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ABSTRACT 

 

STRUCTURAL OPTIMIZATION USING ANSYS 

AND REGULATED MULTIQUADRIC  

RESPONSE SURFACE MODEL 

 

 

Publication No. ______ 

 

Ajaykumar Menon, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor: Dr. Kent L. Lawrence  

The high computational expense of large non-linear and complex finite element 

analysis limits or often prohibits the use of conventional codes in engineering design 

and multidisciplinary optimization. Consequently alternate methods such as Design of 

experiments (DOE) and Response surface approximation are commonly used to 

minimize the computational cost of running such analysis and simulation. The basic 

approach of such methods is to construct a simplified mathematical approximation of 

the computationally expensive simulation and analysis code, which is then used in place 

of the original code to facilitate multidisciplinary optimization, design space 
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exploration, reliability analysis etc. When such codes along with powerful finite 

element analysis tools such as ANSYS are tied with good optimization algorithms, 

solving complex structural optimization problems are no longer an issue. 

This research work aims at defining such an automation process in MATLAB 

that incorporates a response surface approximating tool called MQR which is based on 

Radial basis function, ANSYS a finite element solver and a suitable gradient based 

optimization algorithm (SQP). Certain standard test cases are considered that are based 

on size and dynamic response optimization. The results obtained from the proposed 

method are compared with ANSYS DesignXplorer goal driven optimization which is 

based on DOE and also with ANSYS First order optimization technique. The 

comparison of the results demonstrates the accuracy and effectiveness of the proposed 

MQR based optimization process.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Engineering Optimization 
 

The ever-increasing demand to lower the production costs due to increased 

competition has prompted engineers to look for rigorous methods of decision making 

such as optimization. As a result engineering optimization was developed to help 

engineers design systems that are both more efficient and less expensive and to develop 

innovative methods to improve the performance of the existing systems. Engineering 

optimization can best be classified as a rigorous mathematical approach to identify and 

select a best candidate from a set of probable design alternatives (Rao, [1]).  

Optimization in its broad sense can be applied to solve any engineering 

problem. Having reached a degree of maturity over the past several years, optimization 

techniques are currently being used in a wide variety of industries, including aerospace, 

automotive, MEMS, chemical, electrical and manufacturing industries. With the 

development of computer technology, complexity of problems being solved using 

optimization methods is no longer an issue. Optimization methods coupled with modern 

tools of computer-aided design are also being used to enhance the creative process of 

conceptual and detailed design of engineering systems. 

There is no single method or technique for solving all optimization problems 

efficiently. Hence a number of optimization methods have been developed for solving 



 

 2 

different types of optimization problems. It is in the entire discretion of the engineer to 

choose a method which is computationally efficient, accurate and appropriate for his 

design problem. 

1.2 Design of Experiments and Response Surface Modeling in Optimization 

Optimization methods known as mathematical programming techniques are 

generally studied as a part of Operations Research. This is a branch in mathematics that 

employs scientific methods and techniques to decision making problems with the aim of 

establishing the best or optimal solutions [1]. Design of experiments (DOE) is one such 

well defined area of operation research. This method enables one to analyze the 

experimental data and build empirical models to obtain the most accurate representation 

of the physical situation.  

Today’s engineering structures are often analyzed using Finite Element 

Methods. The finite element method is a numerical procedure for analyzing structures 

and continua (Cook, [2]). Extensive research is being done in the field of design 

optimization with finite element analysis as a simulation and evaluation tool. However 

there are certain optimization problems such as structural optimization that often 

involve expensive function evaluations. For instance a normal crash simulation of a 

passenger car takes about 27 hours with an estimated computational cost of about $5200 

(Yang, [3]). Consequently alternate methods of function evaluations such as design of 

experiments (DOE) and response surface modeling (RSM) are commonly employed in 

engineering design to minimize the computational cost involved in such analysis and 

simulation. 



 

 3 

The basic approach of such methods is to construct a simplified mathematical 

approximation of the computationally expensive simulation and analysis code, which is 

then used in place of the original code to facilitate Multidisciplinary Optimization 

(MDO), reliability analysis, design space exploration etc. A variety of approximation 

models exist such as polynomial response surfaces, Kriging model, radial basis 

functions, neural networks and multivariate adaptive regression splines (Simpson, [4]). 

In this research a classification of radial basis function known as Regulated 

Multiquadric Response Surface (MQR) model is employed to approximate the 

expensive simulation and analysis code. 

1.3 Objective and Approach 

     As discussed in the previous section, there are certain complex optimization 

problems that demand expensive function evaluations. Resort to alternate methods of 

function evaluations such as Design of experiments (DOE) and Response surface 

modeling (RSM) are made to minimize the computational expenses incurred in solving 

such problems. 

The main objective of this research is to explore the possibility of solving such 

structural optimization problems accurately using suitable DOE and RSM tools. This is 

achieved by developing a suitable design automation code in Matlab that incorporates 

ANSYS a finite element analysis Tool and MQR (Multiquadric Response surface) a 

DOE and RSM tool with a suitable optimization technique. The optimization tool 

available in Matlab (‘fmincon’) based on sequential quadratic programming is used as 

the optimization method to solve the selected set of application problems. The results 
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obtained adopting this method are then compared with those obtained using ANSYS 

inbuilt First Order optimization method and also with ANSYS DesignXplorer module 

available within ANSYS WORKBENCH 9. 

The application problems considered in this research are 

1. Weight minimization of 9-bar truss, by finding optimal cross-sectional 

areas of the truss members. 

2. Weight minimization of 25-bar truss, by finding optimal cross-sectional 

areas of the truss members. 

3. Finding the optimal size of an elliptical hole in a rectangular plate for 

minimum weight so as to withstand the applied tensile load. 

4. Optimal design of a 2 dimensional vehicle suspension for ride quality 

and comfort. 
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CHAPTER 2 

OPTIMIZATION AND ITS ROLE IN STRUCTURAL DESIGN 

2.1 Definition and Applications 
 

Optimization may be defined as the process of maximizing or minimizing a 

desired objective function while satisfying the prevailing constraints (Belegundu, [5]). 

In every stage of design, construction and maintenance of engineering systems, 

engineers are bound to take certain technological and managerial decisions. The 

ultimate goal of all such decisions is either to minimize the effort required or maximize 

the desired benefit. Since either of these goals in any physical situation can be 

expressed as a function of certain design variables, optimization may also be defined as 

the process of finding the conditions that give the maximum or minimum value of a 

function [1]. 

Nature provides abundance examples of optimization. For example in metals 

and alloys, atoms take the position of least energy to form unit cells. It is these unit cells 

that define the crystalline structure of materials. Another example of nature’s 

optimization process is genetic mutation for survival. Like nature, organizations and 

businesses employ optimization in their work process to meet the current consumer 

demands and increased competitions. In engineering, optimization can be used to solve 

any problem. Some typical applications from different engineering disciplines are- 

1. Design of aircraft and aerospace structures for minimum weight. 
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2. Vibration and noise optimization of automobile for ride quality, comfort 

and handling. 

3. Optimal design of electric networks. 

4. Analysis of statistical data and building empirical models from 

experimental results to obtain the most accurate representation of the 

physical phenomenon. 

5. Optimal production planning, controlling and scheduling etc. 

As discussed before, a number of optimization methods are available to solve 

such problems. However, for engineers to apply optimization at their work place they 

need to understand the theory, the algorithm and the techniques behind these methods. 

This is because practical problems may require modifying algorithmic parameters and 

even scaling and adapting the existing methods to suit the specific application. Above 

all, the user may have to try out a number of optimization methods to find one that can 

be successfully applied. 

2.1.1 Statement of an Optimization Problem 

Majority of engineering problems often involve constrained minimization. An 

example of such constrained minimization problem is finding the minimum weight 

design of a structure subject to constraints on stress and deflection. Constrained 

problems may be expressed in the following general nonlinear programming form [4]: 

minimize      f(x) 

subject to     gi(x) 0≤       mi ,.......,1=                                                (2.1) 

and               hj(x) 0 =       lj ,.......,1=  
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where x T

nxxx ),.......,,( 21=  is a column vector of  n real-valued design variables. f is the 

objective or cost function, g’s are inequality constraints, and h’s are equality 

constraints. The inequality constraints in Eq. (2.1) include explicit lower and upper 

bounds on the design variables. We may also express Eq. (2.1) in the form: minimize 

f(x), x є Ω where 

Ω = {x: g 0≤ , h = 0}                                                                            (2.2) 

Ω is the feasible region or feasible set. For unconstrained problems the feasible region is 

the entire space or x є R
n. Objective function and constraints of linear programming 

problems involve linear functions of x, where as objective function in quadratic 

programming problems is a quadratic function of the variables while the constraints are 

linear.  

The design space or design variable space in an optimization problem can be 

considered as an n-dimensional Cartesian coordinate space where each coordinate axis 

represents a design variable xi (i=1,…..n). A design point is a point on the design space 

that may represent a possible or an impossible solution. Design variables cannot be 

chosen arbitrarily; they have to satisfy certain specific functional requirements to 

produce an acceptable design. These restrictions that must be satisfied in a design are 

called design constraints.  

Design constraints are classified into two; one that represent limitations on the 

behavior or performance of the system and one that pose physical limitations on the 

design variables such as availability ,fabric ability, transportability etc. While the 
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former is referred to as behavior or functional constraint, the latter is known as 

geometric or side constraints. 

The values of the design variable belonging to the set x that satisfy gi(x) = 0 

forms a hyper-surface on the design space called the constraint surface. This is an (n-1) 

dimensional subspace where n represents the number of design variables. The constraint 

surface divides the design space into two; one where gi(x) < 0 and the other in which 

gi(x) >0. Design points on the hyper-surface i.e. points that satisfy gi(x) = 0 satisfy the 

constraint gi(x) critically. Those lying on the region where gi(x) >0 are infeasible and 

unacceptable while those on the region belonging to gi(x) <0 are feasible and 

acceptable. The collection of all constraint surfaces i.e. gi(x) = 0, i=1,….m that 

separates the acceptable region is known as the composite constraint surface. A design 

point that lies on one or more constraint surfaces is known as a node point and its 

associated constraint as an active constraint. Those points that do not lie on the 

constraint surface are known as free points. Depending on the location of a design point 

on the design space, it can be classified into four as: 

1. A free and acceptable point 

2. A free and unacceptable point 

3. A bound and acceptable point and 

4. A bound and unacceptable point. 
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In general there will be more than one acceptable design point and our objective 

is to choose the best from the lot. This is obtained by specifying a criterion to compare 

the acceptable design and choosing the best one from it. This criteria or function is 

known as the cost or objective function of the optimization problem. When there are 

more than one objective function then the problem is known as a multi-objective 

programming problem. Like constraint surfaces, objective functions also form hyper-

surfaces known as objective function surfaces. Once the objective function surfaces are 

drawn along with constraint surfaces on the design space, the optimum point can be 

easily located graphically as shown below. 

    

Figure 2.1 Function plot depicting optimum solution for a 2 design variable set 
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It can be observed that for a two design variable problem, the optimal point can be 

easily visualized and solved graphically. However when the number of design variables 

exceeds two then it becomes difficult to visualize the problem and can be only solved 

mathematically [1]. 

2.2 Discussion on Commonly used Optimization Techniques 

As discussed in the previous chapter, Optimization techniques are studied as a 

part of operations research. The optimum seeking methods of operations research are 

categorized as [1]: 

1) Mathematical Programming Techniques: Mathematical Programming 

Techniques are used to find the minimum of a function of several variables under a 

prescribed set of constraints. Examples of such methods are: Calculus methods; 

nonlinear programming; geometric programming; quadratic programming; sequential 

quadratic programming (SQP); linear programming; genetic algorithm etc. 

2) Stochastic Process Techniques: They are used to analyze problems described 

by a set of random variables with known probability distribution. Examples are: 

Markov Process; queuing theory; statistical decision theory etc. 

3) Statistical Methods: Statistical methods are used to build empirical models 

from experimental data through analysis in order to obtain the most accurate 

representation of the physical situation. Examples are: Regression analysis; Design of 

Experiments (DOE) etc. 

The choice of methods depends on the type of problems being solved. There is 

no single method to solve all optimization problems efficiently. Hence one has to try 
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various methods in order to choose the best one that proves to be computationally 

efficient and accurate. The subsequent subsections of this topic provides a brief 

discussion on the optimization methods used in this research work along with a 

discussion on one of the optimality criterion known as Pareto optimality employed in 

ANSYS DesignXplorer to find the best optimal solution for the design problem.  

2.2.1 Sequential Quadratic Programming  

Sequential Quadratic Programming (SQP) has received a lot of attention in the 

recent years owing to the superior rate of convergence (Schittkowski, [6]). It represents 

a state of the art in non linear programming methods. Finite element based problems, 

that involve relatively large number of degrees of freedom and design variables are 

quite effectively solved using SQP. The formulation of an SQP is based on Newton’s 

method and Karush-Kuhn-Tucker (KKT) optimality conditions for constrained 

problems. This method was first published by Pshenichny in 1970 and was called a 

“linearization method” (Pshenichny, [7]). While this method has received some 

attention in the past for engineering applications, the algorithms have deviated from the 

theory originally presented by Pshenichny; consequently the algorithms work well on 

certain problems but fail on others. 

All gradient methods involve two major tasks: 1) Direction finding or where to 

go in the design space, and 2) step size selection or how far to go. Once these two 

parameters are determined, a new and improved design point on the design space can be 

obtained as 

 xk+1 = xk + αk dk                                                                                 (2.3) 
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where dk  signifies the direction vector at the given point xk  and  αk represent the step 

size. A number of iterations are performed to reach at the best optimum point. Iteration 

involves solving a quadratic programming sub problem to find the direction vector at 

the point xk. The step length parameter αk   is determined by an appropriate line search 

algorithm that minimizes the merit function.  

The sequential quadratic programming (SQP) has several attractions: 1) The 

starting point can be infeasible. 2) Gradients of only active constraints are needed. 3) 

Equality constraints can be handled in addition to the inequalities. 4) And Non linear 

constrained problems can be solved in less iteration than an unconstrained problem. 

One of the reasons for this is that, because of the limits on the feasible area, the 

optimizer can make informed decisions regarding directions of search and step length. 

On account of these factors, in this research work a MATLAB optimization tool 

called “fmincon” based on SQP was employed.  

2.2.2 Genetic Algorithm  

Genetic Algorithms are search algorithms based on the principle of evolution 

and survival of the fittest. John Holland, from the University of Michigan began his 

work on genetic algorithms at the beginning of the 60s (Holland, [8]).  The 

computational techniques developed by Holland simulated the evolution process and 

applied it to mathematical programming. These algorithms guide the evolution of a set 

of randomly selected design variables from the design space towards a near and in some 

cases to an optimal solution. 



 

 13 

Genetic Algorithms differ from more traditional optimization techniques; in that 

they involve a search from a "population" of solutions, not from a single point. Each 

iteration or generation of a Genetic Algorithm involves a competitive selection that 

weeds out poor solutions. The solutions with high "fitness" are "recombined" with other 

solutions by swapping parts of a solution with another. Solutions are also "mutated" by 

making a small change to a single element of the solution. Recombination and mutation 

are used to generate new solutions that are biased towards regions of the space for 

which good solutions have already been seen. But such algorithms have proved to be 

computationally expensive when solving complex design problems. However the 

development in computer technology and the nature of such algorithms have rendered 

them suitable for implementation on parallel processing machines. The general steps 

followed by a Genetic Algorithm process can be summarized as: 

1) Initialize the population 

2) Evaluate initial population 

3) Perform competitive selection 

4) Apply genetic operators to generate new solutions 

5) Evaluate solutions in the population 

6) Repeat steps 3 through 5 until some convergence criteria are satisfied. 

Genetic Algorithm in ANSYS DesignXplorer optimization module is used to find 

optimal solutions to the application problems in this research .Results of the proposed 

MQR optimization method is then compared with the results obtained from ANSYS 
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DesignXplorer and also from ANSYS First Order Optimization method, to check for 

the accuracy of the MQR method. 

2.2.3 First Order Optimization Method 

First Order optimization method as employed in ANSYS uses penalty function 

approach to minimize the objective or cost function. This is done by converting a 

constrained minimization problem into an unconstrained problem by adding penalty 

functions. The penalties are added to the objective function to account for the imposed 

constraints.  

The first order method uses gradients of the dependent variables with respect to 

the design variables. Gradient calculations are performed in order to determine a search 

direction, and a line search strategy is adopted to minimize the unconstrained problem 

(ANSYS Documentation, [9]). 

2.3 Pareto Optimality Criterion 

Most real-life engineering optimization problems require simultaneous 

optimization of more than one objective function. In these cases, it is unlikely that the 

same values of the design variables will results in the best optimal values for all 

objectives. Hence, some trade-off between the objectives is needed to ensure a 

satisfactory design. This can be done mathematically correctly only when some 

optimality principle such as Pareto Optimality is used.  

Pareto’s principle states that: for a design variable x to be a Pareto optimal 

solution to a multi objective optimization problem, there should be no other solution 

that better satisfies all the other objectives simultaneously. That is, there can be other 
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solutions that are better in satisfying one or several objectives, but they must be worse 

than the Pareto-optimal solution in satisfying the remaining objectives. Mathematically 

stated, a feasible solution x is called Pareto optimal if there exists no other feasible 

solution y such that  fi (y) ≤  fi (x)  for  i = 1,2,3,……,k with  fj (y) <  fj (x)  for at least 

one j where  1 ≤  j ≤  k  , where k denotes the number of objective functions to be 

satisfied in a multi objective optimization problem.[1] 

There are several methods that have been developed to solve multi objective 

optimization problems. Genetic Algorithm is one such method that has wide application 

in multi objective optimization problems. In this research Genetic Algorithm in ANSYS 

DesignXplorer is used to generate a set of Pareto optimal solutions and based on certain 

specific criterion or rule, the best Pareto optimal solution is selected as the solution for 

the optimization problem. The way this is being done would be discussed more in the 

chapter detailing results and discussion.   

2.4 Optimization based on Finite Elements 

Today’s engineering structures are often analyzed using Finite Elements which 

is a well-known tool for structural analysis. Finite elements are applied to capture the 

dynamic response, heat transfer, fluid flow and other phenomena of a system and also to 

determine the deformation and stresses in a structure subjected to loads and boundary 

conditions. Mathematically it may be considered as a numerical tool to analyze 

problems governed by partial differential equations that describe the behavior of the 

system being studied. 
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 Of all the engineering disciplines, structural designs have seen tremendous 

development and application of numerical optimization methods. It was Lucien Schmit 

in 1960 that recognized the potential for combining optimization techniques in 

structural design. He was the first to introduce nonlinear programming techniques to the 

design of elastic structures (Schmit, [10]).Today, various commercial finite element 

codes are available that have optimization capabilities inbuilt to it. Research is also 

being conducted to explore possibility of solving complex problems by integrating 

modern optimization tools like MATLAB with finite element packages such as 

ANSYS. 

Optimization problems based on finite element can generally be expressed as : 

Minimize    f(x, U) 

Subject to  gi(x, U) 0≤       mi ,.......,1=                                             (2.4) 

And             hj(x, U) 0 =       lj ,.......,1=  

where U is an (ndof × 1) nodal displacement vector from which the displacement field 

u(x, y, z) is readily determined. ‘ndof’ refers to the number of degrees of freedom in the 

structure and x corresponds to the design variable set. It is to be noted here that U is an 

implicit function of x .i.e. any change made to the element parameter xi will affect the 

displacement. The relation between U and x is governed by partial differential equations 

of equilibrium. 

Based on Finite element theory these differential equations can be expressed as: 

  K(x) U = F(x)                                                                                   (2.5) 
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where K is a (ndof × ndof) square stiffness matrix and F is a (ndof × 1) load vector. The 

functions f ,gi ,hj are all implicit functions of design variables x. They depend explicitly 

on x, and also implicitly through U as given by Eq. (2.5). [4]  

2.4.1 Classification of Finite Element based Optimization problems 

Depending on the type of design variables x finite element based optimization 

may be classified as parameter or size, shape and topology optimization. In parameter 

or size optimization the objective function f is typically the weight of the structure, and 

gi are the constraints reflecting limits on stress and displacement. The design variable 

set x can take various forms. In the case of a pin-jointed truss section, xi can be the cross 

sectional area or the length of the truss member. In the plane stress case or in a shell 

structure, xi can be the thickness of each finite element used to mesh the region or in 

case of a beam cross-section xi can represent moment of inertia. It is important to note 

that, when formulating any finite element based optimization problem, the constraints 

are to be expressed in normalized form. .i.e. If the stress developed in a structure has to 

be less that 10,000 psi, then the stress constraint can be expressed as: 

  g ≡ 01
10000

≤−
σ

                                                                             (2.6) 

This way it ensures that the constraints when satisfied will have values lying in the 

interval [0, 1]. 

Shape optimization problems deals with determining the outline of a body, 

shape and/or size of a hole, etc. In a ‘sizing’ problem mesh geometry is unchanged as 

the parameters that are changed are those that affect K and F whereas in ‘shape’ 

problems, the X, Y, Z coordinates of the nodes or grid points in the finite element model 
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are changed iteratively. The main concept involved in shape optimization is mesh 

parameterization i.e. how can the coordinates of the grid points be related to a finite 

number of parameters. A common experience observed by analyst in shape optimization 

of CAD dependent parametric model is inconsistency of mesh pattern. If the mesh 

pattern cannot be kept, there may be unexpected variation of stress in addition to that 

caused by parametric changes. This observed phenomenon that usually causes problems 

in the optimization process is termed “stress oscillation”. This difficulty is overcome by 

using CAD-Independent parametric modeling technique such as “Contour Natural 

Shape Function” (Chen, [11]). The main idea behind such an approach is to make 

parametric changes in the structure without changing the existing mesh connectivity and 

pattern. 

Topology optimization on the other hand has to do with distribution of material, 

creation of holes, ribs or stiffeners, creation/deletion of elements, etc., in the structure. 

By contrast, in shape optimization of continua, the genus of the body is unchanged 

[4].By genus it means the number of cuts necessary to separate the body.  While shape 

and size optimization is quite well known, topology optimization is beginning to gain its 

importance in commercial optimization codes. Ideally, shape, size and topology 

optimization should be integrated. However such a capability has been an area of 

current research. 
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CHAPTER 3 

RESPONSE SURFACE METHODOLOGY (RSM) AND  

DESIGN OF EXPERIMENTS (DOE) 

3.1 Introduction 
 

Computer based simulation and analysis is used extensively in engineering for a 

wide variety of tasks. Despite the steady and continuing growth of computing power 

and speed, the computational cost of complex engineering analysis and simulations 

maintain pace. For instance, a crash simulation of a full passenger car can take more 

than 26 hours [3]. To minimize the computational expenses incurred by such analysis, 

resort on alternate methods of design and optimization such as Design of experiments 

and Response surface modeling is sought. 

Response surface methodology was first developed by Box and Wilson in 1951 

and can be defined as a method for constructing global approximations to system 

behavior based on results calculated at various points in the design space (Roux, 

[12]).The basic principle behind this method is to construct a simplified mathematical 

approximation of the computationally expensive analysis and simulation code and then 

use this code in place of the original code to facilitate multidisciplinary design 

optimization. Since the approximation model acts as a surrogate for the original code, it 

is often referred to as a surrogate model, surrogate approximation, approximation model 

or a metamodel [4]. Response surface methodology works well with Design of 
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experiments and is valid only, over a part of the design space called the region of 

interest. An important objective in response surface construction is to achieve an 

acceptable level of accuracy while attempting to minimize the functional evaluations 

(computational cost). The accuracy of a response surface is based on two important 

factors: 1) the choice of the approximation function and 2) the selection of design points 

on the design space where design will be evaluated, i.e. the design of experiments 

(DOE). Increasing the number of experimental points or rather design points could 

improve accuracy .However it would be expensive to use a large number of points as 

the accuracy may be affected by other factors such as the order of the approximating 

functions, sub region size under investigation etc. 

As mentioned before there are a number of methods to formulate the 

approximation function as well as to select the sampling points (DOE) for the response 

surface construction. In this study a variant of Radial basis function (RBF) called 

multiquadric RBF is employed to formulate the approximation function and Quasi 

Monte Carlo sampling technique is used to select the design points on the design space. 

The following subsections and sections of this chapter gives the reader an idea 

about the pros and cons of employing RSM and DOE methods for design optimization, 

about commonly used methods to formulate approximation functions with an emphasis 

on RBF and Multiquadric RBF that is used in this study and a brief description about 

Quasi Monte Carlo sampling technique and why it was preferred. 
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3.1.1 “What is good” about DOE and RSM in Design Optimization 

1) RSM attempts to substitute an original design optimization problem with 

computationally expensive functions by a sequence of much simpler problems where all 

the functions are approximated by response surfaces. This allows solving real life 

design optimization problems that are not solvable by other means within a reasonable 

amount of time. 

2) The basic principle behind DOE and Response surface creation is very simple 

to be understood by any engineer. This is one of the reasons for its popularity. 

3) Approximations based on Response surface methodology do not need design 

sensitivities but can use them if available, are insensitive to numerical noise and can be 

efficiently parallelized. 

3) RSM with analytical models can be used more in the design process, even 

without optimization. This way visualization of the design space becomes possible.  

4) RSM based optimization is beneficial for robust design optimization. 

3.1.2 “What’s not so good” about DOE and RSM in Design Optimization  

1) When the number of design variables is large in case of global 

approximations, the use of RSM leads to excessive function evaluations. 

2) In case of pure physics based problem, the response surface model cannot be 

treated as an approximation. This is because even though it can interpolate reasonably 

well, the quality of extrapolation beyond the available data may be poor. 
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3.2 Meta-modeling Methodologies 

A variety of meta-modeling techniques exist. Quite popular meta-modeling 

techniques that are widely used for design simulation and optimization are: polynomial 

regression; multivariate adaptive splines (MARS); Radial basis function (RBF) and 

Kriging models. Of these Radial basis function originally introduced by Hardy in 1971 

and MARS have began to draw a lot of attention of researchers (Jin, [13]).  

There are a multiple factors that contribute to the success and effectiveness of a 

given approximation model, ranging from the nonlinearity and dimensionality of the 

problem to the associated data sampling technique and internal parameter settings for 

the various modeling techniques. Overall the knowledge of the performance of different 

approximation models with respect to different modeling criteria is utmost importance 

to designers when trying to choose an appropriate technique for a particular application. 

 A comparison of the four promising techniques mentioned above in a study by 

Jin, Chan and Simpson [4], revealed that radial basis function outperforms the other 

three methods in terms of robustness and accuracy, while solving high-order non linear 

problems. Moreover the impact of sample size on robustness and accuracy of a RBF 

was proved to be the smallest [4]. Radial basis functions have also been shown to 

produce good fits to arbitrary contours of both deterministic and stochastic response 

functions (Powell, [14]). RBF was also used to study the Multi-objective 

crashworthiness optimization of a car (Fang, [15]). On account of all these factors, it 

was decided in this study to use a form of RBF called Regulated Multiquadric RBF for 

creating the approximation models of the design cases studied. Above all, applying a 
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RBF is relatively straight forward and no parameters need to be specified by the user. 

They are considered very easy to implement.  

RBF like any other meta-modeling technique can be summarized as a process of 

creating an approximation model using function values at some sampling points, which 

are typically determined using design of experiments (DOE) methods such as factorial 

design, central composite design, Taguchi orthogonal array or the Quasi Monte Carlo 

technique that has been employed in this research. In the following subsection a brief 

overview of the RSM and RBF that are of interests to this study are given. 

3.2.1 Second Order Response Surface Approximation 

A commonly used RSM methodology in engineering design optimization is the second 

order response surface approximation model. It’s based on a quadratic polynomial, 

which provides an explicit relationship between the design variables and the response of 

interest. The unknown coefficients in the model are approximated using the method of 

least squares. The ANSYS DesignXplorer used in this study employs the second order 

approximation method in response surface creation. 

Let f(x) be the true response function and f’(x) its approximate obtained using 

the second-order RS model in the form 

1
2

0

1 1 1 1

'( )
m m m m

i i ii i ij i j

i i i j i

f x x x x xβ β β β
−

= = = = +

= + + +∑ ∑ ∑ ∑                                (3.1) 

where m is the total number of design variables, xi is the scaled value of the ith design 

variable, and βs are the unknown coefficients. The scaling of design variables is done 

either between [-1, 1] or between [0, 1].  
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For n sampling of design variables ix  (k = 1, 2,….n, i = 1, 2,…m) and the 

corresponding function values fk (k = 1, 2,….n), Eq. (3.1) leads to n linear equations 

expressed in matrix form as 

  ˆf = Xβ                                                                                               (3.2) 

where the coefficient vector β̂  is the least square estimator of the true coefficient vector 

and is solved using the method of least squares as 

 ˆ T -1 Tβ= ( X  X)  ( X  f)                                                                               (3.3) 

There are many statistical evaluation tools to check the model fitness. The major 

statistical parameters for evaluating model fitness are the F statistic, R
2, adjusted R

2 

(R2
adj), and root mean square error (RMSE). These parameters are not totally 

independent of each other and are calculated as  

(SST - SSE) / p

SSE / (n-p-1)
F =                                                                            (3.4)                                         

R
2 = 1 – SSE / SST                                                                              (3.5)                   

R
2

adj = 1 – (1-R2) 
1

1

−−

−

pn

n
                                                                 (3.6)      

RMSE=
1−− pn

SSE
                                                                     (3.7) 
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Where ‘p’ is the number of non-constant terms in the RS model, SSE is the sum of 

square errors, and SST is the total sum of squares. Generally speaking, the larger the 

value of R2 and R2
adj , and the smaller the value of RMSE, the better the fit. 

 In addition to these statistics, the accuracy of the RS model can also be 

measured by checking its predictability of response using the prediction error sum of 

squares (PRESS) and R2 for prediction (R2
prediction) calculated as               

PRESS = 
2'

)(

1

][ i

n

i

i ff −∑
=

                                                             (3.8) 

R
2

prediction = 1 – PRESS / SST                                                               (3.9) 

where '

( )if  is the predicted value at the ith design point and fi the true value. 

3.2.2 Radial Basis Function 

A radial basis function model uses a series of basis function that is symmetric 

and centered at each sampling point (scaled sample point). Let f(x) represent the true 

function value and f’(x) the approximate value found using RBF. Then 

1

'( ) ( )
n

i i

i

f x x xλφ
=

= −∑                                                            (3.10)   

Where n is the number of sampling points, x is the scaled vector of design variables, xi 

is the scaled vector of design variables at the ith sampling point, ix x−  is the Euclidean 

distance, φ  is a basis function and λi is the unknown coefficient. Here we can observe 

that an RBF is a linear combination of n basis functions with weighted coefficients. 

There are quite a few basis function used by RBF such as Thin-plate spline, Gaussian, 
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Multiquadric and Inverse Multiquadric. This study has adapted an already developed 

MATLAB code based on multiquadric basis function to evaluate the approximation 

function ‘f’(x)’. In this work the design sample points generated using the quasi-Monte 

Carlo DOE technique is scaled between 0 and +1. 

The general multiquadric basis function can be expressed as  

        
2

( )i ix x x x hφ − = − +                                                         (3.11) 

where ‘ ix x− ’ represents the Euclidean distance  and h represents a parameter known 

as the shift parameter or the smoothness parameter where the value of h varies between 

0 and 1. The multiquadric radial basis function is used because it is capable of providing 

an analytical multi-minimum approximation of the objective function with a limited 

number of sampling points (Hardy, [16]). 

 In regulated multiquadric basis function, the sum of squared errors (SSE) or the 

prediction error sum of squares (PRESS), used to calculate the accuracy of fit of the 

approximation model is augmented with a term ‘ 2

1

n

i

i

r λ
=

∑ ’ which penalizes the large 

weights (coefficients). The parameter r called the regularization parameter controls the 

balance between fitting the data and avoiding the penalty. A small value of r means the 

data can be fit tightly without causing a large penalty. Hence a value of r = 0.001 is 

used for all the test cases studied in this research.    

By replacing x and f’(x) in Eq. (3.10) with n vectors of design variables and 

their corresponding function values at the sampling points, we obtain a series of n 

equations which can be represented in the matrix form as 
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 f = A λ                                                                                              (3.12) 

where  f = [f’(x1), f’(x2), f’(x3),……]T, Aij = ( )
i j

x xφ −  (i=1,2,….n , j =1,2,…n) and λ = 

(λ1, λ2,…… λn). The coefficient vector λ is obtained by solving Eq. (3.12).  

The choice of shift parameter h can greatly affect the accuracy of the 

approximation. By adjusting the shift parameter, the accuracy of the approximation can 

be considerably increased. It has been found that by increasing the shift parameter, the 

RMS (root mean square) error of the fit dropped to a minimum and then grew rapidly 

thereafter (Kansa, [17]). Thus there exists an optimum value of shift parameter h that 

will yield minimum RMS for the fitted function. Efficient methods for parameter 

optimization in multiquadric approximation have been developed to compute the 

optimum shift parameter as to take the most advantage of the excellent performance of 

this process (Wang, [18]). In this research we have experimented with values of h 

between 0.3 and 1.   

 
3.3 Design of Experiments  

Design of experiments (DOE) can be defined as a procedure for choosing a set 

of samples in the design space, with the general goal of maximizing the amount of 

information gained from a limited number of samples (Giunta, [19]). One of the goals 

of a typical DOE study is to estimate and predict the trends in response data. Hence 

response surface approximations are often associated with design of experiments 

(DOE). As is the case with response function development, DOE study also involves 

scaling of the sample sets. In this study the bounds of the design variable that is 



 

 28 

significant in the sample point development is first scaled between 0 and +1 prior to the 

DOE study. 

In general the DOE techniques can be classified as classical and modern DOE 

techniques. The classical DOE techniques were developed for laboratory and field 

experiments that possess random error sources while the modern DOE techniques 

pertain to deterministic computer simulations. Another feature that differentiates 

classical and modern techniques is the choice of probability distribution associated with 

design variables. In classical method the design variables are assumed to be uniformly 

distributed within the design bounds i.e. within the lower and upper bounds. In contrast, 

modern DOE methods are designed to handle both uniform and non-uniform 

distribution of design variables. A common characteristic shared by both the methods is 

the independent nature of the sampling points, which makes them amenable to 

concurrent evaluations.  

Examples of classical techniques are central composite design, Box-Behnken 

design and full- and fractional-factorial design. These classical techniques work well 

when the sample points are put at the extremes of the design space. Examples of 

modern techniques are quasi-Monte Carlo sampling, Orthogonal array sampling, Latin 

hypercube sampling etc. The modern techniques are also known as space filling 

methods as they put the sampling points in the inner space as compared to the extremes 

of the design space in order to accurately extract the response trend information [19].  
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3.3.1 Comparison of Classical and Modern DOE Techniques 

A measured response quantity in a classical DOE can be represented as  

( )  ( )
m t

y x y x ε= +                                                                             (3.13)                  

where ( )
m

y x  represents the measured response, ( )
t

y x  represents the true response and 

ε  represents the random error term in the Eq.(3.13). In classical DOE, the goal of 

minimizing the effects of random error has the affects of placing the samples on the 

boundaries and/or vertices of the design space and placing very few samples in the 

interior of the design space. This causes the interior of the design space to be largely 

unexplored. For example let us consider a classical DOE technique such as the central 

composite design (CCD) where the number of samples is given by the 

formula 2 2 1n
n+ + . Here n denotes the number of design variables or the number of 

dimensions in the design space. The 2n  samples in the formula correspond to the 

corners points of the design space, while the 2n samples correspond to the point lying 

outside the design space.   

In case of a two dimension CCD problem where the design boundaries are 

scaled to range from 0 to +1, eight of the nine samples are on or outside the boundary of 

the design space, and only one sample, the center point , lies in the interior of the design 

space as shown below. As a result much of the response trend is unexplored in the 

interior of this design space. 
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Figure 3.1 CCD samples for 2 design variable set 

 

Another drawback of the classical technique is when the number of dimensions 

‘n’ is large. It can be seen that the number of samples in CCD scales as 2n , a rate that 

can be unacceptable if n is large and/or if experiments are expensive [19] as is the case 

with finite element design optimization. On account of all these factors a modern 

technique called quasi-Monte Carlo sampling based on Halton sequencing is used in 

this research work. 

In modern DOE there is no notion of random errors i.e. a computer simulation 

always produces the same response for an input data irrespective of the number of 

simulation runs. When using modern DOE methods an assumption that, the repose trend 

is unknown is made in addition to the assumption that there is no random error. On 

account of this assumption modern DOE method tends to place the scaled sample points 

in the interior of the design space so as to minimize the bias error. These errors arise 

when there is a difference between the functional forms of the true response trend, and 

the functional form of the assumed or estimated trend.  
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3.3.2 Quasi-Monte Carlo Sampling 

This research employs an already developed MATLAB code on quasi-Monte 

Carlo sampling based on Halton sequencing. The central composite design scheme is 

used by ANSYS DesignXplorer to generate automatic sample points in the optimization 

process. The quasi-Monte Carlo sampling is observed to perform better compared to the 

other modern methods of DOE. This section would provide a brief description of quasi-

Monte Carlo sampling and its advantages over the other methods.  

Quasi-Monte Carlo technique or, alternatively known as a low discrepancy 

sampling were developed for multidimensional integration. This method seeks to 

distribute sample sites evenly throughout the design space, but does not employ a 

regular grid or a Cartesian lattice of sample sites. The term discrepancy refers to a 

quantitative measure of how much the distribution of samples deviates from an ideal 

uniform distribution. Hence, low-discrepancy is a desired feature of this class of 

sampling methods. It’s observed that quasi-Monte Carlo sampling has a lower 

integration error and computational time compared to other Monte Carlo methods and 

are also best suited for higher dimensional design spaces since their error bounds are 

exactly known [19].  On account of all these factors quasi-Monte Carlo techniques have 

been used for generating DOE in this study.   
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CHAPTER 4 

DESIGN OPTIMIZATION PROCESS IMPLEMENTATION  

4.1 Introduction 
 

As mentioned in the previous chapter advantage of already developed codes in 

MATLAB for generating the DOE points using quasi-Monte Carlo methods and 

creation of Response surface was used in the development of the main design 

optimization code. The objective of this work was to set up a design automation code in 

MATLAB to solve finite element optimization problems. The MATLAB code so 

developed for this purpose incorporates the DOE, the adapted Response surface codes, 

ANSYS the finite element solver and a suitable optimization tool for optimization. A 

system call command in MATLAB was employed to call ANSYS for each simulation 

run that involved calculation of the responses to the input design variables. ANSYS 

Parametric Design Language (APDL) was used to model the design problem. The 

APDL file included the definition of design problem (parametric model of the design), 

solution process and the post-processing phase where the responses are gathered and 

recorded for optimization process in MATLAB.  This APDL file thus created is used by 

ANSYS running in batch mode, during each system call command from MATLAB. The 

entire implementation was performed on a Windows based computer with a Pentium 4 

processor and 512 MB RAM.  
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4.1.1 Development of ANSYS APDL file 

The ANSYS APDL file was developed such that it could handle multiple sets of 

input design variables at a time during each system call. This way we could save the 

time taken to start and restart the ANSYS batch process for each design variable set.  In 

short a population of data was send to ANSYS during the system call by MATLAB for 

the DOE study. The solution process involves iteration over each population set until 

the specified number of population size is met. 

In the post-processing or the results recording phase of the analysis, the 

solutions are arranged in a matrix of size corresponding to (responses per iter × popsize) 

and the matrix thus formed is saved as a file “Pdata.var” .This file is then read by 

MATLAB for the response function creation phase. 

4.1.2 Algorithm to find the Optimal Weight or Coefficient Matrix 

The accuracy of such an optimization process mainly depended on how accurate 

the response surface modeling tool can model the approximation function used for the 

original optimization. This in fact depends on the choice of the weight or coefficient 

matrix λ used to model the approximation function as shown by Eq. (3.12).  

As we know, a radial basis function model uses a series of basis function that is 

symmetric and centered at each scaled sampling point. In this study the design samples 

were scaled between [0, 1] for both the DOE and response function creation. If f(x) 

represents the true function value and f’(x) the approximate value found using RBF, 

then f’(x) is given by the Eq. (3.10). For a multiquadric radial basis function 
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‘ ( )ix xφ − ’ in Eq. (3.10) is given by 
2

( )  
i i

x x x x hφ − = − + , where ‘ ix x− ’ 

represents the Euclidean distance calculated using the scaled set of sample design points 

and h is a parameter known as the shift or the smoothness parameter whose value lies 

between [0,1]. Eq. (3.10) can also be written as  

1 1

'( )  ( )  ( )
m m

j j j j

j j

f x x x h xλ φ λ
= =

= − =∑ ∑                                              (4.1) 

 where ( )  ( )
j j

h x x xφ= − . In general matrix notation, the Eq. (4.1) takes the form 

ˆ  f = H λ                                                                                               (4.2) 

where  f  = [f’(x1), f’(x2), f’(x3),…… f’(xn)]
T, Hij = ( )

i j
x xφ −  (i=1,2,….n , j =1,2,…m) 

and λ̂  = (λ1, λ2,…… λm). Here λ is the unknown coefficient matrix whose optimum 

values needs to be found out for a near accurate approximation of the response function 

‘ f ’. A parameter called prediction error sum of squares is used to measure the accuracy 

of fit of a response surface model. In the case of a regulated multiquadric RBF this 

parameter is given by  

                      ' 2 2

1 1

    [ ( ) ( )]
n m

i i j

i j

PRESS C f x f x r λ
= =

= = − +∑ ∑                                       (4.3)     

where r denotes the regularization parameter. The objective is to find the minimum 

PRESS parameter that would give a good approximate of the response function. As is 

known from elementary calculus to find an extremum of a function, we have to 1) 

differentiate the function with respect to the free variables, λ  in this case, 2) equate the 
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result with zero and 3) solve the resulting equations. Let us carry out this optimization 

for the j-th weight, first differentiating C with λ  we get 

'
'

1

( )
  2 [ ( ) ( )] 2  

n
i

i i j

ij j

f xC
f x f x r λ

λ λ=

∂∂
= − +

∂ ∂
∑                                       (4.4) 

The derivative of '( )
i

f x  can be easily obtained from Eq. (4.1) and is given by  

'( )
  ( )i

j i

j

f x
h x

λ

∂
=

∂
                                                                                 (4.5) 

Substituting this into Eq. (4.4) and equating the result to zero leads to the equation 

'

1 1

( ) ( )    ( ) ( )
n n

i j i j i j i

i i

f x h x r f x h xλ
= =

+ =∑ ∑                                            (4.6) 

There is m such equations, for1 j m≤ ≤ , each representing one constraint on the 

solution. Since there are exactly as many constraints as there are unknowns, the system 

of equations has a unique solution. The above equation in matrix form can be written as 

ˆ    jr λ+ =T T

j jh  f h Y                                                                             (4.7) 
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Since there is one of these equations for each value of j from 1 up to m, we can stack 

them one on top of the other to create a relation between two vector quantities as given 

below 

1

2

ˆ 

ˆ 
  +   = 

 ˆ

TT

11

T T

2 2

T T
mm m

r

r

r

λ

λ
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                                                              (4.8) 

This is just equivalent to  

ˆ ˆ     T TH f +Λ λ = H Y                                                                           (4.9) 

where [ ]1 2  m=H h h hL  and    mr=Λ I . Here  is an identity matrix of length m mI . 

Substituting for vector f in the above equation from Eq. (4.2) we get 

 ˆˆ      =T TH Y H f +Λ λ                    

           ˆ ˆ    = +TH H λ Λ λ  

           ( ) ˆ   = +TH H Λ λ                                                                   (4.10) 

The solution to which is  

( )
1ˆ ˆ     

−

= +T Tλ H H Λ H Y                                                     (4.11) 

It is to be noted that all the values on the R.H.S of the above equation is known. Hence 

from this equation optimal value of the coefficient or the weight matrix λ̂  that gives a 

good approximate of the response function can be found. Once the optimal coefficient 

matrix λ̂  is known, the approximate function can be found using Eq. (4.2). This is the 

algorithm that has been employed in the regulated MQR MATLAB code.    
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4.1.3 Algorithm of the Design Automation Process 

The steps involved in the design automation process are discussed in this section 

followed by a general layout that depicts the optimization process. The first and 

foremost step before implementing this process is to understand thoroughly the design 

problem being studied and then to generate an ANSYS parametric design language 

(APDL) file of the design problem, that defines the preprocessor ,solution and 

postprocessor phase of the finite element analysis. In the preprocessor phase, the 

geometry and the boundary conditions of the model are defined using a set of APDL 

commands. This model that has been defined in the preprocessor phase is then solved in 

the solution phase using a suitable solution process such as STATIC, HARMONIC, 

THERMAL, etc. depending on the nature of the responses sought. In the postprocessor 

phase the results from the analysis is gathered and presented in a suitable format (file). 

This result file forms the input to the main optimization process.    

The steps followed in the optimization process is as given below 

1) Definition of the design problem: This step includes as mentioned before, generating 

an APDL file that defines and solves the problem, specifying the initial input data to 

run the optimization process such as the bound of the design variables (XL,XU), 

total number of samples to be generated (NC), Initial number of samples to specify 

the response surface (N0), Initial value of the design variables for optimization (X0) 

etc. 

2) Design of Experiments (DOE): This step can be considered as a two phase process. 

In the first phase the ‘QMCSamples.m’ file which is an already developed DOE 
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code in MATLAB on quasi-Monte Carlo sampling based on Halton sequencing, is 

used to generate an input data sample (XdataAll) of size NC. Of these a sample 

(Xdata) of size N0 is selected to undergo the first simulation run using ANSYS .The 

measured responses of these samples are stored in a matrix called Ydata. A matrix 

‘XCentre= Xdata’ is defined as the set of centre points about which the 

approximation functions are built 

3)  Once this is done an iteration of length NMAX=NC-N0 is started. A counter ‘i’ is 

initialized a value zero at the beginning of the iteration and at each iteration its 

value is incremented by one.  

4) Response surface creation: At the beginning of this step Xdata matrix is updated by 

picking a sample from the (N0 + ith ) row of the matrix XdataAll. The true response 

of this picked sample is calculated using ANSYS. The true response matrix ‘Ydata’ 

is updated using the responses of the newly picked sample. The updated response 

matrix ‘Ydata’,the Xdata matrix ,the already defined XCentre matrix, the lower and 

upper bounds of design variables and the values of the regularization and 

smoothness parameter are fed into the MQRFunN.m MATLAB code that evaluates 

the approximation to the objective and constraint functions. Algorithm described in 

the previous subsection is employed by this MATLAB code. The result from this 

code also contains the approximation errors and also the matrix containing the 

optimum value of the coefficient or weight matrix. 

5) MQR optimization process: The optimum coefficient matrix evaluated in the 

previous step is used to generate the approximation functions of the data points 
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generated as a part of the optimization process. The approximation functions are 

found using the Eq. (4.2). The input data points to the optimization process are first 

scaled between 0 and +1. The basis functions for this input points are then evaluated 

using the formula given by the Eq. (3.10). These basis functions are used in 

conjunction with the optimum weight coefficients to formulate the approximate 

response functions used by the optimization process.   The input parameters for the 

optimization are the starting vector of design variables (X0), upper and lower 

bounds of design variables, the output from MQRFunN.m etc. An interesting thing 

noted here is the definition of the optimization problem that is defined to solve multi 

minima problems. Lets consider the figure shown below 

                                           

 

 
 

Figure 4.1 Block diagram of an MQR process 
 

 
      Let X be the input design variable and Y be the approximated value of the 

responses. Then the optimization problem to be solved can be defined as find X 

to minimize f = [AxObj] [X] + [AyObj] [Y] 

                                                                                                             (4.1) 

Such that g = [AxCon] [X] + [AyCon] [Y]-B ≤ 0                                  

where AxObj, AyObj are the matrix that defines the input and output objectives 

and AxCon and AyCon and B are the matrix that defines the input and output 

 

MQR 

X (Inputs) Y (Responses) 
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constraints to the problem. This is best explained by a simple problem of finding the 

minimum weight of a two dimensional two bar truss fixed at the two ends as shown 

below. 

 

 
Figure 4.2 Two bar truss problem 

Let A1 and A2 are the two design variables that represent the cross sectional areas 

of the truss members. The objective is to find the minimum weight (volume) so that 

element stress is less than a specified allowable value Allσ . The stress constraints can 

be formulated as    All  σ σ≤  or ( )All/ 1  0σ σ − ≤ . For this problem the MQR block 

diagram is as shown below. 

                                     

Figure 4.3 MQR Block diagram for 2 bar truss 
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The matrices that define the objective and constrain function as given by Eq. (4.1) 

are defined as    

[ ] [ ]
All

All

00 1/ 0 0

AxObj = 0 0  , AyObj = 0 0 1 , AxCon = 00  , AyCon = 0 1/ 0  

00 0 0 0

σ

σ

   
   
   
      

Once the optimization is performed, the optimum value is recorded and is updated 

to the Xdata matrix. The true response to this optimum value is calculated using 

ANSYS simulation and this value is updated to the response matrix Ydata. 

6) Convergence Check: This step involves defining the convergence of the 

optimization problem based on certain criteria. The criteria used are,1) the 

difference of the objective function  values for two successive iterations should be 

less than or equal to a tolerance specified by fEPS and 2) the maximum value of the 

constraint should be less than or equal to a value gEPS. Both these parameters fEPS 

and gEPS are user defined. 

7) If it is observed that the problem does not converge at the obtained optimum, then 

steps 4 through 6 are repeated until a convergence is reached. 

The above steps are summarized in a work process flow chart that depicts a 

general layout of the design automation process developed in this research. Figure 4.4 

shows the general layout of the optimization process. 
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Figure 4.4 General layout of MQR optimization process 
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CHAPTER 5 

APPLICATIONS 

5.1 Introduction 
 

In this section we will discuss the results obtained implementing the MQR 

optimization algorithm to solve a selected set of application problems. The application 

problems studied are 

5. Weight minimization of 9-bar truss, by finding optimal cross-sectional 

areas of the truss members. 

6. Weight minimization of 25-bar truss, by finding optimal cross-sectional 

areas of the truss members. 

7. Finding the optimal size of an elliptical hole in a rectangular plate for 

minimum weight so as to withstand the applied tensile load. 

8. Optimal design of a 2 dimensional vehicle suspension for ride quality 

and comfort. 

The first three problems belong to size optimization category while the last problem 

deals with dynamic response optimization. The results obtained solving these 

optimization problems using the proposed MQR algorithm is then compared with the 

results from ANSYS first order conventional optimization technique and also with 

ANSYS DesignXplorer optimization method. The ANSYS DesignXplorer employs a 
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similar scheme of approaching optimization problems using DOE and response function 

modeling methods. 

 However the ANSYS first order optimization is a conventional optimization 

method where the true functions (Objective and Constraints) are used for the 

optimization. An APDL file that defines the pre-processing, solution, post-processing 

and the optimization phase is used for the conventional ANSYS optimization. In the 

optimization phase, the algorithm for optimization, the number of iterations ,the upper 

and lower bounds of the design variables and the limits on constraints are specified. The 

process converges within the specified iteration if a minimum value of objective 

function has been found that obeys the given constraints. If it does not converge a 

second iteration has to be setup with a new starting point. This goes on until a 

convergence is met within the specified constraints.   

For the ANSYS DesignXplorer the procedure for optimization can be 

summarized in the following steps. 

1. Read the ANSYS APDL file into DesignXplorer and record the input 

and output parameters. 

2. Through DesignXplorer central composite DOE scheme create 

candidate designs (Automatic design points). 

3. Create response surface using second order polynomial based 

regression analysis using the candidate designs and the true 

responses. 
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4. Define design goals for the optimization such as allowable 

constraints etc. 

5. Create new design points through sample generation from the 

specified goals 

6. Select the best candidate/candidates from tradeoff study and verify 

the validity of the candidate design points by running analyses on 

candidate designs in simulation and there by creating reference 

design points.  

All the optimization tests for the application problems were carried out on a 

Pentium 4 based PC running on Microsoft Windows platform. 

 

5.2 9-Bar Truss 

9-bar truss was the first optimization problem to be studied in this research. The 

objective of this problem is to design a 9-bar Steel truss structure of minimum weight 

(volume) that can withstand applied loads within the limits of allowable stress and 

displacement. The material properties for steel are Young’s modulus                            

EX = 2.973 × 107 lbf / in2 and Poisson’s ratio PRXY = 0.3. The applied forces are          

f1 = −5,000 lbs,  f2 = 2,000 lbs and f3 = 7,000 lbs. The lengths of the truss members are 

fixed. The design variables or the input variables for the optimization problem are the 

cross sectional areas of the truss members. The cross sectional areas of the truss 

members are allowed to vary between 0.1 and 2.0 inch2. The stress limits are 10,000 psi 

in tension and compression and the allowable displacement is 0.05 inch in all direction. 
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The geometry of the problem is shown in Figure. 5.1. The structure is hinged at node 1 

and roller supported as shown at node 4. 

 

Figure 5.1 9-Bar truss 

 

The truss members are classified into 2 element groups thus defining two design 

variables for the optimization problem. This classification is shown by the free body 

diagram from ANSYS as shown in Figure 5.2. ANSYS LINK1 element is used to 

model the truss elements for the simulation process.  

 

Figure 5.2 Free body diagram of 9-Bar truss 
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The values of the parameters that define the MQR optimization process are       

h = 0.5, r = 0.001, fEPS = 0.01 and gEPS = 0.01. The total number of samples defined 

for the DOE is NC = 120. The number of initial samples that is equal to the number of 

samples that define the center points is given by N0 = 10. Figure 5.3 shows the 

distribution of entire set of data points in the design space as sampled by the Quasi-

Monte Carlo DOE scheme. Figure 5.4 shows the data points that have been ultimately 

used as the problem converged to an optimal solution. The cluster of points crowded 

together in this figure shows the convergence of the data points to an optimal value.  At 

the end of the optimization it was found that after about 28 iterations the function value 

converged to a minimum total volume TVOL of   73.7662 in3. The function convergence 

is shown in Figure 5.5. The optimum values of design variables are A1 = 0.7538 in2 and 

A2 = 0.6986 in2. 

 

.                          Figure 5.3 Quasi-Monte Carlo sampling for 9-bar truss 
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Figure 5.4 Data points used at the end of convergence 

 
 

 
Figure 5.5 Function convergence plot for the MQR optimization process 
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The same problem was also solved using the ANSYS First order optimization 

method and with ANSYS DesignXplorer. The maximum number of iterations was set 

as 35 for the ANSYS First order optimization process. The optimization problem 

converged to a minimum value of objective function given by TVOL = 72.572 in3. The 

optimal design variables were A1 = 0.7546 in2 and A2 = 0.679 in2. The function 

convergence plot for the ANSYS first order optimization process is shown in Figure 

5.6. 

 

 
Figure 5.6 Function convergence 9-Bar truss- ANSYS First order 
                  optimization process 

 
 
  The results obtained for this problem using the ANSYS DesignXplorer goal 

driven optimization process is given in Figure 5.7. The generated response surfaces for 
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the total volume, stress and displacement constraints are shown in Figure 5.8, Figure 5.9 

Figure 5.10 and Figure 5.11. 

 
Figure 5.7 Results from ANSYS DesignXplorer goal driven 

                             optimization for 9-bar truss 
 

 
 

Figure 5.8 Response plot for total volume 
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Figure 5.9 Response plot for maximum stress 

 

 

Figure 5.10 Response plot for maximum displacement of nodes  
                                       along X direction 
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Figure 5.11 Response plot for maximum displacement of nodes 
                                      along Y direction 

 

 

The tradeoff plots that were generated as a part of the first and the last 

generation of sample points during the goal driven optimization is shown in Figure 5.12 

and Figure 5.13. In Figure 5.12 those points that are represented by pyramids are 

infeasible design points in the generated samples with the red color being the worst. The 

points that are represented by blue color blocks are probable Pareto optimal points. 

These probable design points are selected and an advanced sample generation process 

based on genetic algorithm is performed till a good set of probable points are generated. 
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Figure 5.13 shows the final set of probable points from which the best design variable is 

selected and rated.   

 
Figure 5.12 Tradeoff plot for first sample generation-9-Bar Truss 

 

 
Figure 5.13 Tradeoff plot for last sample generation-9-Bar Truss 
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It is observed here that the results for the objective function of the MQR 

optimization process compare well with those of ANSYS First order optimization 

process and also with ANSYS DesignXplorer goal driven optimization. 

 

5.3 25-Bar Truss 
 

The 25-Bar truss structure is shown in Figure 5.14. The objective in this 

problem is to design a 25-Bar Aluminum truss structure for minimum weight (Volume) 

so as to withstand the given loads. The material properties are Young’s modulus         

EX = 1.0498×107 psi, Poisson’s ration PRXY = 0.3 and weight density ρ of 0.1 lbf / in3. 

The constraints specified for this problem are the stress constraints which define the 

element stresses to be within 40,000 psi in tension and compression. No displacement 

constraints at the nodes were specified. The length of the truss structure is constant and 

only the cross-sectional areas of the truss members are considered as the design 

variables. There are four loads acting on the structure .They are fy = 20,000 lbs and       

fz = −5,000 lbs acting on node 1 and fy = −20,000 lbs and fz = −5,000 lbs acting on node 

2 respectively. ANSYS LINK8 element is used to model and simulate the structure for 

analyses. The truss members are divided into seven element groups as shown in Figure 

5.15. 
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Figure 5.14 25-Bar truss  
 
 

 

Figure 5.15 Element groups for the 25-Bar truss problem 
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The seven element groups signify seven design variables. The design space in 

optimization can be considered as a seven dimensional space where each design 

variable (cross-sectional area) represent seven coordinates of the design space. As was 

mentioned in the section detailing about optimization, it is difficult to visualize the 

sample points in a seven dimensional design space. In this optimization problem the 

design variables are allowed to vary between 0.1 and 2.0 inch2.The values of the 

parameters that define the MQR optimization process are h  = 0.8, r = 0.001,            

fEPS = 0.01 and gEPS  = 0.01. The total number of samples defined for the DOE is    

NC = 120. The number of initial samples that is equal to the number of samples that 

define the center points is given by N0 = 25. The convergence plot for the MQR 

optimization process is shown in Figure 5.16.  

It is seen here that the objective function converges in 94 iterations to a 

minimum objective function value of TVOL = 1024.6833 inch3 with the constraint 

function SMAX = − 39484 psi.  The optimum values of the design variables are shown 

in Figure 5.17. 
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Figure 5.16 Function convergence plot for 25-Bar truss structure 

                                with 7 element groups 
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Figure 5.17 Optimum values of the design variables 
 

  
The same problem when solved using the ANSYS first order optimization gave 

a minimum value of the objective function TVOL = 1087.7 inch3. The convergence plot 
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for the ANSYS First order optimization and the optimum values of the design variables 

are shown in Figure 5.18 and Figure 5.19 respectively. 

 
Figure 5.18 Function convergence plot in ANSYS for 25-Bar truss 

                               structure with 7 element groups 
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Figure 5.19 Optimum values of the design variables 
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As can be observed in the MQR optimization process there are two design 

variables out of seven that take the lower bound values permitted where as in ANSYS 

first order optimization there is only one design variable that has taken the lower bound 

value. The results of objective function from both optimization processes show close 

agreement with one another. 

The results for the truss problem using the ANSYS DesignXplorer goal driven 

optimization are shown in Figure 5.20. Its seen here that the minimum value of the 

objective function is 1031.1 inch3 .This value compares well with the one obtained 

using the MQR optimization process. However it took an initial sample size of 10,000 

in DesignXplorer goal driven optimization to generate this result. This shows that MQR 

shows better accuracy with less number of samples. 

 

 
Figure 5.20 Results from DesignXplorer goal driven optimization 

                                for 25-bar truss problem -7 design variables 
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The tradeoff plots corresponding to the first and last sample generation of the 

goal driven optimization are shown in Figure 5.21 and Figure 5.22 respectively. As 

described in the previous problem the design points represented by pyramid or 

triangular blocks are infeasible points. The data points marked as blue blocks are 

considered as the best Pareto points within the design space. From the first generated 

sample set, the Pareto optimal points are selected and an optimization based on Genetic 

algorithm is performed to finally select the best candidate design. The results of the best 

candidate and its reference design were shown in Figure 5.20.  

 

 

 
Figure 5.21 Tradeoff plot for first sample generation -25- Bar Truss 
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Figure 5.22 Tradeoff plot for last sample generation -25- Bar Truss 

 

 

5.4 Plate with an Elliptical Hole 
 

The rectangular plate containing an elliptical hole is shown in Figure 5.23. The 

plate is subjected to a tensile stress of 800 psi. The main objective is to find the size of 

the elliptical hole that can withstand the applied tensile stress. The plate is completely 

fixed along one of its shorter edges. The plate is considered to be made of Aluminum 

with material properties given as EX = 1.0498×107 psi, Poisson’s ration PRXY = 0.3 and 

weight density ρ of 0.1 lbf / in3. The width of the plate is W = 100 inch, height of the 

plate H = 50 inch and thickness T = 1 inch. 
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Figure 5.23 Plate with the elliptical hole subjected to tensile load 
 

Using the MQR optimization process, two cases of the problem were studied.  

One where the design variables are the location of the centre of the ellipse (XC, YC) and 

the size of ellipse (AX, BY), i.e., there are four design variables. In the second case the 

center of the ellipse is fixed at the center of the plate and the only variables were       

(AX, BY). To solve the first case, a boundary has to be specified to constrain the hole 

within the plate during optimization. As observed in the Figure 5.23 the points (X1, Y1),      

(X2, Y1), (X2, Y2) and (X2, Y2) specifies the boundary within which the elliptical hole is 

allowed to move. In this test case we have specified a boundary where the walls of the 

boundary are 5 inches from the width and height of the plate i.e. Xall = Yall = 5 inches.  

For both the test cases the objective of the problem is to minimize the weight of 

the plate such that the maximum stress developed as a result of the tensile pressure 
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applied is within 14,000 psi i.e. σMAX  ≤  σALL, where σALL = 14,000 psi. Let’s look at 

the problem formulation part of this test case. There are four design variables in the first 

test case. This involves proper selection of the design points. That means, the design 

points has to be chosen such that the elliptical hole is always within the specified 

boundary of the plate. This causes an additional set of constraints apart from the normal 

stress constraints to be included in the optimization problem. They are the input 

constraints that filter out those points that cause the elliptical hole to move out of the 

plate. The input constraint formulation is shown below.  

                    
2  - ,  2  -

1  ,  1  

X W Xall Y H Yall

X Xall Y Yall

= =

= =
 

Thus the input constraints are  

                       

 +    2

  +    2

 -     1

  -     1

X C A X X

Y C B Y Y

X C A X X

Y C B Y Y

≤

≤

≥

≥

 

The values of the parameters that define the MQR optimization process are h = 1,          

r = 0.001, fEPS = 0.01 and gEPS = 0.01. The total number of samples defined for the 

DOE is NC = 150. The number of initial samples that is equal to the number of samples 

that define the center points is given by N0 =15. The bounds of the design variables in 

the order [XC YC AX BY] for the first case are lower bound LB = [5 5 1.5 1] inch and the 

upper bound UB = [95 45 45 20] inch. We know that for minimum weight the optimum 

value of the design variables should be [50 25 45 20] inches, provided the stress are 
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within the allowable limit. It was observed here that with MQR optimization, the 

process converged to the minimum value of TVOL = 2364.5344 inch3 with the above 

mentioned optimum values of design variables in eight iterations as shown in Figure 

5.24.  

 
    

Figure 5.24 Convergence plot for the plate problem with four design variables 
 

 
For the second case that involves two design variables namely the semi-major 

and semi-minor axes of the ellipse (AX, BY), the bounds were defined as LB = [1.5 1] 

inch and UB = [45 20] inch. The optimization process in this case converged to the 

minimum value of TVOL = 2364.5344 inch3 in four iterations as shown in Figure 5.25.  

The same problem was solved using the ANSYS First order optimization 

process and also using the ANSYS DesignXplorer goal driven optimization. Here only 

two design variables were considered for both the optimization processes. The 
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convergence plot for the ANSYS First order optimization is shown in Figure 5.26. It 

took about 10 iterations for this process to converge to the objective function value of 

2364.5344 inch3. 

 

  

 
      

Figure 5.25 Convergence plot for the plate problem with two design variables 
 
 

As can be observed from Figures 5.25 and 5.26, the results for both the MQR and the 

ANSYS First order optimization agree quite well with the true values. The finite 

element model for the plate with optimal design variables for the elliptical hole is 

shown in figure 5.27. 
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Figure 5.26 ANSYS Convergence plot for the plate problem-2 design variables 

 
 

 

Figure 5.27 Finite element model of the plate with elliptical hole 
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The results obtained using the ANSYS DesignXplorer is shown in Figure 5.28. 

The results are found to agree quite well with those obtained from MQR and the First 

order optimization processes. The tradeoff plots generated as a result of the first sample 

generation and last sample generation of the ANSYS DesignXplorer goal driven 

optimization are shown in Figures 5.29 and 5.30.    

 
Figure 5.28 Results from DesignXplorer Goal driven optimization 

 

 
Figure 5.29 Tradeoff plot for first sample generation 
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Figure 5.30 Tradeoff plot for last sample generation 

 
 

 

The response plots generated during the response function evaluation in 

DesignXplorer study are shown in Figure 5.31 and 5.32. The first plot shows the 

variation of total volume of the plate with change in the input design variables whereas 

the second response plot indicates the variation of maximum stress as a function of the 

input design variables. 
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Figure 5.31 Response plot of Total volume ‘TVOL’ 

 

 
 

Figure 5.32 Response plot for maximum stress 
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5.5 Two Dimensional Vehicle Suspension 
 

The objective of this problem is to design a 2D vehicle suspension as shown in 

Figure 5.33 for optimum ride comfort, when the vehicle goes over a speed bump. This 

study is based on a paper by Deb and Saxena [20] on finding the optimal suspension 

parameters using genetic algorithm. The characteristics that define a vehicle suspension 

are its spring constant ‘k’ of the coil spring and the damping constant ‘c’ of the damper. 

There are two suspensions one at the front end of the car and the other at the rear end. 

The tires of the car are modeled as springs of given stiffness value. There are three 

masses associated with this car model. The sprung mass which represents the mass of 

the car is indicated by ‘ms’. The un-sprung masses that represent the masses associated 

with the front and real axel is indicated by ‘mfu’ and ‘mru’.  The objective is to find the 

optimal suspension parameters as the car runs over a speed bump, for minimum vertical 

displacement ‘q2’ experienced by the passengers in the car such that the jerk or the rate 

of change of acceleration ‘ 2q&&& ’ is less than 18 m/s3 [20].  The parameters ‘kft’ and ‘krt’ 

represent the front and rear tire stiffness as shown below. The parameters that define the 

front suspension are ‘kfs’ and ‘αf’ for the front spring and damper .Similarly for the rear 

suspension the parameters are ‘krs’ and ‘αr’. ‘L’ signifies the distance between the front 

and the rear axels and ‘v’ represents the velocity of the car. So as defined above the 

objective is to find the optimal suspension parameters kfs, αf, krs and αr. 
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Figure 5.33 2D vehicle model [20] 

 

 

In this experiment the speed bump is mathematically modeled as a half 

sinusoidal wave. The height and width of the speed bump is given as A = 70 mm and W 

= 500 mm. Thus the excitation caused by the speed bump on both the tires can be 

mathematically modeled by equations as shown below. 

1

2

( )  sin

( / )
( )  sin

t
f t A

T

t L v
f t A

T

π

π

 
=   

− 
=   

 

 



 

 72 

where 1( )f t and 2 ( )f t  represent the excitations in the form of displacements on 

the front and rear tires of the car. ‘T’ represents the time taken by one tire to cross the 

bump. Graphically the excitations for the given values of v, T, L and A is shown in 

Figure 5.34. 

 

Figure 5.34 Excitation function plot 

 

In the original work by Deb and Saxena [20], both the dampers and the rear 

suspension spring are considered to behave nonlinearly. The nonlinear characteristic of 

the rear suspension spring is shown in Figure 5.35. The dampers are also considered to 

behave in a similar fashion.  
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For the nonlinear spring the value of  δ  is given by 215 
rsk mmδ =  and the 

relation between a

rsk , b

rsk  and c

rsk  is given by  =1.28 
b

rs

a

rs

k

k
and  =1

c

rs

a

rs

k

k
. 

 

 

Figure 5.35 Nonlinear characteristic of the rear suspension spring 

 

In case of the dampers the relationship between the damping constants are given 

as  =0.033

b

f

a

f

α

α
 ,  =0.257

b

r

a

r

α

α
,and  = =1
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f r

a a

f r

α α

α α
 and values of δ  in mm/sec are 

50 / sec
f

mmαδ =  and 100 / sec
r

mmαδ =  .  

Let’s now look into the aspect of vehicle modeling in ANSYS. Certain 

assumptions were made in ANSYS in the development of the vehicle model. The body 
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or the chassis of the vehicle was modeled as a BEAM element with a very high Young’s 

modulus of the order of 1011 psi and a Poisson’s ratio of 0.3. The sprung and un-sprung 

masses were modeled using 3D MASS elements in ANSYS. For tires, rear damper and 

the front suspension spring-damper combination elements were used. However for the 

rear suspension spring a non-linear spring element was used. Thus in our approach non-

linearity behavior was associated only with the rear suspension spring and all other 

elements were treated to behave linearly. A table summarizing the elements used to 

model 2D vehicle in ANSYS is shown below. 

 

Table 5.1 Elements used in ANSYS for 2D vehicle suspension 

Chassis of the car BEAM 3 Element 

Sprung Masses and 

Un-sprung masses 
3D MASS 21 Element 

Front suspension 

(Spring-Damper) 
COMBI 14 Element 

Rear suspension 

(Coil spring) 
COMBI 39 Element 

Rear suspension 

(Damper) 
COMBI 14 Element 

Front & Rear tire 

stiffness 
COMBI 14 Element 

 

 

Transient analysis was performed in ANSYS to find the vertical deflection of 

the sprung mass. A Central difference approximation for the numerical differentiation 
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based on Taylor’s series expansion was used to find the constraint function referred as 

jerk.  The jerk which is defined as the rate of change of acceleration is given by the 

central difference formula.  

2 1 1 2
0 3

2 2
( )

2

y y y y
y t

h

− −− + −
′′′ ≈  

where ‘y’ represents the vertical deflection of the sprung mass as a function of 

time. An APDL file defining the problem parameters , the vehicle model, the solution 

process and the post-processing phase that also included the central difference scheme 

to find the constrain function was set up for the optimization process. The parameters 

already defined in the problem included the values for tire stiffness, the sprung and un-

sprung masses ,the length ‘l1’ between the front axel and mass center of the vehicle, the 

length ‘L’ between the front and rear axels, the polar moment of inertia ‘J’ of the car 

and the velocity ‘v’ of the car. The values of these parameters are given below as 

ms = 750 kg         mru=115 kg        mfu= 50 kg 

krt = 17 kg/mm     krt= 15 kg/mm 

l1 = 1.50 m           L = 2.85 m       

 J= 2.89 (104) kg.m2 

v = 5 kmph    

 Now lets look into the results obtained solving this problem using the MQR 

optimization, ANSYS First order optimization and ANSYS DesignXplorer goal driven 

optimization. The bounds of the design variables are given in the order 
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a

f f r r
k kα α    as [ ]40000 15000 25000 9000LB =  

and [ ]45000 20000 30000 12000UB = . The values of the parameters that define the 

MQR optimization process are ‘h’ =1, ‘r’=0.001, fEPS =0.01 and gEPS =0.01. The total 

number of samples defined for the DOE is ‘NC’=120. The number of initial samples 

that is equal to the number of samples that define the center points is given by ‘N0’=20.  

A modified MQR optimization code was used here as initially running the 

original code, it was found that the results of optimization largely depended on the 

starting point of the optimization algorithm in the design space. As a remedy to this 

problem, the optimization algorithm was iterated for a set of starting points whose value 

corresponded to the values of the samples of the main iteration. 

Thus the modified MQR optimization process was found to converge in three 

iterations to a minimum value of objective function given by q2 = 0.05371 meters with 

jerk =14.83 m / s3. The convergence plot for the MQR process is shown in Figure 5.36. 

The optimal parameters of the front and rear suspension are [ ]44378 16148 28960 9734 . 

The function convergence plot for the ANSYS First order optimization process 

is shown in Figure 5.37. It was found that the function converged to a minimum value 

of q2= 0.05233 meter and jerk = 14.585 m / s3. It can be observed that the results of 

MQR optimization process compare well with those obtained using ANSYS first order 

optimization process.  
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Figure 5.36 Function convergence plot 

 

 
Figure 5.37 Function convergence - First order optimization 
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The results obtained using the ANSYS DesignXplorer is shown in Figure 5.38. 

The results are found to agree quite well with those obtained from MQR and the First 

order optimization processes.  

 

Figure 5.38 Results from ANSYS DesignXplorer goal driven optimization 

 

The tradeoff plots generated as a result of the first sample generation and last 

sample generation of the ANSYS DesignXplorer goal driven optimization are shown in 

Figures 5.39 and 5.40.   
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Figure 5.39 Tradeoff plate for the first generation of samples 

 

 

Figure 5.40 Tradeoff plot for the last generation of Pareto optimal 
                          points 
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The dynamic response plot of the displacement of sprung mass for the optimal 

design parameters as obtained from MQR optimization is shown in Figure 5.41. A 

comparison of this plot with the plot obtained from the study conducted by Deb [20] 

shows that there is a difference of about 10 mm in maximum deflection of the sprung 

mass. An explanation that could be described for this difference was the non-linear 

characteristics of the dampers that were considered in the original study by Deb [20]. 

On the other hand the dampers that involved in this study behaved linearly. 

 

Figure 5.41 Dynamic response of the displacement of sprung mass 
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Figure 5.42 Dynamic responses as observed in reference [20] 

5.5.1 Validation of ANSYS model 

In this section we will verify whether our assumption of the ANSYS model is 

comparable with the mathematical model of the 2D vehicle suspension. For this test a 

linear model of the vehicle suspension in ANSYS is compared with the mathematical 

model that describes the dynamics of the suspension. A 2D vehicle suspension can be 

mathematically modeled by the following set of equations. 

1 1 1 2 2 1 3 1

3 4 2 4 2 2 3 4

1 1 2 2 3 2

54 4 4 6 3
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( ) , 

,   ,   ,
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ft fs f
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d q f t d q l q q
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1 2 3 1

52 2 3 4
                                  (5.1)

53 4 2 2 3 1

54 4 6
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

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
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&&
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The vertical deflection 
2

q  is found by converting this equation set (5.1) into 

state space form and then solving them using a fourth order Runge Kutta method in 

MATLAB. The deflection plot for the optimal suspension parameters for the suspension 

model is shown in Figure 5.43. 

 

 

Figure 5.43 Deflection plot using fourth order Runge Kutta  
                         method in MATLAB 
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When comparing this response trend with Figure 5.41, it may be observed that 

the dynamics of the suspension are not well defined when problem is solved 

mathematically. The deflection plot as a result of fourth order Runge Kutta just reflects 

the movement of the tire over the speed bump but does not capture the vibrations that 

result after the tire crosses the bump. Hence to prove the model accuracy, the two 

dimensional vehicle model was reduced to a one dimensional model for the verification 

purpose. 

For a one dimensional vehicle model only the front suspension parameters were 

considered. Half of the weight of the sprung mass was assumed to be concentrated over 

the front suspension. One dimensional vehicle model is as shown in Figure 5.44. 

 

Figure 5.44 One dimensional vehicle model 

 

Only the front tire excitation is considered while modeling the mathematical 

equations for the 1D vehicle model. Let y1 be the displacement of the un-sprung mass 
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and y2 that of the sprung mass. The mathematical equations describing the dynamics of 

the 1D vehicle model can be explained as  

 

 t
1 1 1 1

2 2 1

1 1 2 2 3 2

1 2 3 1
                                  ( 5 .2 )

2 2 3
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The above set of equations is solved using the fourth order Runge Kutta 

technique by transforming them into first order differential equations using state space 

method. The deflection plot as obtained is shown in Figure 5.45. The deflection plot 

from ANSYS for the optimal values of front suspension parameters is shown in Figure 

5.46. Comparing these two plots, we can conclude that our assumption of the vehicle 

model in ANSYS compares well with the mathematical model. 

 

 



 

 85 

 
Figure 5.45 Deflection plot-mathematical model 

 

 
Figure 5.46 ANSYS- deflection plot for 1D vehicle model 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

The main objective of this work was to define a design automation process in 

MATLAB to solve computationally expensive design optimization problems using a 

non conventional optimization process that integrates a DOE and response surface 

modeling tool (MQR) and ANSYS a powerful finite element solver. The design 

automation process in MATLAB was successfully implemented by integrating the 

MQR based optimization process and ANSYS the finite element solver. Several well 

documented optimization problems were considered and the results from the proposed 

method was compared with the conventional optimization process in ANSYS based on 

first order optimization and also with a non-conventional process called ANSYS 

DesignXplorer goal driven optimization. 

6.1.1 Conclusions 

 It was observed that the results from the MQR optimization process agree quite 

well with the first order optimization and the DesignXplorer goal driven optimization 

available in ANSYS. However the MQR optimization process performs really well 

when the number of design variables ‘n’ is between 5 and 10. The accuracy of the 

results fell drastically when the number of design variables exceeded ten.  On 

comparison with the ANSYS DesignXplorer goal driven optimization, it was found that 
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the accuracy of the MQR hardly depended on the sample size. On the other hand it was 

observed that the size of sample was a big factor for the accuracy of results obtained 

using DesignXplorer goal driven optimization. Further it was noticed that the number of 

function evaluations and computation time was comparatively less for the MQR 

optimization process. Hence MQR optimization process can be thought of as a good 

alternative to DOE based DesignXplorer goal driven optimization when the maximum 

the number of design variables are less than ten. 

6.1.2 Recommendations 

1. The problems considered in this study were size and dynamic response based 

optimization problems. The proposed method can be tried to solve complex 

optimization problems such as shape and topology based. 

2. The algorithm can be modified for parallel implementation and can be 

experimented to solve large non-linear design problems efficiently. 

3. A good alternative to solve certain complex optimization problems such as 

vehicle suspension problems would be to use genetic algorithm in place of 

sequential quadratic programming for the optimization process. Research have 

shown that genetic algorithms in most cases has found to converge to the global 

minimum in the function space as compared to local minimum as was observed 

in the 2D vehicle model. 

4. Adaptive sampling and response modeling methods that samples each variable 

according to the contribution to the response should be investigated. 
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5. Other metamodeling techniques that can handle large number of design 

variables should be explored. 
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APPENDIX A 
 
 

ANSYS APDL SAMPLE FILES 
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In this appendix, a sample ANSYS APDL file used during the MQR based 

optimization is shown. The parameter POPSIZE is given as a command line option to 

ANSYS. The finite element solution is initialized by MATLAB using the command [9] 

 

"<drive>:\Program Files\Ansys Inc\V90\ANSYS\bin\<platform>\ansys90" -b -p ansysrf 

-POPSIZE #sets of design variables -i inputname -o outputname 

 

by means of a system call. 

A.1   9-Bar Truss 

!**************************************************! 
!   ANsys Input for Test Problem- 9 Bar truss      ! 
!**************************************************! 
 
!Nine Element Groups 
 
/CWD,C:\MATLAB6p5\work  !Change Ansys Directory To  
                        !Matlab Work directory  
!******DELETE PREVIOS ENTRIES OF FILES CREATED*****! 
 
/FILNAM,TP-9 
/PREP7   
 
NUMDESV=2               !Number of design variables 
NUMELEM=9               !Number Of element groups 
 
!**************************************************! 
! Read The Area matrix generated in Matlab         ! 
!**************************************************! 
 
*DIM,XAREAS,,POPSIZE,NUMDESV 
*VREAD,XAREAS(1,1),dvar,var,,JIK,NUMDESV,POPSIZE 
(F18.13) 
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!**************************************************! 
!  Creating the model of 9-bar truss structure     
!  Material is Steel,AISI 1020,low Carbon           
!  ANSYS Element type LINK8 (3 D truss)is used     
!**************************************************! 
 
ET,1,LINK1 
 
*DO,I,1,NUMDESV        !Defining the real constant 
  R,I,XAREAS(1,I)      !set for the design variables  
*ENDDO 
 
MP,EX,1, 2.972501e+07  !Elastic Moduluss in lbf/in^2 
MP,PRXY,1,0.29         !Poissons Ratio 
 
!*****************DEFINING NODES*******************! 
  
N,1, 0, 0, 0 
N,2,10, 0, 0 
N,3,20, 0, 0 
N,4,30, 0, 0 
N,5,10,10, 0 
N,6,20,10, 0 
 
!**********DEFINING ELEMENTS BTW NODES**************! 
 
*DO,I,1,3,1      ! Elements 1, 2, 3& 6 belong to real constant set 1 
real,1 
en,I,I,I+1 
*ENDDO 
 
real,1 
en,6,5,6 
!****************************************************! 
real,2                 ! Elements 4,5,7,8 & 9 belong to real constant set 2 
en, 4, 1, 5 
 
real,2 
en,5,2,5 
 
real,2 
en,7,2,6 
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real,2 
en,8,3,6 
 
real,2 
en,9,4,6 
 
!********DEFINING BOUNDRY CONDITIONS & FORCES********! 
 
D,1,ALL,0               !Node 1 is fixed completly 
 
D,4, UY,0               !Node 2 is fixed in y direction 
                                !free to move along x direction  
 
 
F,5,fy,-5000            !defines forces acting on nodes 
F,6,fx, 7000            !5&6 
F,6,fy, 2000 
 
FINISH 
 
!************DEFINING ARRAYS FOR OUTPUT*****************! 
*GET,NCOUNT,NODE,,COUNT 
*DIM,NDISPX ,ARRAY,NCOUNT,1 
*DIM,NDISPY ,ARRAY,NCOUNT,1 
*DIM,NDISPZ ,ARRAY,NCOUNT,1 
 
*GET,ECOUNT,ELEM,,COUNT 
*DIM,STRESS,array,ECOUNT,1 
 
*DIM,DVAR,ARRAY,NUMDESV,1 
 
*cfopen,results,txt 
 
!*******************************************************! 
!             RUN LOOP FOR ALL CASES                    
!*******************************************************! 
*DO,I,1,POPSIZE,1 
 
/PREP7 
 
*DO,J,1,NUMDESV 
 R,J,XAREAS(I,J) 
*ENDDO 
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*VGET,DVAR(1,1),RCON,1,CONSTANT,1 
*VWRITE,DVAR(1,1) 
(E22.14) 
 
FINISH 
 
!***************SOLUTION PHASE**************************! 
/SOLU 
ANTYPE,STATIC 
SOLVE 
FINISH 
 
!*************POST PROCESSING PHASE*********************! 
!Writing files results.txt,estress.var,noddisp.var &    ! 
!Tvolume.var to the work directory in Matlab            !               ! 
!*******************************************************! 
/POST1 
 
SET,LAST 
ETABLE,Stress,LS,1 
 
*VGET,NDISPX(1,1),node,1,U,X 
*VGET,NDISPY(1,1),node,1,U,Y 
*VGET,NDISPZ(1,1),node,1,U,Z 
 
*VWRITE,NDISPX(1,1) 
(E22.14) 
 
*VWRITE,NDISPY(1,1) 
(E22.14) 
 
*VWRITE,NDISPZ(1,1) 
(E22.14) 
*VGET,STRESS(1),ELEM,1,ETAB,Stress 
 
*VWRITE,STRESS(1) 
(E22.14) 
 
ETABLE,Volume,VOLU 
SSUM 
 
*get,TVOL,SSUM,,ITEM,Volume 
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*VWRITE,TVOL 
(E22.14,2X) 
 
*ENDDO         ! END of DO LOOP for POPULATION CASES 
 
*cfclos 
 
*DIM,DATA,,30,POPSIZE 
*VREAD,DATA(1,1),results,txt,,IJK,30,POPSIZE 
(E22.14) 
 
*MWRITE,DATA(1,1),pdata,var,,IJK,30,POPSIZE 
(E22.14,2X) 
 
FINISH 
 
/DELETE,TP-9,EMAT 
/DELETE,TP-9,ESAV 
/DELETE,TP-9,FULL 
/DELETE,TP-9,RST 
/DELETE,TP-9,MNTR 
/DELETE,TP-9,PVTS 
/DELETE,TP-9,BCS 
/DELETE,dvar,VAR 
 
/EXIT,NOSAVE 
 
A.2   25-Bar Truss 

!**************************************************! 
!   ANsys Input for Test Problem- 25 Bar truss     ! 
!**************************************************! 
 
!7 Element Groups 
 
/CWD, C:\MATLAB6p5\work  !Change Ansys Directory To  
                                                   !Matlab Work directory  
 
!******DELETE PREVIOS ENTRIES OF FILES CREATED*****! 
 
 
/FILNAM,TP-25 
/PREP7   
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/DELETE,NEdata,VAR 
/DELETE,pdata,VAR 
 
 
NUMDESV=7                              !Number of design variables 
NUMOBJ =1                                 !Number of objective functions 
NUMELEM=25                             !Number Of element  
MASSDENSITY= 2.620360e-04  !Units:lbf-sec^2/in^3 
 
 
!**************************************************! 
! Read the Area matrix generated in Matlab         
!**************************************************! 
 
*DIM,XAREAS,,POPSIZE,NUMDESV 
*VREAD,XAREAS(1,1),dvar,var,,JIK,NUMDESV,POPSIZE 
(E22.14) 
 
!**************************************************! 
!  Creating the model of 25-bar truss structure    
!  Material is Alluminum 2014-T6.(ETBX.com)        
!  ANSYS Element type LINK8 (3 D truss)is used     
!**************************************************! 
 
ET,1,LINK8 
 
*DO,I,1,NUMDESV         !Defining the real constant 
  R,I,XAREAS(1,I)            !set for the design variables  
*ENDDO 
 
MP,EX,1,  1.049800e+07 !Elastic Moduluss in lbf/in^2 
MP,PRXY,1,0.33              !Poissons Ratio 
 
!*****************DEFINING NODES*******************! 
  
N, 1, -37.5,   0.0,200 
N, 2,  37.5,   0.0,200 
N, 3, -37.5, -37.5,100 
N, 4,  37.5, -37.5,100 
N, 5,  37.5,  37.5,100 
N, 6, -37.5,  37.5,100 
N, 7,-100.0,-100.0,  0 
N, 8, 100.0,-100.0,  0 
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N, 9, 100.0, 100.0,  0 
N,10,-100.0, 100.0,  0 
 
!**********DEFINING ELEMENTS BTW NODES**************! 
! Need To Change depending on the number of design   
!variables in the problems                          
!***************************************************! 
 
real ,1 
en,1,1,2 
real,2 
en,3,1,4 
en,4,1,5 
en,6,2,3 
en,9,2,6 
 
real,3 
en,2,1,3 
en,5,1,6 
en,7,2,4 
en,8,2,5 
 
real,4 
en,10,3,4 
en,11,4,5 
en,12,5,6 
en,13,6,3 
 
real,5 
en,15,7,6 
en,25,10,3 
en,19,8,5 
en,20,9,1 
 
real,6 
en,16,7,4 
en,17,8,3 
en,21,9,6 
en,23,10,5 
 
real,7 
en,14,7,3 
en,18,8,4 
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en,22,9,5 
en,24,10,6 
 
!********DEFINING BOUNDRY CONDITIONS & FORCES********! 
D, 7, UX,, , 10, 3               !Node 7 through 10 is fixed on 
D, 7, UY,, , 10, 3               !all 3 directions. 
D, 7, UZ, , ,10, 3                                       
 
 
 
F,1,fy, 20000          !defines forces acting on nodes 
F,1,fz, -5000          !1&2 
F,2,fy,-20000 
F,2,fz, -5000 
 
FINISH 
 
!************DEFINING ARRAYS FOR OUTPUT*****************! 
 
*GET,NCOUNT,NODE,,COUNT 
*DIM,NDISPX ,ARRAY,NCOUNT,1 
*DIM,NDISPY ,ARRAY,NCOUNT,1 
*DIM,NDISPZ ,ARRAY,NCOUNT,1 
 
*GET,ECOUNT,ELEM,,COUNT 
*DIM,STRESS,array,ECOUNT,1 
 
*DIM,DVAR,ARRAY,NUMDESV,1 
 
!*****************************************************! 
!Write Element Count and Node Count data to NEdata.var 
!*****************************************************! 
 
*cfopen,NEdata,var 
*GET,NCOUNT,NODE,,COUNT 
*VWRITE,NCOUNT 
(E22.14) 
*GET,ECOUNT,ELEM,,COUNT 
*VWRITE,ECOUNT 
(E22.14) 
*cfclos 
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!*******************************************************! 
!Open results txt file to write solutions data to matlab  
!*******************************************************! 
 
*cfopen,results,txt 
 
!*******************************************************! 
!             RUN LOOP FOR ALL CASES                    
!*******************************************************! 
 
*DO,I,1,POPSIZE,1 
 
/PREP7 
 
*DO,J,1,NUMDESV 
 R,J,XAREAS(I,J) 
*ENDDO 
 
 
*VGET,DVAR(1,1),RCON,1,CONSTANT,1 
*VWRITE,DVAR(1,1) 
(E22.14) 
 
FINISH 
 
!***************SOLUTION PHASE**************************! 
 
/SOLU 
ANTYPE,STATIC 
SOLVE 
FINISH 
 
!***************POST PROCESSING*************************! 
/POST1 
 
 
 
SET,LAST 
ETABLE,Stress,LS,1 
 
*VGET,NDISPX(1,1),node,1,U,X 
*VGET,NDISPY(1,1),node,1,U,Y 
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*VGET,NDISPZ(1,1),node,1,U,Z 
 
 
*VWRITE,NDISPX(1,1) 
(E22.14) 
 
*VWRITE,NDISPY(1,1) 
(E22.14) 
 
*VWRITE,NDISPZ(1,1) 
(E22.14) 
 
 
*VGET,STRESS(1),ELEM,1,ETAB,Stress 
 
 
*VWRITE,STRESS(1) 
(E22.14) 
 
ETABLE,Volume,VOLU 
SSUM 
 
*get,TVOL,SSUM,,ITEM,Volume 
 
 
*VWRITE,TVOL 
(E22.14,2X) 
 
*ENDDO              ! END of DO LOOP for POPULATION CASES 
 
*cfclos 
 
!********************************************************! 
!Write solutions for all population set to pdata.var file! 
!********************************************************! 
rows= NUMDESV + NCOUNT*3 + ECOUNT + NUMOBJ 
*DIM,DATA,ARRAY,rows,POPSIZE 
*VREAD,DATA(1,1),results,txt,,IJK,rows,POPSIZE 
(E22.14) 
*MWRITE,DATA(1,1),pdata,var,,JIK,POPSIZE,rows 
(100(E22.14,2X)) 
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FINISH 
 
/DELETE,results,TXT 
/DELETE,TP-25,EMAT 
/DELETE,TP-25,ESAV 
/DELETE,TP-25,FULL 
/DELETE,TP-25,RST 
/DELETE,TP-25,MNTR 
/DELETE,TP-25,PVTS 
/DELETE,TP-25,BCS 
/DELETE,dvar,VAR 
 
/EXIT,NOSAVE 
 

A.3   Plate with an elliptical hole 

!**************************************************! 
!   ANSYS Input for Test Problem- Plate with hole  ! 
!**************************************************! 
 
/CWD,C:\MATLAB6p5\work  !Change Ansys Directory To  
                        !Matlab Work directory  
 
!******DELETE PREVIOS ENTRIES OF FILES CREATED*****! 
 
 
/FILNAM,TPlate 
/PREP7   
 
 
NUMDESV=2                              !Number of design variables 
NUMOBJ =1                                 !Number of objective functions 
MASSDENSITY= 2.620360e-04 !Units:lbf-sec^2/in^3 
 
!******Geometric dimensions*****************************! 
 
W  =100               !Width of the rectangular plate 
H  =50                !Height of the restangular plate 
T  =1                 !Thickness of the rectangular plate 
P1 =0 
P2 =-800 
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!**************************************************! 
!  Material is Alluminum 2014-T6.(ETBX.com)           
!  ANSYS Element type LINK8 (3 D truss)is used      
!**************************************************! 
 
ET, 1, PLANE2 
KEYOPT, 1, 3, 3              ! PLANE STRESS ELEMENT WITH THICKNESS 
 
! Define Real constants 
R, 1, T 
 
MP, EX, 1, 1.049800e+07   ! Elastic Moduluss in lbf/in^2 
MP, PRXY, 1, 0.33             !Poissons Ratio 
 
 
!*******************************************************! 
! Read the Design Variable matrix generated in Matlab    
! Vector containing the input design variables            
!*******************************************************! 
 
*DIM, XDVAR,, POPSIZE, NUMDESV 
*VREAD, XDVAR (1, 1),dvar,var,,JIK,NUMDESV,POPSIZE 
(E22.14) 
 
 
XC=W/2 
YC=H/2 
 
AX =XDVAR (1, 1) 
BY =XDVAR (1, 2) 
 
!***********Create geometry*****************************! 
BLC4, 0, 0, W, H 
 
K, 5,    XC, YC           ! Defines the centre of the Ellipse 
K, 6, XC+AX, YC           ! AX is the semi major axis and BY is 
K, 7,    XC, YC+BY        ! Semi minor axis.  
K, 8, XC-AX, YC 
K, 9,    XC, YC-BY 
 
BSPLINE, 7, 8, 9,,,, BY,0,0, BY,0,0 
BSPLINE, 7, 6, 9,,,,-BY,0,0,-BY,0,0 
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LGLUE, 5, 6 
 
AL, 5, 6 
 
ASBA, 1, 2 
 
! APPLYING CONSTRAINTS 
DL, 4,  ,UX,0 
DK, 1,UY, 0 
SFL, 2, PRES, P2 
SFL,3,PRES,P1  
 
! AREA MESHING 
SMRTSIZE, 3 
AMESH, ALL   
Finish 
 
!************************************************************! 
! Open results txt file to write solutions data to Matlab      
!************************************************************! 
 
*cfopen, results, txt 
 
!************************************************************! 
!             RUN LOOP FOR ALL CASES                         ! 
!************************************************************! 
 
*DO, I, 1, POPSIZE, 1 
 
/PREP7 
 
!**For the prob where constraints are just the semi major & minor axis of ellipse**! 
 
XC=W/2 
YC=H/2 
 
AX =XDVAR (I, 1) 
BY =XDVAR (I, 2) 
 
*VWRITE, AX 
(E22.14) 
*VWRITE, BY 
(E22.14) 
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ACLEAR, ALL 
ADELE, ALL 
LDELE, 5, 6 
KDELE, 5, 9 
 
!*************Define the size of elliptical hole****************! 
 
K, 5,    XC, YC           ! Defines the centre of the Ellipse 
K, 6, XC+AX, YC           ! AX is the semi major axis and BY is 
K, 7,    XC, YC+BY        ! semiminor axis.  
K, 8, XC-AX, YC 
K, 9,    XC, YC-BY 
 
BSPLINE, 7, 8, 9,,,, BY,0,0, BY,0,0 
BSPLINE, 7, 6, 9,,,,-BY,0,0,-BY,0,0 
 
LGLUE, 5, 6 
 
AL, 1, 2, 3, 4 
AL, 5, 6 
 
ASBA, 1, 2 
 
! AREA MESHING 
AMESH, ALL   
AREFINE, ALL,2 
FINISH 
 
*GET, ECOUNT, ELEM,,COUNT 
 
!***************SOLUTION PHASE*********************************! 
 
/SOLU 
ANTYPE, STATIC 
SOLVE 
FINISH 
 
!**********************POST PROCESSING*************************! 
/POST1 
SET, LAST 
 
ETABLE, SEQV, S, EQV             !Create a table of element stress values. 
ESORT,ETAB ,SEQV ,0 ,1 , 
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*GET,VSMAX,SORT,,MAX 
 
*VWRITE,VSMAX 
(E22.14) 
 
ETABLE, Volume, VOLU 
SSUM 
 
*get, TVOL, SSUM, ,ITEM ,Volume 
 
 
*VWRITE, TVOL 
(E22.14, 2X) 
 
*ENDDO              ! END of DO LOOP for POPULATION CASES 
 
*cfclos 
 
!********************************************************! 
!Write solutions for all population set to pdata.var file! 
!********************************************************! 
rows = NUMDESV + 1 + NUMOBJ 
*DIM, DATA, ARRAY, rows ,POPSIZE 
*VREAD, DATA (1, 1),results ,txt ,, IJK ,rows ,POPSIZE 
(E22.14) 
*MWRITE, DATA (1, 1),pdata ,var ,,JIK ,POPSIZE ,rows 
(100(E22.14, 2X)) 
 
 
FINISH 
 
/DELETE,results,TXT 
/DELETE,TPlate,EMAT 
/DELETE,TPlate,ESAV 
/DELETE,TPlate,FULL 
/DELETE,TPlate,RST 
/DELETE,TPlate,MNTR 
/DELETE,TPlate,PVTS 
/DELETE,TPlate,BCS 
 
/EXIT, NOSAVE 
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A.4   2 Dimensional Vehicle Suspension 

!**************************************************! 
!   ANsys Input for 2D Vehicle Suspension Problem  ! 
!**************************************************! 
 
!9 Elements in Total 
 
/CWD, C:\MATLAB6p5\work          ! Change ANSYS directory to  
                                                            ! MATLAB Work directory  
 
!******DELETE PREVIOS ENTRIES OF FILES CREATED*****! 
 
/FILNAM, 2DVS 
/PREP7   
 
NUMDESV=4            ! Number of design variables 
NUMOBJ =1               ! Number of objective functions 
 
!****************************************************! 
! Define Elements that model the 2D vehicle Suspension               ! 
! The Chasse of the car is modeled using BEAM3 elements           ! 
! MASS21 elements are used to signify rigid mases                       ! 
! Combination element (Spring14) is used to model shock             ! 
!-absorber and tire stiffness                                                             ! 
!****************************************************! 
 
ET, 1, BEAM3 
ET, 2, MASS21, , , 3 
ET, 3, COMBIN14, , , 2 
ET, 4, COMBIN14, , , 2 
ET, 5, MASS21, , , 4 
ET, 6, MASS21, , , 4 
ET, 7, COMBIN14, , , 2 
ET, 8, COMBIN14, , , 2 
ET, 9, COMBIN39, , , 2 
 
!****************************************************! 
!     Define the real constant set for elements      ! 
!****************************************************! 
R, 1, 1, 1, 1 
R, 2, 730, 2.89e4     ! Mass of sprung mass=730 kg &  
                                 ! Torsional Inertial Izz=2.89e4 



 

 106 

!****************************************************! 
!  Read The matrix generated in Matlab that contains ! 
!  the input design variables for spring & damper    ! 
!****************************************************! 
 
*DIM, XDVAR, , POPSIZE, NUMDESV 
 
*VREAD, XDVAR (1, 1), dvar, var, ,JIK, NUMDESV, POPSIZE 
(E22.14) 
 
Kf =XDVAR (1, 1)        ! Kf & Af=spring & damping constant  
Af =XDVAR (1, 2)        !of front suspension. 
Kar =XDVAR (1, 3)      ! Kr & Ar=spring & damping constant  
Ar =XDVAR (1, 4)        !of rear suspension. 
 
Kbr=0.215*Kar 
 
R,3,Kf,Af 
R,4,,Ar 
 
R,5, 50                                    !Front unsprung mass = 50kg 
R,6,115                                   !rear unsprung mass  =115Kg  
 
R, 7, 147000                           ! Front tire stiffness=15000 kg/m 
R, 8,166600                            !rear tire stiffness =17000 kg/m 
R,9,-1,-Kar,-0.5,-0.5*Kar,0.0,0.0        !Non Linear Spring Data 
RMORE,0.215,Kbr,0.5,0.5*1.28*Kar,1,1.28*Kar 
 
!**************************************************! 
! Properties of Beam : Random value is assumed                       ! 
! EX=10e11 & Poissons ratio PRXY =0.3                                  ! 
!**************************************************! 
MP, EX, 1, 10e11       ! Elastic Moduluss in lbf/in^2 
MP, PRXY, 1, 0.3      ! Poissons Ratio 
 
!*****************DEFINING NODES*******************! 
N, 1, 0.00, 0, 0 
N, 2, 0.00, 1, 0 
N, 3, 0.00, 2, 0 
N, 4, 1.35, 2, 0 
N, 5, 2.85, 2, 0 
N, 6, 2.85, 1, 0 
N, 7, 2.85, 0, 0 
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!**********DEFINING ELEMENTS BTW NODES**************! 
TYPE, 8 
REAL, 8 
E, 1, 2 
 
TYPE, 6 
REAL, 6 
E, 2 
 
TYPE, 4 
REAL, 4 
E, 2, 3 
 
TYPE, 9 
REAL, 9 
E, 2, 3 
 
TYPE, 1 
REAL, 1 
E, 3, 4 
 
TYPE, 2 
REAL, 2 
E, 4 
 
TYPE, 1 
REAL, 1 
E, 4, 5 
 
TYPE, 3 
REAL, 3 
E, 5, 6 
 
TYPE, 5 
REAL, 5 
E, 6 
 
TYPE, 7 
REAL, 7 
E, 6, 7 
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!********DEFINING BOUNDRY CONDITIONS & FORCES********! 
 
D, 1, UX, , , 7, 6,         !Node 1 & 7 constrained along x axis  
D, 2, UX, , , 6,2           !Nodes 2,4 & 6 constrained along x axis 
D, 2, ROTZ, , , 6, 4     !Rotation about Z axis constrained for nodes 2&6 
 
FINISH 
 
*cfopen, results, txt 
 
!*******************************************************! 
!             RUN LOOP FOR ALL CASES                    
!*******************************************************! 
 
*DO, I, 1, POPSIZE, 1 
 
/PREP7 
 
Kf =XDVAR (I, 1)        ! Kf & Af =spring & damping constant  
Af =XDVAR (I, 2)        ! Of front suspension 
Kar =XDVAR (I, 3)      ! Kr & Ar=spring & damping constant  
Ar =XDVAR (I, 4)        ! of rear suspension 
Kbr =0.215*Kar 
 
*VWRITE, Kf               ! Write the design variables to results file 
(E22.14) 
*VWRITE,Af 
(E22.14) 
*VWRITE,Kar 
(E22.14) 
*VWRITE,Ar 
(E22.14) 
 
R,3,Kf,Af 
R,4,,Ar 
 
R,9,-1,-Kar,-0.5,-0.5*Kar,0.0,0.0  !Non Linear Spring Data 
RMORE,0.215,Kbr,0.5,0.5*1.28*Kar,1,1.28*Kar 
 
FINISH 
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!***************SOLUTION PHASE**************************! 
 
/SOLU 
 
D, 1, UY, 
D, 7, UY, 0.021631 
 
ANTYPE, TRANS 
!*   
TRNOPT, FULL  
LUMPM, 0  
!*   
SOLCONTROL, OFF 
 
NSUBST, 1 
OUTRES, ERASE 
OUTRES, NSOL, ALL  
TIME, 0.036   
LSWRITE, 1,   
 
D, 7, UY, 0.041145 
TIME, 0.072    
LSWRITE, 2,   
 
D, 7, UY, 0.056631 
TIME, 0.108  
LSWRITE, 3, 
 
D, 7, UY, 0.066574 
TIME, 0.144    
LSWRITE, 4, 
 
D, 7, UY, 0.07 
TIME, 0.18    
LSWRITE, 5, 
 
D, 7, UY, 0.066574 
TIME, 0.216    
LSWRITE, 6, 
 
D, 7, UY, 0.056631 
TIME, 0.252    
LSWRITE, 7, 
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D, 7, UY, 0.041145 
TIME, 0.288    
LSWRITE, 8,   
 
D, 7, UY, 0.021631 
TIME, 0.324    
LSWRITE, 9, 
 
D, 7, UY, 0 
TIME, 0.36    
LSWRITE, 10, 
!*   
NSUBST, 20  
TIME, 1.08    
LSWRITE, 11,   
NSUBST, 27  
TIME, 2.052   
LSWRITE, 12, 
 
D, 1, UY, 0.021631 
NSUBST, 1 
TIME, 2.088  
LSWRITE, 13,  
 
D, 1, UY, 0.041145 
TIME, 2.124    
LSWRITE, 14,   
 
D, 1, UY, 0.056631 
TIME, 2.16  
LSWRITE, 15, 
 
D, 1, UY, 0.066574 
TIME, 2.196   
LSWRITE, 16, 
 
D, 1, UY, 0.07 
TIME, 2.232    
LSWRITE, 17, 
 
D, 1, UY, 0.066574 
TIME, 2.268    
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LSWRITE, 18, 
 
D, 1, UY, 0.056631 
TIME, 2.304    
LSWRITE, 19, 
 
D, 1, UY, 0.041145 
TIME, 2.34    
LSWRITE, 20,   
 
D, 1, UY, 0.021631 
TIME, 2.376    
LSWRITE, 21, 
 
D, 1, UY, 0 
TIME, 2.412 
LSWRITE, 22, 
 
LSSOLVE, 1, 22, 1,  
 
FINISH 
!***************POST PROCESSING*************************! 
/POST26  
 
NSOL, 2, 4, U, Y 
ABS, 3, 2,  , , AMPL4UY 
 
*GET, AMPMAX, VARI, 3, EXTREM, VMAX 
 
!**************CONSTRAINT FUNCTION EVALUATION***********! 
 
*GET, TVMAX, VARI, 3, EXTREM, TMAX 
 
DLT=0.036 
T2=TVMAX+2*DLT 
T1=TVMAX+DLT 
TM1=TVMAX-DLT 
TM2=TVMAX-2*DLT 
 
*GET, F2, VARI, 3, RTIME, T2 
*GET, F1, VARI, 3, RTIME, T1 
*GET, FM1, VARI, 3, RTIME, TM1 
*GET, FM2, VARI, 3, RTIME, TM2 
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ACLRT= (F2-2*F1+2*FM1-FM2) / (2*DLT*DLT*DLT) 
*IF, ACLRT, LT, 0, THEN 
JERK=-1*ACLRT 
*ELSE 
JERK=ACLRT 
*ENDIF 
 
!****RECORD OBJECTIVE FUNCTION AND CONSTRAINT FUNCTION***! 
 
OBJF=AMPMAX 
 
*VWRITE, JERK 
(E22.14) 
 
*VWRITE, OBJF 
(E22.14, 2X) 
 
*ENDDO                     ! END of DO LOOP for POPULATION CASES 
 
*cfclos 
!********************************************************! 
! Write solutions for all population set to pdata.var file                          
!********************************************************! 
rows =NUMDESV + 1 + NUMOBJ 
*DIM, DATA, ARRAY, rows, POPSIZE 
*VREAD, DATA (1,1), results, txt, , IJK, rows, POPSIZE 
(E22.14) 
*MWRITE, DATA (1, 1), pdata, var, , JIK, POPSIZE, rows 
(100(E22.14, 2X)) 
 
FINISH 
 
/DELETE, results, TXT 
/DELETE, 2DVS, EMAT 
/DELETE, 2DVS, ESAV 
/DELETE, 2DVS, FULL 
/DELETE, 2DVS, RST 
/DELETE, 2DVS, MNTR 
/DELETE, 2DVS, PVTS 
/DELETE, 2DVS, BCS 
 
/EXIT, NOSAVE 
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