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ABSTRACT

UNDERSTANDING AND OPTIMIZING PARALLEL PERFORMANCE IN
MULTI-TENANT CLOUD

Yong Zhao, Ph.D.
The University of Texas at Arlington, 2019

Supervising Professor: Jia Rao

As a critical component of resource management in multicore systems, fair sched-
ulers in hypervisors and operating systems (OSes) must follow a simple invariant: guarantee
that the computing resources such as CPU cycles are fairly allocated to each vCPU or
thread. As simple as it may seem, we found this invariant is broken when parallel programs
with blocking synchronization are colocated with CPU intensive programs in hypervisors
such as Xen, KVM and OSes such as Linux CFS.

On the other hand, schedulers in virtualized environment usually reside in two dif-
ferent layers: one is in the hypervisor which aims to schedule vCPU onto each pCPU and
another is in the virtual machine to schedule the processes. Such design principle will
impose an implicit scheduling gap between these two layers such that threads holding the
lock or waiting for the lock in the virtual machine can be inadvertently descheduled by
hypervisors. This behavior will cause the well known LHP and LWP problems which can
seriously degrade the performance of parallel applications.

While the cloud is believed to be an ideal platform for hosting parallel applications,
its nature of multi-user sharing and resource over-commitment makes parallel performance
often quite disappointing and unpredictable. Although many research works have identified
the excessive synchronization delays such as LWP and LHP due to multi-tenant interfer-
ences as the culprit, there lacks a full understanding of the quantitative relationship between
changes in synchronization and the overall performance loss. As performance modeling
plays a fundamental role in designing traditional parallel systems, a systematic and quan-
titative study of parallel performance under cloud interferences would help improve the
resource and power management in datacenters.

This dissertation explores two fundamental questions towards the solutions for the
scheduling unfairness and inefficiency in multicore systems: why does the schedulers “un-
expectedly” show to be unfairness under the common belief that scheduling algorithms
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have been stable for many years and are already perfect? Why does the schedulers exhibit
effectively regarding to scheduling the parallel applications in physical environment but
perform badly in the cloud? The goal of this dissertation is to enable multicore systems to
proactively anticipate and defend against the scheduling unfairness and inefficiency, rather
than reacting to their manifestations and consequences.

This dissertation presents three key principles of systems design and implementation
for rethinking and redesigning the scheduling algorithms in multicore systems against the
unfairness and inefficiency—preemptive multiple queue fair queuing, interference-resilient
scheduling, and differential scheduling. This dissertation demonstrates that applying these
principles can effectively defend scheduling unfairness and inefficiency in multicore sys-
tems. Furthermore, this dissertation also presents the corresponding techniques and tools
support that can automatically and systematically apply these principles into existing mul-
ticore systems.

Scheduling algorithms which originated from scheduling the packets in single-linked
network were widely used in computer systems, however scheduling unfairness are unex-
pectedly manifested through scaling these algorithms from single core to multicore sys-
tems. Scheduling inefficiency are usually caused by the implicit semantic gap existing in
the virtualized environment. Thus, this dissertation has modified the design of single-linked
scheduling algorithm to make them to be fairness in face of the multiple-linked network and
furthermore applied them into the multicore system scheduling to eliminate the unfairness.
Instead of leaving the scheduling activities in two virtualized layers transparently for each
other, this dissertation first characterized the performance of parallel applications under
interference and then proposed methods to bridging the semantic gap in order to remove
the scheduling inefficiency.
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CHAPTER 1

INTRODUCTION

Cloud computing, unlocked by virtualization technologies, is bringing a transfor-
mative change in enterprise infrastructures and shaping the way IT hardware is designed
and deployed. Public cloud providers such as Microsoft Azure, Amazon AWS and Google
Cloud has already provided the software-as-a-service, infrastructure-as-a-service and platform-
as-a-service to the customers. For example, developers in the company with innovative
ideas no longer require the large spending on the hardware to bring their service online or
the human expense to manage it. They can lease virtual machines from cloud providers to
deploy their service with a pay-as-you-go charging model. In order to fully utilize the hard-
ware resource and reduce the energy cost, cloud providers preferred consolidating multiple
independent workloads, each in a virtual machine, onto a fewer number of machines. As
such, the success of cloud services critically depends on the effective management of data-
center resources. In this dissertation, we aim to understand the application performance in
multi-tenant cloud to uncover the factors affecting the resource management, then propose
the solutions to address the performance bottlenecks to improve the resource utilization.

In this chapter, we first introduce the motivation and background of this dissertation,
then discuss the major challenges and present an overview of our solution.

1.1 Background and Motivation
Cloud Computing refers to the applications delivered as services over the Internet as

well as the hardware and systems software in the datacenters that provide those services.
By consolidating multiple independent workloads, each in a virtual machine, onto a fewer
number of machines, cloud providers benefit from improved hardware utilization and sig-
nificant energy savings. On the other hand, virtual servers can be configured according
to the demand of cloud users. However, one difficulty for the cloud providers is whether
they should consolidate more virtual machines on their hardware infrastructure to generate
more revenue or avoid the loss of customer by providing the good performance for hosted
applications. Performance guarantee has twofold meanings in a public cloud service: effi-
ciency and fairness. First, cloud providers should deeply understand the characteristics of
workloads in virtual machines such that datacenter resources can be managed to be better
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utilized. At the same time, overhead caused by virtualization layer should be minimized to
approximate the execution efficiency of applications in dedicated systems. Second, perfor-
mance should be predictable and proportional to different applications, users and virtual
machines.

In this dissertation, we focus on characterizing and understanding the performance
of parallel applications in multi-tenant cloud. Based on these observations and insights, we
propose the solutions to address these performance bottlenecks and also present a novel
multicore scheduling algorithm to fairly allocate the hardware resources between different
users, applications and VMs.

1.2 Challenges on Understanding and Optimizing the Parallel Perfor-
mance
In this section, we mainly discuss the challenges on understanding and optimizing

the performance of parallel applications under interference in multi-tenant cloud.

1.2.1 Scheduling Inefficiency
Scheduling efficiency especially in virtualized environment are constrained by the

two implicit scheduling domains: (1) the guest OS schedules processes on vCPUs and (2)
the hypervisor schedules vCPUs on physical CPUs. The scheduling activities in the guest
OS are completely oblivious to the hypervisor and this behavior will cause several severe
performance issues to the applications which employed synchronization primitives such as
mutex lock. One well-known issue is the lock-holder preemption (LHP) [36] problem. LHP
occurs when a vCPU is descheduled by the hypervisor while the thread currently running
on that vCPU is holding an important lock. As the performance of parallel applications as
a whole depends critically on the cooperation of multiple threads, if one thread holding
the lock is preempted, other threads waiting for the lock are unable to make progress
until the descheduled vCPU is rescheduled. Thus, the delay of one vCPU will significantly
degrade the overall performance of the parallel program. Another issue is the Lock-waiter
preemption (LWP). Instead of preempting the vCPU on which the thread are holding the
lock, LWP happens when the hypervisor descheduled the vCPU on which the thread are
waiting for the lock. As the lock will be passed to each thread according to their arriving
sequence, a thread waiting for the lock is preempted will delay the acquiring of lock by
other threads even the lock is released and free.

There have been studies [49, 55, 73, 85, 86, 110] narrowing the semantic gap by infer-
ring scheduling events inside VMs at the hypervisor using heuristics, or approximating VM
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coscheduling to mitigate the LHP problem, or allowing the guest OS to assist hypervisor
scheduling. These approaches have their respective limitations. Different workloads require
distinct heuristics to identify thread criticality; coscheduling is expensive to implement and
causes CPU fragmentation; synchronization-oriented optimizations make the hypervisor
scheduling very complex and can possibly compromise fairness between VMs.

1.2.2 Scheduling Unfairness
Classic scheduling problems revolve around setting the length of the scheduling

quantum to provide interactive responsiveness while minimizing the context switch over-
head to improve the scheduling efficiency, simultaneously accounting for the resources
such as CPU, memory and I/O allocated to each user to keep the fairness, also catering
to the batch and interactive workloads to maximize throughput, and efficiently managing
the scheduler run queues to guarantee the load balance. By and large, by the year 2000,
operating systems designers considered scheduling to be a solved problem. The Linus
Torvalds said that you have to realize that there are not very many things that have aged as
well as the scheduler, which is just another proof that scheduling is easy. His quote was an
accurate reflection of the general opinion at that time.

However, this is not the case and a recent study [63] with the Linux scheduler
revealed that the pressure to work around the challenging properties of modern hardware,
such as non-uniform memory access latencies, high costs of cache coherency and syn-
chronization, and diverging CPU and memory latencies, resulted in a scheduler with an
incredibly complex implementation. In this work, four scheduler bugs are found and can
cause the load imbalance in Linux such that some physical cores were left idle even there
existed runnable threads waiting for their turn to run. These bugs undermine a crucial kernel
sub-system, cause substantial, sometimes massive, degradation of performance. Another
work [16] analyzed the scaling behavior of Linux kernel on a 48-core server with a set of
applications that are designed for parallel execution and use kernel services. They found
and provided a set of 16 scalability improvements to the Linux kernel.

Scheduling fairness, as a key algorithm in computer systems used to divide CPU
cycles among users or VMs proportionally to their weights, was usually thought to be a
solved problem. VMs, each hosting workloads independently, are usually consolidated into
a single physical machine to improve the hardware utilization in virtualized environment.
While fairness between different VMs is an important metric to measure the success of the
public cloud providers such as Amazon EC2, Microsoft Azure and Google Compute engine
platform, Rao etc. [87] found that the existing virtualized platforms fail to enforce fairness
between VMs with different number of vCPUs that run on multiple CPUs. They attributed
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the unfairness to the use of per-CPU schedulers and the load balance on these CPUs that
incur inaccurate CPU allocations. Then, FlexW which aims to dynamically adjust the vCPU
weights on multiple CPUs and FlexS which flexibly scheduled vCPUs to minimize wasted
busy-waiting time were proposed to enhance fairness at VM-level. However, their method
just fixed the symptoms instead of roots.

Actually, fair queuing (FQ) algorithms have been widely adopted in computer sys-
tems to share resources among multiple users. Modern operating systems and hypervisors
such as CFS [68] in Linux and credit scheduler in Xen [118] use variants of FQ algorithms
to implement the critical systems resource management. For example, Linux’s CFS and
Xen’s credit scheduler are an implementation of the start time fair queueing (SFQ) [39]
scheduling algorithm which originated from the Generalized Processor Sharing (GPS) [81]
used for scheduling the networking packets. GPS allocated the capacity of a single-linked
network to the competing flows in proportional to their weights (only the relative value
of the weights are significant) if and only if all the flows are backlogged. However, GPS
uses an idealized fluid model which cannot be realized in the real world. For integrated
services networks (e.g., video and audio applications), start-time fair queueing [39] or
SFQ showed it was better suited than WFQ [28] to provide fairness over servers with time
varying capacity. SFQ associated each packet with start tag and finish tag and scheduled
these packets in the increasing order of start tag.

1.3 Contributions
To fully unlock the potential of the guest OS in addressing the LHP and LWP prob-

lems, we design interference-resilient scheduling (IRS), a simple approach to bridging the
guest-hypervisor semantic gap and guiding guest load balancing. Inspired by scheduler
activations (SA) in hybrid threading, IRS notifies the guest OS and activates in-guest load
balancing when a vCPU is to be preempted by the hypervisor. As such, lock holder threads
can be promptly migrated to other running vCPUs to avoid LHP and LWP.

Symmetric Multiprocessing virtual machines (VMs) are becoming increasingly com-
mon in cloud datacenters and they are often used by cloud users to host parallel applica-
tions To fully utilize hardware parallelism, cloud providers prefer oversubscribing their
datacenters by consolidating multiple independent VMs onto a single machine. The nature
of multi-user sharing and resource over-commitment in the cloud often makes parallel
performance quite disappointing and unpredictable. Although performance degradations
caused by virtualization and interferences have been extensively studied, there still lacks a
comprehensive understanding why parallel programs have unpredictable slowdowns when
co-located with different types of workloads.
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We presented a systematic and quantitative study of multithreaded performance un-
der interference. We design synthetic workloads to emulate different types of interference
and study the behavior of parallel programs under such interferences. We find that unpre-
dictable performance is the result of complex interplays between the design of the program,
the memory hierarchy of the host system, and the CPU scheduling at the hypervisor. To
understand the intricate relationships between multiple factors, we decompose parallel
runtime into compute, synchronization and steal time, and use the runtime breakdown to
measure program progress and identify execution inefficiency under interference. Based on
these findings, we develop an online approach to predicting performance slowdown without
requiring parallel programs to be completed, and devise two scheduling optimizations at the
hypervisor to reduce slowdowns.

While the existing FQ algorithms can enforce fair CPU allocation on a per-core basis,
unfortunately there lacks an algorithm to fairly allocate CPU on multiple cores. As such,
this common deficiency in state-of-the-art multicore schedulers causes unfair CPU alloca-
tions to parallel programs using blocking synchronization, leading to severe performance
degradation. Parallel threads that frequently block due to synchronization exhibit deceptive
idleness and are penalized by the thread scheduler. The discovered unfairness in multicore
scheduling is the result of the complex interplay between parallel workloads and OS thread
schedulers. On the one hand, parallel programs rely on simultaneous access to CPU to make
collective progress among multiple threads and otherwise suffer substantial performance
slowdown if critical threads holding important locks are preempted. The remaining threads
who are waiting on the synchronization cannot make progress, either performing futile
spinning or being put to sleep (block). On the other hand, multicore schedulers enforce fair
CPU allocation on a per-core basis and are usually work-conserving. Therefore, threads that
are idling due to synchronization forfeit their CPU shares, leading to unfair allocation be-
tween a parallel program and other competing programs. OS Load balancing could further
aggravate this problem. Frequently idling threads, which show low CPU load, are gradually
moved onto a few cores as consolidating fragmented load helps improve load balance. If
CPU stacking occurs, sibling threads belonging to the same application compete with each
other, introducing more idleness.

To address these issues, we extend the FQ algorithm for sharing a single network link
to thread scheduling on multiple cores. We propose preemptive multi-queue fair queuing
(P-MQFQ), a close approximation of the idealized generalized processor sharing (GPS)
service discipline for multiple CPUs. P-MQFQ assumes a centralized queue to dispatch
threads to multiple CPUs such that competing programs as a whole receive a fair share of
the aggregated capacity of multiple CPUs. To tackle deceptive idleness, P-MQFQ allows
threads from under- served programs to preempt currently running threads from other
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programs. As such, programs experiencing deceptive idleness are temporarily prioritized
to catch up with those who have exceeded their fair shares.

1.4 Dissertation Organization
The rest of this dissertation is organized as follows.
Chapter 2 gives an overview on existing approaches on understanding and optimizing

the performance and parallel applications. We start with the works characterizing the paral-
lel performance in virtualized environment, then review the methods bridging the semantic
gap between Guest OS and hypervisors and finally review the works focusing on improving
the fair resource allocation in multicore systems.

Chapter 3 presents a systematic and quantitative study of multithreaded performance
under interference. We design synthetic workloads to emulate different types of interfer-
ence and study the behavior of parallel programs under such interferences. We find that un-
predictable performance is the result of complex interplays between the design of the pro-
gram, the memory hierarchy of the host system, and the CPU scheduling at the hypervisor.
To understand the intricate relationships between multiple factors, we decompose parallel
runtime into compute, synchronization and steal time, and use the runtime breakdown to
measure program progress and identify execution in efficiency under interference. Based on
these findings, we develop an online approach to predicting performance slowdown without
requiring parallel programs to be completed, and devise two scheduling optimizations at the
hypervisor to reduce slow-downs.

Chapter 4 finds a reverse semantic gap – the guest OS is oblivious of the scheduling
events at the hypervisor, leaving the potential of addressing the LHP and LWP problems in
the guestOS unexploited. Inspired by scheduler activations (SAs) in hybrid threading, we
proposed interference-resilient scheduling (IRS), a guest-hypervisor coordinated approach
to enhancing load balancing in the guest. IRS informs the guest OS before vCPU preemp-
tion happens at the hypervisor to activate in-guest load balancing. As such, critical threads
on preempted vCPUs can be migrated to other running vCPUs so that the LHP and LWP
problems are all alleviated.

Chapter 5 propose a preemptive multi-queue fair queuing (P-MQFQ) algorithm that
uses a centralized queue to fairly dispatch threads from different programs based on their
received CPU bandwidth from multiple cores. We demonstrate that P-MQFQ can be ap-
proximated by augmenting the existing load balancing in the OS without requiring to
implement the centralized queue or undermining scalability. We implement P-MQFQ in
Linux and Xen, respectively, and show significantly improved utilization and performance
for parallel programs.
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Chapter 6 concludes this dissertation with summaries of our approaches and direc-
tions for future work.
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CHAPTER 2

Related Work

Deeply understanding the performance under interference can effectively aid the
resource management in datacenters. As such, there are numerous works either modeling
the resource contention on hardwares between different applications or proposing methods
to reduce the synchronization delays and presenting new algorithms to address the fair
resource allocation in shared environment. We will divide the relevant works into three
parts and discuss them respectively.

2.1 Characterizing the Parallel Perfomance
Performance interference has been well studied in literature. Most work focused on

contentions on shared resources, such as last-level caches [13, 20, 29, 41, 46], memory
controllers [29, 64, 69], and hardware prefetchers [61], between sequential programs or
multi-programmed/threaded workloads. There are also recent work measuring the interfer-
ence in datacenters [25, 26, 51, 65, 74, 100, 121, 124]. These studies either assume space
sharing between workloads [24, 83, 95, 96], use cycles per instruction (CPI) as a proxy of
performance [25, 26, 121, 124] or use offline profiling to estimate the contentiousness of
co-runners [65, 74]. These approaches can not be easily extended to manage performance
interference of parallel applications. First, techniques addressing single-thread resource
contentions do not necessarily optimize the execution of parallel programs as parallel
performance is a function of single-thread computing and synchronizations. Second, widely
used metrics such as CPI are not reliable in measuring performance in parallel programs
because CPI can be either inflated or deflated due to synchronizations. Third, parallel
applications are usually long-running jobs. Offline profiling is prohibitively expensive in
production systems. In this work, we measure the amount of useful work completed to
predict slowdown in an online manner.

There are also existing studies addressing the overhead of running parallel program
in virtualized environments. Our optimizations are closely related to these works. Common
issues include lock-holder preemption (LHP) [104], CPU stacking [98], and expensive traps
to the hypervisor [32, 92]. Co-scheduling [76, 98] aims to schedule cooperative threads
synchronously to avoid the LHP issue. However, our findings in this work show that differ-
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ential scheduling may be more desirable for memory-bound programs. Delayed preemption
shares the similar idea with demand-based coordinated scheduling [56] to temporarily
delay the preemption of important threads. The scheduler in [56] delays the preemption
of vCPUs that initiate wakeup IPIs to avoid LHP. Our purpose is to interleave the computa-
tions between parallel programs and interference to avoid future harmful preemptions. Ding
et. al., found that consolidating multiple threads onto one vCPU to avoid blocking leads to
significant performance boost in KVM [32]. Contrary to their findings, our experiments
show that programs with fine-grained synchronization are more resilient to persistent inter-
ference in a Xen environment. The contradiction can be attributed to the different designs
of Linux CFS scheduler and Xen’s credit scheduler. To the best of our knowledge, this
work is the first to study parallel performance under different types of interference and its
complex interactions with scheduling on multiprocessors.

2.2 Interference Resilient Scheduling
Previous work attempting to eliminate this semantic gap can be divided into two

categories: (1) Hypervisor-level approaches that treat the guest OS as a black box and (2)
guest OS-assisted approaches employing para-virtualization. are dedicated to modifying
the design of vanilla hyperviosr to make scheduling activities unknown to the Guest OS,
and (2) Guest OS-assisted approaches employed para-virtualization techniques to cus-
tomize Guest OS components separately.

2.2.1 Hypervisor Level Approaches
To deal with the LHP and LWP problems, VMware ESX 2.x [102] proposed the strict

VM co-scheduling. This scheme allows vCPUs of the same SMP VMs to be synchronously
scheduled and descheduled on different pCPUs. Despite its effectiveness in minimizing
synchronization latency, it causes CPU fragmentation and vCPU priority inversion prob-
lems [93]. CPU fragmentation can lead to ineffective CPU utilization in environments
where parallel applications are simultaneously hosted with sequential workloads [7, 34,
76, 91]. In order to lessen the severity of the CPU fragmentation problem caused by
strict co-scheduling, relaxed co-scheduling [102] introduced in VMware ESX 3.x aimed to
enable sibling vCPUs to make progress at similar paces and only requires the vCPUs that
accrue enough skew to run simultaneously, while balance scheduling [99], a probabilistic
co-scheduling scheme, increased the chance of co-scheduling sibling vCPUs by assigning
them to different pCPUs. However, relaxed co-scheduling and balance scheduling distribute
the sibling vCPUs across different pCPUs without considering the requirement for cooper-
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ative scheduling between vCPUs of the same VM and these two approaches still have LHP
and LWP problems.

Demand-based coordinated scheduling [55] adopted TLB shootdown IPI and resched-
ule IPI between different vCPUs as heuristics to identify cooperative vCPUs and proposed
urgent vCPU first scheduling to prioritize vCPUs that are handling critical threads in the
VM. Passive inference of guest OS events at the hypervisor is not applicable to many
workloads. For example, IPI-based heuristics are not effective in identifying critical threads
for parallel workloads with spinning synchronization. Although their proposed methods
can reduce the occurrences of LHP problem, totally depending on the communication
behaviors between vCPUs in the hypervisor will make their methods occasionally invalid.
For example, If the threads of applications running in the Guest OS do not demonstrate this
communication pattern (e.g., I/O intensive workloads), their methods are unable to retrieve
the IPI used to do the vCPU scheduling and consequently lose its effectiveness. The root
causes are ignoring the characteristics of applications and absent of the collaboration from
Guest OS.

2.2.2 Guest OS-Assisted Approaches
To narrow the guest-hypervisor semantic gap, guest OSes are para-virtualized to

coordinate with the hypervisor to avoid LHP and LWP. Dynamic adaptive scheduling [112]
modified the guest OS to detect excessive spinning and report this information to the
hypervisor. If a VM has reported frequent high spin waiting time, the hypervisor regards
this VM as synchronization intensive and tries co-schedule its vCPUs as much as possible.
regards OS-informed excessive wait time on spin-locks as an indicator to make vCPUs
of a VM to be scheduled at the same time. It introduces a monitoring module in the
Guest OS, this module periodically detects spin-locks with long wait time and reports this
information to the hypervisor. However, this method has the security concerns as well as
the CPU fairness problem. Uhlig et al., [105] proposed a delay preemption mechanism
to minimize synchronization latency. Before a user-level thread acquires a spin-lock, the
guest OS notifies the hypervisor of this pending event on the vCPU on which the thread is
running. The notification requests that the vCPU not be preempted for a predefined period
of time to avoid LHP and LWP.

The common issue of these guest OS-assisted approaches is that the guest OS is
only responsible for passing down the information about lock holders and relies on the
hypervisor to efficiently schedule vCPUs. As a result, the hypervisor needs to frequently
deviate from its existing scheduling algorithm to utilize the semantic information for more
efficient scheduling. Such invasive changes to hypervisor-level scheduling not only make
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hypervisor design more complex but can compromise VM fairness. They also defer invol-
untary context switching of a lock-holder vCPU to minimize synchronization latency. In
order to identify the lock-holder vCPU, they present an intrusive lock-holder preemption
avoidance which lets the Guest OS notify the hypervisor not to preempt the vCPU for next
n microseconds if the vCPU will immediately acquire the spin-lock. One of the challenges
of this mechanism is to decide the numeric value of n which will be depended heavily upon
the operating system and the characteristics of workload being run.

For non-intrusive scheme, the hypervisor monitors all the state switching of Guest
OS between user-level and kernel-level based on the fact that the Guest OS will release all
kernel locks before returning to user-level. As such, the hypervisor can determine whether
it is safe to preempt the vCPUs without preempting the lock-holders.

2.3 Preemptive Multi-Queue Fair Queuing
Packet Scheduling. Fair queuing algorithms have been extensively studied in the

literature. Most algorithms use the generalized processor sharing discipline [58] as the
reference model. Each flow is assigned a weight and consists of requests or packets which
are sent to the server or device sequentially. GPS will allocate the capacity of network
link to the competing flows in proportional to their weights (only the relative values of the
weights are significant) if and only if all the flows are backlogged. A flow is said to be
backlogged at time point t if a positive amount of of that flows traffic is queued at time
t. Since GPS uses an idealized fluid model and cannot be implemented in real systems,
various packet-based approximations of GPS have been developed [11, 12, 14, 28, 37,
39, 40, 48, 70, 81, 82, 89, 122, 123]. Among these algorithms, weighted fair queuing
(WFQ) [28] also known as Packet-by-Packet Generalized Processor Sharing (PGPS) [81]
has been considered to be the best approximation to the GPS with respect to the accuracy.
WFQ will schedule the packets in the increasing order of their departure times in the
GPS. However, WF2Q [12] demonstrates that WFQ can be far ahead of GPS in terms
of number of bits served for a session which could cause large discrepancies between
the services provided by WFQ and GPS. In order to mitigate this unfairness of WFQ,
WF2Q only consideres the packets which have already started receiving service in GPS
system. For integrated services networks (e.g., video and audio applications), start-time
fair queueing [39] or SFQ showed it was better suited than WFQ to provide fairness over
servers with time varying capacity. SFQ associated each packet with start tag and finish tag
and scheduled these packets in the increasing order of start tag. Furthermore, SFQ changed
the definition of system virtual time v(t) to be the start tag of the packet in the service time
t. SFQ(D) [48] is adaption of start-time fair queueing (SFQ) for servers with a configurable
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degree of internal concurrency and it makes it possible to share a server among multiple
request flows. Hierarchical packet fair queueing [11] or H-PFQ proposed the WF2Q+
algorithm which extended WF2Q but with a lower complexity to provide the bounded-
delay and fairness for hierarchical link sharing and traffic management between different
service classes. All these fair sharing algorithms only provide methods for proportionally
sharing a single server among competing flows. Unfortunately, they do not address the
problem of fair sharing on multiple servers. MSFQ [14] extends WFQ to support multiple
servers. It dispatches packets whenever there is an idle server and according to the order of
packet completion under GPS. An important limitation of these packet-based fair queuing
algorithms is that fairness is only guaranteed between backlogged flows and those that
exhibit deceptive idleness are penalized under these algorithms.

CPU Fair Scheduling. Proportional share resource management provides a flexible
and useful abstraction for multiplexing scarce resources such as the CPU, memory and
disk among multiple users. The basic idea is to associate each user a weight and allocate
resources to users in proportion to their weights. Many proportional fair share algorithms
have been proposed to allocate CPU bandwidth [33, 35, 39, 43, 53, 60, 68, 71, 72, 80, 97,
108, 109].

On uniprocessor systems, early CPU schedulers [43, 53] were based on the con-
cept of task priority and failed to precisely control the CPU allocation in proportion to
user weights. and controlled the fair distribution of system resources such as memory,
CPU to sets of related processes. Another fair share scheduler [53] was built on con-
ventional priority scheduler and aimed to allocate CPU resource so that each user got
their fair share over a long period. Lottery scheduling [108] is a randomized resource
allocation mechanism based on the notion of a ticket. Compared to the traditional priority-
based schedulers, lottery scheduling approximates proportional fair sharing in the long-
term scheduling. implemented proportional-share resource management which guaranteed
that the resource consumption rates of active computations were proportional to the relative
shares that they were allocated. Lottery scheduling was especially desirable in systems that
serviced requests of varying importance such as database, media-based applications and
networks. Stride scheduling [109] further improves over lottery scheduling with signifi-
cantly improved accuracy over relative throughput rates and less response time variability.
The core allocation mechanism used by lottery and stride scheduling is based on WFQ
or SFQ algorithms for packet scheduling. Hierarchical CPU scheduler [39] implemented
the SFQ algorithm in multithreaded scheduling and could support hard and soft real-time,
as well as best effort applications in a multimedia operating systems. Borrowed Virtual
Time Scheduling [33] or BVT aimed to provide low-latency for real-time and interactive
applications by introducing a latency parameter into SFQ algorithm. Specifically, BVT
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scheduled the threads in the increasing order of the effective virtual time which was calcu-
lated by subtracting the value of latency parameter from start tag of each thread. Virtual
time round robin [72] combined the round robin and WFQ fair queueing algorithm to
guarantee proportional allocation CPU resource among a set of clients.

On multicore systems, Surplus Fair Scheduling [18] or SFS is derived from SFQ
and demonstrates that GPS-based algorithms can provide strong fairness guarantees in
uniprocessor environments, but they can result in unbounded unfairness when employed
in multiprocessor environments. The reason is that GPS-based algorithms are unable to
distinguish between feasible and infeasible weight assignments as well as are unable to
achieve proportional allocation in the presence of frequent arrivals and departures. SFS
measured the surplus service received by each thread and scheduled the threads in the
increasing order of surplus value. The surplus service was the difference between the start
tag of each thread and the system virtual time. SFS defined a global system virtual time
which was the minimum value of start tag among all the runnable threads. Unlike the SFS,
Deadline Fair Scheduling [19] sets the system virtual time to be the average value of start
tags of all runnable threads. DFS calculates a counter value “deadline” for each thread
and scheduled the threads in the increasing order of deadline. Hierarchical schedulers such
as the Linux Completely Fair Scheduler [68] or CFS and Distributed Weighted Round
Robin [60] extend fair queueing to multiple cores by maintaining per-core run queues and
load balancing runnable threads across different cores. CFS implemented SFQ algorithm
and maintained a separate virtual time for each core. As such, each core can make its
scheduling decision independently. However, the drawback of this method is that CFS
has to depend on an additional module in Linux to keep the load across difference cores
balancing.

Virtualization technologies [1, 9, 54, 106] enable consolidating multiple indepen-
dent workloads, each in a virtual machine, onto a fewer number of physical machines
to improve the hardware utilization. For virtualized systems, such as public clouds (e.g.,
Amazon EC2 [4], Google Compute Engine [38] and Microsoft Azure [117]), fairness
between tenants and efficiency of running their applications are the key to success. Many
scheduling mechanisms have been developed [22, 50, 57, 75, 77, 84, 90, 111, 113, 116,
120, 125, 126] to improve the hardware resource utilization and allocation in virtualized
environment. Flex [87] found that existing virtualization platforms failed to provide fairness
between VMs and proposed FlexW which dynamically adjusted vCPU weights and FlexS
which flexibly scheduled vCPU to minimize wasted busy-waiting time to enforce fairness.
VMware [102] implemented a relaxed co-scheduling algorithm that is based on WFQ to
achieve proportional fair allocation of CPU resources to different tenants. Gleaner [31]
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employed resource retention and consolidation scheduling to combine short idle periods on
multiple vCPUs into long idle periods to reduce harmful vCPU context switches in KVM.
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CHAPTER 3

Characterizing and Optimizing Parallel Programs Under Interference

3.1 Introduction
Cloud computing, powered by warehouse-scale datacenters, provides users with abun-

dant parallelism and potentially unlimited scalability. While the cloud is believed to be
an ideal platform for hosting parallel applications, its nature of multi-user sharing and
resource over-commitment makes parallel performance often quite disappointing and un-
predictable. Although many studies [32, 56, 76, 98, 104, 114] have identified the excessive
synchronization delays due to multi-tenant interferences as the culprit, there lacks a full
understanding of the quantitative relationship between changes in synchronization and the
overall performance loss. As performance modeling plays a fundamental role in designing
traditional parallel systems, a systematic and quantitative study of parallel performance
under cloud interferences would help improve the resource and power management in
datacenters. Most importantly, predicting parallel performance allows users to evaluate the
outcome of their cloud lease without completing long-running applications and select cloud
services wisely to meet their expectations.

However, parallel performance is notoriously difficult to reason about in a shared
cloud environment. Memory locality and resource contentions on the CPU function units,
shared cache and memory bandwidth could all affect the speed of individual threads. More-
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over, the performance of parallel programs as a whole also depends critically on the coop-
eration of multiple threads. Contentions on CPU time at individual threads cause the well-
known lock-holder preemption (LHP) problem [104], in which threads holding important
locks are prematurely de-scheduled, leading to exceedingly long synchronizations and out-
of-sync executions at multiple threads. The major challenges in modeling parallel perfor-
mance are twofold: 1) individual threads have varying slowdowns when co-located with
different interferences; 2) the quantitative relationship between slowdowns at individual
threads and the overall slowdown of the parallel program remains unclear.

To demonstrate the severity of performance degradation and its unpredictability in
multi-tenant clouds, Figure 5.1 shows the slowdown of various parallel programs under
different interference scenarios. The parallel workloads include programs from the PAR-
SEC [103] and NASA parallel benchmarks (NPB) [8] with different synchronization meth-
ods (i.e., busy-waiting and blocking), varying task granularities, and different work as-
signment policies (i.e., static and dynamic/work-stealing assignments). The interferences
contain a synthetic workload that only competes for CPU cycles (i.e., while(1) loop)
and two real workloads from the PARSEC benchmarks. Both the parallel workloads and
the interferences run with 4 threads (see Section 3.3.1 for detailed settings). From the figure,
we can see that performance slowdowns vary substantially across different workloads, even
under the same type of interference. For example, the synthetic loop incurred more than
100% slowdown to lu while it merely slowed sp by 13%. More interestingly, slowdowns
become more unpredictable when the background interference changes. For example, while
facesim suffers a 165% slowdown with streamcluster, its degradation with fluidanimate is
only 53%. In contrast, some workloads suffer more severe slowdowns under fluidanimate
compared to that under streamcluster, e.g., lu and vips. The difference in memory con-
tentiousness of the interfering workloads alone can not explain the varying slowdowns. The
unpredictability is the result of complex interplays between the designs of the program,
the memory hierarchy of the host machine, and the underlying CPU scheduling at the
hypervisor. Understanding how these factors interact with each other is crucial to fully
understanding parallel performance in the cloud.

In this chaper, we aim to uncover the mystery of parallel performance under in-
terference. Our methodology is to study parallel performance in controlled experiments
so that individual factors can be examined separately. To this end, we design a set of
synthetic workloads to emulate different types of interference. The synthetic workloads
include while(1) loops with persistent, periodic and intermittent interference patterns
and configurable CPU demands. To further pinpoint the source of unpredictability, we
design a profiling tool, vProfile, to derive a detailed breakdown of parallel runtime,
and to report important scheduling and hardware statistics. With the help of fine-grained
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profiling, we have the following findings: 1) the slowdown of individual threads depends on
the amount of CPU allocated to the thread, which is largely affected by the synchronization
granularity of the program in a shared environment; 2) while interference is believed to
slow down individual threads due to contentions on shared resources, it can constructively
accelerate threads in memory-bound applications due to the alleviation of intra-program
contentions; 3) Uncoordinated scheduling of co-running parallel programs causes out-of-
sync execution between multiple threads, leading to further performance degradation.

Based on these findings, we develop an online approach to predicting the perfor-
mance of parallel programs under interference. Our online prediction first profiles parallel
execution under interference for a short period of time and compares the completed useful
work during sampling with that in a dedicated environment during the same length of
period. The difference in completed useful work is used to predict the overall slowdown.
We define useful work as the necessary computation needed by a thread assuming an
ideal memory system with zero latency and perfect synchronization with no spinning and
blocking cost. Specifically, we determine useful work by removing cycles that are stolen
by other tenants, perform spinning or context switching (i.e., sleep and wakeup), and are
spent in the memory hierarchy from the profiling sample. Experimental results show that,
for regular parallel programs in which individual threads are assigned the same amount of
work and perform iterated computations, the online approach achieves on average less than
4.5% errors in predicting the overall slowdown.

We also devise two scheduling optimizations at the hypervisor to reduce slowdowns.
To avoid premature preemptions, we propose delayed preemption (DP) to interleave the
computations of the parallel program and background interferences. As programs may
afford different lengths of delay, we further make DP adaptive to the varying synchro-
nization granularities for different programs. Experimental results show that DP improves
the performance of PARSEC benchmarks by up to 23%. Another optimization motivated
by our analysis is differential scheduling (DS), which purposely avoids co-scheduling of
parallel threads by having different time slices on multiple CPUs. Results show that this
simple technique outperforms stock Xen by as much as 38% in NPB benchmarks.

The rest of the chapter is organized as follows. Section 3.2 introduces the design
of vProfile and the synthetic interferences. Section 3.3 provides an in-depth analysis of
parallel performance under different types of interference. Section 3.4 and 3.5 present
an approach for online performance prediction and two hypervisor-level optimizations
motivated by the analysis, respectively. Section 3.6 discusses limitations and Section 4.6
concludes this chapter.
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3.2 Profiling the Performance of Multithreaded Programs
The key to understanding parallel performance under interference is to identify the

sources of slowdown. A breakdown of parallel runtime from experiments in a well-controlled
environment would help pinpoint the culprit and inspire possible remedies. In general,
parallel runtime consists of compute time and idle time. Traditionally, idle time due to
load imbalance and synchronization is considered the major source of parallel overhead as
no progress can be made during idle time. In a virtualized environment, guest operating
systems (OSes) schedule application threads onto virtual CPUs (vCPUs) and multiple
vCPUs from different virtual machines (VMs) can share the same physical CPU (pCPU).
Steal time is the time a vCPU waits to run on a pCPU while the hypervisor is servicing
another vCPU. A large steal time indicates severe contentions on the CPU allocation.
Therefore, we decompose parallel runtime into compute, synchronization and steal time to
study the causes of slowdown. We design vProfile to report the breakdown of parallel
runtime and record important scheduling statistics in the hypervisor. vProfile provides two
hypercalls 1: vprofile_start and vprofile_stop to mark the start and end of a
profiling period.

3.2.1 Decomposing Parallel Runtime
During profiling, vProfile tracks per-vCPU state changes in the hypervisor. Xen

defines four vCPUs states, i.e., running, runnable, blocked, and offline. Steal
time can be accounted using time spent in the runnable state, which counts the time a
vCPU is ready to run but fails to acquire the pCPU. The accounting of synchronization
time depends on the synchronization methods used by the parallel program. For blocking
synchronization, such as mutex and semaphore, synchronization time is simply the time
a vCPU stays in the blocked state.

Accounting synchronization time is more challenging for programs using busy-waiting
synchronization (e.g., spinlocks) as vCPUs are always in the running state. There is existing
work detecting spinning by instrumenting guest OS kernels [114], tracking user-kernel
mode switches [104], and monitoring hardware performance events [17, 88]. We use the
lightweight spin detection proposed in [88] to break the time in the running state into
compute and synchronization (or spinning) time. As spin loops usually contain only a few
instructions and are executed repeatedly, spinning vCPUs show high branch per instruction
and low branch miss prediction rates compared to sibling vCPUs that are performing
regular computation. We add a new spinning state to Xen and place a vCPU to such

1We describe the design of vProfile in a Xen environment. Other hypervisors can be easily
modified to support vProfile.

18



a state when spinning is detected. Synchronization time is then the time a vCPU stays in
the spinning state.

3.2.2 Recording Performance Events
The breakdown of execution time alone is not sufficient to identify the causes of

slowdown. For example, an increase of synchronization could be due to long latencies at
a few synchronization points or prolonged wait time at many places. Detailed execution
statistics can help find the root cause and develop approaches to mitigate slowdowns.
vProfile reports per-vCPU statistics of the scheduling and hardware performance events
listed in Table 3.1.

Event Description
YIELD Voluntary yield to other vCPUs due to idling
PREEMPT Involuntary preemption by the scheduler
IDLE The time the pCPU in the idle state

HARDWARE_STAT Statistics from hardware performance counters

Table 3.1: vProfile performance events.

Events YIELD and PREEMPT shed light on the contentions between co-located VMs
while IDLE reflects the overall utilization of the pCPU as well as the efficiency of the
scheduler. Performance statistics from hardware counters can trace the low-level program
behaviors under interference and reveal the complex interactions between the program and
the hardware. vProfile can be configured to track various hardware statistics, including
cycles spent in the offcore memory system (OFFCORE_STALL), LLC misses per thousand
instructions (MPKI), and other events related to cache coherence traffic between private L2
caches.

3.2.3 Enabling Dedicated Mode
vProfile enables online performance prediction by temporarily throttling co-located

workloads to estimate their reference performance. It provides a short period of dedicated
execution to emulate the performance on a dedicated machine. We assume that the sampling
should cover a number of major iterations of the parallel program and contain sufficient
information for performance prediction. The dedicated mode can be enabled multiple times
once program phase change is detected. vProfile can integrate existing phase change detec-
tion techniques.
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vProfile exports a new hypercall sys_enable_dedicated to the VM hosting
the parallel application. Upon receiving the hypercall, the hypervisor takes vCPUs other
than the calling VM’s vCPUs off pCPUs’ run queues and places them into the offline
mode. The hypervisor freezes vCPUs of co-running VMs for a pre-defined period (e.g., 300
scheduling epochs). To minimize the impact of the dedicated mode on regular scheduling,
we disable CPU time accounting (i.e., credit debiting in Xen’s credit scheduler) during
dedicated mode. As such, fair CPU allocation is not affected when normal execution is
resumed.

3.2.4 Synthetic Interference
Synthetic workloads should slow down individual threads to faithfully reflect con-

tentions on CPU time and shared resources, such as the last-level cache (LLC) and mem-
ory bandwidth. It should also be able to emulate the complex patterns of real workloads
that simultaneously interfere with multiple threads. To this end, we design the synthetic
workloads as simple CPU loops consisting of interleaved busy and idle intervals. The busy-
to-idle ratio, which is configurable, determines the intensity of the interference. While the
synthetic interference only contends for CPU cycles, it can emulate contentions on shared
hardware resources because a decrease in allocated CPU time is equivalent to an increase
in memory access cost for the parallel applications under test. We create the following
three types of interference to study the complex interplay between the parallel program,
the memory hierarchy and the underlying CPU scheduling:
• Persistent interference comprises of simple while(1) loops demanding 100% of

CPU time. It emulates the CPU demand of long-running sequential jobs or parallel
applications with busy-waiting synchronization. Due to its simplicity, it is scheduled
by hypervisors at predictable time points and does not incur preemptions to the
parallel threads.
• Periodic interference demands CPU at regular intervals or otherwise stays idle. The

ratio of the CPU burst and the idle period determines the level of contention (i.e.,
CPU demand). Periodic interference has fixed burst-to-idle ratio and fixed length
of computation at each interval. It emulates regular parallel applications that have
predictable computations and synchronizations. Periodic interference is more com-
plex than persistent interference as it sleeps and wakes up periodically, leading to
preemptions of parallel threads.
• Intermittent interference demands CPU at irregular intervals. The ratio of CPU burst

and sleep remains unchanged, but the length of computation changes randomly. It
emulates multi-programmed workloads with independent (random) demands from
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Figure 3.2: Varying resilience to interference.

individual threads or parallel applications with irregular CPU demands. Compared
to periodic interference, whose computation and idling are predictable, intermittent
interference has unpredictable demands. This helps to study the behavior of parallel
programs when their execution is out-of-sync.
We use the method of differential analysis [62, 67] to compare the execution profiles

of parallel programs under different types of interference. The low-level metrics that are
highly correlated to the overall performance are examined to identify the causes of per-
formance slowdown. We set the CPU demand of periodic and intermittent interference to
50% of the pCPU. The periodic interference performs 10ms computation and stays idle
for 10ms. In contrast, the computation in intermittent interference varies randomly from
1ms to 40ms with the idle period changing accordingly to generate the 50% CPU demand.
We use single-threaded interferences to study the slowdown of individual threads and the
multi-threaded version to evaluate the efficiency of multiple parallel threads.

3.3 Understanding Parallel Performance
In this section, we use the statistics reported by vProfile to explain the mystery of

parallel performance under interferences. We found that programs show different levels of
resilience to interferences, leading to varying CPU allocations to the parallel program (Sec-
tion 3.3.2). Interference may accelerate program execution by reducing the compute time
needed in normal execution (Section 3.3.3). Finally, the overall performance is determined
by the complex interplay between multiple factors (Section 3.3.4).
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3.3.1 Experimental Setup
We ran shared-memory multi-threaded programs on an Intel multicore machine with

three types of interference. The host machine has a NUMA architecture with 16GB memory
and two Intel Xeon E5620 2.40GHz 4-core processors. Each core in the processor has a
private 256KB L2 cache and shares a 12MB L3 cache. Hyperthreading was disabled for all
experiments. To isolate program performance from other factors, e.g., memory locality, we
created the VM hosting the parallel programs in one memory node and pinned vCPUs of
the VM to the processor affiliated with the node. Thus, all memory accesses were local
and parallel threads shared the same last-level cache. We configured the VM running
parallel programs with 4GB memory and 4 vCPUs, each pinned to a separate core in
the same memory node. The background interfering VM had an identical configuration
with all its vCPUs pinned to the same set of cores. Note that pinning vCPUs to pCPUs is
to obtain reproducible results. We observed on average 55% performance slowdown and
15% variation when CPU affinity was turned off. We assigned equal weights to both VMs,
assuming a fair allocation of the CPU.

We implemented vProfile in Xen 4.0.2 and modified Linux guest kernel 2.6.32 to use
the profiling hypercalls. We selected the benchmarks in PARSEC 2.1 and the NAS Parallel
Benchmark suite. The PARSEC benchmarks were compiled with gcc-pthreads and block-
ing synchronizations. We used the OpenMP version of the NPB benchmarks and set the
environment variable OMP_WAIT_POLICY to active to use busy-waiting synchronization.
All benchmarks were configured with 4 threads. We set vProfile to report performance
statistics for the entire execution after programs complete.

22



Figure 3.4: Interference alleviates intra-program contentions.

3.3.2 Varying Resilience to Interference
First, we study the slowdown at individual threads due to contentions on the CPU

time. We placed a single-threaded persistent interference with one parallel thread and
measured how much time was stolen (i.e., steal time) from the thread by the persistent
interference. In this simple scenario, the thread co-located with the persistent loop would
be the slowest thread in the parallel program, thereby deciding the overall performance.
Figure 3.2 shows the steal time of various benchmarks relative to their compute time under
the 1-loop persistent interference. Intuitively, the ratio of steal and compute time should be
1 if CPU is fairly allocated to the parallel program and the interference. However, Figure 3.2
suggests that some programs (i.e., canneal, streamcluster and facesim) be more resilient to
interference and were stolen less time. An examination of program code revealed these
benchmarks have fine-grained synchronizations and block frequently at synchronizing bar-
riers. Zhou et al., also showed that deliberately designed attacks can obtain excessive CPU
allocations by exploiting the accounting vulnerabilities in Xen [127]. Harris et al. found
the CPU time that each job receives can be drastically different and hard to control when
multiple jobs run together [42]. In our experiments, the varying CPU allocation is due to
the prioritization of latency-sensitive workloads in Xen.
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Xen’s credit scheduler considers vCPUs that wake up from sleep as latency-sensitive
and assigns them a higher priority (i.e., the boost priority). Such vCPUs will preempt
the current running vCPUs. Although the prioritization mechanism in theory benefits any
programs that block, the granularity of synchronization plays an important role in gaining
more CPU allocations. Xen implements a coarse-grained CPU scheduler which checks if
the current running vCPU should be de-scheduled every 30ms (i.e., the default time slice).
Whenever a vCPU is prioritized, it gains a full time slice unless voluntarily giving up the
CPU, e.g., blocking due to synchronization. Thus, programs with fine-grained synchro-
nization, e.g., those with computation less than 30ms between synchronization, are never
forcibly de-scheduled by Xen due to the expiration of time slices, thereby being resilient to
CPU contention. This issue is not specific to Xen and has also been observed in KVM [54].

As parallel programs have varying CPU allocations in response to interference, it is
important to monitor steal time to determine the slowdowns at individual threads. However,
the resilience to interference alone does not explain the unexpected marginal slowdown of
sp in Figure 5.1, though it suffers significant steal in Figure 3.2. We uncover the reasons in
the next subsection.

3.3.3 Varying Compute Time under Interference
In addition to the varying steal time, we find another factor that affects the slow-

down at individual threads – the cost to access the memory hierarchy can change due to
interference, leading to varying compute time. Figure 3.3 shows the runtime breakdown
for programs that have unexpected slowdowns. These programs are expected to have slow-
downs as much as their stolen time. From the figure, we can see that the computations
needed to complete these programs decrease under the 1-loop persistent interference. The
compute times for streamcluster, sp, bt, and lu in the complete program execution drop by
12%, 49%, 19%, and 29%, respectively.

To find the reasons for the reduced compute time, we show the statistics of hardware
performance counters in dedicated execution and execution with 1 persistent interference in
Figure 3.4 (a) - (d). The figures only show the statistics of the thread with interference and
data is normalized to the no interference case (left bar in each group). OFFCORE_STALL
refers to the cycles spent in the offcore memory subsystem on Intel processors. It measures
the overall cost of accessing LLC and DRAM. MPKI measures LLC misses per thousand
instructions. Figure 3.4 (a) suggests that these programs had fewer OFFCORE stalls under
interference because on average there were fewer threads running simultaneously, thereby
incurring less contention on the memory hierarchy. Figure 3.4 (b) shows that MPKI also
drops under interference. Since the straggling thread progressed slower than sibling threads,
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Figure 3.5: Interference changes memory access time.

it spent little time spinning and its instruction count decreased. A drop in the overall MPKI
then indicates a significant drop in the number of LLC misses. Intuitively, the total LLC
footprint of the parallel threads should remain unchanged, thus the LLC miss rate should
not change.

We find that interference changes the way parallel applications interact with the
memory hierarchy. Figure 3.4 (c) shows that the reduction in LLC misses was mainly due
to fewer LLC references. For example, the number of LLC references for streamcluster, sp,
bt, lu drop by 2%, 37%, 24%, 15%, respectively. Since LLC (L3 in our testbed) reference
is the result of L2 misses, we further draw the breakdown of L2 misses in Figure 3.4
(d) to pinpoint the culprits of reduced L3 reference. Figure 3.4 (d) only shows demand
data and instruction misses. Prefetching misses are excluded from the figure. We used
L2 events DEMAND.I_STATE and RFO.I_STATE to count coherence misses and the
remaining misses were capacity or conflict misses. The data shown in Figure 3.4 (c) and
(d) is normalized to the no interference case.

From Figure 3.4 (d), we can see that the change in L2 coherence miss contributes
most to the overall L2 miss reduction. A study of program source code reveals that most
coherence misses are caused by false sharing between threads. The out-of-sync execution
of parallel threads due to interference can constructively alleviate the contention on shared
cache lines. Threads with different progression will see fewer cache line invalidations from
sibling cores. Interference not only reduces the inter-core cache coherence traffic but also
avoids some unnecessary L3 references. For example, miss on an unmodified L2 cacheline
can be serviced by forwarding the line from a sibling core without sending requests to
the L3 cache. This effectively reduces the number of capacity/conflict misses on the L3
cache. An exception is streamcluster whose change in compute time is mostly attributed to
prefetching misses.
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Figure 3.6: Program performance under different types of interference (4-loop).

Next, we show that most programs in the NBP and PARSEC benchmarks have
varying memory cost under interference. Figure 3.5 shows the changes in OFFCORE_-

STALL under interference relative to the no interference case for the benchmarks not
shown in Figure 3.4. Negative values suggest reductions in memory cost and vice versa.
As we can see, the cost to access memory varies wildly from -30.9% to 80.2%, with
most programs susceptible to such changes. If the compute time comprises mostly memory
access time (i.e., memory-bound), the changes in memory cost due to interference could
greatly affect the overall performance. While the increase in memory access time can be
attributed to the loss of locality, e.g., threads dynamically stealing work from straggling
threads in raytrace and bodytrack, the reduction in memory cost due to the mitigation of
intra-program contentions can be exploited to improve datacenter efficiency. We carefully
co-located sp with four intermittent interferences, with 5%, 8%, 10%, 15% CPU demands,
respectively. The setting is to artificially create out-of-sync execution at parallel threads to
mitigate the false sharing between threads.

Table 3.2 shows that sp achieved 9.0% better performance with 9.2% less allocated
resource. This case study suggests a group of symbiotic datacenter workloads, in which
seemingly destructive competitions help constructively mitigate intra-program contentions
on shared resources.
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No inter. w/ inter.
CPU % 400% 363% (-9.2%)
Runtime 1004s 914s (+9.0%)

Table 3.2: Improving sp performance with less resources.
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Figure 3.7: Low-level metrics under interference.

3.3.4 Complex Interactions with the Scheduler
Performance is even harder to characterize if all threads of the parallel program

are affected by interference. In the simple one persistent interference scenario, program
resilience to CPU contention or the change in compute time plays a major role in perfor-
mance. In contrast, when all vCPUs have interference, the overall performance is a function
of compute, sync, and steal time. Figure 3.6 shows the performance of parallel programs
under different types of 4-loop interference, i.e., persistent, periodic, and intermittent.
As shown in Figure 3.6(a) and (b), both streamcluster and canneal achieved the best
performance under persistent interference but suffered under the other two. However, these
two benchmarks behaved differently under periodic and intermittent interferences. While
streamcluster had the largest slowdown under the periodic interference, canneal suffered
most under the intermittent interference. Such uncertainty is due to the complex interactions
among the parallel program, the interference, and the scheduler. For example, as discussed
in Section 3.3.2, steal time is affected by the granularity of synchronization. A drop in
compute time due to out-of-sync execution will decrease steal time but lead to increased
sync time. The overall slowdown is determined by the interplays between these factors.

Figure 3.7(a) and (b) show the low-level performance metrics of streamcluster and
canneal when co-running with periodic and intermittent interferences, respectively. The
figures summarize the statistics for all vCPUs in the parallel VM. We find that low-level
metrics shed light on the unpredictability of high-level performance. Except sync time,

27



all other low-level metrics are highly correlated with the overall slowdown. Among these
metrics, idle time is the key to understanding the performance difference. Idle refers to
the time neither the parallel program nor the interference was running. A longer idle time
indicates a larger overlap between parallel program’s computation and the CPU burst of
the interfering loop. This results in more severe contentions on the pCPU. From the figure,
we can see that longer idle time always leads to more preemptions of the parallel program
and more yields, which is the sign of vCPU blocking due to imbalanced execution. The
implications from these observations are that reducing the number of preemptions would
help improve performance under interference and the system idle time is a good indicator
of scheduling efficiency.

For programs with busy-waiting synchronization, such as NPB benchmarks sp and
lu, both spin (or sync) time and compute time are counted as the CPU consumption of the
parallel VM. Since steal time depends on the CPU usage of the VM, the performance of
sp and lu is determined by their combined spin and compute time. Figure 3.6 (c) and (d)
show the runtime breakdown of sp and lu, respectively. We make three key observations.
First, co-running with intermittent interference achieved the best performance among the
three interference scenarios. Second, persistent interference caused longer spin time than
the other two. Third, periodic interference did not significantly increase sync time. These
observations provide valuable insight into the complex interplays between busy-waiting
workloads and interference.

The asynchrony in scheduling multiple vCPUs contributed most to the reduction
of compute time under persistent and intermittent interferences. When co-locating the
parallel program with persistent interference, individual vCPUs are likely scheduled in an
uncoordinated manner on multiple pCPUs and the asynchrony remains until the completion
of the parallel program because the scheduling rhythm (i.e., switching vCPUs at time slice
expirations) on multiple pCPUs will not change for compute-bound workloads (i.e., spin-
ning workload and persistent interference). However, the constant asynchrony continuously
incurs exceeding spinning at faster vCPUs and eventually degrades overall performance.
The randomness in intermittent interference also creates asynchrony on multiple vCPUs
and helps reduce memory access cost. Contrary to persistent interference, it does not cause
long spin time and neither does the periodic interference. The frequent switching between
computation and idling (i.e., 10ms in periodic and 1-30ms in intermittent interferences)
in these two interferences forces the hypervisor to perform scheduling at a much finer
granularity compared to the default 30ms time slice in Xen. There have been studies using
small time slices to improve the performance of virtualized IO [2, 119]. In our case, the fine-
grained scheduling helps stop spinning vCPUs in a timely manner, which not only reduces
the overall sync time but also saves the precious CPU time for useful work in the parallel
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program. Our analysis motivates a possible optimization at the hypervisor to improve the
performance of busy-waiting workloads: differentiating scheduling on multiprocessors.

3.4 Online Performance Prediction
In this section, we present an approach for online performance prediction based

on the breakdown of parallel runtime. The idea is to sample parallel execution under
interference and compare the execution profile with that in an interference-free environ-
ment. The key is to compare the amount of useful work completed in the two profiles and
infer the slowdown from the difference in the speed of program progression. We define
useful work as the necessary work needed to complete the parallel job assuming an ideal
memory system with zero latency and perfect load balancing. As we have shown, the cost of
accessing memory and performing synchronization can vary under interference, leading to
dynamic computations required to complete parallel programs. In a machine with an ideal
memory system, computation is performed in the CPU front-end which is an invariant in the
presence of interference or unpredictable thread scheduling. With perfect load balancing,
the time spent in synchronization, i.e., spinning or performing context switches, is almost
zero. Thus, the compute time in such an ideal platform is only determined by compilation
and the dynamic instruction scheduling on individual CPUs. As these two factors are not
affected by interference, the ideal compute time is a reliable metric to measure program
progress.

To measure useful work, or the compute time on an ideal platform, we remove the
time spent in the memory hierarchy, synchronization, and the time stolen by other users,
from the total time. Specifically, we calculate useful work tideal in a sampling period as
follows:

tideal = ttotal− tsteal− tsync− tmem,

where tsteal measures the resilience of the program to interference and is reported directly
by vProfile. We use the time spent on Intel’s offcore memory subsystem (i.e., OFFCORE_-
STALL) to approximate tmem. For programs with busy-waiting synchronization, tsync refers
to the spinning time recorded by vProfile. For programs with blocking synchronization,
tsync includes the time in the blocked state and the time performing vCPU context switches.
While the blocked time is already included in the execution profile, we infer the cost of
context switching by comparing the cycles spent by different threads in the same parallel
program. Specifically, after removing tsteal and tmem from the total time, we compare the
remaining time of individual threads and attribute the difference to the varying numbers of
context switches performed by them, assuming that each thread has been assigned an equal
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Figure 3.8: The accuracy of performance prediction.

amount of work. As such, we calculate the per context switch cost (in CPU cycles) and
multiply the number of vCPU blocking to derive tsync.

The online sampling profiles parallel execution in two steps. First, it enables the
dedicated mode to collect statistics for an interference free execution. The dedicated mode
sampling is then followed by a normal sampling with interference turned on. The length of
the sampling can be tuned to produce the best accuracy. We empirically set the sampling
length to 30 seconds. vProfile reports the runtime breakdown of all vCPUs in the VM
under the two execution modes, respectively. The overall slowdown is then calculated as
t ′ideal
tideal

, where t ′ideal and tideal are the amount of useful work done by all threads in the parallel
program during the dedicated mode and under interference, respectively.

Figure 3.8 shows the accuracy of the proposed online prediction compared with two
representative prediction approaches based on misses per thousand instructions (MPKI) and
cycles per instruction (CPI). We employed the same sampling-based method to predict the
overall program slowdown using these two metrics. For example, the slowdown is predicted
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Figure 3.9: Performance of PARSEC benchmarks under delayed preemption (DP).

as CPI
CPI′ when using CPI to measure program progress under interference and under the

dedicated mode. We used the synthetic workload and the real streamcluster workload as
the interferences, respectively. For each type of interference, we evaluated the prediction
with both the single-threaded (i.e., 1-persistent and 1-stcluster) and the multi-threaded (i.e.,
4-persistent and 4-stcluster) interferences. With the synthetic persistent interference, which
has predictable CPU demands and almost zero memory footprint, we test how well the
prediction deals with the uncertainties due to parallel programs’ varying resilience and
memory accessing cost in response to interference. Then, we evaluate how accurate the
prediction would be with real workload streamcluster that has varying CPU demands and
contends on shared memory resources.

As shown in Figure 3.8 (a) and (b), MPKI and CPI-based predictions incurred sig-
nificant prediction errors with on average 20.3% and 15.2% mean absolute percentage
errors (MAPE), respectively, across all workloads. The inaccuracies were due to the mis-
representation of parallel performance by these two metrics. As shown in Figure 3.5,
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memory access cost can either increase or decrease under interference but the overall
performance is determined by multiple factors. Thus, memory-related metrics alone, e.g.,
MPKI, fail to accurately predict performance slowdown. CPI is a effective metric to predict
the performance of serial programs as it measures the cost to execute instructions, assuming
that the number of instructions needed to complete a program is constant. However, this
assumption does not hold in parallel programs. The number of instructions executed by
individual threads is variable due to the spinning and blocking performed by threads. For
example, it is possible that a spinning thread making no execution progress can have a
decreasing CPI because waiting on spinlocks does not cause any memory accesses and has
a low CPI. Therefore, CPI alone does not capture synchronization in parallel programs and
is not accurate in predicting the overall performance.

In contrast, as shown in Figure 3.8 (c), the performance predictions based on the
useful work were accurate with an average MAPE of 4.5% across all workloads. In general,
predictions with the synthetic interference are more accurate than that with streamcluster
and predictions with single-threaded interference tend to incur less error. Except for cg, all
predictions caused less than 10% errors even for raytrace, which implements dynamic work
assignment at the user level to improve load balancing. While dynamic work assignment
at the application level mitigates interference by assigning less work to straggling threads,
it presents challenges to online performance prediction as the work done by individual
threads does not reflect the overall progress. Our online prediction addressed this issue by
counting useful work on all threads to measure program progress as a whole and achieved
less than 10% prediction error for raytrace.
Sources of inaccuracy The accuracy of the prediction relies on one assumption: the sam-
pling is representative of the overall parallel execution. This assumption do not always
hold, leading to inaccurate predictions. For example, some applications, e.g., cg, have
quite dynamic memory footprint at different execution stages. The dynamism can affect
the effectiveness of the sampling-based prediction, especially when the interference is
also dynamic. As shown in Figure 3.8, the prediction incurred 32% error on cg under
the 4-thread streamcluster interference. As discussed in Section 3.3.2, the CPU alloca-
tion to streamcluster depends on its synchronization granularity. As cg’s memory demand
changed, streamcluster had varying computation between synchronizations, thereby affect-
ing the CPU allocation to cg. Thus, predictions based on one sample of the execution of
such applications will be likely inaccurate.
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3.5 Optimizations
Our analysis in Section 3.3 found that involuntary preemptions are especially detri-

mental to performance and randomness in CPU scheduling help mitigate intra-program
contentions on shared resources. Inspired by these findings, we developed two simple
optimizations, delayed preemption and differential scheduling, at the hypervisor to improve
parallel performance under interference. Results show that the two optimizations derived
from our analysis with the synthetic workloads are effective in reducing performance slow-
downs when real parallel applications are co-located.

3.5.1 Delayed Preemption
Harmful preemptions happen when parallel programs co-locate with periodic or

intermittent interference. The frequent wakeups of interfering vCPUs can cause longer
steal time and synchronization time in the parallel VM. While preemptions due to the
expiration of CPU time quantum are necessary for fair allocation, the boosted wakeups
are needed for minimizing latencies of interactive or IO workloads. In a contended en-
vironment, such premature preemptions may cause cascading performance degradations
in parallel programs. Figure 3.7 suggests that even CPU is heavily contended, there still
exists idle time in which both parallel threads and the interfering loops are in blocked (or
sleep) state. When these vCPUs wake up, preemptions between the two competing sides
cause ping-pong scheduling. To address this issue, we propose delayed preemption (DP) to
overlap computations with blocking/sleeping, and to minimize premature preemptions.

Inspired by the design of hybrid synchronization, which uses a spin-then-block ap-
proach to attain a balance between low latency and wasting CPU time, our approach tem-
porarily delays a wakeup vCPUs for a short period of time in the hope that current running
vCPU would voluntarily yield CPU due to waiting for synchronization. Our implementa-
tion in Xen is quite simple and the change only consists of 50 lines of code. We added
a single shot timer to the pCPU that has a waking vCPU. If the current running vCPU
voluntarily yields CPU, the timer is stopped. Otherwise, the expiration of the timer forces a
call to the schedule function in Xen to preempt the current vCPU. However, the selection
of the delayed period is challenging as different applications attain the best performance
with different delays.

Figure 3.9 shows the performance of PARSEC benchmarks due to stock Xen and DP.
We co-located PARSEC benchmarks with two background workloads. streamcluster has
fine-grained synchronizations at the granularity of 20-30ms while fluidanimate has coarse-
grained synchronizations every 6 seconds. Benchmarks in Figure 3.9(a) suffer involuntary
preemptions caused by the background streamcluster and the background fluidanimate
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Figure 3.10: Performance of NPB benchmarks under differential scheduling (DS).

in Figure 3.9(b) is the victim of premature preemptions. In general, the optimal delay
setting varies across benchmarks. As shown in Figure 3.9(a), short delay (i.e., DP(2ms))
is more desirable for streamcluster, facesim, dedup, and bodytrack, while long delay (i.e.,
DP(8ms)) worked best for other workloads. Similarly, workloads also have their respective
preferences of delay in Figure 3.9(b).

To meet applications’ diverse needs of preemption delay, we make DP adaptive (i.e.,
adaptive-DP). As discussed in Section 3.3, the idle time on pCPUs is a key indicator of the
efficiency of parallel scheduling. For PARSEC benchmarks, vCPUs become idle/blocked
when synchronizing with sibling vCPUs. Interference could slowdown sibling vCPUs and
prolong the idle period. In multiprocessor scheduling, uncooperative preemptions could
leave CPU time on pCPUs unused when vCPUs from competing workloads are all blocked
by synchronization. The objective of adaptive-DP is to dynamically adjust the preemption
delays for co-running parallel workloads so that the overall preemptions and the idle time
on pCPUs are minimized. We decompose runtime into compute and idle time and the latter
includes sync and steal time. We adaptively change the preemption delay for a vCPU until
its compute time approximates its expected fair share in a shared environment. If all vCPUs
from co-running applications attain their fair share, the idle time would be dominated by the
steal time, thereby minimizing the sync time and preemptions. Specifically, the preemption
delay is updated as follows:

lag =
tcomp− t f air

tcomp + tidle
, (3.1)

delay = delay+ lag× (delay+ MICROSECS(10)), (3.2)

where t f air and tcomp refer to the ideal fair allocation of CPU time and the actual attained
compute time, respectively. The preemption delay is updated according to the lag relative to
the ideal fair CPU allocation. A positive lag increases the delay a vCPU waits to preempt the
current running vCPU, giving other applications more time to execute. MICROSECS(10)
is to ensure no-zero changes in case delay becomes zero.
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As shown in Figure 3.9 (a) and (b), adaptive-DP automatically determines the op-
timal delay for different applications. When co-running with fine-grained streamcluster
(Figure 3.9 (a)), adaptive-DP outperformed both DP (2ms) and DP (8ms) for applications
with fine-grained synchronizations, e.g., streamcluster, facesim, and canneal. Adaptive-
DP effectively identified better delay values for such workloads compared to the manually
determined 2ms and 8ms delays. For coarse-grained workloads, such as swaptions, blacksc-
holes, and x264, adaptive-DP struck a balance between the foreground and background
workloads and achieved performance in-between the manually tuned delays. When co-
running with fluidanimate (Figure 3.9 (b)), adaptive-DP had similar performance to stock
Xen as Xen with zero preemption delays always prioritized the foreground workloads
with fine-grained synchronization. We calculated the geometric mean of the slowdowns of
the foreground and background workloads relative to their performance in dedicated sys-
tems. The background workloads were repeated until all foreground workload completed.
Adaptive-DP outperformed Xen by 12% in the overall slowdown, indicating more efficient
scheduling in a shared environment.

3.5.2 Differential Scheduling
Differential Scheduling (DS) is also motivated by our observations in Section 3.3.

We found that the randomness in intermittent interference helps alleviate the contention
on shared memory resources, which significantly reduces the required computation. The
irregularity in CPU demand and sleep intervals forces the CPU scheduling on multiproces-
sors to proceed at different paces. This effectively leads to different lengths of time slice at
different CPUs because the intermittent loops yield CPU at irregular intervals. The result is
not only the release of pressure placed by the concurrent vCPUs to the memory hierarchy
but also a reduction of wasted spinning time due to fine-grained scheduling.

To emulate the benefits brought by co-running with intermittent interference, we
purposely make the schedulers on multiple CPUs have different time quantum. Xen uses
a master timer for each pCPU to generate periodic timer interrupt to force a call to the
schedule function. The default timeout (i.e., the time slice) is 30ms. In DS, the interval
of the timer is randomly generated. Each time Xen sets the timeout for the next timer
interrupt, it picks a random interval based on the readings of the Time Stamp Counter (tsc)
register. Given the micro-second resolution (approximately 2430 cycles on our platform)
of hardware timers, the last two digits of the tsc readings are likely device noises and are a
good source of randomness. We set the time quantum on individual pCPUs to the range of
10ms to 30ms to enable fine-grained scheduling.
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Figure 3.10 shows the performance of NPB benchmarks due to stock Xen and DS.
Since DS already adds randomness into vCPU scheduling, we present the performance
of DS when NPB benchmarks ran with persistent, periodic interferences (excluding the
intermittent interference), and the real workload sp. The selection of sp is due to its mem-
ory contentiousness to co-running programs. Figure 3.10 (a) suggests that with persistent
interference, DS was only effective in optimizing memory-bound programs, such as sp,
lu, and ua. On average, DS outperformed Xen by 32% in these workloads. For CPU-bound
program, e.g., cg, DS neither significantly degraded or improved performance. For periodic
interference (shown in Figure 3.10 (b)), DS outperformed Xen in all benchmarks except
cg. DS does not help mitigate memory contentions as cg is primarily CPU-bound and hurts
performance because differential time slices slow down the tightly coupled phases in cg.

Interestingly, DS was able to outperform Xen even for compute-bound benchmarks,
e.g., cg (as shown in Figure 3.10 (c)) when the background workload was memory-bound
sp. The alleviation of memory pressure from the background sp helped improve the per-
formance of foreground workloads. However, the inability of DS to improve foreground
sp performance in Figure 3.10 (c) suggests that DS work best for workloads with com-
plementary memory access patterns. Another advantage of DS is that the randomness in
scheduling significantly reduces runtime variations across runs, with an average variation
of 0.5%.

3.6 Summary
Enable per-thread runtime breakdown Currently, vProfile can only report runtime break-
down at per-vCPU level for parallel applications that have a one-to-one mapping from
user-level threads to vCPUs. There exist many parallel workloads with more threads than
vCPUs. Examples include web servers and workloads implementing worker pools, such as
dedup, ferret and vips. Enabling per-thread runtime breakdown would help further pinpoint
the source of slowdown but require tracing thread switches in the guest OS.
Extend prediction to more sophisticated workloads The online prediction currently fo-
cuses on multithreaded parallel programs on shared memory systems. Predicting parallel
performance on distributed memory systems present significant challenges. Much effort
is needed to devise a lightweight and accurate sampling approach on multiple machines.
Further, our prediction treats the useful work on any threads equally. For more sophisticated
programs, especially those having strong dependencies between threads, e.g., dedup and
ferret with pipeline parallelism, the prediction should be based on the useful work of the
most critical thread.
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Identify symbiotic workloads Experimental results show that DP and DS are effective
for blocking-based workloads (e.g., PARSEC benchmarks) and workloads with comple-
mentary memory demands, respectively. However, no one size fits all. DS can hurt the
performance of CPU-bound and tightly bounded workloads, and DP is ineffective for ap-
plications with busy-waiting synchronization. Identifying symbiotic workloads that either
have complementary resource demands or can be managed under similar schemes would
help improve resource utilizations and reduce energy consumptions in datacenters.

This chapter presents a systematic study of parallel performance under interference.
We find that the speed of individual threads under interference is determined by their
varying resilience to interferences and the computation required to complete the parallel
program can change vastly under interference due to alleviated intra-program contentions.
Further, the overall performance is the result of the complex interplays between these
factors. Avoiding harmful vCPU preemptions or maintaining asynchrony between vCPUs
helps reduce slowdown under interference for different kinds of workloads. Inspired by
these findings, we develop an accurate online approach for predicting slowdowns under
interference without requiring completing the parallel program, and devise two scheduling
optimizations at the hypervisor to improve performance.
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CHAPTER 4

Interference-Resilient SMP Virtual Machine Scheduling

4.1 Introduction
Symmetric Multiprocessing virtual machines (VMs) are becoming increasingly com-

mon in cloud datacenters. To fully utilize hardware parallelism, SMP VMs are often used by
cloud users to host multi-threaded applications. On the other hand, cloud providers prefer
oversubscribing their datacenters by consolidating multiple independent VMs onto a single
machine to improve hardware utilization and reduce energy consumptions. For example,
in desktop virtualization, VMware suggests a physical CPU (pCPU) can be shared by as
many as 8 to 10 virtual desktops [107]. However, oversubscription requires that the CPU
be multiplexed among multiple VMs so that each VM receives only a portion of the pCPU
cycles.

CPU oversubscription introduces challenges to efficiently executing parallel and multi-
threaded programs in SMP VMs. One well-known issue is the lock-holder preemption
(LHP) problem [36]. LHP occurs when a vCPU is descheduled by the hypervisor while the
thread currently running on that vCPU is holding an important lock. As the performance of
parallel applications as a whole depends critically on the cooperation of multiple threads,
if one thread holding the lock is preempted, other threads waiting for the lock are unable
to make progress until the descheduled vCPU is rescheduled. Thus, the delay of one vCPU
will significantly degrade the overall performance of the parallel program. Lock-waiter
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Figure 4.1: LHP and LWP cause significant slowdown to parallel programs. (a) Programs
with user-level load balancing are more resilient to interference. (b) Existing load balancing
in the guest OS is ineffective in addressing LHP and LWP.
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preemption (LWP) [52, 3, 101] is a similar problem in virtualized environments and can
cause severe slowdown.

The root cause of the LHP and LWP problems is the semantic gap between the guest
OS and the hypervisor. In virtualized environments, there exist two scheduling domains:
(1) the guest OS schedules processes on vCPUs and (2) the hypervisor schedules vCPUs
on physical CPUs. The scheduling activities in the guest OS are completely oblivious to
the hypervisor. Thus, a vCPU can be preempted at any time by the hypervisor regard-
less of what this vCPU is executing. If vCPUs with threads waiting for entering into
or already in the critical sections are preempted, LWP and LHP will occur respectively.
There have been studies narrowing the semantic gap by inferring scheduling events inside
VMs at the hypervisor using heuristics [49, 55, 73, 85, 86, 110], or approximating VM
co-scheduling to mitigate the LHP and LWP problems [59, 102, 23, 99], or allowing the
guest OS to assist hypervisor scheduling [105, 36, 30, 115, 21, 78]. These approaches have
their respective limitations. Different workloads require distinct heuristics to identify thread
criticality; co-scheduling is expensive to implement and causes CPU fragmentation [93];
synchronization-oriented optimizations make the hypervisor scheduling very complex and
can possibly compromise fairness between VMs.

In this work, we identify another semantic gap, which is neglected in the literature
– the guest OS is also unaware of the scheduling events at the hypervisor. If this gap
is bridged, the guest OS can proactively migrate a critical thread if the host vCPU is
preempted. We ran parallel programs in a 4-vCPU VM and slowed down one vCPU by co-
locating another compute-bound VM with the vCPU to create interference. The interfered
vCPU had frequent LHPs and LWPs. Figure 5.1 (a) shows the performance slowdown of
three parallel application. Fluidanimate from the PARSEC benchmarks [103] and ua
from the NPB benchmark [8] use blocking and spinning synchronization, respectively, and
had significant slowdowns. In contrast, raytrace was resilient to LHP and LWP due to
its user-level load balancing, which absorbed the slowdown by distributing work to threads
having no interference.

Modern OSes are equipped with complex load balancing schemes to efficiently uti-
lize multiprocessor systems. However, load balancing in the guest OS is not effective in
virtualized environments. Process migration is the critical operation in load balancing.
Figure 5.1(b) shows the latency of migrating a process in a Xen VM from a vCPU with
frequent preemptions to another vCPU without interference. We measured the average
latency of 30 migrations. The frequency of preemption was managed by placing different
numbers of compute-bound VMs with the source vCPU of the migration. The reference mi-
gration latency was obtained when the VM ran alone and there were no vCPU preemptions.
Figure 5.1 (b) suggests that process migration latency increases with the level of contention
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on the vCPU and the latency jump at each step corresponds to the VM scheduling delay
(i.e., 30ms in Xen credit scheduler [10, 118]) incurred by adding one more VM. The results
infer that load balancing in the guest OS is unable to address the LHP and LWP problems
and itself is affected by vCPU preemptions.

There are two reasons why in-guest load balancing does not help mitigate LHP and
LWP, both of which are due to the unawareness of hypervisor scheduling events in the guest
OS. First, vCPU preemptions do not cause load imbalance in the guest, thereby the guest is
unable to invoke process migration. Second, threads on preempted vCPUs are in “running”
state, though they are actually not running, to the guest OS. As a result, the guest OS fails
to migrate such “running” threads because it thinks it is unnecessary. Process migrations
will only be successful until the preempted vCPU is scheduled again.

To fully unlock the potential of the guest OS in addressing the LHP and LWP prob-
lems, we design interference-resilient scheduling (IRS), a simple approach to bridging the
guest-hypervisor semantic gap and guiding guest load balancing. Inspired by scheduler
activations (SA) [5] in hybrid threading, IRS notifies the guest OS and activates in-guest
load balancing when a vCPU is to be preempted by the hypervisor. As such, lock holder
threads can be promptly migrated to other running vCPUs to avoid LHP and LWP.

We have implemented a prototype of IRS in Xen 4.5.0 and Linux 3.18.4, and per-
formed comprehensive evaluations with various parallel and multi-threaded workloads.
Experimental results show that IRS can improve the performance of NPB and PARSEC
benchmarks by up to 43% and 42%, respectively, especially for programs with heavy
synchronization. Moreover, IRS can reduce the latency of multi-threaded server workloads
by as much as 46%.

The rest of the chapter is organized as follows. Section 4.2 discusses previous work
on the LHP and LWP problems and presents our motivation. Section 4.3 and 4.4 describe
the design and implementation of IRS, respectively. Evaluation results and analysis with
various parallel applications are given in Section 5.4. Section 4.6 discusses limitations and
future work. We conclude this chapter in Section 4.6.

4.2 Motivation
As discussed above, existing work, either the hypervisor-level or guest OS-assisted

approach, focused on making the hypervisor aware of the synchronization event inside the
guest OS to aid scheduling. We show that there is a great potential of the guest OS to
address the LHP and LWP problems.
Potential of guest OS load balancing We ran representative parallel benchmarks from the
PARSEC and NBP benchmark suites in a 4-vCPU Xen VM. The LHP and LWP problems
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Figure 4.2: Parallel applications suffer low CPU utilization due to interference. User-level
load balancing helps efficiently utilize CPU under interference.

were caused by placing another CPU-bound VM with one of the 4 vCPUs. The vCPUs
of the parallel VM and the interfering VM were pinned to separated pCPUs. The vCPU
that experienced LHP and LWP shared the same pCPU with the interfering VM. The PAR-
SEC benchmarks were compiled with pthreads and NBP benchmarks were compiled
using OpenMP with OMP_WAIT_POLICY set to passive. All benchmarks used blocking
synchronization.

Figure 4.2 shows the CPU utilization of the parallel VM relative to its fair share.
Ideally, both VMs should receive the fair share of the pCPU capacity. As shown in the
figure, all parallel programs except raytrace suffered much lower CPU utilizations
compared to their fair shares, indicating that the parallel VM did not fully or efficiently
utilize its CPU entitlement. The culprit is that the interfering VM caused frequent LHPs
and LWPs to the parallel VM. If a critical thread is preempted, all other threads need
to wait for the critical section until the preempted vCPU is rescheduled. With blocking
synchronization, the waiting threads are put to sleep and their host vCPUs become idle
even when there are sufficient pCPU allocated to the parallel VM.

Programs with spinning synchronization suffer similar performance degradation due
to LHP and LWP, but do not show low CPU utilizations. Instead of going idle, the wait-
ing vCPUs busily wait on the lock and burn CPU cycles. Although the parallel VM is
able to utilize its fair share, most CPU cycles are spent on spinning and few are used to
carry out meaningful computation. Hardware-based techniques, such as pause loop exiting
(PLE) [44], detect excessive spinning and stop a VM to prevent it from wasting CPU cycles.
The effect is equivalent to blocking-based synchronization and the parallel VM will suffer
low CPU utilization in the presence of LHP and LWP.

In contrast, Figure 4.2 also shows that raytrace was able to fully use its fair
share even in the presence of LHP and LWP. This explains its resilience to interference
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as shown in Figure 5.1. Raytrace implements a work-stealing mechanism at user level
and threads that complete their assigned work sooner steal the work originally assigned to
slower threads. As such, interference has less impact on the overall performance as mean-
ingful work is migrated to faster or interference-free threads/vCPUs. Similar interference
resilience can also be observed in programs compiled with Intel TBB [45] and OpenMP

using a dynamic thread schedule.
This motivating example demonstrates that load balancing can effectively address the

LHP and LWP problems and mitigate the slowdown caused by interference. However, only
programs that have specific compiler support or have their own user-level load balancing
are resilient to interference. Programs relying on the guest OS, e.g., Linux, for load balanc-
ing suffer low CPU utilizations and significant performance slowdowns. In general, there
are two approaches in guest OS load balancing: push migration and pull migration. Push
migration periodically checks load imbalance and pushes threads from busy to less-busy
vCPUs; pull migration occurs when a vCPU becomes idle and steals (or pulls) excessive
work or ready (but not running) threads from a busy vCPU. Both approaches fail to work
effectively in virtualized environments. First, the load imbalance at the hypervisor does not
lead to imbalance in the guest OS and push migration is not invoked. Second and most
importantly, threads on preempted vCPUs are not considered excessive work by the pull
migration as they are in the “running” state.
Issues with hypervisor load balancing Hypervisors also implement complex schemes for
balancing vCPUs among pCPUs. Hypervisor level load balancing falls short of addressing
the LHP and LWP problems in two ways. First, lacking the information on thread criticality,
the hypervisor is unable to precisely identify the vCPU that experiences LHP and LWP.
Second, the hypervisor treats vCPUs from different VMs equally and relies purely on the
computational load on pCPUs for load balancing. Thus, it is possible that hypervisor places
vCPUs from the same VM onto the same pCPU to attain better load balance, thereby caus-
ing the CPU stacking problem [99]. Our experimental results show that CPU stacking can
incur 10-20x performance degradation to PARSEC benchmarks when the parallel VM and
the interfering VM shared the same set of 4 pCPUs but all vCPUs were unpinned. The same
issue can also be observed in other hypervisors, such as KVM [54] and VMware [102].
Summary Parallel programs suffer significant performance loss due to LHP and LWP and
so are unable to efficiently utilize their CPU allocations. Effective load balancing of parallel
threads can greatly alleviate the LHP and LWP problems. These observations motivated us
to enhance the guest OS load balancing in virtualized environments so as to make any
workload resilient to interference. To this end, we design interference-resilient scheduling
(IRS), a simple approach to bridging the guest-hypervisor semantic gap and unlocking
guest OS load balancing.
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Figure 4.3: The architecture of IRS.

4.3 IRS Design
IRS is a coordinated approach that bridges the guest-hypervisor semantic gap at the

guest OS side. The objective is to enhance the guest OS load balancing to make parallel
programs resilient to interference between VMs, thereby mitigating the LHP and LWP
problems. The heart of IRS design is the mechanism of scheduler activations (SA) in
response to vCPU preemptions at the hypervisor. Inspired by the classical scheduler activa-
tion approach in hybrid threading, in which the OS kernel notifies the user-level scheduler
if a user-level thread blocks in the kernel so that the user-level scheduler can pick another
ready user thread to execute. Similarly, IRS informs the guest OS once its vCPU is to
be preempted. The guest OS then migrates the thread running on the preempted vCPU to
another running vCPU to avoid LHP and LWP.

Figure 4.3 shows the architecture of IRS in a Xen environment. There are four
components in IRS: SA sender, SA receiver, context switcher (CS), and migrator. Before
Xen preempts a vCPU, it sends a notification to the vCPU via SA sender residing in Xen
(step 1©). Upon receiving the notification, SA receiver in the guest starts the load balancing
process (step 2©). To enable task migration, the CS deschedules the thread on the preemptee
vCPU and marks the thread as migrating (step 3©). Last, the migrator moves the thread to
a sibling vCPU with least waiting time (step 4©). Next, we elaborate on the design of these
components in the context of Xen and Linux guest OS.
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Algorithm 1 Send and acknowledge SA event.
1: Variables: The vCPU to be preempted v; The SA acknowledgement sent by the guest

OS ops.
2: /* Hypervisor: send SA event */
3: procedure Send_SA_event(v)
4: if vcpu_runnable(v) and sa_pending(v) then
5: send_guest_vcpu_virq(vc, VIRQ_SA_UPCALL)
6: set_sa_pending(v)
7: return continue_running(v)

8: /* Guest OS: acknowledge SA completion */
9: procedure Ack_SA_event(void)

10: ops = context_switcher()
11: wake_up_migrator()
12: /* Return the control back to hypervisor and clear SA pending flag on the host

vCPU */
13: HYPERVISOR_sched_op(ops, NULL)

4.3.1 SA Sender and Receiver
SA sender and receiver together establish a communication channel between the

hypervisor and the guest OS. Algorithm 1 shows the interactions between the SA sender
and receiver. SA sender is on the critical schedule path of the hypervisor. Whenever the
hypervisor decides to preempt a current running vCPU, it sends a notification to the pre-
emptee vCPU to allow the guest OS to respond to the preemption. Only vCPUs that are
involuntarily preempted and are still willing to run (i.e., runnable) will be notified (line
4-5). To avoid duplicate notification, the SA sender also needs to check if there is an SA
notification pending for a vCPU in the guest OS. The SA notification is per-vCPU. After the
notification is sent, the hypervisor delays the preemption and allows the preemptee vCPU
to continue running and process the notification (line 7).

The SA receiver resides in the guest OS and takes three steps to respond to the SA
notification: (1) deschedule the current running task on the preemptee vCPU and perform a
context switch (line 12). The return value of the context switcher determines the response
to the hypervisor; (2) asynchronously wake up the migrator thread to move the descheduled
task to a different vCPU (line 13); (3) return the control back to the hypervisor (line 15).
Once the hypervisor receives the response, it clears the SA pending flag of the vCPU to
enable the next round of SA.
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The hypervisor-guest communication uses Xen’s event channel for SA notification.
To ensure timely delivery of the SA, we design the notification as a virtual interrupt (vIRQ)
for the guest OS. The SA receiver is essentially the interrupt handler of the new vIRQ.
Note that one change to hypervisor level scheduling is necessary for enabling SA – any
vCPU preemption needs to be delayed until the guest OS completes the processing of SA.
This change may affect existing scheduling in the hypervisor, such as fairness and I/O
prioritization. To minimize the impact, the SA receiver should complete fast. The context
switching of the current running task should be performed on the preemptee vCPU and the
vCPU needs to be active. Once the context switch is done, the migrator is asynchronously
invoked and can run on other vCPUs. Thus, the required delay at the hypervisor only
includes the time to handle the vIRQ and perform one task context switch in the guest.
Our profiling suggests that IRS adds 20-26 µs delay to the hypervisor scheduling. Since
the time slice of hypervisor scheduling is in the granularity of milliseconds, e.g., 30ms
in Xen, 6ms in KVM, and 50ms in VMware, the delay is negligible from the perspective
of fair CPU allocation. However, if vCPU preemption is due to prioritizing an I/O-bound
vCPU, the delay will add to I/O latency.

4.3.2 Context Switcher
The purpose of the context switcher is to faithfully reflect the status of a vCPU in the

guest OS to bridge the semantic gap. For example, if a vCPU is preempted and put back to
the runqueue of a pCPU, the task currently running on the vCPU in the guest OS should
also be descheduled. After a context switch, the vCPU should be put into a proper state
so as not to affect hypervisor-level scheduling. In Xen, vCPUs are in one of the following
three states: running, runnable, and blocked. While running means a vCPU is
executing on the pCPU, runnable indicates that the vCPU has been preempted but it has
a task to run. If a vCPU is idle or waiting for I/O completion, it has no tasks to run and will
be put in the blocked state. Xen devises different scheduling policies for different vCPU
states. For example, a vCPU waking up from a blocked state will be considered latency
sensitive and be prioritized.

To preserve the scheduling policy at the hypervisor, the SA receiver should respond
differently to the hypervisor depending on the execution state of the vCPU after task context
switch. The context switcher returns different operations to the SA receiver (Algorithm 1,
line 12). If there is no runnable task left in the runqueue of the vCPU after the current
running task is descheduled, the idle task will be put on the vCPU and the context
switcher returns an operation SCHEDOP_block. In contrast, if there are other runnable
tasks in the runqueue of vCPU, it should be put in the runnable state in hypervisor. In
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Algorithm 2 Migrate task from preempted vCPU.
1: Variables: The task to be migrated p; the least loaded vCPU vmin in the guest OS; the

state of a vCPU s; the runqueue of a vCPU rqv.
2: /* Guest OS: migrate task to least loaded vCPU */
3: procedure Migrate_task(p)
4: vmin = NULL
5: for each online vCPU v do
6: rqmin = rq_of(vmin)
7: s = get_vcpu_runstate(v)
8: if s == IDLE then
9: vmin = v

10: break
11: if s == RUNNING then
12: rqv = rq_of(v)
13: if rqv.rt_avg <rqmin.rt_avg then
14: vmin = v

15: if vmin 6= NULL then
16: __migrate_task(p, vmin)
17: return SUCCESS
18: else
19: return FAIL

this case, context switcher returns an operation SCHEDOP_yield, which does not change
the vCPU state but simply yields to the hypervisor.

4.3.3 Migrator
The migrator is responsible for distributing the descheduled task from a preempted

vCPU to another running vCPU so that the task does not need to wait for the original vCPU
to be scheduled so as to run. If the descheduled task is a lock holder or lock waiter and is
scheduled sooner due to load balancing, the LHP and LWP problems are alleviated. As
discussed in Section 4.2, load balancing in the guest OS is not effective due to the two
semantic gaps: load imbalance at hypervisor does not trigger load balancing in guest OS;
task migration does not apply to “running” tasks even though the host vCPU is preempted.
The context switcher addresses the second gap by descheduling the task upon vCPU pre-
emption. The migrator bridges the first gap.
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Figure 4.4: Pingpong migration caused by IRS and a simple approach to preserve locality.

Since the guest OS, e.g., Linux, has implemented complex load balancing schemes,
we design the migrator to be minimally intrusive to the existing balancing algorithm. Since
the guest load balancer is unable to sense the load imbalance at the hypervisor, the migrator
does not consider the load balance in the guest and forcibly move the descheduled task to
a different vCPU. The goal is to migrate the task to the least loaded vCPU. Algorithm 2
shows how to find the least loaded vCPU. The migrator iterates over all online vCPUs of
the guest OS until it finds a target vCPU for migration. Note that preempted vCPUs also
appear to be “online” to the guest OS. Therefore, the migrator needs to call down to the
hypervisor to check the actual vCPU state (line 7). Ideally, the migrator finds an idle sibling
vCPU and the search will end as the task can run immediately on this vCPU (line 8-10).

If there are no idle vCPUs, the migrator tries to find the least loaded vCPU (line
12-17). As there are two levels of load balance in virtualized systems, i.e., the balance in
the guest OS and in the hypervisor, the migrator aims to find a lightly loaded vCPU, which
not only has few tasks on the vCPU runqueue in the guest but also experiences little con-
tention from other VMs on the pCPU. We rely on the real time estimate of runqueue load
(i.e., rt_avg) in Linux to measure vCPU busyness. The metric rt_avg considers the
weighted process load of each vCPU in the guest OS as well as the contention experienced
by this vCPU on the pCPUs. It uses steal time, which measures the time during which a
vCPU is runnable but unable to run on the pcpu due to contention, to quantify hypervisor-
level CPU contention. The migrator compares vCPUs using the rt_avg of their runqueues
to pick the least loaded vCPU.

Another challenge in designing the migrator is to ensure that load is balanced be-
tween sibling vCPUs when preempted vCPUs come back online. To minimize intrusive
changes to the guest OS, the migrator relies on the existing load balancer in Linux to move
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tasks back to the rescheduled vCPU. However, one drawback of task migration is the loss
of cache locality. The migrator aims to preserve cache locality as much as possible. Besides
the push and pull migrations in Linux, there is another scenario in which task migration is
necessary and related to parallel programs. For workloads with blocking synchronization,
such as pthread mutex and barrier, the Linux kernel checks load balance when
waking up waiting threads, e.g., lock waiters. If the vCPU where the waiting thread slept
on is running another task, the waking task is migrated to a different vCPU. Figure 4.4
illustrates this problem and the migrator’s simple solution.

As shown in Figure 4.4, when vCPU-1 is preempted, task-1 (T1) is migrated to idle
vCPU-2, on which task-2 (T2) is blocked and waiting for the lock held by T1. Once T1
releases the lock, T2 is woken up. Because T1 is currently running on vCPU-2, T2’s the
host vCPU, T2 will be migrated out, likely to vCPU-1 as it is idle now. This design is to
avoid unnecessary preemptions of a running task if there exist idle vCPUs. However, the
wake up balancing causes pingpong migrations between vCPUs, which leads to poor cache
locality. Waking tasks are frequently migrated away from their original vCPU because the
migrator distributes tasks from preempted vCPUs to idle vCPUs.

The migrator employs a simple approach to address this issue. Instead of migrating
the waking task, the wakeup load balancer in Linux is modified to check the status of the
current running task to determine if the waking task should preempt the current task. The
migrator tags each task that is migrated due to preempted vCPU. If the current running
task is tagged, the wakeup balancer allows the waking task to preempt the current task.
The dotted box in Figure 4.4 shows the original Linux design and the arrow points to the
new design. This simple solution guarantees that waiter tasks always wake up from their
host vCPU to preserve locality. We rely on the Linux load balancer to migrate the tagged
task back to the preempted vCPU when it is scheduled again. This design only applies to
blocking workloads. For spinning workloads, the Linux balancer will migrate the tagged
task back to its original vCPU as its runtime on the new vCPU is short and it is not “cache
hot”.

4.4 Implementation
We have implemented IRS in Xen 4.5.0 and Linux 3.18.4. We intend to make the

changes to the hypervisor and guest OS minimally intrusive and use existing scheduling
and load balancing primitives. IRS requires small changes to Xen (less than 30 lines of
code) and Linux guest kernel (about 130 lines of code). Next, we describe the modifications
to Xen and Linux in detail.
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4.4.1 Modifications to Xen Hypervisor
For SA notification, we add a new virtual interrupt VIRQ_SA_UPCALL in Xen and

use a dedicated event channel for SA communications between Xen and the guest OS. The
credit scheduler in Xen is modified to temporarily delay the preemption of vCPUs until the
guest OS acknowledges the completion of SA. Once Xen relinquishes the control of the
vCPU scheduling, it relies on the guest OS to respond to the SA notification and return the
control back to Xen. This may create security issues if malicious guests never return to the
hypervisor. As discussed in Section 4.3.1, SA processing typically takes 20-26 µs, so the
hypervisor can set a hard limit for SA completion to prevent rogue users from exploiting
SA.

4.4.2 Modifications to Linux Guest OS
The main functionalities of IRS are implemented in the guest OS. We implement SA

receiver as the interrupt handler of the new VIRQ_SA_UPCALL interrupt. Since interrupt
handlers should be kept small, SA receiver delegates the SA response to Xen to the context
switcher. We implement the context switcher as the bottom half of the VIRQ_SA_UPCALL
vIRQ. We create a new softirq called UPCALL_SOFTIRQ in the guest OS and assigned
the context switcher as its handler. In Linux, softirqs have different priorities. We set the
UPCALL_SOFTRIQ to a lower priority than the TIMER_SOFTIRQ, which is responsible
for handling periodic timer events because the Linux kernel relies critically on timer inter-
rupts to perform task scheduling. When timer interrupt and SA interrupt arrive at the same
time, we ensure that the timer interrupt, which may trigger task switching in the Linux
scheduler, is handled prior to the SA interrupt. This is to prevent tasks that were to be
descheduled at the timer interrupt from being migrated.

The context switcher uses existing scheduling primitives in Linux to pick the next
task when the current running task is descheduled. After the context switch is completed,
it asynchronously invokes the migrator to distribute the descheduled task to another vCPU
for load balancing. Before the migration is performed, the context switcher calls hypercall
HYPERVISOR_sched_op with either SCHEDOP_block or SCHEDOP_yield as the
command to return control to Xen. The migrator is implemented as a system-wide kernel
thread. It borrows the idea from existing migration function migration_cpu_stop

but need not require to run on the vCPU from where the task is migrated. This greatly
shortens the amount of time the preemptee vCPU needs to be active, thereby reducing the
delay at the hypervisor scheduler. The migrator probes the runtime states of vCPUs via the
hypercall HYPERVISOR_vcpu_op to determine the least loaded vCPU for migration. If
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a target vCPU is found, the migrator invokes function __migrate_task to migrate the
task.

4.5 Evaluation
In this section, we present an evaluation of IRS using various parallel and multi-

threaded workloads. We study the effectiveness of IRS in improving the performance of
various parallel workloads with different types of synchronization (§ 4.5.2). We then extend
the evaluation to multi-threaded workloads with little synchronization (§ 4.5.3). We also
investigate how well IRS improves overall system efficiency when consolidating multiple
parallel workloads (§ 4.5.4) and perform a scalability and sensitivity analysis of IRS in
response to various levels of interference (§ 4.5.5). Finally, we study the potential of IRS
in mitigating the vCPU stacking problem (§ 4.5.6).

4.5.1 Experimental Settings
Our experiments were performed on a DELL PowerEdge T420 server, equipped with

two six-core Intel Xeon E5-2410 1.9GHz processors, 32GB memory, one Gigabit Network
card, and a 1TB 7200RPM SATA hard disk. We ran Linux kernel 3.18.4 as the guest
and dom0 OS, and Xen 4.5.0 as the hypervisor. We created two VMs, each configured
with 4 vCPUs and 4GB memory. One VM was used to run parallel and multi-threaded
workloads and the other was the interfering VM. We enabled para-virtualized spin-locks
in the guest kernel but it had no effect on NPB performance as OpenMP uses its user-level
spin implementation.
CPU pinning We first created a controlled environment to study the benefit of IRS by
disabling vCPU load balancing at the hypervisor. Both VMs were set to share four cores
in one of the two processors. Each vCPU is pinned to a different pCPU. Thus, two vCPUs
from the two VMs share the same pCPU. Note that if vCPUs were unpinned, VM oblivi-
ous load balancing at the hypervisor causes CPU stacking problem and incurs significant
performance degradation and unpredictability to parallel workloads. In Section 4.5.6, we
evaluated IRS performance in an unrestricted environment with all vCPUs unpinned.
Workloads We selected the following workloads and measured their performance with IRS
and three representative scheduling strategies.
• PARSEC [103] is a shared memory parallel benchmark suite with various blocking syn-

chronization primitives such as mutexes, condition variables and barriers. We compiled
them using pthread and used the native input.
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Figure 4.5: Improvement on PARSEC performance (blocking).

• NASA parallel benchmarks (NPB) [8] include 9 parallel programs. We used the openMP
implementation of benchmarks and set the problem size to class C. Environment vari-
able OMP_WAIT_POLICY was set to active to enable spinning synchronization between
threads.
• SPECjbb2005 [94] is a multi-threaded client/server benchmark. Performance is measured

by the throughput of the server and the latency of the common request type.
• Apache HTTP server benchmark [6] stress tests the throughput and latency of a webserver

using a large number of requests. Threads servicing client requests are independent and
do not require synchronizations.

Interfering workloads We used two types of interfering workloads to create contention
between VMs. We first used a micro-benchmark to generate synthetic interference. The
micro-benchmark consisted of a varying number of CPU hogs that compete for the CPU cy-
cles and had almost zero memory footprint. The use of the micro-benchmark is to perform
controlled experiments that has persistent interference to the workloads under test. In addi-
tion to the micro-benchmark, we also co-located PARSEC and NPB benchmarks with two
realistic background interfering workloads respectively. streamcluster and ua have
fine-grained synchronizations at the granularity of 20-30ms and 1-2s while fluidanimate
and lu have coarse-grained synchronizations every 6 and 30 seconds.
Scheduling strategies We compare the performance of IRB with three state-of-the-art
scheduling strategies for parallel programs.
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Figure 4.6: Improvement on NPB performance (spinning).

• Xen: we used the default credit scheduler without any optimizations for parallel pro-
grams as the baseline.
• PLE: pause-loop exiting is a hardware-level mechanism for spin detection. It detects

the execution of excessive PAUSE instructions, which are commonly found in spin lock
implementation, and causes trapping (via VM-exit) into the hypervisor. In Xen, the
credit scheduler switches to a different vCPU if the current vCPU is stopped by PLE. To
enable PLE, all workloads were run in hardware-assisted virtualization (HVM) VMs.
• Relaxed-Co:we implemented VMWare’s relaxed co-scheduling in Xen. Relaxed-Co

monitors the execution skew of each vCPU and stops the vCPU that makes significantly
more progress than the slowest vCPU. A vCPU is considered to make progress when it
executes guest instructions or it is in the IDLE state. Since VMWare documentation does
not reveal further details about relaxed co-scheduling, we implemented an optimization
for parallel programs – when a VM’s leading vCPU is stopped, the hypervisor switches it
with its slowest sibling vCPU to boost the execution of this lagging vCPU.

4.5.2 Improving Parallel Performance
In this section, we evaluate the effectiveness of IRS in improving parallel perfor-

mance for various parallel workloads. All benchmarks were run with 4 threads, matching
the number of vCPUs in the VM. The results were the average of 5 runs.
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Figure 4.5 and 4.6 show the performance improvement due to IRS for PARSEC and
NPB. Performance improvement is relative to the vanilla Xen and Linux. We varied the
level of interference (denoted as 1-inter., 2-inter., and 4-inter.) and caused LHP and LWP
problems on different numbers of vCPUs of the parallel VM. For example, 2-inter. refers to
the scenario in which either two CPU hogs or 2-thread real applications compete for CPU
cycles with two vCPUs of the parallel VM on two pCPUs.

Figure 4.5 shows the effectiveness of IRS for all PARSEC benchmarks. We have the
following observations about IRS performance:

First, most PARSEC benchmarks benefited from IRS with as much as 42% improve-
ment over vanilla Xen/Linux. However, IRS was not quite effective for some workloads
with marginal improvement, i.e., dedup, ferret, and raytrace. Dedup and ferret
employ pipeline parallelism and use multiple threads (i.e., 4 threads) for each pipeline stage
(4 stages in dedup and 5 stages in ferret). Thus, there were multiple threads running on
each vCPU. The Linux scheduler was able to balance these threads as most threads will be
in the ready state, leaving little room for performance improvement. Similarly, raytrace
implements user-level load balancing and does not need much help from IRS.

Second, performance improvement decreased as the level of interference increased.
While IRS had significantly improved performance for the 1-inter. and 2-inter. cases, it can
degrade performance in the 4-inter. case. When a few vCPUs were under interference, IRS
was able to migrate threads onto vCPUs without interference. The more interference-free
vCPUs, the more likely for IRS to find idle vCPUs that can run migrated threads immedi-
ately. In contrast, when all vCPUs were under interference, the vCPU onto which a thread
was migrated can be preempted soon, which triggers another round of migration. Frequent
migration violates cache locality and may incur performance degradation, especially for
memory-intensive workloads. This overhead explains the slowdown of some programs
under IRS in the 4-inter. case.

Third, IRS was also effective when interferences were real parallel workloads. The
results were similar to those with the synthetic interference except that IRS had slightly
better performance in the 4-inter. case. When the interference was a real parallel program,
it demanded less CPU than the synthetic interference because the interfering workload also
suffered from LHP or LWP, thereby having low CPU utilizations.

Compared to IRS, PLE and Relaxed-Co had improved parallel performance to
a certain extent, though not as much as IRS in most cases, but incurred considerable
performance degradation to some workloads. Since blocking primitives, such as mutex
and condition variable, only spend a very short period of time spinning when performing
wait queue operations, PLE does not help much on preventing excessive spinning. As
shown in Figure 4.5, PLE had limited performance improvement for blackscholes and
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swaptions but incurred considerable slowdown to vips, bodytrack, and facesim.
The reason is that PLE avoids futile spinning but does not prevent LHP or LWP from
occurring. When a spinning vCPU is stopped by PLE, the vCPU from the competing VM
will be scheduled. Currently, there is no mechanism in Xen for prioritizing the siblings,
which are likely the lock holder or waiter, if a spinning vCPU yields CPU due to PLE. This
explains why for some workloads, PLE caused slowdown.
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Figure 4.7: Weighted speedup of two PARSEC applications (blocking, higher is better).

In contrast, relaxed-Co is specially designed to balance the progress of sibling
vCPUs. In our implementation, we monitored the progress of all sibling vCPUs belonging
to the same VM in every accounting period in Xen (every 30ms) and stopped the leading
vCPU to boost the most lagging vCPU. However, results in Figure 4.5 show that it attained
less performance improvement compared to IRS in almost all PARSEC workloads. The
results also suggest that relaxed-Co can be destructive, especially in the 4-inter. cases.
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Figure 4.8: Improvement on server throughput and latency.
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For example, it caused more than 132% performance degradation for bodytrack in
Figure 4.5 (c). Overall, relaxed-Co was less effective or even destructive for blocking
workloads than spinning workloads (shown in Figure 4.6). The culprit was that the idle
period during which a blocking workload waits for synchronization is considered as making
progress by relaxed-Co, thereby not counted as skew. As will be discussed in § 4.5.6,
the idleness caused by out of synchronization is not recognized by existing CPU schedulers,
which constitutes the main limitation of relaxed-Co.

For spinning workloads, the migrator in IRS was unable to find any idle vCPUs
to migrate preempted threads as threads never block when waiting for synchronization.
IRS can only find vCPUs that are less loaded for migration. Thus, the migrated thread
inevitably needs to share the destination vCPU with another thread. Counter-intuitively,
Figure 4.6 shows that on average IRS attained higher performance improvement over the
baseline. In vanilla Xen/Linux, a preempted thread needs to wait one time slice in Xen, i.e.,
30ms, before its host vCPU is scheduled again, leading to long lock wait time. In contrast,
IRS migrates the lock holder thread to another vCPU. Although the thread still needs to
wait until it is scheduled by the guest OS, the scheduling happens much sooner. Not only
does Linux guest OS use finer grained time slices (i.e., 6ms), but also the migrated task
likely has smaller virtual runtime than the existing task on the destination vCPU and would
be prioritized by Linux completely fair scheduler (CFS). However, a similar trend was
observed – the performance gain due to IRS diminished as interference ramped up.

PLE and relaxed-Co were more effective for spinning workloads than blocking
workloads. In most cases, they achieved close but less improvement compared to IRS.
Nevertheless, they still performed poorly for some workloads, e.g., CG, IS, MG, and SP. In
contrast, although IRS can cause slowdowns, the degree of degradation is not as much as
PLE and relaxed-Co.

The improvement on parallel performance was mainly due to much improved CPU
utilization under interference. IRS was able to boost the utilization of parallel workloads
close to their fair share under CPU contention. The enhanced load balancing in the guest
OS helped parallel workloads utilize the idle or wasted CPU cycles in vanilla Xen/Linux.

4.5.3 Improving Multi-threaded Performance
We have shown that IRS is effective for boosting various parallel workloads. In this

subsection, we study its performance with more general multi-threaded programs with little
or no synchronization. We show that these workloads can also benefit from IRS. We used
two different server benchmarks. For SPECjbb2005, we set the number of warehouses to
4 so that there was a one-to-one mapping between threads and vCPUs. For Apache, we set
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Figure 4.9: Weighted speedup of NPB applications (spinning, higher is better).

the number of connections to 1000 and MaxClient in Apache httpd to 512. Thus, there
were 512 concurrent threads in the webserver.

Figure 4.8 shows the improvement in throughput and latency due to IRS relative to
vanilla Xen/Linux. Since request processing in server workloads has little dependency and
requires little synchronization, PLE and relaxed-Co have little effect and their results
are not reported. The interference was one to four CPU hogs. Since SPECjbb performs
little synchronization and ab had no synchronization, their CPU utilizations can achieve
the fair share and IRS does not improve utilization as it did for the parallel workloads above.
However, as shown in Figure 4.8, IRS was still able to improve the throughput of SPECjbb
by up to 12%, though did not help much in ab (by as much as 4%). While IRS did not
help increase utilization, it did improve request latency, which contributed to throughput
improvement. Figure 4.8 (b) shows that the average latency of the new order transaction in
SPECjbb was improved by as much as 46%.

In contrast, IRS had marginal improvement on ab latency. Figure 4.8(b) shows that
there was only slight improvement on the tail latency (99th percentile) of ab. The difference
between ab and SPECjbb is that ab had many more threads than the number of vCPUs
and each request was short. Since Linux is able to sense the contention at the hypervisor by
dynamically updating the rt_avg load on each vCPU, the load balancer in the guest OS
was able to distribute threads on vCPUs based on the level of interference experienced by
each vCPU. Therefore, IRS can only help the thread that was running when its host vCPU
was preempted. As ab had a large number of threads, improvement on a few threads did
not contribute to the overall throughput but helped the tail latency to some extent.
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Figure 4.10: The trend of IRS performance improvement with a varying number of
interferences.
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Figure 4.11: The trend of IRS performance improvement with a varying degree of
interferences.

4.5.4 System Fairness and Efficiency
The objective of IRS is to allow the guest OS to more efficiently utilize its CPU

allocation via enhanced in-guest load balancing. Since it requires some changes to both
the guest OS and the hypervisor, we are interested in studying the system-wide fairness
and efficiency when multiple realistic applications are co-located. The foreground VM
ran various parallel workloads and had IRS enabled. We selected representative parallel
programs as the interfering workloads running in the background VM. The interfering
VM ran a vanilla Linux kernel and thus IRS had no effect on it 1. We define the speedup
of an application as its performance under IRS normalized to the performance in vanilla
Xen/Linux. We use the weighted (average) speedup of the foreground and background
applications to measure the overall system efficiency. The higher the weighted speedup,
the higher system efficiency. A weighted speedup of 1 indicates the same performance as
vanilla Xen/Linux. The foreground and background workloads were both repeated at least
five times to ensure their execution completely overlapped with each other.

Due to space limits, we briefly report the fairness between the foreground and back-
ground VMs. IRS did not compromise fairness and the two VMs had a fair share of
the pCPUs. The only change IRS made to the scheduling algorithm at the hypervisor is

1Without implementing the VIRQ_SA_UPCALL interrupt, the background VM ignores the SA notifica-
tion sent by the hypervisor.
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the delay added to each vCPU preemption for the guest OS to process SA notifications.
Experimental results show that IRS improved the utilization of the foreground VM but the
CPU consumption never exceeded the fair share.

Figures 4.7 and 4.9 show the weighted speedup for PARSEC and NPB benchmarks
due to different scheduling strategies with a varying degree of interference. The weighted
speedup follows the same trends of performance improvement in Figure 4.5 and 4.6. For
PARSEC benchmarks (as shown in Figure 4.7), IRS had marginal or no speedup in dedup
and ferret. For other workloads, IRS improved the system-wide speedup by as much as
40% and the average speedup across all workloads was 18% and 22% when the background
workloads were fluidanimate and streamcluster, respectively.

An examination of the performance of foreground and background workloads re-
vealed that the gain on system weighted speedup was mainly due to the performance
improvement in foreground applications. In most cases, the background application had
speedup in the range of −5% to 6%, with an exception for the case in which raytrace
and fluidanimate were co-located and fluidanimate had 27% improvement. The
performance degradation of the background application (as much as 5%) was due to the
improved utilization of the foreground application. Thus, the background application had
less CPU allocations. These results suggest that IRS did not change the way the back-
ground VM was scheduled by the hypervisor and most performance improvement of the
foreground VM was due to more efficient load balancing in the guest OS. IRS never
degraded the background performance significantly but had unexpected improvement for
some background workloads, e.g., fluidanimate when running with raytrace.

Compared to IRS, PLE either had marginal improvement on the weighted speedup or
hurt the overall system efficiency. For example, PLE degraded the weighted speedup con-
siderably for vips, bodytrack, and facesim. Note that both the foreground and back-
ground VM had PLE enabled. The frequent trap into the hypervisor and the lack of coor-
dination between the VMs were the culprits of degraded system efficiency. Relaxed-Co
achieved better performance than PLE, but still hurt overall system efficiency when running
bodytrack and facesim.

Similar results can be observed in Figure 4.9. For example, IRS improved system
speedup for most application combinations except the SP+UA and UA+UA experiments.
For spinning workloads, PLE and relaxed-Co had better worst-case results. For all
experiments including those in Figure 4.7, IRS had no significant impact on system speedup
in the 4-inter. cases. The degradation or improvement of weighted speedup was within the
range of −5% to 5%.
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4.5.5 Scalability and Sensitivity Analysis
In this section, we extend the evaluation to a larger number of vCPUs per VM and

consolidating more VMs. We are interested in quantitatively measure the effectiveness of
IRS for different types of parallel workloads. All results were the average of five runs.

First, we created two 8-vCPU VMs and configured them to share 8 pCPUs. The
foreground VM ran 8-thread parallel workloads while the background VM executed three
different types of interferences: one CPU-bound synthetic workload and two real parallel
applications. The level of interference varied, starting from one vCPU with interference
to all vCPUs (8-vCPU) with interference. We selected four benchmarks from PARSEC
and NPB for evaluation. X264 exclusively uses pthread mutexes for point-to-point
synchronization and blackscholes uses pthread barriers for group synchro-
nization between threads. NPB benchmarks employ a data-parallel programming model
and use barrier-like synchronizations. EP performs less synchronization and uses blocking
synchronization. We set MG to use spinning synchronization.

Figure 4.10 shows the trends of performance improvement due to IRS relative to
vanilla Xen/Linux. We have the following observations: (1) performance gain diminishes
as the number of vCPUs having interference increased. When all vCPUs are experiencing
interference, the average gain is marginal at about 4%. (2) Parallel workloads with different
types of synchronizations respond differently to IRS. Programs with group synchroniza-
tion, such as barriers, suffer more from LHP and LWP, thereby benefiting more from IRS.
The performance gain of point-to-point synchronizations, e.g., mutexes, is less than that
of group synchronizations. IRS is more effective for mitigating LHP and LWP problems
in blocking synchronization than in spinning synchronization. (3) overall, the stated trends
apply to all three types of interfering workloads.

Next, we fixed the number of vCPUs in the foreground VM to 4 and varied the
number of interfering VMs from 1 to 3. For example, 1-inter. with three interfering VMs
refers to the case that one vCPU of the foreground VM has interference and there are 3
VMs competing for the CPU cycles on the same pCPU. Figure 4.11 shows that as the
degree of interference increases on each interfered foreground vCPU, the performance
gain of IRS increases in most cases. Another important observation was that IRS has
significant improvement under high degree of interference even all vCPUs of the parallel
VM experience interference (i.e., 4-inter. + 3VMs). We conclude that IRS can be more
useful in a highly consolidated scenario with many VMs sharing the same pCPUs.
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Figure 4.12: NPB performance in response to CPU stacking.

4.5.6 Mitigating CPU Stacking
We found that existing SMP schedulers, including the native Linux process scheduler

and Xen’s hypervisor-level vCPU scheduler, suffer from a severe CPU stacking prob-
lem when parallel workloads with frequent blocking are co-located with applications with
persistent CPU demands. For example, if a four-thread parallel workload with blocking
synchronization, e.g., streamcluster, shares 4 CPUs with three persistent CPU hogs,
the parallel threads or vCPUs running these threads will be stacked on a single or a small
number of CPUs, leaving much of the hardware-level parallelism unexploited by the par-
allel program. According to our PARSEC experiments with Linux CFS and Xen’s credit
scheduler, the four parallel threads were stacked on one or two cores and had 5-20x slow-
down compared to the case in which threads or vCPUs were pinned to separate cores.
Root causes of CPU stacking Modern SMP schedulers are designed for scalability and
proportional fair sharing. Each CPU in an SMP system runs an independent fair-sharing
scheduler and relies on thread/vCPU migration for load balancing. The objective of load
balancing is to evenly distribute workload onto multiple CPUs. and oftentimes the level
of load is measured by the CPU utilization of a thread/vCPU. CPU stacking occurs if
threads of a parallel program are placed on the same CPU and multiplexed in a time-
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sharing manner. As a result, the stacked threads cannot execute simultaneously, leading to
the loss of parallelism. CPU stacking occurs due to two reasons. First, Thread or vCPU
scheduling is oblivious of the dependencies between parallel threads or vCPUs. Thus,
placing sibling threads/vCPUs on the same CPU is legitimate as long as it satisfies fair
sharing and load balancing. Second and most importantly, there exists a deficiency in
existing SMP schedulers when scheduling blocking workloads. Due to LHP and LWP,
parallel threads frequently block and wait to enter the critical section. Since blocked threads
do not consume any CPU cycles, they exhibit deceptive idleness (DI) to the scheduler.
This situation is similar to DI in disk scheduling [47] and causes blocking threads to be
consolidated on a small number of CPUs due to their low CPU utilization.

Figure 4.12 shows the performance of NPB benchmarks under PLE, relaxed-Co,
and IRS when all the vCPUs of the foreground and background VMs were unpinned. Per-
formance is normalized to that in vanilla Linux/Xen and the interference was 4-inter. CPU
hogs. Since NPB benchmarks never block, the DI situation does not occur. As shown in
Figure 4.12, all strategies were effective in improving NPB performance over the baseline
and the degree of improve was significantly higher than that in Figure 4.6, indicating a mit-
igation of the CPU stacking problem. Among these scheduling strategies, PLE prevented
excessive spinning and relaxed-Co balanced the progress of sibling vCPUs, thereby
helping spreading them onto separate cores. Compared to PLE and relaxed-Co, IRS
achieved overall higher performance gain, showing that in-guest load balancing is more
resilient to CPU stacking caused by oblivious vCPU scheduling.

Figure 4.13 shows the performance of PARSEC benchmarks. Note that the stacking
of PARSEC application threads was due to deceptive idleness caused by LHP or LWP.
The figure shows that neither PLE nor relaxed-Co was generally effective in alleviating
CPU stacking but exacerbated the performance slowdown. For example, PLE incurred up
to 78% performance degradation compared to the baseline in dedup. Because the CPU
stacking of blocking workloads is due to DI, PLE, which stops spinning vCPU and yields
to competing vCPUs, caused more idling of the PARSEC workload. Relaxed-Co also
caused considerable slowdown in some cases, e.g., dedup, vips, and canneal, because
it only switched the leading vCPU and the lagging vCPU and was unable to address the
stacking problem. In contrast, IRS proactively pushes threads from preempted vCPUs to
idle or less loaded vCPUs, preventing these vCPU from idling. As discussed in § 4.5.2,
With the help of IRS, blocking workloads avoided unnecessary idling and exhibited their
factual CPU demand to the SMP scheduler. This helped prevent the DI problem and the
resulted CPU stacking.

61



-100

-50

 0

 50

 100

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

PLE Relaxed-Co IRS

-80
-60
-40
-20

 0
 20
 40
 60

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

-80
-60
-40
-20

 0
 20
 40
 60

(c) w/ Fluidanimate

(b) w/ Streamcluster

(a) w/ Microbenchmark

blackscholes

dedup
streamcluster

canneal

fluidanimate

vips
bodytrack

ferret
swaptions

x264
raytrace

facesim

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

%
)

Figure 4.13: PARSEC performance in response to CPU stacking.

4.6 Summary
Limitation IRS proactively migrates preempted threads to another vCPU based on the esti-
mation of load on the target vCPU. It cannot eliminate all vCPU idle time or achieve perfect
load balancing because the load estimate can be inaccurate. The ideal migration should be
pull-based and happen when a vCPU becomes idle. This calls for a new mechanism of task
migration – migrating a “running” task from a preempted vCPU.
Autonomous guest resource management IRS allows the guest to migrate tasks among its
sibling vCPUs and leads to more efficient utilization of its CPU allocation. Although small
changes are needed in the guest kernel and hypervisor, we have shown that the changes
do not affect the core resource scheduling algorithms at the hypervisor. We believe that
hypervisors should provide such interfaces to the guest OS for autonomous and efficient
guest resource management.

This chapter demonstrates that the semantic gap between the guest OS and hypervi-
sor leaves the potential of addressing the LHP and LWP problems in the guest unexploited.
We design IRS, a simple approach based the classical concept of scheduler activations to
bridging the semantic gap and enhancing in-guest load balancing. Experimental results
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show that IRS is especially effective for workloads that have a portion of threads with
interference in a highly consolidated environment.
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CHAPTER 5

Preemptive Multiple Queue Fair Queuing

5.1 Introduction
The prevalence of shared services, such as multi-tenant clouds [4, 38, 117], shared

storage [48, 90], and multi-user clusters [27, 66], has led to a plethora of studies on fair and
predictable resource allocation of shared resources. An important method for achieving
resource fairness is using a fair queuing (FQ) scheduler, which allows competing tenants to
take turns to use a shared resource. While FQ is a packet scheduling technique originally
designed for sharing a network link between multiple flows, it has since been extended
to managing various types of resources [90, 108], scheduling flows with variable packet
lengths [11, 12, 28, 58], and supporting fair queuing on multiple links [14].

Modern operating systems (OSes) and hypervisors employ variants of FQ algorithms
in the thread scheduler or the virtual CPU (vCPU) scheduler. In this context, an FQ sched-
uler allocates processor bandwidth, i.e., CPU cycles, to competing threads 1. The time
quantum each thread receives in a round corresponds to a packet serviced in the original
FQ algorithm. On a single-core system, FQ schedulers effectively guarantee fair CPU
allocation among active threads while allowing some threads to use more than their share
if otherwise the core would become idle. This ensures that the scheduler is work con-
serving. However, on multicore systems, existing FQ schedulers fail to provide necessary
resource isolation between competing applications, causing unfairness and performance
unpredictability.

Figure 5.1 demonstrates the severity of unfairness in state-of-the-art multicore sched-
ulers. We placed two multi-threaded applications to share the same set of cores, with the
number of threads in each application matching the number of cores. We measured the
aggregate CPU allocation to each application as a whole to evaluate the fairness of a
multiprocessor scheduler. In the tests of hypervisor schedulers, the two applications ran
in separate virtual machines (VMs) with the same number of vCPUs. Ideally, if max-min
fairness is enforced, each application should receive a fair share of the total capacity of
all available cores if the aggregate demand of all its threads exceeds the fair share. We
empirically confirmed that both applications were able to consume almost all CPU when

1We use threads and vCPUs interchangeably.
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Figure 5.1: The deficiency in state-of-the-art multiprocessor schedulers. Multithreaded
programs with blocking synchronization suffer unfair CPU allocation.

running in solo. The program under test was streamcluster from the PARSEC benchmark
suite [103]. It employs blocking synchronization, which puts threads to sleep if they fail
to enter the critical section. The collocated application was an arbitrary program with
persistent CPU demand. It could be either a parallel program with busy-waiting (spinning)
synchronization or a multiprogramming workload. As shown in Figure 5.1, streamcluster
suffered unfair CPU allocation under all three multicore schedulers and the unfairness was
aggravated as the number of threads/cores increased.

This previously unknown deficiency of multicore schedulers can cause significant
performance slowdown and high variability to parallel applications in multi-tenant systems.
As a consequence, due to concerns of poor service quality, leading public cloud providers,
such as Amazon AWS, Microsoft Azure and Google Compute Engine, do not allow CPU
multiplexing among symmetric multiprocessing (SMP) VMs. Such a conservative strategy
diminishes the benefits of workload consolidation, resulting in low CPU utilization and
high user cost. This deficiency can also hamper the adoption of the emerging server-
less computing model, in which thousands of short-lived, possibly inter-dependent and/or
chained containers are multiplexed on multicore systems.

The discovered unfairness in multicore scheduling is the result of the complex in-
terplay between parallel workloads and OS thread schedulers. On the one hand, parallel
programs rely on simultaneous access to CPU to make collective progress among multiple
threads and otherwise suffer substantial performance slowdown if critical threads holding
important locks are preempted. The remaining threads who are waiting on the synchroniza-
tion cannot make progress, either performing futile spinning or being put to sleep (block).
On the other hand, multicore schedulers enforce fair CPU allocation on a per-core basis
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and are usually work-conserving. Therefore, threads that are idling due to synchronization
forfeit their CPU shares, leading to unfair allocation between a parallel program and other
competing programs. OS Load balancing could further aggravate this problem. Frequently
idling threads, which show low CPU load, are gradually moved onto a few cores as consoli-
dating fragmented load helps improve load balance. If CPU stacking occurs, sibling threads
belonging to the same application compete with each other, introducing more idleness.

The culprit of such harmful interactions is twofold – 1) parallel programs exhibit
deceptive idleness (DI) under contention, failing to expose their actual CPU demand to the
OS scheduler; 2) there lacks a mechanism to fairly schedule inter-dependent threads on
multiple CPUs. Therefore, parallel programs are unfairly penalized for being idling but not
appropriately compensated. To address these issues, we extend the FQ algorithm for sharing
a single network link to thread scheduling on multiple cores. We propose preemptive multi-
queue fair queuing (P-MQFQ), a close approximation of the idealized generalized proces-
sor sharing (GPS) service discipline for multiple CPUs. P-MQFQ assumes a centralized
queue to dispatch threads to multiple CPUs such that competing programs as a whole re-
ceive a fair share of the aggregated capacity of multiple CPUs. To tackle deceptive idleness,
P-MQFQ allows threads from under-served programs to preempt currently running threads
from other programs. As such, programs experiencing deceptive idleness are temporarily
prioritized to catch up with those who have exceeded their fair shares.

Maintaining a centralized thread queue imposes a major scalability bottleneck in
multicore scheduling. To implement P-MQFQ in real systems, we augment state-of-the-
art multicore schedulers that use independent local queues with three queue operations:
MIGRATE, PPREEMPT and SWITCH to approximate global fairness on multiple queues. We have
implemented P-MQFQ in Linux completely fair scheduler (CFS), the default scheduler
for native Linux and KVM, and Xen’s credit scheduler. Experimental results show that P-
MQFQ effectively addresses deceptive idleness and improves fairness in multicore schedul-
ing. Parallel programs with blocking synchronization are able to utilize close to, but never
exceed their fair shares. Our results also show significant improvement over three repre-
sentative multicore scheduling optimizations.

5.2 Background and Problem Analysis
Classical fair queuing (FQ) algorithms are concerned with sharing a single network

link among a set of flows [81]. Each flow consists of a sequence of packets that need to
be transmitted through the shared link. Generalized processor sharing (GPS) is a reference
model for fair queuing disciplines. A GPS server operates at a fixed rate r and can transmit
multiple flows simultaneously. A flow is backlogged at time t1 if a positive amount of that
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flow’s requests is queued at time t1. Then the idealized GPS model guarantees that during
any interval [t1, t2], in which the set of backlogged flows F is unchanged, each backlogged
flow i receives a minimum service rate ri according to its weight φi:

ri =
φi

∑ j∈F φ j
r.

To approximate GPS in realistic systems that can only transmit one flow at a time,
a number of packet-based GPS (PGPS) approximations have been developed [11, 12, 28,
37, 39, 40, 48, 70, 81, 82, 89, 122, 123]. PGPS transmits packet by packet in its entirety
and only serves one packet at a time. PGPS approximates bandwidth allocation in GPS
by serving packets in the increasing order of their finish time F under GPS. PGPS uses
a notion of virtual time to track the progress of packet transmission in GPS. Virtual time
measures the number of bits has been transmitted on a per-flow basis. System virtual time
and a flow’s virtual time advance at a rate of r

∑ j∈F φ j
and φi

∑ j∈F φ j
r, respectively. If there is

only one backlogged flow, its virtual time advances at the rate of server capacity r and is
identical to wall-clock time. When multiple flows are being serviced, flow virtual time is
slower than real time and reflects its progress under the idealized GPS discipline. System
virtual time stops advancing when the server is idle.

Virtual time-based PGPS implementation assigns each packet k from flow i a virtual
start tag Sk

i and a virtual finish tag Fk
i when the packet arrives. Assume that server capacity

is normalized to 1 and all flow weights sum to 1. The finish tag of a packet can be calculated
based on its start tag:

Fk
i = Sk

i +
Lk

i
φi
, (5.1)

where Lk
i is size of the packet. The start tag is the maximum of system virtual time v(t) at

packet arrival time t and the finish tag of the last packet from the same flow:

Sk
i = max{Fk−1

i ,v(t)}. (5.2)

The update of start tag ensures that inactive flows would not lag arbitrarily behind active
flows in virtual time such that they could penalize active flows for utilizing the bandwidth
left idle by inactive flows.

5.2.1 Start-time Fair Queuing
One obstacle to implement virtual time-based PGPS is the computation of system

virtual time v(t), which requires the simulation of a bit-by-bit GPS server. This simulation
is computationally expensive to perform at each packet dispatch. Start-time fair queuing
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(SFQ) [39] dispatches packets in the increasing order of start tags instead of finish tags.
Ties are broken arbitrarily. Further, v(t) is defined as the start tag of the packet in service at
time t. SFQ offers two advantages [39]: 1) the packet size does not need to be known a priori
and SFQ is able to handle variable server rates; 2) the computation of v(t) is inexpensive
as it only requires to examine the packets in service.

5.2.2 Fair-share CPU Scheduling
Similar to fair queuing in shared network, fair-share CPU scheduling aims to fairly

allocate CPU bandwidth to competing threads. The time quantum each thread receives
each time it runs on CPU is equivalent to dispatching a packet from a flow. Due to the
advantages we previously discussed, SFQ and its variants are widely adopted in fair-share
CPU scheduling. The default Linux completely fair scheduler (CFS) implements SFQ for
fair sharing each individual CPU. CFS maintains a per-thread virtual runtime (vruntime)
for each thread and tracks the minimum vruntime on a CPU. A thread’s vruntime is updated
each time it finishes a time quantum and the advancement is calculated based on the length
of the time quantum and the thread’s weight. CFS schedules threads based on the increasing
order of their vruntimes. The minimum vruntime is defined as the maximum of the current
minimum vruntime and the vruntime of the current running (in service) thread. It is updated
each time a thread finishes a time quantum. When a thread wakes up from idling, its
vruntime is set to the maximum of the current minimum vruntime and its vruntime before
sleep.

In a multiprocessor (or multicore) 2 system, the operating system (OS) runs multi-
ple copies of the fair-share CPU scheduling algorithm, one on each CPU, and relies on
load balancing to evenly distribute threads over CPUs. Ideally, if all threads are runnable
(backlogged) all the time and there are an equal number of threads on each CPU, fairly
allocating CPU on a per-CPU basis leads to global fairness. However, system load often
fluctuates over time and threads need to be migrated across CPUs to balance the load. Load
imbalance undermines global fairness among threads as threads on CPU with higher load
receive less CPU than those on CPUs with less load even they have the same weight. The
fundamental problem is that weight is only significant to threads on the same CPU and
affects the allocation on a particular CPU.

Unfortunately, thread migration is expensive as it requires double run queue locking
to move a thread from the source to the destination CPU and it also undermines cache lo-
cality. Therefore, load balancing is performed infrequently and largely based on heuristics.

2We use multiprocessor and multicore interchangeably throughout this chapter to refer to multiple CPU
queues.
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For example, Linux performs load balancing on two occasions: 1) when a core becomes
idle, it pulls threads from the busiest CPU; 2) the OS periodically moves threads from the
busiest CPU to the least loaded CPU. The busyness of a CPU is measured by the number
of runnable threads during a specified period. The busyness measure decays over time with
recently runnable threads weighing more than older threads.

5.2.3 Deceptive Idleness
Despite fair-share scheduling on individual CPUs, parallel programs are susceptible

to unfair CPU allocation on multiprocessors. A critical component of parallel programs is
synchronization, which serializes the execution of threads in the critical section through
locking. Threads could either spin on the lock or block if they failed to acquire the lock.
Since futile spinning wastes CPU cycles and can inflict priority inversions [15], blocking
and the hybrid spin-then-block synchronization, which eventually puts lock waiter threads
to sleep, is widely adopted in parallel libraries. For example, the default implementations
of mutex locks, barrier and semaphore in Pthread use blocking. Similar to an issue in disk
scheduling [47], parallel threads using blocking synchronization exhibit deceptive idleness
(DI) when a thread on the critical path is preempted. The critical thread could be a lock
holder or a designated waiter to acquire the lock, which refers to the well-studied lock-
holder preemption (LHP) [36] and lock-waiter preemption (LWP) problems [3, 79], respec-
tively. However, it is not well understood why these problems cause cascading performance
degradation.

Recall that SFQ-based fair sharing is work-conserving and does not penalize threads
that consume resources that are otherwise left idle. Since system virtual time v(t) on each
CPU advances according to the start tag of the current running thread, the finish tag Fi of
an idle thread is guaranteed to be smaller than v(t) when it wakes up. Therefore, according
to equation 5.2, an idle thread will align its start tag with v(t) when waking up. This will
allow the continuously running thread, which consumes more than its fair share, an equal
opportunity to compete with the waking thread. As this pattern repeats, a frequently idling
thread forfeits its share but is not compensated. Since in multiprocessor scheduling, CPUs
independently enforce fair allocation on local queues, deceptive idleness costs parallel
programs a significant proportion of their share of CPU. The heuristic-based load balancing
further aggravates the issue. A CPU with deceptively idling threads appears to be lightly
loaded and pulls threads from heavily loaded CPUs. If sibling threads belonging to a
parallel program are stacked on the same CPU, intra-program CPU competition leads to
severe serialization and more idleness.
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5.2.4 Multi-Queue Fair Queuing
Multi-queue fair queuing is concerned with sharing the aggregated capacity of multi-

ple links among flows [14, 48]. A notable work extends SFQ to dispatch concurrent requests
to utilize multiple links and controls the number of requests dispatched from different flows
to enforce fair sharing [48]. The core problem is how to define system virtual time v(t).
Assume that there are D queues. Min-SFQ(D) defines v(t) as the minimum start tag of
any outstanding requests, which include queued and dispatched yet completed requests.
SFQ(D) defines v(t) as the maximum start tag of any dispatched yet completed requests.

The distinction between the two algorithms is important to addressing deceptive
idleness. 1) Min-SFQ(D) advances v(t) according to the lagging flow that cannot fully
utilize its share. For example, a slow flow with no concurrency but always backlogged de-
termines v(t). Thus, it always has precedence over faster flows that use excessive resources.
However, Min-SFQ(D) can cause starvation to fast flows if the slow flow issues a burst of
requests. 2) SFQ(D) advances v(t) according to the start tag of last dispatched request in
backlogged flow. Therefore, it allows multiple queues to be fully utilized without penal-
izing backlogged flows or compensating lagging flows. Four-tag start-time fair queuing
(FSFQ(D)) [48] combines the benefits of Min-SFQ(D) and SFQ(D) by maintaining four
tags, the adjusted start and adjusted finish tags in Min-SFQ(D) and start and finisht tags
in SFQ(D), for each request. Request scheduling is still based on start tags under SFQ(D)
but ties are broken according to adjusted start tags under Min-SFQ(D). This compensates a
lagging flow by giving it precedence in breaking ties.

Unfortunately, none of these algorithms is able to address deceptive idleness in
parallel programs. Assume D queues (CPUs). When deceptive idleness occurs and there
is only one critical thread active in a parallel program, in the worst case, there could be
D−1 threads dispatched from an other backlogged program that are ahead of the blocked
threads in the parallel program. Therefore, at each critical section of length lc, a parallel
program loses (D− 1)lmax utilization to another backlogged program after finishes Dlnc

cycles, where lmax is the time quantum and lnc is the length of the non-critical section.
Under Min-SFQ(D), which always treats the parallel program as a lagging flow, the parallel
program receives at best Dlnc + lmax cycles on D CPUs in each round while the competing
backlogged program receives (D− 1)lmax cycles. We use half of the total cycles allocated
to both programs as the fair share and measure fairness using the absolute relative lag
|Sfair−Sparallel

Sfair
|, where Sparallel is the parallel program’s CPU allocation. Therefore, we have

lag = | lmax− lnc

lmax + lnc
− 2lmax

D(lmax + lnc)
|. (5.3)
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Figure 5.2: (a) The idealized P-MQFQ model with a centralized request queue. (b) A
practical implementation of P-MQFQ on distributed queues by augmenting multicore
schedulers with three run-queue operations.

One can observe that when D is large and lnc << lmax, lag→ 1. It suggests that parallel
programs with fine-grained synchronization could suffer starvation on large-scale multicore
systems due to deceptive idleness. Starvation is aggravated under SFQ(D) and FSFQ(D) as
parallel threads forfeit CPU shares after they wake up.

5.3 Preemptive Multi-Queue Fair Queuing
Our analysis finds that the keys to address deceptive idleness are 1) deriving a global

dispatch order of threads on multiple CPUs so as to enforce fairness at the program level; 2)
devising a multi-queue fair queuing algorithm that allows threads from a lagging program
to be timely scheduled on CPU. In what follows, we elaborate on the design of preemptive
multi-queue fair queuing (P-MQFQ) to meet these goals and present a practical implemen-
tation of (P-MQFQ) in state-of-the-art multicore schedulers.

Figure 5.2 (a) shows the P-MQFQ model for multiprocessor scheduling. The ob-
jective is to schedule requests from different programs (i.e., P1 and P2) such that the
aggregated CPU time received by all threads of each program is proportional to program
weights. If processors are available, programs with multiple threads can have multiple
requests dispatched. A request represents the CPU demand from one thread. The request
service time is either the maximum time quantum a thread can run or the actual runtime
if the thread blocks before its time quantum expires. A thread immediately re-submits a
request for another time quantum if its current quantum expires or waits until waking up if
it was blocked. Similar to the existing MQFQ algorithms, P-MQFQ maintains a centralized
request dispatch queue, where requests are scheduled in the increasing order of their start
tags. The centralized queue also tracks system virtual time v(t). The algorithm is defined
as follows:

1. System virtual time v(t) is defined as the maximum start tag of all requests in service.
Per-program virtual time vi(t) is defined as the maximum start tag of requests in ser-
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vice that belong to a particular program. Defining virtual time according to requests
in service allows lagging programs to preempt threads from aggressive programs.

2. If a program is backlogged, i.e., there is at least one thread from the program having
a request running on a CPU or queued, a request’s start tag is the maximum of the
program’s last finish tag and the program’s virtual time. Otherwise, i.e., the program
has been idling or is newly launched, request start tag is aligned with the system
virtual time.

3. On arrival, if a request’s start tag is smaller than the system virtual time, it indicates
that another program receives more service than this program. The newly arrived
request preempts the request with the largest start tag in service. Note that the pre-
empted request is guaranteed to be from a different program as only such requests
can advance system virtual time beyond the new request’s program virtual time.

4. After the request with the largest start tag in service is preempted, the system virtual
time v(t) is updated to the second largest start tag in service. The finish tag of the
preempted request is Sk

i +
lr
φi

, where Sk
i is the start tag, lr is the amount of time the

request has been running on CPU before being preempted and φi is the weight of the
program.

The use of two types of virtual time, i.e., system virtual time and per-program virtual time,
allows P-MQFQ to track the amount of service received by each program and prioritize
lagging programs. Most importantly, request preemption guarantees that threads blocked
due to synchronization can have requests immediately scheduled after waking up if they
belong to a lagging program. This prevents deceptive idleness from happening.

5.3.1 Approximating P-MQFQ on Distributed Queues
P-MQFQ relies on a centralized queue to derive a global notion of virtual time and

requires tracking per-program virtual time. However, state-of-the-art multicore schedulers
employ a distributed queue architecture because it scales well with a large number of
CPUs. Each CPU maintains per-CPU virtual time and independently enforces fair sharing
on local queues. To approximate P-MQFQ without requiring to maintain the system and
per-program virtual time, we augment multicore schedulers with distributed queues with
three run queue operations: MIGRATE, PPREEMPT and SWITCH.

With distributed queues, there lacks a notion of global system virtual time. Per-CPU
system virtual time progresses independently. Therefore, request start tags on different
queues do not reflect the amount of service received by requests; in other words, start tags
are not comparable across queues. Recall that P-MQFQ preempts the in-service request
with the largest start tag. It is equivalent to finding the last dispatched request from the
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program that received the most service. We relax the requirement for finding the global
maximum of all start tags. Instead, as shown by the left figure in Figure 5.2 (b), after
a request is completed (i.e., the time quantum expires) a thread preempts any threads
currently running on a different queue that received more service than the preempting
thread. We also ensure that the preempted thread belong to a different program. Since the
per-CPU system virtual time progresses as the request start tag increases, we consider the
current running thread on a queue with the fastest virtual time progression to have received
the most service. If such a thread is found on a queue, the thread with an expired time
quantum is MIGRATED to the queue and PREEMPTS the running thread.

Per-program virtual time tracks the aggregate service time of all threads in a program
on multiple queues. During synchronization, per-program virtual time advances slowly as
only the critical thread is active. This ensures that the critical thread has a small start tag
and is always timely scheduled to avoid lock holder or waiter preemption. However, track-
ing per-program virtual time across multiple queues will impose a significant scalability
bottleneck. We approximate the effect of per-program virtual time by ensuring that the
critical thread is timely scheduled. As shown by the right figure in Figure 5.2 (b), if a
thread is blocked (dotted box) before its time quantum expires, it iterates over queues to
look for a runnable (queued) sibling thread from the same program. If found, P-MQFQ will
switch these two threads and allows the selected runnable thread to use the remaining time
quantum left by the blocked thread. The SWITCH operation moves the two threads but retains
the virtual time on the original queues. The selected runnable thread will inherit the virtual
time of the blocked thread and vice versa. This ensures that thread switching does not
undermine fairness and programs can continuously receive service during synchronization.

5.3.2 Implementation
Native Linux and KVM Since the completely fair scheduler (CFS) in Linux is an imple-
mentation of SFQ on a per-CPU basis, P-MQFQ naturally extends to CFS. In CFS, each
CPU (queue) independently maintains per-queue system virtual time (minimum vruntime),
which is the vruntime of the current running thread. Minimum vruntime is updated at
each timer interrupt (by default every 1ms in Linux) with the vruntime of the current
running thread. P-MQFQ tracks the progression of per-queue minimum vruntime in a 3ms
time window and considers the queue with the largest vruntime advancement as the one
receiving most service. When a thread is blocked, it scans all queues to look for a runnable
thread with the same parent and switch to the thread. This method finds sibling threads
belonging to the same program in native Linux and sibling vCPUs in KVM.
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Xen In Xen’s credit scheduler, CPU allocation is measured by credits. As a vCPU consumes
CPU, credits are debited and the balance determines the vCPU’s priority. vCPUs with
non-negative credit balance are assigned with the normal UNDER priority while those
with negative balance are given a lower OVER priority. Xen refills vCPUs’ credits at the
beginning of each accounting period (every 30ms). Each time a vCPU is allocated the
amount of credits that lasts for a time quantum (30ms in Xen). If a vCPU cannot use up
its credits in an accounting period, the unused credits are discarded, which is intended
to prevent vCPUs from accumulating credits. Although the credit scheduler does not use
the notion of virtual time, the consumption of credits is equivalent to the progression of
virtual time. To implement P-MQFQ, we record the discarded credits on each CPU in each
accounting period. The CPU with the least discarded credits is considered to have received
the most service and the running vCPU on this CPU is preempted. The implementation of
the SWITCH operation is similar to that in Linux.

5.4 Evaluation
In this section, we present an evaluation of P-MQFQ in both a bare-metal Linux

environment and two representative virtualized environments (KVM and Xen). We first
study the effectiveness of P-MQFQ in addressing deceptive idleness in parallel workloads
with blocking synchronization (§ 5.4.2). We then show that P-MQFQ can significantly
improve the performance of parallel workloads with different types of synchronization
(§ 5.4.3). Finally, we study the overall system efficiency under P-MQFQ when multiple
parallel applications are each scheduled by P-MQFQ (§ 5.4.4).

facesim

raytrace

x264
swaptions

ferret
bodytrack

vips
fluidanimate

canneal

streamcluster

dedup
blackscholes

2
1.5
1

0.5
0
2

1.5
1

0.5
0

N
or

m
al

ize
d 

C
PU

 A
llo

ca
tio

n
N

or
m

al
ize

d 
C

PU
 A

llo
ca

tio
n

1
0.5
0

2

1.5

1

0.5
0

2
1.5

Inter. Linux.app Pin + Linux.app Relaxed-Co.app P-MQFQ.app
(a) 24 Cores    PARSEC      

(b) 48 Cores   PARSEC (d) 48 Cores   NPB

(c) 24 Cores   NPB

UA SP LU BT CG EP IS MG FT

Figure 5.3: Normalized CPU allocation on physical machines for PARSEC (a, b) and NPB
(c, d).

74



5.4.1 Experimental Setup
All experiments were performed on two servers. One is a DELL PowerEdge T420

server with two six-core Intel Xeon E5-2420 processors (24 cores with hyperthreading
enabled) and 32GB memory. Another is a DELL PowerEdge R830 with four twelve-core
Intel Xeon E5-4640 processors (48 cores with hyperthreading disabled) and 256GB mem-
ory. The settings were intended to demonstrate the effectiveness of P-MQFQ at different
scales as well as with or without hyperthreading. Linux 4.1.39 was used as the native Linux
OS, the host OS in KVM, and the guest OS in KVM and Xen. Xen 4.5.0 was used in the
Xen test. For the tests in KVM and Xen, two VMs were used to run the parallel programs
under test and the interfering workloads. All results were the average of 5 runs.
Workloads We selected the PARSEC [103] and NASA parallel benchmarks [8] as the
parallel workloads under test. PARSEC is a shared memory parallel benchmark suite with
various blocking synchronization primitives such as mutex locks, condition variables and
barriers. We compiled PARSEC using pthreads and used the native input size. NASA
parallel benchmarks include 9 parallel programs. We used the OpenMP implementation
of benchmarks with the class C input size. We set the environment variable OMP_WAIT_-
POLICY to INACTIVE to enable blocking synchronization.

The background workloads include a micro-benchmark and two realistic applica-
tions. For example, the micro-benchmark consists of a number of CPU hogs that con-
tinuously competes for the CPU cycles and had almost zero memory footprint. Another
two applications are streamcluster from PARSEC and ua from NPB with blocking
synchronization at the granularity of 5-8ms and 250-500ms respectively.
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Scheduling strategies We compare the performance of P-MQFQ with the baseline multi-
core schedulers and three representative scheduling strategies:
• Linux CFS and Xen credit scheduler were used as the baseline sched-

ulers in native Linux, KVM and Xen, respectively.
• Pin + {Linux, KVM and Xen}: To avoid the severe CPU stacking issue due

to deceptive idleness, we pinned threads and vCPUs to individual cores to disable
OS load balancing. This strategy is often employed in production systems to improve
performance predictability and preserve locality.
• Relaxed-Co:we implemented the VMware’s relaxed co-scheduling in native Linux,

KVM and Xen. Relaxed-Co monitors the execution skew of each vCPU (thread) and
stops the vCPU that makes significantly more progress than the slowest vCPU. When
a VM (program)’s leading vCPU (thread) is stopped, the hypervisor switches it with
its slowest sibling vCPU to boost the lagging vCPU. Specifically, Relaxed-Cowill
monitor the execution skew of each thread or vCPU (scheduling entity) and stops
the scheduling entity that makes significant more progress than the slowest one. A
scheduling entity is considered to make progress when it executes instructions or it
is on the IDLE state. Since VMware documentation does not reveal further details
about relaxed co-scheduling, we implemented an optimization for parallel programs
when a leading scheduling entity is stopped, the scheduler switches it with its slowest
sibling to boost the execution of this lagging one.
• Gleaner [31]: In multi-tenant systems, CPU multiplexing causes suboptimal

scheduling and fragmented CPU allocation in parallel programs. Gleaner con-
solidates fragmented CPU allocation into a few dedicated CPUs. Although CPU
consolidation does not provide enough concurrency to user-level threads, it avoids
expensive trapping to the hypervisor due to idling and harmful competition with co-
running applications.
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Figure 5.5: Normalized CPU allocation on KVM (a, b) and Xen (c, d) for NPB.
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5.4.2 Addressing Deceptive Idleness
In this section, we evaluate the effectiveness of P-MQFQ in addressing deceptive

idleness and improving the fairness of CPU allocation. Similar to the experiments in Fig-
ure 5.1, we collocated parallel workloads with a synthetic benchmark that had persistent
CPU demand. The synthetic benchmark consisted of the same number of CPU hogs as
the number of CPUs and was intended to create a contentious scenario to cause unfair
CPU allocation. Usually, we say a scheduling algorithm is fair if and only if the amount of
resource received by applications is proportional to their weights. Therefore, the ideal ratio
of fair allocation will be 1:1 if two applications have the same weight value. In our evalua-
tion, we report the fairness in two different levels: application or virtual machine level and
thread or vCPU level. Regarding to the first one, parallel application were given the same
weight to verify whether they receive the same amount of CPU resource. and improving
performance for various parallel workloads on the physical machine. All experiments were
first conducted on the machine with 24 cores (hyper-threading is enabled) and then on the
machine with 48 cores to perform the scalability analysis (hyper-threading is disabled).
Parallel applications from PARSEC and NPB were run with 24 and 48 threads respectively
while background micro-benchmark was run with 23 and 47 threads. Figures 5.3, 5.4
and 5.5 show the normalized CPU allocation to the foreground parallel programs and the
background interfering workload. The stacked bars show the allocation to the parallel ap-
plications (e.g., P-MQFQ.app) and the interfering workload (e.g., Inter.) under various
approaches. A normalized allocation of 1 refers to fair allocation while a value less than 1
indicates that parallel programs receive less than the fair share. From these figures, we have
the following observations:
First, compared with the baselines, P-MQFQ significantly increased the CPU allocation
to most parallel workloads. P-MQFQ is most effective for programs with fine-grained
synchronization. For example, among PARSEC benchmarks, dedup, streamcluster and
canneal benefited most from P-MQFQ. According to the equation 5.3, the shorter the non-
critical section (lnc), i.e., more frequent synchronization, the higher degree of unfairness.
In comparison, the improvement on CPU allocation was less in NPB benchmarks, which
have much longer non-critical sections and less frequent synchronization. This observation
was consistent both in the physical and virtualized environments.
Second, most benchmarks suffered more from deceptive idleness as the number of CPUs
scaled but P-MQFQ also had diminishing gains. Intuitively, deceptive idleness is aggra-
vated with a larger number of threads as more threads would be idling during synchro-
nization. As shown in equation 5.3, the degree of unfairness increases with the number
of CPUs D. P-MQFQ mitigated deceptive idleness by prioritizing the critical thread to
avoid unnecessary idleness. However, P-MQFQ was unable to entirely eliminate idleness at
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scale, in which the critical section weighed more to the non-critical section. We empirically
confirmed that fine-grained programs, such as streamcluster and canneal, were unable to
utilize their fair shares even in solo mode. For example, streamcluster only utilized around
1400% (equivalent to the capacity of 14 CPUs) CPU on the 48-core machine with 48
threads. This limits the gain of P-MQFQ at scale.
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Figure 5.6: Performance improvement of PARSEC (a, b) and NPB (c, d) on physical
machine.
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Figure 5.7: Performance improvement of PARSEC on KVM (a, b) and Xen (c, d).

Third, different multicore schedulers suffered differently from deceptive idleness, which
also affected the effectiveness of P-MQFQ. Xen employs a longer time quantum lmax

(i.e., 30ms) than that in CFS (i.e., 6ms). Therefore, parallel programs’ CPU allocation
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was much lower in baseline Xen compared to Linux and KVM. This does not affect the
effectiveness of P-MQFQ as thread preemption in P-MQFQ effectively mitigate deceptive
idleness, regardless of the length of the time quantum. P-MQFQ was able to achieve a
similar level of utilization improvement in Xen compared to that in Linux. In contrast, P-
MQFQ was less effective in KVM. Although both native Linux and KVM use CFS as the
scheduler, in KVM, the scheduling entity is the vCPU. KVM employs hardware assisted
virtualization (e.g., Intel VT-x) to virtualize vCPUs and thus incurs higher overhead for
vCPUs migration. Significantly, a vCPU is not immediately eligible for migration after it is
preempted because of a write barrier to enforce consistency across cores. In KVM, it takes
more than 1ms before P-MQFQ can migrate a critical thread after the thread is preempted,
thereby unable to timely schedule the critical thread. As a result, P-MQFQ achieved lower
CPU allocation in KVM than that in Linux and Xen.
Fourth, P-MQFQ achieved a higher CPU allocation than the three representative schedul-
ing strategies Pin, Relaxed-co and Gleaner in all tests except for EP from NPB,
which is embarrassingly parallel and uses no synchronization. The key in P-MQFQ to
increasing CPU utilization is to eliminate idleness as much as possible. To achieve this
goal, P-MQFQ allows a preempted thread a chance to continue running by preempting
another over-serving threads and moves threads across CPUs to avoid forfeiting allocated
time quantum. Neither of the three approaches devise both optimizations. Pin avoids CPU
stacking due to deceptive idleness but does not address the preemption of critical threads;
Relaxed-co could not guarantee the simultaneous progress of all threads and thus is still
susceptible to idleness-induced CPU stacking; thread consolidation in Gleaner does not
expose enough parallelism to the user-level thread, thereby aggravating serialization at the
critical section.
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Figure 5.8: Performance improvement of NPB on KVM (a, b) and Xen (c, d).
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Figure 5.9: Weighted speedup of PARSEC (a, b) and NPB (c, d) on physical machine.
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Figure 5.10: Weighted speedup of PARSEC and streamcluster on KVM (a, b) and Xen (c,
d).

for workloads with fine-grained blocking synchronization about 5ms-7ms in PAR-
SEC benchmarks, threads will be stacked on a single core when running on native Linux
since CFS scheduler in multicore systems does not strictly follow the scheduling principle
of SFQ(D) which will delay the backlogged threads with fast progress and reserve the CPU
resource for the slowest threads. Another reason was that the minimum balancing interval
in CFS will be 256ms. As such, CFS scheduler was unable to balance these stacking
threads across different cores. Relaxed co-scheduling did not improve or even hurt the
fair allocation compared to native Linux such as bodytrack, x264. The reason is that
Relaxed-Co is specially designed to balance the progress of sibling threads through
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Figure 5.11: Weighted speedup of NPB and UA on KVM (a, b) and Xen (c, d).

switching the fast thread with slowest one. Unfortunately, the threads were still left in the
stacking status without any change after doing this switch.

5.4.3 Improving Performance
For programs with blocking synchronization, scheduling inefficiencies manifest as

excessive idleness. Thus, it is expected that P-MQFQ leads to performance improvement
as it can eliminate much of the idleness and improve CPU utilization. Figures 5.6, 5.7
and 5.8 show the performance of PARSEC and NPB benchmarks due to different schedul-
ing strategies in native Linux, KVM and Xen, respectively. Performance is normalized
to that in the baselines, i.e., vanilla Linux, KVM and Xen. From these figures, we can
see that P-MQFQ improved the performance of all benchmarks compared to that in the
baselines. The performance improvement was up to 97% and 96% for PARSEC and NPB
benchmarks, respectively.

In contrast, there were benchmarks suffering performance degradation under other
approaches. For example, streamcluster had a degradation of 400% under Pin on the 24-
core physical machine since Pin cannot mitigate the deceptive idleness; Relaxed-co
degraded x264 by as much as 663% on the 48-core physical machine due to the loss
of 25% CPU allocation; Gleaner inflicted a 2021% slowdown to streamcluster on the
48-core Xen machine. The reason is that Xen hypervisor employed the comparison of
vCPU priority to decide the load balance. Therefore, consolidating more threads into a
single vCPU in Xen would make the stacking problem become more seriously and the
performance would be further degraded.
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5.4.4 System Fairness and Efficiency
The results presented so far focused on improving the utilization and performance of

the foreground parallel programs. P-MQFQ did not take effect for the background work-
loads. We are also interested in evaluating P-MQFQ in managing multiple parallel work-
loads, each is actively scheduled by P-MQFQ. We collocated two blocking parallel work-
loads to share the same set of CPUs and used the geometric mean of individual programs’
speedups (weighted speedup) to measure the overall system efficiency. The higher the
weighted speedup, the higher the system efficiency. A weighted speedup of 1 indicates the
same performance as the baseline system. The foreground and background workloads were
both repeated at least five times to ensure their execution completely overlapped with each
other. We selected streamcluster as the background workload for the PARSEC benchmarks
and UA for the NBP benchmarks.

Figures 5.9, 5.10 and 5.11 show the weighted speedup of PARSEC and NPB bench-
marks due to different scheduling strategies in native Linux, KVM and Xen, respectively.
Our results indicated that P-MQFQ improved the system-wide weighted speedup by as
much as 232%. In a physical environment, it achieved an average weighted speedup of
13% and 27.7% for PARSEC and NBP benchmarks, respectively. The overall performance
improvement for both the foreground and background benchmarks were higher in virtual-
ized environments (KVM and Xen). An examination of the performance of foreground and
background workloads revealed that the gain on system-wide weighted speedup was due
to the performance improvement in both applications. Furthermore, both foreground and
background applications had improved CPU utilizations.

We also investigated the CPU allocation between these two applications and the
result showed P-WQFQ could improve their CPU allocation to gradually close to the
ideal ratio. For example, CPU allocation of dedup and streamcluster increased from
595%, 949% to 900% , 1080% respectively. Due to the space limits, the experimental
results are not presented at here.

Compared to P-MQFQ, the pinning mechanism either had marginal improvement on
the weighted speedup or hurt the overall system efficiency. For example, pinning degraded
the weighted speedup considerably for x264 on physical machine, ferret on KVM and
dedup on Xen. Relaxed-Co achieved better performance than pinning, but still hurt
overall system efficiency when running streamcluster and facesim. Gleaner per-
formed better in some cases than P-MQFQ such as ferret and x264 on 24 cores KVM.
Overall, P-MQFQ significantly outperformed these approaches in the average speedup over
all workloads combinations.
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5.5 Summary
Spinning workloads face a different challenge in multi-tenant systems. Futile spinning due
to the preemption of the critical thread wastes the fair CPU share of the spinning workload
and can cause priority inversions. Since spinning workloads do not block, they do not suffer
from deceptive idleness and thereby are unable to benefit from P-MQFQ. Recent advances
in processor design allow the OS to detect excessive spinning through hardware-based tech-
niques, such as pause-loop exiting (PLE), and to forcibly stop (blocks) a spinning thread.
PLE is especially useful in virtualized environments, where the hypervisor is oblivious of
spinning activities inside VMs. As such, spinning workloads will suffer deceptive idleness
when threads are involuntarily put to sleep and thus they also can benefit from P-MQFQ.
Overhead Approximating a centralized request dispatch queue requires synchronization
between CPUs. Our implementation of P-MQFQ on multicore schedulers incurs two types
of overhead. First, to identify the thread that received most service, P-MQFQ needs to mon-
itor the progression of virtual time on all CPUs and find the queue with the largest virtual
time progression. This requires traversing all CPUs every 3ms. To isolate the overhead due
to this operation, we compared program performance with and without P-MQFQ in solo
mode, in which no thread migration is performed. We found approximating global virtual
time incurs negligible overhead, adding an average of 1.3%, 3.7% and 2.4% overhead to
the program execution time in Linux, KVM and Xen respectively.

Second, frequent thread migrations undermine cache locality and require an expen-
sive run queue operation in multicore schedulers – double run queue locking, which locks
the source and destination CPUs before a thread migration is completed. However, it is
difficult to measure the overhead in scheduling parallel programs. When deceptive idle-
ness occurs, P-MQFQ effectively improves CPU allocations to parallel programs, though
inevitably incurs high overhead. It is important to study which factor, improving utilization
or expensive thread migration, weighs more in overall performance. We consider that the
overhead of thread migration dominates overall performance if P-MQFQ outperforms Pin
in CPU utilizations but results in less performance improvement. For example, P-MQFQ
outperformed Pin in CPU utilization (10% vs. 2.5%) but achieved less performance im-
provement than Pin (26.4% vs. 66.9%) in KVM. We compared the performance of P-
MQFQ and Pin in all experiments, including those with the synthetic benchmark and with
a realistic parallel workload, in Linux, KVM and Xen. In a physical environment, 44 out of
48 PARSEC tests and 33 out of 36 NPB tests show that the benefit of P-MQFQ outweighed
its overhead. Similar observations were also made in KVM and Xen.

This chapter identifies an important deficiency in state-of-the-art multicore sched-
ulers that causes unfair CPU allocation to parallel programs with blocking synchronization
and leads to severe performance degradation. This deficiency hampers CPU multiplexing
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chapterin shared services, such as public clouds. We attribute the deficiency to the inability
of existing schedulers to deal with deceptive idleness and the lack of multi-queue fair
queuing in the context of thread scheduling. To this end, we proposed preemptive multi-
queue fair queuing (P-MQFQ), a centralized algorithm that uses thread preemption to guar-
antee fair CPU allocation for multi-threaded programs on multiple CPUs. P-MQFQ can
be approximated by augmenting distributed queue-based schedulers with three run queue
operations. Results show that P-MQFQ improves utilization and performance compared to
three representative scheduling strategies.
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CHAPTER 6

Conclusions and Future Work

This dissertation aims to fully understanding and optimizing the parallel performance
in multi-tenant cloud. In this chapter, we summarize the approaches presented in this
dissertation and give the directions for the future work.

6.1 Conclusions
As we know, cloud providers usually provide services in the form of giving cus-

tomers the privileges to access the virtual machines. Symmetric Multiprocessing virtual
machines (VMs) are thus gradually becoming increasingly common in cloud datacenters.
They are often used by cloud users to host multi-threaded applications. On the other hand,
cloud providers prefer oversubscribing their datacenters by consolidating multiple inde-
pendent VMs onto a single machine to improve hardware utilization and reduce energy
consumptions. However, CPU oversubscription introduces several challenges to efficiently
executing parallel and multi-threaded programs in SMP VMs.

One of the challenges is to understand why the performance of parallel programs
is notoriously difficult to reason about in virtualized environments. Although performance
degradations caused by virtualization and interferences have been extensively studied, there
still lacks a comprehensive understanding why parallel programs have unpredictable slow-
downs when co-located with different types of workloads. We present a systematic study
of parallel performance under interference. We find that the speed of individual threads
under interference is determined by their varying resilience to interferences and the com-
putation required to complete the parallel program can change vastly under interference
due to alleviated intra-program contentions. Further, the overall performance is the result
of the complex interplays between these factors. Avoiding harmful vCPU preemptions or
maintaining asynchrony between vCPUs helps reduce slowdown under interference for
different kinds of workloads. Inspired by these findings, we develop an accurate online
approach for predicting slowdowns under interference without requiring completing the
parallel program, and devise two scheduling optimizations at the hypervisor to improve
performance
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Locker holder preemption (LHP) and locker waiter preemption (LWP) are the two
classic problems which are caused by the semantic gap inherently existing in the virtualized
environment between the Guest OSes and hypervisors. In both two scenarios, the challenge
is that hypervisors such as KVM and Xen are completely unaware of the activities in the
guest OS and adversely deschedules virtual CPUs (vCPUs) that are executing in critical
sections. This semantic gap will seriously degrade the performance of parallel applications
in which they employ the synchronization primitives to protect the critical sections. We
demonstrates the semantic gap between the Guest OS and hypervisor leaves the potential
of addressing the LHP and LWP problems in the guest unexploited. We design IRS, a
simple approach based the classical concept of scheduler activations to bridging the se-
mantic gap and enhancing in-guest load balancing.Experimental results show that IRS is
especially effective for work-loads that have a portion of threads with interference in a
highly consolidated environment.

CPU schedulers, a key component in an OS design, has been under constant de-
velopment for several decades. As new hardware emerges such as multicore processors,
schedules have been adaptively scaled from singe core to multicore processor. Hypervisors
in cloud, like schedulers in traditional OS, has also been developed to support the multipro-
cessor platforms. Two key objectives of schedulers and hypervisors are to fairly allocate the
CPU resources between applications, users and VMs. However, we identifies an important
deficiency in state-of-the-art multicore schedulers that causes unfair CPU allocation to
parallel programs with blocking synchronization and leads to severe performance degra-
dation. This deficiency will seriously hamper CPU multiplexing in shared services, such
as public clouds. We attribute the deficiency to the inability of existing schedulers to deal
with deceptive idleness and the lack of multi-queue fair queuing in the context of thread
scheduling. To this end, we proposed preemptive multi-queue fair queuing (P-MQFQ),
a centralized algorithm that uses thread preemption to guarantee fair CPU allocation for
multi-threaded programs on multiple CPUs. P-MQFQ can be approximated by augmenting
distributed queue-based schedulers with three run queue operations. Results show that P-
MQFQ improves utilization and performance compared to three representative scheduling
strategies.

6.2 Future Work
There are several issues and new research directions along with the line of this work.

We have discussed that one key characteristic of the cloud is workloads in each VM will
experience the interferences which include the resource contentions (inter-contention) on
the hardware resources with other VMs and inter-thread contention such as lock contention
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(intra-contention) between different threads inside the parallel applications. In this dis-
sertation, we are mainly working to understand and optimize parallel performance in the
virtualized environment from the perspective of inter-contention. Another way we could do
such kind of performance analysis is from the intra-contention which inherently exists in
parallel applications.

As we know, parallel applications usually employed the synchronization primitives
such as mutex, spinlock and condition variables to implement the data sharing. Each thread
will take turns to grab the lock in order to access the shared data. If all threads reside in
the same NUMA node, there will be no serious cache coherence traffic during the program
execution. However, things will become worse if the number of threads scale up to match
the multicore multiprocessor NUMA architecture. The order each thread acquires the lock
may cause significant difference to the volume of cache coherence traffic and thus affect
the parallel performance.
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