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Abstract

Training methods for both shallow and deep neural nets are dominated by first or-

der algorithms related to back propagation and conjugate gradient. However, these

methods lack affine invariance so performance is damaged by nonzero input means,

dependent inputs, dependent hidden units and the use of only one learning factor.

This dissertation reviews affine invariance and shows how MLP training can be made

partially affine invariant when Newton’s method is used to train small numbers of MLP

parameters. Several novel methods are proposed for scalable partially affine invariant

MLP training. The potential application of the algorithm to deep learning is dis-

cussed. Ten-fold testing errors for several datasets show that the proposed algorithm

outperforms back propagation and conjugate gradient, and that it scales far better

than Levenberg-Marquardt.
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Chapter 1

Introduction

1.1 Machine learning and neural networks

On summer 1956, a group of scientists gathered at Dartmouth to form a new branch

of science which is Artificial Intelligent [55]. They had the ambition to make machines

that have awareness and that can perform more complicated tasks. They did make

some progress since carefully programmed computers can do simple arithmetic, play

chess and perform many human-like tasks. While humans evolve and write code for

machines, machines learned very little.

Later, in 1959, scientists realized that instead of teaching computers everything, it

might be better to teach them to learn by themselves. Arthur Samuel is one of these

scientists. His checker-playing program [75] was among the world’s first successful self-

learning programs that led to the term ”Machine Learning.” Machine learning is defined

as a set of methods that can automatically detect patterns in data, and then use the

uncovered patterns to predict future data, or to perform other kinds of decision making

under uncertainty[57]. There are many different machine learning methods including

neural networks, support vector machines [11] and K-Nearest neighbor classifiers [18].

Neural networks were first proposed by Rosenblatt in the form of the perceptron

[70] which is a linear network. After the development of the nonlinear multilayer per-

ceptron (MLP) [53] and the backpropagation training algorithm [82] for it, the field

of neural network developed greatly. Neural networks work well in many function ap-

proximation and classification applications such as pattern recognition [7, 7, 13, 22,

38, 56, 58, 63, 66, 74, 80], remote sensing [4, 33, 50], image processing [1, 8, 23], power

1



CHAPTER 1. INTRODUCTION 2

load forecasting [42, 45, 72] and nonlinear estimation [46, 64, 65, 81]. The multilayer

perceptron (MLP) is the most widely used type of neural network [77]. Neural net-

works are well known for their universal approximation property [31], which means

that they can approximate any continuous function, given enough hidden units. Study

in [67] shows that if a MLP’s parameters are chosen to minimize a squared-error cost

function, the outputs estimate the conditional probabilities of the Bayesian posteriori.

However, the no free lunch theorem[84] states that no machine learning algorithm

can beat random guessing over all possible functions that need to be learned. Fortu-

nately, these results hold only when one averages over all possible generating distribu-

tions [26], while the goal of machine learning is trying to learn some specific functions

of some particular distributions that we care about [5]. The straightforward way to do

machine learning is that, we first collect data as much as possible from the domain that

our desired algorithm was supposed to learn, the data can be both label and unlabeled.

Then we train models and algorithms trying to learn the distributions of collected

data. That explains why neural networks still perform so well, regardless of the no

free lunch theorem, and preparing data is such a crucial task in training any machine

learning models.

There are many different methods for machine learning. In the next chapter, we

review a few of those.

1.2 Methods and reference

Boosting is a powerful technique for combining multiple ’base’ [9] classifiers to pro-

duce a committee whose performance can be significantly better than that of any of

the base classifier. The most widely used boosting approach is AdaBoost [24] which

stands for ”adaptive boosting”. Adaboost collects all ”base” classifiers’ decisions, then

uses training to adjust the weights given to each of them. The idea is that, better

”base” classifiers should have stronger weights while worse ”base” classifiers should

have smaller weights. Adaboost can have a much better performance than the best of

the ”base” classifiers.

The support vector machine (SVM) [11] was a popular and dominant classification

method before the arrival of deep learning. SVMs solve the problem of maximizing the

distance or margin separating two classes in input space. The problem turns out to be



CHAPTER 1. INTRODUCTION 3

convex, and any local solution is also a global solution [9]. Using kernel methods such

as RBF can boost the performance of the SVM [32].

Deep learning is a set of machine learning models that allow computers to learn

from experience and understand the world in terms of a hierarchy of concepts, with

each concept defined through its relation to simpler concepts [26]. The graph of such

model is deep with many layers, leading to the name ”deep learning”. The layers are

neural networks that can be trained individually or simultaneously. The current deep

learning renaissance began when Hinton [30] demonstrated that a neural network could

outperform the RBF kernel SVM on the MNIST benchmark [26]. Deep learning has

many successful applications, in image recognition [37], speech recognition [54], natural

language processing [17].

Even though there have been many successes, neural nets still have many problems.

First, training is still heavily based on first order backpropagation which is slow, easily

falls into local minima, and is not affine invariant. Second, current neural nets and

deep learning models have an excessive number of parameters that need to be manually

adjusted. Third, deep learning works well, but there is still no convincing theory for

it.

1.3 Dissertation organization

This dissertation provides solutions to some of the remaining neural network problems

are described. The second chapter describes our notation for the MLP, then reviews

some well known first-order training methods. In the third chapter, a brief review of

second-order training methods is given. The fourth chapter defines affine invariance

and partial affine invariance (PAI). Two algorithms with PAI are demonstrated. In the

fifth chapter, relevant problems are given and approaches for solving them are listed.

Preliminary work is described in chapter six. Conclusions are given in chapter seven.



Chapter 2

Structure and notation

This chapter describes architecture and our notation of two popular neural network

models, the the regular multilayer perceptron (MLPs) and the convolutional neural

networks (CNNs).

2.1 MLP structure and notation

Figure (2.1) illustrates the structure of a single hidden layer MLP having an input

layer, a hidden layer and an output layer. We denote the number of hidden units

by Nh and the number of outputs by M . In order to handle hidden and output

unit thresholds, the N -dimensional input column vector xp is augmented by an extra

element xp(N + 1) = 1. Here, the input vectors are (N + 1)-dimensional, and the

desired output column vectors tp are M -dimensional. The training data {xp, tp} has

Nv pairs where p ∈ {1, 2, . . . , Nv}.
For the pth training pattern, the Nh dimensional net function vector in the hidden

layer is given by:

np = Wi · xp (2.1)

where Wi is a Nh× (N + 1) input weight matrix and the corresponding Nh + 1 dimen-

sional hidden unit activation vector op has elements op(k) = f(np(k)) where f(n) is a

sigmoid function defined as

f(n) =
1

1 + e−n
(2.2)

Only hidden units have sigmoid activation function. The hidden unit activation vector

4



CHAPTER 2. STRUCTURE AND NOTATION 5

Figure 2.1: Illustration of a Multilayer Perceptron

op also has a threshold op(Nh + 1) = 1. The M dimensional output vector for the pth

training pattern is

yp = Wo · op (2.3)

where Wo ∈ RM×(Nh+1) contains weights from hidden units to the outputs. Some

quantities that we define for convenience are the number of network weights Nw =

Nh(N + 1) +M(Nh + 1) and the number of basis functions Nu = Nh + 1.

Neural network trainings methods adjust the pre-selected weights to reduce a cost

function. The pre-selected weights are often randomly initialized. In this proposal, we

use the Mean Square Error (MSE) as the cost function or objective function, which we

will often abbreviate as E. The MSE over a training set, called the training error, is

given by

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (2.4)

where yp(i) is the ith element of yp given in (3). Clearly, yp is a function of weight
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matrices Wi, Wo or w where

w = vec(Wi,Wo) (2.5)

and where the vec() operation arranges one or more matrices into a column vector.

2.2 Convolutional neural networks

Convolution neural networks (CNNs) are a specialized kind of neural network for pro-

cessing input data that has a known grid-like topology [26], as in images. It is con-

sidered to be the one of the first deep models that work well. It is also the first deep

architecture used in a commercial product[40]. In fact, convolution neural networks do

not need to be deep to work well in some tasks. Figure (2.2) illustrates the structure

of a simple convolution neural network, with one 32 filters-convolutional layer, one

max-pooling layer, and one fully connected layer.

Convolution Max-Pooling Fully connected

1@28x28

32@28x28 32@14x14

1x10

Figure 2.2: CNNs with 1 convolution layer, 1 max-pooling and one fully connected layer
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Firstly, each 28 × 28 binary image is convolved with 32 5 × 5 filters to create 32

28× 28 images. The max-pooling layer reduces size of each image to 14× 14.

Op(k) = pool

(
Xp ∗Wi(k)

)
(2.6)

where Xp is the pth image of the training data, Wi(k) is the weights of the kth filter,

and (*) is the convolution operation. The pool() is the sub-sampling operation[26].

There are different types of pooling such as max − pooling, average − pooling..., in

this dissertation, we use 2× 2 max− pooling which acts as a 2× 2 sub-sampling filter

and output the max value in the 4 elements. Then, each image is flatten out to be a

vector, before plugging in the activation function and then the fully connected layer.

yp = Wo · f(vec(Op)) (2.7)

where the vec() operation flattens all pixels of Op into a vector, and f() is the activation

function applied element wise to the input matrix. We use ReLU() activation in this

dissertation, but all described training methods will work with any activation functions

such as sigmoid() or tanh(). The cost function is still the mean square error (MSE) as

in equation (2.4). We apply the idea of output-reset as described in [79] to make the

MSE work well for classification tasks.



Chapter 3

Neural network training methods

Training methods for MLPs can be classified as first or second order training methods.

First order training methods are scalable and are heavily used in deep learning, while

second order method are not popular in the machine learning community due to their

lack of scalability. Figure 3.1 presents an algorithm tree with some typical first and

second order methods.

In this section, we review MLP structure and notation. Widely used, scalable first

order neural network training methods are described.

Figure 3.1: An algorithms tree with some typical training methods

8



CHAPTER 3. NEURAL NETWORK TRAINING METHODS 9

3.1 First order training of shallow neural networks

First order training methods are algorithms that use only first order derivative of the

cost function with respect to the weights. So basically, they only use gradient infor-

mation to perform training with make them scalable and were used heavily, especially

in deep learning.

3.1.1 Steepest descent

The steepest descent algorithm [9, 12] is the first on the left side of the training algo-

rithm tree in Fig 3.1. It allows the information from the cost function to flow backward

through the network in order to compute the gradient [26], which is the first negative

derivative of the cost function we want to minimize with respect to the weights as

g = −∂E
∂w

(3.1)

The recursive method for calculating the gradient is called backpropagation [73]. The

gradient is used to update the weights as.

w← w + z · g (3.2)

where z is the step size or learning rate, and is usually a small positive constant.

Steepest descent does decrease the cost function but really slowly. A line search can be

used to find the learning rate that gives the biggest decrease in the cost function but it

is not very effective. There are several different ways to manipulate the weight update

based upon gradient, each resulting in a different training method. The learning rate

can also be determined using the Gaussian-Newton method [41] as

z = −
∂E
∂z
∂2E
∂z2

(3.3)

The steepest descent algorithm is summarized as follows
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Algorithm 1 Steepest descent algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Calculate g
4: Compute z from equation (3.3)
5: Update w as w ← w + z · g
6: it ← it + 1
7: end while

3.1.2 Conjugate gradient algorithm

Conjugate gradient [25], the next algorithm on the algorithm tree, addresses the slow

convergence problem of steepest descent by removing the influence of previous itera-

tions’ gradients from the current ones, creating a new search direction which is con-

jugate to the previous ones. Instead of using the gradient to update the weights,

conjugate gradient uses the vector

p← −g + β · p (3.4)

where β is calculated as the ratio of the gradient’s energies from two consecutive iter-

ations. Then the weights are updated as

w← w + λ · p (3.5)

where λ is the learning rate, which calculated to maximize the objective function

decrease.

Conjugate gradient (CG) is guaranteed to converge to a global minimum in Nw

iterations if the cost function is quadratic [12], where Nw is the number of unknowns.

Conjugate gradient performs better than steepest descent even when the cost function

is non-quadratic. Since there is no Hessian involved, CG is scalable and widely used in

training MLPs for big datasets. The conjugate gradient can be summarized as follows

3.1.3 Whitening using Hidden Weight Optimization

Hidden weight optimization (HWO) [86], which is equivalent to applying whitening

[9] to the input data, is an improvement over regular back propagation. HWO still
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Algorithm 2 Conjugate gradient algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Calculate p from g
4: Compute z from equation (3.3)
5: Update w as w ← w + z · p
6: it ← it + 1
7: end while

calculates the negative input gradient from input weight matrix Wi as

Gi = − ∂E

∂Wi

(3.6)

HWO then finds improved input gradient matrix as Gi hwo by solving the following

linear equations.

Ri ·Gi hwo = Gi (3.7)

where Ri is the input autocorrelation matrix defined as

Ri =
1

Nv

Nv∑
p=1

xp · xT
p (3.8)

We then use Gi hwo to update the input weight matrix as

Wi ←Wi + z ·Gi hwo (3.9)

where z is the learning rate in regular back propagation algorithm of part B. Then we

update output weight using output weight optimization (OWO) [51] which is a second

order method and will be explained in the next section. The advantage of HWO is

that, while whitening is a pre-processing method which is apply only for input raw

data, HWO can apply to training any layer in the neural network.

Hidden weight optimization (HWO) [86] only use HWO for input weights which

has similar effect as whitening input data. We can do the same to improve the weight

change matrix of output weights. Similar to changing input weight gradient, the output
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Algorithm 3 Hidden weights optimization algorithm

Initialize Wi, Wo, Nit , it← 0
while it < Nit do

Calculate gradient matrices Gi

Update gradient matrices to HWO by using equation (3.7)
Compute the learning rate z using Newton’s method as equation (3.3)
Update input weight matrix Wi ←Wi + z ·Gi hwo

Update output weight matrix using OWO
it ← it + 1

end while

weight gradient can be updated as

Go hwo = Go ·R−1o (3.10)

where Go is the output weight gradient matrix and Ro is the output autocorrelation

matrix defined as

Ro =
1

Nv

Nv∑
p=1

Op ·OT
p (3.11)

then we can use Go hwo to update the output weight matrix.

3.2 Second order training methods

Second order training methods are algorithms that used both first and second order

derivative to perform learning which make them have a kind of affine invariance. In

this section we investigate affine invariance properties and then review some well-known

second order training methods.

3.2.1 Affine invariance

Weight initialization has been widely recognized as one of the most effective critical

steps in the training of neural networks [19, 20, 52, 60, 85]. In general, if we have a

different initial set of weights, the training will return different results. To address this

problem, we investigate the affine invariance property of MLP training via equivalent

network theory.

Let E(w) denote the the MLP error in term of w
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Definition 1 Two networks are strictly equivalent if E(w) = E(Tw′) where w = Tw′

for a square nonsingular matrix T.

In other words, two networks are equivalent if the weights w of one network are

replaced by Tw′ in the other network. As a result, there are infinitely many equivalent

networks, each with a different set of weights w′. Affine invariance in neural networks

can be defined as follows [12].

Definition 2 If two strictly equivalent networks are formed whose objective func-

tions satisfy E(w) = E(Tw′) with w = Tw′, and an iteration of an optimization

method yields w← w + d and w′ ← w′ + d′, the training method is affine invariant if

d = Td′ for every Nw ×Nw nonsingular matrix T.

In other words, two equivalent networks will be still equivalent after one iteration

of an affine invariant training method. So all initially equivalent networks will have the

same training performance if the training method is affine invariant. As a result, affine

invariant training is more independent of weight initialization than non-affine invariant

methods. Unfortunately, first order MLP training methods lack affine invariance.

Lemma 3.2.1 Steepest descent with constant learning rate is not affine invariant.

Proof

Consider two strictly equivalent networks which satisfy E(w) = E(Tw′) where w =

Tw′, so
∂w

∂w′
= T (3.12)

Applying the chain rule to the derivative of the second network

g′ = − ∂E
∂w′

= −
(
∂w

∂w′

)T

· ∂E
∂w

= TTg

(3.13)

As in defintion 2, the training method is affine invariance if the weight change vectors
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λg and λg′ satisfy

E(w + λg) = E(T(w′ + λg′))

= E(w + λTg′)

= E(w + λT ·TTg)

(3.14)

which only happens if T is an orthogonal matrix. Clearly, steepest descent lacks affine

invariance. Conjugate gradient also has the same limitation.

Lemma 3.2.2 Conjugate gradient is not affine invariant.

Proof

The first iteration of CG is actually steepest descent ,so CG also lacks affine invariance

Definition 3. If a training algorithm satisfies the conditions of affine invariance in

Definition 2 except that T has less than N2
w free parameters, the training algorithm is

partially affine invariant (PAI).

Different PAI algorithms have different number of free parameters in its T matrix. In

order to evaluate affine invariant properties of PAI algorithms, we define PAI order as

follows

Definition 4. If a training algorithm satisfies the conditions of partially affine in-

variance in Definition 3, then the PAI order of this method is the total number of free

parameters in the T matrix divided by total number of elements in the T matrix.

We have been using Newton’s method to develop different training algorithms that

have different orders of affine invariance. The following table gives a sense of how much

affine invariance these methods have.

Table 3.1: Partial affine invariance orders for various training methods

Algorithm names PAI order

Back Propagation BP2 4/N2
w

Multiple Optimal Learning Factors [48] (Nh + 1)2/N2
w

Optimal Input Gains [3] (N + 1)2/N2
w

Partially affine invariance BP [61] ((N + 1)2 + (Nh + 1)2)/N2
w

OWO-Newton [(Nh · (N + 1))2 + (M · (Nh + 1))2]/N2
w
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In Fig. 3.2, we show steepest descent’s error versus iteration number curves for two

initially equivalent MLPs. In Fig. 3.3, we perform the same experiment for CG. The

training curves start at the same point but diverge due to a lack of affine invariance.

Figure 3.2: Steepest descent diverges in equivalent networks

Figure 3.3: Conjugate gradient diverges in equivalent networks
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3.2.2 Newton’s Algorithm

Newton’s algorithm is the basis of a number of second order optimization algorithms

including Levenberg-Marquardt [44] and BFGS [62]. In this subsection, we review

Newton’s method.

Mclaurin’s second order expansion of the cost function E(d) is

E(d) = E(0)− dT ∂E

∂d
+

1

2
dT ∂

2E

∂d2
d (3.15)

where d is the weight change column vector, which has the same dimension as w. In

order to minimize E(d), we take derivative of the expansion with respect to d and set

it to 0, yielding

−∂E
∂d

+
∂2E

∂d2
d = 0 (3.16)

or

−g + H · d = 0 (3.17)

where H is the Hessian matrix and g is the gradient vector which have elements

h(m,n) =
∂2E

∂w(m)∂w(n)
(3.18)

g(n) = − ∂E

∂w(n)
(3.19)

and where w(n) is an element of the weight vector w in equation (2.5) for 1 ≤ n ≤ Nw.

The Newton direction vector d is calculated by solving the set of linear equations

Hd = g (3.20)

Update w with the direction vector d as

w← w + d (3.21)

Newton’s algorithm can be summarized in algorithm 4. It is well known that New-

ton’s algorithm has quadratic convergence and is affine invariant. Which means that

it satisfied definition 2.
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Algorithm 4 Newton’s algorithm

1: Initialize w, Nit , it← 0
2: while it < Nit do
3: Calculate g and H from equation (3.18) and equation (3.19)
4: Compute d from equation (3.20)
5: Update w as w ← w + d
6: it ← it + 1
7: end while

Lemma 3.2.3 Newton’s method is affine invariant.

Proof

The following proof is similar to the proof in [12].

Consider two strictly equivalent networks satisfying E(w) = E(Tw′) where w = Tw′.

We have g = (T−1)T · g′ as in equation (3.13). Similar, we have

H = (T−1)TH′T−1 (3.22)

where H′ is the Hessian of the second network. The weight change becomes

d = H−1g = TH′
−1

TT · (T−1)Tg′ = TH′
−1 · g′

= T · d′
(3.23)

with any non-singular T matrix, so Newton’s method is affine invariant.

3.2.3 Output Weight Optimization

Assume that the input weight matrix Wi has been determined in some fashion, usually

by random initialization. One method used to find the output weights is the output

weight optimization (OWO) algorithm [6, 51, 76] which minimizes the MSE from equa-

tion (2.4) with respect to the output weight matrix Wo. Taking the derivative of E

with respect to Wo we have

∂E

∂Wo

= − 2

Nv

[To −OWT
o ]TO (3.24)



CHAPTER 3. NEURAL NETWORK TRAINING METHODS 18

where To ∈ RNv×M is target output matrix

To =


tT1

tT2

...

tTNv

 (3.25)

and O ∈ RNv×(Nh+1) is augmented hidden activation with a constant 1

op = [1 f(np)] (3.26)

where 1 ≤ p ≤ Nv and f(n) is an activation function such as rectify linear unit (ReLU)

applied element wise to the each element of n defined as

f(n) =

n, n ≥ 0

0, otherwise
(3.27)

The outputs of activation f(n) have the same dimension as the inputs. If input n is a

scalar, then f(n) is a scalar. Alternatively, if input n is a vector, then f(n) is also a

vector with the same dimension as n. The R and C matrices are calculated as

R =
1

Nv

OTO (3.28)

C =
1

Nv

OTTo (3.29)

Equating the derivative in equation (3.24) to zero we have

RWT
o = C (3.30)

where Wo is the solution to M sets of Nu equations in Nu unknowns. These equations

can be solved using any number of methods, but special care must be taken when R is

ill-conditioned. An algorithm which solves equation (3.30) for Wo can be denoted as

output weight optimization (OWO) [6, 51, 76].

OWO is Newton’s algorithm for the output weights. We update the output weights

as Wo ← Wo + D. We use Newton’s algorithm to calculate D. The Hessian and
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gradient of equation (2.4) with respect to output weights Wo are 2R and 2RWT
o − 2C

respectively. The weight update becomes

Wo ←Wo −H−1g

= Wo + (2R)−12(C−RWT
o )

= Wo + R−1C−R−1RWT
o

= R−1C

(3.31)

This is the same solution as for OWO given in equation (3.30)

3.2.4 Levenberg-Marquardt algorithm

The LM algorithm [44] is a combination of first and second order training methods.

Since Newton’s Hessian matrix is often ill-conditioned or singular [9, 26], inverting

them is problem. Levenberg-Marquard gave a solution by adding constant terms to

the Hessian’s diagonal as

HLM = H + λ · I (3.32)

where I is an identity matrix which has the same dimension as H and λ is the constant.

Then the LM’s Hessian matrix is nonsingular and its direction vector can be calculated

by solving a set of equations

HLMdLM = g (3.33)

The λ constant is a trade-off value between first and second order for LM method. If

λ is small and close to zero, then it does not have much effect on Hessian’s matrix and

LM method approaches Newton’s method. In the opposite, if λ is big enough, it makes

the Hessian matrix becomes similar to the identity matrix, then the weights change

vector dLM is close to the gradient g; as a result, LM method approaches steepest

descent method. Including steepest descent method makes LM method also lacks of

affine invariance. In fact, there is other way to solve the non singular Hessian problem

but still maintain affine invariance properties as study in [69]. The LM algorithm can

be summarized as algorithm 5.

Most training algorithms, including BP and LM, lack affine invariance. Since CG

begins with an iteration of steepest descent, it lacks affine invariance. Newton’s al-

gorithm has affine invariance, but it cannot be reliably used to train all of a MLP’s
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Algorithm 5 LM algorithm

1: Initialize w, Nit , it← 0 and a small value for λ
2: while it < Nit do
3: Calculate the current error such as the MSE in equation (2.4)
4: Calculate g and H from equation (3.19) and equation (3.18)
5: Obtain HLM from equation (3.32)
6: Compute dLM from equation (3.33)
7: Update w as w ← w + dLM

8: Re-compute the error Enew by using the updated weights.
9: if Enew < Eold then

10: Reduce the value of λ
11: goto step 5
12: else
13: Increase the value of λ
14: end if
15: it ← it + 1
16: end while

weights. One solution to this problem is to modify Newton’s algorithm using regular-

iztion, resulting in LM. Another approach follows in the next subsections.

3.3 Output reset for classifier design

The mean square error (MSE) cost function works well for the approximation case,

since the corresponding outputs are continuous. But it might have a problem in the

classification case, when outputs are all discrete numbers. For example, we have a

target output 1 for the 4 classes case, so the target output vector is a one-hot encoding

such as

tp =


1

0

0

0

 (3.34)



CHAPTER 3. NEURAL NETWORK TRAINING METHODS 21

Assuming the output vectors we have are

yp1 =


1.5

0

0

0

 (3.35)

and

yp2 =


1

−0.5

0

0

 (3.36)

there are inconsistent errors in both cases, which cause the MSE to increase but the

error percentage does not change. We denote ic as the correct class and id is one of the

incorrect ones. In the above example, ic = 1 and id ∈ {2, 3, 4}. Then the inconsistent

errors happen when yp(ic) > tp(ic) or yp(id) < tp(id). Output reset [79] solves the

problem. The idea is modifying the cost function and target outputs as

E ′ =
1

Nv

Nv∑
p=1

M∑
i=1

[t′p(i)− yp(i)]2 (3.37)

where t′p(i) is the modified output vectors defined as

t′p(i) = tp(i) + ap + dp(i) (3.38)

where ap and dp(i) are the values we want to find in order to optimize the modified

cost function (3.37). A straight forward way to do that is setting the derivative of E ′

with respect to ap to zero, which yields

ap =
1

M

M∑
i=1

[yp(i)− t′p(i)− dp(i)] (3.39)

and then we can update dp(i) using the found ap and the current yp, t′p as

dp(i) = yp(i)− t′p(i)− ap (3.40)
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Similar to backpropagation, the process of finding ap, and updating dp and t′p can be

performed multiple times to get a better t′p which does not cause much inconsistent

error to the MSE. We make it 3 times in the following algorithm, but it can be any

positive integer.

Algorithm 6 Output reset(OR) algorithm

1: Retrieve current yp and tp, zeros initialize ap and dp, it← 0

2: while it < 3 do

3: Calculate ap as in equation (3.39)

4: Update dp as in equation (3.40)

5: Update t′p using equation (3.38)

6: end while

An improved version of output reset (OR) has been found [27] which gives the final

answer without iteration but requires the ordering of the outputs. Unfortunately this

might not work well for large data files. Algorithm (6), used in this dissertation, can

be vectorized and run instantly.



Chapter 4

Partial affine invariance in MLP

training

One of the principal drawbacks to using MLPs is the sensitivity of training to the

initial weight values. If an MLP training algorithm has affine invariance, then the

objective function training satisfies the definition (2) for every nonsingular matrix T.

This means that training yields equivalent results for an uncountably infinite number of

different initial weight vectors. Therefore, using affine invariant training is a first step

towards making MLP training insensitive to initial weights. We’ve developed several

MLP training algorithms [3, 14, 15, 47, 48, 61, 68, 69] that use Newton’s algorithm in

each iteration to find a vector of unknown gains or learning factors. So far, we haven’t

shown the relationship between this approach and Newton’s algorithm for finding all

the network’s weights. In this section, we show that increasing the number of elements

in the unknown vector improves performance. We also show that when dim(z) < Nw ,

where Nw is the number of network weights, our algorithms have partial affine invari-

ance, rather than affine invariance for all Nw unknowns.

4.1 Error versus learning factor dimensionality

In this section we show that increasing the dimension of the unknown vector z leads

to improved algorithm performance.

23
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Lemma 4.1.1 Assume E(w) is a quadratic objective function of the Nw dimensional

weight vector w which is divided into k partitions wk as w = [wT
1 ; wT

2 ; ...wT
k ] and

gk = − ∂E
∂wk

. If one iteration of a training algorithm minimizes E with respect to the

k-dimenional vector z yielding an error Ek = E(w1 +z1g1,w2 +z2g2, ...wk +zkgk) and

k increases by splitting one of the existing partitions, then Ek+1 ≤ Ek

Proof:

The error E(w) after updating the weight vector can be modeled as:

E(w + d) = E0 + dTg +
1

2
dTHd (4.1)

where E0 is the error before updating the weights, g = [gT
1 ,g

T
2 , ...g

T
k ] denotes the

negative gradient vector and its components, H is the network’s Hessian, and d is the

weight change vector of dimension Nw. If d is found using Newton’s method, then

d = H−1g (4.2)

By contrast, the weight change vector for k groups and k learning factors is

dk = [z1g
T
1 ; z2g

T
2 ; ...zkg

T
k ] (4.3)

Given z = argminz(E(w + dk)) then

dk+1 = [z1g
T
1 ; z2g

T
2 ; ...zkag

T
ka; zkbg

T
kb] (4.4)

If zka = zkb = zk then dk = dk+1 and Ek+1 ≤ Ek. However since the k + 1 elements in

z can be improved by a new stage of Newton’s algorithm and E is quadratic, we get

Ek+1 ≤ Ek

Lemma 4.1.2 Given that k can only increase by splitting one of the existing partitions,

our algorithm becomes Newton’s algorithm as k is increased to Nw if g is not sparse.

Proof:

When the dimension of z is exactly number of weights Nw in the MLP, then each group

of weights will have only one element or one weight. The error function becomes

ENw = E(w1 + z1g1, w2 + z2w2, ...wNwgNw) (4.5)
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But Newton’s algorithm will make z1g1 = d1, z2g2 = d2, ...zNwgNw = dNw . Our learning

factor optimization performs Newton’s algorithm as long as g has no elements equal

to zero, resulting in lim
k→Nw

dk = d.

Lemma 4.1.1 indicates that increasing the dimension of the vector z leads to a better

performance per iteration. Lemma 4.1.2 proves that increasing k until it reaches Nw

leads to Newton’s method for all network weights

4.2 Multilayer optimal learning factors training

Multiple optimal learning factors (MOLF) [48] is a typical PAI training method which

order of (Nh +1)2/N2
w as mentioned in table 3.1. MOLF uses a PAI methods to update

the input weights and use OWO[51] to solve for the optimal output weights.

Consider the same cost function MSE as in equation 2.4. MOLF assigned one learning

factor for each hidden unit, so hidden unit kth has a learning factor z(k) as

wi(k, n)← wi(k, n) + z(k) · gi(k, n) (4.6)

The input gradient gi can be improved using HWO[86] as described in section 3.1.3.

The kth hidden unit net function will change as

np(k) =
N+1∑
n=1

[wi(k, n) + z(k) · gi(k, n)] · xp(n) (4.7)

The MOLF Jacobian vector has elements

j(k) = − ∂E

∂z(k)
=

2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂z(k)
(4.8)

where
∂yp(i)

∂z(k)
= woh(i, k) · o′p(k) ·

N+1∑
n=1

g(k, n) · xp(n) (4.9)
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where op(k) is the output activation of np(k), and o′p(k) is the derivative of op(k) with

respect to the net function np(k)

op(k) = f(np(k))

o′p(k) =
∂op(k)

∂np(k)

(4.10)

Elements of the MOLF input weight Gaussian-Newton Hessian are given by

H(k,m) =
2

Nv

Nv∑
p=1

M∑
i=1

∂2yp(i)

∂z(k)∂z(m)

=
2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂z(k)
· ∂yp(i)
∂z(m)

(4.11)

The learning factor vector z can be found by solving

Hz = j (4.12)

The MOLF algorithm can be summarized as algorithm 7

Algorithm 7 Multiple optimal learning factors (MOLF) algorithm

1: Initialize w, Nit , it← 0

2: while it < Nit do

3: Calculate input gradient gi and update it using HWO as in equation (3.7)

4: Compute Jacobian j and Hessian H as equation (4.8) and(4.11)

5: Solve equation (4.12) to find the learning factor vector z

6: Update the input weights as in (4.6)

7: Solving output weights by OWO as in (3.30)

8: it ← it + 1

9: end while

MOLF works really well in many datasets, its performance was published in [48].

But the MOLF’s Hessian still has the size of Nh ×Nh which can be a big matrix, and

the use of OWO makes MOLF not scale well for deep learning and big data.



Chapter 5

Problems and Proposed work

In this chapter, we explain some serious problems of MLP training, then propose tasks

that solve these problems.

5.1 Problems

• First order methods are not affine invariant

Lemmas 3.2.1 and 3.2.2 prove that first order methods such as steepest descent

and conjugate gradient are not affine invariant. As a result, they are really

sensitive to weights initialization and different affine transforms of the training

data. One important advantage of first order training methods is that they are

scalable, usually take O(Nw) operations for one training iteration. The scalability

makes first order training methods become dominant in deep learning and big

data.

• Newton’s method lacks of scalability

Lemma 3.2.3 proves that Newton’s method is affine invariant. Unfortunately,

Newton’s method is not scalable due to extensive of computation which makes

it applicable only for small networks [9]. Newton’s method requires to compute

and store a Nw × Nw Hessian matrix, which is a big number. If the network

has thousands of unknowns, then the Hessian matrix has millions elements. In

addition, Newton’s method also requires to invert the Hessian or solve a big set

of linear equations which requires O(N3
w) operations. All of these burdens makes

27
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Newton’s method suitable for only small networks which is not applicable for

deep learning.

• Redundancy in gradients

Training using regular steepest descent is slow in general. There are many dif-

ferent ways adjust the gradient to speed up training, such as conjugate gradient,

RMSProp [29] and the Adam method [35]. This suggests that the gradient has

redundancy and can be further optimized.

• OWO-Newton method is not stable

The OWO-Newton method [69] is a powerful second order training method which

can minimize the cost function much faster than all other first and second order

training methods . Unfortunetaly, OWO-Newton is not very stable and can fail

when the cost function is not quadractic. The problem’s details and its solution

will be discussed in section 7.4.2
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5.2 Objectives and Tasks

Our objectives are to (1) develop highly scalable one-step second order methods for

large networks and (2) improve a two-step second order method for smaller networks.

The proposed tasks are as follows

• T1. Develop a scalable second order method

First order methods are scalable but not affine invariant. Newton’s method is

affine invariant but scalable. We want to develop a theory of methods which can

take advantage of affine invariance but still be scalable. Part of theory is already

published in [61].

• T2. Develop a scalable gradient method for ReLU networks

Rectify linear unit (ReLU) is the dominating activation function in training neural

network and deep learning, which motivates us to develop a theory for it. In fact,

we finished part of the theory presented in preliminary work.

• T3. Develop a scalable gradient method for sigmoidal networks

Sigmoidal is a traditional activation function which is still widely used. Having

a theory for this function will definitely improve our contribution.

• T4. Improve upon T2 and T3 using HWO

Hidden weight optimization [86] improves gradients which can be used in any

layer in the network. We will try to take advantage of HWO to improve upon

T2 and T3.

• T5. Improve the OWO-Newton method

As mentioned in the problems part, OWO-Newton can fail in some datasets. In

chapter 7, we will investigate possible reasons and propose a new method which

fixes the failures problem.



Chapter 6

Balanced gradient back propagation

In this section, first we propose a scalable partial affine invariant method that works

but fails at some iterations. Then, we analyze the fails iteration which causes by ill-

condition Hessian. Solving the ill-conditioned Hessian leads to a novel scalable second

order method. The new method can also take advantage of whitening and works well

on both of the MLP and the CNN.

6.1 Back propagation with two learning rates (BP2)

The steepest descent algorithm can be improved by using multiple learning rates or

learning factors. With shallow networks that have one hidden layer and two weight

matrices, it might be better to let each weight matrix have its own learning rate. The

two learning rates can also be calculated using Newton’s method.

Consider the same MSE cost function as equation (2.4). The output activation op(k)

and the actual outpt yp(i) can be re-written as

op(k) = f

(N+1∑
n=1

xp(n) · (wi(k, n) + z1 · gi(k, n))

)

yp(i) =

Nh+1∑
k=1

op(k) · (wo(i, k) + z2 · go(i, k))

(6.1)

where gi and go are input and output negative gradient defined as
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gi = − ∂E
∂wi

go = − ∂E

∂wo

(6.2)

There are two unknows z1 and z2 which can be stacked as a vector z = [z1, z2]. The

2× 2 Hessian and two elements gradient vector of the unknown vector z are calculated

as

h(l, n) =
2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂zl
· ∂yp(i)

∂zn

g(k) = − 2

Nv

Nv∑
p=1

M∑
i=1

(tp(i)− yp(i)) · ∂yp(i)

∂zk

(6.3)

The unknown vector is calculated the same as in equation (3.20), then the weight

matrices are separately updated as

wi = wi + z1 · gi

wo = wo + z2 · go

(6.4)

The BP2 algorithm can be summarized as following

Algorithm 8 BP2 algorithm

1: Initialize wi, wo, Nit , it← 0
2: while it < Nit do
3: Calculate gi, go

4: Compute z1 and z2 by solving equation (3.20)
5: Update wi and wo as wi ← wi + zi · gi and wo ← wo + zo · go

6: it ← it + 1
7: end while

Clearly, BP2 has a PAI order of 4/N2
w. BP2 performs better than regular backpropaga-

tion but it is still slow and can be further improved. Fig. 6.1 shows BP2’s performance

compared with regular backpropagation.
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Figure 6.1: Backpropagation and BP2 comparison

6.2 BP2 and ill-conditioned Hessians problem

Ill-conditioned Hessian’s is a well-known problem of Newton’s method [9], which causes

the Hessian to become non-invertible. There are different methods to solve this prob-

lem. LM method [44] modifies the Hessian to fix the ill-condition and make it invertible.

Orthogonal least square [16, 34] gives acceptable solution without Hessians inverting.

In this subsection, we show the effect of Hessian’s ill-condition when Newton’s method

is applied for the case of two learning rate.

We apply the BP2 to the data set oh7.tra [49]. We also obtain the determinant of

the BP2’s Hessian, which is the 2× 2 matrix of equation (??). The results are shown

in figure 6.2
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Figure 6.2: Hessian’s ill-condition effect on BP2, oh7.tra dataset

The BP2 fails some times which causes its error increases. The iteration when

BP2 fails usually has a small Hessian’s determinant which can be considered as ill-

conditioned Hessian. An interesting thing to note is that, the Hessian’s determinant is

proportional to the error decrease of the BP2 case. When the Hessian’s determinant

is small enough, the BP2 algorithm starts to fail.

We want to tackle this problem by optimizing the scaling factor of section 4 followed

by the use of an optimal learning factor z.

The scaling factor can be found using Newton’s method as follows. Consider cost

function E(z) as a function of learning rate z. We have Taylor expansion for the cost

function E(z)

E(z) = E(0) + z
∂E

∂z
+ z2

1

2

∂2E

∂z2
(6.5)



CHAPTER 6. BALANCED GRADIENT BACK PROPAGATION 34

If z is calculated by Newton’s method then

z = −
∂E
∂z
∂2E
∂z2

(6.6)

Substitute to the previous equation, we have

E(z) = E(0)−
∂E
∂z
∂2E
∂z2

∂E

∂z
+

( ∂E
∂z
∂2E
∂z2

)2
1

2

∂2E

∂z2
= E(0)− 1

2

(∂E
∂z

)2

∂2E
∂z2

(6.7)

So basically

E(z) = E(0)− 1

2
z
∂E

∂z
(6.8)

The result is surprisingly simple, in order to minimize E(z), we just need to maximize

the product of z and its gradient. If z is a function of some variables, then maximizing

z ∂E
∂z

becomes a typical optimization problem. We now consider this optimization prob-

lem on two popular neural network architecture, regular fully connected feed forward

neural networks and convolutional neural networks (CNNs)

6.3 Non-unique gradient problem

In this section, we show that there are many different gradient based weight changes

in addition to the standard negative gradient. Consider scaling the MSE of equation

(2.4) as

E ′ = a · E =
a

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (6.9)

where a is a positive scalar. After scaling the output weights as

w′o(i, k) = a · wo(i, k) (6.10)

the output yp(i) can be re-written as

yp(i) =
1

a

Nh∑
k=1

op(k)w′o(i, k) (6.11)
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We have the negative input and output gradient matrices Gi , Go as

Gi = − ∂E

∂Wi

go(i, k) = − ∂E

∂wo(i, k)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)] · ∂yp(i)

∂wo(i, k)

(6.12)

the corresponding input and output gradients are

G′i = − ∂E ′

∂W′
i

= −a · ∂E
∂Wi

= a ·Gi

g′o(i, k) = − ∂E ′

∂w′o(i, k)
= − 2a

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)] · 1

a

∂yp(i)

∂wo(i, k)

= go(i, k)

(6.13)

The weight updates of the equivalent network are

W′
i ←W′

i + z ·G′i
W′

o ←W′
o + z ·G′o

(6.14)

Mapping back to original network, multiplying the input weight update with a and

dividing the output weight update by the same a, we have

Wi ←Wi + z · a ·Gi

Wo ←Wo + z · 1

a
·Go

(6.15)

Using a simple scaling equivalent network, we clearly show that equation (6.15) is a

valid weight update and there are infinitely many ways to choose a, which results in

an infinite number of valid scaled gradients. The above results show that

• It is valid to update weight matrices with different scaling factors

• a can be found to maximize the error decrease
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6.4 Balanced gradient on fully connected neural net-

works

We consider a shallow neural network with one hidden layer. So there are two weights

matrices Wi and Wo. To make learning rate have a freedom to change, we consider

learning rate as a function of a and z. The output activation op(k) and the actual

output yp(i) can be written as

op(k) = f
(N+1∑

n=1

xp(n) · (wi(k, n) + z · a · gi(k, n)
)

yp(i) =

Nh+1∑
k=1

op(k) · (wo(i, k) +
z

a
go(i, k))

(6.16)

where f() is the activation function, z is the learning rate and a is the scaling factor that

we want to optimize. For convenience of calculation, we consider the partial derivative

of output yp(i) with respect to learning rate z

∂yp(i)

∂z
= a ·

Nh+1∑
k=1

[o′p(k) ·
N+1∑
n=1

xp(n) · gi(k, n)] · wo(i, k) +
1

a
·
Nh+1∑
k=1

op(k) · go(i, k)

= a ·m1(p, i) +
1

a
·m2(p, i)

(6.17)

where o′p(k) denotes the first partial derivative of op(k) which respect to its net func-

tion.To alleviate the notation’s complication, we denote

m1(p, i) =

Nh+1∑
k=1

o′p(k) ·
N+1∑
n=1

xp(n) · gi(k, n) · wo(i, k)

m2(p, i) =

Nh+1∑
k=1

op(k) · go(i, k)

m3(p, i) = tp(i)− yp(i)

(6.18)

Note that all M1, M2 and M3 are Nv ×M dimensional matrices. In order to find the

optimal values of z and a, as a result from equation (6.8) we maximize the value
( ∂E
∂z

)2

∂2E
∂z2
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The numerator(
∂E

∂z

)2

=

( Nv∑
p=1

M∑
n=1

(
2

Nv

·m3(p, n)
(
a ·m1(p, n) +

1

a
·m2(p, n)

)))2

=
4

a2 ·N2
v

·
( Nv∑

p=1

M∑
n=1

a2 · (m3(p, n)m1(p, n) +
Nv∑
p=1

M∑
n=1

m3(p, n)m2(p, n)

)2

=
1

a2
· (a2 · T1 + T2)

2

(6.19)

where scalars T1 and T2 are

T1 =
2

Nv

Nv∑
p=1

M∑
n=1

m3(p, n)m1(p, n)

T2 =
2

Nv

Nv∑
p=1

M∑
n=1

m3(p, n)m2(p, n)

(6.20)

The denominator:

∂2E

∂z2
=

2

Nv

Nv∑
p=1

M∑
n=1

((
a ·m1(p, n) +

1

a
·m2(p, n)

)
·
(
a ·m1(p, n) +

1

a
·m2(p, n)

))

=
2

a2Nv

( Nv∑
p=1

M∑
n=1

a4 ·m1(p, n)m1(p, n) + 2a2
Nv∑
p=1

M∑
n=1

m1(p, n)m2(p, n)

+
Nv∑
p=1

M∑
n=1

m2(p, n)m2(p, n)

)
=

1

a2
(a4T3 + 2a2T4 + T5)

(6.21)
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where scalars T3, T4 and T5 are

T3 =
2

Nv

Nv∑
p=1

M∑
n=1

m1(p, n)m1(p, n)

T4 =
2

Nv

Nv∑
p=1

M∑
n=1

m1(p, n)m2(p, n)

T5 =
2

Nv

Nv∑
p=1

M∑
n=1

m2(p, n)m2(p, n)

(6.22)

Then, the value we want to maximize becomes

fz =
(∂E
∂z

)2

∂2E
∂z2

=
(b · T1 + T2)

2

b2 · T3 + 2 · b · T4 + T5
(6.23)

where b = a2, and all T1, T2, T3, T4, T5 are scalars. Reducing cost function turn out

to be a optimization problem max(fz) with respect to b, and constrain b > 0. The

optimization problem can be solved by taking derivative of fz with respect to b and

set the numerator to zero. The numerator of the derivative then turns out to be

num = (2bT 2
1 + 2T1T2)(b

2T3 + 2bT4 + T5)− (2bT3 + 2T4)(bT1 + T2)
2 = 0 (6.24)

reducing the equation we have

b2(T 2
1 T4 − T1T2T3) + b(T 2

1 T5 − T3T 2
2 ) + (T1T2T5 − T4T 2

2 ) = 0 (6.25)

The solution turns out to be a second order equation. So it has at most 2 roots. By

evaluating the roots, we can see which one gives the most error decreasing, and then

use the chosen root to calculate learning factor following Newton’s method. Combine

with equations

z =
∂E
∂z
∂2E
∂z2

=
b · T1 + T2

b2 · T3 + 2T4 · b+ T5
(6.26)

Due to the fact that b = a2, we only consider positive roots. The b value can go any-

where from very close to 0 to infinity. Re-considering equation (6.23), if b is close to 0,

then the scaled gradient of the input weights is also close to 0, and fz → T 2
2

T5
. Therefore,

we should only update the output weights with learning rate z = T2

T5
. Alternately, if
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b is close to infinity, then the scaled gradient of the output weights is also close to 0,

and fz → T 2
1

T3
. In this case we should only update the input weights with learning rate

z = T1

T3
. The new algorithm not only scales the gradient but also updates only one

weight matrix when that is best.

Algorithm 9 Balanced gradient algorithm

1: Initialize Wi,Wo, Nit , it← 0

2: while it < Nit do

3: Calculate negative gradients Gi,Go

4: Update Gi = Gihwo and Go = Gohwo as in equation (3.7) and (3.10).

5: Compute roots of equation (6.25)

6: Find the b value that maximizes equation (6.23), which b ∈ {0,∞, roots}
7: If bmax = 0, update Wi only as Wi ←Wi + T1

T3
·Gi

8: If bmax =∞, update Wo only as Wo ←Wo + T2

T5
·Go

9: If bmax ∈ roots, compute z from equation (6.26), update both Wi and Wo as

Wi ←Wi + z ·
√
b ·Gi and Wo ←Wo + z√

b
·Go

10: Optain validation error from validation data set

11: it ← it + 1

12: end while

13: Choose the final network as the one which lowest validation error

We apply balanced gradient to the dataset oh7.tra which causes BP2 to fail and

update the figure 6.2 with the training curve of balanced gradient. The result shows in

figure 6.3, balanced gradient does not have any fail iteration in the same training data.

We observed that at iteration 19th, when the Hessian is ill-condition, the balanced

gradient only update the input weight matrix, which enable it to avoid the failure aht

BP2 has. With the flexibility of choosing which weight matrix to update, balanced

gradient can easily solve the singular Hessian’s problem of Newton’s method.
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Figure 6.3: Hessian’s ill-condition effect on BP2 and balanced gradient, oh7.tra dataset

Now, we do simulations to see the performance of the balanced gradient back propa-

gation compared with conjugate gradient (CG) and LM. We do 10-folds validation and

testing in all three algorithms in different datasets with the same initialized weights.

Table 6.1 gives a short description of these datasets.

In each simulation, data is equally divided to 10 folds. Each fold becomes testing data

once. In the remaining 9 folds, 8 folds are used for training and 1 fold is for validation.

Validation error is calculated at every training iteration. The network which gives the

smallest validation error is used for testing. In each simulation, we compare algorithm’s

MSE over iterations as traditional method. Due to balanced gradient and CG having

very light computation effort compare with those of LM, we also compare MSE over

multiplies. We also collect number the percentage of iterations which balanced gradient

updates both input and output weights matrix.
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Table 6.1: Data set descriptions

Data Sets N Nh M Nv

Rosenbrock 10 12 1 10000
Inverse 9 9 12 9 10000
Cover types 54 20 7 581012
super conductivity 81 20 1 21263
Ozone forecast 71 50 3 72050

6.4.1 Rosenbrock function dataset

The Rosenbrock function [71] is a well known non-convex highly non-linear function

used to test the performance of optimization algorithms. The data file has 10000

samples with 10 inputs and one output.
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Figure 6.4: Rosenbrock dataset, training MSE vs iterations

In that classic problem, figure (6.4) and (6.5) shows that balanced gradient is su-

perior on when comparing MSE versus both iterations and multiplies. One interesting

thing in figure (6.5) to notice is that, conjugate gradient has many troubles when train-

ing starts. It has to backtrack many times before it can reduce the error which causes

CG’s accumulate multiplies is much more than that of balanced gradient. In the op-

posite, balanced gradient seems to have no problem in decreasing error when training

starts.
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Figure 6.5: Rosenbrock dataset, training MSE vs multiplies

6.4.2 Inverse 9 dataset

The inverse 3×3 training dataset was created by randomly selecting 3×3 as input and

calculate its invert matrix as output. So the dataset has 9 inputs and 9 outputs with

10000 samples. The purpose of this dataset is creating a highly non-linear training

data to test performance of training algorithms.

In figure (6.6), it looks like that LM is much better than both balanced gradient and

conjugate gradient. But it’s much different in figure (6.7), when the real calculation

burden is considered. Balanced gradient is actually better than both LM and CG. It is

clear that one iteration of LM needs a lot more calculation than one iteration of CG or

balanced gradient. It is the reason why we consider mean square error (MSE) versus

multiplies as main comparison.

6.4.3 Cover types dataset

This dataset [10] is contains forest cover type for a given observation (30 x 30 meter cell)

that was determined from US Forest Service (USFS) Region 2 Resource Information

System (RIS) data. Independent variables were derived from data originally obtained

from US Geological Survey (USGS) and USFS data. Data is in raw form (not scaled)

and contains binary (0 or 1) columns of data for qualitative independent variables
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Figure 6.6: Inverse 9 dataset, training MSE vs iterations
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Figure 6.7: Inverse 9 dataset, training MSE vs multiplies
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(wilderness areas and soil types). Figure (6.8) shows the superior of LM when it reduces
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Figure 6.8: Cover type dataset, training MSE vs multiplies

the MSE so fast. Balanced gradient is still much better than conjugate gradient, and

just a little bit less than that of LM.

6.4.4 Superconductivity dataset

The Superconductivity dataset [28] contains 81 features extracted from 21263 super-

conductors along with the critical temperature. So it has 81 inputs and 1 output.

The gold is to predict temperature based on the features extracted. Again, as seen in

figure (6.9), balanced gradient is much better than CG and ends up to have the same

performance as LM.

6.4.5 Ozone forecast dataset

The Ozone forecasting data file [21] was made from years 2010 to 2013, it has 71 inputs

and 3 outputs. First 4 inputs are time inputs (encoded in continuous form); Inputs 5

to 8 are spatial variables (latitude, longitude) that indicate the monitoring site/station

and city the pattern comes from; Inputs 9 to 71 comprise time delayed data up to

3 days of Daily Mean, Daily Min, and Daily Max values of meteorological variables
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Figure 6.9: Super conductivity dataset, training MSE vs multiplies

(temperature, solar radiation, wind speed and wind direction encoded together in con-

tinuous form) and pollutant variables (nitric oxide, nitrogen dioxide, 8 - hour average

ozone concentration). Outputs are Daily Maximum 8- hour average ozone concentra-

tion up to 3 days ahead. Figure (6.10) clearly shows that balanced gradient is superior

than both LM and conjugate gradient.

6.4.6 Testing results

In each simulation, the final network is the one which gives lowest validation error, then

this network will be used to obtain the testing result. We are doing 10-fold testing,

so the following testing results in table 6.2 are the averages from these 10 networks.

Balanced gradient back-propagation is superior than CG in all 5 datasets and better

Table 6.2: Ten-fold testing results

Data Sets Balanced gradient CG LM
Rosenbrock 7.9 · 108 10.24 · 108 9.62 · 108

Inverse 9 1501.3 1502.8 1529.7
Cover types 24.79 28.78 20.75
super conductivity 172.03 226.36 158.24
Ozone forecast 288.47 299.59 299.32
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Figure 6.10: Ozone forecast dataset, training MSE vs multiplies

than LM in 3/5 datasets. As seen on table 6.3, more than half of the time, balanced

gradient updates only one weight matrix. On average, it updates both weight matrices

only on 26.88% of the iterations while LM and CG updates always update all the

weights. It’s clear that updating all the weights at the same time can be redundant,

and each weight matrix should be treated differently. We also collect information about

Table 6.3: Percentage of iteration where all weights are updated by balanced gradient

Data Sets percentage
Rosenbrock 4.2%
Inverse 9 38.26%
Cover types 46.53%
Super Conductivity 17.55%
Ozone forecast 27.84%

the multiplication needed to get the final network, the network that gives the lowest

validation error. Result on table 6.4 is no surprise, balanced gradient is the best in all

5 datasets, it takes a lot less calculation effort to get the final network compare to that

of CG and LM.
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Table 6.4: Multiplications needed for final networks

Data Sets Balanced gradi-
ent

CG LM

Rosenbrock 3.44 · 1010 11.03 · 1010 22.18 · 1010

Inverse 9 6.84 · 108 1509.7 · 108 141.5 · 108

Cover types 7.58 · 1013 8.23 · 1013 44.15 · 1013

Super conductivity 2.84 · 1012 12.97 · 1012 11.6 · 1012

Ozone forecast 7.81 · 1012 10.24 · 1012 25.37 · 1012

6.5 Balanced gradient on convolutional neural net-

works(CNNs)

CNNs often have two different types of trainable layers: the convolution layers which

perform convolution operations and the fully connected layers which perform matrix

multiplication operations. Most current training strategies use one heuristic global

learning rate for all layers in the neural network even though different mathematical

operations are used in each layer. It is natural to question whether or not balanced

gradient will provide a benefit in CNN training.

In this sub-section, we apply the idea of balanced gradient to CNNs to answer

the question and also to see if the proposed method improves CNNs’ performance In

the CNNs case, we also investigate a simple model with one convolution layer, 32 5x5

filters, one max-pooling layer, and one fully connected layer. The output activation

image Op(k) of the kth filter can be written as

Op(k) = f

(
Xp ∗

(
Wi(k) + z · a ·Gi(k)

))
(6.27)

where Xp is the pth image of the training data, Wi(k) is the weights of the kth filter,

Gi(k) is the gradient of the cost function with respect to Wi(k) , and (∗) is the

convolution operation.

Then we apply pooling pool() and flatten vec() [26] to Op to make it becomes a vector,

so we can feed it to the later fully connected layer.

op = vec(pool(Op)) (6.28)
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The output yp(i) is still the same as the second part of equation (6.16). As a result,

only calculation of the M1 matrix is different, which is

m1(p, i) = wo(i) ·
(
vec
(
pool

(
O′p � (Xp ∗Gi)

)))
(6.29)

where O′p denostes the first partial derivative of Op which respect to its net function,

(�) is element-wise product operation and wo(i) is the ith row of output weight matrix

Wo.

Figure 6.11: Samples of MNIST dataset

All the other calculations are still the same as the fully connected case. So the

training algorithm is generally still the same.

We use the MNIST[40] , SVHN[59] and CIFAR10[36] datasets in this simulation. With

a very simple CNN model comprising of one convolution layer with 32 5x5 filters, a

max pooling layer, and a fully connected layer. We use minibatch size of 500 samples

per iteration. There is no data augmentation involved in this simulation. Figure 6.11

and 6.12 shows some samples of these two datasets. In addition, we run simulation on

Scrap dataset, one of our lab project dataset which classifies scrap and wrought.

Due to the scalable, we do not apply LM in this simulation. Conjugate gradient is

supposed to work in batch-mode, but the study in [39] shows that CG can still work
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Figure 6.12: Samples of CIFAR10 dataset

well in mini-batch case with a suitable learning rate. In addition, we apply the basic

idea of output-reset described in [79] to make the mean square error cost function work

better with classification data. The output-reset was applied to both CG and balanced

gradient. Because of scaling problem, we do not apply HWO whitening

Due to training in mini-batches, the current gradient in one mini-batch is just an es-

timate of the whole batch’s gradient. Many approaches use momentum or accumulate

gradients to have a better estimation. As described in algorithm 2, CG uses a combi-

nation of the current and previous gradient to update the weights, follows a learning

rate. In this simulation, to guarantee fairness, we use the same gradient combination

scheme as CG does, but with a learning rate found from the proposed balanced gra-

dient approach. So the learning rate is the only difference between CG and balanced

gradient in these simulations.

Figure (6.13) shows the learning rates which balanced gradient uses for convolu-

tional layer and fully connected layer in MNIST dataset. Learning rates for convolution

layers on average are roughly 3 times bigger than the learning rates for the fully con-

nected one. Using a better learning rate, balanced gradient reduces error rate much

faster than conjugate gradient in term of iterations or epochs, as shown in figure (6.15).

The same trend shows in Scrap, SVHN and CIFAR10 dataset in figure (6.14),(6.16)
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and figure (6.17). It is important to note that, evenwhen both methods use first deriva-

tive information, given the same epochs of training, balanced gradient often finishes

training faster than conjugate gradient at roughly 20% of training time. It is because

while balanced gradient has constant times pass through each mini-batch, conjugate

gradient has to have additional passes for backtracking and line search to find a suitable

learning rate which adds up computations to its training.
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Figure 6.13: Difference in learning rate values of convolution and fully connected layers
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Figure 6.14: scrap testing error Pe of balanced gradient and conjugate gradient
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Figure 6.15: MNIST dataset testing error Pe of balanced gradient and conjugate gradient
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Figure 6.16: SVHN testing error Pe of balanced gradient and conjugate gradient

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g 

er
ro

r p
ro

ba
bi

lit
y 

Pe

CIFAR10 with 1 layer CNNs, 32 filters
Conjugate Gradient
Balanced Gradient

Figure 6.17: CIFAR10 testing error Pe of balanced gradient and conjugate gradient

Having a lighter computation burden than conjugate gradient, balanced gradient re-

duces error rate and converges much faster than conjugate gradient in all three datasets.



Chapter 7

OWO-Newton method

This chapter purely focuses on second order training methods. First, we investigate

the reason why Newton’s method is not stable in training neural networks. Then, we

propose a method which solves this problem, making the algorithm more stable. After

that, we propose a novel method which is much more stable and still has the fast

convergence speed of second order methods.

7.1 Problems with the MLP Hessian

For fast convergence we would like to use Newton’s method to train our MLP, but the

Hessian H for the network is singular [83]. An alternative to overcome this problem is

to modify the Hessian matrix as in the Levenberg-Marquardt (LM) algorithm. Another

alternative is to use two-step methods such as layer by layer training [43]. Newton’s

method is derived from a 2nd order Taylor series approximation to an objective function

[78]. Applying this principle to equation (2.4) gives us the quadratic approximation

E(w) ≈ Eo − (w − w̃)Tg +
1

2
(w − w̃)TH(w − w̃) (7.1)

where w̃ is w from the previous iteration, and is fixed. Also Eo is shorthand for E(w̃).

In this Section we investigate the assumptions used by Newton’s method and present

the implications. When applied to the MSE as in equation (2.4), Newton’s algorithm

assumes that

• (A1) E(w) in (2.4) is approximately quadratic as in 7.1.
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• (A2) In each pattern, yp is well approximated as a first degree function of w.

Note that (A2) follows immediately from (A1)

7.2 Piecewise affine model of a single hidden layer

MLP

We investigate whether (A2) is a valid assumption by constructing a first order model

for yp(i). A model that yields the same Hessian and gradient as E(w) is

Ẽ(w) =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− ỹp(i)]2 (7.2)

where ỹp(i) is

ỹp(i) =
N+1∑
n=1

woi(i, n)xp(n) +

Nh∑
k=1

woh(i, k)[Op(k)+

O′p(k)(np(k)− ñp(k))]

(7.3)

and

O′p(k) =
∂Op(k)

∂np(k)


np(k)=ñp(k)

(7.4)

ñp(k) =
N+1∑
n=1

w̃i(k, n)xp(n) (7.5)

In (7.3), we have used a first order Taylor series for each hidden unit activation for each

pattern in the training file. Since we have a different model for each pattern, which is

first degree in xp, we can term ỹp(i) a piecewise affine model of yp(i). The validity of

the piecewise affine model is demonstrated by,

E(w) = Ẽ(w), (7.6)

∂E

∂w(u, v)
=

∂Ẽ

∂w(u, v)
, (7.7)



CHAPTER 7. OWO-NEWTON METHOD 55

and
∂2E

∂w(u, v)∂w(m, j)
=

∂2Ẽ

∂w(u, v)∂w(m, j)
(7.8)

Also the corresponding errors for each model, tp(i) − yp(i) and tp(i) − ỹp(i) are equal

for np(k) = ñp(k) since

∂yp(i)

∂wi(u, v)
= woh(i, j)O′p(u)xp(v) =

∂ỹp(i)

∂wi(u, v)
(7.9)

When the vector w includes all the network weights contained in Wi,Woh and

Woi, ỹp(i) is not a first degree function of w. To show this, we note that the exact

expression for the output vector ỹp for our network is

ỹp = [Woi + Wohdiag(O′p)W]xp + Woh[Op − diag(O′p)ñp] (7.10)

where O′p denotes a vector whose kth element is the derivative f ′(np(k)). The model

output ỹp(i) has products woh(i, k)w(k, n). If all network weights can simultaneously

vary then ỹp(i) is second degree in the unknowns, Ẽ(w) is a fourth degree model in w

and assumptions (A1) and (A2) are violated.

Clearly there is a discrepancy between EH(w) in equation (7.1) and Ẽ(w) in (7.2).

Since the products woh(i, k)w(k, n) cause this discrepancy, the corresponding cross

terms in blocks Hoi and HT
oi of the network Hessian

H =

[
HR HT

oi

Hoi Ho

]
(7.11)

are sources of error in training a MLP using Newton”s method.
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7.3 Implications for MLP training

If we use Newton’s algorithm for output weights, the block diagonal output weight

Gauss-Newton Hessian matrix Ho is specified as

Ho =



2R 0 0 · · · 0

0 2R 0 · · · 0

0 0
. . . 0 0

...
... 0 2R 0

0 0 0 0 2R


(7.12)

where R is the autocorrelation matrix given in equation (3.28). Later we show in detail

that OWO is Newton’s algorithm for output weights. The elements of the Gauss-

Newton input weight Hessian, HR, are given by

∂2E

∂w(j, k)∂w(l,m)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂w(j, k)
· ∂yp(i)

∂w(l,m)
(7.13)

The elements of Hoi are calculated by

∂2E

∂wo(j, k)∂w(l,m)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂w(j, k)
· ∂yp(i)

∂wo(l,m)
(7.14)

The implications are

• When Newton’s algorithm solves for all weights in w simultaneously, there can

be multiple solutions for ỹ(i) and singular H, making LM[44] a possible option.

• If we solve for elements for w one layer at a time in a two-step approach, EH(w) =

Ẽ(w), the cross terms in (7.10) are first degree in w and the discrepancy vanishes

as seen for the input weight case in equations (7.6-7.8).

• The solution for Wo in the two-step approach is OWO which is described earlier.

As M increases, the OWO algorithm’s efficiency far outstrips that of the one-step

approach.
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7.4 OWO-Newton

Based upon the implications of subsection 7.3, we propose a two-step block coordinate

descent (BCD) [78] approach that uses Newton’s algorithm to alternately update input

weights Wi and output weights Wo. We give details of this method in the following.

7.4.1 Initial two step Newton’s algorithm

In this section, our initial goal is to use Newton’s algorithm to update Wi as

Wi ←Wi + D (7.15)

The steps for calculating D are as follows. Taking the negative first derivative of E

with respect to D , we have elements of the Jacobian matrix as:

g(k, n) = − ∂E

∂d(k, n)
=

2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)] ·
∂yp(i)

∂d(k, n)
(7.16)

where

np(k) =
N+1∑
n=1

[w(k, n) + d(k, n)] · xp(n) (7.17)

and
∂yp(i)

∂d(k, n)
= woh(i, k) ·O′p(k) · xp(n) (7.18)

The elements of the four dimensional Gauss-Newton input weight Hessian, H4 are given

by

h4(k, j,m, l) =
2

Nv

Nv∑
p=1

M∑
i=1

∂2yp(i)

∂d(k, j)∂d(m, l)

=
2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂d(k, j)
· ∂yp(i)

∂d(m, l)

(7.19)

where 1 ≤ k,m ≤ Nh and 1 ≤ j, l ≤ N + 1. Elements of H4 can be mapped to a

two-dimensional Hessian HR as hR((j − 1) · Nh + k, (l − 1) · Nh + m) = h4(k, j,m, l).

Similarly elements of g are found from G as g((l − 1) ·Nh +m) = g(m, l)

After obtaining HR and g we apply orthogonal least squares [16] to find d from
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HRd = g (7.20)

Generating the Nh × (N + 1) matrix D as D = vec−1{d}, we update the input weight

matrix Wi as in equation (7.15). Non-quadratic objective functions often require a line

search. In this work, we use the dichotomous search [2], so equation (7.15) is modified

as

Wi ←Wi + z ·D (7.21)

Our initial version of OWO-Newton alternately improves Wi and Wo.

7.4.2 Problems with OWO-Newton

OWO-Newton approach can fail when assumption A1 is violated, resulting in an in-

crease in E. When failure happens, we backtrack and substitute Multiple Optimal

Learning Factors (MOLF) [48] for the input weight Newton step. MOLF has a smaller

Hessian matrix which makes it more stable in reducing the MSE. The smaller Hessian

results a average learning rate for a group of weight, details can be found in [61]. In

the appendix, its Hessian matrix Hm and gradient vector gm are calculated from HR.

Using orthogonal least squares to solve

Hm · z = gm (7.22)

for z, we update the input weight matrix Wi as explained in the appendix.

7.5 Partial affine invariance of OWO-Newton method

The partially affine invariance of OWO-Newton makes the algorithm perform indenti-

cally for equivalent initial networks. Unfortunately, approximately second order meth-

ods such as LM and BFGS do not have this property since we can’t construct a matrix

T for them.

We performed an experiment to illustrate partial affine invariance in OWO-Newton

and to show its absence in LM[44] and BFGS[62]. The three algorithms were applied

to the Rosenbrock [71] data sets. From the randomly initialized network, we created

two other equivalent networks in which inputs are linear combinations of the original
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Algorithm 10 OWO-Newton

1: Require: Iterations > 0
2: Initialize Wi

3: Perform OWO
4: for k=1 to Iterations do
5: Calculate g and HR

6: Find d and D, then update Wi

7: Perform OWO
8: if the error increases then
9: Back track input weights: Wi ←Wi − z ·D

10: Calculate gm and Hm

11: Solve equation 7.22 and update Wi as
12: Wi ←Wi − diag(z) ·G
13: Perform OWO
14: end if
15: end for

inputs. Given a dataset and arrays Wi and Wo of an initial network, we construct a

new dataset and an equivalent network as follows

(1) Find a nonsingular matrix A and derive the input stages of the equivalent network

as

np =Wi · xp

=Wi ·A−1 ·A · xp

=W′
i · x′p

=n′p

(7.23)

Note that Op = O′p if A is non-singular. Now W′
i = Wi ·A−1 and x′p = A · xp.

(2) We can similarly show that the output weight matrices satisfy

W′
o = Wo ·A−1 (7.24)

In this way we generated three equivalent randomly initialized networks for each

datafile. Then each algorithm was used to train the three equivalent initial networks.

In figures 5 through 7, the three curves begin at the same MSE value, providing evi-

dence that the networks start out equivalent.
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For the Rosenbrock dataset, the training error curves for OWO-Newton overlay each

Figure 7.1: BFGS applied to transformed Rosenbrock datasets

Figure 7.2: LM applied to transformed Rosenbrock data sets

other while the curves for LM diverge a great deal and the curves for BFGS diverge a

lot more.

In figures 7.1 through 7.3, we see that OWO-Newton performs consistently well on

equivalent initial networks due to its partial affine invariance. In contrast, LM and

BFGS perform unpredictably for the equivalent networks.

Newton’s method is affine invariant but it requires the solution of a large set of

linear equations which is expensive and suitable only for small networks [26].
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Figure 7.3: OWO-Newton applied to transformed Rosenbrock data sets



Chapter 8

Conclusions

In this dissertation, we have developed scalable partially affine invariant training algo-

rithms for the MLP and the CNN, denoted as BP2 and balanced gradient. Balanced

gradient solves the ill-conditioned Hessian problem in BP2 by developing a rational

learning factor.

Balanced gradient only requires first order derivative information which makes it

scalable for big datasets. We have shown that balanced gradient can work well with

both regular fully connected networks and convolutional neural networks. In the CNN,

balanced gradient is even faster than conjugate gradient. Applying balanced gradient

makes the learning rate in convolutional neural networks no longer a heuristic, but

optimal. The ability to alternatively update all or just one weight matrix makes bal-

anced gradient effectively a two step training algorithm. In addition, balanced gradient

outperforms conjugate gradient in first iteration and reaches the final network faster

on both the MLP and the CNN. Balanced gradient has better MSE error or Pe in all

simulations.

We have also found a way to solve the failed iteration problem in OWO-Newton

which makes it much more stable. Simulations show that the improved OWO-Newton

algorithm can return the same error curves given different linear transformations of

input data.
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Appendix A

Matrix derivative

Let x ∈ Rn (a column vector) and let f : Rn → Rm.The derivative of f with respect to

x is the m× n matrix:

∂f

∂x
=


∂f(x)1
∂x1

· · · ∂f(x)1
∂xn

...
...

∂f(x)m
∂x1

· · · ∂f(x)m
∂xn

 (A.1)

Let T ∈ Rm×n and x ∈ Rn. Let tT1 , ..., t
T
n be the rows of T

Tx =


tT1

tT2
...

tTm

x =


tT1 x

tT2 x
...

tTmx

 (A.2)

∂Tx

∂x
=


∂tT1 x

∂x
∂tT2 x

∂x
...

∂tTmx
∂x

 =


tT1

tT2
...

tTm

 (A.3)

so
∂Tx

∂x
= T (A.4)
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Consider function E(w) which returns a scalar, column vectors w,w′ ∈ RN and square

matrix T ∈ RN×N where w = Tw′. From above proof, we have

∂w

∂w′
= T (A.5)

Consider the derivative

∂E

∂w′
=


∂E
∂w′

1

∂E
∂w′

2
...

∂E
∂w′

N

 (A.6)

Each w′i is a function of all elements of vector w, where 1 ≤ i ≤ N , so

∂E

∂w′i
=

N∑
j=1

∂wj

∂w′i

∂E

∂wj

(A.7)

which is equivalent to

∂E

∂w′
=


∂w1

∂w′
1
· · · ∂wN

∂w′
1

...
...

∂w1

∂w′
N
· · · ∂wN

∂w′
N




∂E
∂w1

∂E
∂w2

...
∂E
∂wN

 (A.8)

or

∂E

∂w′
=

(
∂w

∂w′

)T
∂E

∂w

= TT ∂E

∂w

(A.9)



Appendix B

Converting Newton method to

MOLF

In multiple optimal learning factors (MOLF) training algorithm, each hidden unit has

one learning factor which will be used to update input weights as [48]:

wi(k, n)← wi(k, n) + z(k) · g(k, n) (B.1)

The kth hidden unit net function will change as

np(k) =
N+1∑
n=1

[wi(k, n) + z(k) · g(k, n)] · xp(n) (B.2)

The MOLF Jacobian vector has elements

gm(k) = − ∂E

∂z(k)
=

2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂z(k)
(B.3)

∂yp(i)

∂z(k)
= woh(i, k) ·O′p(k) ·

N+1∑
n=1

g(k, n) · xp(n) (B.4)

recall equation (7.18)

∂yp(i)

∂d(k, n)
= woh(i, k) ·O′p(k) · xp(n) (B.5)
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then, equation (B.4) becomes

∂yp(i)

∂z(k)
=

N+1∑
n=1

∂yp(i)

∂d(k, n)
· g(k, n) (B.6)

We can see that gm can be calculated from OWO-Newton’s Jacobian as

gm(k) =
2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
N+1∑
n=1

∂yp(i)

∂d(k, n)
· g(k, n) (B.7)

Elements of the OWO-MOLF input weight Gaussian-Newton Hessian are given by

hm(k,m) =
2

Nv

Nv∑
p=1

M∑
i=1

∂2yp(i)

∂z(k)∂z(m)

=
2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂z(k)
· ∂yp(i)
∂z(m)

(B.8)

Combining equations (B.4) and (B.8)

hm(k,m) =
2

Nv

Nv∑
p=1

M∑
i=1

[
N+1∑
n=1

∂yp(i)

∂d(k, n)
· g(k, n)]

·[
N+1∑
q=1

∂yp(i)

∂d(m, q)
· g(m, q)]

(B.9)

Comparing with equation (7.19)

hm(k,m) =
N+1∑
j=1

N+1∑
l=1

[
2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂d(k, j)
· ∂yp(i)

∂d(m, l)
]

·g(k, j) · g(m, l)

(B.10)

or

hm(k,m) =
N+1∑
j=1

N+1∑
l=1

h4(k, j,m, l) · g(k, j) · g(m, l) (B.11)

Equation (B.7) gives the relationship between the OWO-Newton Jacobian and the

MOLF Jacobian, while equation (B.11) relates the MOLF Hessian to the input weight
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Hessian. To get the Hessian and Jacobian of MOLF, we just need to use information

from Newton”s Hessian and Jacobian that are already available. From that Hessian

and Jacobian, we can find the learning factor z and update the input weights as in

equation (B.1).
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[41] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient

backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[42] KY Lee, YT Cha, and JH Park. Short-term load forecasting using an artificial

neural network. IEEE Transactions on Power Systems, 7(1):124–132, 1992.
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