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ABSTRACT

Image Analysis Based on Differential Operators

with Applications to Brain MRIs

Zicong Zhou, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Guojun Liao

In differential geometry, computational diffeomorphism (smooth and invertible

mapping) has become a fast-growing field in developing the theoretical frameworks

and computational toolboxes for the tasks such as computer vision, movie production,

gaming industry, medical imaging, etc. Mesh generation is one of components in

computational diffeomorphism. In this dissertation, the deformation and variational

methods (developed by Dr. Guojun Liao and his co-workers) for mesh generation are

discussed, modified and generalized to 3D scenario. The former is based on the control

of Jacobian determinant and the latter is based on the controls of both Jacobian

determinant and curl vector of a diffeomorphism. In Brain Morphometry, image

registration (identify a pixel-wise correspondent relationship of two images based on a

dissimilarity measure) is a challenging problem, which demands a diffeomorphism to

describe such pixel-wise correspondent relationship. The optimal control approach

for image registration (developed by Dr. Guojun Liao and his co-workers) is revised

and improved for cheaper computational costs and capability of 3D registration. A

novel approach to averaging images is formulated based on averaging a given set
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of diffeomorphisms. This approach to averaging images is implemented by an algo-

rithm which includes the variational method and the optimal control image registration.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The increasing demands in Precision Medicine Initiatives have been motivating

computational scientists to build more robust, accurate and powerful computational

capacities for the tasks of medical data managements, diseases diagnoses, health care

analysis, conducting treatments and even laser surgeries, etc [11, 24, 51]. In the

field of medical imaging, the major challenges includes image construction, which

recovers an image from scanned data (e.g. Magnetic Resonant Imaging (MRI)); image

registration, which maps an moving image to fixed image through a deformation

transformation; image atlas construction, which builds a standard image to represent

a certain class of brain images; so and so forth [24]. These computational tools

provide the availabilities of digitizing the medical studies such as Brain Morphometry,

which investigates variabilities in positions, orientations, shapes and sizes of brain

structure from image data. In Brain Morphometry, a key mathematical task is how

to characterize diffeomorphisms [17, 18, 43]. The prevailing methods in this field are

to focus on the Jacobian determinant det∇(TTT ) of a transformation TTT (ideally diffeo-

morphism), which models local size changes. The most popular employed approach is

Voxel-Based Morphometry (VBM), introduced by Ashburner in [3, 4, 5]. The approach

has met considerable controversies [6]. In fact, Fred L. Bookstein, the first recipient

of the Morphometry Prize, claimed that “Voxel-Based Morphometry Should Not Be

Used with Imperfectly Registered Images” [9]. The controversies and inconsistent

results by different research groups [40, 52] indicate that there is a need for innovative
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research in the methodology and computational tools for robust image registration

and for construction of unbiased template[28, 29]. In this dissertation, it is shown

that det∇(TTT ) alone cannot completely determine a transformation and, instead, it

must includes both Jacobian determinant of TTT , det∇(TTT ), and the curl vector of TTT ,

∇× (TTT ), which models local rotations, in all steps of Brain Morphometry studies. To

elaborate this point, relevant prior studies from our group are reviewed and a series of

computational algorithms for morphometry studies are built and numerically tested.

In chapter 2, the adaptive, moving mesh generation method — the deformation

method [39, 35, 38] is reviewed which is achieved based on a prescribed Jacobian

determinant. In 1990s, J. Moser and B. Dacorogna studied the existence and con-

struction of diffeomorphisms under a positive Jacobian determinant constraint on a

domain in Rn [16]. The deformation approach in their study has been extended to the

adaptive mesh generation problem by our group and collaborators [31, 35]. Due to

the demands for higher order element meshes [22, 54], a novel higher order meshing

method based on the deformation method is developed. The proposed algorithm

is based on the Least-Squares Finite Element Method [7, 27]. Numerical examples

are shown to demonstrate the generalization, effectiveness and efficiency of this new

meshing method.

In chapter 3, we review variational method for mesh generation, which is based

on the prescriptions of both Jacobian determinant and the curl vector[13]. The idea

of characterizing diffeomorphisms with the information of curl vector can be traced

back to [36, 37]. We realized and generalized the 3D implementations of the method

in this dissertation. Beyond that, an approach to the uniqueness conjecture of the

variational method on a simple case is given; and based on the uniqueness conjecture,

a direct method is formulated with approximated solution. Both numerical examples

2



of iterative and direct approaches suggest that to uniquely determine a transformation,

both Jacobian determinant and curl vector are required.

In chapter 4, a revision of an optimal control approach to image registration

method [25] is given. The method is formulated by optimizing control functions that

are formed by Jacobian determinant and curl vector. Here, our modification simplifies

the control functions with Poisson equations, which made the derivation of the first

variational derivative cleaner and the computational costs cheaper. This optimal

control image registration method has its advantage in producing fixed boundary

registration deformations. In theory, image registration deformations encode vari-

abilities of brain image, thus are good surrogate for morphometry study [47]. Based

on our implementations, results suggest that the revised version satisfies the inverse

consistency and transitivity properties, which are important features of a robust and

accurate registration method[12, 47].

In chapter 5, a novel approach to averaging images is formulated based on our

variational method and optimal control image registration. The proposed approach is

designed through our method of averaging diffeomorphisms[14]. To average images

in a meaningful way is the key component in constructing Image Atlas [50, 49, 20].

Different brain image atlases could impact the results of brain analysis [23, 42, 44, 45].

Examples on brain images are tested to validate our mathematical setting of a new

way to include curl vector in Tensor Based Morphometry.

In chapter 6, a summary is given. Some possibilities and difficulties on future

developments are discussed and highlighted.
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CHAPTER 2

Higher Order Meshes by Deformation Method

2.1 Introduction

The deformation method can be traced back to [16], in the 1990s. Computational

solution of the deformation method using Least-Squares Finite Element Method

(LSFEM) was firstly formulated by [10, 19]. In their works, a divergence− curl

system is formulated, whose right hand side is a prescribed positive Jacobian and

enables the deformation method feasible for generating non-folding meshes on variable

domains. In this chapter, we briefly review the deformation method through LSFEM

and propose an algorithm based on modifications of the deformation method to

generate a higher order mesh on domain Ω. The idea of our proposed approach is

summarized in the following steps:

(1) Form a coarse (linear) mesh for a desired domain by the deformation method;

(2) Subdivide on each cell of the coarse mesh into an intermediate (linear) mesh;

(3) Deform the intermediate mesh by moving the new boundary nodes to satisfy the

boundary condition, thus a new boundary conforming mesh is generated on the

desired domain;

(4) Interpolate nodes based on the new locations to form a higher order (curved)

mesh

In section 2.2, the deformation method is reviewed. In section 2.3, details for

step (1) to (4) are given and furthered with numerical examples for p = 3 (p is the

number of degree of the interpolated polynomials, which requires p+ 1 many number

of nodes for interpolation on each a dimension).
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2.2 The Deformation Method for Fixed and Moving Domains

In [32], three versions of the deformation method are discussed and analytically

introduced. These 3 versions reflect 3 different aspects of a similar motion of a

conforming mapping on a simply connected and bounded domain Ω ⊂ Rn. However,

in this chapter, the proposed approach is constructed through the 3rd version thanks

to its generalization of computational applications. It goes as follows.

Let Ωt ⊂ Rn be a moving (includes fixed) domain with n = 2 or 3 and 0 ≤ t ≤ 1.

And let vvv(xxx, t) be the velocity field of nodes on ∂Ωt which vvv(xxx, t) ·nnn = 0 on ∂Ωt in the

sense of slippery-wall boundary conditions, which nnn is the outward normal vector of

∂Ωt. Given scalar function f(xxx, t) > 0 ∈ C1(xxx, t) on the domain Ωt × [0, 1], such that

f(xxx, 0) = 1,∫
Ωt

1

f(xxx, t)
dxxx = |Ω0|.

(2.2.1)

We look for a diffeomorphism φφφ(ξξξ, t) : Ω0 → Ωt

det∇φφφ(ξξξ, t) = f(φφφ(ξξξ, t), t), ∀t ∈ [0, 1] (2.2.2)

Figure 2.1: Illustration: φφφ maps ξξξ to xxx

In [10, 19], it is shown that such diffeomorphism φφφ can be constructed firstly by

solving a divergence− curl system with using LSFEM, then secondly followed by

solving an ODE:

5



• determine uuu(xxx, t) on Rn by solving

∇ · uuu(xxx, t) = − ∂

∂t
(

1

f(xxx, t)
)

∇× uuu(xxx, t) = 000

uuu(xxx, t) =
vvv(xxx, t)

f(xxx, t)
, on ∂Ωt

(2.2.3)

• determine φφφ(ξξξ, t) on Ω0 by solving
∂φφφ(ξξξ, t)

∂t
= f(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t),

φφφ(ξξξ, 0) = ξξξ, on ∂Ωt

(2.2.4)

Based on this two-step procedure we may construct a diffeomorphism to the

problem of (2.2.1) to (2.2.2). An explicit and detailed theoretical framework of this

version can found from [15]. The constraint (2.2.1) indicates that such diffeomorphism

is deformed from φφφ(ξξξ, 0) = ididid(ξξξ), which is a uniform mesh in terms of discretized com-

putational domain. An effective numerical method for solving the divergence− curl

system (2.2.3), in terms of accuracy, flexibility and compatibility, is using LSFEM.

Here, we omitted the details of implementation of LSFEM due to its complexity and

depth. Please see the its formulation of implementation in [10, 19] and its analytical

convergence studies in chapter 6 of the book [7] and chapter 5 of the book [27]. As

for (2.2.4), most standard numerical ODE methods can be implemented which can

be chosen depending on the balance between computational accuracy and costs. For

simplicity, in this chapter, the Explicit-Euler method is picked. The deformation

method is a direct method itself, so once the whole package is built, the exact compu-

tational complexity is depended on the given number of time-step nt and the desired

number of elements in LSFEM. An algorithm for the deformation method on variable

domains is provided as follows.
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Algorithm 1 : Deformation Method

• 0: input the number of time step nt & domain Ω0 in Finite Element representa-

tion;

• 1: initialize dt := 1
nt

, t = 0, φφφ(ξξξ, 0) = ξξξ, f(xxx, 0) = 1, prescribe f(xxx, t);

• 2: for t = t+ dt till t = 1, do

• 3: update f(xxx, t) on t = t+ dt;

• 4: normailize f(xxx, t) = f(xxx, t)
∫

Ωt

1
f(xxx,t)

dxxx ;

• 5: compute − ∂
∂t

(
1

f(xxx, t)
);

• 6: solve (2.2.4) by LSFEM to get uuu(xxx, t);

• 7: apply appropriate boundary conditions to uuu(xxx, t);

• 8: update φφφ(ξξξ, t) by solving (2.2.4) using Explicit-Euler from Ωt to Ωt+dt;

• 9: output Ωt := φφφ(Ω0, 1).

As it shows below, the moving boundary Dirichlet conditions and slippery-

wall Neumann condition can be dealt with at once by the deformation method. It

demonstrates Algorithm 1 is compatible with various types of computational scenario.

(a) t=0 (b) t=0.3
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(c) t=0.6 (d) t=1

Figure 2.2: A rectangle to 1
4

of a disk

Next figure shows a similar 3D example. A brick to is deformed into one-eighth

of a ball that centers at the origin and stand on the first octant of R3. Those 3 faces

on the back are slippery-wall condition.

(a) t=0 (b) t=0.3
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(c) t=0.6 (d) t=1

Figure 2.3: A brick to 1
8

of a ball
Next, a few more examples demonstrate the flexibility of prescribing Jacobian

determinant for desired meshes, in both 2D and 3D cases.

(a) t=0 (b) t=0.5
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(c) t=1

Figure 2.4: Edge emphasized in a basketball picture

(a) t=0 (b) t=0.5
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(c) t=1

Figure 2.5: Deform boundary to an ellipse while emphasizing shapes for interiors

(a) t=0 (b) t=0.5
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(c) t=1

Figure 2.6: Sitting a cube on a ball while the top is deformed

(a) t=0 (b) t=0.5
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(c) t=1

Figure 2.7: Deform a tall brick to a horn

(a) A Cylinder like object (b) Top face deformed to sphere

Figure 2.8: Two Colored 3D Examples

2.3 A New Algorithm for Higher Order Element Meshing

In the previous section, the deformation method was tested to generate com-

putational diffeomorphism, namely, non-folding meshes, from a uniform mesh such

13



that φφφ(ξξξ, 0) = ididid(ξξξ). One may ask, what if the prescribed Jacobian determinant

0 < f(xxx, 0) 6= 1, can we still construct such diffeomorphsim φφφ(ξξξ, t) by the fashion of de-

formation method, i. e., can φφφ(ξξξ, t) be found when φφφ(ξξξ, t) 6= ididid(ξξξ) whose visualization

is not represented by an uniform mesh? A quick answer in terms of computational

capability is No. However, if there exists a diffeomorphism ϕϕϕ0 : Ω → Ω0, such that

ϕϕϕ0(ξξξ′) = ξξξ and det∇ϕϕϕ0(ξξξ′) > 0 describes the given domain Ω0 and satisfies 2.2.2, then

the answer is YES, which was suggested by Remark 10 of [15]. This means that on a

given non-folding mesh Ω0 with det∇ϕϕϕ0(ξξξ′) > 0, it is feasible to refine the mesh ϕϕϕ0(ξ′ξ′ξ′)

by the deformation method. In order to theoretically describe the YES scenario, a

more general problem formulation for the deformation method is needed. It goes as

follows:

Let Ω and Ωt ⊂ Rn, n = 2, or 3 and 0 ≤ t ≤ 1, be a moving domain and vvv(xxx, t)

be the velocity field on ∂Ωt, where vvv(xxx, t) ·nnn = 0 on any part of ∂Ωt with slippery-wall

boundary conditions and nnn is the outward normal vector of ∂Ωt. Given diffeomorphism

ϕϕϕ0 : Ω→ Ω0 and scalar function f(xxx, t) > 0 ∈ C1(xxx, t) on the domain Ωt × [0, 1], such

that

f(xxx, 0) = det∇(ϕϕϕ0)∫
Ωt

1

f(xxx, t)
dxxx = |Ω0|.

(2.3.1)

A new diffeomorphism φφφ(ξξξ, t) : Ω0 → Ωt, such that

det∇(φφφ(ξξξ, t)) = f(φφφ(ξξξ, t), t), ∀t ∈ [0, 1] (2.3.2)

Figure 2.9: ϕϕϕ0 maps ξξξ′ to ξξξ then φφφ maps ξξξ to xxx

14



can be constructed by solving the following differential equations:

• First, determine uuu(xxx, t) on Rn by solving

∇ · uuu(xxx, t) = − ∂

∂t
(

1

f(xxx, t)
)

∇× uuu(xxx, t) = 0

uuu(xxx, t) =
vvv(xxx, t)

f(xxx, t)
, on ∂Ωt

(2.3.3)

• Second, determine φφφ(ξξξ, t) on Ω0 by solving
∂φφφ(ξξξ, t)

∂t
= f(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t),

φφφ(ξξξ, 0) = ξξξ = ϕϕϕ0(ξξξ′)

(2.3.4)

Similar to the previous case in section 2, we use this two-step procedure with

appropriate modification to construct diffeomorphism φφφ(ξξξ, t). This generalization of

the deformation method shares a similar theoretical derivation with a slight change of

condition from f(xxx, 0) = 1 into f(xxx, 0) = det∇(ϕϕϕ0) which was mentioned in [15]. For

completion, we argue that the condition of (2.3.4) is valid in the deformation method,

i. e., the computed Jacobian determinant of φφφ in each t is always equal the prescribed

f(xxx, t) > 0. The proof is provided below.

Before proceeding to the proof, let’s recall the Liouville′s formula in differential

equations: Let A ∈ Mn×n be a matrix with continuous elements on an interval

I : a ≤ t ≤ b for some a ≤ b ∈ R. Suppose F (t) is a matrix of functions on I satisfying

d
dt

(F (t)) = A(t)F (t). Then, d
dt

(detF (t)) = Tr(A(t))detF (t).

Claim: If φφφ is the solution of (2.3.1) to (2.3.2). Then

H(ξξξ, t) :=
det∇(φφφ(ξξξ, t))

f(φφφ(ξξξ, t), t)

satisfies ∂H
∂t

= 0, ∀t ∈ [0, 1].
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Proof :

∂H(ξξξ, t)

∂t
=

∂

∂t
(det∇(φφφ(ξξξ, t)))

1

f(φφφ(ξξξ, t), t)
+ det∇(φφφ(ξξξ, t))

∂

∂t
(

1

f(φφφ(ξξξ, t), t)
)

= P (t) +Q(t)

So, we have

P (t) =
∂

∂t
(det∇(φφφ(ξξξ, t)))

1

f(φφφ(ξξξ, t), t)

=det∇(
∂

∂t
φφφ(ξξξ, t))

1

f(φφφ(ξξξ, t), t)

=det∇(f(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t))
1

f(φφφ(ξξξ, t), t)
, by (2.3.4)

=det(∇φφφ[f(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)]∇φφφ(ξξξ, t))
1

f(φφφ(ξξξ, t), t)
, by chain rule

Taking F (t) = ∇φφφ(ξξξ, t), A(t) = ∇φφφ[f(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)] and 0 = a ≤ t ≤ b = 1 in

Liouville′s formula, then we get

P (t) =Tr(∇φφφ[f(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)])det∇(φφφ(ξξξ, t))
1

f(φφφ(ξξξ, t), t)

=Tr([∇φφφf(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t) + f(φφφ(ξξξ, t), t)∇φφφuuu(φφφ(ξξξ, t), t)])
det∇(φφφ(ξξξ, t))

f(φφφ(ξξξ, t), t)

=[∇φφφf(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t) + f(φφφ(ξξξ, t), t)∇φφφ · uuu(φφφ(ξξξ, t), t)]
det∇(φφφ(ξξξ, t))

f(φφφ(ξξξ, t), t)

=[
∇φφφf(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)

f(φφφ(ξξξ, t), t)
+∇φφφ · uuu(φφφ(ξξξ, t), t)]det∇(φφφ(ξξξ, t)) by (2.3.4)

=[
∇φφφf(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)

f(φφφ(ξξξ, t), t)
+
∂

∂t
(

−1

f(φφφ(ξξξ, t), t)
)]det∇(φφφ(ξξξ, t)) by (2.3.3)

=[
∇φφφf(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)

f(φφφ(ξξξ, t), t)
+
f(φφφ(ξξξ, t), t)t
f(φφφ(ξξξ, t), t)2

]det∇(φφφ(ξξξ, t));

and one the second term, we have

Q(t) =det∇(φφφ(ξξξ, t))
∂

∂t
(

1

f(φφφ(ξξξ, t), t)
)

=− ∇φφφf(φφφ(ξξξ, t), t) · φφφ(ξξξ, t)t + f(φφφ(ξξξ, t), t)t
f(φφφ(ξξξ, t), t)2

det∇(φφφ(ξξξ, t))

=− [
∇φφφf(φφφ(ξξξ, t), t)uuu(φφφ(ξξξ, t), t)

f(φφφ(ξξξ, t), t)
+
f(φφφ(ξξξ, t), t)t
f(φφφ(ξξξ, t), t)2

]det∇(φφφ(ξξξ, t)) by (2.3.4)
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Therefore,

∂H(ξξξ, t)

∂t
= P (t) +Q(t) = 0 as desired

and this completes the argument of our claim.

Next, it can be computed

H(t) =

∫
dH(t)

dt
dt =

∫
∂H(ξξξ, t)

∂t
dt =

∫
0dt = C ∈ R

H(t) = C = H(0) =
det∇(φφφ(ξξξ, 0))

f(φφφ(ξξξ, 0), 0)
=

det∇(ϕϕϕ0)

f(xxx, 0)
= 1 as desired.

Therefore, H(t) = 1 is independent of t ∈ [0, 1] which implies the condition (2.3.2) is

guaranteed.

Now, we modify Algorithm 1 with a local refinement technique. That is firstly

to subdivide a given non-folding mesh (a given ϕϕϕ0 s.t. det∇(ϕϕϕ0(ξ′ξ′ξ′)) > 0) or simply a

resulting coarse mesh formed by Algorithm 1 to get an intermediate mesh; Second,

use the deformation method to deform the newly-added boundary nodes of the

intermediate mesh into a boundary conforming mesh; then, resulting mesh is refined

and the non-folding property is preserved. The construction of a new diffeomorphism

φφφ(ξξξ, t) is needed as the problem from (2.3.1) to (2.3.2) indicates. That leads to the

following algorithm of local refinement.

Algorithm 2 Deformation method with local refinements

• 1: given a non-folding coarse mesh, Ω;

• 2: subdivide the coarse mesh up to desired order p, denoted Ω0;

• 3: assign corresponding boundary conditions to the new nodes;

• 4: apply Algorithm 1;

In step 4 of Algorithm 2, the input nt can be chosen relatively smaller, since the

refinement happens only locally and the deformation is small, the larger number of nt

17



contributes lesser influence to the accuracy. This is confirmed with a simple example

in later context.

In the next two Figures, in order to keep the coherence of our idea, we imple-

mented the Algorithm 2 on resulting coarse meshes from Figure 2.2 and 2.3. In step 2

of Algorithm 2, as mentions in the beginning, p is the number of degree for interpolat-

ing polynomials and p+ 1 nodes are needed for interpolation on each dimension. So,

we need to add p− 1 new nodes in subdivision procedure. In these examples, p = 3 is

considered.

Once the new nodes had been added, the intermediate mesh is formed. Before

the construction of boundary conforming mesh, we need to assign Dirichlet moving

boundary conditions to the new nodes of the moving part and fixed-boundary conditions

to old nodes of the moving part, because the old boundary nodes have already stand

on the desired geometry. With appropriate boundary conditions, apply Algorithm

2 which is based on the deformation method to deform the intermediate mesh for a

finer boundary conforming mesh Ωt.

(a) t=0 (b) t=0.6
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(c) t=1

Figure 2.10: Continued from Figure 2.2

(a) t=0 (b) t=0.6
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(c) t=1

Figure 2.11: Continued from Figure 2.3

As the examples shown above, Algorithm 2 is able to construct a finer mesh

representing domain. So, a boundary conforming finer mesh has been created. That

is what motivates us to generate higher order element (HOE) meshes. Consider the

following algorithm.

Algorithm 3 Mesh Interpolation for HOE

• 1: given a non-folding coarse mesh or simply apply Algorithm 1 to get Ω;

• 2: apply Algorithm 2 to Ω for a finer mesh Ωt;

• 3: interpolate the finer mesh, Ωt, with respect to the coarse mesh, Ω, up to

desired order p;

• 4: plot the interpolated data based on the coarse mesh;

We combined with appropriate interpolation techniques, for instance, polynomi-

als with degree p = 3, to define curves in 2D cases or surfaces in 3D case to represent

the desired geometries. The simulated mesh may be different from the desired ge-
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ometries, but with HOE representation, the higher order mesh is better than the

original coarse (linear) ones. In the following HOE mesh examples shown in Figures,

the MatLab interpolation package is used which computes with cubic-splines.

(a) coarse by Algorithm 1 (b) refined by Algorithm 2

(c) HOE by Algorithm 3

Figure 2.12: Mesh evolution in 2D
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(a) coarse by Algorithm 1 (b) refined by Algorithm 2

(c) HOE by Algorithm 3

Figure 2.13: Mesh evolution in 3D

In fact, the Algorithm 3 is an extension of Algorithm 1 and 2. It combines

higher order polynomial interpolation and deformation method with LSFEM. The

LSFEM is used for solving the divergence− curl system, which is not a trivial task.
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Furthermore, the implementation of LSFEM is the core asset of this approach to

HOE meshes generation. One important and practical reason of choosing LSFEM is

its flexibility in realizing of different boundary scenarios. In the next few examples,

more sophisticated and complicated situations are handled by Algorithm 3. And they

show the effectiveness of our approach in generating HOE meshes for most common

geometries.

(a) t=0 (b) t=0.5

(c) t=0.8 (d) t=1

Figure 2.14: A wavy top rectangle with two emphasized ellipses by Algorithm 1
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(a) t=0 (b) t=0.8

(c) t=1

Figure 2.15: Refinement by Algorithm 2
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(a) HOE by Algorithm 3

Figure 2.16: HOE mesh representation by Algorithm 3

(a) coarse by Algorithm 1 (b) refined by Algorithm 2
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(c) HOE by Algorithm 3

Figure 2.17: Magnified views over intersection of the ellipses

(a) t=0 (b) t=0.8
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(c) t=1

Figure 2.18: A brick to an ellipsoid by Algorithm 1

(a) t=0 (b) t=0.8

(c) t=1

Figure 2.19: Refinement by Algorithm 2
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(a) HOE by Algorithm 3

Figure 2.20: HOE mesh representation by Algorithm 3

2.3.1 Comparison on 2D

This is an example of comparison with and without using the proposed Algorithm

3. The degree p = 3 is still considered. The following 2D example has number of finite

elements Nx ∗Ny = 91 ∗ 61 = 5551 on Ωt = [0, 1]× [0, 0.7] with nt = 10.

(a) HOE by Algorithm 3

Figure 2.21: A mesh by Algorithm 1

In the implementation of LSFEM, we need to solve a linear system KE ∈ R5551×5551 for

nt = 10 times, which part occupies the most in computational costs. This simulation

took about 45 seconds to complete without using our proposed HOE mesh approach.
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To achieve the same level of fineness on HOE mesh, we apply the proposed

Algorithm 3. The number of finite elements is Nx ∗Ny = 31 ∗ 21 = 1302 over domain

Ωt = [0, 1] × [0, 0.7] with nt = 10 in step 1 and Nx ∗ Ny = [31 + 2(31 − 1)] ∗ [21 +

2(21− 1)] = 5551 on Ωt = [0, 1]× [0, 0.7] with nt = 5 in step 2 of Algorithm 3.

(a) HOE mesh by Algorithm 3 (b) Enlarged view

Figure 2.22: HOE mesh representation by Algorithm 3

Similarly, by LSFEM, there is a linear system KE ∈ R1302×1302 needed to be solved

for nt = 10 times, then another system KE ∈ R5551×5551 needed to be solved for

nt = 5 times in Algorithm 3. The total elapsed time of this simulation took about

only 22 seconds. As the comparison demonstrates, not only the proposed Algorithm 3

generates a higher order element mesh but also generates it very efficiently compared

to the original deformation method in linear mesh generation.

2.4 Conclusions and Future work

In this work, we formulated a novel approach to higher order element mesh

generation. The main idea is to combine a local refinement technique with the

deformation method on variable domains then using interpolation technique of higher

degree polynomials. The new algorithm has a solid theoretical foundation. Moreover,
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its numerical implementation of the Lease-Squares Finite Element Method is effective

and efficient. The shown examples in this work are based on simple geometric models.

Our goal is to develop a software package for real world problems in science and

engineering.
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CHAPTER 3

Determination of Diffeomorphisms based on Jacobian Determinant and Curl Vector

3.1 Introduction

The deformation method for mesh generation is discussed in the previous chapter,

which constructs a diffeomorphism whose Jacobian determinant is monitored by a

prescribed function 0 < f(xxx) ∈ C1(Ω). The key component of the deformation method

is to find the solution of divergence− curl system. However, the curl vector of the

intermediate vector field uuu, has been assigned to zero vector 000 (scalar 0 in case of

2D) due to its difficulty in implementation. So, a diffeomorphism constructed by the

deformation method is not generally unique. To uniquely generate a mesh or determine

a transformation, as studied in [36, 37], the information of the curl vector should not

be ignored. Motivated by the limitation, a novel variational mesh generation method

was developed in [15, 13]. The goal is to find a φφφ on ΩΩΩ ⊂ R2,3 which satisfies the

conditions: 
det∇(φφφ) = f0 > 0

∇× (φφφ) = ggg0, where ∇ · ggg0 = 0

This meshing approach is designed to control both Jacobian determinant and the curl

vector of a transformation in an optimization scheme. The studies turned out quite

successful in case of 2D earlier. In this chapter, the case of 3D is implemented. Based

on its excellent performance on 2D scenario, it considered and that the Jacobian

determinant cannot uniquely determine a transformation. In [15], a special case has

for the uniqueness problem was analytically discussed in 2D. In this chapter, we will

generalize the study to 3D scenario. The method will be reviewed in section 3.2; some
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numerical examples are shown to explain how the uniqueness problem was formed in

section 3.3; the special case of the uniqueness problem in 3D case is proved in section

3.4; lastly, in section 3.5, motivated by the uniqueness problem, a direct strategy is

formed and numerically tested.

3.2 The Variational Method for Mesh Generation

Let bounded Ω ⊂ R3 (It’s similar for R2) be the domain and a scalar function

on f0(xxx) > 0 and a vector-valued ggg0(xxx) on the domain Ω with∫
Ω

f0(xxx)dxxx = |Ω| and ∇ · ggg0(xxx) = 0. (3.2.1)

We look for a diffeomorphism φφφ : Ω→ Ω

φφφ(xxx) = φφφ0(xxx) + uuu(xxx) (3.2.2)

that minimizes the cost functional — sum of squared difference:

SSD(φφφ(xxx)) =
1

2

∫
Ω

[(det∇(φφφ(xxx))− f0(xxx))2 + |∇ × (φφφ(xxx))− ggg0(xxx)|2]dxxx (3.2.3)

subject to the constraints of control functions f(xxx) and ggg(xxx)


∇ · uuu(xxx) = f(xxx)− 1

∇× uuu(xxx) = ggg(xxx)

in Ω

uuu(xxx) = 000 on ∂Ω

⇒


∆u1 = f(xxx)x1 − g3x2(xxx) + g2x2(xxx) = F1(xxx)

∆u2 = f(xxx)x2 + g3x1(xxx)− g1x3(xxx) = F2(xxx)

∆u3 = f(xxx)x3 − g2x1(xxx) + g1x2(xxx) = F3(xxx)
∆uuu(xxx) = ∇f(xxx)−∇× ggg(xxx) = FFF (xxx) in Ω

uuu(xxx) = 000 on ∂Ω.

(3.2.4)

To find a solution to (3.2.3), the first variational gradient is needed. In order

to implement a gradient descent numerical scheme, since the (3.2.3) subjects to the
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Poisson equation (3.2.4), so the desired first variational gradient should be with

respect to FFF (xxx) and was originally formulated in [15]. For completion, its derivation

in case of 3D is summarized here.

Claim: Let P = det∇(φφφ) − f0 and QQQ = ∇ × (φφφ) − ggg0. Consider bi’s that satisfy

−∇bi = aaai where 

aaa1 =P


φ2x2φ3x3 − φ3x2φ2x3

φ3x1φ2x3 − φ2x1φ3x3

φ2x1φ3x2 − φ2x2φ3x1

+


0

−Q3

Q2



aaa2 =P


φ3x2φ1x3 − φ1x2φ3x3

φ1x1φ3x3 − φ1x3φ3x1

φ3x1φ1x2 − φ1x1φ3x2

+


Q3

0

−Q1



aaa3 =P


φ1x2φ2x3 − φ2x2φ1x3

φ2x1φ1x3 − φ1x1φ2x3

φ1x1φ2x2 − φ2x1φ1x2

+


−Q2

Q1

0

 .

Then, the first variational gradient of SSD(φφφ) with respect to FFF is

∂SSD(φφφ)

∂FFF
= bbb = (b1, b2, b3).
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Proof : From (3.2.3), we have

δSSD(φφφ) = δ
1

2

∫
Ω

[(det∇(φφφ)− f0)2 + |∇ × (φφφ)− ggg0|2]

=

∫
Ω

[(det∇(φφφ)− f0)δ(det∇φφφ) + (∇× (φφφ)− ggg0) · δ(∇× φφφ)]

=

∫
Ω

[(det∇(φφφ)− f0)δdet


φ1x1 φ1x2 φ1x3

φ2x1 φ2x2 φ2x3

φ3x1 φ3x2 φ3x3

+ (∇× (φφφ)− ggg0) · δ


φ3x2 − φ2x3

φ1x3 − φ3x1

φ2x1 − φ1x2

]

=

∫
Ω

[Pδdet


φ1x1 φ1x2 φ1x3

φ2x1 φ2x2 φ2x3

φ3x1 φ3x2 φ3x3

+QQQ · δ


φ3x2 − φ2x3

φ1x3 − φ3x1

φ2x1 − φ1x2

].

Here, P = det∇(φφφ)− f0 and QQQ = ∇× (φφφ)− ggg0 are denoted, then we have

δSSD(φφφ) =

∫
Ω

[Pδ(φ1x1(φ2x2φ3x3 − φ2x3φ3x2)− φ1x2(φ3x3φ2x1 − φ3x1φ2x3)

+ φ1x3(φ2x1φ3x2 − φ2x2φ3x1))

+ (Q1, Q2, Q3) · δ(φ3x2 − φ2x3 , φ1x3 − φ3x1 , φ2x1 − φ1x2)]

=

∫
Ω

[P (δ(φ1x1φ2x2φ3x3 − φ1x1φ2x3φ3x2)− δ(φ1x2φ3x3φ2x1 − φ1x2φ3x1φ2x3)

+ δ(φ1x3φ2x1φ3x2 − φ1x3φ2x2φ3x1))

+ (Q1, Q2, Q3) · (δφ3x2 − δφ2x3 , δφ1x3 − δφ3x1 , δφ2x1 − δφ1x2)]

=

∫
Ω

[P (δφ1x1φ2x2φ3x3 + φ1x1δφ2x2φ3x3 + φ1x1φ2x2δφ3x3

− δφ1x1φ2x3φ3x2 − φ1x1δφ2x3φ3x2 − φ1x1φ2x3δφ3x2

− δφ1x2φ3x3φ2x1 − φ1x2δφ3x3φ2x1 − φ1x2φ3x3δφ2x1

+ δφ1x2φ3x1φ2x3 + φ1x2δφ3x1φ2x3 + φ1x2φ3x1δφ2x3)

+ δφ1x3φ2x1φ3x2 + φ1x3δφ2x1φ3x2 + φ1x3φ2x1δφ3x2

− δφ1x3φ2x2φ3x1 − φ1x3δφ2x2φ3x1 − φ1x3φ2x2δφ3x1)

+ (Q1, Q2, Q3) · (δφ3x2 − δφ2x3 , δφ1x3 − δφ3x1 , δφ2x1 − δφ1x2)].
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Since (3.2.2), we have δφφφ = δuuu. Then, we have

δSSD(φφφ) =

∫
Ω

[P (δu1x1φ2x2φ3x3 + φ1x1δu2x2φ3x3 + φ1x1φ2x2δu3x3

− δu1x1φ2x3φ3x2 − φ1x1δu2x3φ3x2 − φ1x1φ2x3δu3x2

− δu1x2φ3x3φ2x1 − φ1x2δu3x3φ2x1 − φ1x2φ3x3δu2x1

+ δu1x2φ3x1φ2x3 + φ1x2δu3x1φ2x3 + φ1x2φ3x1δu2x3

+ δu1x3φ2x1φ3x2 + φ1x3δu2x1φ3x2 + φ1x3φ2x1δu3x2

− δu1x3φ2x2φ3x1 − φ1x3δu2x2φ3x1 − φ1x3φ2x2δu3x1)

+ (Q1, Q2, Q3) · (δu3x2 − δu2x3 , δu1x3 − δu3x1 , δu2x1 − δu1x2)]

=

∫
Ω

([P


φ2x2φ3x3 − φ3x2φ2x3

φ3x1φ2x3 − φ2x1φ3x3

φ2x1φ3x2 − φ2x2φ3x1

+


0

−Q3

Q2

] · ∇δu1

+ [P


φ3x2φ1x3 − φ1x2φ3x3

φ1x1φ3x3 − φ1x3φ3x1

φ3x1φ1x2 − φ1x1φ3x2

+


Q3

0

−Q1

] · ∇δu2

+ [P


φ1x2φ2x3 − φ2x2φ1x3

φ2x1φ1x3 − φ1x1φ2x3

φ1x1φ2x2 − φ2x1φ1x2

+


−Q2

Q1

0

] · ∇δu3).

Here, let’s recall the Green′s formulas in vector calculus: Let f , g ∈ C2(Ω) for some

compact Ω ⊂ R3. Then,

(i)
∫
Ω

(g∆f +∇g · ∇f)dωωω =
∫
∂Ω

∂f
∂g
fdsss;

(ii)
∫
Ω

(g∆f −∆gf)dωωω =
∫
∂Ω

( ∂g
∂f
g − ∂f

∂g
f)dsss.
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The “tall vector”s from previous step are denoted as aaai. Let’s consider some functions

bi’s satisfy −∇bi = aaai, then it can be continued by the Green’s formulas (in fixed

boundary case, contour integrals of (i-ii) are 0) as follows,

δSSD(φφφ) =

∫
Ω

[aaa1 · ∇δu1 + aaa2 · ∇δu2 + aaa3 · ∇δu3]

=

∫
Ω

(−∇b1 · ∇δu1 −∇b2 · ∇δu2 −∇b3 · ∇δu3)

=

∫
Ω

(∇ · ∇b1δu1 +∇ · ∇b2δu2 +∇ · ∇b3δu3)

=

∫
Ω

(∆b1δu1 + ∆b2δu2 + ∆b3δu3)

=

∫
Ω

(b1δ∆u1 + b2δ∆u2 + b3δ∆u3)

=

∫
Ω

(b1δF1 + b2F2 + b3F3)

=

∫
Ω

bbb · δFFF

Therefore, the first variational gradient with respect to the control function FFF is of

the form:

∂SSD(φφφ)

∂FFF
= bbb = (b1, b2, b3)

where bi’s satisfy ∆bi = −∇ · aaai.

According to the first variational gradient (3.2) above, a gradient descent

numerical scheme can be implemented by the following algorithm where Ratio :=

SSDnew

SSDinit
(usually in practices, 0 < Ratio ≤ 1) and FFT is the Fast Fourier Transform

based Poisson solver.
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Algorithm 4 Variational Method

• 0: input f0, ggg0;

• 1: initialize:

FFF k−1 = 000, bbbk−1 = 000, φφφ = xxx, set ∆t, ttol, ratio, ratiotol, itermax;

• 2: while ∆t > ttol and ratio > ratiotol and iter > itermax;

• 3: if better = true

• 4: compute bbbk by ∆bi = −∇ · aaai (solve Poisson by FFT);

• 5: update FFF k = FFF k−1 −∆t ∗ bbbk;

• 6: solve ∆uuuk = FFF k (solve Poisson by FFT);

• 7: update φφφ = xxx+ uuuk;

• 8: check SSD and compute ratio;

• 9: if SSD decrease,

• 10:better = true;

• 11:∆t = ∆t ∗ tup;

• 12:FFF k−1 = FFF k;

else

• 13:better = false;

• 14:∆t = ∆t ∗ tdown;

go to 2;

• 15: output φφφ.

Here, we include a simple example to show the effectiveness of the variational

method in 2D.
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Example 1: Variational Method in 2D

Deform DDD1 to DDD2 by the Variational Method. Taking f0 = det∇(DDD2) and

g0 = ∇× (DDD2), DDD1 is deformed to a transformation D̂DD12, as shown in (e) of next Figure

that is almost identical to DDD2 by prescribing its Jacobian as det∇(DDD2) and its curl as

∇× (DDD2). Total elapsed time for 25 iteration steps is 0.955899 seconds.

(a) DDD1 (b) DDD2

(c) step 0 (d) step 10 (e) D̂DD12 superimposed on
DDD2(black)

Figure 3.1: DDD1 to DDD2

We next add noise to DDD1 and deform the distorted DDD1, denoted as DnDnDn1, to DDD2

as before. The calculated transformation D̂nDnDn12 (in red lines) by is superimposed on
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DDD2 as it shows in (e) of next Figure. The red lines are almost identical to the black

lines. This indicates that the results of the Variational method are very accurate.

(a) DnDnDn1 (b) DDD2

(c) step 0 (d) step 550 (e) D̂nDnDn12 superimposes on
DDD2(black)

Figure 3.2: DnDnDn1 to DDD2

Example 2: Variational Method in 3D

We purposely define a transformation using cutoff 3D rotation, 3D translation

in a complicated way so that we may test the algorithm in a more general situation.

This example took about 31 seconds and 16 iteration to reach ratio = 0.0097.
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(a) ΦΦΦ (b) ΦΦΦ bird view

(c) Φ̂ΦΦ-red (d) Φ̂ΦΦ-red bird view
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(e) Φ̂ΦΦ superimposes ΦΦΦ (f) Φ̂ΦΦ superimposes ΦΦΦ bird view

Figure 3.3: Φ̂ΦΦ recovered with f0 = ∇ · (ΦΦΦ) & ggg0 = ∇× (ΦΦΦ)

Next, we proceed to see how the uniqueness problem is formed.

3.3 Uniqueness suggested by Numerical Examples

To understand the uniqueness problem, firstly, let’s see an example how a

transformation is recovered by prescribing both Jacobian determinant and curl.

Example 3: Curls in Meshes

Given a diffeomorphism ΦΦΦ, in (a) of next Figure, we compute f0 = det∇(ΦΦΦ)

and ggg0 = ∇× (ΦΦΦ) to be the prescription of Jacobian determinant and curl for (3.2.3).

Then, by implementing a gradient descent optimization scheme, a mesh Φ̂ΦΦ in red is

recovered, which almost overlaps ΦΦΦ in black, as shown in the following Figure (b).
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(a) ΦΦΦ (b) Φ̂ΦΦ-red

(c) Φ̂ΦΦ superimposes ΦΦΦ

Figure 3.4: Φ̂ΦΦ recovered with f0 = ∇ · (ΦΦΦ) & ggg0 = ∇× (ΦΦΦ)

Next, to see how different curls changes transformations from one to another

even when the Jacobian determinants are the same: we, firstly, differed ggg0 = ∇× (ΦΦΦ)

into g1g1g10 and g2g2g20 such that 1
2
(g1g1g10 + g2g2g20) = ggg0 holds; then, we couple the prescribed
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Jacobian determinant f0 = det∇(ΦΦΦ) with g1g1g10 and g2g2g20, respectively, to recover ΦΦΦ1 and

ΦΦΦ2, as shown in the next Figure.

(a) ΦΦΦ1 (b) ΦΦΦ2

Figure 3.5: Effects of curl vector

In this example, we may concluded that the Jacobian determinant can not uniquely

determine a transformation without the curl information and different curls will lead

to different transformations even if the Jacobian determinants are the same.

Example 4: Curls in Images

Image Re-sampling is a technique widely used in many tasks of image processing.

A 1-to-1 and onto transformation is needed to determine the correspondent pairwise

relationship from the original image to the re-sampled image. In this example, we

show that to differ the curl of a re-sampling transformation —∇× (φφφ) can differ the

re-sampled result.

Step 1: Start with a Ground Truth image I000, to re-sample I000 by the identity map ididid,

we should get back I000 itself. Define TTT111 and TTT222 by a cut-off rotation transformation of
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ididid with π
4

and −π
4
, respectively, such that the 1 = det∇(ididid) ≈ det∇(TTT 1)+det∇(TTT 2)

2
and

000 = curl(ididid) ≈ curl(TTT 1)+curl(TTT 2)
2

hold. This means TTT111 and TTT222 have Jacobian determinants

close to 1 = det∇ididid (in fact, they are between 0.996 and 1.003), but each of their

curls are different.

Step 2: We re-sample I000 by TTT111 and TTT222, respectively, to get I111 = I000(TTT111) and I222 = I000(TTT222).

The results are shown in next Figure the belows diagram.

(b) I000(a) TTT111 (c) TTT222

(d) I111 (e) I222
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(a) TTT111 (b) I000 (c) TTT222

(d) I111 (e) I222

Figure 3.6: Re-sampled I000 on TTT111 and TTT222

As it can be seen, different curls will result in different transformations, therefore,

different curls will affect further on other studies that depend on these transformations.

Step 3: To confirm these settings are of our intention, we compute the Jacobian

Determinants TTT111 and TTT222. Then, recover two transformations, T̂̂T̂T111 and T̂̂T̂T222 by (3.2.3)

without the second term of the functional. These recovered transformations should be

very closed to ididid, as shown in the following Figure 3.4
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(a) T̂̂T̂T111-red vs TTT111-black (b) I000(T̂̂T̂T111)

(c) T̂̂T̂T222-red vs TTT222-black (d) I000(T̂̂T̂T222)

Figure 3.7: Reconstructed TTT111 and TTT222 without curls and their re-sampled images

The re-sampled images on (b) and (d) of above Figure look just the same as I000,

therefore, T̂̂T̂T111 and T̂̂T̂T222 are almost identical to the ididid.

Step 4: This time, we include the curl of TTT111 and TTT020202 with their Jacobian determinants

in (3.2.3) for the recovering. So, the re-sampled images should be different according

to different curls.
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(a) Ť̌ŤT111-red vs TTT111-black (b) I000(Ť̌ŤT111)

(c) Ť̌ŤT222-red vs TTT222-black (d) I000(Ť̌ŤT222)

Figure 3.8: Reconstructed TTT111, TTT222 and their re-sampled images

This example shows that indistinguishable Jacobian determinant of a diffeomor-

phism with different curl vectors could lead to different diffeomorphism, and then

it could lead to different re-sampled images. So, it was consideredd that Jacobian

determinant alone cannot uniquely determine a diffeomorphism without combining

with the curl vector.
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3.4 The Uniqueness of the Variational Method

In this section, we consider only a simple case as follows. The argument in

general is left to future study. Suppose two smooth transformations φφφ, ψψψ : Ω → Ω,

Ω ⊂ R3 have the same Jacobian determinant and curl-vector, namely,

det∇(φφφ) = det∇(ψψψ) (3.4.1)

∇× (φφφ) = ∇× (ψψψ) (3.4.2)

φφφ = ψψψ, on ∂Ω (3.4.3)

We would like to ask: can the above conditions guarantee that φφφ ≡ ψψψ on Ω?

First,Let φφφ and ψψψ : Ω→ Ω be two smooth transformations by

φφφ = ididid+ uuu (3.4.4)

ψψψ = ididid (3.4.5)

where uuu is sufficiently small transformation in the Sobolev’s space H2
0 (Ω). One can

suppose that uuu satisfies

‖uuu‖H2
0 (Ω) < ε (3.4.6)

Hence, we have 
‖uuu‖L2 < ε

‖∇uuu‖L2 < ε

‖∆uuu‖L2 < ε

(3.4.7)

Second, fromφφφ(x1, x2, x3) = (x1+u1(x1, x2, x3), x2+u2(x1, x2, x3), x3+u3(x1, x2, x3))

and ψψψ(x1, x2, x3) = (x1, x2, x3) , we may derive

det∇(φφφ) =

∣∣∣∣∣∣∣∣∣∣
1 + u1x1 u2x1 u3x1

u1x2 1 + u2x2 u3x2

u1x3 u2x3 1 + u3x3

∣∣∣∣∣∣∣∣∣∣
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= 1 + u1x1 + u2x2 + u3x3

+u1x1u2x2u3x3 + u1x3u2x1u3x2 + u1x2u2x3u3x1

−u1x1u2x3u3x2 − u1x2u2x1u3x3 − u1x3u2x2u3x1

+u1x1u2x2 + u1x1u3x3 + u2x2u3x3

−u1x2u2x1 − u1x3u3x1 − u2x3u3x2

= 1 +∇ · (uuu) + det∇(uuu)

+u1x1u2x2 + u1x1u3x3 + u2x2u3x3

−u1x2u2x1 − u1x3u3x1 − u2x3u3x2

= 1 +∇ · (uuu)− F(uuu)

where we denote

F(uuu) = −[det∇(uuu) + Tail(uuu)]

and

Tail(uuu) = u1x1u2x2 + u1x1u3x3 + u2x2u3x3 − u1x2u2x1 − u1x3u3x1 − u2x3u3x2 (3.4.8)

According to (3.4.1) and (3.4.2) we have,

0 = det∇(φφφ)− det∇(ψψψ) = 1 +∇ · (uuu)− F(uuu)− 1 = ∇ · (uuu)− F(uuu)

000 = ∇× (φφφ)−∇× (ψψψ) =


u3x2 − u2x3

u1x3 − u3x1

u1x2 − u2x1

− 000 = ∇× (uuu)

i.e., 
∇ · (uuu) = F(uuu)

∇× (uuu) = 000.

(3.4.9)
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It follows from (3.4.9) that uuu satisfies the Poisson equations:
∆u1 = ∇ · (uuu)x1 − [∇× (uuu)3]x2 + [∇× (uuu)2]x3 = F(uuu)x1

∆u2 = ∇ · (uuu)x2 + [∇× (uuu)3]x1 − [∇× (uuu)1]x3 = F(uuu)x2

∆u3 = ∇ · (uuu)x3 − [∇× (uuu)2]x1 + [∇× (uuu)1]x2 = F(uuu)x3

⇒ ∆uuu = (F(uuu)x1 ,F(uuu)x2 ,F(uuu)x3) = ∇xxxF(uuu)

Note that the dominating terms of F(uuu) at (3.4.8) are products of only the first partial

derivatives of uuu, so the dominating terms of ∇xxxF(uuu) at (3.4.10) are the terms in

products of the first and second partial derivatives of uuu. This means, by (3.4.7), we

get

‖∆uuu‖L2 = (

∫
Ω

|∆uuu|2)
1
2 = (

∫
Ω

|∇xxxF(uuu)|2)
1
2 = ‖∇xxxF(uuu)‖L2 (3.4.10)

⇒ ‖∆uuu‖L2 < ε · ε = ε2 (3.4.11)

Next, we will establish an inequality for ‖uuu‖L2 . Since uuu = 0 on ∂Ω, by Green′s

formula, we can derive, ∫
Ω

|∇uuu|2 = |
∫

Ω

uuu ·∆uuu| (3.4.12)

Applying the Cauchy − Schwarz inequality and properties of integration to the RHS

of (3.4.12) to get∫
Ω

|∇uuu|2 = |
∫

Ω

uuu ·∆uuu| ≤
∫

Ω

|uuu||∆uuu| ≤ ‖uuu‖L2 ‖∆uuu‖L2

⇒ ‖∇uuu‖2
L2 ≤ ‖uuu‖L2 ‖∆uuu‖L2 (3.4.13)

Applying the Poincare′s inequality to the LHS of (3.4.12), ∃ 0 < C ∈ R, such that

‖uuu‖2
L2 ≤ C ‖∇uuu‖2

L2 = C

∫
Ω

|∇uuu|2 (3.4.14)

Next, we combine (3.4.13) and (3.4.14) to have

‖uuu‖2
L2 ≤ C ‖∇uuu‖2

L2 ≤ C ‖uuu‖L2 ‖∆uuu‖L2 (3.4.15)
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⇒ ‖uuu‖L2 ≤ C ‖∆uuu‖L2 < Cε2 (3.4.16)

And, as for ‖∆uuu‖L2 , by (3.4.11), (3.4.13) and (3.4.16), we may bound ‖∇uuu‖L2 as

‖∇uuu‖L2 ≤ (‖uuu‖L2 ‖∆uuu‖L2)
1
2 (3.4.17)

⇒ ‖∇uuu‖L2 < (Cε2 · ε2)
1
2 = C

1
2 ε2 (3.4.18)

Now, uuu satisfies 
‖uuu‖L2 < Cε2

‖∇uuu‖L2 < C
1
2 ε2

‖∆uuu‖L2 < ε2

(3.4.19)

Third, let’s treat the procedure of (3.4.7) to (3.4.19) as Step-0, and repeat it

again with replacing (3.4.7) by the result (3.4.19). So, plug (3.4.18) into the first

derivative of uuu in (3.4.10), we get

‖∆uuu‖L2 = ‖∇xxxF(uuu)‖L2 < ε · C
1
2 ε2 = C

1
2 ε3 (3.4.20)

Then, by (3.4.15), we get

‖uuu‖L2 ≤ C ‖∆uuu‖L2 < C · C
1
2 ε3 = C(1+ 1

2
)ε3 (3.4.21)

and by (3.4.17), we get

‖∇uuu‖L2 ≤ (‖uuu‖L2 ‖∆uuu‖L2)
1
2 < (C(1+ 1

2
)ε3 · C

1
2 ε3)

1
2 = Cε3 (3.4.22)

which above can be combined from (3.4.19), (3.4.20) and (3.4.21) into
‖uuu‖L2 < C(1+ 1

2
)ε3

‖∇uuu‖L2 < Cε3

‖∆uuu‖L2 < C
1
2 ε3

(3.4.23)
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Fourth, in order to complete the argument of the simple case, an iterative

process based on the procedure (3.4.19) to (3.4.23) is constructed as follows:

• Step-0: From (3.4.7) to (3.4.19), and denote (3.4.19) as (3.4.19)k, set k = 0;

• Step-1: Start iteration (Step-2 to 5) on k = k + 1;

• Step-2: Apply (3.4.19)k on (3.4.10) to get ‖∆uuu‖L2 < C(0+ k
2

)ε(2+k), and denote it

as (3.4.10)k;

• Step-3: Apply (3.4.20)k on (3.4.15) to get ‖uuu‖L2 < C(1+ k
2

)ε(2+k), and denote it

as (3.4.15)k;

• Step-4: Apply (3.4.15)k on (3.4.17) to get ‖∇uuu‖L2 < C( 1
2

+ k
2

)ε(2+k), and denote

it as (3.4.17)k;

• Step-5: Combine (3.4.10)k, (3.4.15)k, (3.4.17)k to form (3.4.19)k+1 (For example:

(3.4.19)1 is (3.4.23)), then back to Step-1.

Hence, on the k-th iteration, (3.4.19) can be improved to (3.4.19)k, i.e.,
‖uuu‖L2 < C(1+ k

2
)ε(2+k)

‖∇uuu‖L2 < C( 1
2

+ k
2

)ε(2+k)

‖∆uuu‖L2 < C(0+ k
2

)ε(2+k)

It is natural to take a step forward at k + 1. So, plug (3.4.19)k into (3.4.10), we get

‖∆uuu‖L2 = ‖∇xxxF(uuu)‖L2 < ε · C( 1
2

+ k
2

)ε(2+k) = C(0+ k+1
2

)ε(2+k+1)

and denote it as (3.4.10)k+1. Then, by (3.4.15) we get

‖uuu‖L2 ≤ C ‖∆uuu‖L2 < C · C(0+ k+1
2

)ε(2+k+1) = C(1+ k+1
2

)ε(2+k+1)

and denote it as (3.4.15)k+1. Then, by (3.4.17) we get

‖∇uuu‖L2 < (C(1+ k+1
2

)ε(2+k+1) · C(0+ k+1
2

)ε(2+k+1))
1
2 = C( 1

2
+ k+1

2
)ε(2+k+1)
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and denote it as (3.4.17)k+1. This leads to the immediate inductive step (3.4.19)k+1
‖uuu‖L2 < C(1+ k+1

2
)ε(2+k+1)

‖∇uuu‖L2 < C( 1
2

+ k+1
2

)ε(2+k+1)

‖∆uuu‖L2 < C(0+ k+1
2

)ε(2+k+1)

Therefore, the system of inequalities (3.4.17)k is iterated to reduce the bound of

‖uuu‖L2 for every increment of k = k+ 1. Since uuu satisfies (3.4.7), then we may conclude

such uuu on Ω is also satisfying ‖uuu‖L2 < C(1+ k
2

)ε(2+k), where C(1+ k
2

)ε(2+k) converges to 0

by the choice of 0 < ε < min{1, 1/
√
C}, as k −→∞. So it can also be concluded that

‖φφφ−ψψψ‖L2 = ‖uuu‖L2 −→ 0 as k −→∞, therefore φφφ ≡ ψψψ = ididid on Ω.

In this section, we described an approach to the uniqueness problem based on

the simple case which the two smooth transformations are close to each other and

one of them is the identityidentityidentity map. The general uniqueness problem from (3.4.1) to

(3.4.3) remains open. An interesting intermediate step is to show that, for any two

sufficiently close φφφ, ψψψ, a similar argument can be applied.

3.5 Direct Method v.s. Iterative Method

Motived by the uniqueness problem, we curiously attempt to argue that if the

global minimizer exists for (3.2.3), then it should also satisfies the Poisson equation

with the right-hand-side formed by the given monitor functions f0(xxx) > 0 and ggg0(xxx).

To see this, let φφφ(xxx) = ididid(xxx) + uuu(xxx), det∇(φφφ) = f0(xxx) and ∇× (φφφ) = ggg0(xxx), then one

may derive 
det∇(φφφ) = 1 +∇ · (uuu)− F(uuu)

∇× (φφφ) = ∇× (uuu)

in Ω

φφφ(xxx) = xxx on ∂Ω
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where F(uuu) = −[det∇(uuu) + Tail(uuu)] and

Tail(uuu) = u1x1u2x2 + u1x1u3x3 + u2x2u3x3 − u1x2u2x1 − u1x3u3x1 − u2x3u3x2

so, 
∇ · (uuu) = det∇(φφφ)− 1 + F(uuu)

∇× (uuu) = ∇× (φφφ)

in Ω

uuu(xxx) = 000 on ∂Ω

then we have
∆uuu(xxx) = ∇(det∇(φφφ))−∇× (det∇(φφφ)) +∇xxxF(uuu) in Ω

uuu(xxx) = 000 on ∂Ω

⇒


∆uuu(xxx) = ∇f0(xxx)−∇× ggg0(xxx) +∇xxxF(uuu) in Ω

uuu(xxx) = 000 on ∂Ω

As suggested by the uniqueness of simple case discussed in the previous section, the

term ∇xxxF(uuu) contains terms of second partial derivatives of uuu which is not significantly

large. So, we take an approximation of the right-hand-side by chopping ∇xxxF(uuu) off as

follows 
∆ũ̃ũu(xxx) = ∇f0(xxx)−∇× ggg0(xxx) = FFF 0 in Ω

ũ̃ũu(xxx) = 000 on ∂Ω

(3.5.1)

Once ∆ũ̃ũu(xxx) = FFF 0 is solved, then we define φφφ(xxx) = xxx+ ũ̃ũu(xxx) to be an answer to the

direct strategy. We tested the next two example demonstrate the effectiveness of this

direct strategy on both 2D and 3D cases and compare it with the iterative scheme

provide before.

Example 5: Direct V.S. Iterative in 2D

In this example, the direct computational strategy is tested on the problem in

Example 2. We compute the Jacobian determinant and curl vector of ΦΦΦ then define
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f0(xxx) = det∇(ΦΦΦ) and ggg0(xxx) = ∇× (ΦΦΦ). So, the right-hand-side of Poisson equation

(3.5.1) the can be formed. The next figure shows the result with the direct strategy.

(a) ΦΦΦ (b) ΦdΦdΦd-red

(c) ΦdΦdΦd superimposes ΦΦΦ

Figure 3.9: ΦdΦdΦd found directly with f0 = ∇ · (ΦΦΦ) & ggg0 = ∇× (ΦΦΦ)
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To understand how well or bad the direct strategy has achieved compare to the original

iterative scheme, we set the SSD deduction of (3.2.3) realized by the direct strategy

to be the stopping criteria in the iterative scheme. And the result is shown in the next

Figure.

(a) ΦΦΦ (b) ΦiΦiΦi-red

(c) ΦiΦiΦi superimposes ΦΦΦ

Figure 3.10: ΦiΦiΦi recovered with f0 = ∇ · (ΦΦΦ) & ggg0 = ∇× (ΦΦΦ)
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Some of the key measures are brought together in the following Table.

Table 3.1: Direct V.S. Iterative

Direct Iterative
Mesh Ω 1002 1002

Elapsed seconds 0.005815 2.7152
SSDinit 812.0032 812.0032
SSDnew 17.1791 17.1309
Ratio 0.0212 0.0211

Iteration(s) 1 616
max det∇ difference 0.4350 0.5324

max ∇× differece 0.0768 0.1406
max ||ΦiΦiΦi −ΦΦΦ|| 0.4350 0.5325

Example 6: Direct V.S. Iterative in 3D

Similarly to the 2D case, given ΦΦΦ then it is defined f0(xxx) = det∇(ΦΦΦ) and

ggg0(xxx) = ∇(ΦΦΦ). Form the right-hand-side as in (3.2.4). The following Figures shown

our computational results.

(a) ΦΦΦ (b) ΦΦΦ bird view
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(c) ΦdΦdΦd-red (d) ΦdΦdΦd-red bird view

(e) ΦdΦdΦd superimposes ΦΦΦ (f) ΦdΦdΦd superimposes ΦΦΦ bird view

Figure 3.11: ΦdΦdΦd found directly with f0 = ∇ · (ΦΦΦ) & ggg0 = ∇× (ΦΦΦ)

The transformation φφφ seems pretty well recovered according to the picture,

however, more details reveal that the direct strategy was not that successful on this

problem as it looks. The relevant measures shown in the Table below the next Figures

confirms this.

58



(a) ΦiΦiΦi-red (b) ΦiΦiΦi-red bird view

(c) ΦiΦiΦi-red superimposes ΦΦΦ-black (d) ΦiΦiΦi-red superimposes ΦΦΦ-black bird view

Figure 3.12: ΦiΦiΦi found directly with f0 = ∇ · (ΦΦΦ) & ggg0 = ∇× (ΦΦΦ)

Based on the most important measure, ratio, from the Table, the direct strategy

does not seem converged at all in this problem. The iterative scheme may took a bit

extra time, yet, it does finds its way to get the better solution. So, the direct strategy

could be a fast result, but not necessarily good results in general. To the least we
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Table 3.2: Direct V.S. Iterative in 3D

Direct Iterative
Grid Ω 323 323

Elapsed seconds 0.042273 2.1211
SSDinit 3825.6001 3825.6001
SSDnew 2159.9317 37.4521
Ratio 0.5646 0.0211

Iteration(s) 1 40
max det∇ difference 0.4350 0.5638

max ∇× differece 1.9361 0.1396
max ||ΦiΦiΦi −ΦΦΦ|| 0.7323 5.8725

may say, in some scenarios, the direct strategy can be used to generate meaningful

initial meshes. Compared to the iterative scheme, the direct strategy is incapable to

find a better solution to decrease ratio. But, both two approaches can be made useful

depend on the exact practical situations.

3.6 Conlusion

In this chapter, we extensively study the variational method and realized the 3D

scenario. The unique determination of transformations based on Jacobian determinant

and curl vector is analytically discussed in a special simple case in 3D, while The

general case of the problem remains open. To give meaningful prescriptions of Jacobian

determinant and curl vector can still be a challenge. Because the variational method

successfully realized in 3D, then we may characterize diffeomorphisms with both

Jacobian determinant and curl vector at the same time. A novel approach to averaging

given diffeomorphisms is formulated. This technique of averaging diffeomorphisms is

the key component of our approach to averaging images, which is introduced detailedly

discussed in chapter 5.
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CHAPTER 4

Optimal Control Approach to Image Registration

4.1 Introduction

In [25], we proposed an optimal control approach that has no explicit penalty

terms (and hence no parameters). The registration transformation TTT is iteratively

determined. In the version described in [25] has a mechanism that monitors the

positivity of Jacobian determinant, which in turn assures that TTT is a diffeomorphism

(invertible and smooth). And in each iteration, the solution is found under the control

functions formed by the Jacobian determinant and curl vector. The control functions

are simplified to satisfy a Poisson equation with fixed boundary condition, so each

iterative solution always strictly limited on the desired fixed boundary. This is essential

and beneficial to image analysis. It enables us understanding the variabilities of image

data by studying registration transformations. In this chapter, we revised the original

version and show its advantages by an 3D numerical example. Furthermore, inverse

consistency and transitivity of our registration method are checked numerically.

4.2 Old method Image Registration based on Deformation method

The general image registration problem can be stated in the following setting:

Let Immm be a movingmovingmoving image is to be registered to a fixedfixedfixed image Ifff on the fixed and

bounded domain Ω ⊂ R3 (It’s similar for R2). Define the cost functional - sum of

squared difference:

SSD(φφφ(xxx)) =
1

2

∫
Ω

[Immm(φφφ(xxx))− Ifff (xxx)]2dxxx (4.2.1)
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To look for a diffeomorphism φφφ : Ifff → Immm minimizes SSD(φφφ(xxx)):

φφφ(xxx) = φφφ0(xxx) +
uuu(xxx)

1 +∇ · uuu(xxx)
4t, 4t is an artificial time-step (4.2.2)

subjects to the constraints f(xxx) = J(xxx) > 0 and ggg(xxx) with


∇ · uuu(xxx) = f(xxx)− 1

∇× uuu(xxx) = ggg(xxx)

in Ω

uuu(xxx) = 000 on ∂Ω

⇒


∆u1 = f(xxx)x1 − g3x2(xxx) + g2x2(xxx) = F1(xxx)

∆u2 = f(xxx)x2 + g3x1(xxx)− g1x3(xxx) = F2(xxx)

∆u3 = f(xxx)x3 − g2x1(xxx) + g1x2(xxx) = F3(xxx)

⇒


∆uuu(xxx) = FFF (xxx) in Ω

uuu(xxx) = 000 on ∂Ω

(4.2.3)

The original proof for its first variational gradient in 2-D can be found from [25].

For convenience and comparison, we revise the proof in a more rigorous manner and

extend it to 3-D, as follows.

Claim: Let a vector-valued function AAA(xxx) and a scalar function B(xxx) satisfying

∆AAA(xxx) =
GGG(xxx)

1 +∇ · uuu(xxx)
and ∆B(xxx) =

GGG(xxx) · uuu(xxx)

(1 +∇ · uuu(xxx))2
.

Then, first variational gradient of SSD(φφφ(xxx)) with respect to FFF (xxx) is

∂SSD(φφφ(xxx))

∂FFF (xxx)
= [AAA(xxx) +∇B(xxx)]4t

Proof : Firstly, we need to see that

δφφφ(xxx) = (
δuuu(xxx)

1 +∇ · uuu(xxx)
+

uuu(xxx)∇ · δuuu(xxx)

(1 +∇ · uuu(xxx))2
)4t

and δ∆uuu(xxx) = ∆δuuu(xxx) = δFFF (xxx).

(4.2.4)
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Then, it can be derived from (4.2.2),

δSSD(φφφ(xxx)) =

∫
Ω

[Immm(φφφ(xxx))− Ifff (xxx)]∇Immm(φφφ(xxx)) · δφφφ(xxx)dxxx

( denote GGG(xxx) = [Immm(φφφ(xxx))− Ifff (xxx)]∇Immm(φφφ(xxx)) and by (2.2.3), we get )

=

∫
Ω

GGG(xxx) · ( δuuu(xxx)

1 +∇ · uuu(xxx)
+

uuu(xxx)∇ · δuuu(xxx)

(1 +∇ · uuu(xxx))2
)4tdxxx

=4t
∫

Ω

GGG(xxx)

1 +∇ · uuu(xxx)
· δuuu(xxx) +

GGG(xxx) · uuu(xxx)

(1 +∇ · uuu(xxx))2
∇ · δuuu(xxx)dxxx

consider a vector-valued function AAA(xxx) and a scalar function B(xxx) satisfying

∆AAA(xxx) =
GGG(xxx)

1 +∇ · uuu(xxx)
and ∆B(xxx) =

GGG(xxx) · uuu(xxx)

(1 +∇ · uuu(xxx))2
(4.2.5)

Further,

δSSD(φφφ(xxx)) = 4t
∫

Ω

∆AAA(xxx) · δuuu(xxx) + ∆B(xxx)∇ · δuuu(xxx)dxxx

( by Green′s formulas with uuu(xxx) = 000 on ∂Ω )

= 4t
∫

Ω

AAA(xxx) ·∆δuuu(xxx) +B(xxx)∇ ·∆δuuu(xxx)dxxx

( by Green′s formulas with uuu(xxx) = 000 on ∂Ω )

= 4t
∫

Ω

AAA(xxx) · δ∆uuu(xxx) +∇B(xxx) · δ∆uuu(xxx)dxxx

= 4t
∫

Ω

[AAA(xxx) +∇B(xxx)] · δFFF (xxx)dxxx

Therefore, the first variational gradient with respect to the control function is

∂SSD(φφφ(xxx))

∂FFF (xxx)
= [AAA(xxx) +∇B(xxx)]4t (4.2.6)

The above setting from (4.2.3) to (4.2.6) in defining φφφ(xxx) was done with respect to

the case 1 of our deformation method in [32]. A gradient descent based numerical

scheme can be applied for implementation. Howeverm, without using the trick of a

multi-resolution scheme, this method is not capable of 3D registration due to slow

convergent rate.
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4.2.1 New Developments of Our Image Registration

Start with a similar problem formulation as above. Let Immm be registered to Ifff

on the fixed and bounded domain Ω ⊂ R3. Define the cost functional:

SSD(φφφk(xxx)) =
1

2

∫
Ω

[Immm(φφφk(xxx))− Ifff (xxx)]2dxxx (4.2.7)

To look for a diffeomorphism φφφk : Ifff → Immm that minimizes SSD(φφφk(xxx)):

φφφk(xxx) = φφφk−1(xxx+ uuuk(xxx)) (4.2.8)

subjects to the constraints fk(xxx) > 0 and gggk(xxx) with


∇ · uuuk(xxx) = fk(xxx)− 1

∇× uuuk(xxx) = gggk(xxx)

in Ω

uuuk(xxx) = 000 on ∂Ω

⇒


∆uk1 = fk(xxx)x1 − gk3x2(xxx) + gk2x3(xxx) = F k

1 (xxx)

∆uk2 = fk(xxx)x2 + gk3x1(xxx)− gk1x3(xxx) = F k
2 (xxx)

∆uk3 = fk(xxx)x3 − gk2x1(xxx) + gk1x2(xxx) = F k
3 (xxx)

⇒


∆uuuk(xxx) = ∇fk(xxx)−∇× gggk(xxx) = FFF k(xxx) in Ω

uuuk(xxx) = 000 on ∂Ω

(4.2.9)

The derivation in case 3D (similar for 2D) goes as follows.

Claim: Consider ∆akj (xxx) =
∑3

i=1 b
k
i (xxx)φk−1

iyj
(xxx)δuk1(xxx) for j = 1, 2, 3, where

bbbk(xxx) = [Immm(φφφk(xxx))− Ifff (xxx)]∇Immm(φφφk(xxx)),

δφφφk(xxx) = δ(φφφk−1(xxx+ uuuk(xxx))) = [∇φφφk−1(xxx+ uuuk(xxx))] · δuuuk(xxx)

and ∆δuuuk(xxx) = δ∆uuuk(xxx) = δFFF k(xxx).

(4.2.10)
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Proof : It can be derived from (4.2.7)

δSSD(φφφk(xxx)) =

∫
Ω

[Immm(φφφk(xxx))− Ifff (xxx)]∇Immm(φφφk(xxx)) · δφφφk(xxx)dxxx

( Denote bbbk(xxx) = [Immm(φφφk(xxx))− Ifff (xxx)]∇Immm(φφφk(xxx)) and by (4.2.10), we get)

=

∫
Ω

bbbk(xxx)>([∇φφφk−1(xxx+ uuuk(xxx))] · δuuuk(xxx))dxxx

=

∫
Ω


bk1(xxx)

bk2(xxx)

bk3(xxx)


> 

φk−1
1y1

(xxx) φk−1
1y2

(xxx) φk−1
1y3

(xxx)

φk−1
2y1

(xxx) φk−1
2y2

(xxx) φk−1
2y3

(xxx)

φk−1
3y1

(xxx) φk−1
3y2

(xxx) φk−1
3y3

(xxx)



δuk1(xxx)

δuk2(xxx)

δuk3(xxx)

 dxxx, where (yyy = xxx+ uuuk(xxx))

=

∫
Ω

3∑
i=1

bki (xxx)φk−1
iy1

(xxx)δuk1(xxx) +
3∑
i=1

bki (xxx)φk−1
iy2

(xxx)δuk1(xxx) +
3∑
i=1

bki (xxx)φk−1
iy3

(xxx)δuk1(xxx)dxxx,

( consider ∆akj (xxx) =
3∑
i=1

bi(xxx)φk−1
iyj

(xxx)δuk1(xxx) for j = 1, 2, 3, we get )

=

∫
Ω

∆ak1(xxx)δuk1(xxx) + ∆ak2(xxx)δuk2(xxx) + ∆ak3(xxx)δuk3(xxx)dxxx

=

∫
Ω

∆aaak(xxx) · δuuuk(xxx)dxxx

( by Green′s formulas with uuuk(xxx) = 000 on ∂Ω and by (4.2.10), we get )

=

∫
Ω

aaak(xxx) ·∆δuuuk(xxx)dxxx

=

∫
Ω

aaak(xxx) · δ∆uuuk(xxx)dxxx

=

∫
Ω

aaak(xxx) ·∆δFFF k(xxx)dxxx

Therefore,

∂SSD(φφφk(xxx))

∂FFF k(xxx)
= aaak(xxx) or

∂SSD(φkj (xxx))

∂F k
j (xxx)

= akj (xxx) for j = 1, 2, 3. (4.2.11)

4.3 A Numerical Algorithm based on Gradient Descent

As the variational gradient (4.2.11) is derived, a gradient-descent numerical

scheme can be implemented by the following algorithm.
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Algorithm 5 Optimal Control Approach to Image Registration

• 0: input Immm, Ifff ;

• 1: set FFF 0 = 000, aaa0 = 000, φφφ0(xxx) = ididid(xxx), itermax, tstep, tup > 1, tdown ∈ (0, 1), ttol;

• 2 while iter < itermax & tstep < ttol & ratio > ratiotol;

• 3: if better

• 4: solve for aaak by FFT, where ∆aaak(xxx) = bbbk(xxx)>>>[∇φφφk−1(xxx+ uuuk(xxx))];

• 5: update FFF k = FFF k−1 − tstep ∗ aaak;

• 6: solve ∆uuuk(xxx) = FFF k to form φφφk(xxx) ≈ xxx+ uuuk(xxx);

• 7: re-sample Immm(φφφk(xxx)) by interpolation and check SSDk;

• 8: if SSDk decrease,

• 9: better = true;

• 10: tstep = tstep ∗ tup;

• 11: FFF k−1 = FFF k;

• 12: φφφk−1 = φφφk;

else,

• 13: better = false;

• 14: tstep = tstep ∗ tdown;

go to 2;

• 15: output φφφk, uuuk, Immm(φφφk).

4.3.1 Inverse Consistency with 2D Numerical Demonstration

The inverse consistency is one of many standards of a good image registration

method. In [12], the inverse consistency for registration method is studied in theory

and tested numerically. Here, we numerical test directly if the two registration

transformations are symmetric between Immm and Ifff , i.e., if the compositions of these
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two result transformations, namely, φφφm2f ◦φφφf2m and φφφf2m ◦φφφm2f , are close to ididid. The

illustration can be viewed from the diagram.

Immm Ifff

φφφm2f

φφφf2m

Example 1: The Girl with a Pearl Earring

The next Figure register a distorted image Immm to the original image Ifff . It shows

the result of using the proposed algorithm is effective.

(a) Immm (b) Ifff

(c) φφφm2f = φφφk (d) uuuk (e) Immm(φφφm2f )

Figure 4.1: Register Immm to Ifff
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The ratio is reduced to 1.88% in 400 iterations and the elapsed time took about

15.24 seconds. Next Figure recorded the opposite direction of above. It is registered

from Ifff to Immm. The ratio is reduced to 1.22% in 400 iterations and the elapsed time

took about 15.39 seconds.

(a) Ifff (b) Immm

(c) φφφf2m (d) vvvk (e) Ifff (φφφf2m)

Figure 4.2: Register Ifff to Immm

The numerical test gives positive answers as Fig.7 shows.
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(a) φφφm2f (b) φφφf2m

(c) φφφm2f ◦φφφf2m ≈ ididid (d) φφφf2m ◦φφφm2f ≈ ididid

(e) φφφm2f ◦ φφφf2m-red super-
imposes ididid-black

(f) φφφf2m◦φφφm2f -red superim-
poses ididid-black

Figure 4.3: Compositions are close to ididid

69



We may visually see those compositions are almost identical to the ididid as desired.

And table below record 2 important measures of the resulting compositions. It

demonstrate how close these compositions are to ididid. This result suggest our registration

method satisfies the inverse consistency property [47].

Table 4.1: Inverse Consistency

max||ΦΦΦ− ididid|| max||ΦΦΦ− ididid||/N with domain N2 = 2562

ΦΦΦ = φφφm2f ◦ φφφf2m 1.97 7.70*10−3

ΦΦΦ = φφφf2m ◦ φφφm2f 2.09 8.16*10−3

4.3.2 Transitivity through Unbiased Template

Furthermore, we check if our optimal control image registration method satisfies

the transitivity property by following a similar work flow as we did for inverse

consistency property. Let’s consider a new image pool {I1, I2, I3} and an unbiased

template IR (Construction of an unbiased template of given image is introduced in

chapter 5) of {I1, I2, I3} are given.

Example 2: Transitivity of 3 distorted 2D images

(a) I1 (b) I2 (c) I3
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(d) IRRR

Figure 4.4: Image pool and its unbiased template

We wil numerically test that whether the compositions of two output transfor-

mations φφφ12 and φφφ21, namely φφφ23 ◦ φφφ12, is close to the and φφφ12, which φφφ12, φφφ23 and φφφ13

are acquired through using an unbiased template. The next 3 Figures demonstrated

the construction of φφφ12 = φφφRRR2 ◦ φφφ1RRR, φφφ23 = φφφRRR3 ◦ φφφ2RRR and φφφ13 = φφφRRR3 ◦ φφφ1RRR; and each

of back-and-forth transformations are found using our registration method, which is

illustrated in the diagram.

I111

IRRR
I222

I333

φφφ1RRR φφφRRR2

φφφ2RRRφφφRRR1

φφφ3RRR φφφRRR3

(a) I1 (b) I2
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(c) φ̂φφ12 not converged (d) I1(φ̂φφ12)

Figure 4.5: Direct Register not Converged: I1 to I2

(a) I1 (b) IRRR (c) I2

(d) φφφ12 = φφφRRR2 ◦φφφ1RRR (e) I1(φφφ12)

Figure 4.6: Register with Unbiased Template from I1 to I2

The ratio is reduced to 2.40% with using IRRR as the bridge image.
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(a) I2 (b) I3

(c) φ̂φφ23 not converged (d) I2(φ̂φφ23)

Figure 4.7: Direct Register not Converged: I1 to I2

(a) I2 (b) IR (c) I3
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(d) φφφ23 = φφφRRR3 ◦φφφ2RRR (e) I2(φφφ23)

Figure 4.8: Register with Unbiased Template from I2 to I3

The ratio is reduced to 1.29% with using IRRR as the bridge image.

(a) I1 (b) I3

(c) φ̂φφ13 converged (d) I1( ˆφφφ13)

Figure 4.9: Direct Register Converged: I1 to I3
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(a) I1 (b) IRRR (c) I3

(d) φφφ13 = φφφRRR3 ◦φφφ1RRR (e) I1(φφφ13)

Figure 4.10: Register with Unbiased Template from I2 to I3

The ratio is reduced to 1.32% with using IRRR as the bridge image.

In the case that a direct registration converged, a composed registration transfor-

mation coincides with the registration transformation found by direct transformation.

The next few figures of this section demonstrate the transitivity property of our

computational results.
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Figure 4.11: φ̂φφ13-red superimposed on φφφ13-balck

Table 4.2: Transitivity 1

max||ΦΦΦ− φφφ13|| max||φ̂φφ13 − φφφ13||/N , with domain N2 = 1282

ΦΦΦ = φφφRRR3 ◦ φφφ1RRR 0.47 1.83*10−3

(a) φφφ23 ◦φφφ12 (b) φφφ13 = φφφRRR3 ◦φφφ1RRR (c) φφφ13-red superimposed on
φφφ23 ◦φφφ12-black

Figure 4.12: φφφ23 ◦ φφφ12 ≈ φφφ13

Table 4.3: Transitivity 2

max||ΦΦΦ− φφφ13|| max||ΦΦΦ− φφφ13||/N , with domain N2 = 1282

ΦΦΦ = φφφ23 ◦ φφφ12 0.61 2.38*10−3
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This example confirms that our registration method is transitive. It also indicates

when a direct registration doesn’t converge, with the help of using an unbiased template,

a composed registration transformation can still be constructed.

Example 4: Registration of 3D Teapot Images by Optimal Control Method

The result shows that the revised version can reach a slightly better result in a

slightly shorter elapsed time than the original one on 2D cases by implementing the

proposed Algorithm. We should expect a much more significant improvement on a

3D example test. We now describe the volume image I0 and the twisted image It in

Step-1. In Step-2, we register It to I0, and out put the registration transformation

and the deformed image It. The results show that the twisted image It is deformed

back to the I0 with high accuracy.

Step-1: A teapot is rotated about its vertical axis passing through the tip of its

lid. Snapshots are taken from a fixed camera at 5◦ intervals. A total of 72 photos are

taken as the teapot completes 360◦ rotation and return to the initial position. Each

of these photos is re-sampled as a 72× 72 grayscale image I0i. These 72 images I0i for

i = 1, . . . , 72 are used to form a three dimensional volume image of size 72× 72× 72.

We refer to this volume image as the Rotating Teapot Image, denoted as I0.

(a) 0◦ (b) 45◦ (c) 90◦
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(d) 135◦ (e) 180◦ (f) 225◦

(g) 270◦ (h) 315◦ (i) 360◦

Figure 4.13: Teapot—I0

As the teapot rotates, we deform each slice I0i (of I0) to Iti by a rotation TTT i as show

in next Figure that is cut-off near the boundary for i = 1, . . . , 72.

(a) TTT 1 (b) TTT 9 (c) TTT 18
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(d) TTT 27 (e) TTT 36 (f) TTT 45

(g) TTT 54 (h) TTT 63 (i) TTT 72

Figure 4.14: TTT i’s

These 72 twisted 72× 72 images form a 72× 72× 72 volume image referred to as the

Twisted Teapot, denoted as It as shown in the next Figure.

(a) 0◦ (b) 45◦ (c) 90◦
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(d) 135◦ (e) 180◦ (f) 225◦

(g) 270◦ (h) 315◦ (i) 360◦

Figure 4.15: Twisted Teapot—It = TTT (I0)

The deformations TTT i for i = 1, . . . , 72 and the Twisted Teapot image It can be seen

from Twisted Teapot (CLICK HERE). The resulting registration deformation φφφ,

restricted to each ith slice, is expected to be very close to TTT i as shown in the next

Figure.
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(a) φφφ1 (b) φφφ9 (c) φφφ18

(d) φφφ27 (e) φφφ36 (f) φφφ45

(g) φφφ54 (h) φφφ63 (i) φφφ72

Figure 4.16: φφφi’s
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and the deformed images of the twisted teapot — It(φφφ) is expected to be close to I0

as it shows on next Figure. The total elapsed time for Step-2 is 927.601032 seconds.

(a) 0◦ (b) 45◦ (c) 90◦

(d) 135◦ (e) 180◦ (f) 225◦
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(g) 270◦ (h) 315◦ (i) 360◦

Figure 4.17: Reversed Twisted Teapot—It(φφφ)

The registration deformation φφφ from Step-2 and the corresponding reversed twisted

teapot image It = TTT (I0) are shown from: Reversed Twisted Teapot (CLICK HERE).

From these visualization files, we conclude that our optimal control method correctly

recovered the ground truth deformations TTT i for i = 1, . . . , 72 and the ground truth

images I0i for i = 1, . . . , 72, as expected.

(a) 0◦ (b) 45◦ (c) 90◦
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(d) 135◦ (e) 180◦ (f) 225◦

(g) 270◦ (h) 315◦ (i) 360◦

Figure 4.18: Reversed Twisted Teapot—It(φφφ)

4.4 Jacobian Determinant Monitored Algorithm for Image Registration

From the discovery of transitivity of our optimal control approach to image

registration, a modified version of Algorithm 5 is formulated, which produces better

transformations in terms of the distribution of Jacobian determinant. Let us take a

look on a very challenging registration problem, which attempts to register an image

of letter “J” to an image of letter “V”. It is implemented with Algorithm 5.
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(a) IJ (b) IV

(c) φ̂φφJ2V not converged (d) IJ(φ̂φφJ2V )

Figure 4.19: Direct Register: IJ to IV

In fact, the implementation overflowed as tstep < ttol where it stopped at a

local minimum. The worse part is that det∇(φ̂φφJ2V ) < 0 happened at locations, which

destroyed the diffeomophism as a zoomed in view is shown in a latter Figure.

Table 4.4: Direct IJ to IV

tstep ratio iter Elapsed T ime JDmax JDmin

8.9526 ∗ 10−17 0.13 270 1.0623 sec 2.5788 -0.1797

It is known that if ΦΦΦ = φφφ1(φφφ2) = φφφ1 ◦ φφφ2, then det∇(ΦΦΦ) = det∇(φφφ1)det∇(φφφ2).

By the transitivity of our computational results, we may monitor the positivity of

det∇(φφφ) in each iteration. Let ΦΦΦ = φφφk−1(φφφk) where det∇(φφφk) > JDminTol ∈ (0, 1) for
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all k > 0. Then, the value det∇(ΦΦΦ) = det∇(φφφk−1)det∇(φφφk) > 0 is assured. So, to

prevent min(det∇(ΦΦΦ)) become negative and destroy diffeomorphism, we formulated

Algorithm 6 — a det∇ Monitored version of Algorithm 5.
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Algorithm 6 det∇ Monitored Image Registration

• 0: input I0
mmm = Immm, Ifff .

• 1: set (Immm = Ikmmm when k > 0), FFF 0 = 000, aaa0 = 000, ΦΦΦk = φφφ0(xxx) = ididid(xxx), itermax,

tstep, tup > 1, tdown ∈ (0, 1), ttol; set JDmaxTol ≤ 2 and JDminTol ≥ 0.5.

• 2 while iter < itermax & tstep < ttol & ratio > ratiotol;

• 3: if better

• 4: solve for aaak by FFT, where ∆aaak(xxx) = bbbk(xxx)>>>[∇φφφk−1(xxx+ uuuk(xxx))];

• 5: update FFF k = FFF k−1 − tstep ∗ aaak;

• 6: solve ∆uuuk(xxx) = FFF k to form φφφk(xxx) ≈ xxx+ uuuk(xxx);

• 7: compute max(det∇(φφφk)) and min(det∇(φφφk));

• 8: if max(det∇(φφφk)) > JDmaxTol or min(det∇(φφφk)) < JDminTol;

• 9: compute ΦΦΦk = φφφk−1 ◦ φφφk by interpolation;

• 10: re-sample Ikmmm = I0
mmm(ΦΦΦk) and go to 1;

else

• 11: re-sample Immm(ΦΦΦk) by interpolation and check SSDk;

• 12: if SSDk decrease

• 13: better = true;

• 14:tstep = tstep ∗ tup;

• 15:FFF k−1 = FFF k;

• 16: φφφk−1 = φφφk;

else

• 17:better = false;

• 18:tstep = tstep ∗ tdown;

go to 2

• 19: compute ΦΦΦk = φφφk−1 ◦ φφφk by interpolation;

• 20: output ΦΦΦk, uuuk, Immm(ΦΦΦk), k.

87



(a) φφφJ2V converged (b) IJ(φφφJ2V )

Figure 4.20: det∇ Monitored Register: IJ to IV

(a) φ̂φφJ2V (b) φφφJ2V

Figure 4.21: Zoomed In Comparison

Table 4.5: det∇ Monitored IJ to IV

tstep ratio Elapsed T ime JDmax JDmin det∇ Monitored times
8.2689 ∗ 10−9 0.0099 9.6614 sec 7.4832 0.1288 k = 4

As it shows, with the det∇ being monitored, Algorithm 6 prevents bad local

convergence and restricts det∇ > 0 of the transformation it produces.
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4.5 Conclusions

In this chapter, the control approach to nonrigid image registration is revised,

numerically tested, demonstrated with both 2D and 3D registrations. In particular, we

effectively tested the inverse consistency and transitivity properties of this method. In

the future study, we will modify the mathematical setting to restrict diffeomorphisms.
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CHAPTER 5

Averaging Images by Averaging Diffeomorphisms

5.1 Introduction

In brain science, an brain atlas is an anatomical and standard norm in repre-

senting a certain group of brain images [48]. Scientists has been working on different

approaches to construct atlases. One of the ideas of building brain atlases is to average

a group of given brain images. Our group proposed an innovative concept of averaging

a set of diffeomorphisms based on averaging the Jacobian determinants and curl

vectors of the diffeomorphisms. Before the process of averaging images, we need to

discuss the process of averaging diffeomorphisms. In [14], the 2D case was realized.

With the developments done in chapter 3, now, we may average diffeomorphisms in 3D

case as well. This is the key component to average images in our method. Furthermore,

for differences in a group of images, we suggest to use Jacobian determinants and curl

vectors as features in Tensor Based Morphometry studies.

5.2 Averaging Diffoemorphisms by Variational Method

The average of diffeomorphisms, which coincides with concept of the uniqueness

conjecture based on Jacobian determinant and curl vector. As long as we may

determine what are the averaged Jacobian determinant and curl vector, we may use

the variatotional method to reconstruct such diffeomorphism. Then, we may define it

to be the averaged diffeomorphism. Let {TTT i}i≤n be the given n many diffeomorphisms.
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So {det∇(TTT i)}i≤n are the Jacobian determinants and {∇ × (TTT i)}i≤n are the curl

vectors for each TTT i. Then, compute
f0 =

n∑
i=1

ωidet∇(TTT i)

ggg0 =
n∑
i=1

ωi∇× (TTT i)

where 0 < ωi < 1 are weight-coefficients. (5.2.1)

and define the solution φφφ reconstructed by our Variational Method to be the average

diffeomorphisms. If the transformations are equally weighted, then we define ωi = 1
n
.

5.2.1 A Numerical Demonstration

We acquired ΦΦΦ1 and ΦΦΦ2 by using a cut-off rotation transformation manually on

ΦΦΦ with π
4

and −π
4
, respectively, so that det∇(ΦΦΦ) = det∇(ΦΦΦ1)+det∇(ΦΦΦ2)

2
and ∇ × (ΦΦΦ) =

∇×(ΦΦΦ1)+∇×(ΦΦΦ2)
2

are satisfied. But, to show the effectiveness of the average process, we

treat it there is no ΦΦΦ as the ground truth and suppose there are only these two given

diffeomorphisms, ΦΦΦ1 and ΦΦΦ2. Again, both of the grid sizes of the Figures and in the

computations are of 101x101. The second red grid Euclid(ΦΦΦ1,ΦΦΦ2), is the Euclidean

average of the location coordinates, namely, x = 1
2

∑
xi and y = 1

2

∑
yi, do not overlap

on the black grid well.
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Example 1: Average ΦΦΦ1 & ΦΦΦ2 from Example 3 of Chapter 3

(a) ΦΦΦ1 (b) ΦΦΦ2

(c) avg(ΦΦΦ1,ΦΦΦ2)-red vs ΦΦΦ-black (d) Euclid(ΦΦΦ1,ΦΦΦ2)-red vs ΦΦΦ-black

Figure 5.1: Average ΦΦΦ1 & ΦΦΦ2 with known ΦΦΦ

The averaging process of ΦΦΦ1 and ΦΦΦ2 took about 26 seconds, with 2000 iteration, and

reached ratio = 0.0006.
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Example 2

For the clarity of visualization in case of 3D, in this example, we averaged

diffeomorphisms TTT 1 and TTT 2 whose known averaged transformation is the identity map

ididid, with ωi = 1
2
. In fact, we have

1

2

∑
det∇(TTT i) = 1 and 0 ≤ ||1

2

∑
∇× (TTT i)||22 ≤ 6.1106 ∗ 10−4

(a) TTT 1 (b) TTT 1 bird view
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(c) TTT 2 (d) TTT 2 bird view

(e) avg(TTT 1,TTT 2)-red (f) avg(TTT 1,TTT 2)-red bird view
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(g) avg(TTT 1,TTT 2)-red superimposes ididid-black (h) avg(TTT 1,TTT 2)-red superimposes ididid-black bird
view

Figure 5.2: Average TTT 1 & TTT 2 with known avg(TTT 1,TTT 2) = ididid

As it can be seem, the averaged transformation avg(TTT 1,TTT 2) almost overlaps known

ididid. The averaging process of TTT 1 and TTT 2 took about 6.9 seconds, with 144 iteration,

and reached ratio = 0.4216. The ratio may seem a bit too high, but if we break it

down to SSDinit = 0.2505 and SSDnew = 0.1056, it can be said the initial SSDinitial

is already very small. It means the starting mesh is very close to the ididid already which

would not have much room to improve in terms of SSD. Anyway, this example still

shows the whole process of our averaging diffeomorphisms method is effective.

5.3 Proposed Approach to Averaging Images

we propose the following algorithm which is formed by combining our methods

for image registration and for averaging diffeomorphisms through the Variational

method. For simplicity, let’s take n, the sample number of images, to be some small

integer, say within 10, i.e., n ≤ 10. For the strategy of large sample number, we leave

it to the future study.
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Algorithm 7 Averaging Images by Average-Diffoemorphism

• 1: given n ≥ 2 many images {Ii};

• 2: choose Immm = Ik for a fixed 1 ≤ k ≤ n;

• 3: apply Algorithm 5 from Immm = Ik to Ifff = Ii 6=k and acquire {TTT i} where

i = 1, . . . , k − 1, k + 1, . . . , n and when i = k, TTT k = ididid;

• 4: determine ωi, then compute

f0(xxx) =
n∑
i=1

ωidet∇(TTT i(xxx)) and ggg0(xxx) =
n∑
i=1

ωi∇× (TTT i(xxx));

• 5: construct TTTavgavgavg by Algorithm 4 with f0 and ggg0;

• 6: re-sample Immm by TTTavgavgavg to get Iavgavgavg = Immm(TTTavgavgavg(xxx));

Here, we need to make an observation without proving: in order to connect

from step 3 to 4 in theoretical structure, it is needed to identify the solution space

of the simplified version of image registration is a subset of the admissible set of

the Variational method, namely, the solution ΦΦΦ from simplified version of image

registration satisfies the conditions of Variational method.

Example 3: 2D example

To understand and test the proposed Algorithm 6, let’s recall the Example 4

of Chapter 3, two images I111 and I222 are created with a known ground truth I000. The

purpose for the setup is to eventually find a image Iavgavgavg which is expected be close

to I000. See following diagram and next Figure for illustration. This reflects step 1 of

Algorithm 6.
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(b) I000(a) TTT111 (c) TTT222

(d) I111 (e) I222

(a) TTT111 (b) I000 (c) TTT222

(d) I111 (e) I222

Figure 5.3: Re-sampled I000 on TTT111 and TTT222

For step 2, we choose Immm = I111; on step 3, we need to do the registrations from

I111 to I111 and I222, respectively, to get two diffeomorphisms φφφ111111 and φφφ121212; on step 4, we

compute f0(xxx) = det∇φφφ111111+det∇φφφ121212
2

and ggg0 = ∇×φφφ111111+∇×φφφ121212
2

; on step 5, we reconstruct a

transformation φφφavgavgavg by forwarding f0 and ggg0 to the variational method and this φφφavgavgavg
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is defined to be the averaged transformation; lastly, on step 6, we re-sample Immm by

φφφavgavgavg and defined the averaged image Iavgavgavg := Immm(φφφavgavgavg(xxx)).

(b) I1(a) I1 (c) I2

(d) φφφ11 = ididid (e) φφφ12

(f) AAA121212 = avg(φφφ11,φφφ12)

(a) I111 (b) I111 (c) I222

(d) φφφ111111 = ididid (e) AAA121212 = avg(φφφ111111,φφφ121212) (f) φφφ121212

Figure 5.4: Register I111 to I111 and I111 to I222 acquired φφφ111111 = ididid and φφφ121212
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(a) I000 (b) Iavgavgavg(1)

Figure 5.5: Resample I111 by A121212 to get Iavgavgavg(1)

As the table shows, the computation performance of averaging I111 and I222 with

choose Immm = I111 turned out very good.

SSDold SSDnew Ratio Elapsed time
6.5771x107 3.3914x106 0.0516 ≈ 45 secs

The following diagram and Figures demonstrate a symmetric application of

Algorithm 6 with taking Immm = I222.

(b) I2(a) I1 (c) I2

(d) φφφ21 (f) φφφ22 = ididid

(e) AAA212121 = avg(φφφ21,φφφ22)
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(a) I111 (b) I222 (c) I222

(d) φφφ212121 (e) AAA212121 = avg(φφφ212121,φφφ222222) (f) φφφ222222 = ididid

Figure 5.6: Register I111 to I111 and I111 to I222, we get φφφ111111 = ididid and φφφ121212

(a) I000 (b) Iavgavgavg(2)

Figure 5.7: Resample I222 by AAA212121 to get Iavgavgavg(2)
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As the table shows, computation performance of averaging I111 and I222 with

choosing Immm = I222 also turned out successful.

SSDold SSDnew Ratio Elapsed time
6.5920x107 3.4485x106 0.0523 ≈ 43 secs

The computational results with choosing Immm = I111 or Immm = I222 are very similar.

Both of the averaged images look very close to the ground truth image. With this

observation, we claim that our image averaging process produces unbiased result.

5.4 Construction of Unbiased Template

We further tested Algorithm 7 in construction of unbiased templates. Until

this stage, we may connect the prior works on characterizing diffeomorphisms to the

studies of Brain Morphometry. The results of this section confirm that our early

mentioned point of view about the curl vector ∇× should have been included in all

process of the studies of Brain Morphometry together with the Jacobian determinant

det∇. Let’s proceed to the following examples to see this point.

Example 4: Unbiased Template in 2D

To test the effectiveness of the proposed Algorithm 6, firstly, we obtain six

brain images by re-sampling a ground truth brain image on six intentionally designed

transformations DDDi, where i = 1, . . . , 6.
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Figure 5.8: I0 Ground Truth (GT)

we constructed six transformations DDDi where i = 1, . . . , 6, which are shown below:

(a) DDD1 (b) DDD2 (c) DDD3

(d) DDD4 (e) DDD5 (f) DDD6

Figure 5.9: Transformations DDD1−6
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These transformations are constructed in such a way that their Jacobian determinants

have average equal to 1, and their curls have average 0. In fact, we have

0.999986099590103 ≤ 1

6

6∑
i=1

det∇(DDDi) ≤ 1.000016719949570;

−6.4029 ∗ (10−6) ≤ 1

6

6∑
i=1

∇× (DDDi) ≤ 6.4029 ∗ (10−6).

Six modeled brain images Ii, where i = 1, . . . , 6 are generated by re-sampling GT

on each of the six transformations DDDi, where i = 1, . . . , 6. These images are shown

following Figure.

(a) I1 (b) I2 (c) I3

(d) I4 (e) I5 (f) I6

Figure 5.10: Image I1−6
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Now when we take f0 = 1
6

∑6
i det∇(DDDi) ≈ 1 and g0 = 1

6

∑6
i ∇× (DDDi) ≈ 0, by

the Variational Principle, the average of these images is expected to be a good

approximation to GT. We will verify this in Example 3. The Sum of Squared

Differences (SSD) between Ii and GT — SSD(Ii, I0) (they can be seen as the initial

difference from Ii to I0) are shown in the following table:

i 1 2 3 4 5 6
SSD(Ii, I0) = (106)∗ 1.8923 1.8906 1.8986 1.9610 1.8309 1.8353

Example 3: General Approach

In this example, we will walk through our method for the construction of unbiased

template in a general sense. Step 1: take one image Ii out of the six images as the

initial template, then register Ii to all six images Ij for j = 1, 2, . . . , 6 (arrowed dash-

lines) to find six registration transformations — φφφij for j = 1, 2, . . . , 6; Step 2: find

the average transformation avgavgavgi = avg(φφφij=1,...,6) of the six registration deformations

by the Variational method (arrowed solid-line), as are demonstrated in the following

diagram.
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I1 I2 I3 I4 I5 I6

φφφi1 φφφi2 φφφi3 φφφi4 φφφi5 φφφi6 avgavgavgi

Ii (initial

template)

Step 3, re-sample Ii on the average transformation avgavgavgi, indicated as the next diagram

and shown in Figure 7, to get the biased temporary templates T̂ emplatei = Ii(avgavgavgi)

for each i = 1, 2, . . . , 6 which are shown in Figure 8.

Ii (initial

template)
avgavgavgi T̂ emplatei

(a) avgavgavg1 (b) avgavgavg2 (c) avgavgavg3
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(d) avgavgavg4 (e) avgavgavg5 (f) avgavgavg6

Figure 5.11: Average transformation — avgavgavgi = avg(φφφij=1,...,6)

(a) T̂ emplate1 (b) T̂ emplate2 (c) T̂ emplate3

(d) T̂ emplate4 (e) T̂ emplate5 (f) T̂ emplate6

Figure 5.12: Biased Temporary Templates — T̂ emplatei = Ii(avgavgavgi)
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The SSD between Îi with the GT — SSD(T̂ emplatei, I0) and Errori = SSD(T̂ emplatei,I0)
SSD(Ii,I0)

are shown in the following table. Errori measures the error reduction in temporary

template T̂ emplatei compared to the image Ii.

i 1 2 3 4 5 6

SSD(T̂ emplatei, I0) = (106)∗ 2.0504 3.4073 0.4963 0.4905 0.4835 0.5116
Errori 0.1084 0.1802 0.0261 0.0250 0.0264 0.0279

As it can be seen, T̂ emplate2 has the highest error = 0.1802. At this stage,

T̂ emplate4 is the best with an error 0.0250 (this means 97.5% of the initial SSD

between image I4 and GT is reduced by our optimal control registration method).

The large difference between Error2 = 0.1802 and Error4 = 0.0250 indicates the

existence of bias towards the image that is used as an initial template. In order to

quantify the bias, we calculate the sample mean and standard deviation of the six

SSD(T̂ emplatei, I0)’s: Sample Mean = 1.2400 ∗ (106), Sample Standard Deviation

= 1.2306 ∗ (106). So, SSD(T̂ emplate6, I0) is the closest to the Sample Mean. But

the large standard deviation of this sample disqualifies any one of these templates as

unbiased.

This leads to Step-4: repeat Step-1 to Step-3 on biased temporary templates

— T̂ emplatei to reduce their bias. So we get a new group of average transformation

AvgAvgAvgi as shown in Figure 9 and the re-sampled images are the Unbiased Templates —

Templatei = T̂ emplatei(AvgAvgAvgi) as shown in Figure 10.
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(a) AvgAvgAvg1 (b) AvgAvgAvg2 (c) AvgAvgAvg3

(d) AvgAvgAvg4 (e) AvgAvgAvg5 (f) AvgAvgAvg6

Figure 5.13: Average transformation — AvgAvgAvgi

(a) Template1 (b) Template2 (c) Template3
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(d) Template4 (e) Template5 (f) Template6

Figure 5.14: Unbiased Templates — Templatei = T̂ emplatei(AvgAvgAvgi)

The SSD between Templatei with the GT — SSD(Templatei, I0) and Errori =

SSD(Templatei,I0)
SSD(Ii,I0)

are shown in the following table which measures the error reduction

in temporary template Templatei compared to the image Ii.

i 1 2 3 4 5 6
SSD(Templatei, I0) = (105)∗ 6.7786 6.6041 5.5583 5.6649 5.7469 5.8088

Errori 0.0358 0.0349 0.0292 0.0289 0.0314 0.0317

The statistics are significantly improved: New Sample Mean = 6.0269 ∗ (105); New

Sample Standard Deviation = 5.2436 ∗ (104). Template6 is closest to the New Sample

Mean. The New Sample Standard Deviation = 5.2436 ∗ (104) is now only 4.3566% of

the previous Sample Standard Deviation = 1.2306∗(106). This means, the effectiveness

of repeating Step-1 to Step-3 on the biased temporary templates has greatly reduced

the bias of biased tmporary template {T̂ emplatei}. Hence, we can take any of the new

templates Templatei as an unbiased template. To check that, we may register each of

Templatei to I0 to get six register transformations and all of them are expected to be

close to the identity map IdIdId as the results are shown in Figure 11.

109



(a) Î d̂Id̂Id1 (b) Î d̂Id̂Id2 (c) Î d̂Id̂Id3

(d) Î d̂Id̂Id4 (e) Î d̂Id̂Id5 (f) Î d̂Id̂Id6

Figure 5.15: Average transformation — Î d̂Id̂Idi

The behaviors of their Jacobian determinant and curl are shown in the following table.

The more Jacobian determinant is close to 1 and the curl is more close to 0, the

more Î d̂Id̂Idi is close to the identity map ididid, which means the Algorithm 6 is generating

templates more unbiased.

i 1 2 3 4 5 6

max det∇(Î d̂Id̂Idi) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

min det∇(Î d̂Id̂Idi) 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

max ∇× (Î d̂Id̂Idi) = 10−14∗ 0.3553 0.3553 0.1776 0.1776 0.3553 0.3553

min ∇× (Î d̂Id̂Idi) = 10−14∗ -0.3553 -0.3553 -0.1776 -0.1776 -0.3553 -0.3553
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Example 4: A 3D Brain MRI Image

In this example, a 3D MRI brain image is tested to demonstrate the potential

capability in handling real brain image data, which usually are in 3D. It is followed

with a similar work flow as in 2D, i.e., (d) and (g) are deformed symmetrically from

(a) by (b-c) and (e-f), shown in the next Figure. Then, (d) and (e) are the averaged

image based on (b) and (c), respectively, which solved by Algorithm 7.

(a) I0
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(b) ΦΦΦ1 (c) ΦΦΦ1 bird view

(d) I1
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(e) ΦΦΦ2 (f) ΦΦΦ2 bird view

(g) I1

Figure 5.16: I1, I2 deformed symmetrically from I0 by ΦΦΦ1 and ΦΦΦ2

Continued with Algorithm 6, we may find two averaged transformations AvgAvgAvg1to2

and AvgAvgAvg2to1. The followed Figures display the re-sampled images I1(AvgAvgAvg1to2) and
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I2(AvgAvgAvg2to1). They look almost identical to ground truth I0. This observation is

confirmed in table below the Figures.

(a) AvgAvgAvg1to2 (b) AvgAvgAvg1to2 bird view

(c) Iavg(1) = I1(AvgAvgAvg1to2)
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(d) AvgAvgAvg2to1 (e) AvgAvgAvg2to1 bird view

(f) Iavg(2) = I2(AvgAvgAvg2to1)

Figure 5.17: Iavg(1) and Iavg(2)

As the table shows, the averaged images are close to the ground truth image as

well as close to each other.
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SSDinit SSDnew Ratio Elapsed time
Immm = I1 1.3639x109 1.0171x108 0.0746 ≈ 9667 secs
Immm = I2 1.4224x109 1.1349x108 0.0798 ≈ 9495 secs

SSDinit(I1, I2) SSDnew(I1, I2) Ratio
1.9963x109 1.3882x108 ≈ 0.0695

5.5 Summary

In the tested examples, we ran small data sets to confirm the effectiveness of

our method with known ground truth. As we noticed, there is no known ground

truth to compare with in most real world problems. However, the results confirms

our suggestion in including the curl vector ∇× together with Jacobian determinant

det∇ in characterization of diffeomorphisms for the studies of Brain Morphometry.

With our works, a new way to utilize curl vector’s information is made possible and

effective. This could make the Tensor-Based Morphometry available for future Brain

Mophometry studies.
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CHAPTER 6

Conclusions and Future works

In chapter two, the deformation method for mesh generation is reviewed and

revised to develop higher order elements mesh, in both 2D and 3D scenarios, through

a local interpolation technique. In future, a user determined package can be built

based on this higher order element deformation method with LSFEM.

In chapter three, to understand the idea of determination of diffeomorphisms

with given Jacobian determinant and curl vector, the variational method was reviewed.

its correspondent algorithm was revised so that the numerical computations can be

realized in case 3D; a uniqueness problem is analytically discussed in a special simple

case in 3D; and a direct strategy motivated by the uniqueness problem is theoretically

discussed and numerically tested compare to the iterative variational method in case

of both 2D and 3D.

In chapter four, the optimal control approach to image registration is revised so

a cheaper computational scheme is achieved, also it is made capable for 3D registration.

In future, we will combine convolutional neural network in deep learning with this

method to build a trained algorithm which has the potential to perform the registration

task in very short amount of time even if the data is large.

In chapter five, a novel method to average images is built, by applying a technique

in averaging diffeomorphisms by the variational method, so that an unbiased template

of given images can be built. Next goal for this image averaging method is to apply

to large data set of MRI images to build an Brain Atlas. We suggest our approach for
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atlas construction will give more standard exemplar and will check it by testing on

real world problems in future.

We mentioned earlier, the proposed image averaging method has its potential

to build image atlases. So, in the future, a new goal is to run examples on real data

and build image atlases by our method, collaborate with brain scientists and see

whether our atlases provide better researches. In the last 3D example, we see the

computational time is quite long. That is mainly due to the step of Image Registration,

which requires to solve 6 Poisson equations on each iteration. To extend our method

to large data sets, we will need to enhance our algorithms to be more computationally

efficient. A mixed method combines our approaches with deep learning methods is

under construction. Based on the outperformed results of deep learning methods in

many other problems, we are optimistic with this mixed approach.

In general, the studies carried out by our group have connected image analysis

to the studies in geometrical features of meshes (ideally, diffeomorphisms) under

differential operators — Jacobian determinant, curl vector and Laplacian. These

suggest a new perspective on analyzing images. Our works are of course not limited

to brain image. But it is a practical next step for us to focus on the study of brain

images.
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