
P expresses the solutions of (6.24) - (6.25) under the assumptions

of agent i .

107

Theorem 6.3. Consider a multiagent system with dynamics (6.20). Then, the control

policy (6.23), where
i
P solves the set of 1

i
N coupled Riccati equations (6.24) - (6.25),

solves the graph-weight projection game defined by (6.21) - (6.22).

Proof. The associated Hamiltonian for the optimization problem (6.21) is

 ˆ() 2
i i

T T T T i
i i i i i i i ii i ij j ij j i i i j j

j j i

H Q d g u R u a u R u P A B u (6.26)

and the optimal policy for agent i is obtained from
i
H using the stationary condition 0i

i

H

u
,

which yields * 1 ,1 ˆi T
i ii i i i

i i

u R B P
d g

. Using the definition ˆ ()i
i i i
B d g B from (6.20), we get

(6.23). Similarly, the assumed behavior of the neighbors of i is given by the problem (6.22) with

associated Hamiltonian

 ˆ ˆ ˆ() 2
i i

i T T T T i i
j i j i i i i ji i ik k jk k i j i k k

k k i

H Q d g u R u a u R u P A B u (6.27)

from which, using the values ˆi
j ij
B a B for

i
j , we get the neighbor policies

 * 1 ˆT i
j jj j i
R B P (6.28)

Substituting the policies (6.23) and (6.28) in (6.26) and equating to zero, we obtain the

HJ equations

1 1 1

1 1

ˆ ˆ()

ˆ ˆ 0

i

i i

T T T i T i
i i i i i i i ii i ij j jj ij jj j

j

T i i T
ij i jj j ij j jj i i

j j

Q PA A P d g PBR B P a P BR R R B P

a PBR B P a P BR B P

that are solved for all
i
 if the Riccati equation (6.24) is satisfied by

i
P and ˆi

j
P ,

i
j .

Similarly, each of the
i
N neighbors of i define their own corresponding HJ equations from

108

(6.27), which yield the AREs (6.25). The proof of optimality of the control policies (6.23) and

(6.28) follows similarly as in the proof of Theorem 4.1 in this dissertation.

Remark 6.2. The graph weight projection strategies provide cooperative control policies

for the agents, at the cost of an increase in the computational complexity required to compute

the solution of the 1
i
N AREs (6.24) - (6.25).

The formulation of the graph-weight projection game does not allow to obtain the gain

and phase margin of the control policies (6.23) as performed in Chapter 4 for minmax

strategies. However, we can still obtain some results about the robustness properties of the

graph-weight projection strategies.

Consider the perturbed version of the system (2.5) as

1

ˆ ˆ () () ()
N

i i i i i i ij j j

j

A d g B u a B u 
=

= + +  −  (6.29)

The robustness properties of the control policies (6.23) in the system (6.29) are now presented.

Theorem 6.4. If the perturbations
j

 ,
i

j i , of the system (6.29) are such that

1 1

1

ˆ,[() (2) ()

ˆ ()] 0

i

i

T T i

i i i i i ii i ij i j jj jj

i T

ij j jj j i ij

d g PB I R B P a PB I R B P

a P BR I B P

 

 (6.30)

for all
i
, and if, additionally, 1 1 1/2ˆ ˆ,()

i

i T i

i ij j jj ij jj jj
A Q a P BR R R B P is detectable, then

i
 is

asymptotically stable.

Proof. Using the control policies *
i
u and *

j
 in (6.23) and (6.28), and the ARE (6.24) in

the perturbed system (6.29), then for every ,

109

0

1 1

1 1

1

ˆ ˆ ˆ ˆ(0) (0) () () () ()

ˆ ˆ ˆ2 , (())

ˆ ˆ ˆ,(2() 2)

ˆ ˆ,(

i

i

T T T
i i i i i i i i i

T T i
i i i i i ii i ij j jj j ij

T T T i
i i i i i i i ii i ij i j jj j ij

i

i i ij j jj

d
P P t P t dt

dt

P A d g B R B P a B R B P

PA A P d g PB R B P a PB R B P

Q a P BR

 

 

1 1

1 1

ˆ () (2)

ˆ ˆ ˆ() ())

i

i i

T i T

ij jj j i i i i ii ij

T i i T T
ij i j jj j ij j jj j i ij j

R R B P d g PB I R B P

a PB I R B P a P BR I B P



 

where ˆ
i

 is the truncation of ˆ
i
 as in (2.14). Similar to the proof of Lemma 4.3, the inequality

1 1ˆ ˆ ˆ ˆ(0) (0) ,()
i

T i T i

i i i i i ij j jj ij jj j ij
P Q a P BR R R B P holds for the condition (6.30). The rest of

the proof follows as in Lemma 4.3.

The following section presents our last proposed solution concept for differential

graphical games.

6.4. Projection Strategies: Local-Error Projection

We can define a different solution concept when all agents in the game are aware of the

graph topology that links them together, even if each agent is unable to measure the states of

any agent but its neighbors. In this case, an agent can make assumptions about the position of

its neighbors’ neighbors, and use this information to determine a solution to the corresponding

Fig. 6.1. a) The vector points from agent 1 to the center of gravity of its neighbors. b) Agent 1 assumes all its neighbors have their

center of gravity in the opposite relative position as itself.

110

HJ equations. This idea motivates the local-error projection strategy, on which agent i projects

its private information,
i
, onto its neighbors. In particular, let agent i assume

j i
.

This assumption has a clear geometrical interpretation. To describe it, define the center

of gravity of the neighbors of agent i as

0

1

1 N

i ij j i
ji i

x a x g x
d g

 (6.31)

Using (6.31), we can express the local error variable of agent i as

0
1

0
1

() ()

()

() ()

()()

N

i ij i j i i
j

N

i i i ij j i
j

i i i i i i

i i i i

a x x g x x

d g x a x g x

d g x d g x

d g x x

This expression shows that
i
 is a vector that points from the state

i
x to the center of gravity of

i ’s neighbors,
i
x , weighted by the factor

i i
d g . The objective of agent i of minimizing

i
 is

equivalent to state that agent i has the center of gravity
i
x as actual target. Now, the

assumption
j i

 implies that agent j and its target have the opposite relative position with

respect to each other as the position of agent i and its own target, as shown in Fig. 6.1.

The formulation of the local-error projection strategies is considerably simpler than the

formulation in Section 6.3, and is formalized in the following definition.

Definition 6.5 (Local-error projection graphical game). Let each agent i have as

objective to determine the control policy *
i
u that solves the minimization problem

 *

0
1

argmin argmin ()
i i

N
T T T

i i i i i i i i i i ij j j ju u
j

u J Q d g u Ru a u R u dt (6.32)

while making the assumption
j i

.

Theorem 6.5 shows that the control policy

111

 * 1 T
i i i i
u R B P (6.33)

where
i
P is the solution of the set of coupled AREs

1 1

1

1 1

1 1

()

0

N
T T T

i i i i i i i i ij j j j
j

N N
T T

ij i j j ij j j i
j j

Q PA A P d g PBR B P a PBR B P

a PBR B P a PBR B P

 (6.34)

for 1, ,i N , solves the game (6.32).

Theorem 6.5. Consider a multiagent system with dynamics (2.5) and let agent i make

the assumption
j i

. Then, the control policy (6.33), where
i
P is the solution of the set of

N coupled Riccati equations (6.34), solves the local-error projection graphical game (6.32).

Proof. The control policy (6.33) is obtained by using the stationary condition from the

Hamiltonian of problem (6.32) given by

1 1

() 2 () .
N N

T T T T
i i i i i i i i i ij j j j i i i i i i ij j

j j

H Q d g u Ru a u R u P A d g Bu a Bu

By defining the Hamiltonian for agent j as

1 1

() 2 ()
N N

T T T T
j j j j j j j j j jk k k k j j j j j j jk k

k k

H Q d g u R u a u R u P A d g Bu a Bu

we can determine that its optimal control policy is given by

 * 1 .T
j j j j
u R B P

By means of the assumption
j i

, agent i considers that the policy of its neighbors is then

given by

 * 1 T
j j j i
R B P (6.35)

Using (6.33) and (6.35) in
i
H , we obtain the HJ equations

112

1 1

1

1 1

1 1

()

0

N
T T T T

i i i i i i i i i ij j j j
j

N N
T T

ij i j j ij j j i i
j j

Q PA A P d g PBR B P a PBR B P

a PBR B P a PBR B P

which imply the AREs (6.34). Optimality of the control policy (6.33) is finally proven using a

similar procedure as in the proof of Theorem 4.1

Remark 6.3. Notice that, in local-error projection games, each agent must solve a set of

up to N coupled algebraic Riccati equations of the form (6.34). This is because each ARE uses

neighbor information from each agent; thus, for agent i to solve the ARE of its neighbor j , it

must also solve j ’s neighbors equations. For the same reason, all agents must have enough

information about the graph topology expressed by the weights
ij
a and

i
g required in the AREs.

The robustness analysis of the local-error projection strategies is performed similarly as

in the previous section. Consider the perturbed system

1

ˆ ˆ () .
N

i i i i i i ij j j
j

A d g B u a B u  (6.36)

Theorem 6.6. If the perturbations
j

 ,
i

j i , of the system (6.36) are such that

1 1

1

ˆ,[() (2) ()

ˆ()) 0

i

i

T T

i i i i i i i ij i j j jj

T T
ij j j j j ij

d g PB I R B P a PB I R B P

a PBR I B P

 


 (6.37)

Proof. Follows similarly as in the proof of Theorem 6.4.

The comparison between the robustness properties of these solution concepts is left for

Section 6.6. First, we present the simulation results of the methods presented in this chapter.

113

6.5. Simulation Results

A numerical example is here presented to test the validity of the solutions presented

above. Consider a set of 5 agents and one leader connected in a communication graph as

shown in Fig. 4.2. If
i

j , let 1
ij
a . Each agent is taken with linear dynamics with

1 2 3 0

, .
2 1 0 3

A B

For all cases, the performance indices of the agents are defined using the matrices 3
i
Q I and

2
i
R I , for all agents i . Minmax regret requires to determine the matrix

i
K that makes the

closed-loop system marginally stable. This matrix is found to be

0.1667 0.3333

0.3333 0.1667i
K

for agents 1, 3, 4,5i . For agent 2 , the result is

2

0.1111 0.2222
.

0.2222 0.1111
K

The matrices
i
P that solve the Riccati equations are given by

Fig. 6.2. Graph topology for simulation of graphical games strategies.

114

1 3 4 5 2

0.1089 0.0544 0.1029 0.0514
, .

0.0544 0.1089 0.0514 0.1029
P P P P P

The state trajectories of this simulation are shown in Fig. 6.2 and Fig. 6.3.

Graph-weight projection strategies are simulated using the same values of 2
ij
R I for

all agents i , j . The corresponding set of Riccati equations (6.24) - (6.25) is solved for each

agent. The solutions of the AREs are now given as

0.4635 0.0140

0.0140 0.36i
P

for all agents i . The state trajectories in this case are shown in Fig. 6.4 and 6.5.

Finally, the local-error projection strategies are solved. The same values of 3
i
Q I and

2
ij
R I are used for all agents i , j . The simulation results are shown in Fig. 6.6 and Fig. 6.7.

For the selection of performance indices in these examples, the solutions of the coupled AREs

are identical to the graph-weight projection case above, given by

115

0.4635 0.0140

.
0.0140 0.3600i

P

6.6. Conclusions

Three alternative solutions for differential graphical games were proposed in this

chapter. Each of these solution concepts presents different characteristics that make it suitable

for a particular set of graphical games problems. Depending on the assumptions made by the

Fig. 6.3. State trajectories for the agents using minmax regret policies.

Fig. 6.4. Evolution of the state trajectories with respect to time for minmax regret policies.

116

agents, the computational complexity, the number of equations required to be solved and the

robustness properties of the control policies may vary.

The minmax regret policy is obtained by solving a single, decoupled Riccati equation as

in the minmax strategies case. The conditions for such solution to exist, however, are less

evident. Furthermore, additional computation steps are employed like, for example, the

calculation of the matrix
i
K that makes the system marginally stable. The main advantage of

Fig. 6.5. State trajectories for the agents using graph-weight projection strategies.

Fig. 6.6. Evolution of the state trajectories with respect to time for graph-weight projection strategies.

117

minmax regret is provided by its formulation. After all, it may be more natural for an agent to

have the objective of minimizing its regret than to assume the worst behavior of its neighbors.

Graph-weight projection strategies provide control policies on which the agents make

cooperative assumptions. The main consequence of this scenario is the fact that the agents

must solve a set of coupled AREs, on which they employ the assumed collaborative policies of

the neighbors. The number of Riccati equations that must be simultaneously solved is limited by

the total number of neighbors of the agent. Furthermore, the agents do not need any knowledge

of the graph topology, except the edges that link them to their neighbors.

Fig. 6.8. Evolution of the state trajectories with respect to time for local-error projection strategies.

Fig. 6.7. State trajectories for the agents using local-error projection strategies.

118

Finally, the local-error projection strategies, were presented. To design these strategies,

all agents need a complete knowledge of the graph topology. Then, they need to solve a set of

coupled AREs with as many equations as the total number of agents in the game. Comparing

the conditions (6.30) and (6.37), we notice the similarities overcome any minor difference

between them. The simulation results, indeed, show that the solutions for graph-weight

projection and local-error projection strategies may coincide under the appropriate selection of

weighting matrices in the performance indices of the agents.

119

Chapter 7

CONCLUSION AND FUTURE WORK

This dissertation presented the formulation and solutions of different graphical games

for dynamical systems. The most important solution concept in game theory, Nash equilibrium,

is in general not attainable in graphical games due to the limited information that the players

receive through the graph topology. To overcome this lack of knowledge, it is argued in this

work that the agents must make assumptions about their neighbors’ objectives, or about the

information the neighbors have available.

The first game formulated, Bayesian games, addresses the problem of games between

agents that are uncertain about each other’s intentions. Each agent is designed to have beliefs

about its surroundings, to update those beliefs in accordance to the evidence it obtains from its

environment, and to perform its optimal behavior dependent on its beliefs. It is important to

notice that, although the Bayesian games formulation was described specifically for a Bayes-

Nash equilibrium result, the same belief structure can be used for any of the new solution

concepts proposed in this research.

Four solution concepts were then introduced as alternatives for Nash equilibrium.

These solutions can be immediately separated in two main categories: minmax solutions and

projection solutions. The minmax solutions include the minmax strategies and the minmax

regret strategies. In both cases, an agent makes the assumption that its neighbors will perform

their worst-case policies to negatively affect its performance. The optimal policies for these

strategies are provided by the solution of a single, decoupled Riccati equation. The conservative

assumption that the neighbors will attempt to maximize a cost function generate robust policies

in the agents.

The projection solutions include the graph-weight projection strategies and the local-

error projection strategies. These solutions are characterized by the fact that an agent assumes

that its neighbors and itself share the same information of some sort. Both strategies use more

120

general formulations of the graphical game, and require the solution of many coupled Riccati

equations. The graph-weight projection solution formulates a game including only its neighbors,

which require solving the same number of AREs as the number of neighbors the agent has. The

local-error projection strategy requires an increased number of AREs to solve. Each of these

strategies is better for certain applications, depending on the total number of agents and the

expected number of neighbors per agent.

The following are some of the directions for continuation of this work.

1. Design different belief-update algorithms Bayesian games to reduce the computational

complexity of the Bayes rule, or to increase its efficiency in the uncertain environments

provided by a graph topology.

2. Extend the proposed results for multiagent systems with nonlinear dynamics.

3. Formulate non-synchronization games in graphs to increase the scope of applicability of the

proposed methods. Richer dynamics can be allowed for the agents that do not involve

following the same target.

4. Consider practical implementations of the solution concepts here designed. The increasing

interest in swarms of UAVs or in autonomous vehicles, for example, provide the opportunity

to test the reliability of these results.

121

Appendix

DYNAMIC MULTIOBJECTIVE CONTROL USING REINFORCEMENT LEARNING

A.1. Introduction

In Chapter 3 of this dissertation, it was shown that the solution of a Bayesian game can

be determined as the solution of a multiobjective optimization problem. Similarly, many

engineering problems require describing the goals of a system by means of two or more

performance indices, rather than the single cost function employed in classical optimal control.

Using several performance indices provides more flexibility to represent the expected behavior

of the system in ways that are difficult to express otherwise. Examples of these applications can

be found in [74]. The study of multiobjective optimization control is therefore a natural extension

of the usual analysis in the current literature [75].

Multiobjective optimal control has been studied in [75]-[77] where the concept of Pareto

domination is employed to compare the desirability of two vector functions. Using this notion,

the control input is designed such that improving an objective function unilaterally implies

making another worse [50], [78]. Most of the papers in the literature deal with static

multiobjective optimization. In this appendix, we present a practical method of policy iteration to

solve the multiobjective optimization problem for nonlinear dynamical continuous-time systems.

Several methods exist to compute a Pareto optimum. These include numerical methods

embedded in software packages, as well as analytic procedures such as the weighted sum, or

scalarization, technique [50]. The weighted sum method consists of combining the different cost

indices into a single scalar function by computing their convex sum. This is a practical method in

many applications, but it presents many technical drawbacks. These include the presence of

unreachable Pareto optimal results, a strong, non-intuitive dependence on the selected sum

weights, and a large computational burden as the number of desired solutions increases [50].

For these reasons, this appendix presents a general approach for multiobjective control that can

be applied with any of the existing multiobjective optimization methods.

122

Reinforcement learning is a set of artificial intelligence methods that has had an

increasing success in the last decade for providing a system with the ability to improve its

performance as it gains experience while attempting to achieve its goals [70]-[72], [5]. In the last

few years, reinforcement learning approaches have been adopted in control theory where the

performance of a dynamical system is measured by means of a scalar function that represents

the cost spent by the system along time. Reinforcement learning techniques, properly defined

for control of dynamical systems, are described in [73].

The main motivation of this Appendix is to design a control strategy that allows to solve

optimization problems that cannot be expressed by a single cost function. When the objectives

of the system are conflicting with each other, a tradeoff must be achieved. The controller is

based on reinforcement learning methods to avoid the difficult task of solving the Hamilton-

Jacobi-Bellman equation [5] and to relax the need of full knowledge of the dynamic model of the

system.

The appendix is organized as follows. Basic definitions for multiobjective optimization

and for the multiobjective optimal control problem are described in Section A.2. Section A.3

shows the basic transformations employed to obtain an iterative suboptimal control sequence.

In Section A.4, a policy iteration algorithm to solve the multiobjective optimization problem is

designed, with considerations to allow its implementation in practical applications. Section A.5

studies the linear systems case. Finally, Section A.6 concludes with a numerical example.

A.2. Multiobjective Performance of a Dynamical System

Multiobjective optimization deals with the problem of minimizing two or more objective

functions simultaneously [78]. In mathematical terms, this problem is expressed as

 min ()
x X

V x


 (A.1)

where nx is selected inside a feasible set X and : n MV → is a vector with M

elements,  1() (), , ()
T

MV x V x V x= , with ()iV x , 1, ,i M= , the functions to be minimized. In the

123

general case, there does not exist a solution x that achieves the minimization of all functions

()iV x simultaneously, and the concepts of Pareto domination and Pareto optimality must be

introduced.

Definition A.1 (Pareto domination). A vector MW  is said to Pareto dominate

vector MV  if j jW V for all 1, ,j M= , and j jW V for at least one j , where jV and jW

are the j -th entries of vectors V and W , respectively. Notation W V for vectors MW  and

MV  , indicate that W is not Pareto dominated by V , i.e., either V W= or there is at least

one entry j such that j jV W . Notation W V means that j jW V for all 1, ,j M= .

Employing these definitions, the concept of Pareto optimality can be stated as follows.

Definition A.2 (Pareto optimality). A solution *x of problem (A.1) is said to be Pareto

optimal if *() ()V x V x for all x X .

The outcome *()V x of a Pareto optimal solution *x is also said to be Pareto optimal. In

general, a multiobjective optimization problem has multiple Pareto optimal outcomes, and the

set of all Pareto optimal outcomes for a given problem is regarded as the Pareto front. Here, we

represent the Pareto front as  , such that *()V x  .

Consider now a dynamical system with general nonlinear dynamics

 (,)x f x u= (A.2)

where nx and mu are the state vector and the control input of the system, respectively,

and f is a continuously differentiable function. In the multiobjective optimization problem, the

performance of system (A.2) is evaluated with respect to M different performance indices

0

((0),) ((0),)j jJ x u r x u dt


=  (A.3)

1, ,j M= , where each jr is a scalar, positive definite, continuously differentiable function. The

feedback control function ()u x is said to be admissible if it is continuous, stabilizes the

124

dynamics (A.2) and makes (, ())jJ x u x finite for all 1, ,j M= . The class of functions satisfying

these properties is denoted as 0U . Define the vector J as  1, ,
T

MJ J J= . It is our interest to

find a function 0()u x U such that vector J is minimized in the Pareto sense.

For a fixed control policy ()u x , define the value functions

 (()) ((),)j j
t

V x t r x u d 


=  (A.4)

for 1, ,j M= . Furthermore, let  1, ,
T

MV V V= . A differential equivalent to the value function

(A.4) is given by the Bellman equations

 0 (,) (,) (, ,)T
j j j jr x u V f x u H x V u= +  (A.5)

where jV is the gradient of jV , and (, ,)j jH x V u is the j th Hamiltonian function of the

system. Note that the orbital derivative of ()jV x is given by

 () (,).j j jV x V x r x u=  = − (A.6)

Define also

0

*((0)) inf ((0),)
u U

V x J x u


 (A.7)

where, in general, *V is not unique, and *
JV  with J

 the Pareto front of vector J .

Define the Pareto optimal vector *H as

0

*(,) min (, ,)
u U

H x V H x V u


 =  (A.8)

where  1, ,
T

MH H H= and  1, ,
T

MV V V =   . *H is Pareto optimal in the sense that, for

each state vector x and vector V , *(,) (, ,)H x V H x V u   for every control policy 0u U .

In general, it is possible to select different control inputs, *1u and *2u , such that

*1(, ,)H x V u and *2(, ,)H x V u are both Pareto optimal. For this reason, we make the following

assumption, useful for the analysis of the next section.

Assumption A.1. If there exists *u such that *(,) 0H x V = for all x and a given

125

function ()V x , then select *u u= .

Assumption A.1 is a restriction on the procedure employed to find a Pareto optimal

vector in (A.8), and states that if the vector of zeros is one of the possible Pareto optimal results

for *H , then control policy u must be selected accordingly. The consequences of Assumption

A.1 are studied in Lemmas A.4 and A.5 in the following section.

A.3. Multiobjective Suboptimal Control Sequences

This section defines and analyzes transformations to design suboptimal control policies

in an iterative manner. This is an extension for multiobjective optimization of the results in [71].

Considering the multiobjective optimal control problem described in Section A.2, define

 as the set of all continuously differentiable functions : n MV → such that (0) 0V = . Define

also 0 as the subset of such that 0(,)u x V U  , i.e., the feedback control policies based on

the vector function V are admissible. Define the transformations 1T , 2T and T as follows.

Definition A.4 (Function transformations).

1. Define the function 0 0
1 :T U→ as 1 1 1() (, ,)MT V T V V u= = where

 1, ,
T

MV V V= and (,)u u x V=  .

2. Define the function 0
2 :T U → as 2 ()T u V= , where MV  and

() (,)j jV x J x u= , 1, ,j M= .

3. Define the composite mapping 0:T → as

1 2 1 1(, ,) ((, ,)) (,)M MT V V T T V V J x u= = , where (,)u u x V=  .

Our objective now is to use these transformations to design a control sequence that

converges to an optimal policy * 0()u x U . We begin our analysis by studying some of the

126

properties of the vector functions defined in Section A.2, as well as those of transformations 1T ,

2T and T .

Lemma A.1 allows to compare two vector functions, V and W , with entries jV and jW

as in (A.4), when the respective Hamiltonian functions are known.

Lemma A.1. If (, ,) (, ,)H x V u H x W u   for given vector functions V , W , and control

u , then W V .

Proof. By Definition A.2, we have that either (, ,) (, ,)H x V u H x W u =  or there exists an

entry j such that (, ,) (, ,)j jH x V u H x W u   . Assume the latter case and consider this same

entry j . By definition of jH in (A.5), we have (,) (,) (,) (,)T T
j j j jr x u V f x u r x u W f x u+  + , which

implies (,) (,)T T
j jV f x u W f x u   ; that is, j jV W . Integrating the inequality along the same

motions yields j jW V and, therefore, W V .

Lemma A.2 and Theorem A.1 relate the Pareto optimality of vector V with the Pareto

optimality of vector H in (A.8).

Lemma A.2. Consider a control policy *u such that (A.8) holds. If * ()jV x , 1, ,j M= ,

solves the Bellman equation (A.5) for *u , then * ()V x is Pareto optimal.

Proof. Consider a control policy u such that *(, ,) (, ,)H x V u H x V u   . By Pareto

optimality of *(, ,)j jH x V u , there exists an entry j such that

 *(, ,) (, ,).j j j jH x V u H x V u   (A.9)

For this entry j , let *
jV solve the Bellman equation for *u and jV solve the Bellman equation

for u . Then, notice that * * *(, ,) (, ,) (, ,) 0j j j j j jH x V u H x V u H x V u   =  = . Now, by Lemma A.1,

*(, ,) (, ,)j j j jH x V u H x V u   implies *
j jV V .

Theorem A.1. Let the control policy *u be such that (A.8) holds, and *V such that *
jV

solves the j th Bellman equation (A.5) for *u , for every entry 1, ,j M= . Then, *
JV  with

127

J
 the Pareto front of J as defined in (A.7).

Proof. As *u makes *H Pareto optimal, then, by Lemma A.2, *V is also Pareto optimal.

Now, for all entries of vector J , we have

0

* * *

0

(,)

(, ,) (()) ((0))

j j

j j j j

J r x u dt

H x V u dt V x V x





=

=  −  +





As * 0u U , then (()) 0V x  = . Therefore, *((0))j jJ V x= for all entries j , and Pareto optimality of

*V implies Pareto optimality of J . This is *
JV  as in (A.7).

The proof of Theorem A.1 shows that *V J= when *V solves the Bellman equation for

*u . Lemma A.3 and Theorem A.2 show that solving the Bellman equation, regardless of the

control function u , is a sufficient and necessary condition for a vector V to satisfy the equality

2 ()V T u J= = .

Lemma A.3. 2 ()V T u= if and only if jV satisfies (, ,) 0jH x V u = , for 1, ,j M= .

Proof. If (, ,) 0jH x V u = , then (,)T
jV V f x u=  (, ,) (,) (,)j j j jH x V u r x u r x u J=  − = − = ,

and integrating both sides of the equality along the same motions for all entries of the vector,

yields 2 ()V J T u= = . Conversely, if V J= , then (,)j j jV J r x u= = − , which implies 0jH = .

Theorem A.2. Let 0V  and W  . Now, ()W T V= if and only if

(, , (,)) 0H x W u x V  = .

Proof. Follows directly from Lemma A.3 and Definition A.4.

Clearly, if V is such that (, ,) 0H x V u = , then *(,) 0H x V  , which means that the

vector of zeros does not Pareto dominates *H . However, this does not necessarily imply that all

the elements of *H are nonpositive. Lemma A.4 solves this inconvenience.

Lemma A.4. Let Assumption A.1 hold. Then, *(,) 0jH x V  for all entries of *H .

Proof. By Assumption A.1, if the vector of zeros is Pareto optimal, then * 0jH = for all

128

entries j . If 0H = is not Pareto optimal, then by definition of Pareto optimality we have

*(,) 0jH x V  for all j with at least one strict inequality.

As studied below, Lemma A.4 allows guaranteeing that all the entries of a vector are at

least as small as the entries of another (V W) when an iterative algorithm is employed.

The following theorem shows the recursion required later in this section to design a

suboptimal control sequence.

Theorem A.3. Let 0V  and ()V T V= , and let Assumption A.1 hold. Then,

*(,) 0H x V implies *V V V , with *V Pareto optimal.

Proof. Take *(,)u u x V=  . By Assumption A.1 and Lemma A.4, *(,) 0jH x V  for every

1, ,j M= . Then, we can express *(,) (,) (,)j j j j jV H x V r x u r x u J=  −  − = .

As ()j jV T V J= = implies j jV J= , then j jV V . Integrating the inequality we get j jV V

for all entries j .

In the single objective optimization problem, it is clear that an iterative repetition of the

operation in Theorem A.3 leads the function vector V to the unique optimal value function *V .

In the multiobjective optimization case, Assumption A.1 is required to prevent leaping among

different Pareto optima at each iteration, as proven in Lemma A.5 and Theorem A.4.

Lemma A.5. Let *V be Pareto optimal and let Assumption A.1 hold. If *W is any other

Pareto optimal value function such that * *V W , then * *()W T V .

Proof. Assume
*()W T V . If Assumption A.1 holds, by Lemma A.4 we have

*(,) 0
j
H x V for all entries j . By Theorem A.3, we have *

j j
W V for all j . As * *

j j
W V for

some j , for any other Pareto optimal vector *W , then *W cannot be reached.

Theorem A.4. If a Pareto optimal solution * 0V exists, then
* *()V T V .

Conversely, ()V T V implies *V V .

129

Proof. Consider two Pareto optimal vectors *V and *W . By Theorem A.3, if *()V T V= ,

then * *W V V ; by Lemma A.5 and definition of Pareto optimality, V V implies *V V= .

Conversely, if ()V T V , by Theorem A.2 we have *(,) 0H x V and V solves the Bellman

equations (A.5); by Lemma A.2, *V V .

We finally formalize the idea of using the result in Theorem A.3 to build a sequence of

successive approximations that converge to a Pareto optimal solution *V V*.

Theorem A.5. Take V 0∈ 0 and 1 ()k kV T V . Then * 1 0kV V V+ for a Pareto

optimal solution *V .

Proof. The proof follows inductively from Theorem A.3, noting that the current estimate

of the optimal value function at step k is
2
()k kV T u and taking the control policy at step 1k +

based on kV , i.e., 1

1
(,) ()k k ku u x V T V . Convergence to a single Pareto optimal result is

provided by Theorem A.4.

A.4. Integral Reinforcement Learning Algorithm for Multiobjective Suboptimal Control

In this section, we use the analysis of Section A.3 to design an integral reinforcement

learning (IRL) algorithm using the structure of policy iteration [70], [73], [79], that is shown to

converge to a Pareto optimal solution of vector V , then used to generate the optimal policy

*(,)u x V . Here, it is assumed that the state values of system (A.2) are known, even if part of

its mathematical model is uncertain.

In [79], an IRL algorithm that converges to the solution *V of the Bellman equation for a

single performance index was developed. This section presents the integral reinforcement

learning in multiobjective optimization form.

Notice that the j th value function (A.4) can be expressed as

130

 (()) ((),) (())
t T

j j j
t

V x t r x u d V x t T 
+

= + + (A.10)

for any time interval 0T . Given the functions ()
j
V x and (,)

j
r x u , equation (A.10) does not

require knowledge about the system dynamics (A.2). Lemma A.6 shows that the solution ()
j
V x

of (A.10) is the value function (A.4) that solves equation (A.5).

Lemma A.6. Assume the control policy ()u x stabilizes the system dynamics (A.2).

Then, the solution ()
j
V x of equation (A.10) is equivalent to the solution of the Bellman equation

(A.5).

Proof. If equation (A.5) holds for
j
V , then (,) (,)T

j j jV V f x u r x u=  = − . Integrating both

sides of the equation, we get

 (,) (()) (()) (())
t T t T

j j j j
t t

r x u d V x d V x t T V x t  
+ +

= − = − + + 

which is the same equation as (A.10).

The following algorithm presents the multiobjective optimal controller by reinforcement

learning. The policy evaluation step consists of solving Equation (A.10). This corresponds to the

transformation
2
T in Definition A.4. The policy improvement step is based on Equation (A.8),

and corresponds to the transformation
1
T . Convergence of Algorithm A.1 is proven in Theorem

A.6.

Algorithm A.1 (IRL for Multiobjective Optimization)

1: Select an admissible control policy 0u .

2: Solve for kV from the set of equations

(()) ((),) (())
t T

k k
j j j

t
V x t r x u d V x t T 

+

= + + (A.11)

3: Update the control policy as
1 arg min (, ,)k k

u

u H x V u+ =  (A.12)

4: Go to Step 2. On convergence, stop.

Theorem A.6. Assume there exists an admissible control input u for system (A.2).

Perform Algorithm A.1 such that Assumption A.1 holds in step 3. Then, Algorithm A.1 converges

131

to a Pareto optimal solution *V . Moreover, the control policy *(,)u x V optimizes the

performance index vector J .

Proof. From equation (A.12) and Assumption A.1, we have that 1(, ,) 0k k
j j
H x V u for

all 1, ,j M= . As function 1k
j
V solves equation (A.11), then by Lemma A.6

1 1(, ,) 0k k
j j
H x V u . From both results we get 1 1 1(, ,) (, ,)k k k k

j j j j
H x V u H x V u . By

Lemma A.1, this implies 1k k
j j
V V and vector 1kV is not Pareto dominated by kV . By

Theorems A.5, these properties hold for every iteration until a Pareto optimal vector *V is

obtained.

By Theorem A.1, if (A.11) holds for *V , then * *V J . Thus, *V guarantees a Pareto

optimal performance of the system.

Remark A.1. Equation (A.11) avoids the use of the system dynamics (A.2) in the policy

evaluation step of the algorithm, and equation (A.12) requires only partial knowledge of the

mathematical model of the system [79].

In the following section it is shown how to use partial knowledge of a linear system with

a particular Pareto optimization solver in Algorithm A.1.

A.5. Multiobjective Linear Quadratic Regulator

Consider a system with linear dynamics

 .x Ax Bu= + (A.13)

The performance of the system is measured using M different performance indices

with quadratic terms, given by

 ()
0

T T
j j jJ x Q x u R u dt



= + (A.14)

132

1, ,j M , where 0
j
Q and 0

j
R are symmetric matrices. Express each of the M value

functions in quadratic form as

 T
j jV x P x= (A.15)

1, ,j M , with 0T
j jP P=  .

In order to apply the multiobjective IRL algorithm, express the functions (A.15) in the

form (A.10); that is,

 ()() () () ().
t T

T T T T
j j j j

t
x t P x t x Q x u R u d x t T P x t T

+

= + + + + (A.16)

Solving this equation becomes an easier task if we employ the Kronecker product to express

the term T
jx P x as () () vec() ()T T

j jx t P x t P x x=  , where vec()jP is the column vector obtained by

stacking the columns of
j
P . Moreover, as matrix

j
P is symmetric and the expression x x

includes all possible products of the entries of x , each of the vectors vec()jP and x x include

repeated terms. Represent these vectors after removing all the redundant terms as
j
p and x ,

respectively, which consist of (1)/ 2n n components. Now, we can write

 T T
j jx P x p x= (A.17)

Using the expression (A.17), we rewrite equation (A.16) as

 ()(() ())
t T

T T T
j j j

t
p x t x t T x Q x u R u d

+

− + = + (A.18)

and the goal is to find the values of jp that satisfy (A.18) given the measurements ()x t and

()x t T+ , and the employed control input u . This objective can be achieved using recursive least

squares after collecting several samples of equation (A.18) [73].

The Hamiltonian functions for this system are

 ()2 .T T T
j j j jH x Q x u R u x P Ax Bu= + + + (A.19)

The optimal control policy *u for system (A.13) is the input u Kx that makes the vector

133

1
, ,

T

M
H H H Pareto optimal.

Several methods can be used to determine *u . Here, we propose a general procedure

that allows this problem to be solved by any multiobjective optimization software package.

Substitute the policy u Kx in each of the Hamiltonian functions (A.19), to obtain

 () ()
TT T T T T

j j j j jH x Q x x K R Kx x P A BK x x A BK P x= + + − + − (A.20)

It is well known that the minimization of each individual
j
H with respect to K is

achieved using the optimal gain matrix * 1 T
j j

K R B P . However, this optimization problem can

be characterized differently to be programed in a multi-objective optimization solver. Theorem

A.7 shows that minimizing (A.20) by means of matrix K is equivalent to minimize the sum of

the eigenvalues of the matrix T T T
j j j

K RK PBK K B P . To simplify the notation, define the

variables

 () ()
TT

j j j j jS Q K R K P A BK A BK P= + + − + − (A.21)

and

 ' .T T T
j j j jS K R K P BK K B P= − − (A.22)

The i th eigenvalue of a matrix S is denoted as ()
i
S .

Theorem A.7. Let T
j j
H x S x , where

j
S is the symmetric matrix (A.21). Then, solving

the minimization problem

 * arg min j
K

K H=

is equivalent to solving the eigenvalue minimization problem

 *

1

arg min ('),
n

i j
K i

K S
=

= 

with '
j

S as in (A.22).

134

Proof. Take the optimal matrix *K such that * *T
j j
H x S x , with

* * * * *() ()T T
j j j j j
S Q K RK P A BK A BK P , is minimal; this means *T T

j j
x S x x S x for

j
S

in (A.21) using any matrix K . Now we can write *() 0T
j j

x S S x and, therefore, *

j j
S S is a

positive semidefinite matrix. Note that for the matrices (A.21) and (A.22), we have

* *' '
j j j j
S S S S . As all the eigenvalues of *' '

j j
S S are nonnegative, and the trace of a

matrix is equal to the sum of its eigenvalues, then *tr(' ') 0
j j

S S , which implies

*tr(') tr(')
j j

S S . We conclude that matrix *K generates the matrix *'
j

S with minimal sum of its

eigenvalues.

By Theorem A.7, minimization of the Hamiltonian vector H can be achieved by finding

the gain matrix *K such that, for given matrices
j
P , 1, ,j M we have

()

()

1 1 1

1*

1

arg min

n
T T T

i

i

n
K T T T

i M M M

i

K R K PBK K B P

K

K R K P BK K B P





=

=

 
− − 

 =
 

− − 
 





 (A.23)

Remark A.2. Problem (A.23) is expressed without knowledge of matrix A of the

system dynamics (A.13).

Algorithm A.2 expresses the policy iteration procedure presented in Algorithm A.1,

modified for the linear systems case.

Algorithm A.2 (IRL for Linear Multiobjective Optimization)

1: Select an admissible control policy 0 0u K x .

2: Solve the set of equations (A.11) for kV .
3: Solve the multiobjective optimization problem (A.23) and

update the control policies as 1 1k ku K x .
4: Go to Step 2. On convergence, stop.

135

A.6. Simulation Results

Algorithm 2 is now employed to achieve stabilization of the linearized double inverted

pendulum in a cart [86], [87], represented by the dynamic equations (A.13), where

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0
, ,

0 0 0 0 0 0 1

0 86.69 21.61 0 0 0 6.64

0 40.31 39.45 0 0 0 0.08

A B

   
   
   
   = =
   

−   
   −   

state
1
x is the position of the cart,

2
x and

3
x are the angles of both pendulums, and the

remaining states are the velocities. As performance objectives, i) regulation of all states is

required and ii) the values of
2
x and

3
x must be as close to each other as possible. The

performance indices (A.14) can now be defined as

 1 2

200 0 0 0 0 0 1 0 0 0 0 0

0 200 0 0 0 0 0 1 1 0 0 0

0 0 200 0 0 0 0 1 1 0 0 0
, ,

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

Q Q

   
   −
   −
   = =
   
   
      

and 1 2 1R R= = . The sample time per iteration is 0.05T = .

Fig. A.1. State trajectories of a linear system with multiobjective optimization.

0 1 2 3 4 5 6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time

S
ta

te
 t

ra
je

c
to

ri
e
s

Position

Angle 1

Angle 2

136

The Matlab function for multiobjective optimization fgoalattain is employed in to

determine the feedback control matrix K at each iteration. fgoalattain allows to generate

different points in the Pareto front of the problem. The state trajectories for
1
x ,

2
x and

3
x after

implementation of Algorithm A.2 are shown in Figure A.1. All states are shown to be stabilized

by the controller. The final gain matrix K is  11.90 110.67 165.9 13.30 4.20 26.32K = − − .

137

REFERENCES

[1] Y. Shoham and K. Leyton-Brown, Multiagent systems. Algorithmic, Game-Theoretic and
Logical Foundations. New York, NY: Cambridge University Press, 2008.

[2] J. Nash, “Equilibrium points in n-person games,” Proceedings of the National Academy
of Scienes USA, vol. 36, pp. 48–49, 1950.

[3] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54, pp. 286–295, 1951.

[4] R. Isaacs, Differential Games. A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. New York, USA: John Wiley & Sons, 1965.

[5] F. L. Lewis, D. Vrabie and V. L. Syrmos, Optimal Control, 3rd ed., New Jersey: John
Wiley & Sons, inc., 2012.

[6] M. Johnson, S. Bhasin and W. E. Dixon, “Nonlinear two-player zero-sum game
approximate solution using a policy iteration algorithm,” in Proceedings of the IEEE
Conference on Decision and Control, pp. 142-147, 2011.

[7] S. S. Kumkov, S. Le Menec and V. S. Patsko, “Zero-sum pursuit-evasion differential
games with many objects: survey of publications,” Dynamic Games and Applications, vol.
7, no. 4, pp. 609-633, 2017.

[8] M. Abu-Khalaf, F. L. Lewis and J. Huang, “Neurodynamic programming and zero-sum
games for constrained control systems,” IEEE Transactions on Neural Networks, vol. 19,
no. 7, pp. 1243–1252, 2008.

[9] H. Li, D. Liu and D. Wang, “Integral reinforcement learning for linear continuous-time
zero-sum games with completely unknown dynamics,” IEEE Transactions on Automation
Science and Engineering, vol. 11, No. 3, pp. 706-714, 2014.

[10] R. Song, F. L. Lewis and Q. Wei, “Off-policy integral reinforcement learning method to
solve nonlinear continuous-time multiplayer nonzero-sum games,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 3, pp. 704–713, 2017.

[11] R. Kamalapurkar, T. Dinh, P. Walters and W. E. Dixon, “Approximate optimal cooperative
decentralized control for consensus in a topological network of agents with uncertain
nonlinear dynamics,” in Proceedings of the American Control Conference, pp. 1322-1327,
2013.

[12] Y. Hong, J. Hu and L. Gao, “Tracking control for multi-agent consensus with an active
leader and variable topology,” Automatica, vol. 47, pp. 1177–1182, 2006.

[13] F. L. Lewis, H. Zhang, K. Hengster-Movric and A. Das, Cooperative control of multi-agent
systems. Optimal and adaptive design approaches. London: Springer-Verlag, 2014.

[14] X. Li, X. Wang and G. Chen, “Pinning a complex dynamical network to its equilibrium,”
IEEE Transactions on Circuits and Systems I. Regular papers, vol. 51, no. 10, pp. 2074–
2087, 2004.

138

[15] R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and cooperation in networked
multi-agent systems,” Proceedings of the IEEE, vol. 95, No. 1, pp. 215–233, 2007.

[16] Z. Qu, Cooperative control of dynamical systems: applications to autonomous vehicles.
Springer-Verlag, New York, USA, 2009.

[17] W. Ren, R. Beard and E Atkins, “A survey of consensus problems in multi-agent
coordination,” In Proceedings of the American Control Conference, pp. 1859–1864, 2005.

[18] W. Ren, K. Moore and Y. Chen, “High-order and model reference consensus algorithms
in cooperative control of multivehicle systems,” Journal of Dynamic Systems,
Measurement and Control, vol. 129, no. 5, pp. 678–688, 2007.

[19] H. Zhang, T. Feng, G. H. Yang and H. Liang, “Distributed cooperative optimal control for
multiagent systems on directed graphs: An inverse optimal approach,” IEEE
Transactions on Cybernetics, vol. 45, no. 7, pp. 1315–1326, 2015.

[20] K. G. Vamvoudakis, F. L. Lewis and G. R. Hudas, “Multiagent differential graphical
games: Online adaptive learning solution for synchronization with optimality,” Automatica,
vol. 48, pp. 1598-1611, 2012.

[21] F. A. Yaghmaie, F. L. Lewis and R. Su, “Output regulation of heterogeneous linear multi-
agent systems with differential graphical game,” International Journal of Robust and
Nonlinear Control, vol. 26, pp. 2256–2278, 2016.

[22] H. Cao, E. Ertin and A. Arora, “Minmax equilibrium of networked differential games,”
ACM Transactions on Autonomous and Adaptive Systems, vol. 3, no. 4, pp. 1–21, 2008.

[23] Z. Qu and M. A. Simaan, “A design of distributed game strategies for networked agents,”
IFAC Proceeding Volumes, vol. 42, no. 20, pp. 270–275, 2009.

[24] J. C. Harsanyi, “Games with incomplete information played by Bayesian players, I-III,”
Management Science Theory, vol. 14, No. 3, pp. 159–182, 1967.

[25] J. Deb and E. Kalai, “Stability in large Bayesian games with heterogeneous players,”
Journal of Economic Theory, vol. 157, pp. 1041-1055, 2015.

[26] G. Carmona and K. Podczeck, “Ex-post stability of Bayes-Nash equilibria of large games,”
Games and Economic Behavior, vol. 74, pp. 418-430, 2012.

[27] E. Cartwright and M. Wooders, “On purification of equilibrium in Bayesian games and
expost Nash equilibrium,” International Journal of Game Theory, vol. 38, pp. 127-136,
2009.

[28] T. Basar and P. Bernhard, H -Optimal Control and Related Minmax Design Problems.

Birhauser, Boston, MA, 1995.

[29] G. Zames, “Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms and approximate inverses,” In Proceedings of the 17th Allerton
Conference, pp. 744–752, 1979.

[30] H. Kwakernaak, “Robust control and H -optimization, tutorial paper,” Automatica, vol. 29,

no. 2, pp. 255–273, 1993.

[31] Z. Li, Z. Duan and G. Chen, “On H and 2H performance regions of multi-agent

systems,” Automatica, vol. 47, pp. 797–803, 2011.

139

[32] J. C. Doyle, K. Glover and P. P. Khargonekar, “State-space solutions to standard 2H

and H control problems,” IEEE Transactions on Automatic Control, vol. 34, no. 8, pp.

831–847, 1998.

[33] M. I. Abouheaf and M. S. Mahmoud, “Online policy iteration solution for dynamic
graphical games,” presented at the 13th International Multi-Conference on Systems,
Signals & Devices, Leipzig, Germany, 2016, pp. 787–797.

[34] R. Kamalapurkar, J. R. Klotz, P. Walters and W. E. Dixon, “Model-based reinforcement
learning in differential graphical games,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 1, pp. 423–433, 2018.

[35] A. Al-Tamimi, F. L. Lewis and M. Abu-Khalaf, “Model-free Q-learning designs for linear

discrete-time zero-sum games with application to H control,” Automatica, vol. 43, pp.

473–481, 2007.

[36] Y. Jiang and Z. P. Jiang, “Computational adaptive optimal control for continuous-time
linear systems with completely unknown dynamics,” Automatica, vol. 48, pp. 2699–2704,
2012.

[37] H. Modares, F. L. Lewis and Z. P. Jiang, “ H tracking control of completely unknown

continuous-time systems via off-policy reinforcement learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2550–2562, 2015.

[38] B. Luo, T. Huang, H. N. Wu and X. Yang, “Data-driven H control for nonlinear

distributed parameter systems,” IEEE Transactions on Neural Newtorks and Learning
Systems, vol. 26, no. 11, pp. 2949–2961, 2015.

[39] J. von Newman and O. Morgenstern, Theory of games and economic behavior. Princeton
University Press, Princeton, NJ, 1944.

[40] P. Kumar and J. Van Schuppen, “On Nash equilibrium solutions in stochastic dynamic
games,” IEEE Transactions on Automatic Control, vol. 25, No. 6, pp. 1146-1149, 1980.

[41] W. Lin, Z. Qu and M. A. Simaan, “Nash strategies for pursuit-evasion differential games
involving limited observations,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 51, No. 2, pp. 1347-1356, 2015.

[42] P. S. Sastry, V.V. Phansalkar and M. A. L. Thathachar, “Decentralized learning of Nash
equilibria in multi-person stochastic games with incomplete information,” IEEE
Transactions on Systems, Man and Cybernetycs, vol. 24, No. 5, pp. 769-777, 1994.

[43] H. K. Khalil, Nonlinear Systems. Prentice Hall, Upper Saddle, NJ, 2nd ed., 1996.

[44] M. G. Safonov and M. Athans, “Gain and phase margin for multiloop LQG regulators,”
IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 173–179, 1977.

[45] A. Isidori, Nonlinear Control Systems. Springer-Verlag, London, UK, 3rd ed., 1995.

[46] Z. Li, Z. Duan, G. Chen and L. Huang, “Consensus of multiagent systems and
synchronization of complex networks: A unified viewpoint,” IEEE Trans. Circuits and
Systems, vol. 57, No. 1, pp. 213–224, 2010.

[47] A. Jadbabaie, P. Molavi, A. Sandroni and A. Tahbaz-Salehi, “Non-Bayesian social
learning,” Games and Economic Behavior, vol. 76, pp. 210-225, 2012.

140

[48] Q. Zhu, H. Tebine and T. Basar, “Heterogeneus learning in zero-sum stochastic games
with incomplete information,” presented at the 49th IEEE Conference on Decision and
Control, Atlanta, USA, 2010.

[49] P. M. Djuric and Y. Wang, “Distributed Bayesian learning in multiagent systems:
Improving our understanding of its capabilities and limitations,” IEEE Signal Processing
Magazine, vol. 29, No. 2, pp. 65-76, 2012.

[50] M. Caramia and P. Dell’Olmo, “Multi-objective optimization,” in Multi-objective
Management in Freight Logistics. Increasing capacity, service level and safety with
optimization algorithms. London: Springer-Verlag, 2008.

[51] R. Song, W. Xiao and H. Zhang, “Multi-objective optimal control for a class of unknown
nonlinear systems based on finite-approximation-error ADP algorithm,” Neurocomputing,
vol. 119, pp. 212–221, 2013.

[52] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[53] H. Zhang, F. L. Lewis and Z. Qu, “Lyapunov, adaptive and optimal design techniques for
cooperative systems on directed communication graphs,” IEEE Transactions on
Industrial Electronics, vol. 59, no. 7, pp. 3026–3041, 2012.

[54] J. W. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE
Transactions on Circuits and Systems, vol. 25, no. 9, pp. 772–781, 1978.

[55] H. N. Wu and B. Luo, “Neural network based online simultaneous policy update

algorithm for solving the HJI equation in nonlinear H control,” IEEE Transactions on

Neural Networks and Liearning Systems, vol. 23, no. 12, pp. 1884–1895, 2012.

[56] A. Bryson and Y.-C. Ho, Applied optimal control. New York, USA: Taylor & Francis Group,
1975.

[57] M. A. Foley and W. E. Schmitendorf, “A class of differential games with two pursuers
versus one evader,” IEEE Trans. on Automatic Control, vol. 19, no. 3, pp. 239-243, 2003.

[58] E. Bakolas and P. Tsiotras, “Relay pursuit of a maneuvering target using dynamic Voronoi
diagrams,” Automatica, vol. 49, no. 9, pp. 2213-2220, 2012.

[59] J. S. Jang and C. J. Tomlin, “Control strategies in multi-player pursuit and evasion game,”
presented at the AIAA Guidance, Navigation and Control Conference and Exhibit, San
Francisco, USA, 2005.

[60] S. D. Bopardikar and F. Bullo, “On discrete-time pursuit-evasion games with sensing
limitations,” IEEE Trans. on Robotics, vol. 24, no. 6, pp. 1429-1439, 2008.

[61] M. M. Zavlanos and G. J. Pappas, “Distributed hybrid control for multiple-pursuer multiple-
evader games,” in Proceedings of the 10th international conference on Hybrid Systems:
computation and control, pp. 787-789, 2007.

[62] D. M. Stipanovic, A. Melikyan and N. Hovakimyan, “Guaranteed strategies for nonlinear
multi-player pursuit-evasion games,” International Game Theory Review, vol. 12, no. 1, pp.
1-17, 2010.

[63] J. Ge, L. Tang, J. Reimann and G. Vachtsevanos, “Suboptimal approaches to multiplayer
pursuit-evasion differential games,” presented at the AIAA Guidance, Navigation and
Control Conference and Exhibit, Keystone, CO, USA, 2006.

[64] D. Li and J. B. Cruz, “Graph-based strategies for multi-player pursuit evasion games,” in
Proceedings of the 46th IEEE Conference on Decision and Control, pp. 4063-4068, 2007.

141

[65] W. Ren, R. W. Beard and E. M. Atkins, “Information consensus in multivehicle cooperative
control,” IEEE Control Systems, vol. 27, no. 2, pp. 71-82, 2007.

[66] H. Zhang, Z. Li, Z. Qu and F. L. Lewis, “On constructing Lyapunov functions for multi-agent
systems,” Automatica, vol. 58, pp. 39-42, 2015.

[67] Y. Cao, W. Yu, W. Ren and G. Chen, “An overview of recent progress in the study of
distributed multi-agent coordination,” IEEE Trans. on Industrial Informatics, vol. 9, no. 1,
pp. 427-438, 2013.

[68] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle
formations,” IEEE Trans. on Automatic Control, vol. 49, no. 9, pp. 1465-1476, 2004.

[69] Z. Li, Z. Duan, W. Ren and G. Feng, “Containment control of linear multi-agent systems
with multiple leaders of bounded inputs using distributed continuous controllers,”
International Journal of Robust and Nonlinear Control, vol. 25, pp. 2101-2121, 2014.

[70] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction, The MIT Press,
Cambridge, MA, 1998.

[71] R. J. Leake and R. W. Liu, “Construction of suboptimal control sequences,” J. SIAM
Control, vol. 5, No. 1, pp. 54-63, 1967.

[72] D. P. Bertsekas, “Dynamic programming and suboptimal control: a survey from ADP to
MPC,” European Journal of Control, vol. 11, pp. 310-334, 2005.

[73] K. G. Vamvoudakis, H. Modares, B. Kiumarsi and F. L. Lewis, “Game theory-based
control system algorithms with real-time reinforcement learning,” IEEE Control Systems
Magazine, pp. 33-52, 2017.

[74] G. P. Liu, J. B. Yang and J. F. Whidborne, Multiobjective Optimisation and Control.
Research Studies Press, 2003.

[75] A. Gambier and E. Badreddin, “Multi-objective optimal control: An overview,” presented at
the IEEE Int. Conf. on Control Applications, Oct. 1-3, 2007.

[76] F. Logist, S. Sager, C. Kirches and J. F. Van Impe, “Efficient multiple objective optimal
control of dynamic systems using integer controls,” Journal of Process Control, vol. 20,
pp. 810-822, 2010.

[77] A. Kumar and A. Vladimirsky, “An efficient method for multiobjective optimal control and
optimal control subject to integral constraints,” Journal of Computational Mathematics,
vol. 28, No. 4, pp. 517-551, 2010.

[78] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University press, New
York, 2004.

[79] D. Vrabie, O. Pastravanu, M. Abu-Khalaf and F. L. Lewis, “Adaptive optimal control for
continuous-time linear systems based on policy iteration,” Automatica, vol. 45, pp. 477-
484, 2009.

[80] D. Vrabie, K. G. Vamvoudakis and F. L. Lewis, Optimal Adaptive Control and Differential
Games by Reinforcement Learning Principles, The Institution of Engineering and
Technology, London, UK, 2013.

[81] D. Liu, Q. Wei, D. Wang, X. Yang and H. Li, Adaptive Dynamic Programming with
Applications in Optimal Control, Springer International Publishing, 2017.

[82] F.-Y. Wang, H. Zhang and D. Liu, “Adaptive dynamic programming: An introduction,”
IEEE Computational Intelligence Magazine, pp. 39-47, 2009.

142

[83] R. Kamalapurkar, L. Andrews, P. Walters and W. E. Dixon, “Model-based reinforcement
learning for infinite-horizon approximate optimal tracking,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, No. 3, pp. 753-758, 2017.

[84] T. Bian, Y. Jiang and Z.-P. Jiang, “Adaptive dynamic programming and optimal control of
nonlinear nonaffine systems,” Automatica, vol. 50, pp. 2624-2632, 2014.

[85] Q. Yang and S. Jagannathan, “Reinforcement learning controller design for affine
nonlinear discrete-time systems using online approximators,” IEEE Trans. on Systems,
Man and Cybernetics-Part B: Cybernetics, vol. 42, no. 2, pp. 377-390, 2012.

[86] Q.-R. Li, W.-H. Tao, N. Sun, C.-Y. Zhang and L.-H. Yao, “Stabilization control of double
inverted pendulum system,” presented at the 3rd Int. Conf. on Innovative Computing
Information and Control, Jun. 18-20, 2008.

[87] J.-L. Zhang and W. Zhang, “LQR self-adjusting based control for the planar double
inverted pendulum,” Physics Procedia, vol. 24, Part C, pp. 1669-1676, 2012.

[88] Y. Song, Y. Wang and C. Wen, “Adaptive fault-tolerant PI tracking control with
guaranteed transient and steady-state performance,” IEEE Trans. on Automatic Control,
vol. 62, no. 1, pp. 481-487, 2017.

[89] Y. Song, X. Huang and C. Wen, “Tracking control for a class of unknown nonsquare
MIMO nonaffine systems: A deep-rooted information based robust adaptive approach,”
IEEE Trans. on Automatic Control, vol. 61, no. 10, pp. 3227-3233, 2016.

[90] H. Liu, G. Xie and L. Wang, “Necessary and sufficient conditions for containment control of
networked multi-agents systems,” Automatica, vol. 48, pp. 1415-1422, 2012.

[91] W. Li, “A dynamics perspective of pursuit-evasion: Capturing and escaping when the
pursuer runs faster than the agile evader,” IEEE Trans. on Automatic Control, vol. 62, no.
1, 2017.

[92] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory. SIAM, Philadelphia,
PA, 2 edition, 1999.

[93] K. Doya, “Reinforcement learning in continuous time and space,” Neural Computing, vol.
2, no. 1, pp. 219–245, 2000.

[94] B. Luo, H. Wu, and T. Huang, “Off-policy reinforcement learning for control design,” IEEE
Transactions on Cybernetics, vol. 45, no. 1, pp. 65-76, 2015.

[95] B. M. Chen, Robust and H Control. Springer-Verlag, London, UK, 2000.

[96] L. J. Savage, The Foundations of Statistics. Dover Press, Mineola, NY, 2 edition, 1972.

[97] G. Loomes and R. Sugden, “Regret theory: an alternative theory of rational choice under
uncertainty,” Economic Journal, vol. 92, pp. 805–824, 1982.

[98] D. E. Bell, “Regret in decision making under uncertainty,” Operations Research, vol. 30,
pp. 961–981, 1982.

[99] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming
for feedback control,” IEEE Circuits and Systems Magazine, pp. 32–50, 2009.

[100] J. Li, H. Modarez, T. Chai, F. L. Lewis and L. Xie, “Off-policy reinforcement learning for
synchronization in multiagent graphical games,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 10, pp. 2434–2445, 2017.

143

[101] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems. John Wiley & Sons, New
York, USA, 1972.

[102] H. Zhang, F. L. Lewis and A. Das, “Optimal design for synchronization of cooperative
systems: state feedback, observer and output feedback,” IEEE Transactions on
Automatic Control, vol. 56, no. 8, pp. 1948–1952, 2011.

[103] G. P. Papavassilopoulos and J. B. Cruz, Jr., “On the existence of solutions to coupled
matrix Riccati differential equations in linear quadratic Nash games,” IEEE Transactions
on Automatic Control, vol. 24, pp. 127–129, 1979.

Biographical Information

Victor G. Lopez received the B.S. degree from the Universidad Autonoma de

Campeche, Mexico, in 2010 and the M.S. degree from the Research and Advanced Studies

Center (CINVESTAV), Mexico, in 2013. He is currently a Ph.D. student at the University of

Texas at Arlington, TX, USA. Victor was a Lecturer at the Western Technologic Institute of

Superior Studies (ITESO) in Guadalajara, Mexico, in 2015. His research interests include cyber-

physical systems, game theory, distributed control, reinforcement learning and robust control.

