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Abstract 

ANALYSIS OF LAMINATED CURVED BEAM WITH AND WITHOUT DEFECTS 

AND IMPERFECTIONS 

Wei-Tsen Lu, PhD 

The University of Texas at Arlington, 2019 

Supervising Professor: Endel V. Iarve 

 Several studies have focused on the modeling and response characterization of 

composite structural members, with particular emphasis on composite curved 

beams. The class of curved beam is explored to determine mechanical response in 

primary aerospace structural applications. The present work focuses on developing 

analytical closed-form solutions for investigating composite curved beams with and 

without fiber waviness and delamination. The present work can efficiently 

characterize the structural behavior of composite curved beams under bending. 

 This work shows the development of a novel mathematical approach to 

predict structural performance by investigating axial stiffness, bending stiffness 

with consideration of shear deformation in composite curved beam. A modified 

Classical Lamination Theory (CLT) is proposed by considering cross-section effect 

of a beam. Finite Element (FE) analysis is employed to compare against the 

analytical results. Parametric study is conducted to investigate effects of radius of 

composite curved beam versus axial and bending stiffness. Ply stress variations are 

also studied for a composite curved beam under bending. The stress results obtained 

from numerical analysis show excellent agreement in comparison with present 

approach.  
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 The present work also studied fiber waviness effect in composite curved 

beam. Fiber waviness has an adverse influence on the mechanical properties. The 

tensile, compressive strength, and fatigue life degrade significantly due to fiber 

waviness. The proposed method takes into account the degraded stiffness properties 

by considering various amplitude-length ratio of fiber waviness presented in curved 

beam. It can be concluded that for a composite curved beam with fiber waviness, 

the effect of stiffness reduction significantly increases if the amplitude-length ratio 

is between 0.6 and 1.0. Moreover, the present work provides an analytical solution 

to predict the interlaminar radial stress 𝜎𝑟  if fiber waviness is present. The 

analytical results show excellent agreement with results obtained from numerical 

analysis.  

 Delamination is considered as one of the dominant failure factor in 

composite and leads to substantial stiffness loses. The present work provides an 

analytical method for calculation of the strain energy release rate (ERR) of a 

delamination in a composite curved beam. In the present approach, we allow for a 

delamination which is not symmetric with respect to the middle span of the 

composite curved beam and can be located at any arbitrary interface. 
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LITERATURE SURVEY 

 

1-1 Composite Curved Beam 

 

The well-known beam theory for an isotropic beam is Euler-Bernoulli beam 

[1], which effectively demonstrates behavior of a beam under axial forces and 

bending. It is assumed that the section of the plane remains plane and perpendicular 

to the longitudinal axis after deformation. On the other hand, Timoshenko beam 

theory [2] takes shear deformation into account where the cross-section of the plane 

is no longer perpendicular to the longitudinal axis of the beam after deformation. 

Beams can be divided into two groups, straight and curved. The isotropic curved 

beam contains tangential 𝜎𝜃, radial σr, and shearing stress 𝜏𝑟𝜃. The exact solution 

is derived from Timoshenko and Goodier [3] and Oden [4]. They provided the 

equilibrium equations for pressure on the circular boundary under axial loading and 

bending moment. However, among these studies, the formulas were developed to 

determine stresses for curved members by using isotropic material properties only. 

In CLT, the stiffness of the composite laminate is approximated by an equivalent 

homogenized material property through the thickness of the entire beam. However, the 

through the thickness direction is ignored therefore it cannot be applied to composite 

curved beam because of lacking interlaminar stress. Therefore, Lekhnitskii [5] 

provided closed-form methods for obtaining transverse interlaminar stress in a 

composite curved beam under end bending moment and shearing load. Later on, 

Chung and Harold [6] provided the closed-form method for composite curved beam 
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under axial loading. Therefore, the maximum delamination stress along radial direction 

σrmaxcan be calculated by equating 
𝑑𝜎𝑟

𝑑𝑟
 zero [7, 8]. 

However, for Lekhnitskii’s approach, pure bending and axial forces applied at the 

end are assumed so the boundary conditions are different from the composite curved 

beam. Consequently, the extension of the Lekhnitskii’s approaches was presented [9-

11]. Shenoi and Wang [9] concluded that the stacking sequence and radius of curvature 

have significant effects on delamination and radial stress, which is similar to [12, 13]. 

Vibrational formulations of beam problems are of two types [14]. For the first type, 

governing equations are derived by using force or moment balance. The second type is 

based on varied formulation and energy measure of a structure to formulate the 

governing equation. Energy-based method is extensively applied in nonlinear analysis 

of structural members. The strain energy for composite curved beam has been studied 

in [15-17]. The strain energy and the kinetic energy for the entire beam including rotary 

inertia are presented by [15], and the strain energy based on thin cross-section including 

high order terms in the binomial expansion are presented by [17]. Several authors also 

studied torsion effect for composite curved beam [18-20]. However, among these 

researches, the effect of stiffness under Narrow Beam (NB) assumption for composite 

curved beam has not been studied. 

 

1-2 Fiber Waviness 

 

Fiber waviness is considered a common imperfection occurring in the 

manufacturing process of composite structures especially for thick composite 

laminates of compound curvature and in the region where the thickness is changing 

[21]. The imperfection is caused by non-uniform distribution of pressure and 

mismatch of thermal expansion (CTE) between tooling material, matrix, and fiber. 



3 

 

This will cause longitudinal and transverse stresses in composite, including higher 

matrix contraction and fiber buckling as stated by Kantharaju [22]. Parameters on 

developing fiber waviness have been studied by Kugler and Moon [23]. They 

concluded that the influence of holding cure temperature is insignificant, but the 

cooling rate will affect the severity and the quantity of fiber waviness. 

The concept of elastic moduli reduction for initial distortions of the 

unidirectional reinforcing layers was first provided by Bolotin [31]. In his analysis, 

Kirchhoff hypothesis was used to describe the deformation of thin layers or slightly 

twisted plates with initial irregulations. In connection with the study of layered 

reinforced media with random initial irregularities, reduction on the modulus of 

elasticity in tension along the fibers of unidirectional glass-reinforced plastics (GRP) 

is proposed by Tarnopol'skii et al. [32]. The shape of fiber irregularities is assumed 

to be a sinusoidal function. Bažant [33] advanced their approach by taking into 

account changes in wave amplitude due to radial forces. Three ideal cases of 

unidirectional fiber distributions were discussed. The first one is parallel, uniformly 

distributed fibers with sinusoidal curvature. The second one is not strictly parallel 

distributed fibers with sinusoidal curvature. The third one is when fiber waviness 

are equal in amplitude but in opposite directions.  

Extensive investigations of stiffness loss due to fiber waviness was conducted 

in  [34-36]. Lo and Chim [37] predicted the compressive strength of unidirectional 

composite with fiber waviness. Adams and Hyer [38] experimentally investigated 

multi-directional composite laminates under static compression loading. They 

observed that severe waviness induced a static strength reduction of 36 %, although 

the fiber waviness occurred in 0° ply and accounted for only 20 % of the load-

carrying capacity of the laminate. Rai et al. [39] numerically investigated lamina 

modulus as a function of fiber waviness, which is similar to [40-43]. They 

concluded that fiber waviness, which occurs in 0° ply has significant influence on 
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stiffness reduction. If fiber waviness occurs in ±45° ply, the influence in stiffness 

reduction is more pronounced in torsional cases than bending cases. 

Fiber waviness can occur in either in-plane or out-of-plane for a laminated 

beam [44]. The effects of out-of-plane fiber waviness for a lamina were further 

investigated by Hsiao and Daniel [45-47]. Three types of fiber waviness are 

considered including uniform, graded and localized fiber waviness. They 

concluded that tensile and compressive elastic properties and nonlinear behavior in 

composite materials can be significantly influenced by fiber waviness. Several 

researchers applied numerical method for investigating effects of fiber waviness. 

Seon [48] studied tape composite with fiber waviness by linear and nonlinear FE 

analysis. The nonlinear interlaminar stress-strain relations can improve the 

delamination onset prediction. He observed that the failure load for a rectangular 

tape with small amplitude fiber waviness under tension is higher compared to fiber 

waviness with large amplitude. Nikishkov et al. [49] conducted a numerical model 

to investigate progressive fatigue damage in composites with fiber waviness. 

However, most of analytical researches is not focused on out-plane fiber waviness 

for a laminated composite beam. Therefore, the object of this research is to develop 

a feasible and efficient approach to analyze composite curved beam with out-of-

plane fiber waviness. 

There is a type of composites where fiber waviness is built-in by design, 

namely textile [50] and braided composites [51]. The fiber waviness leads to same 

general property effects such as modulus and strength reduction [52-55]. However, 

it allows to produce composites with greatly improved properties in the transverse 

direction and, in the case of 3D reinforcement, also in the out-of-plane direction. A 

detailed review of the respective literature is beyond the scope of this work. It is 

worth mentioning that application of analytical methods has led to accurate 
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estimates of stiffness properties of such materials as a function of fiber angulation 

and is addressed in a number of works including in [56-58]. 

 

1-3 Composite Curved Beam with Delamination 

 

Three principle failure models are often to be found in a laminated composite 

– fiber failure, matrix cracking, and delamination [59]. Delamination is considered 

as one of the dominant failure factors in composites and leads to substantial 

stiffness loses [60, 61], and local compressive failure due to instability [62]. 

Delamination is driven by interlaminar stresses, Interlaminar Shear Stress (ILSS) 

and Interlaminar Tensile Stress (ILTS). When ILSS or ILNS grows over the critical 

value given from the material, the delamination starts to initiate and propagate. 

There are several affects have impacts on interlaminar stresses, including stacking 

sequence, Poisson’s ratio mismatch, ply thickness [63], and free-edge effect [64-

66]. The initiation of delamination usually occurs at the location with the highest 

ILTS. 

Another essential factor to describe initiation and propagation of delamination is 

strain ERR. Double Cantilever Beam (DCB) test (ASTM D5228) [67] is the method 

for measuring Mode-I fracture toughness, and End-Notched Flexure (ENF) test 

(ASTM WK22949) [68] is the method for measuring Mode-II fracture toughness 

experimentally. Mode-I and Mode-II delamination can be also predicted accurately 

by analytical methods based on the plate theory and bridge-crack models [69-71]. Due 

to limit cases can be applied for pure Mode-I and Mode-II fracture, a mixed-mode 

approach based on non-linear and Timoshenko first-order shear theory is developed 

[72] for a straight beam. Considering a beam with an initial curvature, Lu et al. [73] 

considered a circumferential crack in composite curved beam under bending. 
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Superposition method of a perfect curved beam under bending and a cracked curved 

beam subjected to opening radial stress acting on the crack interface was applied. They 

assumed that if the crack is small and locates in the middle of the beam, the crack is 

considered in pure Mode-I. Based on their observations, the strain ERR reaches the 

maximum when the half crack angle approaches to 45°, and the strain ERR decreases 

monotonically when the crack location approaches to outer curvature of the curved 

beam. Moreover, they studied the strain ERR for a large crack using FE analysis. They 

found that Mode-II becomes dominant when the crack tip reaches to 90° . This 

conclusion is similar than the conclusion made by [74]. 

 Roberta and Brian [75] developed an analytical approach based on bridged-

crack model which deals with mixed-mode delamination in composite curved beam 

under bending. In their model, the strain ERR is calculated by considering the J-

integral along a path surrounding the crack tip. It can be observed that regarding less 

small crack angle θc, strain ERR results using beam theory are accurate compared to 

FE results. The similar conclusion is made by Bruno et al. [76]. They concluded that 

as a matter of fact for a short crack, curved laminated beam theory is not appropriate. 

The strain ERR value between their model and FE results are within 8 % error except 

for very short crack, where θc < 5°. However, among their approaches, only a crack 

which is symmetric with respect to the middle span of the curved beam can be applied. 

Therefore, the objective of this study is to develop an analytical analysis for a 

composite curved beam with a delamination locates in any arbitrary interface and 

hoop location.  
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RESEARCH OBJECTIVES 

 

 Composite structures provide higher specific strength and stiffness than 

structures composed of metallic materials. Among various applications, one of the 

most important components are composite beams. Over the last three decades, 

composite beams have been widely used in automobile and aerospace applications. In 

aerospace industry, aircraft wings contain box structures which are typically assembled 

of stringers and spars. A number of different cross-sections “I”, “C”, and “Z” are 

considered, where the concept of composite curved beam is applied. While FE based 

computational approaches have been developed and widely used to address various 

types of composite structures, there is a need to develop more efficient and compact 

analytical methods. Development of such approaches for curved beam structures is the 

overarching goal of the present research. Three different approaches are applied to 

analysis of composite beams including conventional beam, Wide Beam (WB) and 

Narrow Beam (NB) assumptions. General beam method is derived from CLT which 

takes in-plane properties into account. For WB, twisting curvature is allowed so 

that𝑀𝑥𝑦 = 0. On the other hand, twisting curvature is suppressed for NB, and 𝑀𝑥𝑦 ≠

0 is induced. 

The first objective of this research is to apply the NB assumptions to composite 

curved beam. The formulation of axial and bending stiffness of composite curved beam 

can yield very different results using different beam assumptions depends on the cross-

section of the beam. If the width to height ratio is small (
w

t
≪ 6), NB assumption has 

to be applied. 

The second objective is to predict stiffness reduction and stress variation in 

composites curved beam due to out-of-plane local fiber waviness. Composite materials 
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have defects and imperfections such as fiber waviness, delamination, porosity, and 

resin migration, which are caused by the manufacturing process [77]. Fiber waviness 

often can be found in thick composites [78]. Several factors can cause this defect 

including non-uniform cure pressure, resin shrinkage or pre-buckling. Fiber waviness 

has an adverse influence on the mechanical properties. The tensile, compressive 

strength, and fatigue life degrade significantly [79]. Most of the research focused on 

fiber waviness is performed in unidirectional flat composites, but fiber waviness in 

composite curved beam using analytical approaches is not addressed. The proposed 

research aims to fill this void. A FE analysis will be conducted to verify results. If fiber 

waviness is located near leg region of curved beam, the maximum tensile stress 𝜎𝑟  no 

longer located in the middle span of the composite curved beam. 

The third objective is to predict failure load of composite curved beam with 

delamination under bending. In the past studies, the delamination can be only located 

symmetrically with respect to the middle span of the composite curved beam. The 

results show that the strain ERR results have good agreement compared with FE 

analysis. However, for a short crack (θc < 5°), analytical results no longer satisfy the 

numerical results. Therefore, this research aims to fill the void. In the present research, 

we allow for a delamination which is not symmetric with respect to the middle span of 

the composite curved beam and it can be located at any arbitrary interface.  
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OVERVIEW OF CLASSICAL LAMINATION THEORY 

 

3-1 Lamina Stage 

 

 A Lamina contains fiber and matrix which is characterized as a single layer. 

It is an orthotropic material with principal material axes in the fiber direction. In 

lamina level, it is usually to consider material homogeneous, and average properties 

is used in the analysis. This type of analysis is called micromechanics and 

considered the unidirectional lamina as a quasi-homogeneous anisotropic material 

with averaged stiffness and strength. A thin-walled unidirectional lamina is 

generally under plane stress assumption. Stresses along the thickness direction are 

assumed to be zeros, 𝜎3 = 𝜏13 = 𝜏23 = 0. The stress/strain relationship is further 

reduced to  

[

𝜎1
𝜎2
𝜏12
] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [

𝜀1
𝜀2
𝑟12
] (3-1) 

where 

Q11 =
𝐸1

1 − 𝑣12𝑣21
   ,   𝑄22 =

𝐸2
1 − 𝑣12𝑣21

   

𝑄12 =
𝑣12𝐸2

1 − 𝑣12𝑣21
   ,   𝑄66 = 𝐺12 

(3-2) 

 

𝐸1 is Young’s modulus along 1-direction (fiber direction). 
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𝐸2 is Young’s modulus along 2-direction. 

𝐺12 is shear modulus along 1-2 plan. 

𝑣12 is Poisson’s ratio associated with loading in 1-direction and produced strain in 

2-direction. 

𝑣21 is Poisson’s ratio associated with loading in 2-direction and produced strain in 

1-direction. 

For a general anisotropic material, 21 material constants exhibit 

extension/shear coupling behavior. For a general orthotropic material, 9 material 

constants exhibit no extension/shear coupling behavior. If a thin orthotropic 

material is considered, only 4 material constants required to fully describe material 

behavior of a 2-D orthotropic material, 𝐸1, 𝐸2, 𝐺12, and 𝑣12. In viewing Eqs. (3-1), 

[𝑄] matrix is so-called the reduced stiffness matrix, no shear strain is induced when 

σ1 is applied. In addition, no in-plane strains are induced if τ12 is applied. This 

implies that for 0° lamina, where no extension/shear coupling are presented. 

 

3-2 Stress Transformation 

 

 Normally, the lamina principal axes (1 and 2) do not coincide with the 

loading axes (x and y). The stress components referred to the principal axes can be 

transferred in terms of loading axes. The following Eqs. (3-3) shows stress 

transformation from 1-2 axes to x-y axes. 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

] = [𝑇𝜎(−𝜃)] [

𝜎1
𝜎2
𝜏12
] (3-3) 
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where  

[𝑇𝜎(𝜃)] = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛
−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] 

 

and 𝑚 = cos 𝜃 , 𝑛 = sin 𝜃 , the angle 𝜃  is measured positive 

counterclockwise from the x-axis to the 1-axis as shown in Figure 3-1.  

 

 

Figure 3-1 x-y coordinate system for a 0° lamina and 1-2 coordinate system for a θ° lamina. 

 

 The stress/strain relationship between transformed compliances as a 

function of the principal lamina compliances is given by 

[𝑆̅]𝑥−𝑦 = [𝑇𝜀(−𝜃)][𝑆]1−2[𝑇𝜎(𝜃)] (3-4) 

where  

[𝑇𝜀(𝜃)] = [
𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2
] 
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[𝑆]1−2 =

[
 
 
 
 
 
 
1

𝐸1
−
𝑣12
𝐸2

0

−
𝑣12
𝐸2

1

𝐸2
0

0 0
1

𝐺12]
 
 
 
 
 
 

 

 

The relationship of stiffness matrix in x-y coordinate system can be transformed 

to 1-2 coordinate system in terms of basic material constants 𝐸1, 𝐸2, 𝑣12, and 𝐺12. 

[𝑄̅]𝑥−𝑦 = [𝑇𝜎(−𝜃)][𝑄]1−2[𝑇𝜀(𝜃)] (3-5) 

 

3-3 Laminate Stage (Classical Lamination Theory) 

 

 The overall structural behavior of multidirectional laminate is a function of 

stacking sequence and material properties. The Classical Lamination Theory (CLT) 

for a multidirectional laminate predicts the behavior of the laminate based on 

several assumptions. First, the laminate is thin which means the lateral dimension 

is much larger than its thickness direction. Therefore, the plane stress assumption 

has to be followed, 𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0 . Second, displacements are small 

compared with the thickness of the laminate and displacements are continuous 

through the laminate. Third, cross-section remains normal to the middle surface 

after deformation, 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0 . Also, the normal distances from the middle 

surface remain constant, that is 𝜀𝑧 = 0. In general, each lamina and the entire 

laminate behave linearly elastic. 

 The displacements of the mid-plane are function of x and y:  

𝑢0 = 𝑢0(𝑥, 𝑦) (3-6) 
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𝑣0 = 𝑣0(𝑥, 𝑦) 

𝑤0 = 𝑤0(𝑥, 𝑦) 

where 𝑢0, 𝑣0 and 𝑤0 are displacements in the x, y, and z directions, respectively. 

The reference plane of a laminated plate locates at the mid plane of the plate. In 

general,  

𝑢 = 𝑢0 − 𝑧
𝜕𝑤

𝜕𝑥
 

𝑣 = 𝑣0 − 𝑧
𝜕𝑤

𝜕𝑦
 

(3-7) 

where z is the through thickness coordinate. 

 A linear strain function across the thickness is assumed based on linear 

elastic behavior of the laminate. The strains at any given point can be expressed as 

functional of the reference plane strains and the laminate curvatures.  

[

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
] = [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧 [

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

] (3-8) 

𝜀𝑥
0, 𝜀𝑦

0, 𝛾𝑥𝑦
0 , 𝐾𝑥 , 𝐾𝑦 and 𝐾𝑥𝑦 are mid-plane strains and curvatures can be expressed 

as 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

 

𝜀𝑦
0 =

𝜕𝑣0
𝜕𝑦

 

𝛾𝑥𝑦
0 =

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

 

(3-9) 
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𝐾𝑥 = −
𝜕2𝑤

𝜕𝑥2
 

𝐾𝑦 = −
𝜕2𝑤

𝜕𝑦2
 

𝐾𝑥𝑦 = −
2𝜕2𝑤

𝜕𝑥𝜕𝑦
 

Once strain in 𝑘𝑡ℎ layer is obtained, the stresses in the 𝑘𝑡ℎ layer can be written as 

[

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘𝑡ℎ

= [𝑄̅𝑥−𝑦]𝑘𝑡ℎ ([

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + 𝑧𝑘𝑡ℎ [

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

]) (3-10) 

 

Based on Eqs. (3-10), even though the strain is linearly varied through the 

thickness direction of the laminate, the stress in each layer is discontinuous due to 

the varied transformed stiffness matrix [𝑄̅𝑥−𝑦]𝑘𝑡ℎ. However, analyzing each layer 

individually is a cumbersome task. Because of the discontinuous variation of 

stresses, it is convenient to deal with the plate forces and plate moment instead of 

identifying individual layer. In laminate stage, the total force and moment resultants 

can be obtained by summing the effects for all layers as shown below. 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∑∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘𝑡ℎ

𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∑∫ [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

]

𝑘𝑡ℎ

𝑧 𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

 

(3-11) 

where 𝑧𝑘 and 𝑧𝑘−1 are the z-coordinates of the upper and lower surface in 𝑘𝑡ℎ layer. 

After integration, the plane force and moment resultants can be expressed as 
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[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = [𝐴] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [𝐵] [

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

] 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = [𝐵] [

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

] + [𝐷] [

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

] 

(3-12) 

where  

[𝐴] = ∑[𝑄̅𝑥−𝑦]𝑘𝑡ℎ
(𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

    𝑢𝑛𝑖𝑡 = 𝑙𝑏/𝑖𝑛 

[𝐵] =
1

2
∑[𝑄̅𝑥−𝑦]𝑘𝑡ℎ

(𝑧𝑘
2 − 𝑧𝑘−1

2 )

𝑛

𝑘=1

    𝑢𝑛𝑖𝑡 = 𝑙𝑏 

[𝐷] =
1

3
∑[𝑄̅𝑥−𝑦]𝑘𝑡ℎ

(𝑧𝑘
3 − 𝑧𝑘−1

3 )    𝑢𝑛𝑖𝑡 = 𝑙𝑏 − 𝑖𝑛

𝑛

𝑘=1

 

(3-13) 

 

In viewing Eqs. (3-13), [𝐴], [𝐵] and [𝐷] matrix are functions of geometry, material 

properties and stacking sequence. They are the averaging elastic stiffness. [𝐴] is an 

extensional stiffness matrix relating in-plane loads to in-plane strains. [𝐵] is an 

extensional-bending coupling stiffness matrix relating in-plane load to curvatures 

and moments to in-plane strains. [𝐷] is a bending stiffness matrix. The relationship 

between force and moment resultants to the mid-plane strains and curvatures is 

shown below. 

[𝑁̅
𝑀̅
]
6𝑥1

= [
𝐴 𝐵
𝐵 𝐷

]
6𝑥6

[𝜀
0

𝐾
]
6𝑥1

 (3-14) 
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[𝜀
0

𝐾
]
6𝑥1

= [
𝑎 𝑏
𝑏 𝑑

]
6𝑥6

[𝑁̅
𝑀̅
]
6𝑥1

 

[
𝑎 𝑏
𝑏 𝑑

]
6𝑥6

= [
𝐴 𝐵
𝐵 𝐷

]
−1

6𝑥6

 

where  [𝑁̅] = 𝑁 ,[𝑀̅] = 𝑀  is shown in Eqs. (3-11). If mechanical loading and 

temperature loading are both considered, [𝑁̅] = [𝑁] + [𝑁𝑇] and [𝑀̅] = [𝑀] +

[𝑀𝑇], where thermal induced loads [𝑁𝑇] and thermal induced moments [𝑀𝑇] is 

written as: 

[𝑁𝑇] = ∆𝑇∑ [𝑄̅𝑥−𝑦]𝑘𝑡ℎ[𝛼𝑥−𝑦 ]𝑘𝑡ℎ
(𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1
 

[𝑀𝑇] =
∆𝑇

2
∑ [𝑄̅𝑥−𝑦]𝑘𝑡ℎ[𝛼𝑥−𝑦 ]𝑘𝑡ℎ

(𝑧𝑘
2 − 𝑧𝑘−1

2 )
𝑛

𝑘=1
 

(3-15) 

where 𝛼𝑥−𝑦 is the Coefficient of Thermal Expansion (CTE) and ∆𝑇  is the 

temperature difference. 
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STIFFNESS AND STRESS INVESTIGATION OF COMPOSITE 

CURVED BEAM 

 

4-1 Stiffness Model Formulation for Composite Curved Beam 

 

 The curved beam geometry shown in Figure 4-1 represents a rectangular 

cross-section with a mean radius 𝑅𝑚 where 𝑅𝑚 = (𝑅𝑜 + 𝑅𝑖)/2, and 𝑅𝑜 is the outer 

radius and 𝑅𝑖 is the inner radius of the curved beam. Beams usually are slender, and 

its dimension along the x-direction is greater than the other dimensions along y and 

z directions. The longitudinal axis is in the x or 𝜃 direction. The out-of-plane axis 

is in the z or r direction.  

Assume line 𝑝𝑝′ is the mid-axis of the curved beam. In the 𝑘𝑡ℎ layer, the 

elongation after deformation is (𝑅𝑚 + 𝑧)𝑑𝜃 𝜀𝜃 . This elongation can be further 

describe in terms of mid-plane strain, 𝜀0 , and curvature K, which is  (𝑅𝑚 +

𝑧)𝑑𝜃 (𝜀0 + 𝑧 𝐾). By equating above equations, the strain in any given point along 

𝜃 direction can be expressed as 

𝜀𝜃 =
𝑅𝑚

𝑅𝑚 + 𝑧
(𝜀0 + 𝑧 𝐾) (4-1) 
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Figure 4-1 The configuration of the curved beam. 

For a thick curved beam, shear deformation and rotary inertia are included in the 

derivation. The kinematical relationship for middle surface strain and curvature can 

be shown as  

𝜀0 =
𝜕𝑢0
𝜕𝑥

+
𝑤0
𝑅𝑚

   ,   𝐾 =
𝜕𝜓

𝜕𝑥
 (4-2) 

where 

𝛾 =
𝜕𝑤

𝜕𝑥
+ 𝜓 −

𝑢

𝑅𝑚
 (4-3) 

 

and  𝜓 is rotation between a line originally normal to the longitudinal direction to 

the out-of-plane direction, γ is the shear strain at the neutral axis. The force and 
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moment resultants of the curved beam can be obtained by integrating stresses over 

the thickness of the beam. 

[𝑁] = ∑ ∫ [𝑄̅𝑥−𝑦]𝑘𝑡ℎ

𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

𝑅𝑚
𝑅𝑚 + 𝑧

(𝜀0 + 𝑧 𝐾) 𝑑𝑧 = [Ac]𝜀
0 + [𝐵𝑐]𝐾 

[𝑀] = ∑ ∫ [𝑄̅𝑥−𝑦]𝑘𝑡ℎ

𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

𝑅𝑚
𝑅𝑚 + 𝑧

(𝜀0 + 𝑧 𝐾) 𝑧 𝑑𝑧 = [Bc]𝜀
0 + [𝐷𝑐]𝐾 

(4-4) 

 

The averaging stiffness for a composite curved beam [Ac], [Bc], and [Dc] matrix 

can be expressed as  

[𝐴𝑐] = 𝑅𝑚∑[𝑄̅𝑥−𝑦]𝑘𝑡ℎ ln
𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

𝑛

𝑘=1

 

[𝐵𝑐] = 𝑅𝑚∑[𝑄̅𝑥−𝑦]𝑘𝑡ℎ

𝑛

𝑘=1

[(𝑧𝑘 − 𝑧𝑘−1) − 𝑅𝑚 ln
𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

] 

[𝐷𝑐] = 𝑅𝑚∑[𝑄̅𝑥−𝑦]𝑘𝑡ℎ [
1

2
(𝑧𝑘
2 − 𝑧𝑘−1

2 ) − 𝑅𝑚(𝑧𝑘 − 𝑧𝑘−1) + 𝑅𝑚
2 ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

]

𝑛

𝑘=1

 

(4-5) 

 

The shear stiffness  [𝐺𝐴̅̅ ̅̅ 𝑐] can be also describe as functional of 𝑅𝑚 : 

[𝐺𝐴̅̅ ̅̅ 𝑐] = 𝑘𝑠𝑅𝑚∑(𝐺13 cos
2 𝜃𝑘) ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

𝑛

𝑘=1

 (4-6) 

where ks is the shear correction factor, typically taken as 5/6 for rectangular cross-

section. θk is the stacking sequence at the kth layer. All the derivation can be found 

in detail from [13, 15, and 80]. 
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4-2 Modified Stiffness Approach for Composite Beam 

 

 The cross-section of a beam can be categorized into three groups, general, 

wide, and narrow section. For a general beam which does not take the width to 

height ratio into account, since the twisting curvature 𝐾𝑥𝑦 is allowed, no twisting 

moment 𝑀𝑥𝑦 is induced. Therefore, the constitutive equation can be expressed as 

[
𝜀𝑥
0

𝐾𝑥
] = [

𝑎11 𝑏11
𝑏11 𝑑11

] [
𝑁𝑥
𝑀𝑥
] (4-7) 

where 𝑁𝑥 is an applied force per unit width along x-direction and 𝑀𝑥 is an applied 

moment per unit width. The axial stiffness is 
1

𝑎11
 , and the bending stiffness is 

1

𝑑11
. 

 

4.2.1. Wide Beam (WB) 

 

 If the width to height ratio is too small or too large, extra modifications 

should be considered. Considering a flat plate where the width to height ratio 

usually greater than 6, the lateral curvature, 𝐾𝑦 is suppressed because of the flat 

cross-section under bending as shown in Figure 4-2. Since 𝑁𝑥 and 𝑀𝑥 are applied, 

𝜀𝑥
0 ≠ 0 and 𝐾𝑥 ≠ 0. Moreover, due to flat plate geometry of the cross-section, mid-

plane strains and curvatures in transverse direction are equal to zero. Hence, the 

resultants forces and moment in y and shear direction are induced. 

𝜀𝑦
0 = 𝛾𝑥𝑦

0 = 𝐾𝑦 = 𝐾𝑥𝑦 = 0 

𝑁𝑦 ≠ 0,   𝑁𝑥𝑦 ≠ 0,   𝑀𝑦 ≠ 0,   𝑀𝑥𝑦 ≠ 0 

(4-8) 
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The constitutive equation of a beam with wide cross-section can be expressed as 

[
𝑁𝑥
𝑀𝑥
] = [

𝐴11 𝐵11
𝐵11 𝐷11

] [
𝜀𝑥
0

𝐾𝑥
] 

[
𝜀𝑥
0

𝐾𝑥
] = [

𝐴11 𝐵11
𝐵11 𝐷11

]
−1

[
𝑁𝑥
𝑀𝑥
] 

𝐴𝑥 = 𝐴11 −
𝐵11
2

𝐷11
,   𝐵𝑥 = 𝐵11 −

𝐴11𝐷11
𝐵11

,   𝐷𝑥 = 𝐷11 −
𝐵11
2

𝐴11
 

(4-9) 

where 𝐴𝑥 is axial stiffness, 𝐵𝑥 is coupling stiffness, and 𝐷𝑥 is bending stiffness.  

In addition, the resultant force and moment in the transverse direction can 

be also obtained. 

[
 
 
 
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑦

𝑀𝑥𝑦]
 
 
 

= [

𝐴12 𝐵12
𝐴16 𝐵16
𝐵12 𝐷12
𝐵16 𝐷16

] [
𝐴11 𝐵11
𝐵11 𝐷11

]
−1

[
𝑁𝑥
𝑀𝑥
] (4-10) 

 

 

Figure 4-2 Deformed shape of laminated beam under pure bending with narrow and wide cross-

sections. 
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4.2.2. Narrow Beam (NB) 

 

 If the width to height ratio of the cross-section is small as shown in Figure 

4-2, the lateral curvature 𝐾𝑦 is induced due to the effect of Poisson’s ratio. For a 

beam under a bending moment 𝑀𝑥 across the width of the beam, 𝑤, 𝑀𝑥𝑦 is induced. 

Since the loads per unit width is employed in the lamination theory, we have 

𝜀𝑦
0 ≠ 0, 𝛾𝑥𝑦

0 ≠ 0, 𝐾𝑦 ≠ 0, 𝐾𝑥𝑦 = 0 

𝑁𝑦 = 0,   𝑁𝑥𝑦 = 0,   𝑀𝑦 = 0,   𝑀𝑥𝑦 ≠ 0 

(4-11) 

The overall 6 by 6 stiffness matrix in Eqs. (3-14) can be simplified to 3 by 3 matrix 

under the above assumptions. 

[
𝜀𝑥
0

𝐾𝑥
𝐾𝑥𝑦

] = [

𝑎11 𝑏11 𝑏16
𝑏11 𝑑11 𝑑16
𝑏16 𝑑16 𝑑66

] [

𝑁𝑥
𝑀𝑥

𝑀𝑥𝑦

] (4-12) 

𝑀𝑥𝑦 can be expressed in terms of 𝑁𝑥 and 𝑀𝑥 due to suppressed curvature 𝐾𝑥𝑦. 

𝑀𝑥𝑦 = −
𝑏16
𝑑66

𝑁𝑥 −
𝑑16
𝑑66

𝑀𝑥 (4-13) 

Substituting Eqs. (4-13) back to (4-12), the mid-plane strain and curvature along 

the x-direction are 

𝜀𝑥
0 = (𝑎11 −

𝑏16
2

𝑑66
)𝑁𝑥 + (𝑏11 −

𝑏16𝑑16
𝑑66

)𝑀𝑥 

𝐾𝑥 = (𝑏11 −
𝑏16𝑑16
𝑑66

)𝑁𝑥 + (𝑑11 −
𝑑16
2

𝑑66
)𝑀𝑥 

(4-14) 
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𝑎∗ = 𝑎11 −
𝑏16
2

𝑑66
, 𝑏∗ = 𝑏11 −

𝑏16𝑑16
𝑑66

, 𝑑∗ = 𝑑11 −
𝑑16
2

𝑑66
 

In viewing Eqs. (4-14), the axial stiffness is obtained if only 𝑁𝑥 is applied. Also, 

the bending stiffness is obtained if only 𝑀𝑥 is applied. Thus, for bending case, 𝑁𝑥 =

0, and for tension case, 𝑀𝑥 = 0. The axial stiffness 𝐴𝑥 and bending stiffness 𝐷𝑥 for 

a composite beam with narrow cross-section are shown below. 

𝐴𝑥 =
𝑑∗

𝑎∗𝑑∗ − 𝑏∗2
,   𝐵𝑥 = −

𝑏∗

𝑎∗𝑑∗ − 𝑏∗2
,   𝐷𝑥 =

𝑑∗

𝑎∗𝑑∗ − 𝑏∗2
 (4-15) 

 

4-3 Ply-Stress Investigation 

 

 In this section, two approaches are discussed for investigating stress 

distribution for the composite curved beam under bending. The first approach is 

developed by Lekhnitskii [5] and extended by William [8]. Figure 4-3 shows a 

curved beam subjected to shear force 𝑄, axial force 𝑁, and bending moment 𝑀. 

The outer radius of the curved beam is denoted as b, and the inner radius of the 

curved beam is denoted as a. r is the distance from the center point O to any radial 

location of the curved beam. The width of the curved beam is denoted as w. If the 

composite material of the curved beam is assumed as continuous anisotropic 

material, the radial stress, tangential stress, and shear stress induced in the curved 

beam under end bending moment can be expressed as 
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Figure 4-3 Geometry of curved beam under bending moment 𝑀, shear force 𝑄, and axial force 𝑁. 

 

𝜎𝑟(𝑟) = −
𝑀

𝑏2𝑤𝑔
[1 −

1 − (
𝑎
𝑏)

𝑘+1

1 − (
𝑎
𝑏)

2𝑘 (
𝑟

𝑏
)
𝑘−1

−
1 − (

𝑎
𝑏)

𝑘−1

1 − (
𝑎
𝑏)

2𝑘  (
𝑎

𝑏
)
𝑘+1

(
𝑏

𝑟
)
𝑘+1

 ] 

𝜎𝜃(𝑟) = − 
𝑀

𝑏2𝑤𝑔
[1 −

1 − (
𝑎
𝑏)

𝑘+1

1 − (
𝑎
𝑏)

2𝑘 𝑘 (
𝑟

𝑏
)
𝑘−1

−
1− (

𝑎
𝑏)

𝑘−1

1 − (
𝑎
𝑏)

2𝑘 𝑘 (
𝑎

𝑏
)
𝑘+1

(
𝑏

𝑟
)
𝑘+1

 ] 

(4-16) 

 

where 𝑘 = √
𝐸𝜃

𝐸𝑟
, 𝐸𝜃  is modulus along 𝜃 -direction, and 𝐸𝑟  is modulus along r-

direction. The parameter g can be expressed as 

𝑔 =
1 − (

𝑎
𝑏
)
2

2
−

𝑘

𝑘 + 1

[1 − (
𝑎
𝑏
)
𝑘+1

]
2

1 − (
𝑎
𝑏
)
2𝑘 +

𝑘 (
𝑎
𝑏
)
2

𝑘 − 1
 
[1 − (

𝑎
𝑏
)
𝑘−1

]
2

1 − (
𝑎
𝑏
)
2𝑘  (4-17) 
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It is noticing that no shear stress 𝜏𝑟𝜃 is induced for a composite curved beam under 

bending. In addition, both 𝜎𝑟 and 𝜎𝜃 are independent of 𝜃 based on Eqs. (4-16).  

 The stress induced in the composite curved beam due to the end shear force 

𝑄 can be written as 

𝜎𝑟(𝑟, 𝜃) =
𝑄

𝑏𝑤𝑔1

𝑏

𝑟
[(
𝑟

𝑏
)
𝛽

+ (
𝑎

𝑏
)
𝛽

(
𝑏

𝑟
)
𝛽

− 1 − (
𝑎

𝑏
)
𝛽

 ] sin 𝜃 

𝜎𝜃(𝑟, 𝜃) =
𝑄

𝑏𝑤𝑔1

𝑏

𝑟
[(1 + 𝛽) (

𝑟

𝑏
)
𝛽

+ (1 − 𝛽) (
𝑏

𝑟
)
𝛽

(
𝑎

𝑏
)
𝛽

− 1 − (
𝑎

𝑏
)
𝛽

 ] sin 𝜃 

𝜏𝑟𝜃(𝑟, 𝜃) =
𝑄

𝑏𝑤𝑔1

𝑏

𝑟
 [(
𝑟

𝑏
)
𝛽

+ (
𝑎

𝑏
)
𝛽

(
𝑏

𝑟
)
𝛽

− 1 − (
𝑎

𝑏
)
𝛽

] cos 𝜃 

(4-17) 

where 

𝛽 = √1 +
𝐸𝜃
𝐸𝑟
(1 − 2𝑣𝑟𝜃) +

𝐸𝜃
𝐺𝑟𝜃

 

𝑔1 =
2

𝛽
 [1 − (

𝑎

𝑏
)
𝛽

] + [1 + (
𝑎

𝑏
)
𝛽

] ln
𝑎

𝑏
 

(4-18) 

 

and 𝐺𝑟𝜃 is shear modulus and  𝑣𝑟𝜃 is Poisson’s ratio.  

It is noticing that radial stress, tangential stress, and shear stress are functional of 𝑟 

and 𝜃. For isotropic material, the anisotropic parameter 𝛽 = 2. 

 The second approach is provided by Gonz ález-Cantero et al. [81, 82]. The 

CLT approach can provide stresses in 𝜃 and y directions under bending moment 

and axial forces for a composite curved beam. However, it is not capable to 

compute interlaminar radial stress 𝜎𝑟  using CLT. Therefore, they provided an 
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analytical model to aim this void. A cylindrical coordinate system with radius r and 

the angle 𝜃 is shown in Figure 4-4, where R is the medium radius, 𝑟𝑖𝑖 and 𝑟𝑜𝑖 are 

the inner and outer radius of the 𝑖𝑡ℎ ply. Substituting Eqs. (4-5) into (3-14), the mid-

plane strains and curvatures can be computed. For the bending case, 𝑁̅ = 0. 

[𝜀
0

𝐾
]
6𝑥1

= [
𝑎𝑐 𝑏𝑐
𝑏𝑐 𝑑𝑐

]
6𝑥6

[𝑁̅
𝑀̅
]
6𝑥1

 

 

(4-19) 

where  

[
𝑎𝑐 𝑏𝑐
𝑏𝑐 𝑑𝑐

] = [
𝐴𝑐 𝐵𝑐
𝐵𝑐 𝐷𝑐

]
−1

 

The strains in any radial location can be obtained using Eqs. (3-8), and the 

tangential stress 𝜎𝜃  in the 𝑘𝑡ℎ  ply can be further calculated using stress/strain 

relationship in Eqs. (3-1). 

[

𝜎𝜃
𝜎𝑦
𝜏𝑦𝜃

]

𝑘𝑡ℎ

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅16
𝑄̅16 𝑄̅26 𝑄̅66

]

𝑘𝑡ℎ

([

𝜀𝜃
0

𝜀𝑦
0

𝛾𝑦𝜃
0

] + 𝑧 [

𝐾𝜃
𝐾𝑦
𝐾𝜃𝑦

]) (4-20) 

 

It is noticing that only in-plane (𝜃, y) stresses are obtained using CLT due to plane 

stress assumption as shown in Eqs. (4-20) where 𝑄̅16 and 𝑄̅26 are coupling terms 

due to Poisson’s ratio. Once the tangential stress 𝜎𝜃 is obtained, the out-of-plane 

stresses 𝜎𝑟 and 𝜏𝑟𝜃 can be computed due to equilibrium.  
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Figure 4-4 Definition of ply radius [65]. 

 

The elasticity equilibrium equations in polar coordinates system are shown as: 

∂σθ
𝜕𝜃

+
1

𝑟

𝜕(𝑟2𝜏𝑟𝜃)

𝜕𝑟
= 0 

∂(𝑟𝜎𝑟)

𝜕𝑟
+
𝜕𝜏𝑟𝜃
𝜕𝜃

= 𝜎𝜃 

(4-21) 

Based on closed-form solutions provided by Lekhnitskii [5], composite curved 

beam exhibits no shear stress under pure bending moment. Thus, shear terms in Eqs. 

(4-21) is neglected. The radial stress 𝜎𝑟 can be expressed as 

𝜎𝑟,𝑀
𝑖 = 𝜎𝑟,𝑀

𝑖−1(𝑟𝑜𝑖, 𝜃)
𝑟𝑜𝑖
𝑟
−
𝑁𝑙𝑅(𝐸𝐴)𝑖𝑀(𝜃)

𝑤𝑡𝑟𝐸𝐼
[𝑟𝑜𝑖 − 𝑟 − (𝑅 +

𝐸𝐼

𝐸𝑉
) 𝑙𝑜𝑔

𝑟𝑜𝑖
𝑟
] (4-22) 

where the stiffness 𝐸𝐼, 𝐸𝑉, and 𝐸𝐴 are bending stiffness, coupling stiffness, and 

axial stiffness given by: 
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𝐸𝐼 =
∆𝑤

𝐴𝑐
,   𝐸𝑉 =

∆𝑤

𝐵𝑐
,   𝐸𝐴 =

∆𝑤

𝐷𝑐
, ∆= 𝐴𝑐𝐷𝑐 − 𝐵𝑐

2    (4-23) 

The stiffness (𝐸𝐴)𝑖 is axial stiffness for a single ply, (𝐸𝐴)𝑖 = 𝐸𝐴/𝑁𝑝, 𝑁𝑝 is total 

number of plies for the composite curved beam. It should be noted that the radial 

stress 𝜎𝑟,𝑀
𝑖  depends on the previous ply 𝑖 − 1 . Therefore, initialize 𝜎𝑟

0  with 

boundary condition is necessary and given by 𝜎𝑟𝑀
0 (𝑟𝑖1, 𝜃) = 0.  

 A comparison between the stresses stated in Eqs. (4-20) and (4-22) and 

stresses using Lekhnitskii’s [5] equation is presented in Figure 4-5. According to 

Figure 4-5(a), tangential stress distribution 𝜎𝜃 is perfectly match with numerical 

results. However, significant errors between Eqs. (4-16) and (4-22) are obtained as 

shown in Figure 4-5(b). In addition, Eqs. (4-22) is very sensitive with the given 

total ply number. If the ply number is greater than 15 plies, inaccurate results will 

be obtained. 

 

 

Figure 4-5 Stress distribution for a composite curved beam under bending (a) tangential stress 𝜎𝜃 

(b) radial stress 𝜎𝑟 

(a) (b) 
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Therefore, modification is needed for Eqs. (4-22) to satisfy results obtained from 

ABAQUS [83] and Lekhnitskii’s approach. After modification, it shows prefect 

agreement between analytical and numerical results as shown in Figure 4-6. 

σ𝑟.𝑀
𝑖 (𝑟, 𝜃) = σr,M

i−1 (
𝑟𝑖
𝑟𝑜
) +

𝑅𝑚𝑄(1,1)𝑀(𝜃)

𝑟𝐸𝐼
[𝑟𝑜 − 𝑟𝑖 − (𝑅𝑚 +

𝐸𝐼

𝐸𝑉
) log

𝑟𝑜
𝑟𝑖
] (4-24) 

 

Figure 4-6 𝜎𝑟 distribution for a composite curved beam under bending (Eqs. 4-24). 
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4-4 Effective Stiffness Results and Discussion 

 

 In this study, three different beam assumptions due to width to height ratio 

are discussed including general, wide, and narrow cross-section beams. A 

parameter study is presented in this section to describe behaviors of the beam using 

general, wide, and narrow assumptions, respectively. The inner radius of the 

composite curved beam is 6.4 mm and the outer radius is 12.988 mm. The width of 

the beam is 12.7 mm. Therefore, the mean radius 𝑅𝑚 is 9.694 mm and the total 

thickness of the beam is 6.588 mm, which means it contains 36 plies and the ply 

thickness is 0.183 mm for IM7/8552 material. The material properties for IM7/8552 

[84] are: 

                     E1 = 157 GPa               E2 = 8.96 GPA                E3 = 8.96 GPa 

G12 = 5.08 GPa             G23 = 2.99 GPa              G13 = 5.08 GPa 

                   v12 = 0.32                       v23 = 0.5                         v13 = 0.32 

 

where E1, E2, and E3 are the Young’s moduli of the composite lamina along the 

material coordinates. 𝐺12, 𝐺23, 𝐺13 and are the Shear moduli and 𝜈12 ,  𝜈23, and 𝜈13 

are Poisson’s ratio with respect to the 1-2, 2-3 and 1-3 planes, respectively. 
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Figure 4-7 Difference between general (Eqs. 4-7), wide (Eqs. 4-9) and narrow (Eqs. 4-15) section 

for a beam with initial curvature. 

Based on Figure 4-7, it could be seen that NB assumption provides higher bending 

stiffness in x-direction and general beam and WB provides lower stiffness. It also 

shows that bending stiffness decreases when the radius of curved beam increases.  

 

Table 4-1 Bending stiffness comparison between beam with general, wide and narrow cross-section. 

The bending stiffness for a bema with and without curvature is also presented.  

Dx General Wide Narrow 

radius curved straight % Diff. curved straight % Diff. curved straight % Diff. 

6.4 4.0497 3.7409 8.25% 4.0735 3.7629 8.25% 4.4777 3.7409 19.70% 

6.7 4.0154 3.7409 7.34% 4.039 3.7629 7.34% 4.3916 3.7409 17.39% 

7.1 3.9868 3.7409 6.57% 4.0102 3.7629 6.57% 4.3206 3.7409 15.50% 

7.4 3.9625 3.7409 5.92% 3.9858 3.7629 5.92% 4.2611 3.7409 13.91% 

7.7 3.9419 3.7409 5.37% 3.965 3.7629 5.37% 4.2107 3.7409 12.56% 

8.1 3.924 3.7409 4.89% 3.9471 3.7629 4.90% 4.1675 3.7409 11.40% 
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Table 4-2 (continued) 

Dx General Wide Narrow 

8.4 3.9085 3.7409 4.48% 3.9315 3.7629 4.48% 4.1303 3.7409 10.41% 

8.7 3.895 3.7409 4.12% 3.9179 3.7629 4.12% 4.0979 3.7409 9.54% 

9.1 3.883 3.7409 3.80% 3.9059 3.7629 3.80% 4.0695 3.7409 8.78% 

9.4 3.8725 3.7409 3.52% 3.8952 3.7629 3.52% 4.0444 3.7409 8.11% 

9.7 3.8631 3.7409 3.27% 3.8858 3.7629 3.27% 4.0222 3.7409 7.52% 

10 3.8546 3.7409 3.04% 3.8773 3.7629 3.04% 4.0024 3.7409 6.99% 

10.4 3.8471 3.7409 2.84% 3.8697 3.7629 2.84% 3.9847 3.7409 6.52% 

10.7 3.8403 3.7409 2.66% 3.8628 3.7629 2.65% 3.9687 3.7409 6.09% 

11 3.8341 3.7409 2.49% 3.8566 3.7629 2.49% 3.9543 3.7409 5.70% 

11.4 3.8285 3.7409 2.34% 3.851 3.7629 2.34% 3.9413 3.7409 5.36% 

11.7 3.8234 3.7409 2.21% 3.8459 3.7629 2.21% 3.9294 3.7409 5.04% 

12 3.8187 3.7409 2.08% 3.8412 3.7629 2.08% 3.9186 3.7409 4.75% 

12.4 3.8144 3.7409 1.96% 3.8369 3.7629 1.97% 3.9087 3.7409 4.49% 

12.9 3.8105 3.7409 1.86% 3.8329 3.7629 1.86% 3.8996 3.7409 4.24% 

 

Table 4-1 shows effective curved bending stiffness comparison between beam with 

general, wide and narrow cross-section to the straight beam. Unit of bending 

stiffness is N-m, and unit of the radius is mm. When the mean radius is getting 

smaller, the bending stiffness under NB assumptions has almost 20 % difference 

compared with the bending stiffness of a straight beam. It should be noticed that 

the bending stiffness for a straight beam under narrow assumption and general 

assumption are identical because the coupling stiffness 𝑑16 = 𝑏11 = 𝑏16 = 0 for a 

given unidirectional beam.  

Table 4-3 and Figure 4-8 show the maximum tangential stress comparison 

using stiffness under three different beam assumptions for a curved beam under 

bending. The stress results are compared with 𝜎𝜃 obtained from Lekhnitskii [5]. It 

can be concluded that narrow beam assumption has higher accuracy than stress 
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results obtained using wide and general beam assumptions. Thus, narrow beam 

assumption is selected and will be implemented through rest of research since the 

cross-section of present beam, the width to height ratio is close to 2. It should be 

noticed that wide beam assumption is used for a regular composite thin plate. 

However, if the cross-section likes “I”, “Z”, or “C” is implemented defined as thin-

wall structures, narrow beam assumption should be considered. 

 

Table 4-3 Maximum tangential stress comparison between narrow, wide, and general section beam 

with closed-form solution provided by Lekhnitskii [5]. 

 Lekhnitskii Narrow Wide General 

𝜎𝜃
𝑚𝑎𝑥 (MPa) 281.17 286.72 297.36 299.11 

% Diff with Lekhnitskii 0 % 1.97 % 5.76 % 6.38 % 

 

 

Figure 4-8 𝜎𝜃 comparison using stiffness under general, wide, and narrow beam assumptions.  
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COMPOSITE CURVED BEAM WITH FIBER WAVINESS 

 

 Fiber waviness is a misalignment of the fibers in a ply. Fiber waviness 

usually occurs due to residual stress which occurred from tooling or pressure from 

the other layer. In addition, it can be caused by wrinkles or non-uniform 

consolidation pressure. Fiber waviness results in stiffness and strength loss and acts 

as a failure initiation in composite structures. This chapter describes the 

development of analytical methodology for predicting in-plane and out-of-plane 

fiber waviness in lamina or in laminate stage. The approach is based on definition 

of fiber waviness shape. The averaging moduli is evaluated by considering the 

shape of fiber waviness. 

 

5-1 Effective Stiffness Properties for Straight In-Plane Lamina with Fiber 

Waviness 

 

Fiber waviness can be expressed by a sinusoidal wave function in the 1-2 

coordinate system as shown in Figure 5-1, where 𝑅 = 𝐴/𝐿 is a severity factor of 

the curvature of fiber waviness, A is the amplitude of fiber waviness, and L is the 

length of fiber waviness. As a result, the waviness angle 𝜙 can be introduced as 

𝜙 = 𝑡𝑎𝑛−1 [𝜋𝑅 𝑐𝑜𝑠
𝜋𝑥

𝐿
] 

 

(5-1) 
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Figure 5-1 (a) 2-D in-plane fiber waviness geometry. (b) 3-D in-plane fiber waviness geometry. 

 

Fiber orientation is changed along fiber waviness direction. Therefore, the average 

compliance properties of 0°  lamina [S′]  can be computed by integrating fiber 

orientation where the direction is rotated based on sinusoidal function over the 

length L. Starts with compliance matrix for a 0° lamina without fiber waviness [S], 

the transformation and averaging results for [𝑆′] are listed in Appendix A. 

 Since the average compliance matrix for 0° is obtained, by rotating with 

respect to the z-axis, in-plane compliance matrix [S̅′]  can be obtained. The 

equivalent properties with fiber waviness are: 

𝐸1̅̅ ̅ =
1

𝑆1̅1
′  

𝐸2̅̅ ̅ =
1

𝑆2̅2
′  

(5-2) 

(a) (b) 
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𝐺12̅̅ ̅̅̅ =
1

𝑆6̅6
′  

𝑣12̅̅ ̅̅ = −
𝑆1̅2′

𝑆1̅1
′  

 

5-2 Effective Stiffness Properties for Straight Out-of-Plane Lamina with 

Fiber Waviness 

  

The average compliance of a constant ply with fiber waviness S𝑖𝑗
′  can be 

also rotated with respect to x or 1-direction by introducing an out of plane angle β 

as shown in Figure 5-2. 

 

Figure 5-2 D out-of-plane fiber waviness geometry. 
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After rotating with respect to the x-axis, the out-of-plane compliance matrix  [S′′] 

with average fiber waviness properties can be obtained using stress transformation 

as shown below. 

[S′′] = [Tε(−β)]𝑥[𝑆′][Tσ(β)]𝑥 (5-3) 

where  

[Tσ(𝛽)]x =

[
 
 
 
 
 
1 0 0
0 𝑚2 𝑛2

0 𝑛2 𝑚2

0 0 0
2𝑚𝑛 0 0
−2𝑚𝑛 0 0

0 −𝑚𝑛 𝑚𝑛
0 0 0
0 0 0

𝑚2 − 𝑛2 0 0
0 𝑚 −𝑛
0 𝑛 𝑚 ]

 
 
 
 
 

 

[Tε(β)]x =

[
 
 
 
 
 

1 0 0
0 𝑚2 𝑛2

0 𝑛2 𝑚2

0 0 0
𝑚𝑛 0 0
−𝑚𝑛 0 0

0 −2𝑚𝑛 2𝑚𝑛
0 0 0
0 0 0

𝑚2 − 𝑛2 0 0
0 𝑚 −𝑛
0 𝑛 𝑚 ]

 
 
 
 
 

 

(5-4) 

 

and m = cos 𝛽 and n = sin 𝛽. The average stiffness properties can be expressed as 

𝐸1̅̅ ̅ =
1

S11
′′  

𝐸3̅̅ ̅ =
1

S33
′′  

𝐺13̅̅ ̅̅̅ =
1

S55
′′  

𝑣13̅̅ ̅̅ = −
S13
′′

S11
′′  

(5-5) 
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5-3 Effective Stiffness Properties of Composite Straight Laminate with In-

Plane and Out-of-Plane Fiber Waviness 

 

In the previous section, the properties of a single layer with in-plane fiber 

waviness is considered. To evaluate the laminate performance, CLT approach can 

be used to obtain the average stiffness constant by considering of the summation 

with the average compliance with fiber waviness  [𝑆′]  for a 0°  unidirectional 

laminate or [𝑆̅′] for multi-directional laminate for each layer. 

[A] = ∑[𝑄′̅̅ ̅𝑥−𝑦]𝑘𝑡ℎ
(𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

 

[B] =
1

2
∑[𝑄′̅𝑥−𝑦]𝑘𝑡ℎ

(𝑧𝑘
2 − 𝑧𝑘−1

2 )

𝑛

𝑘=1

 

[D] =
1

3
∑[𝑄′̅𝑥−𝑦]𝑘𝑡ℎ

(𝑧𝑘
3 − 𝑧𝑘−1

3 )

𝑛

𝑘=1

 

(5-6) 

where 

[𝑄′̅𝑥−𝑦]𝑘𝑡ℎ =
[𝑆̅′]−1 

 

(5-7) 

Regarding with out-of-plane fiber waviness, the out-of-plane compliance 

matrix can be computed by rotating in-plane properties 90° with respect to x-axis. 

Thus, the stiffness tensor [𝑄] for each ply can be obtained by inversing compliance 

matrix. Uniform out-of-plane fiber waviness is assumed. The amplitude of fiber 

waviness, A, remains constant along thickness direction. The average compliance 
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for a lamina with in-plane fiber orientation is shown in Figure 5-3 and can be 

expressed as 

[𝑆𝑜̅𝑢𝑡] = [Tε(−θ)]z[Tε(−β)]x[𝑆
′][Tσ(β)]x[Tσ(θ)]z 

[𝑄′̅𝑜𝑢𝑡] = [𝑆𝑜̅𝑢𝑡]
−1 

(5-8) 

 

 

Figure 5-3 Out-of-plane fiber waviness in laminate stage with in-plane fiber orientation. 

 

The equivalent [A], [B], and [D] matrix for a straight laminate with in-plane fiber 

orientation can be written as 

[A] = ∑[𝑄′̅𝑜𝑢𝑡]
𝑘𝑡ℎ
(𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

 

[B] =
1

2
∑[𝑄′̅𝑜𝑢𝑡]

𝑘𝑡ℎ
(𝑧𝑘
2 − 𝑧𝑘−1

2 )

𝑛

𝑘=1

 

(5-9) 
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D =
1

3
∑[𝑄′̅𝑜𝑢𝑡]

𝑘𝑡ℎ
(𝑧𝑘
3 − 𝑧𝑘−1

3 )

𝑛

𝑘=1

 

 

It should be noticed that [A], [B], and [D] matrix have dimensions 6 by 6 instead 

of 3 by 3 because 3-D laminate behavior is considered. 

 

5-4 Incremental Loading Scheme 

 

The average stiffness properties alternate with the amplitude and length of fiber 

waviness. During the preceding of increasing the strain, the fiber waviness 

amplitude and fiber waviness length are changed, resulted in the effective moduli 

reduces. For a given loading, stress can be transformed from x-y plane to 1-2 

coordinate system and 1′-2′ (along fiber direction) coordinate system. Therefore, 

the updated fiber waviness length and fiber length can be obtained. Based on 

sinusoidal assumption, the updated amplitude can be computed. Since average 

stiffness is functional of the amplitude and fiber waviness length, once the 

amplitude and fiber waviness length are updated based on incremental strain, the 

effective stiffness can be recalculated every iterations. The detail derivation is 

shown in Appendix B and stated in Figure 5-4. It should be noted that the effective 

stiffness result is very sensitive to the incremental strain. The total strain can be 

accumulated based on the given little incremental strain. That incremental strain, if 

tension is considered, it will lead to reduction of fiber waviness amplitude and 

increment of fiber waviness length. If the given incremental strain is too limit, 

insignificant changes for fiber waviness amplitude and length are observed. 

Consequently, there is no significant stiffness reduction if the applied incremental 



41 

 

strain is too small. The practical incremental strain will be discussed later by 

comparing with numerical results. 

 

Figure 5-4 Flow chart for finding updated fiber waviness amplitude after every incremental strain. 

 

 

Set Initial Waviness Length and 

Amplitude (L & A) 

Set Incremental Strain ∆𝜀x 

Calculation No, of Iterations n 

Compute Initial Fiber Length 𝑙0 

Compute Compliance Matrix [S] 

Compute I1, 𝐼2, 𝐼3, 𝐼4, 𝐼5 

Compute Average Compliance 

Matrix [S′] 

Rotate with z and x-axis if out-of-plane fiber 

waviness is considered 

Compute Equilibrium Modulus 

Compute Incremental Strain 

in 1 − Direction 

Compute Total Strain in 1-

Driection 

Compute Average Incremental 

Strain in 1′-Direction 

Compute Total Strain in 1′-
Direction 

Update New Waviness Length  Update New Fiber Length 

Compute Updated Amplitude 

K=0 

K > n 

K=K+1 

No 

Exit 

Yes 
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5-5 Effective Stiffness Properties for Composite Curved Beam with In-

Plane and Out-of-Plane Fiber Waviness 

 

Curved Lamina with in-plane fiber waviness is shown in Figure 5-5(a). The 

average stiffness properties of curved lamina can be achieved by 

replacing [𝑄̅𝑥−𝑦]𝑘𝑡ℎto [𝑄′̅𝑥−𝑦]𝑘𝑡ℎ as shown in Eqs. (5-10). It should be noticed that 

the uniform fiber waviness is assumed in this section. However, a graded fiber 

waviness is often to be found and will be introduced for out-of-plane curved beam 

model. 

𝐴′̅c = Rm∑[𝑄′̅̅ ̅𝑥−𝑦]𝑘𝑡ℎ
ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

𝑛

𝑘=1

 

𝐵′̅c =  𝑅𝑚∑[𝑄′̅̅ ̅𝑥−𝑦]𝑘𝑡ℎ
[(𝑧𝑘 − 𝑧𝑘−1) − 𝑅𝑚 ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

]

𝑛

𝑘=1

 

𝐷′̅̅̅c = 𝑅𝑚∑[𝑄′̅̅ ̅𝑥−𝑦]𝑘𝑡ℎ
[
1

2
(𝑧𝑘
2 − 𝑧𝑘−1

2 ) − 𝑅𝑚(𝑧𝑘 − 𝑧𝑘−1) + 𝑅𝑚
2 ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

]

𝑛

𝑘=1

 

 

(5-10) 

Out-of-plane fiber waviness is characterized by raising and falling in the manner of 

wavy layers. It will degrade the strength and fatigue performance of composite 

structure. In general, non-uniform fiber waviness is observed along the curved 

region instead of uniform fiber waviness distribution. Out-of-plane approach for 

straight laminate can be applied to here by adjusting amplitude and length for fiber 

waviness of each ply. The configuration of out-of-plane graded fiber waviness 

along the curved region is shown in Figure 5-5(b), where 𝐿𝐴𝑒𝑛𝑑
𝑡𝑜𝑝

 and 𝐿𝐴𝑒𝑛𝑑
𝑏𝑜𝑡  are the 

location of plies where the zero amplitudes are observed on the configuration. 

𝐿𝐴𝑚𝑎𝑥  is the ply location where the maximum amplitude of fiber waviness is 
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observed. Fiber waviness length, 𝐿, changes in thickness direction where Lkth and 

rkth is the length of fiber waviness and the corresponding radius for a lamina in kth 

layer. 

 

 

Figure 5-5 (a) In-plane fiber waviness in a curved lamina. (b) Out-of-plane fiber waviness in a 

curved beam. 

Lkth = 2𝜋𝑟𝑘𝑡ℎ (
𝜃𝑒𝑛𝑑 − 𝜃𝑠𝑡𝑎𝑟𝑡

360
) (5-11) 

 

The amplitude of fiber waviness, 𝐴𝑚𝑎𝑥 , is the maximum amplitude can be 

observed. Thus, the amplitude varied respect to different layers can be obtained. 

The amplitudes below and above the location where contains the maximum 

amplitude 𝐴𝑚𝑎𝑥 are 

(a) (b) 
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Alow =
𝐴𝑚𝑎𝑥(𝑝𝑙𝑦

𝑡ℎ − 𝐿𝐴𝑒𝑛𝑑
𝑏𝑜𝑡 )

𝐿𝐴𝑚𝑎𝑥 − 𝐿𝐴𝑒𝑛𝑑
𝑏𝑜𝑡         for plyth =  𝐿𝐴𝑒𝑛𝑑

𝑏𝑜𝑡  𝑡𝑜 𝐿𝐴𝑚𝑎𝑥 

 

Aupp = 𝐴𝑚𝑎𝑥 −
𝐴𝑚𝑎𝑥(𝑝𝑙𝑦

𝑡ℎ − 𝐿𝐴𝑚𝑎𝑥 + 1)

𝐿𝐴𝑒𝑛𝑑
𝑡𝑜𝑝 − 𝐿𝐴𝑚𝑎𝑥

     for plyth

=   𝐿𝐴𝑚𝑎𝑥  𝑡𝑜 𝐿𝐴𝑒𝑛𝑑
𝑡𝑜𝑝 − 1 

 

(5-12) 

where 𝑝𝑙𝑦𝑙𝑜𝑤
𝑡ℎ = 𝐿𝐴𝑒𝑛𝑑

𝑏𝑜𝑡 ~ 𝐿𝐴𝑚𝑎𝑥 , and 𝑝𝑙𝑦𝑢𝑝𝑝
𝑡ℎ = 𝐿𝐴𝑚𝑎𝑥 ~ 𝐿𝐴𝑒𝑛𝑑

𝑡𝑜𝑝
− 1 . Thus, the 

amplitude can be displaced as 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = [𝐴𝑙𝑜𝑤 , 𝐴𝑢𝑝𝑝] from bottom ply to the top ply 

of entire curved beam. 

Substituting Eqs. (5-12) into (5-8), the effective stiffness properties for a 

composite curved beam with out-of-plane fiber waviness can be written as: 

𝐴′̅c = Rm∑[𝑄′̅̅ ̅𝑜𝑢𝑡]
𝑘𝑡ℎ
ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

𝑛

𝑘=1

 

𝐵′̅c = 𝑅𝑚∑[𝑄′̅̅ ̅𝑜𝑢𝑡]
𝑘𝑡ℎ
[(𝑧𝑘 − 𝑧𝑘−1) − 𝑅𝑚 ln

𝑅 + 𝑧𝑘
𝑅 + 𝑧𝑘−1

]

𝑛

𝑘=1

 

𝐷′̅̅̅c = 𝑅𝑚∑[𝑄′̅̅ ̅𝑜𝑢𝑡]
𝑘𝑡ℎ
[
1

2
(𝑧𝑘
2 − 𝑧𝑘−1

2 ) − 𝑅𝑚(𝑧𝑘 − 𝑧𝑘−1) + 𝑅𝑚
2 ln

𝑅𝑚 + 𝑧𝑘
𝑅𝑚 + 𝑧𝑘−1

]

𝑛

𝑘=1

 

(5-13) 

 

5-6 Maximum Radial Stress Prediction  

 

In Eqs. (4-24), 𝑄(1,1)  can be replaced to [𝑄(1,1)𝑜𝑢𝑡]𝑘𝑡ℎ  in order to obtain 

equivalent stiffness in composite curved beam with fiber waviness.  It should be noted 
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that constant ply thickness is assumed in Eqs. (4-24). However, if fiber waviness is 

presented, ply thickness is going to be functional of the amplitude of fiber waviness 

in each ply. Therefore, Eqs (4-24) can be modified as 

σ𝑟.𝑀
𝑖 (𝑟, 𝜃) = σr,M

i−1 (
𝑟𝑖𝑖
𝑟𝑜𝑜
) +

𝑅𝑚[𝑄(1,1)𝑜𝑢𝑡]𝑘𝑡ℎ𝑀(𝜃)

𝑟𝐸𝐼
[𝑟𝑜𝑜 − 𝑟𝑖𝑖 − (𝑅𝑚 +

𝐸𝐼

𝐸𝑉
) log

𝑟𝑜𝑜
𝑟𝑖𝑖
] (5-14) 

 

where 𝑟𝑖𝑖 = 𝑟𝑖 + 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖 and 𝑟𝑜𝑜 = 𝑟𝑜 + 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖. 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑖 is the amplitude 

of fiber waviness in ith ply.  

 

5-7 Finite Element Analysis 

 

5.7.1. In-Plane Straight Lamina with Fiber Waviness 

 

In this section, a FE analysis of an in-plane lamina with a given ratio R is 

developed to study effects of fiber waviness with respect to Young’s modulus along 

the x-direction. Isotropic material properties for fiber and matrix are implemented 

to modeling of composite behavior instead of using averaging stiffness properties. 

Multiple layers will be considered to avoid the edge effect. In this study, IM7/8552 

carbon epoxy composite is used, where  

                     E1 = 157 GPa               E2 = 8.96 GPA                E3 = 8.96 GPa 

G12 = 5.08 GPa             G23 = 2.99 GPa              G13 = 5.08 GPa 

                   v12 = 0.32                       v23 = 0.5                         v13 = 0.32 
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For IM7 fiber, 𝐸1𝑓 = 290 𝐺𝑃𝑎 and𝑣𝑓 = 0.2, where 𝐸1𝑓  is Young’s modulus of 

fiber and 𝑣𝑓 is Poisson’s ratio of fiber. For 8552 epoxy, 𝐸𝑚 = 4.67 𝐺𝑃𝑎 and 𝑣𝑚 =

0.37, where 𝐸𝑚 is Young’s modulus of matrix and 𝑣𝑚 is Poisson’s ratio of matrix. 

The IM7 fiber diameter is 4 𝜇𝑚. Assuming the fiber volume fraction is 59.7 %, 

according to Figure 5-6, the matrix diameter 𝑑𝑚 can be achieved by: 

𝑑𝑚 =
𝑑𝑓𝑛 − 𝑉𝑓𝑑𝑓𝑛 − 𝑉𝑓𝐴

2𝑉𝑓𝑛
 (5-15) 

where n is total ply number. For 𝑛 = 10, 𝑑𝑚 = 1.3462 𝑚𝑚. 

 Uniform displacement 0.0008 mm is applied on the right surface. Lateral 

constrain is applied on the left surface. Vertical constrains are applied on the four 

corners so Poisson’s ratio is allowed for upper and lower surfaces. It should be 

noted that 𝐿 is half sinusoidal length. Plane stress CPS4 element is implemented.  

 

 

Figure 5-6 Geometry of in-plane fiber waviness. 
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The equivalent Young’s modulus is calculated by average stress divided by average 

strain. The average stress is obtained from the total reaction force applied at the 

right surface. 

𝐸̅𝑥 =

𝐹𝑥
𝑤ℎ

̅̅ ̅̅

𝐿 + 𝑢
𝐿 − 1

 (5-16) 

where  𝐹𝑥̅ is the total force along x-the direction, 𝑢 is the applied displacement at 

the right surface and 𝐿 is lengthe th of fiber waviness, 𝑤 is the width of the plate 

and ℎ is the height of the plate, where ℎ = 𝑛(2𝑑𝑚 + 𝑑𝑓) + 𝐴. According to Figure 

5-7, 𝑢2  is symmetric with respect to vertical middle line of the lamina. Large 

contraction is observed for area under blue color as shown in Figure 5-7(b) due to 

Poisson’s ratio effect. Poisson’s ratio effect gradually increases when the fiber 

orientation approaches to zero. Based on the observation of Figure 5-8, the 

magnitude of shearing stress are identical on both size regarding vertical middle 

line but has opposite sign directions. Once the ratio 𝑅 = 𝐴/𝐿 is getting larger, shear 

failure will dominate instead of fiber or matrix failure. 

 

 

Figure 5-7(a) Displacement along 1-direction. (b) Displacement along 2-direction. 

(a) (b) 
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Figure 5-8 Shear distribution for an in-plane lamina with fiber waviness under tension. 

 

5.7.2. Out-of-Plane Curved Laminate with Fiber Waviness 

 

 In this section, a 36 plies unidirectional curved laminate is assumed. The 

outer radius of the curved beam is 12.7 mm and the inner radius is 6.4 mm. 2-D 

plane strain linear element without fully integrated was employed. Convergence 

study was performed before finalizing the mesh density. A global mesh density in 

the order of 626 elements is established based on a mesh-convergence study to 

execute a linearly-static finite element analysis. A bending moment of 20 K-N is 

applied at the one end of the curved beam. On the other end, cantilever boundary 

condition is considered as shown in Figure 5-9(b). In order to ensure uniform 

longitudinal cross-section deformation along x-axis under the influence of a finite 

bending moment, a multi-points constraint is generated. A node with coupling 

constrains connected with the end surface was implemented to present a constant 

moment at the end surface of the curved beam. Additionally, all layers are perfectly 
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bonded with upper and lower adjacent surfaces as shown in Figure 5-9(a). The 

model is first validated by assuming zero amplitude for all layers with isotropic 

material properties. The numerical stress results are compared with analytical 

approach provided by [5].  

 

Figure 5-9 (a) Perfect bonded layers (b) Boundary conditions and applied moment. 

   

 

Figure 5-10 Finite Element analysis 𝜎1  and 𝜎2  results using isotropic material properties (𝐸 =

30 𝑀𝑃𝑎 and 𝑣 = 0.3). 

(a) (b) 
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Table 5-1 Stresses comparison between analytical solution [5] and numerical solutions using 

isotropic material properties. 

Isotropic validation 𝜎𝜃 (Pa) 𝜎𝑟 (Pa) 

min max min max 

Lekhnitskii [5] −1.9546𝑒8 3.0674𝑒8 0 4.15𝑒7 

ABAQUS −1.9305𝑒8 2.99𝑒8 0 3.98𝑒7 

% Diff. 1.23 % 2.52 % 0 % 4.27% 

 

Table 5-2 Stresses comparison between analytical solution [5] and numerical solutions using 

composite material properties. 

Composite validation 
𝜎𝜃 (Pa) 𝜎𝑟 (Pa) 

min max min max 

Lekhnitskii [5] −2.20𝑒8 3.048𝑒8 0 4.028𝑒7 

ABAQUS −2.06𝑒8 3.20𝑒8 0 4𝑒7 

% Diff. 0.64 % 4.98 % 0 % 0.69 % 

 

According to Table 5-1, results obtained from ABAQUS have great agreement with 

analytical results [5]. This model is further developed by using composite material 

properties. It should be mentioned that the anisotropic parameter 𝑘 is introduced in 

the approach. For isotropic material, 𝑘 = 1  and for current material, 𝑘  is 

approximately equal to 4. The maximum radial stress using isotropic material 

properties is higher than anisotropic stress results about 5 %. According to Table 

5-2, stresses results using composite material properties have great agreement 

between ABAQUS and analytical results.  
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5-8 Results and Discussion 

 

5.8.1. In-Plane Fiber Waviness for 0° Lamina 

 

In this section, stiffness reduction due to in-plane fiber waviness is studied. 

The average material properties varied with 𝑅 are presented in Figure 5-11 and 

comparison between numerical and analytical Young’s modulus along the x-

direction results is shown in Table 5-3. Dramatic stiffness reduction is observed 

when fiber waviness ratio 𝑅  changes from 0 and 0.3, about 85 % reduction in 

stiffness along the x-direction is observed. Since in-plane fiber waviness is assumed, 

no altered stiffness along the z-direction is observed. A specific point, 𝑅 = 0.72 

should be mentioned. At this kind of fiber waviness shape, the Young’s modulus 

along the x-direction and y-direction are identical. When 𝑅 reaches to infinity, the 

Young’s modulus along the y-direction increases significantly due to most of fibers 

align in y-direction instead of x-direction. 

 

Table 5-3 Numerical and analytical Comparison between Young’s modulus reduction along the x-

direction and fiber waviness parameter 𝑅. 

R 𝐸̅x Analytical 𝐸̅x FEM % Diff 

0 15.7 E10 15.699 E10 0.0 % 

0.1 6.958 E10 7.072 E10 1.61 % 

0.2 3.186 E10 3.271 E10 2.59 % 

0.3 2.093 E10 2.011 E10 4.07 % 
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Figure 5-11 Comparison between Young’s moduli and waviness parameter 𝑅. 

 

Figure 5-12 Shear moduli vs fiber waviness parameter 𝑅. 
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Figure 5-13 Poisson’s ratios vs fiber waviness parameter 𝑅. 

 

Figure 5-14 CTEs vs fiber waviness parameter 𝑅. 
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Shear modulus varies with respect to fiber waviness ratio 𝑅 is shown in 

Figure 5-12. The maximum in-plane shear modulus  𝐺12  occurs at  𝑅 = 0.45 . It 

should be noted that 𝐺12 gradually decreases to its original value, which is given in 

material properties as 𝑅 goes to infinity. There is no out-of-plane shear modulus 

changed since in-plane lamina with fiber waviness is considered. In-plane 

Poisson’s ratio reaches to maximum value when 𝑅 = 0.1 as shown in Figure 5-13. 

If loading is in the y-direction, 𝑣23 increase significantly since stiffness in the y-

direction increases. The comparison between CTE and fiber waviness ratio 𝑅 is 

presented in Figure 5-14 where 𝛼1 increases and 𝛼2 decreases dramatically when R 

increases.  

5.8.2. In-Plane Fiber Waviness for 𝜃° Lamina 

 

In this section, Young’s moduli, shear moduli, Poisson’s ratios, and CTEs 

varied with respect to fiber waviness parameter 𝑅 for a given lamina with designed 

fiber orientation angle 𝜃 will be discussed. 

 

Figure 5-15 𝐸̅x vs waviness ratio, R with varied in-plane fiber orientation from θ = 0° to 90° 
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Figure 5-16 𝐸̅x vs R, θ = 30° to 90° 

 

Figure 5-17 Normalized 𝐸̅x vs R, θ = 0° to 90° 
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Figure 5-18 Normalized 𝐸̅x vs R, θ = 33° to 36° 

 

Figure 5-19 Normalized 𝐸̅y vs R, θ = 0° to 90° 
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Figure 5-20 Normalized Gxy vs R, θ = 0° to 90° 

 

Figure 5-21 Normalized 𝑣̅xy vs R, θ = 0° to 90° 
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Figure 5-22 Normalized 𝑣̅xz vs R, θ = 0° to 90° 

 

Figure 5-23 Normalized 𝑣̅yz vs R, θ = 0° to 90° 
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Figure 5-24 𝛼̅𝑥vs R, θ = 0° to 90° 

 

Figure 5-25 𝛼̅𝑦vs R, θ = 0° to 90° 
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Figure 5-26 𝛼̅𝑥𝑦vs R, θ = 0° to 90° 

 

Effective Young’s modulus along x-direction is shown in Figure 5-15 with 

fiber orientation 𝜃 varied from 0° to 90°. When fiber orientation is 0°, significant 

stiffness reduction is observed as fiber waviness parameter 𝑅 increases. When fiber 

orientation is  15°, approximately 64 % stiffness reduction is observed when 𝑅 

varies from 0 to 0.3. In can be concluded that stiffness reduction is significant for 

small degree of fiber orientation. Effective Young’s modulus along x-direction is 

shown in Figure 5-16 with fiber orientation 𝜃 varied from 30° to 90°. Stiffness 

increment is observed when 𝜃 < 45° when 𝑅 varies from 0 to 0.5 due to more 

portion of fibers align in y-direction than x-direction. The normalized Young’s 

modulus versus 𝑅  with 𝜃  varies from 0°  to  90°  is presented in Figure 5-17. 

According to Figure 5-17, stiffness along the x-direction increases when 𝜃 > 30°. 

Figure 5-18 shows normalized Young’s modulus along the x-direction verse 𝑅 
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whne 𝜃 varies from 33° to 36°. When 𝜃 = 34.5°, the stiffness increment is less 

than 4 %. Effective Young’s modulus along x-direction is shown in Figure 5-19 

with fiber orientation 𝜃  varied from 0°  to  90° . It should be noted that the 

normalized stiffness between 𝐸̅x  and 𝐸̅y  are compensate with each other. That 

is  𝐸̅x(0°) = 𝐸̅y(90°) ,  𝐸̅x(15°) = 𝐸̅y(75°) ,  𝐸̅x(30°) = 𝐸̅y(60°) ,  𝐸̅x(45°) =

𝐸̅y(45°) for an any given fiber waviness parameter 𝑅. 

The normalized 𝐺̅𝑥𝑦 versus 𝑅 for fiber orientation varies from 0° to 90° is 

shown in Figure 5-20. If lamina 1 has fiber orientation 𝜃1 and lamina 2 has fiber 

orientation  𝜃2 , 𝐺̅𝑥𝑦(𝜃1) = 𝐺̅𝑥𝑦(𝜃2)  if 𝜃1 + 𝜃2 = 90° . Normalized 𝑣̅𝑥𝑦  versus 𝑅 

with 𝜃  varies from 0°  to  90°  is shown in Figure 5-21. When fiber waviness 

parameter 𝑅 increases, it should be mentioned that the in-plane Poisson’s ratio 𝑣12 

is insignificant for a lamina with 0° fiber orientation but it is more pronounced for 

a lamina with 45° fiber orientation. Normalized 𝑣̅𝑥𝑧 and 𝑣̅𝑦𝑧 versus 𝑅 with 𝜃 varies 

from 0° to 90° is shown in Figure 5-22 and Figure 5-23, respectively. Based on the 

observation, 𝑣̅𝑥𝑧(𝜃1) and 𝑣̅𝑦𝑧(𝜃2) are compensate with each other if 𝜃1 + 𝜃2 = 90°. 

𝛼̅𝑥 versus 𝑅 for fiber orientation 𝜃 varies from 0° to 90° is shown in Figure 

5-24. When  𝜃 < 30° , negative CTE is observed when  𝑅 < 0.3 . When  𝑅  is 

approximately equal to 0.3, zero CTE is observed as  𝜃 < 30°. When  𝑅 > 0.3, 

positive CTE is observed as 𝜃 < 30°. This means deformation in x-direction is 

changed from contraction to expansion under thermal condition when  𝜃 < 30°. 

For 𝜃 > 30°, the  𝛼̅ behavior is opposite compared the ones has 𝜃 < 30°. 𝛼̅y versus 

𝑅 for fiber orientation 𝜃 varies from 0° to 90° is shown in Figure 5-25. It should be 

noted that the distribution for 𝛼̅x and 𝛼̅y for an any given 𝑅 and 𝜃 is symmetric 

with respect to the horizontal line, when 𝛼 = 10−5/𝐾°. Finally, 𝛼̅𝑥𝑦 versus 𝑅 for 

fiber orientation 𝜃  varies from  0°  to  90°  is shown in Figure 5-26. It is more 

pronounced for 𝜃 > 75° because negative CTE is observed.  
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5.8.3. Effects of Fiber Waviness Parameter 𝑅 

 

This section we discussed effect of fiber orientation with respect to fiber 

waviness ratio  𝑅 . This section, effect of 𝑅  with respect to fiber orientation is 

discussed. Normalized effective Young’s modulus 𝐸̅x along the x-direction with 

respect to fiber orientation is shown in Figure 5-27. When fiber orientation 

increases from =0° to 90°, 𝐸̅x reduces significantly if no fiber waviness occurs. 

When 𝑅 > 0.5, maximum  𝐸̅x occurs at 𝜃 = 30° due to more fibers align along in 

the longitudinal or x-direction. On the other hand, Normalized effective Young’s 

modulus 𝐸̅y along the y-direction with respect to fiber orientation is shown in 

Figure 5-28 which has opposite distribution compared with 𝐸̅x distribution shown 

in Figure 5-27. For rest of 𝐺𝑥𝑦, 𝐺𝑦𝑧 , 𝐺𝑥𝑧 , 𝑣12, 𝑣23, 𝑣13, 𝛼𝑥 , 𝛼𝑦  and 𝛼𝑥𝑦  fiber 

waviness parameter effects can be founded in APPENDIX C. 

 

Figure 5-27 𝐸̅x comparison between fiber orientation and waviness ratio 𝑅. 
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Figure 5-28 𝐸̅y comparison between fiber orientation and waviness ratio 𝑅. 

5.8.4. Incremental Load Study of In-Plane Fiber Waviness of 0° Lamina 

 

During incremental loading, the fiber waviness amplitude, fiber waviness 

length, and fiber length are changed. As a result, the effective stiffness properties 

of the ply with fiber waviness is also changed. Therefore, it is necessary to 

recalculate material properties at each step of stress increment. In this section, a 

lamina with in-plane fiber waviness subjected with incremental tension and 

compression will be discussed. Numerical example with fiber waviness length 𝐿 =

3  in, and fiber waviness amplitude 𝐴 = 1.5  in is selected. Iterating process is 

terminated as applied 𝜎𝑥  reaches to 0.7 𝑋𝑇 , where  𝑋𝑇  is tensile strength of 

IM7/8552, 𝑋𝑇 = 2811 𝑀𝑃𝑎  and the subjected incremental tensile and 

compressive load is ∆σx = 10 MPa. The first case, if tension is considered, the 



64 

 

amplitude variation versus accumulated loading along x-direction is shown in 

Figure 5-29. 

 

Figure 5-29 The amplitude, A, vs 𝜎𝑥 under tension for 0° lamina 

 

Figure 5-30 The wavy length 𝐿, vs 𝜎𝑥 under tension for 0° lamina 
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Figure 5-31 The fiber length, Lf, vs 𝜎𝑥 under tension for 0° lamina 

According to Figure 5-29, the fiber waviness amplitude decreases as 

increasing loading in x-direction. The rate of changing the amplitude gradually 

increases and reaches to maximum -0.108 % when σx = 1600 MPa. Since small 

incremental stress is applied along x-direction, an incremental strain can be induced, 

so fiber waviness length can be updated. According to Figure 5-30, fiber waviness 

length increases when loading increases. The fiber waviness length increases 13.05 

% from 3 in to 3.3916 in. However, the rate of changing fiber waviness length 

linearly decreases due to Young’s modulus becomes stiffer. Young’s modulus in 

longitudinal direction 𝐸̅x increases with increasing σx. Note that the rate of change 

modulus raises with loading because more fibers align in the longitudinal direction. 

Therefore, updated fiber waviness length, fiber length, and the corresponding 

amplitude are sensitive to stiffness properties.  
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Figure 5-32 The amplitude, A, vs 𝜎𝑥 under compression for 0° lamina 

 

Figure 5-33 The fiber length, Lf, vs 𝜎𝑥 under tension for 0° lamina 
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Figure 5-34 The wavy length, L, vs 𝜎𝑥 under compression for 0° lamina 

On the other hand, if compression is considered, fiber waviness amplitude 

increases when compressive loading increases. In addition, Fiber waviness length 

𝐿  decreases when compressive loading increases. Thus, the updated Young’s 

modulus along the x-direction is 11.73 % lower than its original value if 1200 MPa 

in compression is applied.  

Effect of iteration number also plays and important role on obtaining updated 

amplitude, length fiber waviness shape properties. Updated fiber waviness length, 

fiber length and corresponding fiber waviness amplitude are sensitive with absence 

stiffness properties. To reach desired tensile stress, a small incremental stress is 

applied, and the stiffness properties will be updated every iterations. The 

accumulative variation may end up different updated wavy length, fiber length, and 

the amplitude of waviness even the desired stresses are identical. A numerical study 

will be presented in this section. The accumulative stress is assumed to be 600 MPa 

and Δσx is 600 MPa, 300 MPa, 150 MPa, 75 MPa, 20 MPa, 10 MPa, 5 MPa, and 1 
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MPa, respectively. The corresponding iteration numbers will be 1, 2, 4, 8, 30, 60, 

120, and 600. The effect of iteration numbers under certain tensile loading is shown 

in Table 5-4. According to Table 5-4, 8 iterations will be sufficient to calculate 

updated properties. This is an optimal number since less iterations may lead to 

inaccurate output but it is very time consuming if large iteration number is 

considered. The difference between results using 8 iterations and 600 iterations is 

less 0.15 %. 

 

Table 5-4 Effect of iteration numbers under tension for 0° lamina with L = 1.5 m 

Iteration number 1 2 4 8 30 60 120 600 

𝜀𝑥  
Accumulati

ve 

0.080

6 

0.060

5 

0.050

4 

0.045

4 

0.041

7 

0.041

0 

0.040

7 

0.0403

9 

𝐴  

(𝑚) 

Original 𝐴 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Update 𝐴 1.307 1.353 1.376 1.387 1.396 1.398 1.398 1.3995 

% Diff -12.8  -9.79  -8.25  -7.47  -6.90  -6.79  -6.74  -6.70  

𝐿𝑓  

(𝑚) 

Original 𝐿𝑓 4.232 4.232 4.232 4.232 4.232 4.232 4.232 4.232 

Update 𝐿𝑓 4.244 4.241 4.239 4.238 4.238 4.238 4.238 4.2381 

% Diff 0.29  0.22  0.18  0.16  0.15  0.14  0.14  0.14  

 

𝐿𝑤   

(𝑚) 

Original 𝐿𝑤 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Update 𝐿𝑤 3.246 3.185 3.154 3.138 3.127 3.125 3.124 3.1237 

% Diff 8.23  6.17  5.14  4.63  4.25  4.18  4.15  4.12  

𝐸̅𝑥   

(1010 𝑃𝑎) 

Original 𝐸̅𝑥 1.441 1.441 1.441 1.441 1.441 1.441 1.441 1.441 

Update 𝐸̅𝑥 1.538 1.537 1.537 1.537 1.537 1.537 1.537 1.5371 

% Diff 6.77  6.72  6.69  6.68  6.67  6.67  6.67  6.67  
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5.8.5. Out-of-Plane Fiver Waviness for 𝜃° Laminate 

 

Effect of stack sequence of [±𝜃, 02, 902]𝑠  is studied in this section. The 

average stiffness properties are obtained from rotating in-plane 0° properties with 

fiber waviness to out-of-plane fiber waviness. After rotating respect to x-axis, the 

stiffness matrix can be rotated based on given stacking sequence. According to 

Figure 5-35 and Figure 5-36, significant axial and bending stiffness reduction are 

observed for 0°  fiber orientation laminate. According to Figure 5-37, Gxy  is 

maximum when 𝜃 = 45°. Rest of 𝐺𝑥𝑧 , 𝐺𝑦𝑧 , 𝐺𝑥𝑦 are shown in Appendix C. 

 

Figure 5-35 Equivalent axial stiffness comparison with stack 

sequence [±𝜃, 02, 902]𝑠 
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Figure 5-36 Equivalent bending stiffness comparison with stack 

sequence [±𝜃, 02, 902]𝑠 

 

Figure 5-37 Equivalent shear modulus in x-y plane comparison with stack 

sequence [±𝜃, 02, 902]𝑠 
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5.8.6. In-Plane Fiber Waviness of 0° Curved Lamina 

 

A multi-comparisons between a lamina with and without initial curvature 

and fiber waviness is discussed and shown in Figure 5-38. According to Figure 5-38, 

the bending stiffness obtained using NB assumption is higher than results using 

general and WB assumptions. The bending stiffness results with curvature is higher 

than results without curvature. For comparison between a curved lamina with and 

without fiber waviness, 𝑅 = 0.05  is selected to investigate bending stiffness 

reduction and approximately 25 % stiffness reduction is observed 

 

Figure 5-38 Comparison between general, wide, narrow beam with / without curvature and in-plane 

fiber waviness. 
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5.8.7. Out-of-Plane Fiber Waviness of 0° Curved Laminate 

 

A single out-of-plane fiber waviness in the unidirectional composite curved 

beam is investigated in this section. The inner radius is 6.4 mm and the outer radius 

is 12.7 mm. The maximum amplitude of fiber waviness is selected at the 15𝑡ℎ ply, 

and the top and bottom plies with no amplitude are selected at 5𝑡ℎ and 33𝑟𝑑 plies. 

Fiber waviness initiates at 𝜃 = 20° and ends at 𝜃 = 70° as shown in Figure 5-39. 

Comparison for axial and bending stiffness for composite beam with and without 

curvature and wavy is shown in Table 5-5. Both axial and bending stiffness are 

higher for composite curved beam than composite straight beam. Since 

imperfection fiber waviness is introduced, both axial and bending stiffness in 

composite curved beam with fiber waviness are less than composite curved beam 

without fiber waviness 

 

Figure 5-39 Single out-of-plane fiber waviness for composite curved beam. 
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Table 5-5 Comparison of axial and bending stiffness for composite beam with and 

without curvature and wavy, respectively. 

  Ax Dx 

Straight 
Perfect 1.032E9 3.733 E3 

Wavy 7.832E8 3.480 E3 

Curved 
Perfect 1.034 E9 3.864 E3 

Wavy 7.917 E8 3.633 E3 

 

For a given fiber waviness amplitude approximately equals to 10% of total 

thickness of composite curved beam with 10 wavy plies, the effect of fiber waviness 

in different thickness location can be investigated. The fiber waviness angle is still 

initiates at 20° and ends up at 70°, where LAend
𝑏𝑜𝑡  is location of bottom layer with 

zero amplitude, LAend
𝑡𝑜𝑝

 is location of top layer with zero amplitude of fiber waviness. 

LAmax  is the ply location with maximum amplitude. According to Table 5-6, 

bending stiffness reaches to maximum when the location of fiber waviness is 

approximately located in the middle axis along longitudinal direction. 

Effect of fiber waviness amplitude is investigated. LAend
𝑏𝑜𝑡  is selected to be 5th 

layer and LAend
𝑡𝑜𝑝

  is selected to be 34th  layer. The location which contains 

maximum fiber waviness amplitude is chosen to be 14th  layer. The maximum 

amplitude varied from 0% to 30% out of thickness of curved beam are investigated. 

The results are shown in Table 5-7. As amplitude increases, both axial and bending 

stiffness decrease. It is more pronounced for axial stiffness since significant axial 

stiffness reduction is observed as amplitude increases.  

 

 



74 

 

Table 5-6 Parameter study for location of fiber waviness for composite curved beam. 

LAend
𝑏𝑜𝑡  (ply) LAmax (ply) LAend

𝑡𝑜𝑝
 (ply) 𝐴x

𝑛𝑎𝑟𝑟𝑜𝑤 (𝑁/𝑚) Dx
𝑛𝑎𝑟𝑟𝑜𝑤(𝑁 −𝑚) 

1 5 10 9.746 E8 3.427 E3 

5 10 15 9.751 E8 3.729 E3 

15 15 20 9.792 E8 3.852 E3 

20 20 25 9.812 E8 3.827 E3 

25 25 30 9.824 E8 3.758 E3 

30 30 35 9.831 E8 3.651 E3 

 

Table 5-7 Parameter study for amplitude of fiber waviness for composite curved 

beam. 

Amplitude 𝐴x
𝑛𝑎𝑟𝑟𝑜𝑤 (𝑁/𝑚) Dx

𝑛𝑎𝑟𝑟𝑜𝑤(𝑁 − 𝑚) 

0 % 1.0343 E9 3.8636 E3 

5 % 9.8178 E8 3.8213 E3 

10 % 8.7894 E9 3.7224 E3 

15 % 7.8364 E8 3.6071 E3 

20 % 7.0825 E8 3.4947 E3 

25 % 6.4996 E8 3.3914 E3 

30% 6.0435 E8 3.2982 E3 

 

 

5.8.8. Maximum Radial Stress Prediction for Composite Curved Beam 

with Out-of-Plane Fiber Waviness under Bending 

 Maximum radial stress can be predicted well using closed-form solution 

provided by [5] for a perfect curved beam without fiber waviness. However, 
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maximum radial stress will relocate and vary if fiber waviness is introduced. The 

σr comparison between present method using Eqs. (5-14) and FE results with and 

without fiber waviness is shown in Figure 5-40. The σr distribution has excellent 

agreement with FE results. The maximum σr  predicted from present method is 

48.00 MPa and maximum σr obtained from FE analysis is 49.85 MPa. The error 

percentage is less than 4 % between the result from present method and FE analysis. 

Moreover, the location which has maximum σr using present method is r = 10.27 

mm, and the location which has maximum σr using FE analysis is r = 10.26 mm. 

The error percentage is less than 1 % between the result from present method and 

FE analysis. 

 

Figure 5-40 Comparison between present and FE results with and without fiber waviness 
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5-9 Conclusion 

 

A closed-form analytical solution is developed for analyzing laminated 

composite beam with and without initial curvature and fiber waviness, respectively. 

The explicit expressions for evaluating axial and bending stiffness are formulated 

based upon modified lamination theory and taking into consideration the structural 

deformation characteristics of beam with narrow section. Closed-form solutions are 

also provided to analyze composite beam with in-plane and out-of-plane fiber 

waviness. Incremental loading schematic is introduced and a practical iteration 

number is selected. FE analysis is conducted to verify results using present 

approach. The maximum radial stress for a composite curved beam with out-of-

plane fiber waviness under bending is discussed. The present stiffness and stress 

results are in good agreement with numerical results obtained from ANAQUS. It is 

found that the geometry of fiber waviness such as location where has maximum 

amplitude and the maximum amplitude of fiber waviness has a great impact on 

equivalent axial and bending stiffness. However, fiber waviness has less impact on 

the bending stiffness of plies affected by fiber waviness are near the middle axis of 

the composite curved beam. It is concluded that the present approach can provide 

an efficient method for analyzing laminated composite curved beam with in-plane 

and out-of-plane fiber waviness. 
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COMPOSITE CURVED BEAM WITH DELAMINATION 

 

Interface cracking is the most common failure mechanism in laminated 

structures. Fracture mechanics have been widely implemented to aim this type of 

failure mode where strain energy release rate (ERR) in the mixed mode are 

evaluated in order to investigate crack initiation and propagation. The crack starts 

to propagate when the strain ERR reaches to the critical strain ERR GT = 𝐺𝑐 =

𝐺𝐼 + 𝐺𝐼𝐼 . Several authors [74-76] provided analytical closed-form solutions to 

predict the required strain ERR of crack propagation However, they observed that 

the analytical approaches can only satisfy the strain ERR results for larger cracks, 

θc > 8° compared with results obtained from numerical solutions. In addition, only 

a crack symmetric with respect to the middle span of the curved beam is considered 

in their approaches. Therefore, this study aims to fill this void by developing an 

analytical analysis for a composite curved beam with a delamination which can be 

located in any interface and any hoop location. 

 

6-1 Symmetrical Model Formulation 

 

Lu et al. [73] considered a circumferential crack in a composite curved beam 

under bending. Superposition method of a prefect curved beam under bending and 

a curved beam with a crack subjected to opening radial stress is applied as shown 

in Figure 6-1. In addition, they studied strain ERR with respect to crack length by 

using FE analysis. Roberta and Brian [75] conducted an analytical approach for 

calculation strain ERR and compared with results provided by [72]. However, if a 
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small crack (
θc

2
< 5°) is considered, the analytical results are not accurate compared 

with results from FE analysis. A novel analytical approach is developed in this 

research by extending the closed-form solution provided by [75].  

 

Figure 6-1 Superposition method for a curved beam with a delamination under bending from Lu et 

al [57]. 

Figure 6-2 shows the geometry and configuration of the symmetric model. 

The beam below the crack is denoted as beam 1 and the beam above the crack is 

denoted as beam 2. The perfect beam without crack is denoted as beam 3. The 

moment and force resultants under bending moment Mo are denoted as Ni and Mi, 

respectively, where i = 1 and 2. Ro is the outer radius of the curved beam and Ri 

is the inner radius, and Rc is the radius of the crack. For a given beam under opening 

bending moment Mo, the upper part above the neutral axis of the beam is under 

compression and the lower part below the neutral axis is under tension as shown in 

Figure 6-3. The unit axial forces applied on the beam 1 and 2 can be computed as 

N1 = 𝜎𝜃
1(𝑅𝑣 − 𝑅𝑖)/𝑤 , and N2 = 𝜎𝜃

2(𝑅𝑜 − 𝑅𝑐)/w  so the tangential stress 

distribution for beam 1 can be achieved by considering a beam subjected to a 
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moment M1 plus a axial force N1. The tangential stress distribution in beam 2 can 

be contributed by a beam subjected a moment M2 and an axial force N2. 

 

Figure 6-2 Symmetrical model configuration and moment and force resultants under bending. 

 

Figure 6-3 Tangential stress distribution σθ under opening bending moment Mo. 
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It should be noted that all the force and moment resultants need to satisfy the 

equilibrium equations below as shown in Figure 6-4: 

𝑁1 + 𝑁2 = 0 

M1 +𝑀2 −
𝑁1ℎ1
2

+
𝑁2ℎ2
2

−𝑀3 = 0 

(6-1) 

 

Figure 6-4 Bi-layer beam moment and force resultants.  

The internal force and moment distribution are varied with respect to the crack 

angle θ for a curved beam under end bending moment and axial force. The internal 

axial, shear forces and moment distribution varied with respect to θ for beam 1 and 

beam 2 can be expressed as 

𝑁(𝜃)𝑖
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑁𝑖 cos(𝜃) 

𝑄(𝜃)𝑖
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑁𝑖 sin(𝜃) 

𝑀(𝜃)𝑖
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑀𝑖 + 𝑁𝑖 𝑅𝑖(1 − cos(𝜃)) 

(6-2) 

where i = 1 and 2. 

Since superposition method is considered, the total forces and moments variation 

with respect to θ  are 𝑁(𝜃)𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑁(𝜃)𝑖

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑁(𝜃)𝑖
𝑜𝑝𝑒𝑛

, 𝑄(𝜃)𝑖
𝑡𝑜𝑡𝑎𝑙 =

𝑄(𝜃)𝑖
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑄(𝜃)𝑖

𝑜𝑝𝑒𝑛,  and 𝑀(𝜃)𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑀(𝜃)𝑖

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +𝑀(𝜃)𝑖
𝑜𝑝𝑒𝑛

 where 
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𝑁(𝜃)𝑖
𝑜𝑝𝑒𝑛, 𝑄(𝜃)𝑖

𝑜𝑝𝑒𝑛,𝑀(𝜃)𝑖
𝑜𝑝𝑒𝑛

 are axial force, shear force and moment due to 

opening stress mentioned in Figure 6-1. 

 

𝑁(𝜃)𝑖
𝑜𝑝𝑒𝑛 = −𝑞𝑖 sin(𝜃/2) 

𝑄(𝜃)𝑖
𝑜𝑝𝑒𝑛 = 𝑞𝑖 cos(𝜃/2) 

𝑀(𝜃)𝑖
𝑜𝑝𝑒𝑛 = −𝑞𝑖𝑅𝑖 sin(𝜃/2 ) 

(6-2) 

 

where 𝑞𝑖 = σr(𝑟) 𝑅𝑖𝜃, i = 1 and 2. σr(𝑟) can be found in Eqs. (4-16).  

Thus, the total strain energy release rate can be obtained by following equation: 

𝐺𝑇(𝜃) =
1

2𝑅𝑐
{𝑅1 (

𝑁(𝜃)1
𝑡𝑜𝑡𝑎𝑙2

𝐸𝐴1
+
𝑀(𝜃)1

𝑡𝑜𝑡𝑎𝑙2

𝐸𝐼1
+
𝑄(𝜃)1

𝑡𝑜𝑡𝑎𝑙2

𝐺𝐴1
)

+ 𝑅2 (
𝑁(𝜃)2

𝑡𝑜𝑡𝑎𝑙2

𝐸𝐴2
+
𝑀(𝜃)2

𝑡𝑜𝑡𝑎𝑙2

𝐸𝐼2
+
𝑄(𝜃)2

𝑡𝑜𝑡𝑎𝑙2

𝐺𝐴2
)

− 𝑅3 (
𝑀𝑜
2

𝐸𝐼3
)} 

(6-3) 

 

where EA, EI, and GA are effective axial stiffness, bending stiffness, and shear 

stiffness in Eqs. (4-5) and (4-6). It should be noticed unit forces and unit moment 

are assumed in Eqs. (6-3). However, Eqs. (6-3) cannot accurately predict total strain 

ERR. Therefore, a modified equation 𝐺𝑇
𝑚(𝜃)  based on non-dimensional 

coefficients is proposed by comparing results obtained from Eqs. (6-3) and results 

obtained from FE analysis.  



82 

 

𝐺𝑇
𝑚(𝜃) = 𝛼 𝛽 𝐺𝑇(𝜃) (6-4) 

The coefficient α is a parameter related to radial effect of crack location and the 

coefficient β is a parameter related to crack length effect. 

𝛼 = −25.254𝑅𝑝
5 + 90.6𝑅𝑝4 − 101.29𝑅𝑝

3 + 36.879𝑅𝑝
2 − 1.5689𝑅𝑝 + 3.5294 

β =
−(𝑦1) log(𝜃) + (𝑦2)

𝑦3
 

(6-5) 

where 

y1 = (0.007006𝑡
2 + 0.6156356𝑡 − 0.2455147) (6-6) 

y2 = 0.26848𝑡2 + 1.102285𝑡 + 4.3770866 

y3 = −(𝑦1) log(16.6) + (𝑦2) 

and t is the total thickness of composite curved beam in the unit of (mm). θ is the 

crack angle in the unit of (degree), and Rp is the crack location ratio where Rp =

(𝑅𝑐 − 𝑅𝑖)/(𝑅𝑜 − 𝑅𝑖)  

 

6-2 Unsymmetrical Model Formulation 

 

The configuration of unsymmetrical model is shown in Figure 6-5. θh is the 

hoop angle locating with respect to the middle length of the crack. The angle of left 

crack tip is denoted as θs. The angle of right crack tip is denoted as θe, where s is 

start angle, and e is end angle of the crack where θh = (𝜃𝑠 + 𝜃𝑒)/2. The lower part 

of the beam is denoted as beam 1, and the upper part of the beam is denoted as 

beam 2. Beam 3 and 4 are beams without crack as shown in Figure 6-5. Considering 
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the total strain ERR on the left crack tip, it can be obtained by using Eqs. (6-3) but 

beam 3 should be replaced with beam 4.  

 

Figure 6-5 Configuration of unsymmetrical model 

 

𝐺𝑇𝑙𝑒𝑓𝑡(𝜃) =
1

2𝑅𝑐
{𝑅1 (

𝑁(𝜃)1
𝑡𝑜𝑡𝑎𝑙2

𝐸𝐴1
+
𝑀(𝜃)1

𝑡𝑜𝑡𝑎𝑙2

𝐸𝐼1
+
𝑄(𝜃)1

𝑡𝑜𝑡𝑎𝑙2

𝐺𝐴1
)

+ 𝑅2 (
𝑁(𝜃)2

𝑡𝑜𝑡𝑎𝑙2

𝐸𝐴2
+
𝑀(𝜃)2

𝑡𝑜𝑡𝑎𝑙2

𝐸𝐼2
+
𝑄(𝜃)2

𝑡𝑜𝑡𝑎𝑙2

𝐺𝐴2
)

− 𝑅4 (
𝑀𝑜
2

𝐸𝐼4
)} 

(6-7) 

 

where 𝑅4 = 𝑅3  and 𝐸𝐼4 = 𝐸𝐼3. The crack angle θ is varied from 0° to θh − 𝜃𝑠 . 

The total strain ERR on the right crack tip can be obtained using similar approach 

in Eqs. (6-3) where θ  is varied from 0°  to θe − 𝜃ℎ . It should be noted that 
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regularized model is applied for a curved beam with a small initial curvature only. 

The stress distribution for a curved composite beam under bending is assumed to 

be independent of θ if regularized model is considered. However, if moderate and 

large initial curvatures are considered for a curved beam under bending, non-

regularized model has to be applied. The stress distribution of non-regularized 

model is assumed to be independent of θ within a certain range. According to 

González [82], the non-regularized angle θnr = 23.32°  is introduced for a 

composite curved beam where the radius to thickness ratio is 1.5. This ratio is 

similar to the ratio applied in the present approach, which is 1.51. Based on their 

model, a linear equation to describe reduced σr which is a function of crack angle 

θck is introduced as 

σr
𝑛𝑒𝑤 = 𝜎𝑟 P 

P = (−2.29277 θ𝑐𝑘 + 148.174)/100 

(6-8) 

where P is the percentage, θck is the crack angle in the unit of degree. According to 

their σr  results, for a given interface but varied with hoop angle, σr  remains 

constant until θ = θnr, and starts to decrease 52 % when θ = 45°. Linear variation 

of P is assumed as shown in Eqs. (6-8).  

The strain ERR based on beam 1, 2, and 4 has higher value compared to the 

one in the right composed by beam 1, 2, and 3 under end bending moment. The 

equivalent force per unit width due to opening stress σr within the region where 

θs < 𝜃 < 𝜃ℎ and θs > 𝜃𝑛𝑟 can be written as  

𝑞𝑖𝑙𝑒𝑓𝑡 = σrleft
𝑛𝑒𝑤 𝑅𝑖𝜃 (6-9) 

where θ  is varied from 0°  to θh − 𝜃𝑠 , i = 1  and 2.  σrleft
𝑛𝑒𝑤 = 𝜎𝑟 𝑃 , where 

θck is  (θs+θh)/2. The equivalent force per unit width due to opening stress σr 

within the region where θh < 𝜃 < 𝜃𝑒 and θs > 𝜃𝑛𝑟 can be written as  
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𝑞𝑖𝑟𝑖𝑔ℎ𝑡 = σr𝑟𝑖𝑔ℎ𝑡
𝑛𝑒𝑤  𝑅𝑖𝜃 (6-10) 

where θ  is varied from 0°  to θe − 𝜃ℎ , i = 1  and 2.  σr𝑟𝑖𝑔ℎ𝑡
𝑛𝑒𝑤 = 𝜎𝑟 𝑃 , where 

θck is (θh + θe)/2. Once reduced 𝑞𝑖 is obtained, the total strain ERR for a crack 

locates in any hoop location is obtained using Eqs. (6-2) to (6-4). 

 

6-3 Finite Element Analysis 

 

An ABAQUS based non-linear FE analysis is developed to simulate structural 

response of a composite curved beam with a crack. The failure load under bending, 

and the strain ERR in Mode I and II are investigated. A unidirectional laminated 

curved beam is considered. The inner radius of the curved beam is 6.4 mm and the 

outer radius 12.7 mm. The width of the beam is 12.7 mm. IM7/8552 carbon-epoxy 

composite material properties are implemented.  

 

6.3.1. Model Formulation 

 

Delamination is located at the interface between upper and lower laminates. 

Thus, two sub-laminate system is implemented in order to simulate delamination 

using Virtual Crack Closure Technique (VCCT) [85]. The upper surface of the 

lower beam is chosen as the master surface and the lower surface of the upper beam 

is chosen as the slave surface as shown in Figure 6-6. Discrete material orientation 

is considered since unidirectional laminated beam is implemented as shown in 

Figure 6-6, where 1 is the fiber direction. During mesh process, it should be noticed 

that element numbers between slave surface and master surface has to be identical 

because nodes on the master and slave surfaces will be bonded. The bonded node 
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set has to be selected from nodes on the slave surface. All the nodes on the slave 

surface have to be selected excepted nodes at which the initial crack is applied with. 

Since non-linear crack propagation analysis is considered, when the step is being 

editing, non-linear effects and large displacements control option called “NIgeom” 

needed to be opened. In addition, maximum number of increments is selected to be 

1000. The initial increment size is 0.01, the maximum increment size is 0.1, and 

minimum increment size is 10−20 because large computational steps will take place. 

Types for selected step called “Surface-to-surface contact (Standard)” is 

implemented. The node to surface discretization method is chosen. The bonded 

nodes set is specifying the initially bonded nodes of the slave surface in debond 

using VCCT crack. The contact properties for VCCT BK mixed mode behavior [86] 

is imputed as GIc = 0.277
𝑁

𝑚𝑚
, GIIc = 𝐺𝐼𝐼𝐼𝑐 = 0.777

𝑁

𝑚𝑚
, and the parameter n =

2.6645 for IM7/8552 material [87]. 

 

Figure 6-6 Definition of master and slave surfaces. 

Two numerical cases are provided in this section.  
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Case 1: 𝑅𝑖 = 6.4 𝑚𝑚   𝑅𝑜 = 12.7𝑚𝑚 

Case 2: 𝑅𝑖 = 12 𝑚𝑚   𝑅𝑜 = 16𝑚𝑚 

Figure 6-7 shows stress distribution of 𝜎11, 𝜎22, and 𝜏12 for a composite curved 

beam with crack locates at middle axis of the beam.  

 

 

 

Figure 6-7 𝜎11, 𝜎22, and 𝜏12 stress distribution for a composite curved beam with a crack under 

bending. 
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6-4 Results and Discussion 

 

6.4.1. Radial Effect 

 

In this study, the crack is located in any radial location when 0 < Rp < 1 

as shown in Figure 6-8. A constant moment Mo = 2.956 𝑁 −𝑚  is applied to 

investigate GT obtained from present approach and compared with results from FE-

analysis implemented by ABAQUS. The configuration of the curved beam, applied 

moment, crack radial location and total strain ERR from ABAQUS is shown in 

Table 6-1. 

 

 

 

Figure 6-8 Crack location radial effect parameter definition. 
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Table 6-1 Crack location radial effect parameters and strain ERR results obtained from FE analysis 

(case 1). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑅𝑝 𝑀𝑜 𝐺𝐼
𝐹𝐸 𝐺𝐼𝐼

𝐹𝐸 
𝐺𝐼
𝐹𝐸

𝐺𝐼𝐼
𝐹𝐸 𝐺𝑇

𝐹𝐸 

16.2 -16.2 6.4 12.7 7.03 10% 2956 134.167 3.68 2.74% 137.85 

16.2 -16.2 6.4 12.7 7.66 20% 2956 201.85 8.8 4.36% 210.65 

16.2 -16.2 6.4 12.7 8.29 30% 2956 244.512 14.04 5.74% 258.55 

16.2 -16.2 6.4 12.7 8.92 40% 2956 260.695 18.15 6.96% 278.85 

16.2 -16.2 6.4 12.7 9.55 50% 2956 245.735 20.36 8.29% 266.10 

16.2 -16.2 6.4 12.7 10.18 60% 2956 204.205 20.78 10.18% 224.99 

16.2 -16.2 6.4 12.7 10.81 70% 2956 148.029 20.28 13.70% 168.31 

16.2 -16.2 6.4 12.7 11.44 80% 2956 89.06 19.96 22.41% 109.02 

16.2 -16.2 6.4 12.7 12.07 90% 2956 33.65 20.52 60.98% 54.17 

 

where the unit of radius is mm, the unit of moment is N-mm, the unit of θ is in 

degree, and the unit of strain ERR is 𝑁/𝑚.  

The total strain ERR comparison between present method and results 

obtained from ABAQUS is tabulated in Table 6-2. 𝐺𝑇
𝑝

 is the total strain ERR 

obtained from present method, and 𝐺𝑇
𝐹𝐸  is the total strain ERR using FE analysis 

implemented by ABAQUS. The comparison is also shown in Figure 6-9. All the 

results obtained from present method have excellent agreement with ABAQUS’s 

results except when Rp = 0.1.  

The geometry and applied moment in second case are tabulated in Table 

6-3. The comparison between the total strain ERR results obtained from the present 

method and ABAQUS are tabulated in Table 6-4 and is shown in Figure 6-10. The 

total strain energy increase as Rp  increases. It reaches to maximum when Rp ≅

0.33. It should be more pronounced that the crack is located near the neutral axis 

of the curved beam. In conclusion, the present method has excellent accuracy at 
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predicting the total strain ERR results where the crack can be located in any radial 

interface. 

Table 6-2 Total strain ERR comparison between present method and ABAQUS (case 1). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑅𝑝 𝑀𝑜 𝐺𝑇
𝑝

 𝐺𝑇
𝐹𝐸 % Diff. 

16.2 -16.2 6.4 12.7 7.03 10% 2956 137.85 125 9.32% 

16.2 -16.2 6.4 12.7 7.66 20% 2956 210.65 213 -1.12% 

16.2 -16.2 6.4 12.7 8.29 30% 2956 258.55 252 2.53% 

16.2 -16.2 6.4 12.7 8.92 40% 2956 278.85 269 3.53% 

16.2 -16.2 6.4 12.7 9.55 50% 2956 266.10 253 4.92% 

16.2 -16.2 6.4 12.7 10.18 60% 2956 224.99 219 2.66% 

16.2 -16.2 6.4 12.7 10.81 70% 2956 168.31 164 2.56% 

16.2 -16.2 6.4 12.7 11.44 80% 2956 109.02 116 -6.40% 

16.2 -16.2 6.4 12.7 12.07 90% 2956 54.17 56.3 -3.93% 

 

 

Figure 6-9 GT comparison between present method and ABAQUS (case 1). 
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Table 6-3 Crack location radial effect parameters and strain ERR results obtained from FE analysis 

(case 2). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑅𝑝 𝑀𝑜 𝐺𝐼
𝐹𝐸 𝐺𝐼𝐼

𝐹𝐸 
𝐺𝐼
𝐹𝐸

𝐺𝐼𝐼
𝐹𝐸 𝐺𝑇

𝐹𝐸 

16.2 -16.2 12 16 12.4 10% 1497 89.764 3.51 3.91% 93.27 

16.2 -16.2 12 16 12.8 20% 1497 199.933 4.52 2.26% 204.45 

16.2 -16.2 12 16 13.2 30% 1497 255.985 9.24 3.61% 265.23 

16.2 -16.2 12 16 13.6 40% 1497 268.702 16.15 6.01% 290.24 

16.2 -16.2 12 16 14 50% 1497 246.51 23.63 9.59% 277.14 

16.2 -16.2 12 16 14.4 60% 1497 200.662 30.82 15.36% 231.48 

16.2 -16.2 12 16 14.8 70% 1497 142.296 37.56 26.40% 179.86 

16.2 -16.2 12 16 15.2 80% 1497 79.48 43.35 54.54% 122.83 

16.2 -16.2 12 16 15.6 90% 1497 18.77 39.23 209.00% 58.00 

 

 

Table 6-4 Total strain ERR comparison between present method and ABAQUS (case 2). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑅𝑝 𝑀𝑜 𝐺𝑇
𝑝

 𝐺𝑇
𝐹𝐸 % Diff. 

16.2 -16.2 12 16 12.4 10% 1497 103 93.27 -10.43% 

16.2 -16.2 12 16 12.8 20% 1497 206 204.45 -0.76% 

16.2 -16.2 12 16 13.2 30% 1497 265 265.23 0.08% 

16.2 -16.2 12 16 13.6 40% 1497 299 290.24 -3.02% 

16.2 -16.2 12 16 14 50% 1497 285 277.14 -2.84% 

16.2 -16.2 12 16 14.4 60% 1497 243 231.48 -4.98% 

16.2 -16.2 12 16 14.8 70% 1497 177 179.86 1.59% 

16.2 -16.2 12 16 15.2 80% 1497 120 122.83 2.30% 

16.2 -16.2 12 16 15.6 90% 1497 55.5 58.00 4.31% 
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Figure 6-10 GT comparison between present method and ABAQUS (case 2). 

 

6.4.2. Length Effect 

 

For case 1, the crack radius is 10 mm. A constant moment Mo = 2 𝑁 −𝑚 

is applied to investigate GT obtained from present approach and compared with 

results from FE-analysis implemented by ABAQUS. The configuration of the 

curved beam, applied moment, crack radial location and total strain ERR from 

ABAQUS is shown in Table 6-5. The total strain ERR comparison between present 

method and results obtained from ABAQUS is tabulated in Table 6-6. 𝐺𝑇
𝑝
 is the total 

strain ERR obtained from present method, and 𝐺𝑇
𝐹𝐸  is the total strain ERR using FE 

analysis implemented by ABAQUS. The comparison is also shown in Figure 6-11Figure 
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6-9. All the results obtained from present method have excellent agreement with 

ABAQUS’s results especially for small crack.  

 

Table 6-5 Crack length effect parameters and strain ERR results obtained from FE analysis (case 1). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑀𝑜 𝐺𝐼
𝐹𝐸 𝐺𝐼𝐼

𝐹𝐸 
𝐺𝐼
𝐹𝐸

𝐺𝐼𝐼
𝐹𝐸 𝐺𝑇

𝐹𝐸 

2.70 -2.70 6.4 12.7 10 2000 17.61 0 0.00% 17.61 

5.40 -5.40 6.4 12.7 10 2000 37.6 0.46 1.22% 38.06 

8.10 -8.10 6.4 12.7 10 2000 56.86 1.51 2.66% 58.37 

10.80 -10.80 6.4 12.7 10 2000 74.74 3.55 4.75% 78.29 

13.50 -13.50 6.4 12.7 10 2000 89.87 6.8 7.57% 96.67 

16.20 -16.20 6.4 12.7 10 2000 101 11.3 11.19% 112.3 

 

 

Table 6-6 Total strain ERR comparison between present method and ABAQUS (case 1). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑀𝑜 𝐺𝑇
𝑝
 𝐺𝑇

𝐹𝐸 
% Diff. 

2.70 -2.70 6.4 12.7 10 2000 17.2 17.61 2.33% 

5.40 -5.40 6.4 12.7 10 2000 37.4 38.06 1.73% 

8.10 -8.10 6.4 12.7 10 2000 60.7 58.37 -3.99% 

10.80 -10.80 6.4 12.7 10 2000 82.4 78.29 -5.25% 

13.50 -13.50 6.4 12.7 10 2000 99.7 96.67 -3.13% 

16.20 -16.20 6.4 12.7 10 2000 110 112.3 2.05% 
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Figure 6-11 GT length effect comparison between present method and ABAQUS (case 1). 

 

The geometry and applied moment in second case are tabulated in Table 

6-7. The comparison between the total strain ERR results obtained from the present 

method and ABAQUS are tabulated in Table 6-8 and is shown in Figure 6-12. The 

total strain energy increase as θ increases. The strain ERR for a small crack length 

is successfully recovered using present method and the error percentage between 

present method and FE analysis is less than 4 %. 
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Table 6-7 Crack length effect parameters and strain ERR results obtained from FE analysis (case 2) 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑀𝑜 𝐺𝐼
𝐹𝐸 𝐺𝐼𝐼

𝐹𝐸 𝐺𝐼
𝐹𝐸

𝐺𝐼𝐼
𝐹𝐸 

𝐺𝑇
𝐹𝐸 

2.70 -2.70 12 16 14 1000 9.36 0 0.00% 9.36 

5.40 -5.40 12 16 14 1000 27.39 0.185 0.68% 27.575 

8.10 -8.10 12 16 14 1000 50.98 0.843 1.65% 51.823 

10.80 -10.80 12 16 14 1000 73.19 2.4 3.28% 75.59 

13.50 -13.50 12 16 14 1000 93.54 5.61 6.00% 99.15 

16.20 -16.20 12 16 14 1000 120.83 10.6 8.77% 131.43 

 

 

Table 6-8 Total strain ERR comparison between present method and ABAQUS (case 2). 

𝜃+ 𝜃− 𝑅𝑖 𝑅𝑜 𝑅𝑐 𝑀𝑜 𝐺𝑇
𝑝
 𝐺𝑇

𝐹𝐸 % Diff. 

2.70 -2.70 12 16 14 1000 9.64 9.36 -2.99% 

5.40 -5.40 12 16 14 1000 28.6 27.575 -3.72% 

8.10 -8.10 12 16 14 1000 52.3 51.823 -0.92% 

10.80 -10.80 12 16 14 1000 77.8 75.59 -2.92% 

13.50 -13.50 12 16 14 1000 103 99.15 -3.88% 

16.20 -16.20 12 16 14 1000 127 131.43 3.37% 
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Figure 6-12 GT length effect comparison between present method and ABAQUS (case 2). 

 

6.4.3. Hoop Effect 

 

Unsymmetrical model is implemented in this section. Table 6-9 and Table 

6-10 show the strain energy ERR at the location of crack left tip as shown in Figure 

6-5. The radius of the crack is 10 mm, the inner radius is 6.4 mm and the outer 

radius is 12.7 mm. The length of the crack angle is selected as 5.4° in total or the 

half crack angle is 2.7°. The unit of the applied moment is N-mm. Gleft is selected 

for the analysis only because Gleft > 𝐺𝑟𝑖𝑔ℎ𝑡  for a curved beam where the crack 

locates in the positive θ region. Based on the observation from Table 6-9 and Table 

6-10, the failure mode for a small crack is mainly contributed from Mode I. Mode 

I to Mode II ratio is less than 5 %  even the crack locates near θ = 45°. The total 



97 

 

strain ERR obtained from present method GT
𝑃 has excellent agreement with results 

from FE analysis GT
FE. The error percentage is less then 6 % except for a crack 

which is near θ = 45°. 

 

Table 6-9 The strain ERR for a composite curved beam with a delamination locates in any hoop 

location under the end bending moment 2000 N-mm. 

Ri Ro Rc θh θs θe Moment GI
FE
𝑙𝑒𝑓𝑡

 GII
FE
𝑙𝑒𝑓𝑡

 GT
FE
𝑙𝑒𝑓𝑡

 GT
𝑝

 % Diff. 

6.4 12.7 10 0.00 -2.70 2.70 2000 17.6048 4.13E-02 17.65  17.2 -2.30% 

6.4 12.7 10 5.40 2.70 8.10 2000 17.5706 3.91E-02 17.61  17.2 -2.11% 

6.4 12.7 10 10.80 8.10 13.50 2000 17.326 3.55E-02 17.36  17.2 -0.73% 

6.4 12.7 10 16.20 13.50 18.90 2000 16.7817 2.93E-02 16.81  17.2 2.49% 

6.4 12.7 10 21.60 18.90 24.30 2000 15.75 1.93E-02 15.77  15.7 -0.32% 

6.4 12.7 10 27.00 24.30 29.70 2000 13.92 6.64E-03 13.93  14.7 5.60% 

6.4 12.7 10 32.40 29.70 35.10 2000 10.87 0 10.87  11 1.20% 

6.4 12.7 10 37.80 35.10 40.0 2000 6.3 0 6.3 7.87 24.92 % 

 

Table 6-10 The strain ERR for a composite curved beam with a delamination locates in any hoop 

location under the end bending moment 5000 N-mm. 

Ri Ro Rc θh θs θe Moment GI
FE
𝑙𝑒𝑓𝑡

 GII
FE
𝑙𝑒𝑓𝑡

 GT
FE
𝑙𝑒𝑓𝑡

 GT
𝑝

 % Diff. 

6.4 12.7 10 0.00 -2.70 2.70 5000 109.583 0.235 17.65  109.82  1.66% 

6.4 12.7 10 5.40 2.70 8.10 5000 109.305 0.2189 17.61  109.52  1.39% 

6.4 12.7 10 10.80 8.10 13.50 5000 107.722 0.195 17.36  107.92  -0.08% 

6.4 12.7 10 16.20 13.50 18.90 5000 104.257 0.156 16.81  104.41  -3.44% 

6.4 12.7 10 21.60 18.90 24.30 5000 97.7 0 15.77  97.70  -0.41% 

6.4 12.7 10 27.00 24.30 29.70 5000 86.2 0 13.93  86.20  -6.50% 

6.4 12.7 10 32.40 29.70 35.10 5000 66.96 0 10.87  66.96  -2.90% 

6.4 12.7 10 37.80 35.10 40.0 5000 38.2 0 38.2 21.99 28.8 % 
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The failure moment can be computed when GI
p

𝑙𝑒𝑓𝑡
= 𝐺𝐼𝑙𝑒𝑓𝑡

𝑐 = 277 N/m . 

According to Table 6-11, if the crack locates close to θh = 45°, approximately 38 

% increment  is observed compared with the crack locates near θ = 0° 

 

Table 6-11 Failure moment investigation for a composite curved beam with a half crack angle 2.7° 

Ri Ro Rc θh θs θe Moment 

6.4 12.7 10 0 -2.7 2.7 10632 

6.4 12.7 10 4.05 1.35 6.75 10632 

6.4 12.7 10 9.45 6.75 12.15 10632 

6.4 12.7 10 14.85 12.15 17.55 10632 

6.4 12.7 10 20.25 17.55 22.95 10632 

6.4 12.7 10 25.65 22.95 28.35 11932 

6.4 12.7 10 29.7 27 32.4 12945 

6.4 12.7 10 35.1 32.4 37.8 14685 

 

6-5 Conclusion 

 

The analytical solutions is developed to calculate the total strain ERR for a 

composite curved beam under bending. Both symmetrical and unsymmetrical 

models are developed, which means the crack can be located in any interface and 

hoop location. FE analysis is implemented to verify results obtained from the 

present approach. In FE analysis, VCCT techniques is implemented to study the 

strain ERR at the crack tip. For a composite curved beam with a crack locates in 

any radial location, the strain ERR reaches to maximum at the location where 

maximum σr is observed of a prefect composite curved beam under bending. The 

strain ERR analytical solutions can be obtained accurately by using linear scale 

parameters compared with strain ERR results from FE analysis. After introducing 
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scale parameters, the present strain ERR has good agreement with FE analysis 

result. In addition, strain ERR increases when the total crack length increases. That 

is, higher moment can be applied on the shorter crack. If the total crack angle 

increases from 5.4° to 32.4°, the applied moment significantly reduce from 8.356 

N-m to 3.287 N-m for a composite curved beam with inner radius is 6.4 mm, outer 

radius is 12.7 mm, and the crack radius is 10 mm composite curved beam. The 

effect of crack hoop location is also investigated. If crack locates near θh = 40°, 

the applied moment is 38 % higher than the crack locates at θh = 0°. In conclusion, 

the present successfully aim the void where previous authors couldn’t predict 

accurately for a composite curved beam with a small crack. Moreover, this study 

allows the crack can be located in any interface and hoop locations, which provides 

a feasible way to efficiently analyze composite curved beam with a crack and the 

total strain ERR results can be predicted accurately even when the radius to total 

thickness ratio is small.   
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TORSIONAL AND WARPING STIFFNESS OF COMPOSITE Z-

STIFFENERS 

 

7-1 Introduction 

 

 Composite materials have been applied in aircraft structure components for its 

performance efficiency. In applications, thin walled beams of composite structures 

with an open cross-section, such Z-section are widely used for stiffeners or stringers 

as load carrying members.  Analysis of composite beams has been extensively 

studied in the past. Several books containing composite beam analysis were 

published [88-92]. Among these books [88, 89], analysis of the composite beams 

only employed the properties in the beam axis. Other books [90-92] include the 

effect due to transverse shear in the beam structural response. Their formulations, 

though rigorous, were complicated and not handy and efficient enough for 

practicing engineers to use in their design. In engineering design practice, there is 

a need of simple closed form expressions for quick but accurate evaluation of 

sectional properties and ply stresses/strains, which can be easily used for parametric 

study and optimal design.   

In analysis of composite beams, Wu and Sun [93] formulated a general 

expression of the constitutive equation by using thin-walled shell theory. Both 

warping and shear deformation of the beam are also included. Yu et al. [94] 

presented a generalized Vlasov Theory of composite thin-walled structures. In 2012, 

Yu et al. [95] used the varied asymptotic method to determine the sectional 

properties of composite beams. Drummond and Chan [96] analytically and 

experimentally investigated I-beam under bending. Their expression for evaluating 
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bending stiffness included the stiffness due to flanges, web and the spandrels at the 

intersection corners of flange and web. In the analysis of I-beam under bending and 

torsion, Jung and Lee [97] included the elastic coupling, shell wall thickness, 

transverse shear deformation, torsion warping, and constrained warping. Rios and 

Chan [98] presented a unified analysis of stiffener reinforced composite beams. In 

their study, a general analytical method was presented for evaluating the structural 

response of composite laminated beams. For beams with both open- and closed- 

sections, Parambil et al. [99] and Sanghavi and Chan [100], using structural 

characteristics of narrow composite beam, developed a closed-form expression for 

evaluation of bending, torsion and warping stiffness as well as ply stresses/strains for 

I-beam.  

On the other hand, analysis of composite beams is often conducted by using 

smeared properties of laminate and then employing into conventional structural 

analysis. In this simplified approach, the sectional properties of composite beams 

such as bending and torsional stiffness (ExI and GxyJ), are obtained by using 

equivalent axial and shear moduli of the cross-sectional laminate (Ex and Gxy) times 

the moments of inertia, I and J which are purely geometric parameters. In so doing, 

the stiffness due to effect of un-symmetric layup of laminate is included but the 

coupling stiffness due to effect of un-symmetric configuration of cross-section is 

ignored. Syed and Chan [101] found that this conventional approach for evaluating 

sectional stiffness results in a significant difference from the Finite Element (FE) 

results.  

The main objective of this paper is to present a novel analytical method for 

conducting stress analysis for Z-sectioned beam which is made of laminated 

composites. Analytical closed-form expressions for determining the torsional and 

wrapping stiffness as well as locations of shear center in term of laminate properties 

were developed based upon a modified lamination theory.  The similar approach to 
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this was successfully used for analyzing the ply stresses of composite I-beams 

under bending and torsion loads [100]. 

 

7-2 Constitutive Equation of Isotropic Z-Stiffener 

 

Thin wall structurers are using often in aircraft applications ranged from the 

single cell closed section fuselage to multi-cellular wings, which are subjected to 

bending, shear, axial and torsional loads. Several shapes including channel, T -, I -, 

or Z -sections are used to stiffen the structures by providing supports for internal 

loads. Thin wall structures contain high load capacity but have relatively small 

thickness [102]. The twisting rigidity is quite significant so it can be considered 

with stiffer than a beam of comparable span and thickness. Thin wall structures are 

classified as open and closed section. For a thin wall section is considered as closed 

section, the centerline of its walls is a closed curve. For open section, the centerline 

of its walls is not a closed curve such as I -, T-, and Z – sections. 

 

7.2.1. Torsional Stiffness of Isotropic Z-Stiffener 

 

Figure 7-1 shows the geometry of Z-stiffener. Three family members are 

considered, which are the top (𝑓1) and bottom (𝑓2) laminates, and the web (𝑤). 𝑊 

is the width for the laminate and ℎ is the thickness of the laminate. For St. Venant’s 

Torsion, 
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Figure 7-1 Family member and geometry definition of Z-stiffener. 

 

𝑇𝑠𝑣 = GK
𝑑𝜃𝑠𝑣
𝑑𝑥

 (7-1) 

 

where G = shear modulus, θsv= total angle of twist in free torsion case, and K = 

torsion constant, so-called polar moment of inertia. For open cross section 

structures, torsion constant K can be taken as the sum of the torsional constants of 

each rectangular cross section’s K. Three different method are provided in this work. 

For method 1, 2, and 3, 𝐾1, 𝐾2, [108] and 𝐾3 [103] can be expressed as 

K1 =
𝑊𝑓1ℎ𝑓1

3 +𝑊𝑤ℎ𝑤
3 +𝑊𝑓2ℎ𝑓2

3

3
 

K2 =
𝜇𝑓1𝑊𝑓1ℎ𝑓1

3 + 𝜇𝑤𝑊𝑤ℎ𝑤
3 + 𝜇𝑓2𝑊𝑓2ℎ𝑓2

3

3
 

(7-2) 
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K3 = 𝑎𝑏3 (
1

3
− 0.21

𝑏

𝑎
 (1 −

𝑏4

12𝑎4
)) 

 

where 𝜇 is a width reduction factor tabulated in Table 7-1, and a is the length of 

longer side of the cross-section, b is length of shorter side of the cross-section.  

Table 7-1 Width reduction factor [103], where h is the thickness of the beam. 

W/h 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 10.0 ∞ 

μ 0.423 0.588 0.687 0.747 0.789 0.843 0.873 0.897 0.936 0.999 

 

For a Z cross-sectional stiffener, the torsional constant can be expressed as  

K𝑡𝑜𝑡𝑎𝑙 = K𝑓1 + K𝑓2 + K𝑤 (7-3) 

where K𝑓1, K𝑓2 𝑎𝑛𝑑 K𝑤 are with respect to top flange, bottom flange and web. 

 

7.2.2. Warping Stiffness of Isotropic Beam 

 

A mathematical sectorial based approach is provided by [104] to calculate 

warping properties. The parameter definition of sectorial area of any 2 random 

points is shown in Figure 7-2. 
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Figure 7-2 Definition of sectorial area [15]. 

Let A and B be two randomly selected poles from the warping function. Supposed 

the origin for WA is selected to be at S = S0 and the origin for WB at S = S1. The 

equation for finding the warping function WA  with origin S0  from the warping 

function WB with origin S1 is 

 

WA(𝑠) = 𝑊𝐵(𝑠) −𝑊𝐵(𝑆0) + (𝑧𝐴 − 𝑧𝐵)(𝑦(𝑠) − 𝑦0) 

−(𝑦𝐴 − 𝑦𝐵)(𝑧(𝑠) − 𝑧0) 
(7-4) 

 

where A and B are coincident point. 

If w(s) is a warping function for a particular pole and origin, the area integral 

Qw = ∫𝑤(𝑠)𝑑𝐴 (7-5) 

is called the first sectorial moment. The area integrals 
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𝐼𝑦𝑤 = ∫ 𝑦(𝑠)𝑤(𝑠)𝑑𝐴 

𝐼𝑧𝑤 = ∫ 𝑧(𝑠)𝑤(𝑠)𝑑𝐴 

(7-6) 

are known as the sectorial products of area. Moreover, the definition of the first, 

second, and product moments of area can be expressed as 

𝑄𝑦 = ∫ 𝑧𝑑𝐴 

𝑄𝑧 = ∫ 𝑦𝑑𝐴 

𝐼𝑦 = ∫ 𝑧
2𝑑𝐴 

𝐼𝑧 = ∫ 𝑦2𝑑𝐴 

𝐼𝑦𝑧 = ∫ 𝑦𝑧𝑑𝐴 

(7-7) 

The important concept here is when those sectorial products of area are both equal 

zero, the pole is called principal pole, or shear center. By integrating both sides of 

the results over the cross-section area and multiplying both sides, we can obtain 

𝐼𝑦𝑤𝐴 = 𝐼𝑦𝑤𝐵 − 𝑤𝐵(𝑆0)𝑄𝑍 + (𝑧𝐴 − 𝑧𝐵)(𝐼𝑧 − 𝑦0𝑄𝑧)

− (𝑦𝐴 − 𝑦𝐵)(𝐼𝑦𝑧 − 𝑧0𝑄𝑧) 
(7-8) 

Since the origin of the y, z axis is the centroid C of the cross section, the first 

moments 𝑄𝑧 and 𝑄𝑦 are both zero. For the conditions for A to be a principal pole 

𝐼𝑦𝑤𝐴 = 𝐼𝑧𝑤𝐴 = 0 (7-9) 

Therefore, 

𝑦𝐴 = 𝑦𝐵 +
𝐼𝑧𝑤𝐵𝐼𝑧 − 𝐼𝑦𝑤𝐵𝐼𝑦𝑧

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧2
 (7-10) 
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𝑧𝐴 = 𝑧𝐵 +
𝐼𝑧𝑤𝐵𝐼𝑦𝑧 − 𝐼𝑦𝑤𝐵𝐼𝑦

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧2
 

If, for a given pole A, there is a sectorial origin 𝑠0 such that 

𝑄𝑤𝐴 = ∫𝑤𝐴(𝑠) 𝑑𝐴 = 0 (7-11) 

The point 𝑠0 is termed as a principal origin. Let B be a pole coincident with A but 

with a known origin 𝑠1, 

𝑤𝐴(𝑠) = 𝑤𝐵(𝑠) − 𝑤𝐵(𝑠0) (7-12) 

Hence, for a given cross section, it is possible to find a pole A and an origin s0 so 

that 𝑄𝑤𝐴, 𝐼𝑦𝑤𝐴, and 𝐼𝑧𝑊𝐴
 are zero. 

 

7.2.3. Warping Stiffness of Isotropic Z-Stiffener 

 

Considering an isotropic beam with Z cross-section as shown in Figure 7-3, 

the dimensions are: 

𝑏1 = 𝑊𝑓1 −
ℎ𝑤
2
    𝑏2 = 𝑊𝑓𝑤 −

ℎ𝑤
2
   ℎ = 𝑊𝑤 +

ℎ𝑓1

2
+
ℎ𝑓2

2
 (7-13) 

The centroid C is at a horizontal distance 𝑑  and a vertical distance e from the 

intersection O of the lower flange and the web 

𝑑 = 𝑌̅𝑐 −
ℎ𝑤
2
   𝑒 = 𝑍̅𝑐 −

ℎ𝑓2

2
 (7-14) 
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Figure 7-3 Geometry of unsymmetrical Z-section and shear flow direction. 

where 

𝑌̅𝑐 =
(−

𝑊𝑓1
2
+ ℎ𝑤) (𝑊𝑓1ℎ𝑓1) + (

ℎ𝑤
2
) (𝑊𝑤ℎ𝑤) + (

𝑊𝑓2
2
)(𝑊𝑓2ℎ𝑓2)

𝑊𝑓1ℎ𝑓1 +𝑊𝑤ℎ𝑤 +𝑊𝑓2ℎ𝑓2
 

𝑍̅𝑐 =
(ℎ𝑓2 +𝑊𝑤 +

ℎ𝑓1
2 ) (𝑊𝑓1ℎ𝑓1) + (

ℎ𝑤
2 + ℎ𝑓2) (𝑊𝑤ℎ𝑤) + (

ℎ𝑓2
2 )(𝑊𝑓2ℎ𝑓2)

𝑊𝑓1ℎ𝑓1 +𝑊𝑤ℎ𝑤 +𝑊𝑓2ℎ𝑓2
 

(7-15) 

If the point O is used both as the pole and the sectorial origin the warping function 

is 

𝑤𝑂(𝑠1) = 0   𝑤𝑂(𝑠2) = ℎ𝑠2   𝑤𝑂(𝑠3) = 0 (7-16) 

To find the principal pole, the values of the sectorial products of area can be 

calculated. 



109 

 

𝐼𝑦𝑤𝑂 = ∫𝑦𝑤𝑂𝑑𝐴𝑦 = ∫(𝑑 + 𝑠2)𝑤𝑂(𝑠2)ℎ𝑓1𝑑𝑠2

𝑏1

0

 

𝐼𝑧𝑤𝑂 = ∫𝑧𝑤𝑂𝑑𝐴𝑦 = ∫ (−ℎ + 𝑒)𝑤𝑂(𝑠2)ℎ𝑓1𝑑𝑠2

𝑏1

0

 

(7-17) 

The principal pole A or shear center can be expressed as 

𝑌𝑠𝑜 = 𝑦𝐴 = 𝑦𝑂 −
𝐼𝑧𝑤𝐵𝐼𝑧 − 𝐼𝑦𝑤𝐵𝐼𝑦𝑧

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧2
 

𝑍𝑠𝑜 = 𝑧𝐴 = 𝑧𝑂 −
𝐼𝑧𝑤𝐵𝐼𝑦𝑧 − 𝐼𝑦𝑤𝐵𝐼𝑦

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧2
 

(7-18) 

The warping function with principal pole A and origin O is 

𝑤𝐴(𝑠1) = −(𝑦𝐴 − 𝑦𝑂)𝑠1 

𝑤𝐴(𝑠2) = −(𝑦𝐴 − 𝑦𝑂)ℎ + (ℎ − 𝑧𝐴)𝑠2 

𝑤𝐴(𝑠3) = 𝑧𝐴𝑠3 

(7-19) 

The first sectorial area moment is 

𝑄𝑤𝐴 = ∫𝑤𝐴(𝑠1)ℎ𝑤𝑑𝑠1 +

ℎ

0

∫ 𝑤𝐴(𝑠2)ℎ𝑓1𝑑𝑠2 +

𝑏1

0

∫ 𝑤𝐴(𝑠3)ℎ𝑓2𝑑𝑠3

𝑏2

0

 (7-20) 

The condition for 𝑠0 to be a principal origin is 

𝑤𝐴(𝑠0) =
𝑄𝑤𝐴
𝐴

 (7-21) 

where 𝐴 = 𝑊𝑓1ℎ𝑓1 +𝑊𝑤ℎ𝑤 +𝑊𝑓2ℎ𝑓2 

The principal warping functions 
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𝑤(𝑠1) = 𝑤𝐴(𝑠1) − 𝑤𝐴(𝑠0) 

𝑤(𝑠2) = 𝑤𝐴(𝑠2) − 𝑤𝐴(𝑠0) 

𝑤(𝑠3) = 𝑤𝐴(𝑠3) − 𝑤𝐴(𝑠0) 

(7-22) 

Therefore, the warping constant 𝐼𝑤 (or Γ ) can be computed as 

𝐼𝑤 = ∫𝑤(𝑠1)
2ℎ𝑤𝑑𝑠1 +

ℎ

0

∫ 𝑤(𝑠2)
2ℎ𝑓1𝑑𝑠2 +

𝑏1

0

∫ 𝑤(𝑠3)
2ℎ𝑓2𝑑𝑠3 =

𝑏2

0

Γ (7-23) 

The torque due to warping is 

Tw = −𝐸Γ
𝑑3𝜃

𝑑𝑥3
 (7-24) 

where E = Axial stiffness, Γ = Warping constant, EΓ = Warping stiffness. 

The total torque will be resisted by St Venant’s shearing stresses and warping 

torsion. The derivation is well documented in [100]. 

T = Tsv + 𝑇𝑤 = 𝐺𝐾
𝑑𝜃

𝑑𝑥
− 𝐸Γ

𝑑3𝜃

𝑑𝑥3
 (7-25) 

Rearranging and writing 𝜇2 =
𝐺𝐾

𝐸𝛤
 to solve 

𝑑𝜃

𝑑𝑥
, we have 

𝑑3𝜃

𝑑𝑥3
− 𝜇2

𝑑𝜃

𝑑𝑥
= −𝜇2

𝑇

𝐺𝐾
 (7-26) 

Applying boundary conditions with 

1. When x = 0, the slope of beam equals zero. 

2. When x = L, the bending moment is zero. 
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𝑑𝜃

𝑑𝑥
=

𝑇

𝐺𝐾
(1 −

cosh 𝜇(𝐿 − 𝑥)

cosh 𝜇𝐿
) (7-27) 

Thus, θ can be solved. 

𝜃𝑤𝑎𝑟𝑝 =
𝑇

𝐺𝐾
(𝑥 +

sinh𝜇(𝐿 − 𝑥)

𝜇 cosh 𝜇𝐿
−

sinh𝜇𝐿

𝜇 cosh 𝜇𝐿
) (7-28) 

When x = L, 

𝜃𝑤𝑎𝑟𝑝 =
𝑇𝐿

𝐺𝐾
(1 −

tanh𝜇𝐿

𝜇𝐿
) (7-29) 

Considering only free torsion case, 

θsv =
𝑇𝐿

𝐺𝐾
 (7-30) 

 

7-3 Constitutive Equation of Composite Z-Stiffener 

 

7-3.1 Constitutive Equation of Laminated Composite Beam under Torsion 

 

The foundation of beam analysis is based upon the one-dimensional moment-

curvature relationship along the longitudinal axis of the beam under bending and upon 

the torque-twist angle relationship along the center axis of twist of the cross-section 

for torsion. This approach for laminated composite beams is similar with the approach 

used in isotropic beams.  However, evaluation of the sectional properties is different.  

These properties are not only dependent of the geometry of the cross-section but also 

composite material properties and their stacking sequence. Composite material is 

inherent with two-dimensional property. Hence, an equivalent one-dimensional 
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property of composite beam is needed.  The equivalent one-dimensional property is 

dependent of the structural response of the deformed beam and the structural response 

of the beam is dependent on the ratio of the width to height of the beam cross-section. 

Beam with general, wide, and narrow sections under axial and bending are discussed 

in Chapter 4-2. The axial and bending stiffness under general, wide, and narrow 

sections are shown in Eqs. (4-7), (4-9), and (4-15).  

For the case of torsion, no axial strains, 𝜀𝑥
0 and  𝜀𝑦

0 as well as 𝐾𝑥 exist. However, 

a non-zero 𝑀𝑥  is induced for the laminate under torsion. The narrow laminate 

constitutive equation subjected to torsion is given as 

[
𝑁𝑥𝑦
𝑀𝑥𝑦

] =  [
𝐴𝑇
∗ 𝐵𝑇

∗

𝐵𝑇
∗ 𝐷𝑇

∗] [
𝛾𝑥𝑦
0

𝜅𝑥𝑦
]   𝑎𝑛𝑑 [

𝐴𝑇
∗ 𝐵𝑇

∗

𝐵𝑇
∗ 𝐷𝑇

∗] =  [
𝑎𝑇
∗ 𝑏𝑇

∗

𝑏𝑇
∗ 𝑑𝑇

∗ ]
−1

 (7-31) 

where 

 𝑎𝑇
∗ = (𝑎66 − 

𝑏61
2

𝑑11
) ; 𝑏𝑇

∗ = (𝑏66 − 
𝑏61𝑑16
𝑑11

) ;   𝑑𝑇
∗ =  (𝑑66 − 

𝑑16
2

𝑑11
) (7-32) 

 

It should be noted that the properties with a subscript, T refer to laminate under 

torsion. In general, b61 and b16 are not the same. The shear center, Zsc measuring 

from the mid-plane of the laminate can be obtained by setting shear strain with 

absence of 𝑁𝑥𝑦 .  

𝑧𝑠𝑐 = −
𝛾𝑥𝑦
0

 𝜅𝑥𝑦
= −

𝑏𝑇
∗

 𝑑𝑇
∗  (7-33) 

The torsional stiffness of the laminate at the shear center, Zsc can be obtained by using 

the parallel theorem as 

𝐷𝑇𝑠𝑐
∗ = 𝐷𝑇

∗ − 2𝑧𝑠𝑐𝐵𝑇
∗ + 𝑧𝑠𝑐

2 𝐴𝑇
∗  (7-34) 
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Like beam of isotropic material, an edge correction factor is needed to 

accommodate the zero shear boundary condition. The torsional stiffness, 𝐺𝐾  is 

modified by a correction factor, μ as shown below: 

𝐺𝐾 =  4𝑏 𝜇 𝐷𝑇𝑠𝑐
∗  (7-35) 

In this analysis, the correction factor used for isotropic material as listed in [105] is 

adopted. For a finite rectangular cross-section of the beam, the twist curvature is twice 

of the rate of the twisting angle, 𝜙 and the torque, T is twice of total twisting moment 

of the laminate, b*𝑀𝑥𝑦 where b is the width of laminate.  

𝜙 =  
𝑇

4𝑏 𝐷𝑇𝑠𝑐
∗  (7-36) 

 

7-3.2 Shear Center 

 

The shear center for composite beam depends on the geometry of the cross-

section, material properties, and the stack sequence. It is an important sectional 

property because the bending and torsion are uncoupled at the shear center. 

Twisting will be induced if only torque is applied and vice versa. The axial and 

bending stiffness for composite Z-stiffener are provided [106, 107] as shown below 

𝐴̅𝑥 = [𝑤𝑓1(𝐴1,𝑓1
∗ ) + 𝑤𝑓2(𝐴1,𝑓2

∗ ) + 𝑤𝑤(𝐴𝑤
∗ )] (7-37) 
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𝐷̅𝑧 = {[𝐴1,𝑓1
∗  [𝑦𝑐,𝑓1

2  𝑤𝑓1 + (
𝑤𝑓1
3

12
) ]]

+ [𝐴1,𝑓2
∗  [𝑦𝑐,𝑓2

2  𝑤𝑓2 + (
𝑤𝑓2
3

12
) ]]

+ [𝐷𝑤
∗  𝑤𝑤  + 𝐴𝑤

∗  𝑦𝑐,𝑤
2  𝑤𝑤  +  2 𝐵𝑤

∗  𝑦𝑐,𝑤 𝑤𝑤]} 

𝐷̅𝑦𝑧 = {(𝐴1,𝑓1
∗ 𝑤𝑓1 𝑦𝑐,𝑓1 𝑧𝑐,𝑓1 + 𝐵1,𝑓1

∗  𝑤𝑓1 𝑦𝑐,𝑓1)

+ (𝐴1,𝑓2 
∗ 𝑤𝑓2 𝑦𝑐,𝑓2 𝑧𝑐,𝑓2 + 𝐵1,𝑓2

∗  𝑤𝑓2 𝑦𝑐,𝑓2)  

+ (𝐵𝑤
∗  𝑤𝑤  𝑧𝑐,𝑤 + 𝐴𝑤

∗  𝑤𝑤 𝑧𝑐,𝑤   𝑦𝑐,𝑤)} 

𝐷̅𝑦 =  [𝑤𝑓1 𝐷1,𝑓1
∗ +𝑤𝑓1 𝐴1,𝑓1

∗  𝑧𝑐,𝑓1
2 + 2 𝑤𝑓1 𝐵1,𝑓1

∗  𝑧𝑐,𝑓1 + 𝑤𝑓2 𝐷1,𝑓2
∗

+𝑤𝑓2 𝐴1,𝑓2
∗  𝑧𝑐,𝑓2

2 + 2 𝑤𝑓2 𝐵1,𝑓2 
∗ 𝑧𝑐,𝑓2

+ 𝐴1,𝑤
∗  [𝑧𝑐,𝑤

2  𝑤𝑤 + (
𝑤𝑤
3

12
) ]] 

Curvatures for a composite Z-stiffener under bending can be expressed as 

𝐾𝑦 =
𝐷̅𝑦

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2    𝐾𝑧 =

𝐷̅𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2    𝐾𝑦𝑧 =

𝐷̅𝑦𝑧

𝐷̅𝑦𝐷̅𝑧 − 𝐷̅𝑦𝑧
2  (7-38) 

Curvature at centroid can be written as 

𝐾𝑦
𝑐 = 𝑀̅𝑦𝐾𝑧 − 𝑀̅𝑧𝐾𝑦𝑧   𝐾𝑧

𝑐 = 𝑀̅𝑧𝐾𝑦 − 𝑀̅𝑧𝐾𝑦𝑧 (7-39) 
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Figure 7-4 Geometry of composite Z-stiffener and load components. 

Distances from top flange, lower flange and web to the origin and loading 

schematic is shown in Figure 7-4. Strain of the top flange can be expressed as 

𝜀𝑥𝑓1
0 = 𝜀𝑥

0 + 𝑦𝐾𝑧
𝑐 + 𝑧𝐾𝑦

𝑐 (7-40) 

where  

𝜀𝑥
0 =

𝑁𝑥̅̅̅̅

𝐴̅𝑥
 (7-41) 

Relationship between applied moment/force and induced shearing force along y 

and z-direction can be expressed as 

𝜕𝑁𝑥
𝜕𝑥

= 0  
𝜕𝑀̅𝑧

𝜕𝑥
= 𝑉𝑦     

𝜕𝑀̅𝑦

𝜕𝑥
= 𝑉𝑧 (7-42) 

Substituting Eqs. (7-41) into (7-42), the following equation can be obtained. 

𝜕𝑁𝑥𝑓1
𝜕𝑥

= 𝐴1𝑓1
∗ [𝑦(𝑉𝑦𝐾𝑦 − 𝑉𝑧𝐾𝑦𝑧) − 𝑧(𝑉𝑧𝐾𝑧 − 𝑉𝑦𝐾𝑦𝑧)] (7-43) 
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If there is no load applied in the axial direction, the equilibrium equation can be 

expressed as 

𝜕𝑞

𝜕𝑠
+
𝜕𝑁𝑥
𝜕𝑥

= 0 (7-44) 

where q = Shear flow, s = The flow direction, Nx = Total force in x-direction (lb/in). 

Rearranging Eqs. (7-44), we can obtained: 

𝜕𝑞𝑓1

𝜕𝑠1
= −

𝜕𝑁𝑥𝑓1
𝜕𝑥

= −𝐴1𝑓1
∗ [𝑦(𝑉𝑦𝐾𝑦 − 𝑉𝑧𝐾𝑦𝑧) − 𝑧(𝑉𝑧𝐾𝑧 − 𝑉𝑦𝐾𝑦𝑧)] (7-45) 

The shear flow on the top flange after integration can be written as 

𝑞𝑓1 = ∫ −𝐴1𝑓1
∗ [𝑦(𝑉𝑦𝐾𝑦 − 𝑉𝑧𝐾𝑦𝑧) − 𝑧(𝑉𝑧𝐾𝑧 − 𝑉𝑦𝐾𝑦𝑧)]𝑑𝑠1

𝑠1

0

 (7-46) 

Due to unsymmetrical cross-section, both shear force 𝑉𝑦 and 𝑉𝑧 has necessary to be 

applied. The shear flow on top flange due to 𝑉𝑦 and 𝑉𝑧 applied at the shear center 

are 

𝑞𝑓1𝑦
= −(𝑉𝑦𝐾𝑦)∫ 𝐴1𝑓1

∗  𝑦𝑑𝑠1 − (−𝑉𝑦𝐾𝑦𝑧)∫ 𝐴1𝑓1
∗  𝑧𝑑𝑠1

𝑠1

0

𝑠1

0

  

𝑞𝑓1𝑧
= −(𝑉𝑧𝐾𝑦𝑧)∫ 𝐴1𝑓1

∗  𝑦𝑑𝑠1 − (𝑉𝑧𝐾𝑧)∫ 𝐴1𝑓1
∗  𝑧𝑑𝑠1

𝑠1

0

𝑠1

0

 

(7-47) 

where y = −Wf1 + ℎ𝑤 − 𝑍̅𝑐 + 𝑠1 and z = 𝑧𝑐𝑓1. 

The shear forces acting on the top flange are introduced as 
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Figure 7-5 Definition of distances regarding with the shear center. 

𝑉𝑓1𝑦 = ∫ 𝑞𝑓1𝑦
𝑑𝑠1

𝑊𝑓1−
ℎ𝑤
2

0

 

𝑉𝑓1𝑧 = ∫ 𝑞𝑓1𝑧
𝑑𝑠1

𝑊𝑓1−
ℎ𝑤
2

0

 

(7-48) 

The distances from centroid to shear center can be expressed as 

Zsc = 𝑉𝑓1𝑦

(
ℎ𝑓2
2 +𝑊𝑤 +

ℎ𝑓1
2 )

𝑉𝑦
 − 𝑍̅𝑐 

Ysc = 𝑉𝑓1𝑧

(
ℎ𝑓2
2 +𝑊𝑤 +

ℎ𝑓1
2 )

𝑉𝑧
− 𝑌̅𝑐 

(7-49) 

Distance between the middle line intersection between web and bottom and the 

shear center can be expressed as 
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Zso = 𝑍𝑠𝑐 + 𝑍̅𝑐 

Yso = 𝑌𝑠𝑐 + 𝑌̅𝑐 
(7-50) 

 

7-3.3 Torsional Stiffness of Composite Z-Stiffener 

 

Based on CLT, the relationship for a thin rectangular cross-section can be 

shown as 

[
 
 
 
 
 
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝑎11 𝑎12 𝑎16 𝑏11 𝑏12 𝑏16
𝑎12 𝑎22 𝑎26 𝑏21 𝑏22 𝑏26
𝑎16 𝑎26 𝑎66 𝑏61 𝑏62 𝑏66
𝑏11 𝑏21 𝑏61 𝑑11 𝑑12 𝑑16
𝑏12 𝑏22 𝑏62 𝑑12 𝑑22 𝑑26
𝑏16 𝑏26 𝑏66 𝑑16 𝑑26 𝑑66]

 
 
 
 
 

[
 
 
 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

 (7-51) 

At shear center, bending and twisting are decoupled. On the other hand, for 

torsional center or we called center of twist, it does not move when the member 

twist. That is, twisting and shearing are decoupled at torsional center. However, if 

beam subjects only to torsion, it is surprise that the center of twist is identical as 

shear center. That is, the bending-torsion-shear are decoupled. Thus, for a thin 

rectangular composite section under a torque, Eqs. (7-51) will be reduced to 

[

𝛾𝑥𝑦
0

𝑘𝑥
𝑘𝑥𝑦

] = [

𝑎66 𝑏61 𝑏66
𝑏61 𝑑11 𝑑16
𝑏66 𝑑16 𝑑66

] [

𝑁𝑥𝑦
𝑀𝑥

𝑀𝑥𝑦

] (7-52) 

If pure torque subjected to the shear center is considered, the curvature in x-

direction is equal to zero. 

𝑘𝑥 = 𝑏61𝑁𝑥𝑦 + 𝑑11𝑀𝑥 + 𝑑16𝑀𝑥𝑦 = 0 (7-53) 
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Solving for Eqs. (7-52), 

𝑀𝑥 = −(
𝑏61
𝑑11

𝑁𝑥𝑦 +
𝑑16
𝑑11

𝑀𝑥𝑦) (7-54) 

Substituting Eqs. (7-54) to (7-52), the mid-plane shear strain and curvature are 

obtained. 

γxy
0 = (𝑎66 −

𝑏61
2

𝑑11
)𝑁𝑥𝑦 + (𝑏66 −

𝑏61𝑑16
𝑑11

)𝑀𝑥𝑦 

𝑘𝑥𝑦 = (𝑏66 −
𝑏61𝑑16
𝑑11

)𝑁𝑥𝑦 + (𝑑66 −
𝑑16
2

𝑑11
)𝑀𝑥𝑦 

(7-55) 

The constitutive equation for a beam under pure torsion can be expressed as 

[
𝛾𝑥𝑦
0

𝑘𝑥𝑦
] = [

𝑎𝑇
∗ 𝑏𝑇

∗

𝑏𝑇
∗ 𝑑𝑇

∗ ] [
𝑁𝑥𝑦
𝑀𝑥𝑦

] (7-56) 

where 

𝑎𝑇
∗ = (𝑎66 −

𝑏61
2

𝑑11
)   𝑏𝑇

∗ = (𝑏66 −
𝑏61𝑑16
𝑑11

)  𝑑𝑇
∗ = (𝑑66 −

𝑑16
2

𝑑11
) (7-57) 

 

Under pure torsion assumption, the mid-plane shear strain can curvature are 

simplified as 

γxy
0 = 𝑏𝑇

∗𝑀𝑥𝑦 

kxy = 𝑑𝑇
∗𝑀𝑥𝑦 

(7-58) 

It should be noted that the shear strain at the shear center is equal to zero. 

γxy = 0 = 𝛾𝑥𝑦
0 + 𝜌𝑠𝑐𝑘𝑥𝑦 (7-59) 
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Solving for Eqs. (7-59),  

ρsc = −
𝛾𝑥𝑦
0

𝑘𝑥𝑦
= −

𝑏𝑇
∗

𝑑𝑇
∗  (7-60) 

The effective stiffness are 

[
𝐴𝑇
∗ 𝐵𝑇

∗

𝐵𝑇
∗ 𝐷𝑇

∗] = [
𝑎𝑇
∗ 𝑏𝑇

∗

𝑏𝑇
∗ 𝑑𝑇

∗ ]
−1

 (7-61) 

Stiffness should all shift to the location of center of twist by a distance ρsc 

AT𝑠𝑐
∗ = 𝐴𝑇

∗  

BT𝑠𝑐
∗ = 𝐵𝑇

∗ − 𝜌𝑠𝑐𝐴𝑇
∗  

DTsc
∗ = 𝐷𝑇

∗ − 2𝜌𝑠𝑐𝐵𝑇
∗ + 𝜌𝑠𝑐

2 𝐴𝑇
∗  

(7-62) 

Due to twisting and bending decoupled at the shear center, BTsc∗ = 0. Definition for 

curvature and moment in x-y direction can be written as  

𝑘𝑥𝑦 = −2
𝜕2𝑤

𝜕𝑥𝜕𝑦
= −2

𝜕
𝜕𝑤
𝜕𝑦

𝜕𝑥
= −2

𝜕𝜃𝑇
𝜕𝑥

= −2𝜙𝑇  

Mxy = −
𝑇

2𝑏
 

(7-63) 

where 𝜙𝑇 = rate of twist = 
𝜕𝜃𝑇

𝜕𝑥
, 𝑇 is the applied torque and 𝑏 is the width of the 

laminate. Substituting Eqs. (7-63) to (7-62), the rate of twist is 

𝜙𝑇 =
𝑇

4𝑏𝐷𝑇𝑠𝑐
∗  (7-64) 

Therefore, for a rectangular cross-section, the torsion stiffness is 
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𝐺𝐾 = 4𝑏𝐷𝑇𝑠𝑐∗  (7-65) 

The torsion stiffness for a composite rectangular cross-section depends on material 

properties, stack sequence, and ply orientation of the laminate. Considering Z-

section geometry, since it belongs open thin wall sections, the torsion stiffness can 

be approximated added together, which is similar to isotropic cases. Three different 

method discussed in [108] are implemented in order to compute overall torsional 

stiffness for a composite Z-stiffener as shown below.  

 

𝐺𝐾1 = 𝐺𝐾𝑓1 + 𝐺𝐾𝑓2 + 𝐺𝐾𝑤 = 4𝑤𝑓1𝐷𝑇𝑠𝑐𝑓1
∗ + 4𝑤𝑓2𝐷𝑇𝑠𝑐𝑓2

∗ + 4𝑤𝑤𝐷𝑇𝑠𝑐𝑤∗
 

𝐺𝐾2 = 𝐺𝐾𝑓1 + 𝐺𝐾𝑓2 + 𝐺𝐾𝑤 =
4𝑤𝑓1

𝑑66𝑓1
+
4𝑤𝑓2

𝑑66𝑓2
+
4𝑤𝑤
𝑑66𝑤

 

𝐺𝐾3 = 𝐺𝐾𝑓1 + 𝐺𝐾𝑓2 + 𝐺𝐾𝑤 = 𝜇𝑓14𝑤𝑓1𝐷𝑇𝑠𝑐𝑓1
∗ + 𝜇𝑓24𝑤𝑓2𝐷𝑇𝑠𝑐𝑓2

∗ + 𝜇𝑤4𝑤𝑤𝐷𝑇𝑠𝑐𝑤∗
 

(7-66) 

 

where 𝐺𝐾𝑓1 = Torsion stiffness of top flange. 𝐺𝐾𝑓2 = Torsion stiffness of bottom 

flange. 𝐺𝐾𝑤 = Torsion stiffness of web. 

 

7-3.4 Warping Stiffness of Composite Z-Stiffener 

 

The warping stiffness of an isotropic beam is function of modulus E and 

thickness h [109]. The 𝐸ℎ is related to the axial force (per unit length) inside the 

wall can be shown as follow, 

𝑁x = ℎ𝜎𝑥 = 𝐸ℎεx
0 (7-67) 

For a beam with orthotropic layup, 
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𝑁𝑥 =
𝑑11
𝐷
εx
0 −

𝑏11
𝐷
𝐾𝑧 (7-68) 

where 

𝐷 = 𝑎11𝑑11 − 𝑏11
2  (7-69) 

At the neutral plane 𝑏11 = 0. Eqs. (7-68) can be simplified to 

𝑁𝑥 =
1

𝑎11𝑖
εx
0 (7-70) 

where i = top flange, bottom flange, and web. 

By comparing with warping stiffness for isotropic and composite I-beam, 

an orthotropic beam’s tension stiffness 
1

a11
 corresponds to an isotropic beam’s 

tensile stiffness 𝐸ℎ . For an open arbitrary cross section, we can use criteria to 

evaluate the warping stiffness of an orthotropic Z-beam by replacing 𝐸ℎ by 1/𝑎11𝑖 

Thus, the warping stiffness of a composite Z-beam can be expressed as 

 

𝐸𝐼𝑤 = (
1

𝑎11𝑤
) ∫ 𝑤(𝑠1)

2𝑑𝑠1 + (
1

𝑎11𝑓1
) ∫ 𝑤(𝑠2)

2𝑑𝑠2

𝑊𝑓1−
ℎ𝑤
2

0

𝑊𝑤+
ℎ𝑓1
2
+
ℎ𝑓2
2

0

+ (
1

𝑎11𝑓2
) ∫ 𝑤(𝑠3)

2𝑑𝑠3

𝑊𝑓2−
ℎ𝑤
2

0

 

(7-71) 

 

7-4 Finite Element Analysis for Composite Z-Stiffener  
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7-4.1 Model Definition and Boundary Condition 

 

ANSYS APDL version 17.2 [110] is used to model and solve in this study. 

The composite Z-section beam is considered as three rectangular cross-sections 

assemble together. The material used for the composite laminate is AS4/3501-6. 

The shell 281element is selected to preform torsion analysis. In this model, 

validations can be constructed by switching the material properties from orthotropic 

to isotropic material properties. The global coordinate system is used for top and 

bottom flanges, where x-axis represents the length of the flanges, and y-axis 

represents the width of the flanges. However, for the web, a local co-ordinate 

system is considered by rotating the −90° with respect to global x-axis. Therefore, 

for the local co-ordinate system in the web, x-axis will be the length of the web, 

and y-axis will be the height of the web. The accuracy of the results depends on the 

way we meshed. A fine mesh is used in this study. 

For the case of constrained torsion, cantilever boundary condition is 

considered in one end surface and the total torsional moment of 1 lb-in2 is applied 

on the other end surface. The torsional moment is equally distributed to all of the 

nodes on the cross-section of the beam, which are called as slave nodes.  A master 

node is named at its shear center at the free end. The force applied to the slave nodes 

is proportional to the weighting factor, which is related to the distance between the 

master node and the slave node as shown in Figure 7-6. For the case of free torsion 

(unconstrained torsion), all degrees of freedoms are constrained at shear center of 

the cross-section at middle length of the beam. The master node and the slave nodes 

for this case are referred to the nodes on the cross-section of at middle length of the 

beam as shown in Figure 7-7. 
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Figure 7-6 Nodes at the end cross-section connected/coupled to the shear center. 

 

Figure 7-7 Nodes at the middle length of beam cross-section connected/coupled to the shear center. 
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7-4.2 Torsional and Warping Stiffness in Finite Element Analysis 

 

The validation is performed by using isotropic material properties for 

composite Z-stiffener. The torsional constant, warping constant can be obtained 

from ANSYS Beam Tool. If free torsion condition is considered, 𝜃𝑠𝑣 is applied at 

one end surface of the beam and −𝜃𝑠𝑣 is applied at the other end surface of the 

beam. Thus, the total amount of 𝑀𝑥𝑦 can be accumulated which are identical the 

applied torsion. The torsional stiffness can be obtained using Eqs. (7-30). In order 

to evaluate warping stiffness, a constant 𝜃𝑤𝑎𝑟𝑝 from theoretical equation is applied. 

The total amount of 𝑀𝑥𝑦 is obtained. By using Eqs. (7-29), warping stiffness is 

obtained.  

 

7-5 Results and Discussion 

 

7-5.1 Isotropic Validation 

 

FE analysis is conducted to verify torsional stiffness in Eqs. (7-1) by 

selecting a proper reduction factor 𝐾𝑡𝑜𝑡𝑎𝑙1, 𝐾𝑡𝑜𝑡𝑎𝑙2, and 𝐾𝑡𝑜𝑡𝑎𝑙3, where 𝐾𝑡𝑜𝑡𝑎𝑙𝑖  is 

the total torsional constant obtained using method 𝑖 , 𝑖 = 1, 2,  and 3. Isotropic 

material properties are used and three different cross-section geometry are 

implemented. Case I is a symmetrical Z-stiffener where the length of top and 

bottom flanges are identical. Case II and case III are unsymmetrical Z-stiffeners 

with and without identical flanges thickness, respectively, as shown in Table 7-2. 

The results are tabulated in Table 7-3. 
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Table 7-2 Selected isotropic cases with different dimensions 

Table Dimensions (inches) Case I Case II Case III Material Properties 

Width of top flange 0.5 0.5 0.5 

E = 1.02 × 107 𝑝𝑠𝑖 

G = 3.7 × 106 𝑝𝑠𝑖 

𝑣 = 0.3 

Width of bottom flange 0.5 0.7 0.7 

Height of web 1 1 1 

Thickness of top flange 0.04 0.04 0.05 

Thickness of bottom flange 0.04 0.04 0.04 

Thickness of web 0.02 0.02 0.02 

 

Table 7-3 Torsional stiffness comparison for isotropic Z-stiffener 

Case 

Torsional Stiffness 𝑮𝑲 (unit: 𝐥𝐛 − 𝐢𝐧𝟐) 

Analytical Approach 
ANSYS Beam Tool 

Method 1 Method 2 Method 3 

I 87.22 84.67 84.70 86.95 

II 103.01 100.67 100.48 102.86 

III 139.87 135.87 135.23 138.75 

 

Based on the observation in Table 7-3, the torsional stiffness results obtained from 

Method 2 and 3 are quit comparable. Comparison between ANSYS Beam Tool and 

present analytical results for the centroid and shear center is shown in Table 7-4. 

The centroid is measured from the origin located at the intersection between base 

line of bottom flange and the most left line of the web. The shear center is measured 

from the origin located at the intersection between middle line of bottom flange and 

the middle line of the web. 
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Table 7-4 Comparison between analytical and ANSYS Beam Tool for shear center and centroid, 

respectively 

 Centroid  Shear Center 

Geometry 
ANSYS Beam 

Tool 
Analytical 

ANSYS Beam 

Tool 
Analytical 

(inches) Yco 𝑍𝑐𝑜 Yco 𝑍𝑐𝑜 YSo 𝑍𝑆𝑜 YSo 𝑍𝑆𝑜 

Case I 0.00 0.55 0.00 0.52 0.00 0.52 0.00 0.52 

Case II 0.069 0.458 0.019 0.458 0.0725 0.260 0.0726 0.259 

Case III 0.0482 0.5003 0.0482 0.5003 0.0625 0.2995 0.0630 0.2990 

 

Table 7-5 Comparison of torsional properties and angle of twist of isotropic Z-Beam with ANSYS 

results for Case I. 

Case 1: Isotropic Material 

 
ANSYS 

Beam Tool 
Analytical 

ANSYS Z-

Beam Model 

Difference % 

(Analytical and 

ANSYS Z-

Model) 

K (in4) 

Torsional Constant 

2.35

× 10−5 
2.289 × 10−5 2.251 × 10−5 1.6 % 

Γ (in4) 

Warping Constant 

4.32

× 10−4 
4.326 × 10−4 4.181 × 10−4 3.4 % 

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
86.95 84.67 83.29 1.6 % 

EΓ (psi − in4) 

Warping Rigidity 
4406 4413 4265 3.4 % 

θsv (𝑟𝑎𝑑) - 0.1181 0.1181 0 % 

θwarp (𝑟𝑎𝑑) - 0.0429 0.0429 0 % 
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Table 7-6 Comparison of torsional properties and angle of twist of isotropic Z-Beam with ANSYS 

results for Case II. 

Case II: Isotropic Material 

 
ANSYS 

Beam Tool 
Analytical 

ANSYS Z-

Beam Model 

Difference % 

(Analytical 

and ANSYS 

Model) 

K (in4) 

Torsional 

Constant 

2.78

× 10−5 
2.715 × 10−5 2.677 × 10−5 1.4 % 

Γ (in4) 

Warping Constant 

6.06

× 10−4 
6.059 × 10−4 5.799 × 10−4 4.3 % 

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
102.86 100.47 99.04 1.4 % 

EΓ (psi − in4) 

Warping Rigidity 
6181 6180 5915 4.3 % 

θsv (𝑟𝑎𝑑) - 0.09954 0.09954 0 % 

θwarp (𝑟𝑎𝑑) - 0.03278 0.03278 0 % 
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Table 7-7 Comparison of torsional properties and angle of twist of isotropic Z-Beam with ANSYS 

results for Case III. 

Case III: Isotropic Material 

 
ANSYS 

Beam Tool 
Analytical 

ANSYS Z-

Beam Model 

Difference % 

(Analytical 

and ANSYS 

Model) 

K (in4) 

Torsional 

Constant 

3.75

× 10−5 
3.65 × 10−5 3.59 × 10−5 1.7 % 

Γ (in4) 

Warping 

Constant 

6.84

× 10−4 
6.83 × 10−4 6.51 × 10−4 4.8 % 

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional 

Rigidity 

138.75 135.17 132.93 1.7 % 

EΓ (psi − in4) 

Warping Rigidity 
6976 6975 6634 4.8 % 

θsv (𝑟𝑎𝑑) - 0.07398 0.07398 0 % 

θwarp (𝑟𝑎𝑑) - 0.02702 0.02702 0 % 

 

According to Table 7-4, both results from ANSYS Beam Tool and 

analytical have excellent agreements. For the case the width of bottom flange is 

greater than the length of top flange, we observed that the shear center is lower than 

the centroid for isotropic Z-beam. An overall comparison between ANSYS Beam 

Tool, Analytical, and ANSYS Z-Stiffener Model is shown in Table 7-5, Table 7-6, 

and Table 7-7 for Case I, II, and III, respectively. 
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7-5.2 Composite Validation 

 

Three different cases are selected to verify shear center results. 

Unidirectional laminate 0° laminate are designed for top flange, bottom flange, and 

web, respectively. Case I has symmetrical cross-section which the length of top 

flange and the length of bottom flange are identical. Case II and II has 

unsymmetrical cross-section. The thickness of the web contains 4 plies for all cases. 

The dimensions of Z-cross-section are tabulated in Table 7-8. 

Table 7-8 Dimensions for selected cases. 

Table Dimensions (inches) Case I Case II Case III Material Properties 

Width of top flange 0.5 0.5 0.5 

E = 1.02 × 107 𝑝𝑠𝑖 

G = 3.7 × 106 𝑝𝑠𝑖 

𝑣 = 0.3 

Width of bottom flange 0.5 0.7 0.7 

Height of web 1 1 1 

Thickness of top flange [0]8𝑇 [0]8𝑇 [0]10𝑇 

Thickness of bottom flange [0]8𝑇 [0]8𝑇 [0]8𝑇 

Thickness of web [0]4𝑇 [0]4𝑇 [0]4𝑇 

 

Table 7-9 Shear center location comparison between ANSYS Beam Tool and present approach. 

 Shear Center 

 ANSYS Beam Tool Present Approach 

Eqs. (7-50) 

(inches) YSo 𝑍𝑆𝑜 YSo 𝑍𝑆𝑜 

Case I 0.0000 0.5200 0.0000 0.5200 

Case II 0.0726 0.2593 0.0729 0.2587 

Case III 0.0630 0.2990 0.0633 0.2983 
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According to Table 7-9, since case I has symmetrical cross-section, location 

between shear center and centroid are identical. The lateral distance YSo between 

shear center and origin is equal to zero. Case II and III has unsymmetrical cross-

section, the bending twisting decoupled point is shifted outside of the cross-section. 

Based on the observation in Table 7-9, shear center results obtained from present 

approach give an excellent agreement with numerical results from ANSYS Beam 

Tool. Numerical studies of shear center location and centroid location are provided 

in Figure 7-8. Thickness for top and bottom flanges and web are 0.04 in. Top flange 

length is 0.5 in and web length is 1 in. A varied bottom flange length from 0.3 in to 

0.8 in is implemented to investigate locations of shear center and centroid. 

According to Figure 7-8(a), the distance between shear center and origin linearly 

decreases when the bottom flange length increases. When the bottom flange 

increases from 0.3 in to 0.8 in, shear center is closer to the bottom flanges than 

centroid if the bottom flange length is greater than the top flange length due to 

symmetric cross-section behavior.  

 

Figure 7-8 Numerical study of shear center location and centroid location if the length of bottom 

flange varies from 0.3 in to 0.8 in. Thickness in all flanges and web are identical equals to 0.04 in. 

The length of top flange is 0.5 in and the length of web is 1 in. 

𝒁𝒔𝒐    𝐯. 𝐬.     𝒘𝒇𝟐 

(a) (b) 
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Table 7-10 Effect of fiber orientation 

 

 

 Effect of fiber orientation is shown in Table 7-10. The designed staking 

sequence for top flange is [±𝜃/02/90]𝑠, for bottom flange is [0]8𝑇, and for web is 

[0]4𝑇, 𝜃 = 0°, 15°, 30°, 45°, 60°, and 90°, respectively. The length of top flange is 

0.5 in, the length of bottom flange is 0.7 in, and the length of web is 1 in. Based on 

the observation in Table 7-10, the shear center is closer to the bottom flanges when 

fiber orientation increases. If fiber orientation increases from 0° to 𝜃°, the stiffness 

along x-direction (longitudinal direction) decreases, resulted in shorter distance 

from shear center to the bottom flange. Insignificant distance changes along y-

direction with changing fiber orientation. Five cases are selected to investigate 

overall influence based on stacking sequence, thickness and length for each sub-

laminates. Case 1 has symmetrical cross-section with symmetrical/balanced 

laminate staking sequence. Case 2 and 3 has unsymmetrical cross-sections but still 

has symmetrical/balanced laminate stacking sequence. Case 4 has unsymmetrical 

cross-section and unsymmetrical/balanced laminate stacking sequence. Case 5 has 

unsymmetrical cross-section and unsymmetrical/unbalanced laminate stacking 

sequence. 
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Table 7-11 Dimensions and stacking sequences of flanges and web. 

Case 

Top Flange Bottom Flange Web 

Stack Sequence Stack Sequence 
Stack 

Sequence 

Width (in) Width (in) Height (in) 

1 
[±45/0/90]𝑠 [±45/0/90]𝑠 [±45]𝑠 

0.5 0.5 1.0 

2 
[±45/0/90]𝑠 [±45/0/90]𝑠 [±45]𝑠 

0.5 0.7 1.0 

3 
[±45/02/90]𝑠 [±45/0/90]𝑠 [±45]𝑠 

0.5 0.7 1.0 

4 
[±45/0/90/0/90/±45]𝑇 [±45/0/90/0/90/±45]𝑇 [±45]𝑠 

0.5 0.7 1.0 

5 
[±45/−60/15/30/0/±45]𝑇 [±45/−60/15/30/0/±45]𝑇 [±45]𝑠 

0.5 0.7 1.0 

 

Table 7-12 Warping and torsional stiffness comparison for case 1 between analytical and ANSYS. 

Case 1: Orthotropic Material  

 Present ANSYS Result Difference % 

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
91.18 88.85 2.6 % 

EΓ (psi − in4) 

Warping Rigidity 
2598 2607 0.3 % 

θsv (𝑟𝑎𝑑) 0.10536 0.10536 0 % 

θwarp (𝑟𝑎𝑑) 0.05259 0.05454 3.6 % 
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Table 7-13 Warping and torsional stiffness comparison for case 2 between analytical and ANSYS. 

Case 2: Orthotropic Material  

 Present ANSYS Result Difference %  

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
112.21 108.00 3.9 % 

EΓ (psi − in4) 

Warping Rigidity 
3666 3694 0.75 % 

θsv (𝑟𝑎𝑑) 0.08912 0.08912 0 % 

θwarp (𝑟𝑎𝑑) 0.04116 0.04187 1.7 % 

 

 

Table 7-14 Warping and torsional stiffness comparison for case 3 between analytical and ANSYS. 

Case 3: Orthotropic Material  

 Present ANSYS Result Difference %  

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
146.59 142.20 2.7 % 

EΓ (psi − in4) 

Warping Rigidity 
4773 4536 5.2 % 

θsv (𝑟𝑎𝑑) 0.06822 0.06822 0 % 

θwarp (𝑟𝑎𝑑) 0.03156 0.03284 3.9 % 
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Table 7-15 Warping and torsional stiffness comparison for case 4 between analytical and ANSYS. 

Case 4: Orthotropic Material  

 Present ANSYS Result Difference %  

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
117.33 114.98 2 % 

EΓ (psi − in4) 

Warping Rigidity 
3653 3660 0.2 % 

θsv (𝑟𝑎𝑑) 0.08523 0.08523 0 % 

θwarp (𝑟𝑎𝑑) 0.04024 0.04065 1.1 % 

 

 

Table 7-16 Warping and torsional stiffness comparison for case 5 between analytical and ANSYS. 

Case 5: Orthotropic Material  

 Present ANSYS Result Difference %  

GK (𝑝𝑠𝑖 − 𝑖𝑛4) 

Torsional Rigidity 
122.44 119.07 2.8 % 

EΓ (psi − in4) 

Warping Rigidity 
3508 3493 0.4 % 

θsv (𝑟𝑎𝑑) 0.08167 0.08167 0 % 

θwarp (𝑟𝑎𝑑) 0.03999 0.04071 1.8 % 
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Table 7-17 Shear center comparison between present and ANSYS. 

Case 

Shear Center 

Isotropic Composite 

Yso (in) Zso (in) Yso (in) Zso (in) 

1 0.000 0.520 0 0.52 

2 0.073 0.259 0.079 0.266 

3 0.063 0.299 0.037 0.365 

4 0.073 0.259 0.080 0.264 

5 0.073 0.259 0.076 0.269 

 

Based on the observation from Table 7-12 to Table 7-16, results obtained from 

present approach give an excellent agreement compared to numerical results 

obtained from ANSYS. The shear center location comparison between present and 

ANSYS is shown in Table 7-17. Shear center location of Z-stiffener using isotropic 

material is only functional of geometry of cross-section. However, for composite 

Z-stiffener, it is functional of not only geometry of the cross-section but stacking 

sequence of the laminate. According to Table 7-17 case 1, shear center location 

using isotropic material properties is identical with shear center location using 

composite material properties. Hence, it can be concluded that shear center location 

is dependent on structural configuration only if the entire beam is made of same 

family laminates regardless the ply orientation and the stacking sequence. 

 The fiber orientation effect of warping stiffness and torsional stiffness are 

discussed. The stacking sequence for top flange is [±𝜃/02/90]𝑠, for bottom flange 

is [±𝜃/02/90]𝑠, and for web is [±45]𝑠 where θ = 0°, 15°, 30°, 45°, 60°, 75° and 

90° to investigate the effect of fiber orientations. It should be noted that 𝑤𝑓1 =

0.5 𝑖𝑛 , 𝑤𝑓2 = 0.7 𝑖𝑛 , and 𝑤𝑤 = 1.0 𝑖𝑛 . The torsional stiffness and warping 
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stiffness based on fiber orientation is tabulated in Table 7-18 and is shown in Figure 

7-9. 

 

Table 7-18 Torsional stiffness varied based on fiber orientation. 

Fiber 

Orientation 

Stiffness lb − in2 

Analytical ANSYS 

Torsion 𝐺𝐾 Warping 𝐸𝐼𝑤  Torsion 𝐺𝐾 Warping 𝐸𝐼𝑤  

0° 33.16 6006 36.75 5635 

15° 54.24 5615 56.23 5578 

30° 94.34 4622 92.48 4739 

45° 112.21 3666 108.00 3694 

60° 91.58 3202 89.36 3229 

75° 52.52 3080 53.86 3096 

90° 33.16 3065 35.76 2997 

 

 

Figure 7-9 (a) Torsional stiffness (b) warping comparison between present and ANSYS results (case 

2). 

(a) (b) 
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Excellent agreements between the present method and FEM are observed 

except small fiber orientation. It is also shown that flange laminates with 45° ply 

in [±θ/0/90]s layup  gives higher torsional stiffness and 0° ply in [±θ/0/90]s layup 

exhibits higher warping stiffness. 

 

7-5.3 Comparison between Narrow and Wide Beam Assumption for Composite 

Z-Stiffener 

 

Difference between a beam with general, narrow and wide sections is 

discussed. For the width to height ratio is less than 6, the narrow beam deflection 

results have more accuracy than general beam results compared with FE analysis 

provided by Lu [111]. However, there is a need to investigate the difference 

between outcomes obtained from narrow beam assumption and wide beam 

assumption. Opposite to a narrow beam, wide beam acting essentially as a plate 

does not show distortion of the cross-section. As a result, curvatures Ky and Kxy 

are restrained. It should be noted that Ny, Nxy, My, and Mxy are induced due to 

strains and curvatures restrained. The comparison between narrow and wide beam 

concept are shown in Table 7-19. According to Table 7-19, stiffness results 

obtained from narrow beam assumption has errors less than 3 % compared with FE 

analysis.  
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Table 7-19 Comparison between narrow and wide beam assumptions. 

 Case 2 Case 3 

 Ax Ky
𝑐  Kz

𝑐 Ax Ky
𝑐  Kz

𝑐 

Narrow 4.436E5 2.951E-06 3.771E-06 5.787E5 2.248E-6 2.730E-6 

Wide 5.397E5 2.395E-6 3.052E-6 6.758E5 1.909E-6 2.329E-6 

ANSYS 4.424E5 2.953E-06 3.777E-06 5.779E5 2.233E-6 2.728E-6 

% Diff. 

(Narrow) 
-0.25 0.07 0.16 -0.13 0.67 0.07 

% Diff. 

(Wide) 
21.93 18.89 19.16 -17.12 -14.51 -14.63 

 Case 4 Case 5 

 Ax Ky
𝑐  Kz

𝑐 Ax Ky
𝑐  Kz

𝑐 

Narrow 4.430E5 2.953E-6 3.774E-6 4.222E5 3.002E-6 3.805E-6 

Wide 5.398E5 2.395E-6 3.050E-6 5.973E5 2.173E-6 2.772E-6 

ANSYS 4.423E5 2.955E-6 3.746E-6 4.223E5 3.11E-6 3.875E-6 

% Diff. 

(Narrow) 
-0.19 0.07 -0.75 0.03 2.99 1.29 

% Diff. 

(Wide) 
22.04 -18.95 -18.58 41.44 -30.13 -28.46 
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7-6 Conclusion for Composite Z-Stiffener 

 

An analytical method is developed to calculate the sectional properties and ply 

stresses of the z-beam under torsion. The sectional properties include shear center, 

equivalent torsional and wrapping stiffness of a laminated composite beam with Z 

cross-section. The developed expression takes into consideration of the structural 

deformation characteristics of composite beam with narrow section. The difference 

between beams with narrow and wide sections is studied. The sectional properties 

and the ply stresses of flanges and web laminates are computed for composite Z-

stiffener torsional loads. The present results give excellent agreement with the 

results obtained from ANSYS™. A parametric study of shear center and centroid 

with various layup sequences ranging from the combination of 

symmetric/unsymmetrical and balanced/unbalanced laminates was performed 

using the present solution. It is found that the sectional properties of a composite 

Z-stiffener structure are dependent on the laminate material properties and stacking 

sequence besides its structural configuration if the flange and web laminates are 

made of different family of laminates. However, the sectional properties are 

dependent on structural configuration only if the entire beam is made of same 

family laminates regardless the ply orientation and the stacking sequence. It is 

concluded that the present approach for analyzing a composite z-stiffener is a viable 

and efficient method for composite z-stiffener design. 
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CONCLUSION AND FURTURE WORK 

 

This research fundamentally provides the analytical development of simple 

closed-form solutions for accurately predicting key structural characteristics such 

as equivalent axial stiffness, bending stiffness, and ply-stress variations for a 

composite curved beam under bending. A closed-form analytical solution is 

developed for analyzing laminated composite beam with and without curvature and 

fiber waviness, respectively. The explicit expression for evaluating axial and 

bending stiffness are formulated based on consideration of structural deformation 

of beam with narrow cross-section. Closed-form solutions are also provided to 

predict overall structural stiffness behavior for a composite curved beam with in-

plane fiber waviness or out-of-plane fiber waviness. FE analysis is conducted for 

verifying the analytical results. The present stiffness and stress variation results 

have excellent agreement with numerical results obtained from ABAQUS. 

Significant stiffness reduction is observed when fiber waviness ratio 𝑅 varies from 

0 to 0.3. A specific ratio when 𝑅 = 0.72 is introduced, where Young’s modulus 

along the x-direction and y-direction are identical. If the ratio is over 0.72, the 

stiffness along the y-direction is greater than the stiffness along the x-direction 

because larger portion of fiber now align in the y-direction, which contributes the 

most stiffness for the structure. In curved laminate stage, both axial stiffness and 

bending stiffness decrease for a composite curved beam with fiber waviness. It is 

more pronounced for axial stiffness since significant axial stiffness reduction is 

observed when the amplitude of fiber waviness increases. However, fiber waviness 

has less impact on the bending stiffness of plies which is affected by fiber wariness 

near the middle axis of the composite curved beam. The maximum radial stress for 
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a composite curved beam with fiber waviness under bending is discussed. The 

maximum radial stress increases about 25 % when a fiber waviness is present and 

the fiber waviness amplitude is equal to 10 % of the total thickness of the beam. It 

is concluded that the present approach can provide an efficient method for 

analyzing laminated composite curved beam with in-plane and out-of-plane fiber 

waviness. 

The analytical closed-form solution is developed to calculate the total strain 

ERR for a composite curved beam under bending. The crack is allowed to locate in 

any arbitrary interface and location in the present research. Symmetrical model and 

unsymmetrical model are developed to capture the total strain ERR. Linear scaling 

parameters are provided to predict the total strain ERR in the present approach to 

aim the void where inaccurate strain ERR is obtained for a given small crack. FE 

analysis is implemented to verify analytical results, VCCT techniques is 

implemented and the total strain ERR in the crack tips are studied. If the total crack 

angle is 5.4°, a bending moment 8.356 N-m can be applied on the composite curved 

beam without failure. However, if the total crack angle 32.4° is considered, only a 

moment 3.287 N-m can be applied on the composite curved beam without failure. 

Significant failure loading reduction is observed when crack angle increases 

from 5.4° to 32.4°. The total strain ERR also varies with the radius of crack. The 

strain ERR reaches to maximum at the location where maximum σr is observed of 

a prefect composite curved beam under bending. The effect of crack hoop location 

is also investigated. If crack locates near θh = 40°, the applied moment is 38 % 

higher than the crack locates at θh = 0°. In conclusion, the present successfully 

fills the void where previous authors couldn’t predict accurately for a composite 

curved beam with a small crack. Moreover, this study allows the crack can be 

located in any interface and hoop locations, which provides a feasible way to 

efficiently analyze composite curved beam with a crack and the total strain ERR 
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results can be predicted accurately for the type of curved beam where Rm/𝑡 ratio is 

less than 3.5. 

The last chapter discussed of composite Z-stiffener which is the application of 

composite curved beam. An analytical method is developed to calculate the 

sectional properties and ply stresses of the z-beam under torsion. The sectional 

properties include shear center, equivalent torsional and wrapping stiffness of a 

laminated composite beam with Z cross-section. Narrow beam assumption has to 

be applied if a thin-walled structures is considered. The equivalent stiffness 

comparison between NB and WB assumptions is provided.  The present results give 

excellent agreement with the results obtained from ANSYS™. A parametric study 

of shear center and centroid with various layup sequences ranging from the 

combination of symmetric/unsymmetrical and balanced/unbalanced laminates was 

performed using the present solution. It is found that the sectional properties of a 

composite Z-stiffener structure are dependent on the laminate material properties 

and stacking sequence besides its structural configuration if the flange and web 

laminates are made of different family of laminates. However, the sectional 

properties are dependent on structural configuration only if the entire beam is made 

of same family laminates regardless the ply orientation and the stacking sequence. 

In conclusion, the present research provides an overall study of composite 

curved beam with fiber waviness and delamination under bending. Equivalent 

stiffness closed-form solutions to calculate axial and bending stiffness are provided 

for a composite curved beam with/without curvature and fiber waviness, 

respectively. The closed-form analytical solution for analyzing composite curved 

beam with delamination is developed. Torsional stiffness and warping stiffness are 

also studied for a composite Z-stiffener. It is concluded that the present approach 

is a viable and efficient method for composite beam design with and without fiber 
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waviness and delamination. The research initiated in this study provides further 

motivation to the following topics: 

• Shear stress prediction for a composite curved beam with an out-of-plane 

fiber waviness. 

• 3-D numerical modeling of investigation in composite curved beam with a 

void using VCCT.  

• Stress concentration factor of voids and stress intensity factor of cracks 

inside the composite curved beam under bending. 

• Extend present approach to study “Spring-in” and “Spring-out” effects 

where data is provided from [112]. 
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Appendix A 

The average compliance constant of 0° ply with fiber waviness Sij
′  are 

 

S11
′ =

1

𝐿
[𝑆11𝐼1 + (2𝑆12 + 𝑆66)𝐼3 + 𝑆22𝐼5] 

S12
′ =

1

𝐿
[(𝑆11 + 𝑆22 − 𝑆66)𝐼3 + 𝑆12(𝐼1 + 𝐼5)] 

S13
′ =

1

𝐿
[𝑆13𝐼6 + 𝑆23𝐼7] 

S16
′ =

1

𝐿
[(2𝑆11 − 2𝑆12 − 𝑆66)𝐼2 − (2𝑆22 − 2𝑆12 − 𝑆66)𝐼4] 

S22
′ =

1

𝐿
[𝑆11𝐼5 + (2𝑆12 + 𝑆66)𝐼3 + 𝑆66𝐼1] 

S23
′ =

1

𝐿
[𝑆13𝐼7 + 𝑆23𝐼6] 

S26
′ =

1

𝐿
[(2𝑆11 − 2𝑆12 − 𝑆66)𝐼4 − (2𝑆22 − 2𝑆12 − 𝑆66)𝐼2] 

S33
′ = 𝑆33 

S44
′ =

1

𝐿
[𝑆44𝐼6 + 𝑆55𝐼7] 

S45
′ =

1

𝐿
[𝐼8(𝑆55 − 𝑆44)] 

S66
′ =

1

𝐿
[2(2𝑆11 + 2𝑆22 − 4𝑆12 − 𝑆66)𝐼3 + 𝑆66(𝐼1 + 𝐼5)] 

 

where  
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I1 = ∫cos
4 𝜙𝑑𝑥 =

𝐿

𝜋
∫

𝑑𝜓

(1 + 𝑎2 cos2𝜓)2
=
𝐿

𝜋
𝐽1

𝜋

0

𝐿

0

 

I2 = ∫cos
3 𝜙 𝑠𝑖𝑛𝜙 𝑑𝑥 =

𝐿

𝜋
∫

𝑎 𝑐𝑜𝑠 𝜓

(1 + 𝑎2 cos2𝜓)2
𝑑𝜓 =

𝐿

𝜋
𝐽2

𝜋
2

0

𝐿
2

0

 

𝐼3 = ∫𝑐𝑜𝑠
2 𝜙 𝑠𝑖𝑛2𝜙 𝑑𝑥 =

𝐿

𝜋
∫

𝑎2 𝑐𝑜𝑠2𝜓 

(1 + 𝑎2 𝑐𝑜𝑠2𝜓)2
𝑑𝜓 =

𝐿

𝜋
𝐽2

𝜋

0

𝐿
2

0

 

𝐼4 = ∫𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛
3 𝜙𝑑𝑥 =

𝐿

𝜋
∫

𝑎3 𝑐𝑜𝑠3𝜓

(1 + 𝑎2 𝑐𝑜𝑠2𝜓)2
𝑑𝜓 =

𝐿

𝜋
𝐽4

𝜋
2

0

𝐿
2

0

 

𝐼5 = ∫𝑠𝑖𝑛4 𝜙𝑑𝑥 =
𝐿

𝜋
∫

𝑎4 𝑐𝑜𝑠4𝜓

(1 + 𝑎2 𝑐𝑜𝑠2𝜓)2
𝑑𝜓 =

𝐿

𝜋
𝐽5

𝜋

0

𝐿

0

 

𝐼6 = ∫𝑐𝑜𝑠2 𝜙 𝑑𝑥 =

𝐿

0

𝐼1 + 𝐼3 

𝐼6 = ∫𝑠𝑖𝑛2 𝜙 𝑑𝑥 = 𝐼3 + 𝐼5

𝐿

0

 

𝐼6 = ∫𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 𝑑𝑥 = 𝐼2 + 𝐼4

𝐿

0

 

 

and 

 J0 =
𝜋

√1 + 𝑎2
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J1 = 𝐽0 −
𝑎2

2𝜋2
𝐽0
3 

J2 =
𝑎

2(1 + 𝑎2)
+

1

4(1 + a2)1.5
ln (
√1 + 𝑎2 + 𝑎

√1 + 𝑎2 − 𝑎
) 

J3 =
𝑎2

2𝜋2
𝐽0
3 

J4 = (1 + 2𝑎2)𝐽2 − 𝑎 

J5 = 𝜋 − 𝐽0 −
𝑎2

2𝜋2
𝐽0
3 

The 0° S matrix with waviness properties is presented below. 

 

[𝑆′] =

[
 
 
 
 
 
 
S11
′ S12

′ S13
′

S12
′ S22

′ S23
′

S13
′ S23

′ 𝑆33

0 0 S16
′

0 0 S26
′

0 0 S36
′

0 0 0
0 0 0
0 0 0

S44
′ S45

′ 0

S45
′ S55

′ 0

0 0 S66
′ ]
 
 
 
 
 
 

 

 

 

Next, S’ matrix can be rotated with respect to z-direction with transformation 

matrix as shown below. 

 [Tσ(θ)]z =

[
 
 
 
 
 
𝑚2 𝑛2 0
𝑛2 𝑚2 0
0 0 1

0 0 2𝑚𝑛
0 0 −2𝑚𝑛
0 0 0

0 0 0
0 0 0

−𝑚𝑛 𝑚𝑛 0

𝑚 −𝑛 0
𝑛 𝑚 0
0 0 𝑚2 − 𝑛2]
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[Tε(θ)]z =

[
 
 
 
 
 

𝑚2 𝑛2 0
𝑛2 𝑚2 0
0 0 1

0 0 𝑚𝑛
0 0 −𝑚𝑛
0 0 0

0 0 0
0 0 0

−2𝑚𝑛 2𝑚𝑛 0

𝑚 −𝑛 0
𝑛 𝑚 0
0 0 𝑚2 − 𝑛2]

 
 
 
 
 

 

 

where m = cos 𝜃, n = sin 𝜃, and θ is fiber orientation. After rotation with respect 

to z-axis, the in-plane compliance matrix [S̅′] can be obtained. 

[S̅′] = [Tε(−θ)]z[𝑆][Tσ(𝜃)]z 

The average properties are 

𝐸1̅̅ ̅ =
1

𝑆̅11
′ , 𝐸2̅̅ ̅ =

1

𝑆̅22
′ , 𝐺12̅̅ ̅̅̅ =

1

𝑆̅66
′ , 𝑣12̅̅ ̅̅ = −

𝑆̅12′

𝑆̅11
′ , 

𝛼̅1 =
1

𝐿
(𝛼1𝐼6 + 𝛼2𝐼7)  𝛼̅2 =

1

𝐿
(𝛼1𝐼7 + 𝛼2𝐼6)  𝛼̅12 =

2

𝐿
(𝛼1 − 𝛼2)𝐼8 
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Appendix B 

During the preceding of increasing the strain, the wave amplitude and 

wavelength of the fiber are changed. Subsequently, the effective moduli of wave 

ply are also changed. Therefore, recalculation of the material properties at each step 

of strain increment is required. The average Young’s modulus in 1-direction can be 

expressed as 

 𝐸𝑥̅̅ ̅ =
1

𝑆1̅1
′   

Next, for a given loading either tension or thermal loading, stress can be 

transformed from x-y coordinate into the 1-2 (in-plane) coordinate. 

 

{
 
 

 
 
Δ𝜎1
Δ𝜎2
Δ𝜎3
Δ𝜏23
Δ𝜏13
Δ𝜏12}

 
 

 
 

= [Tσ(𝜃)]z

{
 
 

 
 
Δσx
Δσy
Δ𝜎𝑧
Δ𝜏23
Δ𝜏13
Δ𝜏12}

 
 

 
 

  

where 

 

Δσx = 𝜎𝑥 + 𝜎𝑥
𝑇 

Δσy = 𝜎𝑦 + 𝜎𝑦
𝑇 

Δσz = 𝜎𝑧 + 𝜎𝑧
𝑇 

Δτyz = 𝜏𝑦𝑧 + 𝜏𝑦𝑧
𝑇  

Δτxz = 𝜏𝑥𝑧 + 𝜏𝑥𝑧
𝑇  

Δτxy = 𝜏𝑥𝑦 + 𝜏𝑥𝑦
𝑇  
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Next, stress can be transformed from 1-2 coordinate into 1̅ − 2̅  (out of plane) 

coordinate. The incremental strains in 1̅ − 2̅ coordinate can be computed by using 

stress-strain relationships. 

 

{
  
 

  
 
Δ𝜎1̅̅ ̅̅ ̅

Δ𝜎2̅̅ ̅̅ ̅

Δ𝜎3̅̅ ̅̅ ̅

Δ𝜏23̅̅ ̅̅ ̅̅

Δ𝜏13̅̅ ̅̅ ̅̅

Δ𝜏12̅̅ ̅̅ ̅̅ }
  
 

  
 

= [Tσ(𝜃)]x

{
 
 

 
 
Δ𝜎1
Δ𝜎2
Δ𝜎3
Δ𝜏23
Δ𝜏13
Δ𝜏12}

 
 

 
 

 

{
  
 

  
 
Δ𝜀1̅̅ ̅̅̅

Δ𝜀2̅̅ ̅̅̅

Δ𝜀3̅̅ ̅̅̅

Δ𝛾23̅̅ ̅̅ ̅̅

Δ𝛾13̅̅ ̅̅ ̅̅

Δ𝛾12̅̅ ̅̅ ̅̅ }
  
 

  
 

=  S̅′

{
  
 

  
 
Δ𝜎1̅̅ ̅̅ ̅

Δ𝜎2̅̅ ̅̅ ̅

Δ𝜎3̅̅ ̅̅ ̅

Δ𝜏23̅̅ ̅̅ ̅̅

Δ𝜏13̅̅ ̅̅ ̅̅

Δ𝜏12̅̅ ̅̅ ̅̅ }
  
 

  
 

 

 

 

Since fiber waviness is along 1-direction, the new fiber waviness length L′ is 

 L′ = L(1 + Δε1̅̅ ̅̅̅)  

Calculate original fiber length, ℓ, by using original amplitude, A, and length, L. 

Assuming φ =
πx

L
, 𝜇 = 𝜋2 𝑅2, 𝑎𝑛𝑑 𝜂2 =

𝜇

1+𝜇
, 

 
ℓ

L
= 1 +

1

4
𝜂2 +

13

64
𝜂4 +

45

256
𝜂6 +

2577

16384
𝜂8 +

9417

65536
𝜂10 +⋯  

 

The value of ℓ/L will coverage to the fourth digit after decimal point when using 

the first 4 items if R less than 0.3 and using the first 6 items if R less than 0.5. 
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To calculate new fiber length, ℓ′, coordinate system from x-y coordinate 

system to 1’-2’ coordinate system has to be considered where 1’ and 2’ are 

coordinate system corresponding to fiber angles along waviness. For given loadings 

including mechanical and thermal loads, 1’-2’ (along fiber direction) stresses can 

be found by using stress transformation 

 

{
 
 

 
 
Δ𝜎1
Δ𝜎2
Δ𝜎3
Δ𝜏23
Δ𝜏13
Δ𝜏12}

 
 

 
 

= [Tσ(𝜃)]z

{
 
 

 
 
Δσx
Δσy
Δ𝜎𝑧
Δ𝜏23
Δ𝜏13
Δ𝜏12}

 
 

 
 

  

where  

 

m = cos(θ + ϕ) ;   𝑛 = sin(𝜃 + 𝜙) 

ϕ = tan−1 [
𝜋𝐴

𝐿
cos (

𝜋𝑥

𝐿
)] 

θ = fiber orientation 

 

After rotating respect with z-axis, the incremental strain in 1′ − 2′  coordinate 

system can be computed using stress-strain relationship. 

 

{
 
 
 

 
 
 
Δ𝜎1

′̅̅ ̅̅ ̅

Δ𝜎2
′̅̅ ̅̅ ̅

Δ𝜎3
′̅̅ ̅̅ ̅

Δ𝜏23
′̅̅ ̅̅ ̅̅

Δ𝜏13
′̅̅ ̅̅ ̅̅

Δ𝜏12
′̅̅ ̅̅ ̅̅ }
 
 
 

 
 
 

= [Tσ(𝜃)]z

{
 
 

 
 
Δ𝜎1
Δ𝜎2
Δ𝜎3
Δ𝜏23
Δ𝜏13
Δ𝜏12}
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{
  
 

  
 
Δε1

′

Δε2
′

Δε3
′

Δγ23
′

Δγ13
′

Δγ12
′ }
  
 

  
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆23
𝑆13 𝑆23 𝑆33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑆44 0 0
0 𝑆55 0
0 0 𝑆66]

 
 
 
 
 

{
 
 

 
 
Δ𝜎1
Δ𝜎2
Δ𝜎3
Δ𝜏23
Δ𝜏13
Δ𝜏12}

 
 

 
 

 

 

where [S] are original compliance constants. Therefore, the new fiber length ℓ′ can 

be calculated as 

 ℓ′ = ℓ(1 + Δε1
′ )  

 

Once the new length of waviness and the new fiber length are found, the new 

amplitude can be computed by using equation shown below. 

 
ℓ′

L′
= 1 +

1

4
𝜂′2 +

13

64
𝜂′4 +

45

256
𝜂′6 +

2577

16384
𝜂′8 +

9417

65536
𝜂′10 +⋯  

where  

 φ′ =
πx

L′
, 𝜇′ = 𝜋2 𝑅′2, 𝑎𝑛𝑑 𝜂′2 =

𝜇′

1 + 𝜇′
  

Since new amplitude and length of fiber waviness are obtained. The new Young’s 

modulus can be calculated. 
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Appendix C 

 

Figure C-1 Comparison between fiber orientation and waviness ratio R of 𝐸̅x. 

 

Figure C-2 Comparison between fiber orientation and waviness ratio R of 𝐸̅z 



154 

 

 

Figure C-3 Comparison between fiber orientation and waviness ratio R of 𝐺̅xz 

 

Figure C-4 Comparison between fiber orientation and waviness ratio R of 𝐺̅yz 
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Figure C-5 Comparison between fiber orientation and waviness ratio R of 𝐺̅xy 

 

Figure C-6 Comparison between fiber orientation and waviness ratio R of 𝑣𝑥𝑦  
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Figure C-7 Comparison between fiber orientation and waviness ratio R of 𝑣𝑥𝑧  

 

Figure C-8 Comparison between fiber orientation and waviness ratio R of 𝑣𝑦𝑧 
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Figure C-9 Comparison between fiber orientation and waviness ratio R of 𝛼𝑥 

 

Figure C-10 Comparison between fiber orientation and waviness ratio R of 𝛼𝑦 
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Figure C-11 Comparison between fiber orientation and waviness ratio R of 𝛼𝑥𝑦 

 

Figure C-12 Equivalent shear modulus in x-z plane comparison with stack sequence [±𝜃, 02, 902]𝑠 
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Figure C-13 Equivalent shear modulus in y-z plane comparison with stack sequence [±𝜃, 02, 902]𝑠 

 

Figure C-14 Equivalent shear modulus in x-y plane comparison with stack 

sequence [±𝜃, 02, 902]𝑠 
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