
TOWARDS AUTOMATED UNDERSTANDING OF LAPAROSCOPIC VIDEOS

by

BABAK NAMAZI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at

The University of Texas at Arlington
August, 2019

Arlington, Texas

Supervising Committee:

Venkat Devarajan, Supervising Professor

Ganesh Sankaranarayanan

Michael Manry

Ramtin Madani

Ioannis D. Schizas

Amir Farbin

Copyright c© by

Babak Namazi

2019

To my family.

ACKNOWLEDGEMENTS

I have received a great deal of support and assistance throughout writing this disser-

tation. To begin with, I would like to thank my supervisor Dr. Venkat Devarajan, for his

mentor-ship, which was not limited to academic guidance. I consider myself very fortunate

for having an advisor who was always willing to share his invaluable expertise, which has

been and will be extremely useful for my professional and personal developments.

I would like to appreciate Dr. Ganesh Sankaranayanan for his constant guidance

and advice throughout my research. I would also like to thank Baylor University Medical

Center at Dallas, and Dr. James Fleshman for providing the funding for this dissertation.

I would like to acknowledge the suggestions and feedback I received from my doc-

toral committee members Dr. Amir Farbin, Dr. Michael Manry, Dr. Ramtin Madani and

Dr. Ioannis Schizas.

I would also like to thank all my colleagues at Virtual Environment Lab, my friends

and relatives, especially Mahshid Grooms, Lida Karami, Hamid Parivash, Dr. Kanishka

Tyagi, Vivek Nair, and Jennifer Lorraine Ball, all the EE department members and staff,

especially Ms. Gail Paniusky, and the office of intenational education, especially Ms. Satu

Birch for their various forms of support during my graduate study.

Finally, I would like to thank my family, my parents, my sister and my grandma, for

their patience, sacrifice and encouragement. Without all your help and support, this would

have never been possible. Thank you.

July 26, 2019

iv

ABSTRACT

TOWARDS AUTOMATED UNDERSTANDING OF LAPAROSCOPIC VIDEOS

Babak Namazi, Ph.D. Candidate

The University of Texas at Arlington, 2019

Supervising Professor: Venkat Devarajan

Despite the advantages of minimally invasive surgeries, the indirect access and lack

of the 3D field of view of the area of interest introduce complications in the procedures.

Fortunately, the recorded videos from the operation offer the opportunity for intra-operative

and post-operative analyses of the procedures, to improve future performance and safety.

Such analysis is essential to provide the tools for evaluation and assessment of the surg-

eries. In this dissertation, we investigate the potential of deep learning techniques in un-

derstanding the videos captured during laparoscopic surgeries. To this end, we describe

new methods for identifying the surgical instruments and the current phase of the proce-

dure as well as the phase boundaries, which are the key components in understanding the

work-flow of surgeries. Furthermore, we describe a method for analyzing and improving

the safety in a laparoscopic cholecystectomy procedure by identifying the ”critical view of

safety” (CVS), the recognition of which is the gold standard for enhancing the safety in

cholecystectomy surgery. The tools developed under the dissertation could be the essential

parts of a Surgical Video Analysis System (SVAS).

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xi

Chapter Page

1. INTRODUCTION . 1

1.1 Applications of Surgical Video Understanding 3

1.2 Vision-based Video Analysis . 4

1.3 Problem Statement . 5

1.4 Outline . 6

2. DEEP LEARNING . 7

2.1 Deep Learning Components . 7

2.1.1 Artificial Neural Networks . 7

2.1.2 Convolutional Neural Networks 13

2.1.3 Recurrent Neural Networks . 16

2.2 Deep Learning Applications . 21

2.2.1 Regression and Classification . 21

2.2.2 Video Processing . 22

3. SURGICAL TOOL DETECTION . 24

3.1 Approach . 28

3.2 Methodology of LapTool-Net . 31

3.2.1 Multi-label Classification . 31

vi

3.2.2 Spatio-temporal Features . 32

3.2.3 Decision Model . 34

3.2.4 Class Imbalance . 36

3.2.5 Multi-task Training . 38

3.2.6 Post-processing . 40

3.3 Experiments and Results . 42

3.3.1 Metrics . 42

3.3.2 CNN Results . 43

3.3.3 LapTool-Net Results . 49

3.3.4 Model Ensemble . 52

3.3.5 Tools Localization . 53

3.3.6 Comparison . 54

3.4 Conclusions . 54

4. SURGICAL WORKFLOW DETECTION . 57

4.1 Frame-level Phase Detection . 57

4.1.1 Methodology of SPD . 60

4.1.2 Experimental Setup . 65

4.1.3 Results . 66

4.2 Phase Boundary Detection . 70

4.2.1 Methodology of APBD . 73

4.2.2 Experiments and Results . 82

4.2.3 Conclusions . 85

5. CRITICAL VIEW OF SAFETY . 88

5.1 Criteria for Evaluating the Establishment of CVS 89

5.2 Approach . 93

5.3 Results . 94

vii

5.4 Discussion and Conclusions . 95

6. CONCLUSION AND FUTURE DIRECTIONS 97

6.1 Future Directions . 99

Bibliography . 101

viii

LIST OF ILLUSTRATIONS

1 . ii

Figure Page

1.1 Laparoscopic surgery [wikipedia.org/wiki/Laparoscopy] 2

2.1 Artificial Neural Networks . 8

2.2 Common activation functions: sigmoid (left), tanh (middle), RELU (right) . 9

2.3 A generic convolutional neural network [20] 13

2.4 Alexnet architecture [67] . 15

2.5 Inception blocks a) naive structure b) with dimension reductions [98] 16

2.6 Residual connection in Resnet CNN . 17

2.7 A generic RNN [18] . 18

2.8 LSTM architecture [18] . 19

2.9 A bi-directional RNN . 20

3.1 Challenges in detecting surgical tools due to smoke (a,b), motion blur (c,f),

lack of focus (d) and occlusion (e) in laparoscopic cholecystectomy procedure. 26

3.2 Block diagram of a) the proposed multiclass classifier F which consists of

f and g, b) the architecture for Gated Recurrent Units (GRU) and c) The

bi-directional RNN for post-processing. 30

3.3 List of the tools used in M2CAI16 cholecystectomy dataset [104] 31

3.4 The distribution for the combination of the tools in M2CAI dataset 35

3.5 The chord diagram for the relationship between the tools after balancing

with LP method . 38

ix

3.6 The visualization of the class activation maps for some example based on

the prediction of the model . 56

4.1 Illustration of the challenges in the detection of the surgical work flow using still

images. a) examples of blurry images and the lack of focus in camera, b) Using the

same bipolar tool in two different phases, c) the absence of surgical instruments in

different steps . 58

4.2 The block diagram of the Surgical phase detector (SPD) in offline mode. 64

4.3 Confusion Matrix with (right) and without (left) normalization for the offline

mode . 69

4.4 The ordering of the phases in cholec80 dataset 72

4.5 Sequence to sequence architecture for language translation [96] 76

4.6 The block diagram of the attention-based phase boundary detection model . . 78

5.1 The critical view of safety [45] . 89

5.2 The anatomy of gallbladder, cystic duct and cystic artery [81] 90

5.3 The doublet view of the critical view of safety [82] 91

5.4 Cystic plate [63] . 91

5.5 (left) True positive results showing the establishment of CVS, (right) True

negative results showing the absence of CVS 95

x

LIST OF TABLES

Table Page

3.1 Number of frames for each tool in M2CAI 37

3.2 Balancing scores for each tool in M2CAI dataset before and after balancing . 39

3.3 Results for the multi-label classification of the CNN 43

3.4 Setup configurations for training the multiclass CNN 45

3.5 Results for the multiclass CNNs . 46

3.6 Precision (P) and Recall (R) of each tool for the multiclass CNNs 47

3.7 Final results for the proposed model . 49

3.8 The precision, recall and F1 score of each tool for the ML classifier in

RCNN-LP after removing the decision model 50

3.9 The precision, recall and F1 score of each tool for LapTool-Net(offline) . . . 51

3.10 The precision, recall and F1 score of each tool for LapTool-Net(online) . . . 52

3.11 The precision, recall and F1 score of each tool for the dataset of rare combi-

nations . 52

3.12 The results for different ensembles of RCNN-LP model 53

3.13 Comparison of tool presence detection methods on M2CAI 54

4.1 Duration of each phase in cholecystectomy procedure 61

4.2 The accuracy of the CNN models (%) . 67

4.3 precision, recall and F1 score for online mode 68

4.4 Precision, recall and F1 for offline mode . 68

4.5 Overall Accuracy . 70

4.6 Mean absolute error in seconds for each phase in cholec80 dataset 83

xi

4.7 The accuracy of the beginning frames detection for different ranges of error

in seconds . 85

4.8 The accuracy of the ending frames detection for different ranges of error in

seconds . 85

xii

CHAPTER 1

INTRODUCTION

Minimally invasive procedures include a variety of surgical techniques that are per-

formed for the diagnosis or treatment for many conditions, with minimum damage to the

patients’ body. For instance, in minimally invasive surgeries (MIS), the goal is to reduce

the size and the number of incisions in comparison to a traditional open surgery. In order to

accomplish this objective, the laparoscopic instruments are inserted through hollow tubes

called trocars. The procedure is monitored and assisted using specially designed cameras

called endoscopes (figure 1.1).

As a result of avoiding large open wounds, the patients benefit from less pain and

blood loss, and the recovery time is typically significantly shorter after laparoscopic surgery.

Furthermore, operating within the body cavity reduces the risk of potential infections as in

conventional open surgeries [88].

Despite these significant advantages, the unique way of manipulating the surgical

instruments and the indirect observation of the surgical scene introduce more challenges in

a laparoscopic operation [12]. These challenges include lack of depth perception, limited

range of motion for the tools and lack of tactile sensation. Therefore, a significant amount

of training is required for surgeons to reach the required proficiency.

In addition to the therapeutic benefits of laparoscopic surgery, the real-time moni-

toring of the procedure offers an opportunity for automatic computer vision techniques for

improving the outcome of a surgery. As an example of the potential applications during

the operation of laparoscopic cholecystectomy, the video analysis techniques can be used

for feedback generation to improve the performance and/or the safety of the procedure.

1

Figure 1.1: Laparoscopic surgery [wikipedia.org/wiki/Laparoscopy]

Also, the videos recorded from the operations are valuable for the education and training

of future surgeons. The analysis and assessment of the content of the videos are essential

in information retrieval and future improved protocols.

To take advantage of the recorded videos, they need to be annotated. Manual annota-

tion is a time-consuming task and requires experts’ knowledge and assistance. Therefore,

an automatic system is needed for performing various surgical video content analysis tasks.

In this dissertation, we investigate the problem of analyzing the laparoscopic proce-

dures using the videos taken during the surgeries. In the following sections, we first review

the potential applications of such analysis. The vision-based solutions are then discussed

to address different sub-problems.

2

1.1 Applications of Surgical Video Understanding

The analysis of videos in laparoscopic procedures has numerous intra-operative and

post-operative applications. Some of the potential, futuristic applications of an automated

video analysis system during the surgery include:

• Robotic surgeries: Real-time surgical video /understanding analysis of the surgi-

cal scene currently known as computer-aided intervention (CAI) could replace the

current human assistance provided to robotic surgical systems [52].

• Feedback generation: Surgical procedures are often technical and complex tasks

and are susceptible to human errors. An automated system for generating real-time

feedback can improve the outcome by giving reliable assistance to the surgeon [101].

The recorded videos can also be used in the following applications after the operation is

performed:

• Assessment: Routine assessment of operation after the surgery is essential in im-

proving surgical skills. An automated video understanding system [85] can accom-

plish an objective rating of the videos.

• Information retrieval: The recorded videos from the operation and the operating

room are usually stored in large databases for future references. Manually organizing

such datasets can be extremely costly and tedious. A video analysis system can ease

the process of accessing the required information [8].

• Education: Videos are the best sources of information. A well-classified database of

various tasks, accomplished by automated video analysis, can be an extremely useful

tool for educating the future surgeons [62].

3

1.2 Vision-based Video Analysis

The automated understanding of a surgical video involves invoking several com-

puter vision techniques to solve different sub-problems. Some examples of such analysis

include surgical workflow recognition, monitoring the tools usage, surgical key-frame ex-

traction, surgical shot classifications, surgical rating, and skill assessment. Some of these

tasks require video frame-level understanding, while in others, the entire videos need to be

processed.

In the literature, a plethora of methods has been proposed each addressing a specific

problem in analyzing the surgical videos [59]. In most of these methods, a set of hand-

crafted visual features are extracted to be used in making decisions for the particular task

at hand. These heuristic techniques are based on decades of research in the computer

vision area and are often designed for one or multiple specific tasks. Despite their relative

success over manual or other signal-based methods [29, 73], most traditional computer

vision methods are limited in their ability to perform general feature extraction directly

from the data.

Over the past few years, most of the traditional computer vision algorithms have

evolved into deep learning-based solutions [55]. This evolution has resulted in state-of-the-

art performance in most computer vision tasks such as image [36] and video classification

[48], object detection in images [74] and videos [47], activity recognition [41] etc. There-

fore, there is a trend in using deep learning in analyzing the content of the videos from

laparoscopic surgeries [104]. Some of the advantages of such methods include:

• Deep learning systems require minimal help from experts in designing a reliable

model.

• The performance of most deep learning methods improve by introducing larger train-

ing data.

4

• Avoiding the manual feature extraction, deep learning models are more efficient and

are suitable for real-time applications.

Inspired by their recent success, we investigate deep learning as a powerful solution for

different sub-problems in laparoscopic video understanding.

1.3 Problem Statement

In this dissertation, we focus on simplifying the video analysis of laparoscopic surg-

eries using deep learning techniques. To prove the effectiveness of the proposed algorithms,

we chose the laparoscopic cholecystectomy procedure or the gallbladder removal surgery,

which is the most common laparoscopic procedure.

It turns out that deep learning can be employed in at least three or more sub-problems

under the overall problem of cholecystectomy video analysis. Therefore, we proposed and

developed four novel methods for solving these sub-problems. They are:

• Detecting the presence and the type of different surgical tools in all the frames of a

video for intra-operative and post-operative applications.

• Identifying the current task or phase. Separate models are proposed for a) detect-

ing the phase to which each video frame belongs b) segmenting the entire video by

identifying the transition time of each phase.

• Detecting the critical view of safety (CVS), which is the gold standard for ensuring

safety in a cholecystectomy procedure.

The methods are evaluated and proven to be state of the art, using large datasets

containing videos from cholecystectomy surgery that are manually annotated by the ex-

perts. All the experiments in this dissertation are implemented in Tensorflow [1], and using

Nvidia’s Titan XP and 1080ti GPUs.

5

A broader objective is to investigate the potential for combining the methods to have

an integrated future Surgical Video Analysis System that we called SVAS. An example use

case for SVAS will be as follows: An attending surgeon would like to assess the perfor-

mance of a resident on a rotation. The video corresponding to that surgery would then be

loaded from the cloud. SVAS would be invoked to provide the options for the surgeon to

find the phases of the operation, examine the correct use of the appropriate tools in various

phases and grade the resident on the successful achievement of the critical view of safety.

In the future, SVAS could produce detailed automated reports on the multiple aspects of

the surgery, and generate real-time feedback during the operation.

1.4 Outline

The remainder of the dissertation is organized as follows: In chapter 2 the fundamen-

tals of the deep learning techniques are reviewed. Chapter 3 describes the problem of tool

detection in detail, provides relevant previous work, derives the logic of the development

of our method and the corresponding results. Chapter 4 similarly describes the problem

of detecting the workflow in separate sections for the identification of surgical phases for

all the frames and the detection of the boundaries of each phase. Chapter 5 describes the

critical view of safety detection. The final chapter concludes the dissertation and provides

suggestions for future research.

6

CHAPTER 2

DEEP LEARNING

As a part of a broader family of machine learning, deep learning encompasses a va-

riety of methods that are aimed at learning representations directly from data [55]. A deep

learning model is composed of multiple layers for extracting multiple levels of representa-

tions, to be used for detection or classification. Over the past decade, these methods have

improved the state-of-the-art in most challenging problems in the areas of computer vision

[36, 51], speech processing [70] and natural language processing [116], and in different

domains such as medical imaging [57].

This chapter provides fundamental knowledge regarding deep learning techniques

used in this dissertation. The main components of most deep learning systems such as Ar-

tificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) are described, followed by deep learning applications such as

classification and regression, and video processing.

2.1 Deep Learning Components

2.1.1 Artificial Neural Networks

ANNs are computing systems that are inspired by the neural system in human brain.

Each ANN consists of multiple neurons (units), which perform computation on their inputs.

An example of an artificial neuron is shown in figure 2.1(a). The function f is called

activation function. The output of a neuron is the weighted sum of the inputs plus a bias,

which is then activated by the activation function.

7

(a) a single neuron (b) A deep neural network

Figure 2.1: Artificial Neural Networks

In a multi-layer neural network, for example, a Multi-Layer Perceptron (MLP), the

neurons are formed in multiple layers, which pass messages from the previous layer to the

next layer. An example of an ANN is shown in figure 2.1(b). The layers following the input

layer are called hidden layers and the number of hidden layers is the depth of the network.

For an L-hidden-layer ANN, with ml being the number of units in the lth layer, the

output is calculated as:

FW (x) = W T
o f [W T

L f(W T
L−1...f(W T

1))] (2.1)

where Wl = (wl,0, ..., wl,ml
) is the weight matrix for layer 0 < l ≤ L (wl,0 is the bias),

and Wo is the output weight matrix. The collection of all weights W is the total trainable

weights of an ANN.

The main role of the activation function f is to add non-linearity to form a more gen-

eral mapping function. However, due to the requirements of the optimization process (to be

explained in section 2.1.1.1) or the application, these functions need to have certain speci-

fications such as differentiability. The most common activation functions include sigmoid,

8

Figure 2.2: Common activation functions: sigmoid (left), tanh (middle), RELU (right)

hyperbolic tangent (tanh), and Rectified Linear unit (RELU). These functions are shown in

figure 2.2.

2.1.1.1 Optimization

Of all of the different forms of deep learning algorithms, supervised learning has

proven to be the most promising. The goal of any supervised learning algorithm is to find

the best mapping from given inputs to their corresponding outputs, when the ground-truth

is available. For ANNs, this is achieved by finding the best weights W that minimize an

empirical cost (loss) function. Such optimization process is called training.

Given n training samples (x1, y1)...(xn, yn) with yi being the ground-truth for the ith

sample xi, the empirical cost minimization problem is formulated as:

min
W
L(W) =

1

n

n∑
i=1

`(yi, FW (xi)) (2.2)

The function can be minimized by the Gradient Descent (GD) method, which updates

the network parameters by computing the gradient of the loss function and taking steps

proportional to the negative of the gradients at each iteration of the optimization process.

9

Given the initial weights matrices W (0), the update process at step k for each layer l can be

written as:

W
(k)
l = W

(k−1)
l − η∇Wl

L(W
(k−1)
l), l = 1, ..., L (2.3)

where η > 0 is the step size (learning rate), and∇ is the gradient operation.

The gradients in the GD-based algorithms are calculated through the backpropaga-

tion method [75], which uses the chain rule to compute the gradients for each layer l starting

from the last layer. In other words, the process of updating the weights is accomplished by

repeatedly calculating the loss (error) through a forward pass and updating the gradients of

each layer in a backward pass until convergence to a local or a global minimum is achieved.

The update rules in equation 2.3 require the cost function to be computed for all of

the samples in the training set. Therefore, this method might not be efficient in terms of

memory usage, when the size of the training set is large. In contrast, the Stochastic Gradient

Descent (SGD) method updates the gradients for each sample or a mini-batch of size nb,

which is randomly selected from the total batch n. This method is proven to be faster and

more efficient than GD for larger datasets.

The SGD algorithm is a first-order algorithm and has slower convergence due to the

noisy nature of the gradients, especially if the batch size is too small. The inclusion of the

momentum has been proven to increase the rate of convergence by taking the exponential

weighted moving average of the update term of the current and previous step [71]. By

adding the hyper-parameter β as the momentum, the method of SGD with momentum is

formulated as:

W (k) = W (k−1) − η∆W (k)

∆W (k) = β∆W (k−1) + (1− β)∇WL(W (k)) (2.4)

10

In order to improve the convergence of SGD based methods, several techniques have

been proposed based on adaptive learning rate and momentum, such as AdaGrad [28],

AdaDelta [117], RMSProp , ADAM [50], NADAM [26] etc. For instance, the update rules

for ADAM are as follows:

W (k) = W (k−1) − η√
V̂ (k−1) − ε

M̂ (k−1) (2.5)

where V̂ and M̂ are calculated as:

M̂ (k−1) =
M (k−1)

1− β1

V̂ (k−1) =
V (k−1)

1− β2

(2.6)

and the estimate of the mean and the variance are:

M (k−1) = β1M
(k−2) + (1− β1)∇WL(W (k−1))

V (k−1) = β2V
(k−2) + (1− β2)[∇WL(W (k−1))]2 (2.7)

The hyper-parameters β1 and β2 are selected to be close to 1.

2.1.1.2 Regularization

Over-parameterization in deep neural networks happens because, in comparison to

the parameters needed to create the approximation function 2.1, the number of input-output

pairs aren’t usually sufficient. Thus, deep learning models are prone to overfitting, which

results when the model performs exceptionally well on the training set but fails to general-

ize for the unseen samples. In order to address this issue, several regularization techniques

11

are proposed to reduce the generalization error. The goal of almost all of the regularization

methods is to reduce the capacity of the network or the optimization process.

L1 and L2 are the most common regularizers and are added to the cost function as

below:

L(W) = L(W) + λ
∑
‖W‖n (2.8)

where λ is the regularization parameter, and n can be 1 or 2. L2 is also known as weight

decay (in most SGD based methods), since it reduces the weights’ value.

As another popular regularization method, the Dropout [93] randomly turns off (drops

out) some of the neurons during training. The Dropout technique temporarily splits the net-

work into multiple parallel networks and therefore, is similar to the well-known ensembling

methods [35].

Other regularization methods include but are not limited to data augmentation, which

is applying random transformations and noise to the input to enhance the diversity of the

training set, early stopping of the training process before the loss completely settles or

starts to increase, and label smoothing [68] by randomly changing the confidence of the

ground-truth.

2.1.1.3 Normalization

The goal of normalization techniques is to reduce the range of the input or activation

maps at the layers of a deep neural network. Normalization methods have proven to be an

essential component in improving the stability and convergence of the optimizer [33].

The simplest form of normalization methods is batch normalization [40], which per-

forms normalization on the activation maps across each mini-batch. In order to accomplish

this, the mean and variance of that feature are calculated. After that, the mean is subtracted

from the features, and the result is divided by the standard deviation of the mini batch.

12

Despite it’s early success, batch normalization has some limitations [83]. To address

these limitations, other normalization methods such as weight normalization [80], layer

normalization [10], instance normalization [106], group normalization [114] etc. have been

proposed.

2.1.2 Convolutional Neural Networks

As a subset of ANNs, CNNs are designed to process arrays of data [54]. For example,

a 1D CNN can be used for audio recognition [2], 2D for image processing [51] and 3D CNN

for video processing [41]. A CNN is composed of multiple convolutional layers, pooling

layers, and fully connected layers. The architecture of a typical CNN is shown in figure

2.3.

Figure 2.3: A generic convolutional neural network [20]

In a deep CNN, each layer is responsible for extracting features at a certain level.

The lower level features such as edges are detected by the first layers, followed by more

abstract and higher-level features towards the end of the network. The architecture of a

CNN is inspired by the hierarchical structure of our visual cortex [39].

Convolution is at the core of most image processing methods such as edge detection,

deblurring, etc. The convolution operation on an image is performed by applying square-

13

shaped kernels. Similarly, in a convolutional layer of a CNN, multiple kernels are stacked

together, forming a trainable filter. The main ideas behind CNNs are the local connections

of the convolutional filters to the input and the sharing of the trainable weights among them.

The output of each convolutional layer is a set of feature maps. The non-linearity is then

added to the feature maps using an activation function such as RELU.

Besides the size of the convolutional filters, the stride and the padding parameters

have to be chosen before adding a convolutional layer. Stride determines how the filter is

being slid over a feature map. The stride value of higher than one is used for down-sampling

as well. The padding is applied to the borders to control the size of the output.

The role of pooling in CNN is to reduce the number of trainable parameters in a

network. For instance, max-pooling is a common pooling technique, which aims at re-

ducing the dimensionality of the feature maps while keeping the most dominant features.

Another form of pooling layer is average pooling. The choice of pooling layer depends on

the application.

A fully connected layer is usually added at the end of a CNN and after the convo-

lutional and pooling layers. As was mentioned before, the extracted feature maps are the

higher-level representations of the input and contain the discriminative features useful for a

particular task such as image classification. The impact of each part of the extracted feature

in the classification problem is learned using a fully connected layer.

2.1.2.1 CNN architectures

Despite the great advantages of CNNs, it took more than a decade since the intro-

duction of the first CNN architecture [54], to find the popularity they have today. The two

main factors that hindered such progress were the lack of computational power and large

labeled datasets. The recent advances in hardware and parallel processing, especially in

Graphical Processing Units (GPUs) have had a great impact on the success of deep learn-

14

ing. Furthermore, online datasets and competitions such as Imagenet (Large Scale Vision

Recognition Challenge) [76] provide a great opportunity for researchers to develop their

ideas using large, manually annotated datasets.

Alexnet [51] was one of the biggest breakthroughs in the area of pattern recognition

and machine learning. The architecture of Alexnet consists of five convolutional layers,

followed by three fully connected layers. The architecture is shown in figure 2.4. Since

Alexnet, several architectures have been proposed, such as VGGnet [92], which introduced

changes such as adding more convolutional layers or better training techniques.

Figure 2.4: Alexnet architecture [67]

In 2014, a new architecture was proposed by [98]. The main idea was to learn the

data representations through multiple paths by introducing convolutional structures called

Inception blocks. On each Inception block, several convolutional layers with different

kernel sizes are placed. The structure of the blocks are shown in figure 2.5 [98]. The

architecture is further refined in Inception-v3 [99] and Inception-v4 architectures [97].

Another breakthrough in deep learning and CNN happened in 2015 with the intro-

duction of the skip (residual) connections in the Resnet architecture [36]. The main advan-

tage of residual connections is that it provides a shortcut path for the gradients to flow to the

first layers in the backpropagation steps. This prevents the vanishing gradient phenomenon

15

(a) (b)

Figure 2.5: Inception blocks a) naive structure b) with dimension reductions [98]

from occurring, and therefore, deeper architectures of even up to 1000 layers, is possible

with residual connections.

2.1.3 Recurrent Neural Networks

Similar to CNNs, RNNs benefit from sharing the weights for processing arrays of

data [34]. The difference is that using RNNs, the elements of the data such as frames of

a video are processed one at a time and thus, they are useful for data that has sequential

forms such as text [11], audio [46], video [25], and time series [22]. The key idea is that

the information from the previous elements are maintained in RNNs’ hidden state and are

used for extracting the correlation among the elements in order to make predictions on the

current element. Another advantage of RNNs is that unlike feed-forward networks such as

MLP and CNN, the architecture of the model does not depend on the size of the input and,

a single RNN can process sequences with variable length.

The block diagram of a generic RNN is shown in figure 2.7. From the unfolded

diagram, it can be seen that each RNN cell has two inputs; one coming directly from the

inputs and the other one is the output (hidden state) of the previous time step (state). The

output of an RNN layer can be either the hidden states of individual elements or the last

hidden state. One example of the former paradigm is the classification of an individual

16

Figure 2.6: Residual connection in Resnet CNN

sentence in a text, while the latter design can be used for the classification of the whole

text.

The training of an RNN is performed by a method called backpropagation through

time (BPTT) [111]. Similar to the conventional BP method, the gradients are calculated

using chain rules and based on the errors in the output sequence, given a sequence ground

truth. To this end, the RNN is unrolled (figure b), and the gradients are calculated for each

time step. The network is then rolled back and the weights are updated using the optimiza-

tion equations 3.6. The issue with BPTT is that, as the number of elements in the input

sequences increases, the computation and memory needed for processing the gradients in-

creases as well. Moreover, the training might get affected by the exploding or vanishing

gradients problems. In order to address this issue, truncated BPTT (TBPTT) is proposed

17

Figure 2.7: A generic RNN [18]

which updates the gradients every k1 steps for k2 timesteps.

2.1.3.1 RNN architectures

One of the main issues with RNNs is that the long term dependencies might not

be captured using the generic RNN explained in the previous section. The reason is the

vanishing gradient [14]. To address this issue, several modifications have been proposed in

the literature [23, 37]. The key idea behind all of them is the residual connection between

the states.

One of the most widely used RNN architectures is called long short-term memory

(LSTM) [37], which is designed for extracting the pattern in longer input sequences. LSTM

introduces the ideas of cell states and soft gates, which are used to decide on the usefulness

of the information from the past. The cell state works as a skip connection and is responsi-

ble for propagating the derivatives to the earlier states. The architecture is shown in figure

2.8.

18

Figure 2.8: LSTM architecture [18]

Given input xt at time step t, and the hidden state from the previous step ht−1, the

output at state t is calculated as:

ft = σ(Wf [ht−1, xt] + bf)

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC [ht−1, xt] + bC)

Ct = ft ? Ct−1 + it ? C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ? tanh(Ct) (2.9)

f is called the forget gate and using the sigmoid function, it decides which information to

be removed from the previous cell state Ct−1. The input gate i is responsible for deciding

which information is to be retained in the cell state. Based on the candidate values C̃t, the

input and forget gates and the previous cell state, the cell state Ct is updated. o is called the

output gate and is responsible for deciding the output of the cell, which is the hidden state

19

Figure 2.9: A bi-directional RNN

ht, based on the current cell state. Wf , Wi, WC and Wo are the trainable weights, and bf ,

bi, bC and bo are the biases for the forget, input, cell and output gates respectively.

A modified version of LSTM is called Gated Recurrent Unit (GRU) [23], which

merges the cell state and the hidden state. The input gate and the forget gate are combined

to decide which information is to be retained from the previous state. The candidate hidden

states are updated based on the reset gate. The current hidden state is then calculated based

on the previous hidden state, update gate and the hidden state candidates. Using the three-

gates GRU is simpler than the LSTM and has shown superior performance in some cases.

In the RNN models discussed above, the output at each time step depends on the

previous element of a sequence. To take advantage of the correlation among all of the

elements of sequences from both the past and the future of the current input, a bi-directional

RNN has been proposed [86]. A bi-directional RNN is simply a concatenation of two uni-

directional RNNs where one of the sequences is the reverse of the other one. The block

diagram of a bi-directional RNN is shown in figure 2.9. Bi-RNNs are useful in an offline

and non-casual application when the entire sequence is available for training and making

predictions.

20

2.2 Deep Learning Applications

In the following section, some applications of deep learning are described.

2.2.1 Regression and Classification

Most of the problems in computer vision can be defined as a regression or classifi-

cation problem. The goal of a regression problem is to find the best mapping function to

make a prediction from a continuous space. The widely used loss function for a regression

problem is the mean square error and is defined as:

LMSE =
1

n

n∑
i=1

[FW (xi)− yi]2 (2.10)

For classification problems, logistic regression is used. Cross-entropy loss is the

most widely used cost function for a classification problem:

LCE = − 1

n

n∑
i=1

C∑
c=0

y
(c)
i logFW (xi)

(c) (2.11)

where C is the total number of classes and y is one-hot vector of the ground truth (only the

correct class is 1).

The general case for a classification problem is multi-class classification. The com-

mon strategy for a multi-class problem is one-vs-all, where only one class can be accepted

as positive, while the rest of the classes are negative. In neural networks, the last layer is

usually activated by the softmax function, which is the normalized logistic function result-

ing in a probability distribution and is formulated as:

σ(Z)i =
ezi∑K
j=1 e

zj
, fori = 1, ..., K. (2.12)

21

and Z = [z1, ...zK] . Softmax is a smooth (soft) approximation of the maximum function

and the final prediction of ANN model is the argument of the maximum probability.

2.2.2 Video Processing

One of the most important applications of deep learning techniques is video process-

ing and is the focus of this dissertation. Some of the sub-problems of a video processing

system include video classification [48], action recognition and localization [90, 91], video

segmentation, video frames’ classification, object detection and segmentation in videos

[31, 47], video generation [19], etc.

In a typical video, there is a high correlation in the sequence of images and among

the neighboring frames. To take advantage of the structure of the information in a video,

a deep learning system needs to consider the spatial visual information, while utilizing

the dependencies among the frames. For this purpose, several approaches are accepted in

the literature. For instance, RNNs can be used to capture the correlations in sequences of

frames in a video.

Another solution for extracting spatiotemporal features in a video is to use 3D CNNs

[100]. Using a 3D CNN, the pattern can be extracted in three dimensions of the width

and height of the image and time. The main challenge in using 3D CNN is that it is

computationally expensive.

While RNNs and 3D CNNs utilize the dependencies for the spatial features, they

don’t directly consider the temporal features such as motion. To capture the motion fea-

ture in a video, optical flow and trajectory are the conventional solutions. Recently, deep

learning methods have been used for calculating the optical flows as well [102]. In or-

der to incorporate the motion features, the two-stream model [91] has been proposed. In

two-stream models, one stream is responsible for extracting spatial features using a CNN,

22

whereas, the other stream extracts motion features from a stack of neighboring frames. The

streams are fused, and the decision is made based on the fused features.

23

CHAPTER 3

SURGICAL TOOL DETECTION

Tracking surgical tools is essential in understanding the workflow of a procedure

and is important in the assessment and rating of the videos. Manual annotation of long

videos from surgeries is a time-consuming and expensive task. A vision-based algorithm

for automated detection of the presence, location, or movement of surgical tools can be

extremely useful in designing a fast and objective surgical evaluation system. A well-

annotated database of surgical videos can also be used in information retrieval and is a

reliable source for education and training of the future surgeons.

During the operation, monitoring the usage of surgical tools can provide real-time

feedback to the surgeons and operating room staff. Furthermore, in computer-aided inter-

vention, the surgical tools are controlled by a surgeon with the aid of a specially designed

robot [9], which requires a real-time understanding of the current task. Therefore, detect-

ing the presence, location, and pose of the surgical instruments may be useful in robotic

surgeries as well [27], [7], [6]. Finally, an automated tool usage detector can be useful in

generating an operative summary.

To track the surgical instruments, several approaches have been introduced, which

use the signals collected during the procedure [29], [73]. For instance, in vision-based

methods, the instruments can be localized using the videos captured during the operation

[112]. These methods are generally reliable and inexpensive. Traditional vision-based

methods rely on extracted features such as shape, color, the histogram of oriented gradients,

etc., along with a classification or regression method to estimate the presence, location or

pose of the instrument in the captured images or videos [15]. However, these methods are

24

dependent on pre-defined and painstakingly extracted hand-crafted features. Just logically

defining and extracting such features alone is a major part of the detection process. Thus,

these hand-crafted features and designs are not suitable for real-time applications.

Compared with the other surgical video tasks, detecting the presence and usage of

surgical instruments in laparoscopic videos has certain challenges that need to be consid-

ered.

Firstly, since multiple instruments might be present at the same time, detecting the

presence of these tools in a video frame is a multilabel (ML) classification problem. In

general, ML classification is more challenging compared to the well-studied multiclass

(MC) problem, where every instance is related to only one output. These challenges include

but are not limited to using correlation and co-existence of different objects/concepts with

each other and the background/context and the variations in the occurrence of different

objects.

Secondly, as opposed to other surgical videos, such as cataract surgery [5], robot-

assisted surgery [84] or videos from a simulation [120], where the camera is stationary or

moving smoothly, in laparoscopic videos, the camera is constantly shaking. Due to the

rapid movement and changes in the field of view of the camera, most of the images suffer

from motion blur, and the objects can be seen in various sizes and locations. Also, the

camera view might be blocked by the smoke caused by burning tissue during cutting or

cauterizing to arrest bleeding. Therefore, using still images is not sufficient for detecting

the instruments. Some of the challenges caused by still images are illustrated in figure 3.1.

Thirdly, surgical operations follow a specific order of tasks. Although the usage of

the tools doesn’t strictly adhere to that order, it is nevertheless highly correlated with the

task being performed. The performance of the tool detection can be improved with the

information about the task and the relative position of the frame with regard to the entire

video.

25

(a) Irrigator/Bipolar/Grasper (b) Grasper/Hook

(c) Clipper/Grasper (d) Grasper

(e) Hook/Grasper (f) Scissors/Grasper

Figure 3.1: Challenges in detecting surgical tools due to smoke (a,b), motion blur (c,f),
lack of focus (d) and occlusion (e) in laparoscopic cholecystectomy procedure.

Lastly, since the performance of a deep classifier in a supervised learning method is

highly dependent on the size and the quality of the labeled dataset, collecting and annotat-

ing a large dataset is a crucial task.

Endonet [104] was the first deep learning model designed for detecting the presence

of surgical instruments in laparoscopic videos, wherein Alexnet [51] was used as the CNN,

for feature extraction and is trained for the simultaneous detection of surgical phases and

instruments. Inspired by this work, other researchers used different and more accurate CNN

architectures with transfer learning [78], [69] to classify the frames based on the visual

26

features. For example, in [118], three CNN architectures are used, and [110] proposed an

ensemble of two deep CNNs.

[79] were the first to address the imbalance in the classes in a ML classification of

video frames. They balanced the training set according to the combinations of the instru-

ments. The data were re-sampled to have a uniform distribution in label-set space and, class

re-weighting was used to balance the data in a single class level. Despite the improvement

gained by considering the co-occurrence in balancing the training set, the correlation of the

tools usage was not considered directly in the classifier and the decision was made solely

based on the presence of single tools. [3] used class weights and re-sampling together to

deal with the imbalance issue.

In order to consider the temporal features of the videos, Twinanda et al. employed

a hidden Markov model (HMM) in [104] and Recurrent Neural Network (RNN) in [105].

Sahu et al. utilized a Gaussian distribution fitting method in [78] and a temporal smoothing

method using a moving average in [79] to improve the classification results after the CNN

was trained. [61] were the first to apply an LSTM to a short sequence of frames, to simul-

taneously extract both spatial and temporal features for detecting the presence of the tools

by end-to-end training.

Other papers invoked different approaches to address the issues in detecting the pres-

ence of surgical tools. [38] proposed an attention guided method using two deep CNNs to

extract local and global spatial features. In [4], a boosting mechanism was employed to

combine different CNNs and RNNs. In [42], the tools were localized by Faster RCNN [74]

method, after labeling the dataset with bounding boxes containing the surgical tools.

It should be noted that none of the previous methods takes advantage of any knowl-

edge regarding the order of the tasks and, the correlations of the tools are not directly

utilized in identifying different surgical instruments.

27

In this chapter, we propose a novel system called LapTool-Net to detect the presence

of surgical instruments in laparoscopic videos. The main features of the proposed model

are summarized as follows:

1. Exploiting the spatial discriminating features and the temporal correlation among

them by designing a deep Recurrent Convolutional Neural Network (RCNN)

2. Taking advantage of the relationship among the usage of different tools by consider-

ing their co-occurrences

3. The end-to-end training of the tool detector using a multitask learning approach

4. Considering the inherent long-term pattern of the tools presence via an RNN in online

and offline modes

5. Using a small portion of the labeled samples considering the high correlation of the

video frames to avoid overfitting

6. Addressing the imbalance issue using re-sampling and re-weighting methods

7. Providing state-of-the-art performance on a publicly available dataset on laparo-

scopic cholecystectomy

The remainder of the chapter is organized as follows: the main approach of the pro-

posed model is described in section 3.1, and is elaborated in section 3.2. The performance

is evaluated through experiments in section 3.3. Section 3.4 concludes the chapter.

3.1 Approach

The uniqueness of our approach is based on the following three original ideas:

• A novel ML classifier is proposed as a part of LapTool-Net, to take advantage of the

co-occurrence of different tools in each frame in other words, the context is taken

into account in the detection process. In order to accomplish this objective, each

28

combination of tools is considered as a separate class during training and testing and,

is further used as a decision model for the ML classifier. To the best of our knowl-

edge, this is the first attempt at directly using the information about the co-occurrence

of surgical tools in laparoscopic videos in the classifier’s decision-making.

• The ML classifier and the decision model are trained in an end-to-end fashion. For

this purpose, the training is performed by jointly optimizing the loss functions for the

ML classifier and the decision model using a multitask learning approach

• At the post-processing step, the trained model’s prediction for each video is sent to

another RNN to consider the order of the usage of different tools/tool combinations

and long-term temporal dependencies, yet another consideration for the context.

The overview of the proposed model is illustrated in Fig. 1. Let D = {(xij, Yij)|0 ≤

i < m, 0 < j < n} be a ML dataset, where xij ∈ <d is the ith frame of the jth video and

Yij ⊆ Y is the corresponding surgical instruments and Y ∆
= {y1, y2, ...yK} is the set of all

possible tools. Each subset of Y is called a label-set and each frame can have a different

number of labels |Yij|. The tools associations can also be represented as a K dimensional

binary vector yij = (y1, y2, ..., yK) = {0, 1}K , where each element is a 1 if the tool is

present and a 0 otherwise. The goal is to design a classifier F (x) that maps the frames of

surgical videos, to the tools in the observed scene.

In order to take advantage of the combination of the surgical tools in a laparoscopic

video, the well-known label power-set (LP) method is adopted in a novel way. The output

of F (xij) is a label-set Ŷij ⊆ Ŷ (also called a superclass) of size |Ŷij| ≤ K, where Ŷ is the

set of all possible subsets of Y .

In order to calculate the confidence scores for each tool, along with the final decision,

which is the class index in Ŷ , the classifier F is decomposed into F (.) = g(f(.)), where

g(f(xij)) : <K → <K̂ is the decision model, which maps the confidence scores of the

frame i of the video j to the label-set Ŷij . The model f takes the video frames as input

29

Figure 3.2: Block diagram of a) the proposed multiclass classifier F which consists of f and
g, b) the architecture for Gated Recurrent Units (GRU) and c) The bi-directional RNN for
post-processing.

and produces the confidence scores P = (p1, p2, ...pK) = [0, 1]K , where each element is

the probability of the presence of one tool from the set Y . It’s worth mentioning that f is

as an ML classifier, while the output of the decision model g is the label-set and therefore,

classifier F is an MC classifier based on the LPs.

The ML classifier f consists of a CNN and an RNN. The CNN is responsible for

extracting the visual features, while the RNN uses the sequence of features extracted by

CNN and calculates the confidence scores P .

The output of the decision model g for all the frames of each video forms a larger

sequence C̄ of the models predictions. The sequence is used as the input to another RNN,

g′ to exploit the long-term order of the tool usage.

30

Figure 3.3: List of the tools used in M2CAI16 cholecystectomy dataset [104]

The overall system is designed and tested using the dataset from M2CAI161 tool

detection challenge1. The dataset contains 15 videos from cholecystectomy procedure,

which is the surgery for removing the gallbladder. All the videos are labeled with seven

tools for every 25 frames. The tools are Bipolar, Clipper, Grasper, Hook, Irrigator, Scissors,

and Specimen bags, and are shown in figure 3.3 . There are ten videos for training and five

videos for validation. The type and shape of all seven tools remain the same for the training

and validation sets.

The performance of LapTool-Net is measured through common metrics for ML and

MC classification, and a comparison is made with the current methods. The methodology

derived from this approach is provided in more detail in the following section.

3.2 Methodology of LapTool-Net

3.2.1 Multi-label Classification

In ML classification, the goal is to assign multiple labels to each image. Higher

dimensionality in label space and the correlation between the labels make the ML classi-

fication more challenging compared with MC problems. In the literature, two main ap-

proaches to deal with such issues in ML classification are accepted [32]. One approach is

called adaption, which aims at adapting existing machine learning models to deal with the

requirements of ML classification. Since the output of an ML classifier is the confidence

1http://camma.u-strasbg.fr/m2cai2016/index.php/program-challenge

31

scores for each class, a decision policy is needed to make the final prediction. This decision

is usually made based on top-k or thresholding methods.

The second paradigm for ML classification is based on problem transformation. The

goal of problem transformation is to transform the ML problem into a more well-defined

binary or MC classification. The most popular methods include binary relevance (BR),

chain of classifiers [72] and LP. In BR, the problem is transformed into multiple binary

classifiers for each class. This method doesn’t take the dependencies of the classes into

account. On the other hand, in a classifier chain, the binary classifiers are linked in a

chain to deal with the classes correlations. In LP, multiple classes are combined into one

superclass and the problem is transformed into an MC classification. The advantage of

this method is that the class dependencies are automatically considered. However, as the

number of classes increases, the complexity of the model increases exponentially. This is

not an issue in laparoscopic videos. The reasons are 1) there is a limit for the number of

tools in each frame (usually 3 or 4) and 2) the combinations of the tools are known. Since

the LP method is more efficient than the classifier chain due to the use of just one classifier,

it was determined to be more efficient for detecting the usage of surgical tools. Thus, we

propose a novel classifier with LP being the decision layer for an ML classifier.

3.2.2 Spatio-temporal Features

In order to detect the presence of surgical instruments in laparoscopic videos, the

visual features (intra-frame spatial and inter-frame temporal features) need to be extracted.

We use CNN to extract spatial features. A CNN consists of an input layer, multiple con-

volutional layers, non-linear activation units, and pooling layers, followed by a fully con-

nected (FC) layer to produce the outputs, which are typically the classification results or

confidence scores. Each layer passes the results to the next layer, and the weights for the

convolutional and FC layers are trained using backpropagation to minimize a cost function.

32

The output of the last convolutional layer is a lower dimensional representation of the input

and therefore, can be considered as the spatial features. As shown in Fig 3.2, the input

frame xij is sent through the trained CNN and the output of the last convolutional layer

(after pooling) forms a fixed size spatial feature vector vij .

In the literature, several approaches have been proposed for utilizing the temporal

features in videos for tasks such as activity recognition and object detection in videos [48],

[91]. For instance, when there is a high correlation among video frames, it can be exploited

to improve the performance of the tool detection algorithm.

An RNN is typically used to exploit the pattern of the usage of the instruments. It

uses its internal memory (states) to process a sequence of inputs for time series and videos

processing tasks [44]. Although the motion features are not explicitly extracted when using

the RNN, the temporal features are exploited through the correlation of spatial features in

the neighboring frames.

Since the point of the RNN along with the CNN is to capture the high correlation

among the neighboring frames, short sequences of frames (say five frames) are selected.

Also, shorter sequences help the RNN have a better and faster convergence.

For each frame xij , the sequence of the spatial features Vij = [v(i−λ∆t)j...v(i−∆t)jvij]

is the input for the RNN, where the hyper-parameters λ and ∆t are the number of frames

in the sequence and the constant inter-frame interval respectively. The total length of the

input is no longer than one second, which ensures that the tools remain visible during that

time interval. Since the tool detection model is designed to be causal and to perform in

real-time, only the previous frames with respect to the current frame can be used with the

RNN.

33

We selected GRU [23] as our RNN for its simplicity. The architecture is illustrated

in Fig. 3.2.(b) and formulated as:

zij = σ(vijU
z + hi−∆t,jW

z),

rij = σ(vijU
r + hi−∆t,jW

r),

h̃ij = tanh(vijU
h + (rij � hi−∆t,j)W

h),

hij = (1− zij)� hi−∆t,j + zij � h̃ij, (3.1)

where U and W are the GRU weights, � is the element-wise multiplication, and σ

is the sigmoid activation function. z and r are update gate and reset gate respectively. The

final hidden state hij is the output of the GRU and is the input to a fully connected neural

network FC1. The output layer FC1 is of size K (the number of tools) and after applying

the sigmoid function, produces the vector of confidence scores P (ij) for all classes.

We designed the above RCNN architecture as the ML classifier model f shown in

Fig. 3.2.a, which exploits the spatiotemporal features of a given input frame and produces

the vector of confidence scores of all the tools, which in turn is the input to the decision

model g.

3.2.3 Decision Model

One of the main challenges in ML classification is effectively utilizing the correlation

among different classes. Using LP (as described earlier), uncommon combinations of the

classes will automatically be eliminated from the output, and the classifier’s attention is

directed towards the more possible combinations.

As mentioned before, not all the 2K combinations are possible in laparoscopic surgery.

Figure 3.4 shows the percentage of the most likely combinations in the M2CAI dataset. The

first 15 classes out of a possible maximum of 128 span more than 99.95% of the frames in

34

Figure 3.4: The distribution for the combination of the tools in M2CAI dataset

both the training and the validation sets and the tools combinations have almost the same

distribution in both cases. The 15 combinations are:

[Hook], [Grasper and Hook], [Grasper], [no tool], [Grasper and Specimen bag],

[Clipper], [Grasper and Irrigator], [Bipolar and Grasper], [Grasper and Clipper], [Grasper

and Irrigator], [Irrigator], [Bipolar], [Grasper, Irrigator and Specimen bag], [Scissors and

Grasper], and [Scissors].

Since an LP classifier is MC, the cost function for training a machine learning al-

gorithm has to be the conventional one-vs-all (categorical) loss. For example, Softmax

cross-entropy (CE) is the most popular MC loss function. However, Softmax CE requires

the classes to be mutually exclusive, which is not true in the LP method. In other words,

while using a Softmax loss, each superclass is treated as a separate class, i.e., separate

features activate a superclass. This causes performance degradation in the classifier and

therefore, more data is required for training. We address this issue by a novel use of LP

as the decision model g, which we apply to the ML classifier f . Our method helps the

classifier to consider our superclasses as the combinations of classes rather than separate

mutually exclusive classes.

35

The decision model is a fully connected neural network (FC2), which takes the

confidence scores of f and maps them to the corresponding superclass. When the Soft-

max function is applied, the output of g(.) is the probability of each superclass Q =

(q1, q2, ..., qK̂), where K̂ is the size of the superclass set. The final prediction of the tool

detector F is the index of the superclass with the highest probability and for frame i of

video j is calculated as:

cij = argmax(Qij) (3.2)

3.2.4 Class Imbalance

Class imbalance has been a well-studied area in machine learning for a long time

[16]. It is known that in skewed datasets, the classifier’s decision is inclined towards the

majority classes. Therefore, it is always beneficial to have a uniform distribution for the

classes during training. Two major approaches have been proposed in the literature to deal

with imbalanced datasets. One approach is called cost-sensitive and is mainly based on

class re-weighting. In these methods, the output of the classes or the loss function during

training is weighted based on the frequency of the classes. Although this approach works

in some cases, since the complexity of the input is not known before training, the choice of

the weights might not depend solely on the distribution of the data. Thus, class weights are

another hyper-parameter that needs to be taken care of. Another solution is to change the

distribution in the input of the model. This can be done using over-sampling/up-sampling

for the minority classes and under-sampling/down-sampling for the majority classes.

The number of samples for each tool before balancing is shown in table 3.1. Hook

has the highest number of frames, due to it’s longer usage in dissection tasks, while Scissors

have the lowest usage time.

36

Table 3.1: Number of frames for each tool in M2CAI

Tool Train Validation
Bipolar 631 331
Clipper 878 315
Grasper 10367 6571
Hook 14130 7454

Irrigator 953 131
Scissors 411 158

Specimen Bag 1504 483
no tools 2759 1888

total 23421 12512

In surgical videos, there is a high correlation between the neighboring frames. There-

fore, under-sampling can be used to both balance the classes and avoid over-fitting. Using

LP, we perform under-sampling to have a uniform distribution of the combination of the

labels. Since this approach will not guarantee the balance in each class, a cost-sensitive

weighting approach can be used along with a multi-label loss function prior to the LP de-

cision layer; nonetheless, we empirically found that this doesn’t affect the performance of

the multi-label classifier.

Figure 3.5 shows the relationship of the tools after re-sampling. It can be seen that

the LP-based balancing method, not only have a uniform distribution in superclass space, it

also improves the balance of the dataset in single class space (with the exception of Grasper

which can be used with all the tools).

In multi-label classification, finding the balancing criteria for re-sampling is chal-

lenging, since a change in the number of samples for one class might affect other classes

as well. To evaluate our re-sampling method, we use the measure for imbalance from [21].

The imbalance ratio per label is defined as below:

IRL(yk) =
arg maxy

∑d
i=1 h(y, yi)∑d

i=1 h(yk, yi)
(3.3)

37

(a) before balancing (b) after balancing

Figure 3.5: The chord diagram for the relationship between the tools after balancing with
LP method

where h(y, yi) = 1 if y ∈ yi. Using this metric, the most frequent class has value 1 and the

rest of the classes have value greater than 1. The mean and variance of ILR can be used

as other measures for comparing the imbalance level of different datasets. The balancing

scores of the training set, before and after LP-based balancing method is shown in Table

3.2. It can be seen that the balance of the dataset has dramatically improved, after applying

the under-sampling method.

3.2.5 Multi-task Training

Since our tool detector F (x) is decomposed into an ML classifier f and an MC

decision model g, the requirement of both models needs to be considered during training.

To accomplish this, the model is trained using both ML and MC loss functions.

Having the vector of the confidence scores P , the ML loss Lf is the sigmoid cross-

entropy and is formulated as:

38

Table 3.2: Balancing scores for each tool in M2CAI dataset before and after balancing

Tool Before After
Bipolar 22.42 4
Clipper 16.09 4
Grasper 1.36 1
Hook 1 4

Irrigator 14.82 2.6
Scissors 34.38 4

Specimen Bag 9.34 2.6
Mean 14.20 3.17

Variance 120.0 1.64

Lf = −1

d

∑
x∈D

log(pk=Y), P = (σf(x)) (3.4)

where Y is the correct label for frame x, d is the total number of frames and D is the

training set.

The Softmax CE loss function Lg for the decision model is formulated as:

Lg = −1

d

∑
x∈D

log(qk=Ŷ), Q = (softmax(g(f(x)))) (3.5)

We propose to use the joint training paradigm for optimizing the ML and MC losses

as a multitask learning approach. In order to do that, two optimizers are defined based on

the two losses with separate hyper-parameters such as learning rate and trainable weights.

Using Stochastic Gradient Descent (SGD), the weights update at iteration l can be written

is:

θ(l) = θ(l−1) −
∑
x∈Db

[ηf∇θLf (θ
(l−1)) + β.ηg∇θLg(θ

(l−1))] (3.6)

where β is a constant weight for adjusting the impact of the two loss functions, Db

is a randomly selected batch, and ηf and ηg are the learning rates for the ML and MC

39

loss functions respectively. The training is performed in an end-to-end fashion, and the

gradients (∇θL) are calculated using the backpropagation through time (BPTT) method.

The trainable weights for the ML optimizer are all the weights in the CNN, the

weights in the RNN, which are U and W matrices in (3.1), and FC1, whereas for the

MC optimizer, the CNN, RNN, and FC2 are trainable. Note that the shared weights be-

tween the two optimizers are the RCNN weights. By keeping the FC1 layer untouched

by the MC optimizer, the spatiotemporal features are extracted by the RCNN considering

both the presence of each tool and the combination of them, and FC2 is solely trained as a

decision model.

3.2.6 Post-processing

The final decision of the RCNN model from the previous section is made based on

the extracted spatiotemporal features from a short sequence of frames. In other words,

the model benefits from a short-term memory using the correlation among the neighboring

frames. However, due to the high under-sampling rate for the balanced training set, this

method might not produce a smooth prediction over the entire duration of the laparoscopic

videos. To deal with this issue, we model the order in the usage of the tools with an RNN

over all the frames of each video [64].

Due to memory constraints, the final prediction from equation 3.2 of the RCNN,

C̄(j) = [c0j....cmj]] for all the videos 0 < j < n, is selected as the input for the post-

processing RNN. Since not all the videos have the same length, the shorter videos are

padded with the no-tool class.

Our post-processing occurs in both online and offline modes. In online mode, only

the past frames are available for classifying the current frame. Therefore, the RNN in online

mode is a uni-directional model. To capture the long-term dependencies, we designed a

multi-layer RNN.

40

In offline mode, future frames can also be used along with past frames to improve

the classification results of the current frame. In order to accomplish this, a bi-directional

RNN is employed, which consists of two RNNs for the forward and backward sequences.

The backward sequence is simply the reverse of C̄. The outputs of the last layer of the

bi-RNN are concatenated and fed to FC3 for the final prediction (g in Fig. 3.2.c).

Since the input frames for the bi-RNN are in a specific order, it’s not possible to

balance the input through re-sampling. Therefore, class re-weighting is performed to com-

pensate for the minority classes. The class weights are chosen to be proportional to the

inverse of the frequency of the superclasses in the training set. The loss function is:

Lp = −1

d

∑
x∈D

(wk=Ŷ) log q̄k=Ŷ , Q̄ = (softmax(g′(C̄))) (3.7)

where wk is the weight for the superclass k, g is a two layer GRU with 128 and 32 units in

each layer, and Q̄ = (q̄1, ..., q̄K̂) is the superclass probability vector.

The method described in this section is similar to [4] in extracting the long-term tem-

poral features using RNNs. However, in contrast to [4], we used the final predictions of the

RCNN model instead of the vector of confidence scores of the tools. Besides containing

the information about the co-occurrences, training RNNs can be accomplished easier with

a single scalar versus the vector of the size of the total number of tools or the tools’ combi-

nations. With the aid of the shorter size input, we were able to train larger sequences, even

after performing the temporal data augmentation (to be explained later), using shallower

and with fewer units RNNs in online and offline modes.

41

3.3 Experiments and Results

In this section, the performance of the different parts of the proposed tool detection

model on M2CAI dataset is validated through numerous experiments using the appropriate

metrics.

The CNN architecture used in all of the experiments is called Inception V1 [98]. In

order to have a better generalization, extensive data augmentation such as random cropping,

random horizontal and vertical flipping, random rotation and a random change in bright-

ness, contrast, saturation, and hue were used during training. Unless stated otherwise, the

initial learning rate was 0.001 with a decay rate of 0.7 after five epochs, and the results are

taken after 100 epochs. The batch size was 32 for training the CNN models and 40 for

RNN based models.

3.3.1 Metrics

Since the proposed model is MC, the corresponding evaluation metrics were chosen.

Due to the high imbalance of the validation dataset, accuracy alone is not sufficient to

evaluate the proposed model. Therefore, we used the F1 score to compare the performance

of different models in both per-class and overall metrics. These are calculated as:

F1micro = 2
Ppc.Rpc

Ppc +Rpc

, F1macro = 2
Pov.Rov

Pov +Rov

(3.8)

where Ppc, Rpc, Pov and Rov are per-class precision/recall and overall precision/recall re-

spectively and are calculated as:

Ppc =
1

K

K∑
k=1

N c
yk

Np
yk

, Rpc =
1

K

K∑
k=1

N c
yk

Nyk

(3.9)

Pov =

∑K
k=1N

c
yk∑K

k=1N
p
yk

, Rov =

∑K
k=1 N

c
yk∑K

k=1 Nyk

(3.10)

42

Table 3.3: Results for the multi-label classification of the CNN

Total Frames Balanced Acc(%) mAP(%) F1-macro(%)
23k No 77.23 61.02 58.48

150k Yes 75.90 71.15 70.49
75k Yes 74.78 77.24 74.81
25k Yes 75.40 78.58 74.64
6k Yes 74.36 78.22 74.43
3k Yes 73.10 73.69 70.85

where N c
yk

, Np
yk

and Nyk are the number of correctly predicted frames for class k, the total

number of frames predicted as k, and the total number frames for class k. Only frames with

all the tools predicted correctly are considered exact matches.

To evaluate the RCNN model f , we used ML metric - mean Average Precision

(mAP), which is the mean of average precision (a weighted average of the precision with

the recall at different thresholds) for all seven tools.

3.3.2 CNN Results

We first test the performance of the model when only the CNN is used, since CNN

is at the core of the proposed tool detector. In other words, we assume that the classifier f

is a CNN, and the decision model g is applied to the resulting score from the CNN.

Table 3.3 shows the results of our CNN with different training set sizes for all the

tools listed in Table 3.1.

Since the dataset was labeled only for one frame per second (out of 25 frames/sec),

there was a possibility of using the unlabeled frames for training, as long as the tools remain

the same between two consecutive labeled frames. We used this unlabeled data to balance

the training set, according to the LPs. The CNN was trained with the loss function 3.4 with

FC1 of size 7. Table 3.3 shows the results of our CNN with different training set sizes for

the tools listed in Table 3.1.

43

As was to be expected, the unbalanced training set results shown in the first row of

Table 3.3 has the lowest performance on all the metrics. The high exact match accuracy

(Acc) of 77.23% and the lower results on per-class metrics, such as F1-macro and mAP

show that the model correctly predicted the majority classes (grasper and hook) but has

poor performance for the less used tools such as scissors.

In order to balance the datasets, the following steps were taken:

1) 15 superclasses were selected, and the original frames were re-sampled to have a

uniform distribution in the set of label-sets Ŷ . The numbers of frames for each superclass

were randomly selected to be 10,000, 5,000, 1,666, 400, and 200.

2) Multiple copies of some frames were copied and pasted to the final set in the first

two training sets, because of the availability of fewer frames in some tools such as scissors.

This accomplished the intended over-sampling.

3) Similarly, under-sampling was performed in at least one class in all sets and, in all

classes in the last two sets, because too many frames were available for some tools.

Under these conditions, we can discuss the results presented in rows 2 through 6

in Table 3.3. While the exact match accuracy is the highest in the 150K set, it has the

lowest score on the per-class metrics. The likely reason is the high over-sampling rate,

which causes overfitting for the less frequently occurring classes. On the other hand, a very

high under-sampling rate in the 3K set results in lower accuracy, likely due to the lack of

informative samples.

The best per-class results are for the 25K/6K versus the 150K/75K, which is due to

the lower correlation among the inputs of the CNN during training. We used the 6K dataset

for the rest of the experiments versus the 25K, because adding the RNN and decision model

to the selected CNN would increase the size of the model (RCNN-LP), and the chances of

overfitting increases.

44

To evaluate the effect of utilizing the co-occurrence of different surgical tools, we

tested the LP method as the primary classifier, as well as the decision model, using different

training strategies. The configurations for each experiment are shown in Table 3.4.

Table 3.4: Setup configurations for training the multiclass CNN

Experiment
number

Loss
function

FC1
size

FC2
size

Trainable
weights

Training
method

1 (3.5) 15 - all -
2 (150k) (3.5) 15 - all -
3 (3.4)/(3.5) 15 15 CNN+FC1/

FC2
Sequential

4 (3.4)/(3.5) 7 15 CNN+FC1/
FC2

Sequential

5 (3.4)/(3.5) 7 15 CNN+FC1/
all

Alternate

6 (3.4)/(3.5) 7 15 CNN+FC1/
CNN+FC2

Alternate

7 (3.4)/(3.5) 7 15 CNN+FC1/
CNN+FC2

Joint

In sequential training, the CNN was trained first, and the decision model was added

on top of the trained model, while the CNN weights remained unchanged. In alternate

training, the trainable weights change with the loss at every other step. The joint training

method is explained in the previous section. We used MC metrics; exact match accuracy,

micro and macro F1, and average per-class precision and recall. The results are shown in

Table 3.5, and the precision and recall for each tool are shown in Table 3.6.

In the first two experiments, the LP method was used directly to map the video frames

to the corresponding superclass. In order to accomplish this, the features extracted using

CNN were connected to an FC layer of size 15 and the network was trained with the loss

function from equation 3.5. We selected the balanced training sets from the previous ex-

periments with 6K and 150K samples. It can be seen from experiment 1 and 2 (Table 3.5),

45

Table 3.5: Results for the multiclass CNNs

Exp. num Acc(%) F1-macro(%) F1-micro(%) Mean P(%) Mean R(%)
1 70.01 69.14 84.57 72.90 67.98
2 76.13 73.77 87.89 86.08 67.24
3 73.18 74.30 86.92 79.65 70.80
4 74.97 75.47 88.04 80.67 73.21
5 72.44 75.23 86.42 87.60 67.25
6 74.42 75.70 87.75 82.37 71.48
7 76.31 78.32 88.53 78.48 78.95

which correspond to 6K sample and 150k samples respectively, that both accuracy and F1

scores increase, when the training set is larger. Also, the precision and recall in Table 3.6

show some improvements in almost all classes. However, compared with the results from

Table 3.3, we observe minor improvements in accuracy and F1, when using 150k frames

with LP classifier, while the metrics decrease with a smaller training set. Considering both

training sets were balanced based on LP, the observation suggests that the LP-based classi-

fier needs more examples for reasonable performance. This is because, in an LP classifier,

the superclasses are treated as separate classes with different features from the correspond-

ing single label classes, which requires the classifier to have more training examples to

learn the discriminating features. This can also be confirmed by checking the relatively

close precision/recall for grasper and hook in Table 3.6, which have more unique frames

(due to lower under-sampling rate), in the two experiments.

In experiment 3, ML loss was tried instead of MC for training the LP classifier with

15 superclasses. FC2 was added as a decision model and was trained sequentially. As

shown in Table 3.5, the per-class F1 score for experiment 3 improves compared to experi-

ment 1, while the exact match accuracy is lower. This is probably because the model is still

not aware that a superclass is a combination of multiple classes.

In experiments 4, 5, and 6, the CNN was trained using ML loss 3.4 with seven

classes, and the decision layer was added on top of the confidence scores. We evaluated the

46

Ta
bl

e
3.

6:
Pr

ec
is

io
n

(P
)a

nd
R

ec
al

l(
R

)o
fe

ac
h

to
ol

fo
rt

he
m

ul
tic

la
ss

C
N

N
s

B
ip

ol
ar

C
lip

pe
r

G
ra

sp
er

H
oo

k
Ir

ri
ga

to
r

Sc
is

so
rs

Sp
ec

im
en

ba
g

E
xp

.n
um

P(
%

)
R

(%
)

P(
%

)
R

(%
)

P(
%

)
R

(%
)

P(
%

)
R

(%
)

P(
%

)
R

(%
)

P(
%

)
R

(%
)

P(
%

)
R

(%
)

1
71

.2
5

66
.0

5
72

.7
2

58
.4

1
90

.3
0

70
.9

0
92

.8
2

90
.6

2
56

.7
3

65
.5

7
61

.9
0

32
.9

1
64

.6
0

91
.4

5
2

76
.5

6
35

.7
6

85
.4

1
52

.0
6

92
.0

1
80

.3
0

95
.2

5
90

.0
4

85
.8

4
74

.5
9

93
.8

2
48

.1
0

73
.6

7
89

.8
3

3
84

.4
8

71
.5

3
78

.0
1

57
.4

6
91

.0
2

75
.8

0
94

.6
3

90
.9

7
57

.0
1

53
.2

7
79

.6
2

54
.4

3
72

.8
1

92
.1

4
4

75
.1

8
75

.1
8

69
.2

5
59

.3
6

90
.0

4
81

.5
4

95
.2

90
.3

5
72

.8
8

70
.4

9
87

.8
3

41
.1

1
74

.3
6

94
.4

5
5

91
.7

1
56

.5
6

81
.2

5
53

.6
5

91
.3

2
75

.9
7

97
.5

9
86

.1
9

78
.2

6
59

.0
1

93
.1

8
51

.8
9

79
.9

5
87

.5
2

6
81

.5
1

70
.8

0
80

.7
6

60
.0

1
89

.9
6

79
.8

2
95

.3
1

90
.1

5
63

.3
0

56
.5

5
88

.7
6

50
.0

1
77

.0
5

93
.0

7
7

83
.9

6
72

.6
2

72
.6

7
74

.2
8

91
.1

4
81

.2
5

94
.3

6
91

.4
7

59
.7

4
75

.4
71

.6
3

63
.9

2
75

.8
8

93
.7

6

47

model using different training strategies. All three of these experiments produced better

results than experiment 3. This is likely because the model can learn the pattern of the

seven tools easier with the ML loss, compared with learning the pattern for the combination

classes using 15 classes.

The point of performing the experiments 5 and 6 was to evaluate the effect of the de-

cision model in training the feature extractor and ML classifier. In both experiments, the de-

cision model g, and the CNN were trained alternately. The weights of the CNN were frozen

in experiment 4, while in experiments 5 and 6 they were trained at each step. Therefore, in

experiment 4, the role of the decision model was to just use the co-occurrence information

to find the correct classes (superclasses) using the confidence scores of a trained model.

The results show improvement in F1 scores in all three experiments compared with the

results from Table 3.3. This is because using LP as the decision model, the co-occurrence

of surgical tools in each frame is considered directly in the classification method without

learning separate patterns for superclasses.

The difference between experiment 5 and 6 is that is experiment 6, FC1 is only

trained with the ML loss function, whereas in experiment 5, both ML and MC loss function

can affect FC1. The results show that the training strategy in experiment 6 is better in

F1 and accuracy measures. The reason is that in experiment 6, FC1 is only trained for

mapping the extracted visual features of the CNN to the confidence scores of the tools.

In experiment 7, the training is accomplished by the weighted sum of the ML and MC

training operations (equation 3.6, and the trainable weights are the same as in experiment

6. We can see that the end-to-end training of the CNN-LP produces significantly better

results compared with all other training methods, such as sequential and alternate training.

The reason is that in end-to-end training, all parts of the model is trained simultaneously to

reach better confidence scores and hence, better final decision.

48

3.3.3 LapTool-Net Results

In this section, the performance of the proposed model is evaluated after consider-

ing the spatiotemporal features using an RNN. Similar to the previous section, we tested

the model before and after adding the decision model. The dataset for training is the 6K

balanced set, and all the models were trained end-to-end. For training the RCNN model,

we used five frames at a time (current frame and four previous frames) with an inter-frame

interval of 5, which resulted in a total distance of 20 frames between the first and the last

frame. The RCNN model was trained with a Stochastic Gradient Descent (SGD) optimizer.

The data augmentation for the post-processing model includes adding random noise to the

input and randomly dropping frames to change the duration of the sequences; the final pre-

dictions of the RCNN model are saved every 20 frames, and the frames are dropped with

the probability of 10 to 30%.

Table 3.7 shows the results of the proposed RCNN and LapTool-Net. For ease of

comparison, we have copied the results from the previous section for the CNN with and

without the LP decision model.

Table 3.7: Final results for the proposed model

Acc(%) F1-macro(%) F1-micro(%)
CNN 74.36 74.43 87.70

CNN-LP 76.31 78.32 88.53
RCNN 77.51 81.95 89.54

RCNN-LP 78.58 84.89 89.79
LapTool-Net(online) 80.95 88.29 91.24
LapTool-Net(offline) 81.84 90.53 91.77

It can be seen that by considering the temporal features through the RCNN model

the exact match accuracy and F1-macro were improved by 3.15% and 7.52% respectively.

Also, the F1-macro improves by 2.94% after adding the LP decision model. The superiority

49

of the LP-based decision model over the threshold method is due to the consideration of

the co-occurrence patterns and the inclusion of the spatiotemporal feature extraction in the

decision model by the end-to-end training method.

To check the effectiveness of the multi-task approach used for the end-to-end train-

ing of the RCNN-LP model, we took the output of the ML classifier, after removing the

decision model from the trained RCNN-LP. In other words, we replaced the LP-based de-

cision layer of the trained model with the threshold-based decision method. The results are

shown in Table 3.8.

Table 3.8: The precision, recall and F1 score of each tool for the ML classifier in RCNN-LP
after removing the decision model

Tool Precision(%) Recall(%) F1(%)
Bipolar 77.62 83.57 80.49
Clipper 83.22 81.90 82.56
Grasper 69.99 90.28 78.85
Hook 95.33 93.43 94.37

Irrigator 77.27 83.60 80.31
Scissors 82.91 82.91 82.91

Specimen bag 76.96 94.91 85.00
Mean 80.55 87.22 83.50

Compared with the results for the RCNN model in Table 3.7, we can see 1.55%

improvement in F1-macro after training with the proposed method. The reason is that with

the help of the joint training strategy, the presence of the tools is detected based on the

pattern of the tool combinations and therefore, richer extracted features. The precision for

the Grasper is an indicator of the remaining balance in the training set. We believe the

could have been better by re-weighting the loss function, especially for Grasper.

The higher performance of the LapTool-Net, shown in Table 3.7 is due to consid-

eration of the long-term order of the usage of the tools. In offline mode, the utilization

50

of the frames from both the past and the future of the current frame is considered by a

bi-directional RNN, and therefore, we can see the improvements over the online model on

accuracy and F1 scores.

The precision, recall, and F1 score for each of the tools are shown in Table 3.9 for

offline mode and in Table 3.10 for online mode. Compared with the results from Table 3.6,

we can see that the F1 score for clippers and scissors have significantly increased because

there is a high correlation between the usage of these tools and the tasks, i.e., the order in

the occurrence of the tools (e.g., cutting only happens after clipping is completed). The

lowest performance is for Irrigator, which is probably because of the irregular pattern in its

use (only used for bleeding and coagulation, which can occur any time during the surgery).

The higher over-all recall is likely because of the class re-weighting method. We believe

the performance could improve with a better choice of the weights.

Table 3.9: The precision, recall and F1 score of each tool for LapTool-Net(offline)

Tool Precision Recall F1
Bipolar 0.86 0.95 0.90
Clipper 0.95 1 0.97
Grasper 0.89 0.90 0.90
Hook 0.93 0.94 0.94

Irrigator 0.72 0.94 0.82
Scissors 0.84 0.99 0.91

Specimen bag 0.88 0.92 0.90
Mean 0.82 0.94 0.90

To show the performance of the model on rare combinations, we performed an ex-

periment on the smaller dataset containing only the rare classes, which are the last 3 com-

binations in figure 3.4. These classes are [Bipolar, Grasper, Specimen bag], [Irrigator,

Specimen bag] and [Bipolar and Specimen bag]. The results are shown in table 3.11.

51

Table 3.10: The precision, recall and F1 score of each tool for LapTool-Net(online)

Tool Precision Recall F1
Bipolar 0.70 0.89 0.79
Clipper 0.90 0.99 0.94
Grasper 0.90 0.88 0.89
Hook 0.94 0.94 0.94

Irrigator 0.80 0.86 0.83
Scissors 0.81 0.97 0.88

Specimen bag 0.91 0.92 0.91
Mean 0.85 0.92 0.88

Table 3.11: The precision, recall and F1 score of each tool for the dataset of rare combina-
tions

Tool Precision(%) Recall(%) F1(%)
Bipolar 95.23 68.96 80
Grasper 40.9 100 58.06
Irrigator 100 82.14 90.19

Specimen bag 100 85.45 92.15
Mean 84.03 84.13 80.1

The results show that the RCNN-LP classifier can detect the rare classes even when

it is not trained on them.

3.3.4 Model Ensemble

Neural networks are highly non-linear models and therefore, have a high variance in

their predictions. Ensemble learning methods are a group of techniques to deal with such

high variance by combining multiple models. This is achieved by varying the model and/or

the training data and using a combination of weaker models to form a stronger and more

reliable classifier.

We implemented an ensemble learning method by training the proposed RCNN-LP

model on different training sets, which are randomly selected using the method described

52

earlier. In order to do that, for each model, the final probability vector Q is saved, and the

new prediction vector is calculated by averaging the results.

In this experiment, five datasets were created and the performance is calculated by

combining 3, 4, and all of them. Different combinations were tested for the first two cases

(3 and 4) and the best results are shown in Table 3.12.

Table 3.12: The results for different ensembles of RCNN-LP model

Ensembles Acc(%) F1-macro(%) F1-micro(%)
5 79.93 85.10 90.84
4 79.86 85.55 90.85
3 79.98 86.25 90.91

It can be seen that, compared with the results for single model RCNN-LP from Table

3.7, the ensemble of multiple models improved the performance in all cases. The better

results for smaller ensembles is because the weaker classifiers were deleted and the results

were taken from the best models.

3.3.5 Tools Localization

In order to localize the predicted tools, the attention maps were visualized using

gradient weighted class activation map or grad-CAM method [87]. Using grad-CAM, all

the channels of the final activation map (the last convolutional layer) are weighted by the

gradient of a class of interest with respect to the channel, to produce a coarse heat map of

the important parts of the image in predicting the class.

The results for some of the frames are shown in figure 3.6. To avoid confusion for

frames with multiple tools, only the activation map of a single tool is shown based on the

prediction of the model. The results show that the visualization of the attention of the

proposed model can also be used in reliably identifying the location of each tool.

53

Table 3.13: Comparison of tool presence detection methods on M2CAI

Method CNN mAP(%) F1-Macro(%)
LapTool-Net(offline Inception-V1 - 90.53
LapTool-Net(online) Inception-V1 - 88.29

RCNN (ours) Inception-V1 87.88 81.95
[38] Resnet-101 [36] 86.9 -
[42] VGG 81.8 -
[79] Alexnet 65 -
[110] Inception-V3 [99] 63.8 -
[78] Alexnet 61.5 -
[103] Alexnet 52.5 -

3.3.6 Comparison

In order to validate the proposed model, we compared it with previously published

research on the M2CAI dataset. The result is shown in Table 3.13. Since all the methods re-

ported their results using ML metrics such as mAP, we compared our ML classifier f , which

is the RCNN model, along with the final model. We show that our model out-performed

previous methods by a significant margin even when choosing a relatively shallower model

(Inception V1) and while using less than 25% of the labeled images.

3.4 Conclusions

The observation by surgical residents of the usage of specific surgical instruments

and the duration of their usage in laparoscopic procedures gives great insight into how

the surgery is performed. While identifying the tools in a recorded video of surgery is a

trivial albeit tedious task for an average human, there are certain challenges in detecting

the tools using computer vision algorithms. To tackle these challenges, in this paper, we

proposed a novel deep learning system called LapTool-Net, for automatically detecting the

presence of surgical tools in every frame of a laparoscopic video. The main feature of the

proposed RCNN model is the context-awareness, i.e. the model learns the short-term and

54

long-term patterns of the usages of the tools by utilizing the correlation between the usage

of the tools with each other and, with the surgical steps, which follow a specific order. To

achieve this goal, an LP-based model is used as a decision layer for the ML classifier, and

the training is performed in an end-to-end fashion. The advantage of this paradigm over

direct LP classifier is that the training can be accomplished with a smaller dataset, due to

having fewer classes and avoiding learning separate (and probably not useful) patterns for

the superclasses. Furthermore, the order of occurrence of the tools is extracted through

training a bi-RNN with the final prediction of a trained RCNN model. To overcome the

high imbalance in the occurrence of the tools, we used under-sampling based on the tools

combinations and the LP model. In addition to having a balanced dataset, the high under-

sampling rate reduces the generalization error by avoiding overfitting, which is the main

challenge in tool detection, due to the high correlation among videos frames. Our method

outperformed all previously published results on M2CAI dataset while using less than 1%

of the total frames in the training set.

While our model is designed based on the previous knowledge of the cholecystec-

tomy procedure, it doesn’t require any domain-specific knowledge from experts and can be

effectively applied to any video captured from laparoscopic or even other forms of surg-

eries. Also, the relatively small dataset after under-sampling suggests that the labeling

process can be accomplished faster by using fewer frames (e.g., one frame every 5 sec-

onds). Moreover, the simple architecture of the proposed LP-based classifier makes it easy

to use it with other proposed models such as [4] and [38], or with weakly supervised mod-

els [65, 107]to localize the tools in the frames. Moreover, the offline design can be useful

in generating a summary report, assessment and procedure rating etc. Also, the proposed

model in online mode has a processing time of less than 0.01 seconds/frame, which makes

it suitable for real-time applications such as feedback generation during surgery.

55

(a) Grasper (b) Grasper/Hook (c) Grasper/Clipper (d) Grasper/Scissor

(e) Grasper (f) Grasper/Hook (g) Grasper (h) Grasper/Clipper

(i) Grasper/Hook (j) Grasper/Hook (k) Grasper/Bipolar

(l) Grasper/Hook (m) Grasper/Hook (n) Grasper/Bipolar

Figure 3.6: The visualization of the class activation maps for some example based on the
prediction of the model

56

CHAPTER 4

SURGICAL WORKFLOW DETECTION

Routine assessment of open surgical skills requires expert supervision in the operat-

ing room (OR) during surgery. Alternatively, in laparoscopic procedures, evaluation can be

accomplished using a video recorded from the operation, which can be multiple hours long

[119]. However, this requires a significant amount of the surgeon’s time and can be subject

to human error. Automatically detecting and separating the videos into the correspond-

ing surgical phases can help the surgeons quickly find and evaluate the videos. However,

the most productive evaluation approach results if the segmented parts can be extracted in

an automated system to perform the evaluation using objective measures. The final out-

put videos will then have all the phases identified, enabling easy access to the information

stored in video databases during the training of the surgical residents.

In this chapter, we study the problem of analyzing the surgical workflow in a la-

paroscopic video by proposing two different approaches. In the first method, which is

described in section 4.1, the detection of surgical phases is accomplished by classifying all

of the frames of a video. In section 4.2, a novel model is designed for finding the borders

of each phase.

4.1 Frame-level Phase Detection

Automatic detection of surgical steps using still frames from the videos is quite chal-

lenging as the rapid movement of the camera causes blurry views and low-quality frames.

Also, the camera is not always focused on the scene. This is shown in figure 4.1.a. Thus,

using still frames might not be sufficient for distinguishing the surgical phases.

57

Gallbladder Retraction Cleaning Coagulation Clipping Cutting Cleaning Coagulation
(a) (b)

Clipping Cutting Gallbladder Dissection Cleaning Coagulation Calot Dissection
(c)

Figure 4.1: Illustration of the challenges in the detection of the surgical work flow using still
images. a) examples of blurry images and the lack of focus in camera, b) Using the same bipolar
tool in two different phases, c) the absence of surgical instruments in different steps

Traditionally, identifying various surgical phases was accomplished using the signals

from the surgical tools that are used during the procedure [66] or from the manually anno-

tated videos with handwritten notes such as ”tools”, ”anatomical structures”, and ”surgical

tasks” [30]. However, such annotation is very time-consuming. These shortcomings have

been recently addressed after the introduction of deep learning systems and CNNs.

Endonet [104] was the first that used visual features from a CNN architecture called

Alexnet [51]]. In their work, the CNN was trained for extracting multi-level features, for

simultaneously identifying surgical instruments and surgical phases. The output of the

tool detection system was concatenated with the features, and the detection of phases were

accomplished using the fused features. The result of the last layer of the CNN was then used

as the input to a Hierarchical Hidden Markov Model (HHMM) to incorporate the temporal

features into the phase detection model. Following their work, in [78], a Gaussian fitting

model was used to deal with the correlation among the video frames. They further used a

random forest classifier to improve the classification accuracy.

In their other work, Twinanda et al. [103] replaced the HMM model with an LSTM

model. Although using tool information showed some improvement in some of the mea-

58

sures that they used for evaluation, the accuracy remained the same when using LSTM.

The reason is that not all of the surgical phases correlate with the tools that are used. As

some examples of the tool-phase discrepancies, figure 4.1b illustrates two frames with the

same tool but different phases, and in figure 4.1c no tool is present in four distinct phases.

We intentionally didn’t use the tool information, because we wanted to have a fair compar-

ison with the previous works, which use only the phase information and, the labels for the

instruments are not always available.

In order to train a CNN with LSTM in an end-to-end fashion, EndoRCN [43] em-

ployed three consecutive frames as the input sequence to an RNN. Similarly, SVRCN [44]

used a small number of successive frames for simultaneously training a CNN and an LSTM.

Although this model has the benefits of simultaneous end-to-end training of both CNN and

LSTM and, the smoother results due to the small number of frames, it misses the long-

term relationship between the video phases. In order to tackle this issue, they introduced a

probabilistic method called prior knowledge inference (PKI) during test time, which took

the probability of the previous frames as input and updated the predictions according to the

previously known ordering of the surgical phases in the videos. Using this technique, they

reached state-of-the-art results in cholecystectomy datasets. One drawback of this method

was that it ignored the future frames, and it required prior knowledge regarding the ordering

of the surgical workflow to get the best performance.

In our method called Surgical Phase Detection using a Deep Learning System (SPD-

DLS), we designed two separate architectures for real-time and offline modes. In both

architectures, in addition to the visual features, the frame number was added as a separate

feature, before the fully connected layer of the CNN. This method helped the CNN know

the actual position of the frame with respect to the other frames of the video. In the offline

model, a temporal median filter was applied to a short window of frames. The outputs of

both architectures were sent to a separate LSTM network for the final decision making on

59

the phase detection. The proposed method was tested with a dataset of cholecystectomy

procedure. The test showed significant improvement in detecting surgical workflow over

current methods. The main contributions of the chapter are as follows:

• Having separate architectures for online and offline detection of surgical phases

• Using short-term temporal features employing a median filtering method

• Taking long-term correlations of features in the entire video into account using LSTM

• Using frame number (time) along with the other high-level visual features to improve

the phase detection accuracy

• Addressing the class imbalance problem of surgical phases

• Dealing with the over-fitting issue by separating the training sets of the CNN and

LSTM models

The remainder of the chapter is organized as follows: in section 4.1.1 we describe the

methodology in detail. In section 4.1.2 we describe the setting used and in section 4.1.3,

we evaluate the proposed model and compare the results with those of the recent methods.

In the final section, we list the conclusions and some suggestions for future work.

4.1.1 Methodology of SPD

In this section, we describe the method designed for segmenting surgical videos ac-

cording to their procedural phases. The proposed method consists of two architectures for

online and offline cases. Both architectures rely on a CNN for extracting spatial features in

each frame of the videos and an RNN for temporal dependencies of the subsequent frames.

4.1.1.1 Visual Features

Extracting high-level features of images is at the heart of most computer vision tasks.

Since phase detection is a multi-class problem, we use a softmax cross-entropy loss func-

60

Table 4.1: Duration of each phase in cholecystectomy procedure

Phase duration(sec)
P0 Preparation 125± 95
P1 Calot Triangle Dissection 954± 538
P2 Clipping and Cutting 168± 162
P3 Gallbladder Dissection 857± 551
P4 Gallbladder Packing 98± 53
P5 Gallbladder Retraction 83± 56
P6 Cleaning and Coagulation 178± 166

tion to find the probability of each class. The class with the maximum probability is se-

lected as the CNN prediction of the current phase, for sending to the RNN to deal with the

temporal correlations of the frames.

4.1.1.2 Imbalance Compensation

As can be seen in table 4.1 [104], the duration of each of the phases of cholecys-

tectomy procedure varies significantly in each video. In order to address this phase count

imbalance problem, we used an up-sampling method, which interpolates the video frames

for less frequent phases. The resulting dataset has a uniform distribution among all phases.

4.1.1.3 Over-fitting

Recent CNN architecture such as residual networks [36] and Inception [97, 98] are

designed to classify a large number of images into 1000 classes. Each model consists

of tens of layers, each with thousands of parameters to train. Due to the large number

of parameters, these architectures are prone to the well known and significant over-fitting

error resulting in lower generalization.

Although surgical videos are recorded at high frame rates (25 or 30 per second), the

frames are too highly correlated for high generalization in a deep CNN. In other words,

neighboring frames share most of the important visual features used for classification of

61

these frames. However, even in our case, the set of frames used for training are entirely

unlike the set of test frames. Therefore, perfect accuracy during training and potentially

large error during testing could occur. While the use of various regularization methods

such as l1 and l2, dropout and data augmentation reduces the generalization error, there is

still a big gap between training and test accuracies. In order to deal with this issue, we split

the training set into two smaller sets for separately training CNN and LSTM. The CNN

model was first trained on the CNN training set and the trained model was then applied to

a separate set to get the predictions for the input to the RNN model. This ensured that the

input sequence used for training the RNN has the same error pattern as the sequence at the

test. This way we worked around letting over-fitting affect the results and helped the RNN

learn the input sequence better.

4.1.1.4 Temporal Correlations

CNN’s are suitable for extracting spatial visual information only from still images.

As can be seen in figure 4.1, because of the rapid camera or surgical instrument movements,

not all of the images are clear enough to be used with the CNN. We dealt with this problem

during test time, by median filtering of the predicted phases. However, due to the high

correlation of surgical phases over neighboring frames in a video, an error can be propa-

gated to several frames in a row. Thus, using long-term temporal dependencies is crucial in

frame-level classification in a video. To exploit such dependencies, we used a Long Short-

Term Memory (LSTM) model [37], which is a type of recurrent neural network suitable

for long sequences. LSTMs have been used for time-series modelings such as sequence

classification and sequence labeling. To utilize the full potential of an LSTM model, we

applied it to the entire video so that the model can learn the order of the surgical phases by

”seeing” the full sequence. However, due to memory constraints, it’s not possible to train

both an RNN and a CNN in an end-to-end fashion.

62

For the LSTM input, one approach was to use the extracted features from the last

convolutional layer of the trained CNN. While these features have a good representation of

the visual features, it is somewhat complicated to train an RNN with our large input size.

Moreover, the number of features in the last layer varies for each architecture. Alternatively,

we could use the outputs of the CNN, which are the probabilities of all classes, or the final

predictions. We used the prediction for both online and offline models, which enabled us

to have a shallower LSTM without sacrificing accuracy.

4.1.1.5 Time-stamping

Since, often the duration of the phases and their order are known, we can use the

frame number to improve the phase predictions of the CNN. We used the frame number

or the time of each frame as an additional feature in the last layer of our convolutional

network. Thereafter, We used the fused features (the combination of the frame number and

the features from the last layer) with the fully connected and softmax layers. This way, the

CNN is aware of the relative position of each frame during training.

4.1.1.6 Offline architecture

During the offline mode, we assumed that the model has access to all the frames

before and after the current one. Also, the total number of frames in a video is known. For

training the CNN, the frame number was divided by the total size of the video (normalized)

and was concatenated with the features of the last convolutional layer and right before the

fully connected layer. A median filter then determined the output of a separate training set

(the final prediction of the CNN). The results were used for training a bi-directional LSTM

model. A Bi-LSTM consists of two LSTMs, one in the forward direction and the other

63

in the backward direction, which enabled us to consider both the previous and the future

frames. A block diagram of the method is shown in figure 4.2.

Figure 4.2: The block diagram of the Surgical phase detector (SPD) in offline mode.

4.1.1.7 Online architecture

Unlike the offline mode, in the online detection of surgical workflow, the only infor-

mation available was the features from the previous frames. Therefore, a uni-directional

LSTM was applied to the output of the CNN. On the other hand, since the temporal smooth-

ing method needed the frames information from the past and the future, it could not be used

in the online mode. Since the size of the video was unknown at the processing time, the

time-stamp feature was just the frame number (unnormalized) concatenated with the fea-

ture map of the convolutional model.

64

4.1.2 Experimental Setup

We used the largest publicly available cholec80 dataset [104] to evaluate our method.

The dataset contained 80 videos from cholecystectomy procedure performed by 13 sur-

geons. All the videos were labeled with the tools and seven surgical phases and were

recorded at 25 frames/second. The pixel resolution of each frame was 1920*1080. Since

the information about the presence of surgical instruments might be unavailable in other ap-

plications, we didn’t use it in designing and evaluation of our method. Further, we wanted

to compare our results to those of two other recent researchers, who also did not use the

tool information. We used 40 videos for training the CNN, 20 for training LSTM model

and 20 for testing. The training set was balanced with 50000 samples per class. Thus,

we first used one frame/sec and then randomly picked up more frames to reach a balanced

dataset. We used the Inception V1 model for extracting the predictions.

Since the images were big and rectangular, they were resized so that the larger di-

mension was 350 and the aspect ratio was kept the same as the raw data. The images were

then cropped and resized randomly to 224 * 224, which is the default input size of the

inception v1 model. We used online data augmentations during training, including flipping

left to right and up-down, color distortion, random rotation, etc. The model was initialized

with the pre-trained weights from the Imagenet dataset.

To reduce generalization error, we used small l2 regularization and dropout rate of

0,7. The Adam optimizer was used for training the CNN with an initial learning rate of

0.001 and a decay rate of 0.7 after three epochs. The window size for our temporal smooth-

ing model in offline mode was set to 20.

The RNN model consisted of two LSTM layers with 128 and 16 units for both on-

line and offline phases (bi-directional LSTM for offline mode). Since the number of videos

for training LSTM was not sufficient, we also used data augmentation for the input se-

quences. The predictions were saved every 20 frames and for each sequence of predictions,

65

80 percent of the frames were picked randomly at each step during training. The resulting

sequences were of slightly different sizes and phase durations from the original videos.

A small random noise was added to the input as well to further augment the data. Since

the videos have different sizes, we padded the input sequences with a new class to have

equal input size for the dynamic LSTM implementation. The same padding was added for

Bi-LSTM and in the backward direction. Stochastic gradient decent (SGD) was used for

training the LSTMs.

The total processing inference time for the online model was below 0.02 seconds per

image, which is less than the requirements of real-time applications.

4.1.3 Results

In this section, the results from the various experiments with SPD-DLS are shown

that helped evaluate its performance. The SPD-DLS performance was then compared with

previous work.

To check the performance of the spatial visual extractor, we performed various ex-

periments on the CNN model. We chose Inception V1 over existing deep learning models,

because of it’s lower memory consumption and faster inference in the real-time mode. Ta-

ble 4.2 summarizes the accuracy of the convolutional neural networks. The accuracy was

based on the entire video frames and didn’t take per-class accuracy into account. The first

column demonstrates the accuracy of pure CNN without adding the frame numbers. It

shows that having information about the time of the frames (frame number) improved the

performance of the feature extractor model. There is a difference between the results of

the CNN after time-stamping in online and offline modes. This is due to the normalization

in the offline mode. During online detection, the absolute frame number was used, which

took longer to converge and had less accuracy. However, since the duration of each video

66

and the transmission time between the phases varied from one video to another, using the

absolute value for frame number could cause confusion for the CNN.

During the offline mode, before applying the LSTM model, the output was median

filtered, and the result is shown in the last column of table 4.2. Since the input to our LSTM

network is the prediction from the CNN, a small increase in accuracy from the CNN makes

a big difference in the output of the overall model.

Table 4.2: The accuracy of the CNN models (%)

CNN time-
stamped
online

time-
stamped
offline

median fil-
tered

78.2 79.97 80.68 91.2

Since the testing set was not balanced, to show the final results of the proposed

model, we needed to separately check the phase prediction performance of the models, for

all of the phases. For this purpose, we used precision, recall and F1-score.

The results of the experiments for the online and offline cases are shown in tables

4.3 and 4.4 respectively. The last columns show the number of images used for calculating

the precision, recall, and F1. It can be seen that Cleaning and Coagulation phase has the

least accuracy in both online and offline modes. This is probably because the order of the

last two phases (Cleaning and Retraction of the Gallbladder) were reversed in some videos.

On the other hand, Calot Triangle Dissection and Gallbladder Dissection have the highest

f1-score in both modes. The reason is likely the higher duration of these phases according

to table 4.1.

The overall accuracy in online mode is 90.8% whereas in offline mode the accu-

racy is 96.5%. The improvement in accuracy is the result of having temporal smoothing

and bi-directional LSTM. This also shows that taking the temporal features into account

67

using LSTM and applying it to the entire video enables the model to learn the long-term

dependencies inherent in surgical videos.

Table 4.3: precision, recall and F1 score for online mode

precision recall F1-score support
Preparation 0.88 0.90 0.89 2162
Calot Triangle Dissection 0.94 0.97 0.96 17456
Clipping and Cutting 0.72 0.81 0.76 2951
Gallbladder Dissection 0.96 0.92 0.94 19144
Gallbladder Packing 0.87 0.84 0.85 2089
Gallbladder Retraction 0.82 0.65 0.72 1530
Cleaning and Coagulation 0.65 0.74 0.69 2293
avg/total 0.91 0.91 0.91 47625

Table 4.4: Precision, recall and F1 for offline mode

precision recall F1-score support
Preparation 0.91 0.88 0.89 2162
Calot Triangle Dissection 0.97 0.99 0.98 17456
Clipping and Cutting 0.97 0.95 0.96 2951
Gallbladder Dissection 0.99 0.97 0.98 19144
Gallbladder Packing 0.98 0.97 0.97 2089
Gallbladder Retraction 0.93 0.90 0.91 1530
Cleaning and Coagulation 0.85 0.86 0.86 2293
avg/total 0.97 0.97 0.97 47625

To have a better visualization of the per-class results, a confusion matrix is shown

in figure 4.3 (Class 7 is the padded class). The plot on the left is the confusion matrix

with the absolute number of frames per phase, whereas the right plot shows the normalized

confusion matrix. It can be seen that most of the errors are in the neighboring classes.

The exception is the last class (P6), which is Cleaning and Coagulation. This is probably

because it is very likely that during the Gallbladder Dissection (P3), the resulting bleed-

68

ing requires a special instrument such as Bipolar and Irrigator to do the coagulation and

cleaning in P3 as well. This can be seen in the fourth row, too, which is the Gallbladder

Dissection phase. The highest accuracy is obtained in the second phase, which is the Calot

Triangle Dissection. The reason is probably the availability of more images for training

due to the longer duration. The high performance in Gallbladder Packing phase (P4) is

because of the distinct form of the step, which is accomplished using a grasper and packing

the gallbladder in a distinctly shaped specimen bag.

Figure 4.3: Confusion Matrix with (right) and without (left) normalization for the offline
mode

To validate the proposed model, we compared our work with the most recent papers.

The result is shown table 4.5. It is worth noting that the CNN model used in Endonet model

was Alexnet and SVRCN used Resnet50, whereas in SPD-DLS, Inception V1, which a

shallower model, is used to compare against Resnet50. On the other hand, all of the previ-

ous work used the first 40 videos for training and the other 40 for testing. SPD-DLS used

the first 40 videos for training the CNN, videos 40 to 60 for training the LSTM and the last

20 videos for testing.

69

Table 4.5: Overall Accuracy

model online offline
endonet (HMM) [105] 82.0 91.0
endonet (LSTM) [105] 88.6 92.2

SVRCN [44] N/A 92.4
SPD-DLS (ours) 90.8 96.3

The higher accuracy in the proposed model, in offline mode, showed that considering

both short-term and long-term dependencies of the surgical video frames can significantly

improve the performance. Moreover, using the frame number information helps the entire

model use the time of the frame being classified. Furthermore, the order of the phases is

automatically learned by the LSTM, unlike the other recent approaches. Having the training

sets separated for the CNN and LSTM, and the diverse data augmentation techniques are

the main reasons for the improvement in the performance of the proposed model compared

to the existing methods.

4.2 Phase Boundary Detection

The method described in the previous section for analyzing the workflow of a la-

paroscopic procedure relies on a multi-class classification for all the frames of a video.

Although this approach provides promising results by taking into account the short-term

and long-term correlations of the phases, it lacks the capability for explicitly determining

the exact transition time (frame) between two consecutive phases. Unless we have perfect

accuracy for frame-level predictions, it is not possible to identify the beginning and the end-

ing frames corresponding to a particular phase. This is an important limitation, considering

the significance of the information at the boundaries of different phases.

Directly detecting the boundaries of each phase can be seen as an alternative solution

for video segmentation. In an information retrieval system, a specific phase or task can be

70

requested upon a query, to be further analyzed manually or with the aid of an automated

system. A video segmentation model based on the automatic detection of the boundaries

of each phase can reliably be used, instead of the frame by frame analysis of each phase.

Despite the distinctive features of each phase of a laparoscopic procedure, especially

at the borders, the identification of such boundaries using a deep learning technique is far

from trivial. The challenges in finding the beginning and the ending frames in laparoscopic

cholecystectomy videos include the following considerations.

Firstly, laparoscopic cholecystectomy is typically a lengthy procedure and might take

up to one and a half hours. For instance, the duration of the videos in the validation set of

the cholec80 dataset that we used for the experiments in this chapter, has an average of

2454 and a standard deviation of 1054 seconds, a minimum of 739 and a maximum of

5993 seconds. Since the identification of the starting and ending frames of each phase

requires access to the entire video, the longer duration of the videos is the main challenge

in designing an end-to-end model. As was described earlier, the processing of all the frames

to capture the visual features using a CNN requires a huge amount of memory to perform

in a reasonable time. Furthermore, the long-term dependencies between the frames of a

video need to be extracted, which can be accomplished with an RNN. However, even the

best RNN architectures are known to have limitations in processing long sequences. When

we use RNNs for classifying a given frame, the impact of different frames, which are much

further away, becomes less critical due to the vanishing gradients. This might not be an

issue in frame-level classification/segmentation, since for frame level classification, a long

short-term memory of a few hundred frames might be sufficient. Furthermore, transition

frames can occur anywhere in the video.

Secondly, the duration of each phase varies significantly. For example, a given phase

length could be between 20 to 200 frames. We call this intra-phase variation. When a

one phase is significantly longer or shorter than another phase, we call it the inter-phase

71

Figure 4.4: The ordering of the phases in cholec80 dataset

variation. This is shown in Table 4.1. While for the frame-level segmentation, inter-phase

variations can be addressed by the balancing techniques described in section 4.1, both inter-

phase and intra-phase variations introduce challenges in detecting the transition time.

Lastly, the surgical tasks in laparoscopic cholecystectomy might not strictly follow

the same order in all the videos. Figure 4.4 shows the diagram of the workflow for cholec80

dataset. It can be seen that the Cleaning and Coagulation phase (P6) can occur before

Gallbladder Retraction (P5) or Gallbladder Packing (P4) or after both of them. Moreover,

the total number of phases might not be the same in all videos. The two exceptions are

Preparation (P0) and Cleaning and Coagulation phases, which might not be present in all

videos. The variation in the size and the order of the output also introduces significant

challenges in designing an automated approach based on deep learning, since most of the

existing approaches require the outputs to have either a fixed size/length or the same size

as inputs.

In order to address the above challenges in determining the boundaries of each sur-

gical phase, we proposed a novel method based on the sequence-to-sequence (seq2seq)

model [96] and attention mechanism [11].

In the following section, the methodology of the proposed model which we call

Attention-based Phase Boundary Detection (APBD) is described.

72

4.2.1 Methodology of APBD

In order to find phase boundaries in a surgical video, we associate a tuple of integers

to each phase, which is the indices (frame numbers) of the first (the beginning) and the last

(the ending) frames. Therefore, the desired output is a sequence of integer tuples. Each

element of this sequence corresponds to a particular phase.

The length of the output sequence is the total number of phases that are present in a

video. As was mention before, the length and the ordering of the output are not necessarily

the same in all videos. Furthermore, the lengths and the orders do not depend on the size of

the input sequences, which themselves can be variable. Therefore, the problem of finding

the phase borders is equivalent to mapping a variable-length sequence to another variable-

length sequence, where the length of the output sequence is independent of the length of

the input.

We adopted the seq2seq approach [96] to map our variable-length surgical videos to

the sequences of phase boundaries. Though this method is an effective solution to similar

problems such as machine translation, there are two main limitations.

Firstly, in seq2seq modeling, the entire input sequence is encoded in a fixed-size

vector, which is typically the last state of an RNN. This vector contains the information

of the input sequence. As was described earlier, retaining long-term memory is highly

challenging, as surgical videos are usually long.

Another limitation of seq2seq is that each output element is usually independent of

the position of the elements of the inputs. A potential solution for this problem is to project

each element of the output to a single value and train the system using regression methods.

However, only one of the boundaries can be determined using this method. Also, training a

regression-based model requires a large number of sample, due to the high inter-phase and

intra-phase variations explained before.

73

To address these issues, we employed the ideas from attention mechanisms [11, 60],

which are aimed at extracting the impact of the elements of the input sequence on each

element at the output. In the proposed attention-based method, the output of the system is

the sequence of phases that are present in the videos, and the attention mechanism finds

the alignments for each element at the output to each position of the input sequence. These

alignments are probability distribution vectors and are called the attention vectors too. Us-

ing this technique, the boundaries (we also call them pointers) are chosen from the input

sequence according to the alignment vectors. Some of the advantages of our method in-

clude:

• The attention vectors connect all the elements of the input, which are the frames of

a video to each element at the output, which is the corresponding phase. Thus, the

long-term memory of the model is preserved.

• In contrast to regression-based methods, by selecting the indices of phase boundaries

as frame numbers and from all the frames, the range of the output is constrained by

the length of the videos. Also, the outputs are always integers. By limiting the scope

of the outputs, the training can be accomplished easier and with fewer samples.

• By assigning two different attention vectors, the beginning and end frames can be

found simultaneously.

• The size of the model does not depend on the size of the output since the number of

weights for the attention mechanism remains the same for output elements.

• The variation in the ordering of the phases do not impose any limitation to the model.

The reason is that phase, and boundaries associations are accomplished indepen-

dently for each output, regardless of the order of phases.

In this section, the methodology for designing a deep learning system for detecting

the borders of each phase in a laparoscopic video is described. The problem definition is

first established in section 4.2.1.1. The fundamentals of the seq2seq model and attention

74

mechanism is described in details in sections 4.2.1.2 and 4.2.1.3 respectively. The details of

the proposed APBD system is explained in section 4.2.1.4 and is followed by the training

strategy in section 4.2.1.5.

4.2.1.1 Problem Definition

Let D = {(X(i), Y (i))|0 < i ≤ N} be a dataset of N surgical videos, where X(i) =

(x
(i)
1 , x

(i)
2 , ..., x

(i)
Mi

) is the sequence of input frames of the video i and Y (i) is the set of the

corresponding phases. |X(i)| = Mi ≤ M is the length of video i with M is the length of

the longest video, and |Y (i)| ≤ K is the number of phases present in the video. The phases

in Y can have arbitrary order and lengths for each video. The goal is to design a model F

that maps a variable length video X to a set of corresponding phases Y .

Each element of the input sequence x(i)
j ∈ <d is a fixed size vector of extracted

visual features for the jth frame of the ith video, where d is the size of the feature vector

and j ≤ Mi. The visual features are extracted using a CNN, as described earlier in this

chapter.

Each phase of a video is defined by a 3-tuple y(i)
k

∆
= (u

(i)
k , v

(i)
k , p

(i)
k), where u(i)

k and

v
(i)
k are the starting and ending frames of the phase k, and are one-hot vectors with the size

of M . p(i)
k is the probability that the phase k is present in video i. The phase association

for video i can also be represented as a K dimensional vector P (i) = (p
(i)
1 , p

(i)
2 , ..., p

(i)
K) =

{0, 1}K , where each element is 1 if the phase is present and 0 otherwise.

We formulate the problem of detecting the boundaries of the phases as a multi-class

classification, which maps the sequence of extracted features X to the tuple (U, V, P),

where U = (u1, ..., uK) and V = (v1, ..., vK) are of the same size K.

75

Figure 4.5: Sequence to sequence architecture for language translation [96]

4.2.1.2 Sequence-to-Sequence Modeling

RNNs are powerful tools for processing sequential data such as video, audio, text,

etc., and are suitable for variable-size input as well. The output of an RNN can be either

the hidden states of all the elements or the final state. However, RNNs can operate on only

one sequence as input. In order to address this limitation, the well-known seq2seq from

natural language processing is adapted for our application.

Introduced for machine translation [96], sequence to sequence modeling aims at

mapping variable-length input sequences to another variable-length target sequences. The

model consists of an encoder component and a decoder component and is also called an

encoder-decoder architecture. The role of the encoder in a basic seq2seq model is to en-

code the input into a fixed-size vector called context vector. The context vector represents

the whole sequence (for example a sentence from the input language) and is used in the

decoder as the initial state to generate the output sequence (the corresponding sentence in

the second language). The block diagram of a seq2seq model is shown in figure 4.5.

Typically, both the encoder and the decoder in a seq2seq model are RNNs. In the

encoder, the last state is taken as the ”context vector” and the initial state of the decoder.

The RNN in the decoder part is designed as a generative model (auto-regressive mode). In

order to start the generation, two tokens are defined as the start of the sequence (SoS) and

the end of sequence (EoS) (See Figure 4.5), which are used to determine the beginning and

76

the ending of the generated sequence. The input to each unit of the RNN (after the SoS to-

ken) in the decoder is taken from the output of the previous step, which is after applying an

output layer (usually a fully connected layer) to the hidden state. The generation continues

until reaching the EoS output or a pre-defined maximum output sequence length.

The main disadvantage of the seq2seq model is the lack of long-term memory in the

RNN of the encoder. In other words, a fixed size context vector might not be sufficient for

retaining the information in a long sequence. To address this issue, the attention mechanism

has been proposed, which is explained in the following section.

4.2.1.3 Attention Mechanism

Inspired by human’s intuition, attention is defined by the importance of each ele-

ment of input in making a particular decision at the output. With the help of attention, the

alignment of the elements in the input and output sequences is used to determine the de-

pendencies between the sequences. Attention mechanism has been widely used in natural

language processing providing the state-of-the-art in translation [108], text summarization

[89], question answering [56], etc., and in computer vision such as image captioning [115].

In a seq2seq model with attention, the fixed-size context vector is replaced by a dy-

namic context vector, which is determined by assigning different weights to all the elements

of the input using the attention mechanism. At each step of the decoder, a context vector

is generated by ”attending” at specific positions in the input sequence, and the decision

is made based on this context vector and the information from the outputs at the previous

steps.

77

Figure 4.6: The block diagram of the attention-based phase boundary detection model

4.2.1.4 Attention-based Phase Boundary Detection

The proposed model for detecting the boundaries of surgical phases is designed based

on a sequence to sequence (seq2seq) model with attention, to map all the frames of each

video to a variable-length sequence of the starting and ending frames of each phase. We

modify the attention mechanism explained above to have two attention vectors for the be-

ginning and end of the surgical phases, and the outputs of the model are the alignment

(attention) vectors. The attention mechanism used in this section is based on [60]. The

block diagram of the model is shown in Figure 4.6.

The encoder in the seq2seq model consists of a bi-directional LSTM, with the for-

ward hidden state −→ej and the backward hidden state ←−ej , forming the hidden state ej after

78

concatenation, for 0 < j ≤ M . The input to the bi-directional LSTM is a sequence of

extracted visual features for all the frames of a video.

For the decoder, the hidden state dk represents the output of an LSTM, which is going

to be used for detecting the phases of a video. The decoder state dk is a function of the input

to the state, which is the target of the previous state, the hidden state of the previous state

dk−1, and the context vectors ck and c′k for the current state. The context vector and the

hidden state of the previous state are concatenated [ck; c
′
k; dk−1], and the resulting vector is

used as the previous hidden state.

The context vectors ck and c′k correspond to the beginning, and the ending frame of

phase k and are the weighted sums of the encoder states and are calculated as:

ck =
M∑
j=1

uk,jej (4.1)

c′k =
M∑
j=1

vk,jej (4.2)

uk,j and vk,j are the attention vectors and determine the alignments of the input state

at jth time step ej with the output at kth time step pk, i.e. the impact of each input frame in

making decision about each phase of the video. The context vector ck encodes the impact of

all of the frames in the input and thus, resolves the short-term memory issue in the encoder.

In order to find the attention vectors, an attention score is calculated for each element

connecting input and output, using the hidden states of the input and the output at the

corresponding time steps. The attention score for the beginning frame for phase k and the

frame j can be found by a feed-forward neural network with a single hidden layer and can

be formulated as:

sk,j = vTa tanh(Wa[dk−1; ej]) (4.3)

79

where va and Wa are trainable weights of the attention mechanism. A similar formula is

used for the ending frame’s attention score s′k,j , with the trainable weights v′a and W ′
a.

The attention vectors are then calculated by normalizing the attention scores, result-

ing in a probability distribution among all the input states. This can be accomplished by

applying the Softmax function. For example, for the beginning frame attention vector, we

have:

uk,j = softmax(sk−1,j) =
esk,j∑N
j′=1 e

sk,j′
(4.4)

The attention vector uk,j from the above equation can be interpreted as the probability

of the input at state j to be a beginning boundary for phase k. Since the boundaries are

selected from the sequence of frames of the input, the attention vector can directly be

trained to output the beginning and end of the phases.

The proposed model is similar to pointer networks [109] in using the attention vector

to select an output from an input sequence. However, in our model, the attention mecha-

nism uses the encoder states instead of the inputs. With the help of the encoder states, the

dependencies between the elements of the input sequence are considered, and therefore,

provides better performance than the pointer networks.

Also, the proposed double attention method is different from multi-head attention

in the transformer architecture [108] In multi-head attention, multiple attentions are ag-

gregated into a single one, whereas in our model, the attention vectors are concatenated,

forming a longer attention vector to be used in the decoder.

4.2.1.5 Training of APBD

The generative RNN at the decoder of a seq2seq model uses the output from the

previous step as input. During training and after the model is trained, the generation of the

80

output elements starts after the SoS token, and the output is used as input for the subsequent

step. The output at each step is typically taken after a fully connected layer on top of the

RNN. This method is suitable for inference when the ground truth is not known, but it can

cause slow convergence during training and might be unstable.

To remedy this issue, the training can be performed using a method called teacher

forcing [113]. By teacher forcing, the target output is used instead of the generated output

as the input to the new step. While this technique is more stable and effective for training,

it might lead to poor performance during inference, as the test sequences diverge from the

previously seen sequences. In the literature, there are several approaches to address this

limitation, such as [13, 53].

In our model, the role of the decoder is to produce the sequence of attention vectors,

which are the pointers to the boundaries of the phases that are determined by the outputs

of the decoder. The input sequence can be the fixed-length sequence (SoS, 1, 2, ..., K).

The generation of the sequence starts after the SoS token and continues for K+1 steps.

This input sequence is the same during training and inference, and therefore, the method is

similar to the teacher forcing method.

We can define the loss function for training the attention vectors. The final output of

the model is the tuple (Û , V̂) and the loss function is the sum of the Softmax cross-entropy

for the two pointers:

La = − 1

NK
[
N∑
i=1

K∑
k=1

M∑
j=1

u
(i)
k,j log

ˆ
u

(i)
k,j +

N∑
i=1

K∑
k=1

M∑
j=1

v
(i)
k,j log

ˆ
v

(i)
k,j] (4.5)

The decoder states, which are the hidden states of the LSTM cell concatenated with

the context vectors, is connected to a fully connected layer, which we call the projection

layer to produce the probability of the presence of each phase. The resulting output is

formulated as a multi-label classification and is trained using sigmoid cross-entropy:

81

Lp = − 1

N

N∑
i=1

P (i) log(ˆσP (i)) (4.6)

where σ is the sigmoid function and P̂ is the output of the phase detection block at the

decoder.

The training of the model is accomplished by jointly training with the two loss func-

tions in a multi-task learning fashion similar to 3.2.5. In order to accomplish this, two

training operations are defined with separate learning rate schedules and trainable weights.

For the loss function of equation 4.5, the trainable weights are all the weights except

the weights in the projection layer at the decoder. The weights include the encoder weights

(the weights of the bi-directional LSTM) We, the attention weights [Wa, Va,W
′
a, V

′
a], and

the weights of the LSTM at the decoder Wd.

For the loss function in equation 4.6, back-propagation is performed only on the

decoder, and the trainable weights are the decoder LSTM weights Wd and the weights of

the projection layerWp. Note that the only weights that are shared between the two training

operations are the decoder LSTM weights Wd.

4.2.2 Experiments and Results

In this section, the experiment for validating the proposed model for detecting the

boundaries of each phase in a laparoscopic cholecystectomy video is described. We used

the cholec80 dataset, with the first 40 videos for training and the last 40 videos for valida-

tion.

The inputs to the proposed model were the extracted feature vectors from the frames

of each video using a CNN with the Inception V1 architecture. The size of the feature

vector was 1024. We created three sets of data; one with no data augmentation for all

the frames, one with the same augmentation functions for all the frames (central crop and

82

Table 4.6: Mean absolute error in seconds for each phase in cholec80 dataset

P0 P1 P2 P3 P4 P5 P6 Mean
Beginning frame 0.0 27.67 64.65 108.22 46.57 48.07 71.87 52.53

Ending frame 33.25 41.6 65.87 38.82 58.05 0.0 81.22 45.54

horizontal flip), and one with random augmentation similar to section 4.1.3. While using

the same augmentation for each video preserves the spatial and temporal relationships, the

random augmentation introduces more noise to the original pattern and reduces overfitting.

To apply data augmentation in the time direction, the feature vectors were saved

every ten frames, forming sequences that are 2.5 times longer than the original duration of

the videos in seconds. At each step of the training, for each video, a sequence was randomly

selected that has a length between 30 to 50 percent of the augmented sequence. We ensure

the maximum length was less than 6000 frames, which is close to the longest video in the

validation set. Using this data augmentation method, we had variable length training input

for each video with different boundaries of the phases. At each step, the shorter videos

were zero-padded to the longest video of the batch.

The encoder consisted of a two-layer bi-directional LSTM with 64 and 16 hidden

units. These numbers were picked by trail and error. A dropout layer with the same mask

along all the frames was added after the input layer. At the decoder, the LSTM had 32

hidden units, and the SoS and EoS tokens were 0 and 8 respectively.

To evaluate the performance of the proposed model, we used the Mean Absolute

Error (MAE) in seconds or frames (one frame per second). The results for each phase in

the cholec80 dataset are shown in Table 4.6. As an example, for P3, the difference between

the ground truth and our results for the beginning of P3 is 108.22 seconds and 38.82 secs

for the ending of the same phase. The MAE in seconds for the beginning frames is 52.43

and for the ending frames is 45.54.

83

The zero MAE in The Preparation (P0) phase for the beginning frame pointer is

because almost all the videos in test set start with this phase and the beginning of the video

is the beginning of P0. For the ending frame pointers, Gallbladder retraction (P5) has zero

MAE, which is likely because retracting the gallbladder has a definite ending. As shown in

figure 4.4, P5 can also be the last phase of the surgery.

The worst MAE belongs to the Cleaning and Coagulation phase (P6). The reason is

likely the irregular pattern in the ordering of the phase, according to Figure 4.4. The high

MAE for the Gallbladder Dissection phase (P3) is most probably because of the similarity

of the features between the Calot triangle Dissection (P1) and P3.

The proposed model might not guarantee the ordering of the phases that are detected

at the decoder. Though the accuracy at the output of the projection layer is 100%, the

boundary pointers and the phases might not be correctly associated. On the other hand, the

transition time for the surgical phases is not necessarily a single frame as it is annotated in

the dataset. Therefore, we evaluate the performance of our model by calculating the per-

centage of the predicted boundaries within different ranges, i.e., the accuracy of the model

when different ranges for error are acceptable. The results are shown for the beginning and

the ending frame in Tables 4.7 and 4.8 respectively. For instance, on row 3 of Table 4.7,

the probability of the beginning frame of the phase P4 before being detected within 10 sec-

onds of the ground-truth is 32.5%. Similarly, on row 3 of Table 4.8, the probability of the

ending frame of the phase P4 before being detected within 10 seconds of the ground-truth

is 52.5%.

It can be seen that more than 48% of the predicted boundary pointers have less than

5 seconds error with respect to the ground truth, whereas the exact match accuracy is less

than 19%. This is likely because the transition from one phase to another might take a few

seconds. Another possible reason could be that the training was performed using softmax

CE loss, which does not produce a range of error in the output.

84

Table 4.7: The accuracy of the beginning frames detection for different ranges of error in
seconds

P0 P1 P2 P3 P4 P5 P6 Mean
err = 0 1.0 0.075 0.125 0.075 0.0 0.05 0.025 0.19
err ≤ 5 1.0 0.525 0.425 0.475 0.175 0.45 0.275 0.475

err ≤ 10 1.0 0.55 0.5 0.575 0.325 0.55 0.325 0.54
err ≤ 20 1.0 0.675 0.525 0.625 0.575 0.675 0.55 0.66
err ≤ 30 1.0 0.775 0.6 0.7 0.675 0.675 0.6 0.72

Table 4.8: The accuracy of the ending frames detection for different ranges of error in
seconds

P0 P1 P2 P3 P4 P5 P6 Mean
err = 0 0.1 0.075 0.05 0.0 0.025 1.0 0.05 0.185
err ≤ 5 0.425 0.475 0.575 0.225 0.35 1.0 0.35 0.486

err ≤ 10 0.5 0.55 0.675 0.45 0.525 1.0 0.375 0.582
err ≤ 20 0.625 0.575 0.75 0.65 0.65 1.0 0.45 0.671
err ≤ 30 0.675 0.625 0.825 0.75 0.7 1.0 0.5 0.725

The lowest accuracy for all error ranges belongs to P6, which matches the results in

Table 4.6. This might be because cleaning and coagulation can occur during the dissection

phases as well, and, using spatial features as the input of the model might not capture the

temporal information needed for classifying the frames as a separate phase.

Another observation from the tables is that the error for the beginning of one phase

is not the same as the error for the ending of the previous phase, especially for the phases

P1 to P4 which always have the same ordering (figure 4.4). This shows that the predictions

for the boundaries do not depend on each other, which is because the loss function for the

pointers is the sum of the loss functions for the beginning and the ending borders, rather

than one loss function for both of them.

4.2.3 Conclusions

A new method called SPD-DLS is proposed in section 4.1 and validated for detecting

videos from a laparoscopic procedure into surgical phases. The model takes advantage of

85

the spatial and temporal features to classify all of the surgical videos. A CNN followed by

median filtering extracts useful information to send to an LSTM model for getting the final

output of detected phases. In the online mode, the CNN is aware of the frame time and can

detect phases in real-time. There are a few possible future improvements to our method.

The temporal median filtering method applied to the final prediction of the CNN is blind to

the actual visual features of the frames. We are planning on replacing it with an RNN that

can capture short-term correlations.

In section 4.2, a novel approach was proposed to detect the transition time of differ-

ent phases of laparoscopic surgery by learning the beginning and end frames of each phase

of the surgery. An attention-based sequence-to-sequence method is utilized to operate on

variable-length inputs and outputs. This method is more efficient for segmenting videos

than the frame-level classification approaches. The main advantage of the attention-based

method is that the size of the model does not depend on the length of the output sequence,

which is the number of phases, as the attention mechanism benefits from the weight sharing

property, similar to RNNs. Furthermore, the segmentation is accomplished by finding sin-

gle frames associated with the beginning and the end of a phase. Therefore, the proposed

attention-based architecture can be easily used to detect surgical tasks with overlapping

or separate sections. Nonetheless, several limitations have to be addressed to improve the

performance of the model.

Firstly, using the extracted features from a CNN as the input might not be sufficient,

as the CNN doesn’t capture the temporal dependencies and the critical information at the

boundaries. Future work can include the replacement of the CNN with a CNN-RNN as

described in chapter 3.

Secondly, the index of the output determines which phase corresponds to the ex-

tracted beginning and ending frames at the decoder. In other words, the phase is not ex-

86

plicitly learned. This can be addressed by modifying the projection layer and developing a

new training strategy with a sequence loss function.

Lastly, due to the smaller size of the training dataset, the performance can vary signif-

icantly by different choices of the hyper-parameters. We believe that even with such small

data sets, choosing a better training strategy, or loss functions can lead to better results.

87

CHAPTER 5

CRITICAL VIEW OF SAFETY

Introduced in 1985 [58], laparoscopic cholecystectomy, much like other laparoscopic

procedures, has become the preferred choice over open surgery, due to less pain and faster

recovery time [49]. Even though laparoscopic cholecystectomy is the most commonly per-

formed procedure and is part of the general surgery residency training, the incidence of

bile duct injury is around 0.3% (3 per 1000 procedures) [17]. The bile duct injury is usu-

ally caused by the misinterpretation of the anatomy and can have devastating consequence

to patients leading to significant morbidity and mortality [17]. The critical view of safety

(CVS) is introduced as an effective method to reduce bile duct injuries [94]. An example

of the critical view of safety is illustrated in figure 5.1.

The goal of clearly observing the CVS is to avoid misidentifying the common bile

duct or an aberrant duct as the cystic duct and therefore, preventing bile duct injuries. Fig-

ure 5.2 shows the stylized anatomy of the critical view of safety. The CVS is accomplished

by clearly viewing the main anatomical structures that includes the Calot’s Triangle, Hep-

atocystic triangle and the two structures (cystic duct and the cystic artery) [95].The es-

tablishment of CVS is critical for ensuring the safety in a laparoscopic cholecystectomy

procedure.

Despite the significance of the CVS, there is a lack of a thorough analysis of CVS

using visual records. Currently, the rating and evaluation of the quality of CVS is ac-

complished by manually reviewing short videos or images by expert surgeons or crowd-

sourcing [24]. However, this evaluation is very time consuming and expensive and, might

88

Figure 5.1: The critical view of safety [45]

result in potentially inaccurate subjective conclusions. Thus, an automatic method for ana-

lyzing the CVS is desirable in the assessment and rating of the videos.

In this chapter, we provide the results of a deep learning model trained to identify the

CVS directly from laparoscopic videos.

The remainder of the chapter is organized as follows: in section 5.1, the main criteria

for evaluating the critical view of safety is reviewed. The CNN model for detecting the

CVS in a laparoscopic cholecystectomy video is described in section 5.2, followed by the

results in section 5.3 . In the last section, we discuss the future direction of the research.

5.1 Criteria for Evaluating the Establishment of CVS

One of the recommended methods for checking the establishment of the critical view

of safety in laparoscopic cholecystectomy is through an intra-operative time-out, where the

procedure is paused to make decisions. The establishment of CVS can be confirmed by

89

Figure 5.2: The anatomy of gallbladder, cystic duct and cystic artery [81]

using the doublet view method [82], which is visualizing the main components of the CVS

using both anterior and posterior views. This is shown in figure 5.3.

Currently, the post surgical evaluation of the achievement of the CVS is accom-

plished by storing the images from the doublet views and manually assessing the quality

by assigning a rating score to each image or video. The examination of the CVS is usually

performed by expert laparoscopic surgeons.

The scoring system used by Laparoscopic surgeons for rating the CVS from the

images shot during surgery is based on three criteria: hepatocystic triangle is cleared of

fat and fibrous tissue, dissection of the lower one third of the gallbladder from the liver

to expose the cystic plate and two and only two structures should be seen entering the

gallbladder. The CVS with exposed cystic plate is shown in figure 5.4. The point-based

scoring system assigned 2 points for clearly viewing the structures, 0 point for not having

an immediate view and 1 point for non-optimal view [82].

90

Figure 5.3: The doublet view of the critical view of safety [82]

Figure 5.4: Cystic plate [63]

The detailed criteria for scoring is as follows:

Two structures connected to the gallbladder:

• 2 points: Two structures can immediately and clearly be seen connecting to the gall-

bladder.

• 1 point: Two structures can be seen connecting to the gallbladder, but there is some

overlap of duct and artery or a technical feature, such as poor lighting or lack of color

contrast, that interferes with the clarity of determination. The photograph requires

further study to make a definitive assessment.

91

• 0 point: Due to overlap or technical issues, 2 separated cystic structures cannot be

seen.

Cystic plate clearance:

• 2 points: Cystic plate is immediately clearly visible to approximately its bottom one

third.

• 1 point: Cystic plate is visible but overlapped by other structures so that it is not op-

timally seen or an insufficient amount of the plate is shown. The photograph requires

further study to make a definitive assessment.

• 0 point: Cystic plate not visible due to positioning, light, obstruction of view by

instruments, or coverage with clot.

Hepatocystic triangle clearance:

• 2 points: Hepatocystic triangle is cleared of tissue so that visibility of cystic struc-

tures and plate are completely unimpeded, but also assure that the viewer can ascer-

tain that no other structures are in the triangle.

• 1 point: Somewhat less than the whole triangle can be clearly seen, or technical

issues reduce the ability to see optimally. The photograph requires further study to

make a definitive assessment.

• 0 point: Tissue in the triangle obscures view of cystic structures, cystic plate and

does not allow the conclusion that there are no other structures in the triangle. Or

technical issues prevent determination of how well cleared the triangle is.

Based on this scoring system, each video or image is evaluated on different aspects of the

achievement of the CVS. The resulting set of rated videos will then be used as a valuable

source of education for training future surgeons.

92

5.2 Approach

In this section, we investigate the effectiveness of using deep learning and CNNs

in particular, in identifying the critical view of safety in a laparoscopic cholecystectomy

video. A CNN-based deep learning system can be applied to automatically and objectively

assess surgery videos for quality improvement, video-based coaching, and the technical

and cognitive milestones assessments of surgical residents. The objective is to detect the

presence of CVS in each frame of a cholecystectomy video.

We used the publicly available cholec80 dataset[104], which contains 80 videos of

laparoscopic cholecystectomy surgery. Since the videos in this dataset do not have labels

for the CVS, we manually annotated the dataset based on the achievement of the CVS. We

used the first and third criteria explained in the previous section, which are based on the

clear view of the two structures and the Hepatocytic triangle, as detecting the cystic plate

is not easy for a non-expert. Therefore, we used a binary score instead of the 0-6 scoring

system.

All the frames from the video (25 frames/second) were extracted and manually la-

beled as either 1 (CVS is present or ”positive”) or 0 (no CVS is present or ”negative”). The

training set contained 50 videos; ten videos were used as the validation set for tuning the

hyper-parameters of the CNN and the final 20 videos for testing. All the videos in training,

validation, and test sets included instances, where CVS was not achieved.

We trained a CNN based on the Inception-V3 architecture [99]. Since the CVS is

present shortly (usually 3-5 seconds) before the clipping and cutting of the Calot triangle

(table 4.1), the training set suffers from a high imbalance issue. To tackle the imbalance

issue, both over-sampling and under-sampling of the available frames were implemented

using all of the frames in the CVS region and one frame per second outside that region.

Despite this attempted solution to the imbalance issue, there was very significant number

of frames that did not contain CVS s and a very low percent of unique frames that did.

93

Thus, we applied the class re-weighting method after re-sampling. The loss function that

was used for training is the binary cross-entropy function. To further improve the results of

the CNN, the predictions were smoothed using a median filter with the size of 20.

5.3 Results

Since this is the first time CVS detection has been attempted, there is no previous

work to compare with. Also, as the labeling was performed by non-experts, there might be

minor inconsistencies in the criteria that was used for identifying the CVS in all the videos

of the training and the test sets.

In order to evaluate the performance of the CNN, we used the accuracy, precision

and recall criteria. The reason for choosing precision and recall is the high imbalance of

the validation and test sets, as mentioned above in our approach. Our accuracy using this

limited dataset is 94.6%. In other words, 94.6% of the frames were correctly predicted. The

precision is 70%, which shows the ratio of the correctly predicted CVS frames to the total

number of frames that is predicted as the CVS. The recall of 65.5% shows the percentage

of the correctly predicted frames as the CVS over all frames where the CVS is present.

Figure 5.5 shows an example of true positive, which is the achievement of the CVS

and, a true negative sample, which shows the absence of the CVS. The true negative exam-

ple is selected from the frames that belong to the short stopping time (intra-operative time

out) before the clipping and cutting starts (where the CVS needs to be checked).

For the 20 test videos, the results were obtained in real-time, which is a major im-

provement over manual inspection by trained examiners or experts.

94

Figure 5.5: (left) True positive results showing the establishment of CVS, (right) True
negative results showing the absence of CVS

5.4 Discussion and Conclusions

We proposed using deep learning to accomplish objective assessment of the critical

view of safety in laparoscopic cholecystectomy videos. The real-time performance of the

proposed CNN shows the suitability of the deep learning model in online intra-operative

applications. The limited results prove the potential of such methods in the assessment of

the safety in a cholecystectomy procedure and can be used for training and educational

purposes.

The detection of the CVS was accomplished by classifying all the frames of the

video. Therefore, the model could be used for localizing the critical view of safety in a

video as well. However, due to the very short duration of the occurrence of the CVS, the

extreme imbalance has a detrimental effect on the performance of the model. In order to

remedy this issue, the deep learning solution for identifying the achievement of the CVS

needs to be trained and evaluated using short video clips that contain only the essential

frames for detecting the CVS.

Due to the lack of a large set of videos for the assessment of the CVS and the re-

quired expertise, creating a well-annotated dataset to be used in a deep learning system is

an expensive and slow process. Though the results of the proposed model indicates the

95

suitability of such systems in assessing the CVS even while using probably inaccurate cri-

teria for labeling the data, further research needs to be performed on larger and labelled

datasets before applying the findings of this chapter to the relevant clinical applications.

96

CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

Recent advances in technology have facilitated the utilization of the rich content of

laparoscopic videos, in order to potentially reduce human error and improve the outcomes

of Laparoscopic surgery. In this dissertation, novel methods are proposed and investigated

for the automated understanding of the recorded videos or streaming videos from a laparo-

scopic procedure. Laparoscopic cholecystectomy was chosen as a typical example and as

the most common procedure, to validate the proposed methods. The following summarizes

the main contributions of the dissertation:

• Monitoring the presence of surgical tools in online and offline modes, using the con-

textual information, i.e the pattern in the co-occurrence and the ordering of tools’

usage.

• Identifying the surgical phases in order to analyze the surgical steps by considering

the short-term and long-term temporal correlations in the videos.

• Segmenting the videos by extracting the boundaries of the surgical phases in an of-

fline mode, using an attention-based model.

• Detecting and localizing the critical view of safety in cholecystectomy procedure

CNN was used as a powerful tool for learning the visual features in at least some parts

of all the proposed models. Similarly, RNNs were adapted for capturing the coherence in

the videos. Though the choice of the architectures has a considerable effect on the results

(especially for CNN, which is the dominant component in most cases), our designs do

not depend on a specific architecture, and relatively simpler architectures were chosen to

highlight the improvements caused by the main novelties in each chapter.

97

Despite the initial similarities between all the problems that have been discussed in

this dissertation, the requirements for achieving reasonable performance vary significantly.

For instance, while the detection of the presence of surgical tools is a multilabel classi-

fication problem, surgical phase detection is multiclass, and detecting the CVS is binary

classification. Furthermore, the impacts of spatial and temporal features are not the same

in all the sub-problems of analyzing a surgical video. For example, the short-term con-

sideration of the temporal dependencies are necessary for dealing with the motion blur or

occlusion and was effectively captured by the proposed RCNN architecture, whereas in

phase or CVS detection, a sliding window method which can capture a longer coherence

was more suitable, as the transitions between the phases occur only a few times (five or six

times for phase detection and only twice for CVS detection). Another common challenge in

all the proposed methods was the class imbalance issue. The choices of the compensation

methods were made based on the nature and the severity of the imbalance.

We obtained results which are better than the current for all the sub-problems that

were investigated in this dissertation. To the best of our knowledge, this was the first

attempt at solving the problems of finding the phase boundaries in laparoscopic videos and

detecting the CVS in cholecystectomy procedure.

The proposed solution can be applied to any surgical procedure to potentially en-

hance the outcome as well as the training and the education of future surgeons. The models

can potentially be used to design an integrated surgical video analysis system (SVAS). The

encouraging results show the potential of SVAS to be used in various clinical applications.

The following section presents some suggestions for the directions of future research,

based on the findings in this dissertation.

98

6.1 Future Directions

• Multi-task learning for SVAS: The analysis of surgical videos often involves per-

forming multiple tasks to capture useful information from the data. In this disser-

tation, we investigated tool and phase detections as the two essential components

in surgical video understanding. Given the high correlation between the pattern in

the tool usage and the phase, an integrated system can be designed by simultaneous

training of a deep model to perform multiple tasks. An example of such a model is

proposed in [104]. The critical ideas for designing a multi-task learning-based ap-

proach are, determining the parts of the network that are shared between the tasks

and the strategy for training. We suggest sharing the spatiotemporal feature extrac-

tion with an RCNN and using the multi-task training approach described in chapter

3. Other considerations include the imbalance compensation and the post-processing

steps.

• Tool classification based on their functionality: The proposed model for detecting

the tool usage in chapter 3 mostly relies on the appearances of the tools. Though the

temporal dependencies were considered using the RCNN architecture, the unique

functionalities of the tools were not explicitly taken into account, as the tools remain

the same in all of the videos of the cholecystectomy dataset. In other words, due to

the similarity of the tools in the training and validation sets, the spatial features were

automatically given more priority in making the prediction on the presence of the

tools. In order to check the effectiveness of a tool detection when a single tool like

a Grasper can have multiple types, a new method needs to be designed to classify

the video frames based on the functionality of the tools. A possible solution could

be using the optical flow and trajectory along with the CNN, as described in section

2.2.2.

99

• Semi-supervised tool detection: The fully supervised learning approach used in this

dissertation requires collecting a large dataset that is annotated by the experts. Also,

CNNs are known to have limitations in learning the affine transformations. In other

words, training a CNN needs all the variants in sizes and orientations of the tools

by either using an extensive data augmentation or introducing more data, especially

for detecting the presence of the tools that have definite shapes. To tackle this issue

Capsule networks have been recently proposed [77]. We believe if we use a sem-

supervised learning approach based on Capsules, we might obtain high accuracy

while using only a few labeled videos.

• Keyframes extraction: The proposed method in chapter 4 for detecting the phase

borders could potentially be applied to any application that requires extracting the

keyframes. Examples include detecting the boundaries of any events of interest. The

keyframe extraction can also be employed to summarize the videos for faster manual

analysis or storage considerations.

100

Bibliography

[1] Martn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google Research. Ten-

sorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

[2] Sajjad Abdoli, Patrick Cardinal, and Alessandro Lameiras Koerich. End-to-End

Environmental Sound Classification using a 1D Convolutional Neural Network. 4

2019.

[3] Tamer Abdulbaki Alshirbaji, Nour Aldeen Jalal, and Knut Möller. Surgical Tool

Classification in Laparoscopic Videos Using Convolutional Neural Network. Cur-

rent Directions in Biomedical Engineering, 4(1):407–410, 9 2018.

[4] Hassan Al Hajj, Mathieu Lamard, Pierre-Henri Conze, Batrice Cochener, and

Gwenol Quellec. Monitoring tool usage in surgery videos using boosted convo-

lutional and recurrent neural networks. Medical Image Analysis, 47:203–218, 7

2018.

[5] Hassan Al Hajj, Mathieu Lamard, Pierre-Henri Conze, Soumali Roychowdhury, Xi-

aowei Hu, Gabija Maršalkaitė, Odysseas Zisimopoulos, Muneer Ahmad Dedmari,

101

Fenqiang Zhao, Jonas Prellberg, Manish Sahu, Adrian Galdran, Teresa Araújo,

Duc My Vo, Chandan Panda, Navdeep Dahiya, Satoshi Kondo, Zhengbing Bian,

Arash Vahdat, Jonas Bialopetravičius, Evangello Flouty, Chenhui Qiu, Sabrina

Dill, Anirban Mukhopadhyay, Pedro Costa, Guilherme Aresta, Senthil Ramamurthy,

Sang-Woong Lee, Aurlio Campilho, Stefan Zachow, Shunren Xia, Sailesh Conjeti,

Danail Stoyanov, Jogundas Armaitis, Pheng-Ann Heng, William G. Macready, Ba-

trice Cochener, and Gwenol Quellec. CATARACTS: Challenge on automatic tool

annotation for cataRACT surgery. Medical Image Analysis, 52:24–41, 2 2019.

[6] M. Allan, S. Ourselin, D. J. Hawkes, J. D. Kelly, and D. Stoyanov. 3-D Pose Es-

timation of Articulated Instruments in Robotic Minimally Invasive Surgery. IEEE

Transactions on Medical Imaging, 37(5):1204–1213, 5 2018.

[7] M. Allan, S. Ourselin, S. Thompson, D. J. Hawkes, J. Kelly, and D. Stoyanov.

Toward Detection and Localization of Instruments in Minimally Invasive Surgery.

IEEE Transactions on Biomedical Engineering, 60(4):1050–1058, 4 2013.

[8] Sana Amanat, Muhammad Idrees, Muhammad Usman Ghani Khan, Zahoor

Rehman, Hangbae Chang, Irfan Mehmood, and Sung Wook Baik. Video Retrieval

System for Meniscal Surgery to Improve Health Care Services. Journal of Sensors,

2018:1–10, 6 2018.

[9] Maria Antico, Fumio Sasazawa, Liao Wu, Anjali Jaiprakash, Jonathan Roberts, Ross

Crawford, Ajay K. Pandey, and Davide Fontanarosa. Ultrasound guidance in mini-

mally invasive robotic procedures. Medical Image Analysis, 54:149–167, 5 2019.

[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 7

2016.

102

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Transla-

tion by Jointly Learning to Align and Translate. 9 2014.

[12] Garth H Ballantyne. The pitfalls of laparoscopic surgery: challenges for robotics and

telerobotic surgery. Surgical laparoscopy, endoscopy & percutaneous techniques,

12(1):1–5, 2 2002.

[13] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled Sam-

pling for Sequence Prediction with Recurrent Neural Networks. In Advances in

Neural Information Processing Systems 28 (NIPS 2015), pages 1171–1179, 2015.

[14] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gra-

dient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 3

1994.

[15] David Bouget, Max Allan, Danail Stoyanov, and Pierre Jannin. Vision-based and

marker-less surgical tool detection and tracking: a review of the literature. Medical

Image Analysis, 35:633–654, 1 2017.

[16] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the

class imbalance problem in convolutional neural networks. CoRR, abs/1710.0:1–23,

2017.

[17] K. Tim Buddingh, Rinse K. Weersma, Rolf A.J. Savenije, Gooitzen M. van Dam,

and Vincent B. Nieuwenhuijs. Lower Rate of Major Bile Duct Injury and Increased

Intraoperative Management of Common Bile Duct Stones after Implementation of

Routine Intraoperative Cholangiography. Journal of the American College of Sur-

geons, 213(2):267–274, 8 2011.

[18] C Olah. Understanding LSTM Networks – colah’s blog.

103

[19] Haoye Cai, Chunyan Bai, Yu-Wing Tai, and Chi-Keung Tang. Deep Video Gen-

eration, Prediction and Completion of Human Action Sequences. pages 374–390.

Springer, Cham, 9 2018.

[20] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. On the

Local Behavior of Spaces of Natural Images. International Journal of Computer

Vision, 76(1):1–12, 1 2008.

[21] Francisco Charte, Antonio J. Rivera, Mara J. del Jesus, and Francisco Herrera. Ad-

dressing imbalance in multilabel classification: Measures and random resampling

algorithms. Neurocomputing, 163:3–16, 9 2015.

[22] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu.

Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci-

entific Reports, 8(1):6085, 12 2018.

[23] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), page 17241734, 6 2014.

[24] Shanley B. Deal, Dimitrios Stefanidis, Dana Telem, Robert D. Fanelli, Marian Mc-

Donald, Michael Ujiki, L. Michael Brunt, and Adnan A. Alseidi. Evaluation of

crowd-sourced assessment of the critical view of safety in laparoscopic cholecystec-

tomy. Surgical Endoscopy, 31(12):5094–5100, 12 2017.

[25] Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan,

Sergio Guadarrama, Kate Saenko, and Trevor Darrell. Long-Term Recurrent Con-

104

volutional Networks for Visual Recognition and Description. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(4):677–691, 4 2017.

[26] Timothy Dozat. Incorporating Nesterov Momentum into Adam. In ICLR 2016

workshop, 2 2016.

[27] Xiaofei Du, Maximilian Allan, Alessio Dore, Sebastien Ourselin, David Hawkes,

John D. Kelly, and Danail Stoyanov. Combined 2D and 3D tracking of surgical in-

struments for minimally invasive and robotic-assisted surgery. International Journal

of Computer Assisted Radiology and Surgery, 11(6):1109–1119, 6 2016.

[28] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for On-

line Learning and Stochastic Optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[29] Robert Elfring, Matas de la Fuente, and Klaus Radermacher. Assessment of optical

localizer accuracy for computer aided surgery systems. Computer Aided Surgery,

15(1-3):1–12, 2 2010.

[30] Germain Forestier, Florent Lalys, Laurent Riffaud, D. Louis Collins, Jurgen Meix-

ensberger, Shafik N. Wassef, Thomas Neumuth, Benoit Goulet, and Pierre Jannin.

Multi-site study of surgical practice in neurosurgery based on surgical process mod-

els. Journal of Biomedical Informatics, 46(5):822–829, 10 2013.

[31] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-

Martinez, Pablo Martinez-Gonzalez, and Jose Garcia-Rodriguez. A survey on deep

learning techniques for image and video semantic segmentation. Applied Soft Com-

puting, 70:41–65, 9 2018.

105

[32] Eva Gibaja and Sebastin Ventura. A Tutorial on Multilabel Learning. ACM Com-

puting Surveys, 47(3):1–38, 4 2015.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.

[34] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, vol-

ume 385 of Studies in Computational Intelligence. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012.

[35] Kazuyuki Hara, Daisuke Saitoh, and Hayaru Shouno. Analysis of Dropout Learning

Regarded as Ensemble Learning. pages 72–79. Springer, Cham, 2016.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning

for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778. IEEE, 6 2016.

[37] Sepp Hochreiter and Jrgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 9(8):1735–1780, 11 1997.

[38] Xiaowei Hu, Lequan Yu, Hao Chen, Jing Qin, and Pheng-Ann Heng. AGNet:

Attention-Guided Network for Surgical Tool Presence Detection. In Deep Learning

in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,

pages 186–194. Springer, Cham, 2017.

[39] D H HUBEL and T N WIESEL. Receptive fields of single neurones in the cat’s

striate cortex. The Journal of physiology, 148(3):574–91, 10 1959.

[40] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift. In the 32nd International Con-

ference on Machine Learning, PMLR, pages 448–456, 6 2015.

106

[41] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D Convolutional Neural Networks

for Human Action Recognition. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 35(1):221–231, 1 2013.

[42] Amy Jin, Serena Yeung, Jeffrey Jopling, Jonathan Krause, Dan Azagury, Arnold

Milstein, and Li Fei-Fei. Tool Detection and Operative Skill Assessment in Surgical

Videos Using Region-Based Convolutional Neural Networks. In 2018 IEEE Winter

Conference on Applications of Computer Vision (WACV), pages 691–699. IEEE, 3

2018.

[43] Yueming Jin, Qi Dou, Hao Chen, Lequan Yu, and Pheng-Ann Heng. EndoRCN :

Recurrent Convolutional Networks for Recognition of Surgical Workflow in Chole-

cystectomy Procedure Video. pages 2–5.

[44] Yueming Jin, Qi Dou, Hao Chen, Lequan Yu, Jing Qin, Chi-Wing Fu, and Pheng-

Ann Heng. SV-RCNet: Workflow Recognition From Surgical Videos Using Recur-

rent Convolutional Network. IEEE Transactions on Medical Imaging, 37(5):1114–

1126, 5 2018.

[45] Jakub Kaczynski and Joanna Hilton. A gallbladder with the "hidden cystic

duct": A brief overview of various surgical techniques of the Calot’s triangle

dissection. Interventional Medicine & Applied Science, 7(1):42–45, 2015.

[46] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande,

Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander Dieleman, and

Koray Kavukcuoglu. Efficient Neural Audio Synthesis. 2 2018.

[47] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan, Xihui Liu, and

Xiaogang Wang. Object Detection in Videos with Tubelet Proposal Networks. In

107

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

889–897. IEEE, 7 2017.

[48] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Fei Fei Li. Large-scale video classification with convolutional neural

networks. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 1725–1732, 2014.

[49] Frederik Keus, Jeroen de Jong, H G Gooszen, and C JHM Laarhoven. Laparo-

scopic versus open cholecystectomy for patients with symptomatic cholecystolithia-

sis. Cochrane Database of Systematic Reviews, (4):CD006231, 10 2006.

[50] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

12 2014.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification

with Deep Convolutional Neural Networks. In Advances In Neural Information

Processing Systems, pages 1097–1105, 2012.

[52] Florent Lalys and Pierre Jannin. Surgical process modelling: a review. International

Journal of Computer Assisted Radiology and Surgery, 9(3):495–511, 5 2014.

[53] Alex M. Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng

Zhang, Aaron C. Courville, and Yoshua Bengio. Professor Forcing: A New Algo-

rithm for Training Recurrent Networks. In Advances in Neural Information Process-

ing Systems 29 (NIPS 2016), pages 4601–4609, 2016.

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

108

[55] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 5 2015.

[56] Huayu Li, Martin Renqiang Min, Yong Ge, and Asim Kadav. A Context-aware

Attention Network for Interactive Question Answering. In Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

- KDD ’17, pages 927–935, New York, New York, USA, 2017. ACM Press.

[57] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Se-

tio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram

van Ginneken, and Clara I. Sánchez. A survey on deep learning in medical image

analysis. Medical Image Analysis, 42:60–88, 12 2017.

[58] G S Litynski. Erich Mühe and the rejection of laparoscopic cholecystectomy (1985):

a surgeon ahead of his time. JSLS : Journal of the Society of Laparoendoscopic

Surgeons, 2(4):341–6, 1998.

[59] Constantinos Loukas. Video content analysis of surgical procedures. Surgical En-

doscopy, 32(2):553–568, 2 2018.

[60] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Ap-

proaches to Attention-based Neural Machine Translation. 8 2015.

[61] Kaustuv Mishra, Rachana Sathish, and Debdoot Sheet. Learning Latent Temporal

Connectionism of Deep Residual Visual Abstractions for Identifying Surgical Tools

in Laparoscopy Procedures. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 2233–2240. IEEE, 7 2017.

[62] Paulo Mota, Nuno Carvalho, Emanuel Carvalho-Dias, Manuel João Costa, Jorge

Correia-Pinto, and Estevo Lima. Video-Based Surgical Learning: Improving Trainee

109

Education and Preparation for Surgery. Journal of Surgical Education, 75(3):828–

835, 5 2018.

[63] Sanjay Nagral. Anatomy relevant to cholecystectomy. Technical Report 2, 2005.

[64] Babak Namazi, Ganesh Sankaranarayanan, and Venkat Devarajan. Automatic De-

tection of Surgical Phases in Laparoscopic Videos. In Proceedings on the Interna-

tional Conference in Artificial Intelligence (ICAI), pages 124–130, 2018.

[65] Chinedu Innocent Nwoye, Didier Mutter, Jacques Marescaux, and Nicolas Padoy.

Weakly supervised convolutional LSTM approach for tool tracking in laparo-

scopic videos. International Journal of Computer Assisted Radiology and Surgery,

14(6):1059–1067, 6 2019.

[66] Nicolas Padoy, Tobias Blum, Seyed-Ahmad Ahmadi, Hubertus Feussner, and Marie-

Odile Berger. Statistical modeling and recognition of surgical workflow. Medical

Image Analysis, 16(3):632–641, 4 2012.

[67] Anibal Pedraza, Jaime Gallego, Samuel Lopez, Lucia Gonzalez, Arvydas Lauri-

navicius, and Gloria Bueno. Glomerulus Classification with Convolutional Neural

Networks. pages 839–849. Springer, Cham, 2017.

[68] Gabriel Pereyra, George Tucker, Jan Chorowski, ukasz Kaiser, and Geoffrey Hin-

ton. Regularizing Neural Networks by Penalizing Confident Output Distributions. 1

2017.

[69] Jonas Prellberg and Oliver Kramer. Multi-label Classification of Surgical Tools with

Convolutional Neural Networks. In 2018 International Joint Conference on Neural

Networks (IJCNN), pages 1–8. IEEE, 7 2018.

110

[70] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schluter, Shuo-Yiin Chang, and Tara

Sainath. Deep Learning for Audio Signal Processing. IEEE Journal of Selected

Topics in Signal Processing, 13(2):206–219, 5 2019.

[71] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural

Networks, 12(1):145–151, 1 1999.

[72] Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, Carla J Brodley Read,

B Pfahringer, G Holmes, E Frank, and J Read. Classifier chains for multi-label

classification. Mach Learn, 85:333–359, 2011.

[73] Austin Reiter, Peter K. Allen, and Tao Zhao. Feature Classification for Tracking

Articulated Surgical Tools. pages 592–600. Springer, Berlin, Heidelberg, 2012.

[74] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[75] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323(6088):533–536, 10 1986.

[76] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-

national Journal of Computer Vision, 115(3):211–252, 12 2015.

[77] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic Routing Between

Capsules. In Advances in Neural Information Processing Systems 30 (NIPS 2017),

pages 3856–3866, 2017.

111

[78] Manish Sahu, Anirban Mukhopadhyay, Angelika Szengel, and Stefan Zachow. Tool

and Phase recognition using contextual CNN features. Deep Learning in Medical

Image Analysis and Multimodal Learning for Clinical Decision Support, pages 186–

194, 2016.

[79] Manish Sahu, Anirban Mukhopadhyay, Angelika Szengel, and Stefan Zachow. Ad-

dressing multi-label imbalance problem of surgical tool detection using CNN. Inter-

national Journal of Computer Assisted Radiology and Surgery, 12(6):1013–1020, 6

2017.

[80] Tim Salimans and Durk P. Kingma. Weight Normalization: A Simple Reparame-

terization to Accelerate Training of Deep Neural Networks. In Advances in Neural

Information Processing Systems 29 (NIPS 2016), pages 901–909, 2016.

[81] Sampurna Roy. Normal Anatomy of the Gallbladder.

[82] Dominic E. Sanford and Steven M. Strasberg. A Simple Effective Method for Gen-

eration of a Permanent Record of the Critical View of Safety during Laparoscopic

Cholecystectomy by Intraoperative Doublet Photography. Journal of the American

College of Surgeons, 218(2):170–178, 2 2014.

[83] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How

Does Batch Normalization Help Optimization? In Advances in Neural Information

Processing Systems 31 (NIPS 2018), pages 2483–2493, 2018.

[84] Duygu Sarikaya, Jason J. Corso, and Khurshid A. Guru. Detection and Localiza-

tion of Robotic Tools in Robot-Assisted Surgery Videos Using Deep Neural Net-

works for Region Proposal and Detection. IEEE Transactions on Medical Imaging,

36(7):1542–1549, 7 2017.

112

[85] Christopher P. Scally, Oliver A. Varban, Arthur M. Carlin, John D. Birkmeyer, and

Justin B. Dimick. Video Ratings of Surgical Skill and Late Outcomes of Bariatric

Surgery. JAMA Surgery, 151(6):e160428, 6 2016.

[86] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing, 45(11):2673–2681, 1997.

[87] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations from Deep

Networks via Gradient-Based Localization. In 2017 IEEE International Conference

on Computer Vision (ICCV), pages 618–626. IEEE, 10 2017.

[88] Daniel M. Shabanzadeh and Lars T. Sørensen. Laparoscopic Surgery Compared

With Open Surgery Decreases Surgical Site Infection in Obese Patients. Annals of

Surgery, 256(6):934–945, 12 2012.

[89] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. Neural

Abstractive Text Summarization with Sequence-to-Sequence Models. 12 2018.

[90] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal Action Localization in

Untrimmed Videos via Multi-stage CNNs. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1049–1058. IEEE, 6 2016.

[91] Karen Simonyan and Andrew Zisserman. Two-Stream Convolutional Networks for

Action Recognition in Videos, 2014.

[92] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. 9 2014.

113

[93] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, and Ruslan Salakhutdinov.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Technical

report, 2014.

[94] S M Strasberg, M Hertl, and N J Soper. An analysis of the problem of biliary injury

during laparoscopic cholecystectomy. Journal of the American College of Surgeons,

180(1):101–25, 1 1995.

[95] Steven M. Strasberg and L. Michael Brunt. Rationale and Use of the Critical View

of Safety in Laparoscopic Cholecystectomy. Journal of the American College of

Surgeons, 211(1):132–138, 7 2010.

[96] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with

Neural Networks. In Advances in Neural Information Processing Systems 27 (NIPS

2014), pages 3104–3112, 2014.

[97] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning. In Thirty-

First AAAI Conference on Artificial Intelligence, 2 2017.

[98] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, volume 07-12-June, pages 1–9, 2015.

[99] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826.

IEEE, 6 2016.

114

[100] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.

Learning Spatiotemporal Features with 3D Convolutional Networks. In 2015 IEEE

International Conference on Computer Vision (ICCV), pages 4489–4497. IEEE, 12

2015.

[101] Abhishek Trehan, Ashton Barnett-Vanes, Matthew J Carty, Peter McCulloch, and

Mahiben Maruthappu. The impact of feedback of intraoperative technical perfor-

mance in surgery: a systematic review. BMJ open, 5(6):e006759, 6 2015.

[102] Zhigang Tu, Wei Xie, Dejun Zhang, Ronald Poppe, Remco C. Veltkamp, Baoxin Li,

and Junsong Yuan. A survey of variational and CNN-based optical flow techniques.

Signal Processing: Image Communication, 72:9–24, 3 2019.

[103] Andru P. Twinanda, Didier Mutter, Jacques Marescaux, Michel de Mathelin, and

Nicolas Padoy. Single- and Multi-Task Architectures for Tool Presence Detection

Challenge at M2CAI 2016. 10 2016.

[104] Andru P. Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel

de Mathelin, and Nicolas Padoy. EndoNet: A Deep Architecture for Recognition

Tasks on Laparoscopic Videos. IEEE Transactions on Medical Imaging, 36(1):86–

97, 1 2017.

[105] Andru Putra Twinanda, Nicolas Padoy, Mrs Jocelyne Troccaz, and Gregory Hager.

Vision-based Approaches for Surgical Activity Recognition Using Laparoscopic and

RBGD Videos. PhD thesis, 2017.

[106] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization:

The Missing Ingredient for Fast Stylization. 7 2016.

115

[107] Armine Vardazaryan, Didier Mutter, Jacques Marescaux, and Nicolas Padoy.

Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos. 6 2018.

[108] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In

Advances in Neural Information Processing Systems 30 (NIPS 2017), pages 5998–

6008, 2017.

[109] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In Advances

in Neural Information Processing Systems 28 (NIPS 2015), pages 2692–2700, 2015.

[110] Sheng Wang, Ashwin Raju, and Junzhou Huang. Deep learning based multi-label

classification for surgical tool presence detection in laparoscopic videos. In Pro-

ceedings - International Symposium on Biomedical Imaging, pages 620–623, 2017.

[111] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceed-

ings of the IEEE, 78(10):1550–1560, 1990.

[112] Daniel Wesierski and Anna Jezierska. Instrument detection and pose estimation

with rigid part mixtures model in video-assisted surgeries. Medical Image Analysis,

46:244–265, 5 2018.

[113] Ronald J. Williams and David Zipser. A Learning Algorithm for Continually Run-

ning Fully Recurrent Neural Networks. Neural Computation, 1(2):270–280, 6 1989.

[114] Yuxin Wu and Kaiming He. Group Normalization. In The European Conference on

Computer Vision (ECCV), pages 3–19, 2018.

[115] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhutdinov, Richard S Zemel, and Yoshua Bengio. Show, Attend and Tell: Neural

Image Caption Generation with Visual Attention. In 32nd International Conference

116

on Machine Learning, ICML, pages 2048–2057. International Machine Learning

Society (IMLS), 2015.

[116] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent

Trends in Deep Learning Based Natural Language Processing [Review Article].

IEEE Computational Intelligence Magazine, 13(3):55–75, 8 2018.

[117] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 12 2012.

[118] Aneeq Zia, Daniel Castro, and Irfan Essa. Fine-tuning Deep Architectures for Sur-

gical Tool Detection. In Workshop and Challenges on Modeling and Monitoring of

Computer Assisted Interventions (M2CAI), 2016.

[119] Aneeq Zia, Yachna Sharma, Vinay Bettadapura, Eric L. Sarin, Thomas Ploetz,

Mark A. Clements, and Irfan Essa. Automated video-based assessment of surgi-

cal skills for training and evaluation in medical schools. International Journal of

Computer Assisted Radiology and Surgery, 11(9):1623–1636, 9 2016.

[120] Odysseas Zisimopoulos, Evangello Flouty, Mark Stacey, Sam Muscroft, Petros Gi-

ataganas, Jean Nehme, Andre Chow, and Danail Stoyanov. Can surgical simulation

be used to train detection and classification of neural networks? Healthcare tech-

nology letters, 4(5):216–222, 10 2017.

117

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	1. INTRODUCTION
	1.1 Applications of Surgical Video Understanding
	1.2 Vision-based Video Analysis
	1.3 Problem Statement
	1.4 Outline

	2. DEEP LEARNING
	2.1 Deep Learning Components
	2.1.1 Artificial Neural Networks
	2.1.2 Convolutional Neural Networks
	2.1.3 Recurrent Neural Networks

	2.2 Deep Learning Applications
	2.2.1 Regression and Classification
	2.2.2 Video Processing

	3. SURGICAL TOOL DETECTION
	3.1 Approach
	3.2 Methodology of LapTool-Net
	3.2.1 Multi-label Classification
	3.2.2 Spatio-temporal Features
	3.2.3 Decision Model
	3.2.4 Class Imbalance
	3.2.5 Multi-task Training
	3.2.6 Post-processing

	3.3 Experiments and Results
	3.3.1 Metrics
	3.3.2 CNN Results
	3.3.3 LapTool-Net Results
	3.3.4 Model Ensemble
	3.3.5 Tools Localization
	3.3.6 Comparison

	3.4 Conclusions

	4. SURGICAL WORKFLOW DETECTION
	4.1 Frame-level Phase Detection
	4.1.1 Methodology of SPD
	4.1.2 Experimental Setup
	4.1.3 Results

	4.2 Phase Boundary Detection
	4.2.1 Methodology of APBD
	4.2.2 Experiments and Results
	4.2.3 Conclusions

	5. CRITICAL VIEW OF SAFETY
	5.1 Criteria for Evaluating the Establishment of CVS
	5.2 Approach
	5.3 Results
	5.4 Discussion and Conclusions

	6. CONCLUSION AND FUTURE DIRECTIONS
	6.1 Future Directions

	Bibliography

