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ABSTRACT

CONVEX AND NON-CONVEX OPTIMIZATION METHODS FOR MACHINE

LEARNING

Fariba Zohrizadeh, Ph.D.

The University of Texas at Arlington, 2019

This dissertation is concerned with modeling fundamental and challenging machine

learning tasks as convex/non-convex optimization problems and designing a mechanism

that could solve them in a cost and time-effective manner. Extensive theoretical and prac-

tical studies are carried out to give deeper insights into the robustness and effectiveness

of the formulated problems. In what follows, we investigate some well-known tasks that

frequently arise in machine learning applications.

Image Segmentation: Image segmentation is a fundamental and challenging task in

computer vision with diverse applications in various areas. One of the major challenges

in image segmentation is to determine the optimal number of coherent regions. This dis-

sertation develops a novel and highly parallelizable convex model which takes into ac-

count the spatial relationship between the image features and simultaneously determines

the number of clusters and their associated members. To solve the model, a computation-

ally efficient algorithm is presented based on the alternating direction method of multiplier.

Extensive experiments on benchmark image segmentation datasets demonstrate that the

proposed method can provide high quality and competitive results compared to the existing

state-of-the-art methods.
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Convex Relaxation for Solving Optimization Problems with Orthogonality Constraints:

A class of optimization problems with orthogonality constraints has been used to model

various applications in machine learning such as discriminative dimensionality reduction,

graph matching, dictionary learning, etc. Such optimization problems include nonconvex

nonlinear equations, that substantively increase the computational complexity of the prob-

lems. In this dissertation, we develop a sequential approach based on parabolic relaxation

which finds an orthogonal matrix that minimizes a non-convex and non-smooth objective

function subject to additional quadratic constraints. We prove that under very mild assump-

tions, the proposed approach is guaranteed to provide a feasible solution for the original

non-convex problem. The effectiveness of the proposed scheme is corroborated for the

problem of discriminative dimensionality reduction and graph clustering.

Convex Relaxation for Training Neural Networks: Training of a neural network is

formulated as a complex optimization problem which is non-convex and inherently hard

to solve. In this dissertation, we propose a novel convexification approach that reduces

the training problem into solving a sequence of polynomial-time solvable convex surro-

gates. The proposed approach, called convexified neural network (Convex-NN), jointly

estimates the network parameters of all layers and can admit a wide range of additional

convex constraints. We theoretically prove that Convex-NN is guaranteed to converge un-

der mild conditions and perform empirical experiments to corroborate the effectiveness of

the method.

Class Subset Selection for Partial Domain Adaptation: Deep neural networks have

demonstrated superior performance in a variety of machine learning problems. These im-

pressive achievements often rely on the availability of large amounts of labeled training

data. However, in many applications, the acquisition of sufficient labeled data is difficult

and time-consuming. This provides a strong motivation to reduce the labeling cost and

effort by learning effective predictive models using richly-annotated datasets and transfer-

v



ring the knowledge to unlabeled datasets from different but related domains. This disser-

tation proposes an adversarial-based method for the problem of partial domain adaptation

(PDA) in which the source label space is a subset of the target label space. Empirical re-

sults demonstrate the high potential of the proposed approach in addressing different partial

domain adaptation tasks.
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CHAPTER 1

Introduction

Mathematical models are ubiquitous in many areas of science and engineering in-

cluding machine learning, computer vision, and pattern recognition. These models pro-

vide quantitative frameworks for characterizing and understanding many complex machine

learning problems such as clustering, regression, dimensionality reduction, and segmenta-

tion. The mathematical models are often formulated as optimization problems with many

variables and constraints. In this regard, extensive research studies are carried out to de-

velop robust and computationally tractable algorithms for solving different classes of opti-

mization problems.

A mathematical optimization problem has the generic form

minimize
x∈Rn

f(x) (1.1a)

subject to x ∈ C, (1.1b)

where vector x ∈ Rn is the optimization variable, function f : Rn −→ R is the objective

function and C is the cone of feasible solutions. A vector x∗ is called an optimal solution

if it has the smallest objective value among all x ∈ C. The optimization problem (1.1a) –

(1.1b) is called a convex problem if (i) f(x) is convex and (ii) C is a convex set, and non-

convex otherwise. Figure 1.1 depicts a simple example of convex and nonconvex problem

with objective functions f(x1, x2) = x2
1+x2

2 and f(x1, x2) = (x2
1+x2−11)2+(x1+x2

2−7)2,

and convex cone C = {x ∈ R2|xi ∈ [−4, 4 ], ∀i}.

Convex optimization has attracted intense research attention due to its theoretical

guarantees and computational tractability [13]. Many fundamental problems in machine
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(a) (b)

Figure 1.1: Example of a convex and a nonconvex problem. (a) convex problem with
f(x1, x2) = x2

1 + x2
2 and x1, x2 ∈ [−4, 4 ] (b) non-convex problem with f(x1, x2) = (x2

1 +
x2 − 11)2 + (x1 + x2

2 − 7)2 and x1, x2 ∈ [−4, 4 ].

learning and computer vision such as clustering and classification [14, 15, 16, 17, 18, 19,

20, 21, 22], matrix completion [23], image segmentation [24, 25], object tracking [26,

27, 28], video summarization [29, 30], etc, can be expressed in the framework of convex

optimization. Since these problems often involve highly complex and high-dimensional

datasets, it is essential to be able to solve them efficiently. In this regard, there exists a

variety of successful algorithms such as gradient methods [31, 32, 33], proximal methods

[34, 13], Bregman iterative methods [35, 36], alternating direction method of multipliers

(ADMM) [37], interior-point methods [38, 39, 40], etc, which are mostly used to solve

convex problems.

Although in the past several years, a great research effort has been devoted to mod-

eling real-world problems as convex optimization problems and developing efficient nu-

merical algorithms to solve them, these models are unable to capture the underlying com-

plexity of the data for sophisticated applications in domains such as machine learning and

computer vision. In such cases, additional sophisticated constraints are required to en-

rich the models in terms of robustness and accuracy. These constraints can naturally in-

troduce non-convexities into the enriched models. Examples of applications that benefit

from non-convex optimization techniques include discriminative dimensionality reduction

2



[41, 4], outlier and anomaly detection [42, 43], graph clustering [41, 44] and graph match-

ing [45, 46, 47].

The absence of convexity introduces several difficulties into the optimization prob-

lem, including the distinction between the local and global minima, lack of global optimal-

ity criteria, etc, that leads to a substantial computational complexity while passing from

convex to nonconvex programming. The existing methods based on heuristics or local-

search algorithms such as proximal gradient descent, conditional gradient descent [48],

and ADMM produce a candidate solution without being able to measure its closeness to

a global minimum. To tackle this issue, one of the most promising directions is to adopt

convex relaxation techniques such as linear programming (LP), semidefinite programming

(SDP) [49, 50], and second-order cone programming (SOCP) [51, 52]. The main goal

of these techniques is to relax the non-convex problem to a convex surrogate (shown in

Figure 1.2) which is computationally tractable to solve and provides solutions with small

optimally gap. These approaches have been widely investigated and improved in terms of

computational complexity and solution quality, nevertheless, developing an efficient ap-

proach for solving a large-scale nonconvex problem is still an intriguing open problem.

This dissertation is concerned with modeling computer vision and machine learning

applications via convex and non-convex optimization problems and designing a mechanism

that could solve them in a cost and time effective manner. In Chapter 2, we present an

effective convex model for the problem of unsupervised image segmentation. Chapter 3

develops an efficient approach to solve nonconvex problems with orthogonality constraints.

These problems are briefly discussed in the following sections.

3



1.1 Image Segmentation using Sparse Subset Selection

Image segmentation is a fundamental and challenging task in computer vision. One

of the major challenges in image segmentation is to determine the optimal number of co-

herent regions. This parameter can be calculated based on the distribution of image fea-

tures, given as a prior knowledge or set to a constant value, depending on the segmentation

methodology. The performance of segmentation methods heavily depends on the right

choice of this parameter. In the case that the number of coherent regions is overestimated,

each coherent region may be divided into many separate segments. To merge these seg-

ments, many time-consuming and complicated steps are required which in turn increase

the computational complexity and decrease the performance of the algorithm. On the other

hand, when the number of coherent regions is underestimated, some coherent regions are

forced to be merged together which in turn leads to a poor segmentation quality.

Generally, determination of the number of coherent regions in image segmentation is

similar to the problem of finding the optimal number of clusters in unsupervised clustering

[53, 54, 55]. These problems are similar in a sense that they both seek to find the optimal

number of groups. However, they may be different depending on the nature and intrinsic

properties of their input data. For instance, in image segmentation, the spatial relation-

ship among the image features can be perceived as an important property of data. These

properties need to be taken into account in determining the optimal number of coherent

regions.

In this dissertation, we transform the problem of image segmentation to an unsu-

pervised clustering problem in which the coherent regions and pixels are respectively cor-

responding to the clusters and cluster members. This problem is modeled by a highly

parallelizable convex model which takes into account the spatial relationship between the

image features and simultaneously determines the number of clusters and their associated

members. To solve the model, a computationally efficient and parallelizable numerical al-

4



(a) (b) (c)

Figure 1.2: Convex relaxation of a non-convex set. (a) Non-convex set; (b) The tightest
convex relaxation (convex hull); (c) A standard convex relaxation.

gorithm is presented based on ADMM. Due to the generalization power of the model, it

can be simply employed in several other contexts such as clustering, data summarization,

etc.

1.2 Convex Relaxations for Optimization Under Orthogonality Constraints

A class of optimization problems with orthogonality constraints has been used to

model various applications in machine learning and computer vision such as discriminative

dimensionality reduction [4], graph matching [56], feature selection [57, 58], dictionary

learning [59, 60], etc. Such optimization problems include nonconvex nonlinear equations,

that substantively increase the computational complexity of the problems.

There has been an explosion of research in developing efficient algorithms to find an

orthogonal matrix that minimizes a non-convex and smooth objective function. The papers

[61, 62, 63, 64, 65] proposed local search algorithms which preserve the manifold structure

of orthogonality constraint during iterations via geodesics or retractions. Although these

algorithms show satisfactory performance in dealing with orthogonality constraints, they

mostly restrict the objective function to the class of smooth functions. Such limitations

5



can considerably reduce the extent of their applicability in many domains including ma-

chine learning. To tackle this limitation, a series of splitting techniques are proposed in

[66, 67, 68, 69] to deal with non-smooth objective functions. In these papers, the problem

is divided into multiple sub-problems with analytical solutions that are solvable using Breg-

man iterations [36] or its variant [37]. The aforementioned methods mostly lack guaranteed

convergence and theoretical analysis or admit no additional constraints.

In this dissertation, we develop an efficient approach to find an orthogonal matrix that

minimizes a non-convex and non-smooth objective function subject to additional quadratic

constraints. The proposed approach is based on convex relaxation, which transforms the

problem into polynomial-time solvable convex surrogates. As an alternative to the com-

mon practice semidefinite programming (SDP) relaxation, we propose a novel parabolic

relaxation, which only relies on convex quadratic constraints. In order to obtain feasible and

near-globally optimal solutions, a penalization technique is developed, which is compatible

with both SDP and parabolic relaxations. We prove that given an initial point, the penalized

relaxation is guaranteed to provide a feasible solution for the original non-convex problem

if the point lies within an analytical bound from its feasible set. Given that, we propose a

constraint-preserving sequential scheme which solves a sequence penalized relaxations to

obtain near-globally optimal solutions. Experimental results on synthetic and real datasets

demonstrate the effectiveness of the proposed scheme for the problem of discriminative

dimensionality reduction and graph clustering.

1.3 Convex Relaxation for Training Neural Networks

Deep neural networks have been demonstrated special ability in extracting sophis-

ticated information from the raw data. This renders them suitable tools for a wide vari-

ety of applications in artificial intelligence and machine learning including classification

6



[70, 71, 72, 73], depth estimation [74, 75], speech recognition [76, 77], etc. Despite the

impressive empirical success, a complete theoretical understanding about such extraordi-

nary performance is still lacking. Great efforts have been devoted to providing theoretical

insights into training neural networks with special architectures [78, 79, 80, 81, 82, 83].

However, there still exist several unexplored avenues along this new line of research.

Training of a neural network is formulated as a complex optimization problem which

is non-convex and inherently hard to solve. In this dissertation, we aim to establish a

bridge between the areas of artificial neural networks and convex optimization by develop-

ing a powerful and flexible training approach. To serve this purpose, we first transform the

training problem into an equivalent constrained optimization problem. Then, we convex-

ify this constrained optimization by means of a novel convex quadratic relaxation and the

well-known difference of convex programming technique. To ensure that the convexified

problem provides a feasible point to the training problem, a novel regularization term is

incorporated into the objective of the relaxed problems.

On the theoretical front, we derive certain conditions under which the regularized

relaxation is guaranteed to provide feasible points for the training problem. Moreover, we

theoretically prove that, if certain assumptions are met, solving a sequence of the regular-

ized problem results in a convergent sequence of feasible points whose objective values

monotonically improve. The proposed approach offers various theoretical and practical ad-

vantages: it jointly estimates the network parameters, admits additional convex constraints,

and provides a flexible framework for further study and exploration. The potential of the

proposed approach is corroborated on the problem of imbalanced classification.
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1.4 Class Subset Selection for Partial Domain Adaptation

Deep neural networks have demonstrated superior performance in a variety of ma-

chine learning problems such as semantic image segmentation [84, 85, 86], object detection

and classification [87, 70, 88], etc. These impressive achievements often rely on the avail-

ability of large amounts of labeled training data. However, in many applications, the ac-

quisition of sufficient labeled data is difficult and time consuming. This provides a strong

motivation to reduce the labeling cost and effort by learning effective predictive models

using richly-annotated datasets and transferring the knowledge to unlabeled datasets from

different but related domains. This paradigm generally suffers from the domain shift be-

tween the distributions of the source and the target datasets. Unsupervised Domain Adap-

tation (UDA) is a common mechanism which aims to reduce the gap between the source

and target domains by learning discriminative predictors that generalize well on the target

domain with no labeled data [89, 90, 91]. Despite the advantages offered by the UDA

problem, its applicability is mainly limited to special cases in which the source and the

target domains possess the same set of classes. With the goal of considering a more real-

istic practical cases, [92] introduced partial domain adaptation (PDA) which assumes the

source label space is a subset of the target label space. Hence, the primary challenge in

PDA is to identify and reject the outlier classes, i.e. those classes in source domain that

do not appear in the target domain, because they have adverse effect on discriminating

the target classes [93]. Addressing this challenge enables PDA to transfer models learned

from large-scale datasets (e.g. ImageNet) to unlabeled small-scale datasets from different

but related domains. In this dissertation, we propose an adversarial-based method for the

problem of partial domain adaptation. The proposed approach is inspired by the concept of

subset selection.
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CHAPTER 2

Image Segmentation using Sparse Subset Selection

In this chapter, we present a new image segmentation method based on the con-

cept of sparse subset selection. Starting with an over-segmentation, we adopt local spec-

tral histogram features to encode the visual information of the small segments into high-

dimensional vectors, called superpixel features. Then, superpixel features are fed into a

novel convex model which efficiently leverages the features to group the superpixels into a

proper number of coherent regions. Our model automatically determines the optimal num-

ber of coherent regions and superpixels assignment to shape final segments. To solve our

model, we propose a numerical algorithm based on the alternating direction method of mul-

tipliers (ADMM), whose iterations consists of two highly parallelizable sub-problems. We

show each sub-problem enjoys closed-form solution which makes the ADMM iterations

computationally very cheap. Extensive experiments on benchmark image segmentation

datasets demonstrate that our proposed method in combination with an over-segmentation

can provide high quality and competitive results compared to the existing state-of-the-art

methods.

2.1 Introduction

Image segmentation is a fundamental and challenging task in computer vision with

diverse applications in various areas, such as video segmentation [94, 95], object segmen-

tation [96, 97, 98], and scene understanding [99]. The primary challenges of image seg-

mentation are rooted in the diversity and ambiguity of visual textures encountered in input
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(a) (b) (c) (d)

Figure 2.1: Segmenting image pixels into multiple coherent regions. (a) Input image. (b-d)
Segmentation results when the number of coherent regions is overestimated (b), underesti-
mated (c), and properly determined (our method) (d).

images. The solution to these challenges has been the subject of some research studies in

the recent years [100, 1, 101].

One of the major challenges in image segmentation is to determine the optimal num-

ber of coherent regions. This parameter can be calculated based on the distribution of image

features [101], given as a prior knowledge [102, 103, 24] or set to a constant value [100],

depending on the segmentation methodology. The performance of segmentation methods

heavily depends on the right choice of this parameter, denoted by K. Figure 2.1 illustrates

the segmentation results obtained for various choices of K. In the case that K is overes-

timated (shown in Figure 2.1b), each coherent region may be divided into many separate

segments. To merge these segments, many time-consuming and complicated steps are re-

quired which in turn increase the computational complexity and decrease the performance

of the algorithm. On the other hand, when K is underestimated (shown in Figure 2.1c),

some coherent regions are forced to be merged together which in turn leads to a poor seg-

mentation quality. Figure 2.1d shows our method has achieved a high quality segmentation

by properly determining parameter K.

Generally, determination of the number of coherent regions in image segmentation

is nearly similar to the problem of finding the optimal number of clusters in other areas
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[53, 54, 55]. These problems are similar in a sense that they both seek to find the optimal

number of groups. However, they may be different depending on the nature and intrinsic

properties of their input data. For instance, in image segmentation, the spatial relationship

among the image features can be perceived as an important property of data. Features may

also have more specific properties depending on the feature extraction procedure. These

properties need to be taken into account in determining the optimal number of coherent

regions.

In this work, we adopt local spectral histogram (LSH) features [104] to model the

input image. These features are computed by averaging the distribution of visual properties

(such as color, texture, etc.) over a local patch centered at each pixel. Therefore, they can be

considered as powerful tools to encode the local texture information. As LSH features are

computed by averaging distributions in a local neighborhood, it can be concluded that they

are always nonnegative and the features belonging to the same coherent region are linearly

dependent to each other. Our method leverages these properties to develop a convex model

based on the concept of sparse subset selection. The main contributions of this work can

be summarized as follows:

I: We design an effective convex model based on the properties of LSH features which

automatically determines the optimal number of coherent regions and pixels assignment.

II: We develop a parallel numerical algorithm based on the alternating direction method

of multiplier [37, 105] whose iterations consists of two sub-problems with closed-form

solutions. We show the proposed algorithm can solve our model significantly faster than

the standard convex solvers [8, 6, 7] while maintaining a high accuracy.

III: We conduct extensive experiments on three commonly used datasets, BSD300 [106],

BSD500 [100], and MSRC [107] to show our results are competitive comparing to the

results of state-of-the-arts methods.
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The remainder of this work is structured as follows: Section 2, shortly reviews related

works; Section 3, explains our method in detail; Section 4, provides experimental results;

Section 5, draws a conclusion about this work.

Notation: Throughout this work, matrices, vectors, and scalars are denoted by boldface

uppercase, boldface lowercase, and italic lowercase letters, respectively. For a given matrix

A, symbol Ai,j denotes the element at ith row and jth column, ‖A‖F indicates the Frobe-

nius norm, and ‖A‖p,q is the `p norm of the `q norm of the rows in A. For a given vector

A, symbols ‖A‖p, diag(A), and ai denote standard `p norm, a diagonal matrix formed by

the elements ofA, and the ith element ofA, respectively. Symbol tr(.) stands for the trace

operator, R+ indicates the set of positive real numbers, and 1 is a column vector of all ones

of appropriate dimension.

2.2 Related Work

Over-segmentation is obtained by partitioning the input image into multiple small

homogeneous regions, called superpixels. Recent segmentation algorithms usually utilize

an over-segmentation and merge the similar superpixels to shape final segments [1, 103,

24]. Fu [1] proposed a pipeline of three effective post-processing steps which are applied

on an over-segmentation to shape final segments. Li [103] suggested to construct a bipartite

graph over multiple over-segmentations provided by [108] and [109]. Then, the spectral

clustering is applied on the graph to form final segments. Ren [2] presented a method

which constructs a cascade of boundary classifiers and iteratively merges the superpixels

of an over-segmentation to build final segments.

One notable segmentation method is presented by Arbelaez in [100], which reduces

the problem of image segmentation to a contour detection. The method combines multiple

contour cues of different image layers to create a contour map, called gPb. The contour
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map and its corresponding hierarchical segmentation further utilized by some algorithms

as an initial over-segmentation [110, 111, 112, 113]. Liu [113] trained a classifier over the

gPb results to construct a hierarchical region merging tree. Then, the classifier iteratively

merges the most similar regions to shape final segments. Gao [111] proposed to construct

a graph over the gPb results based on the spatial and visual information of superpixels.

Then, a model is proposed to partition the graph into multiple components where each one

is corresponding to a final segment. Recently, a widely-used extension of gPb is proposed

by Arbelaez, called Multiscale Combinatorial Grouping (MCG) [3]. The method combines

the information obtained from multiple image scales to generate a hierarchical segmenta-

tion. Yu [114] proposed a nonlinear embedding method based on a `1-regularized objective

which is integrated into MCG framework to provide better local distances among the su-

perpixels. Chen [115] realigned the MCG results by modifying the depth of segments in its

hierarchical structure.

There are some recently-developed methods based on deep learning in many related

tasks such as contour detection [116, 117] and semantic image segmentation [118, 119, 120,

121]. Although these methods are able to exploit more sophisticated and complex repre-

sentative features, they are often highly demanding in terms of training data and training

time. Therefore, these methods may not be the most appropriate choice in some appli-

cations. To illustrate, consider natural image segmentation in which many unknown and

diverse patterns are likely to be presented in each single image. This implies that we may

have insufficient number of training samples per each pattern. Motivated by this, we pro-

pose a new image segmentation method based on the concept of sparse subset selection

[122, 123]. The method starts with an over-segmentation (e.g., MCG) and uses an effec-

tive convex model to group the superpixels into a proper number of coherent regions. Our

work is roughly similar to the factorization-based segmentation (Fact) algorithm [101] in

the sense that both use local spectral histogram (LSH) features to model the input image
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and seek to estimate the optimal number of coherent regions. However, our method differs

from Fact in two major ways: (1) Fact determines the optimal number of coherent regions

and pixels assignment in two consecutive steps which may lead to error propagation, but

our model simultaneously determines the optimal number of coherent regions and pixels

assignment in an effective manner. (2) Fact does not take advantage of the spatial informa-

tion among pixels, but we incorporate this information as a Laplacian regularization term

in our convex model. Moreover, we propose a parallel numerical algorithm based on the

alternating direction method of multipliers [37, 105] to solve our model and obtain final

segments. Note that the model can be easily utilized in some other applications such as

video summarization [122, 124] and dimensionality reduction [123].

2.3 Proposed Method

This section describes our segmentation method in two phases: problem formulation

and numerical algorithm. The first phase formulates a convex model based on the properties

of local spectral histogram (LSH) features and the second phase presents our solution to

the model in details.

2.3.1 Problem Formulation

Given an input image I, we start with an over-segmentation consisting n superpixels.

We form feature matrix X = [x1|x2| . . . |xn] ∈ Rd×n
+ by averaging the LSH features of

pixels within each superpixel. Hence, each xi is considered as a d-dimensional feature

corresponding to the ith superpixel. Under the assumption of linear dependence among the

LSH features, we model the feature matrix X as,

X = DU + E, (2.1)
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where D = [d1|d2| . . . |dl] ∈Rd×l
+ is a dictionary of l words inferred from the superpixels

features, U= [u1|u2| . . . |un] ∈ Rl×n denotes a coefficient matrix whose rows indicate the

contribution of each word in reconstructing X, and E ∈ Rd×n indicates the model error.

The goal is to design a model which takes into account the linear dependence and spatial

relationship among the features to compute an optimal matrix U.

In order to incorporate the linear dependence among the features into the model,

we adopt a non-negative matrix factorization framework to construct D over the feature

matrix X. Let R ∈ Rl×n be a dissimilarity matrix where Rj,i indicates the dissimilarity

between dj and xi. We define the elements of this matrix as Rj,i = ‖dj − xi‖2
2. In the

case of normalized features and visual words, the dissimilarity only depends on the inner

product between dj and xi. In other words, it shows how well xi is expressible by dj

which is a reasonable dissimilarity measure according to the linear dependence among the

features. Since the superpixels are not necessarily of the same size, we define a diagonal

regularization matrix P ∈ Rn×n whose diagonal elements show the portion of overall

pixels lie within the superpixels. The elements of P scale each Rj,i by the size of the ith

superpixel.

In order to embed the spatial relationship among the superpixels into the model, we

construct a graph over the initial over-segmentation. Let G = (V , E ,W) be the graph

where nodes are superpixels and edges connect every pairs of adjacent superpixels with a

weight specified by W ∈ Rn×n. The edge weight between the adjacent superpixels i and j

indicates their similarity and is defined as:

Wi,j = e−
‖xi−xj‖2

2
σx

−b, (2.2)

where b is the average strength of their common boundary and σx controls the effect of

feature distances on their similarity weight. Given such graph G, we define Laplacian

matrix L ∈ Rn×n as L = diag(W1)−W.
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Figure 2.2: The pipeline of our proposed algorithm. Given an input image, we adopt an
algorithm to generate a super-pixel segmentation layer. Then, we compute the superpixels
features and learn a dictionary of words over all superpixels. Our convex model efficiently
selects a small subset of informative words and softly assigns superpixels to the selected
words. The neighboring superpixels which are assigned to the same selected words are
merged to shape final segmentation.

Once the Laplacian matrix L, the dissimilarity matrix R, and the regularization ma-

trix P are computed, we seek to find a small subset of the dictionary words that well

represents feature matrix X. To do so, a model is required which satisfies the following

requirements:

• minimizes the number of selected words. In the ideal case, we are interested to have

a single word corresponding to each coherent region.

• ensures each feature {xi}ni=1 is well expressible as a nonnegative linear combina-

tion of the selected words. The coefficients of such linear combination indicate the

contribution of each selected word in reconstructing the feature.

• ensures each feature {xi}ni=1 is expressed by at least one selected word. To do so, we

impose a constraint on the sum of the linear combination coefficients.

• takes advantage of the spatial relationship and linear dependence of the features.
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Motivated by [122], we formulate the following convex model which fulfills the require-

ments.

minimize
U∈Rl×n

tr(PR>U) + γtr(ULU>) + λ‖U‖1,∞ (2.3a)

subject to U ≥ 0, (2.3b)

1>U = 1>, (2.3c)

where γ > 0 and λ > 0 are regularization parameters. The first term in (2.3) is correspond-

ing to the cost of representing feature matrix X using dictionary D proportional to the size

of superpixels. The Laplacian regularization term incorporates the spatial relation of su-

perpixels into the objective and the last term is a row sparsity regularization term which

penalizes the objective in proportion to the number of selected words. Note that although

D does not directly appear in (2.3), the rows of U are constructed based on the contribution

of the dictionary words, {dj}lj=1, in reconstructing X.

The optimal solution of problem (2.3) is U∗ ∈ [0, 1]l×n whose nonzero rows are

corresponding to the selected words. Note that U∗ not only determines the selected words

but also shows the contribution of selected words in reconstructing the superpixel features

{xi}ni=1. Hence, the elements of U∗ can be interpreted as a soft assignment of the super-

pixels to the selected words. In this case, the ith superpixel is assigned to the selected

word which has the largest contribution in the reconstruction of xi. Final segmentation is

obtained by merging the neighboring superpixels which are assigned to the same selected

word. Figure 2.2 illustrates our segmentation pipeline in details.

2.3.2 Numerical Algorithm

This section presents a numerical algorithm based on the alternating direction method

of multipliers (ADMM) to solve our model. Let definem ∈ Rl such that mj = arg maxi |Uj,i|

and reformulate (2.3) as follows:
17



minimize
U∈Rl×n
m∈Rl

tr(PR>U) + γtr(ULU>) + λ1>m (2.4a)

subject to U ≥ 0, (2.4b)

1>U = 1>, (2.4c)

m1> ≥ U. (2.4d)

Note that (2.4d) is imposed to ensure the equivalence of (2.3) and (2.4). This in-

equality constraint can be transformed into an equality constraint by introducing a slack

variable V = [v1| . . . |vn] ∈ Rl×n. Therefore, (2.4) is rewritten as:

minimize
U,V∈Rl×n
m∈Rl

tr(PR>U) + γtr(ULU>) + λ1>m (2.5a)

subject to U ≥ 0, (2.5b)

1>U = 1>, (2.5c)

m1> = V + U, (2.5d)

V ≥ 0. (2.5e)

As 1>m1>1 = 1>(V + U)1, the third term of (2.5a) can be equivalently written as

λ
n
1>(V + U)1. Hence, (2.5) can be reformulated independent ofm as:

minimize
U,V∈Rl×n

tr(PR>U) + γtr(ULU>) +
λ

n
1>(V + U)1 (2.6a)

subject to U ≥ 0, (2.6b)

1>U = 1>, (2.6c)

vi−1 + ui−1 = vi + ui, i=2,...,n, (2.6d)

V ≥ 0, (2.6e)
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where (2.6d) is obtained by removing m from (2.5d). In order to derive an ADMM for-

mulation with subproblems possessing explicit formulas, we introduce auxiliary matrices

Û ∈ Rl×n, V̂ ∈ Rl×n and reformulate (2.6) as:

minimize
U,V,Û,V̂∈Rl×n

tr(PR>Û) + γtr(ULU>) +
λ

n
1>(V + U)1

+
µ1

2

∥∥∥U− Û
∥∥∥2

F
+
µ2

2

∥∥∥V − V̂
∥∥∥2

F
(2.7a)

subject to Û ≥ 0, (2.7b)

1>Û = 1>, (2.7c)

vi−1 + ui−1 = vi + ui, i=2,...,n, (2.7d)

V̂ ≥ 0, (2.7e)

U = Û, (2.7f)

V = V̂, (2.7g)

where µ1 > 0 and µ2 > 0 are the augmented Lagrangian parameters. As it is suggested in

[37], we can set µ1 = µ2 = µ. Note that (2.7) is equivalent to (2.6), because the additional

terms in (2.7a) vanish for any feasible solution. To solve (2.7), augmented Lagrangian

function is formed as:

Lµ(U,V, Û, V̂,Λ1,Λ2) = tr(PR>Û) + γtr(ULU>)

+
λ

n
1>(V + U)1 +

µ

2

∥∥∥∥U− Û +
Λ1

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥V − V̂ +
Λ2

µ

∥∥∥∥2

F

(2.8)

where Λ1 ∈ Rl×n and Λ2 ∈ Rl×n are Lagrange multipliers associated with the equality

constraints (2.7f) and (2.7g).

Given initial values for Û, V̂, Λ1, and Λ2, the ADMM iterations to solve (2.7) are

summarized as follow:

(Uk+1,Vk+1) := argmin
U,V∈Rl×n

Lµ(U,V, Û
k
, V̂

k
,Λk

1,Λ
k
2)

subject to vi−1 + ui−1 = vi + ui, i=2,...,n.

(2.9)
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(Û
k+1

, V̂
k+1

) := argmin
Û,V̂∈Rl×n

Lµ(Uk+1,Vk+1, Û, V̂,Λk
1,Λ

k
2)

subject to Û ≥ 0, 1>Û = 1>,

V̂ ≥ 0.

(2.10)

Λk+1
1 = Λk

1 + µ(Uk+1 − Û
k+1

)

Λk+1
2 = Λk

2 + µ(Vk+1 − V̂
k+1

)

(2.11)

To solve (2.9), let form yj ∈ R2n by concatenating the jth rows of U and V. Then,

(2.9) can be divided into l equality constrained quadratic programs as follows:

minimize
yj∈R2n

1

2
yj
>Byj + yj

>bj (2.12a)

subject to Ayj = c, (2.12b)

where B ∈ R2n×2n is a block diagonal positive semi-definite matrix,A ∈ Rn×2n is a sparse

matrix corresponding to the constraint (2.7d), and c∈Rn is a vector of all zeros.

Problem (2.10) can be split into two separate sub-problems with closed-form solu-

tions as follows:

minimize
Û∈Rl×n

∥∥∥∥Û− (U +
Λ1 + RP>

µ
)

∥∥∥∥2

F

(2.13a)

subject to Û ≥ 0, 1>Û = 1>, (2.13b)

minimize
V̂∈Rl×n

∥∥∥∥V̂ − (V +
Λ2

µ
)

∥∥∥∥2

F

(2.14a)

subject to V̂ ≥ 0, (2.14b)

where each one consists of n computationally cheap parallel programs. Sub-problem (2.13)

can be divided into n parallel programs over the columns of Û where each one is a Eu-

clidean norm projection onto the probability simplex constraints. These programs enjoy
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Figure 2.3: Our convergence behavior for different choices of µ. (a) Combined residual.
(b) Cost function.

closed-form solutions as presented in [125]. Sub-problem (2.14) consists of n small paral-

lel programs over the columns of V̂, where each program is a minimization of the Euclidean

norm projection onto the nonnegative orthant and admits closed-form solution.

Problem (2.11) can be split into two sub-problems over Λ1 and Λ2 where each sub-

problem consists of n parallel updates over the columns of corresponding matrix.

Our numerical algorithm consists of two sub-problems with closed-form solutions,

which makes the iterations computationally cheap. To evaluate our convergence behavior,

we adopt combined residual presented in [126] as:

εk+1 =
1

µ

∥∥Λk+1
1 −Λk

1

∥∥2

F
+ µ
∥∥Uk+1 −Uk

∥∥2

F

+
1

µ

∥∥Λk+1
2 −Λk

2

∥∥2

F
+ µ
∥∥Vk+1 −Vk

∥∥2

F

(2.15)

Figure 2.3 demonstrate the convergence behavior of our algorithm in terms of combined

residual and cost function. We solve (2.3) for three choices of µ to show the sensitivity of

our numerical algorithm with respect to µ. Figure 2.3 indicates our algorithm converges in

a reasonable number of iterations for a wide range of µ.
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2.4 Experiments

We perform multiple experiments on benchmark image segmentation datasets to

evaluate the performance of our method (termed IS4). The first part of this section gives

information about the benchmarking datasets, evaluation measures, and parameter settings.

The second part compares our results with state-of-the-art methods to demonstrate the ef-

fectiveness of IS4.

2.4.1 Settings

Datasets: We adopt three commonly used datasets in image segmentation: (1) BSD300

[106] containing 300 images (200 training and 100 validation) of size 321 × 481, where

each one has in average 5 ground-truths manually drawn by human; (2) BSD500 [100]

is an extension of BSD300 with 200 new testing images; (3) MSRC [107] containing 591

images of size 320×213, where each one has a single ground-truth. It should be mentioned

that we use the cleaned version of MSRC [127] in our experiments.

Measures: We adopt three widely accepted measures in image segmentation: (1) segmen-

tation Covering (Cov) [127], which measures the overlapping between two segmentations;

(2) probability Rand Index (PRI) [128], which measures the probability that a pair of pix-

els is consistently labeled in two segmentations; (3) variation of Information (VoI) [129],

which measures the distance between two segmentations as the average of their conditional

entropy.

Parameters: Given an over-segmentation, IS4 computes the superpixels features {xi}ni=1

by averaging the local spectral histogram (LSH) [104] features of pixels within each su-

perpixel. We use the algorithm and parameters presented in [101] to extract features and

build a dictionary of size l. Parameter l should be chosen sufficiently large (larger than

the number of coherent regions) to ensure each superpixel feature is well expressible as a

nonnegative linear combination of the dictionary words. We set l = 20 which is normally
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much larger than the number of coherent regions in BSD and MSRC images. Our proposed

model in (2.3) has two parameters γ and λ, where γ controls the effect of spatial relation-

ship among superpixels and λ controls the number of selected words. As γ increases, the

neighboring regions are more likely to be merged together and as λ increases, the number of

selected words reduces. We optimize γ on the training set of BSD by applying grid search

and use the optimized γ in our experiments on BSD300, BSD500, and MSRC datasets.

Parameter λ is set to αλmax, where α ∈ [0, 1] and λmax is a constant computed based on

PR>, γ, and L using [122]. If α is greater than 1 (which means λ>λmax), only a single

word is selected to represent the whole features. We follow [100, 3, 111, 2] to present our

results as a family of segmentations which share the same parameter settings except for α

that varies from 0 to 1. The evaluation measures are also reported at Optimal Dataset Scale

(ODS) and Optimal Image Scale (OIS).

2.4.2 Results

Segmentation quality: We run IS4 on the benchmark datasets and report the results in

tables 2.1, 2.2, and 2.3, to make a comparison with recent methods such as, Normalized

cut (Ncut) [130], Multi-scale Normalized cut (MNcut)[131], gPb-Ultametric contour map

(gPb) [100], Image Segmentation by Cascade Region Agglomeration (ISCRA) [2], Reverse

Image Segmentation with High/Low-level pairwise potentials (RIS-HL) [132], Multiscale

Combinatorial Grouping (MCG) [3], Contour-guided Color Palletes (CCP-2) [1], Piece-

wise Flat Embedding (PFE) [114], Discrete-Continuous Gradient Orientation Estimation

for Segmentation (DC-Seg) [110], Graph Without Cut (GWC) [111], and Aligned hierar-

chical segmentation (MCG-Aligned) [115]. All scores are collected from [100, 3, 115, 110,

111] except the MCG on MSRC and CCP-2 on BSD500 which are obtained by running the

implementations provided by the respective authors.
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Cov (↑) PRI (↑) VoI (↓)
Methods ODS OIS ODS OIS ODS OIS

MNcut[131] 0.44 0.53 0.75 0.79 2.18 1.84

gPb-UCM [100] 0.59 0.65 0.81 0.85 1.65 1.47

ISCRA [2] 0.60 0.67 0.81 0.86 1.61 1.40

RIS+HL[132] 0.59 0.65 0.82 0.86 1.71 1.53

MCG [3] 0.61 0.67 0.81 0.86 1.55 1.37
GWC [111] 0.61 0.68 0.82 0.86 1.60 1.42

IS4(MCG) 0.61 0.65 0.81 0.83 1.54 1.40

Table 2.1: Quantitative comparisons on BSD300 val set.

Parameter sensitivity: To evaluate the role played by an initial over-segmentation, we run

IS4 in combination with three segmentation methods CCP-2, ISRA, and MCG. In CCP-

2, we use the same parameter settings as suggested by the respective author. In MCG

and ISRA we respectively adopted the segmentations at scale 0.39 and 44 as the over-

segmentations. In average, the over-segmentation layers provided by CCP-2, ISRA, and

MCG have 120, 45, and 37 superpixels, respectively. Figure 2.4 and table 2.4 respectively

show the qualitative and quantitative results of these combinations. Moreover, we run IS4

for different γ to assess our robustness with respect to the variations of γ. The results are

reported in table 2.5 in terms of segmentation measures. As tables 2.4 and 2.5 indicate, IS4

not only achieves satisfactory results for a wide range of γ but also improves the quality of

initial over-segmentations on most of the segmentation measures. It is worth pointing out

that IS4 can be applied on the result of any segmentation method. The result may either be

directly generated by a segmentation algorithm (e.g., CCP-2) or obtained from a specific

level of a hierarchical segmentation (e.g., MCG).

Tables 2.1, 2.2, and 2.3 show that IS4 in combination with MCG generates a high

quality segmentation. The scores indicate that IS4(MCG) outperforms all competitor meth-

ods on BSD300 (ODS: VoI) and MSCRC (ODS: Cov, PRI, VoI and OIS: Cov, PRI, VoI).

Other scores obtained by IS4(MCG) are also on par or in close proximity of the best com-
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Cov (↑) PRI (↑) VoI (↓)
Methods ODS OIS ODS OIS ODS OIS

Ncut [130] 0.45 0.53 0.78 0.80 2.23 1.89

gPb-UCM [100] 0.59 0.65 0.83 0.86 1.69 1.48

DC-Seg [110] 0.59 0.64 0.82 0.85 1.68 1.54

ISCRA [2] 0.59 0.66 0.82 0.85 1.60 1.42

RIS+HL[132] 0.57 0.66 0.84 0.86 1.73 1.55

MCG [3] 0.61 0.66 0.83 0.86 1.57 1.39

PFE+MCG [114] 0.62 0.68 0.84 0.87 1.56 1.36

MCG-Aligned [115] 0.63 0.68 0.83 0.86 1.53 1.38

GWC [111] 0.61 0.66 0.83 0.87 1.62 1.41

IS4(MCG) 0.63 0.66 0.83 0.85 1.55 1.35

Table 2.2: Quantitative comparisons on BSD500 test set.

Cov (↑) PRI (↑) VoI (↓)
Methods ODS OIS ODS OIS ODS OIS

gPb-UCM [100] 0.65 0.75 0.78 0.85 1.28 0.99

ISCRA [2] 0.67 0.75 0.77 0.85 1.18 1.02

GWC [111] 0.68 0.76 0.78 0.85 1.24 0.98

MCG [3] 0.66 0.72 0.78 0.83 1.23 1.14

IS4(MCG) 0.69 0.77 0.80 0.86 1.15 0.91

Table 2.3: Quantitative comparisons on MSRC dataset.

Cov (↑) PRI (↑) VoI (↓)
Methods ODS OIS ODS OIS ODS OIS

ISCRA [2] 0.59 0.66 0.82 0.85 1.60 1.42

IS4 (ISCRA) [108] 0.61 0.65 0.82 0.85 1.58 1.38

CCP-2 [1] 0.45 − 0.79 − 3.1 −
IS4 (CCP-2) 0.58 0.64 0.81 0.85 1.78 1.52

MCG [3] 0.61 0.66 0.83 0.86 1.57 1.39

IS4(MCG) 0.63 0.66 0.83 0.85 1.55 1.35

Table 2.4: Sensitivity of our method with respect to the different initial over-segmentations
on BSD500 test set.
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Cov (↑) PRI (↑) VoI (↓)
γ ODS OIS ODS OIS ODS OIS

10−2 0.62 0.65 0.83 0.85 1.56 1.39

10−1 0.62 0.65 0.83 0.85 1.55 1.39

100 0.62 0.66 0.83 0.85 1.54 1.38

101 0.63 0.66 0.83 0.85 1.54 1.37

102 0.62 0.64 0.81 0.83 1.53 1.41

Table 2.5: Sensitivity of our method with respect to the parameter variations on BSD500
test set.

petitors except for BSD300 (OIS: Cov, PRI) and BSD500 (OIS: PRI). In comparison with

MCG, IS4(MCG) achieves better results on BSD300 (ODS: 0.01 on VoI), BSD500 (ODS:

0.02 on Cov, 0.02 on VoI and OIS: 0.04 on VoI), and MSRC (ODS: 0.03 on Cov, 0.02

on PRI, 0.08 on VoI and OIS: 0.05 on Cov, 0.03 on PRI, 0.23 on VoI). Our method is

also on par with MCG on BSD300 (ODS: Cov, PRI) and BSD500 (ODS: PRI). Moreover,

the tables indicate that IS4(MCG) achieves lower score than MCG in BSD300 (OIS: Cov,

PRI, VoI) and BSD500 (OIS: PRI). It may seem reasonable to state that IS4(MCG) should

consistently improve the MCG measures. However, this is not a fairly accurate statement.

The reason is that IS4 does not directly apply on the MCG hierarchical segmentation to

improve or degrade the MCG results. It just adopts an over-segmentation by simply thresh-

olding the MCG hierarchical segmentation and generates a family of segmentations. These

segmentations differ from the ones which may be obtained at different thresholds of MCG.

MCG usually provides a high-quality hierarchical segmentation, but its performance

is sometimes unsatisfactory, especially in textured images. Our method in combination

with MCG improves the segmentation quality of these images (shown in Figure 2.5) by

adopting superpixels features as an informative representation of small regions. Despite

the advantages of IS4, it may fail to correctly segment the pixels belonging to an elongated

coherent region. The reason is that the local neighborhood around these pixels contains
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Figure 2.4: IS4 in combination with different over-segmentation. From left to right, top
row: image, CCP-2 [1], ISCRA [2], and MCG [3]; bottom row: groundtruth, IS4(CCP-2),
IS4(ISCRA), and IS4(MCG); The top row shows the initial over-segmentation provided
by these methods and the bottom column shows our final segmentation with these initial
over-segmentations.

visual information of neighboring coherent regions. Hence, their LSH features are inaccu-

rate, which may cause a wrong assignment to the neighboring coherent regions.

Algorithm complexity: We decomposed model (2.3) into three sub-problems (2.9), (2.10),

and (2.11) which are considered as the steps of the alternating direction method of mul-

tipliers (ADMM). To investigate the complexity of solving these sub-problems, we dis-

cuss about each one separately. Subproblem (2.9) is cast as l parallel equality constrained

quadratic programs of form (2.12) where each can be efficiently solved by solving a sys-

tem of linear equations [13] in O(n2.8) [133]. SinceA and B are the same in all programs,

the left-hand side of such systems are similar. Hence, one program just need to be solved

and then back-solves can be performed for the right-hand sides of other programs. There-

fore, the complexity of solving (2.9) is O(n2.8) + O((l−1)n2). It is worth mentioning the

complexity would much lower than this amount, because A and B are highly sparse and

structured. Subproblem (2.10) is split into two parallel problems (2.13), (2.14). Problem
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Image ISCRA MCG PFE+MCG IS4(MCG)

Figure 2.5: Qualitative comparison of segmentations. All segmentation results are shown
at Optimal Dataset Scale (ODS).
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SeDuMi SDPT3 MOSEK IS4(MCG)

Run-Time (sec.) 1.4×102 9.8×100 2.7×100 6.1×10−1

(a)

SeDuMi SDPT3 MOSEK

Relative Error 1.7×10−2 1.1×10−2 9.0×10−3

(b)

Table 2.6: Performance comparison with convex solvers, SeDuMi [6], SDPT3 [7], and
MOSEK [8].

(2.13) consists of n parallel programs where each is solvable in O(l log(l)) [125]. Prob-

lem (2.14) consists of n parallel programs where each is solved in O(l) [37]. Therefore,

(2.10) can be efficiently solved in O(nl log(l)). Subproblem (2.11) consists of n parallel

updates over the columns of Λ1 and Λ2 which can be performed in O(nl). In total, the

complexity of our numerical is O(n2.8) + O((l−1)n2) in the first iteration and O(ln2) in

subsequent iterations. Since all steps of our ADMM are highly parallelizable, the complex-

ity can be significantly reduced using parallel computation. In the case of having p parallel

processing resources (assumption n > l), the complexity of (2.9), (2.10), and (2.11) are

O(n2.8)+O(d l−1
p
en2), O(dn

p
el log(l)), and O(dn

p
el), respectively.

To compare our numerical algorithm with other solvers, we solve (2.3) for 20 ran-

domly chosen images in BSD500 using three standard convex solvers with CVX [134, 135].

The results are reported in tables 2.6a and 2.6b in terms of the average running times and

relative errors, respectively. In this case, our relative error is computed as ‖
U∗solver−U

∗
our‖F

‖U∗solver‖F
.

It should be noted that our average running time is computed without considering any par-

allelization.

Table 2.6 indicates that our numerical algorithm is not only significantly faster than

SeDuMi [6], SDPT3 [7], and MOSEK [8] in solving (2.3), but also offers an optimal solu-

tion extremely close to their solutions.
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The running time of IS4 heavily depends on the initial over-segmentation. IS4(MCG)

takes 6.01 seconds per image in average, where 2.9 seconds takes for feature extraction,

2.5 seconds takes for learning the dictionary, and the remaining is taken by our numerical

algorithm. All the experiments are performed on an Intel Core i5 quad-core 3.20GHz CPU

and 16 GB RAM.

2.5 Conclusions

This work presented a novel segmentation model based on the concept of sparse sub-

set selection. The model automatically estimates the optimal number of coherent regions

and pixel assignments to form final segments. Moreover, we presented a parallel numer-

ical algorithm based on the alternating direction method of multipliers (ADMM) to solve

our model. The main advantages of this work are as follow: (1) does not require time for

training over different datasets and works well in combination with various segmentation

methods; (2) consists of three steps: extracting features, learning dictionary, and solving

model where each one can be implemented in parallel; (3) contains ADMM steps with

closed-form solutions which make the iterations computationally very cheap; (4) does not

restricted to the segmentation problem and can be easily extended to other applications,

such as video summarization, dimensionality reduction, etc.
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CHAPTER 3

Sequential Convex Relaxations for Optimization Under Orthogonality Constraints

This chapter is concerned with the class of non-convex optimization problems with

orthogonality constraints. We develop computationally efficient relaxations that transform

non-convex orthogonality constrained problems into polynomial-time solvable surrogates.

A novel penalization technique is used to enforce feasibility and derive certain conditions

under which the constraints of the original non-convex problem are guaranteed to be satis-

fied. Moreover, we extend our approach to a feasibility-preserving sequential scheme that

solves penalized relaxation to obtain near-globally optimal points. Experimental results on

synthetic and real datasets demonstrate the effectiveness of the proposed approach on two

practical applications in machine learning.

3.1 Introduction

Consider the following optimization problem

minimize
P∈Rn×m

f̄0(P ) + g0(P ) (3.1a)

subject to f̄k(P ) ≤ 0, k ∈ {1, . . . , p}, (3.1b)

P >P = Im, (3.1c)

where g0 : Rn×m → R is a convex piecewise linear function and f̄k : Rn×m→ R is an

arbitrary quadratic function of the form f̄k(P ) , 〈Mk,PP
>〉+ 〈Nk,P 〉+qk, for every

k ∈ {0, 1, . . . , p}, and {Mk ∈ Sn}pk=0, {Nk ∈ Rn×m}pk=0 and {qk ∈ R}pk=0 are given.

With no loss of generality, we assume that q0 = 0 and write g0 in the form of g0(P ) =

‖α(P ) + b‖1, where b ∈ Rw is a given vector, α : Rn×m → Rw is a linear matrix
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function defined as α(Y ) ,
∑w

i=1〈Ai,Y 〉ei, the matrices {Ai ∈ Rn×m}wi=1 are given,

and {ei ∈ Rw}wi=1 represent the standard basis for Rw. The formulation (3.1a) – (3.1c)

encompasses a broad class of computationally-hard optimization problems with a variety

of practical applications in discriminative dimensionality reduction [4], graph matching

[56], feature selection [57, 58], compressed modes [66, 136], among other areas of machine

learning.

The majority of methods in the literature are focused on a special case of (3.1a) –

(3.1c) that involves the minimization of a convex and smooth objective function over non-

convex sets of the form Sn,m,{P ∈Rn×m | P >P =Im}, known as the Stiefel manifolds.

There are various iterative local search algorithms which preserve the structure of Stiefel

manifolds via geodesics steps [61, 62] or retractions [64, 65]. Although these algorithms

exhibit satisfactory performance in dealing with orthogonality constraints, they mostly re-

strict the objective function to the class of smooth functions and are not compatible with

additional constraints [137]. To overcome these limitations, general algorithms are pro-

posed that work with either smooth or non-smooth objective functions [4, 136]. The paper

[4] uses a family of semidefinite programming (SDP) problems to generate a converging

sequence of points Stiefel manifolds. The paper [136] introduces an inner-outer iteration

scheme for solving `1-regularized optimization problems with orthogonality constraints

based on the augmented Lagrangian method from [138] and the proximal alternating min-

imization technique from [139]. Moreover, a series of splitting techniques are proposed

in [66, 67, 69] that can efficiently handle non-smooth objective functions. They partition

the problem into multiple sub-problems with analytical solutions and employ Bregman it-

erations [36] or its variants [37] to obtain optimal solutions for orthogonality-constrained

problems. In the more recent paper [140], an extended proximal alternating linearized min-
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imization method is introduced to minimize convex functions subject to linear constraints

and generalized orthogonality constraints.

Differentiated from the existing literature, we propose a computational method for

solving problems of form (3.1a) – (3.1c) with theoretical analysis that provides guarantee

to obtain near-optimal solutions. The main contributions of this work are outlined in the

following subsection. Differentiated from the existing literature, we propose a computa-

tional approach with theoretical analysis for solving problems of the form (3.1a) – (3.1c),

that guarantees the recovery of feasible points. The proposed approach generalizes the

existing literature by including additional quadratic inequality constraints. The core of

our approach is based on a novel and computationally efficient convex relaxation which

transforms the non-convex problem (3.1a) – (3.1c) into a convex quadratically-constrained

quadratic program (QCQP). To ensure that the solution of the relaxed problem is feasi-

ble for (3.1a) – (3.1c), we incorporate a penalty term into the objective function and derive

certain conditions that guarantee the recovery of feasible points. Moreover, under certain

conditions, we prove that by starting from any arbitrary initial point on a Stiefel mani-

fold (not necessarily feasible), a sequence of penalized relaxations can be solved to find a

feasible and near-optimal point. Unlike the existing algorithms, if mild assumptions are sat-

isfied, the proposed sequential scheme is feasibility-preserving and improves the objective

monotonically at every step. To corroborate the effectiveness of our method, we perform

experiments on two practical applications with both synthetic and real datasets. The ex-

perimental results demonstrate that the proposed approach exhibits comparable results for

both applications.

3.1.1 Notation

Throughout this work, the scalars, vectors, and matrices are shown by italic, bold

lower-case and bold upper-case letters, respectively. The symbols Rn, Rn×m, Sn, and S+
n
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denote the set of real n-dimensional vectors, real n × m matrices, real symmetric n × n

matrices, and real positive semidefinite matrices, respectively. The symbols tr{.} and (.)>

are indicative of the trace and transpose operators, respectively. Given a vector a and a

matrixA, the symbols ai and Aij , respectively, refer to the ith element of a and the (i, j)th

element ofA. The notationA � 0 states thatA is symmetric positive semidefinite. Given

matricesA andB of the same size, 〈A,B〉 , tr{A>B} and A◦B, respectively, denote the

Frobenius inner-product and the Hadamard product ofA andB. The operator diag(.) gets

a vector and forms a diagonal matrix with its input on the diagonal elements. The notation

‖.‖p refers to either matrix norm or vector norm depending on the context, ‖.‖F shows the

Frobenius norm, and |.| indicates the absolute value or the cardinality of a set depending on

the context. The symbol Im denotes the identity matrix of sizem and the letterK is used as

a shorthand for the set {1, . . . , p}. The symbol Sn,m as the set of real n×m matrices with

orthonormal columns, i.e., Sn,m , {P ∈ Rn×m | P >P = Im}. The projection operator

projSn,m : Rn×m → Sn,m is defined as projSn,mH = arg min{‖P −H‖F | P ∈ Sn,m}.

3.2 Problem Formulation

Optimization problems of the form (3.1a) – (3.1c) can be computationally challeng-

ing due to the non-convexities of the objective function and constraints. In order to derive

convex relaxations, we first lift the problem into a higher dimensional space by introduc-

ing an auxiliary variable X ∈ Sn, accounting for the quadratic term PP >. For every

k ∈ {0} ∪ K, define fk : Rn×m × Sn → R as:

fk(P ,X) , 〈Mk,X〉+ 〈Nk,P 〉+ qk. (3.2)

Using the auxiliary variableX , the optimization problem (3.1a) – (3.1c) can be equiv-

alently reformulated as
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minimize
P∈Rn×m
X∈Sn

f0(P ,X) + g0(P ) (3.3a)

subject to fk(P ,X) ≤ 0 k ∈ K, (3.3b)

P>P = Im, (3.3c)

P P>= X , (3.3d)

with a convex objective function and convex linear inequality constraints (3.3b). The above

formulation is still not convex due to the presence of the constraints (3.3c) and (3.3d) that

capture all non-convexities of the problem.

3.2.1 Convex Relaxation

In order to convexify the lifted problem (3.3a) – (3.3d), we relax the constraints (3.3c)

and (3.3d) to

Im−P >P ∈C ∧ X−PP > ∈D ∧ tr{X}=m, (3.4)

where C ⊆ Sm and D ⊆ Sn are convex cones to be defined. In this work, we consider

the common-practice semidefinite programming (SDP) relaxation and introduce a novel

convex relaxation that transforms the problem (3.3a) – (3.3d) into a convex quadratically-

constrained quadratic program (QCQP).

3.2.1.1 Semidefinite Programming Relaxation

This relaxation provides a powerful method for tackling non-convex polynomial op-

timization problems [13]. The SDP relaxation of the problem (3.3a) – (3.3d) can be derived

by having C = S+
m and D = S+

n . Despite the effectiveness of this relaxation in providing

high-quality solutions, its applicability is limited to the problems of moderate size due to

the computational cost of imposing high-dimensional conic constraints.
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3.2.1.2 Convex Quadratic Relaxation

We propose a computationally efficient convex relaxation as an alternative to the SDP

relaxation. In order to formulate the proposed relaxation for the problem (3.3a) – (3.3d), we

need to have C = Vm andD = Vn, where for every positive integer o, set Vo ⊆ So is defined

as follows

Vo,
{
H ∈So

∣∣Hii+Hjj≥2|Hij|, ∀i,j∈{1, . . . , o}
}
.

Remark 3.1. It can be easily observed that if (C,D) = (Vm,Vn), the constraints (3.3c) and

(3.3d) boil down to convex quadratic inequalities. Hence, the proposed relaxation reduces

(3.3a) – (3.3d) to a convex QCQP.

Notice that either of the aforementioned relaxations may fail to produce a feasible

point for (3.1a) – (3.1c), because in general, an optimal solution to a convex relaxation

does not necessarily satisfy the constraints (3.3c) and (3.3d). In what follows, we propose

a penalization technique that guarantees the recovery of feasible points for (3.1a) – (3.1c)

under certain conditions.

3.2.2 Penalization

In this section, we show that by including a penalty term in the objective, one can

obtain feasible points for the non-convex problem (3.3a) – (3.3d). Given an arbitrary initial
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point P̌ ∈ Sn,m, that is not necessarily feasible, we transform the problem (3.3a) – (3.3d)

into the following convex relaxation with revised objective function:

minimize
P∈Rn×m
X∈Sn

f0(P ,X) + g0(P )− µ〈P , P̌ 〉 (3.5a)

subject to fk(P ,X) ≤ 0 k ∈ K, (3.5b)

Im − P>P ∈ C, (3.5c)

X − P P>∈D, (3.5d)

tr{X} = m, (3.5e)

where (C,D) ∈ {(S+
m,S+

n ), (Vm,Vn)}, and the fixed parameter µ > 0 sets a trade-off

between the original objective function and the linear penalty term 〈P , P̌ 〉.

Remark 3.2. If an optimal solution (
∗
P ,

∗
X) of the problem (3.5a) – (3.5e) satisfies the

constraints (3.3c) and (3.3d), then
∗
P is feasible for (3.1a) – (3.1c).

In the remainder of this section, certain conditions are introduced to guarantee that

the penalized relaxation (3.5a) – (3.5e) produces feasible points for the non-convex problem

(3.3a) – (3.3d).

Definition 3.1. Define feasibility distance dF :Rn×m →R as

dF(P ) , inf{‖C − P ‖F | C∈F}, (3.6)

where F denotes the feasible set of the problem (3.1a) – (3.1c).

Definition 3.2. Define the singularity function s :Sn,m→R as:

s(P ) , sup
D∈ZP

{
min
k∈K

{
−〈2MkP+Nk,D〉

}}
, (3.7)

where ZP , {D ∈ Rn×m | P>D = 0 ∧ ‖D‖F ≤ 1}. A point P ∈ Sn,m is said to satisfy

the Mangasarian-Fromovitz constraint qualification (MFCQ) condition if it is feasible for

the problem (3.1a) – (3.1c) and s(P ) > 0.
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Theorem 3.1. Define the constants

β , max
P∈Sm,n

{∣∣g0(P )+〈M0,PP
>〉+〈N0,P 〉

∣∣}, (3.8a)

ψ , 2‖M0‖F+‖N0‖F+
w∑
i=1

‖Ai‖F, (3.8b)

κ , 4 max
k∈K
{‖Mk‖F}+ max

k∈K
{‖Nk‖F} (3.8c)

and let P̌ ∈F be a feasible point for the problem (3.1a) – (3.1c) that satisfies the MFCQ

condition. If

µ > max{β−1ψ2, β(26κ)2s(P̌ )−2, 144β}, (3.9)

then the penalized relaxation (3.5a) – (3.5e) has a unique optimal solution (
∗
P ,

∗
X), that

satisfies (3.3c) and (3.3d). Moreover,
∗
P is feasible for (3.1a) – (3.1c) and f̄0(

∗
P )+g0(

∗
P ) ≤

f̄0(P̌ )+g0(P̌ ).

Proof. See Section 3.4 for the proof.

Remark 3.3. For every point P ∈ Sm,n, it is straightforward to calculate s(P ) by solving

the following convex problem:

maximize
t∈R,D∈ZP

t

subject to t ≤ −〈2MkP +Nk,D〉, k ∈ K.

Notice that β can be simply lower- and upper-bounded by any arbitrary member of

the set Sm,n and the constant Ψ, respectively. This certifies the existence of a bounded µ

that satisfies (3.9). In practice, there is no need to compute s(P ) for fine-tuning parameter

µ, since (3.9) offers a conservative sufficient condition and there mostly exist smaller µ that

satisfies Theorem 3.1. In Section 3.3, we assess the sensitivity of our approach with respect

to different choices of µ.
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Theorem 3.1 is concerned with the case where the initial point P̌ is feasible for the

original problem (3.1a) – (3.1c). However, finding a feasible starting point can be difficult

due to the presence of the non-convex quadratic inequality constraints (3.1b). The next

theorem states that even if P̌ is not feasible, the proposed penalized relaxation can still

result in a feasible point for the non-convex problem (3.1a) – (3.1c).

Theorem 3.2. Consider an initial P̌ ∈ Sn,m that satisfies

dF(P̌ ) < 1, (3.11a)

s(P̌ ) > κ dF(P̌ )
[
1 + (1− dF(P̌ ))−1

]
, (3.11b)

where κ is defined in (3.8c). If µ is sufficiently large, then the penalized convex relax-

ation (3.5a) – (3.5e) has a unique optimal solution (
∗
P ,

∗
X) that satisfies (3.3c) and (3.3d).

Moreover,
∗
P is feasible for (3.1a) – (3.1c).

Proof. See Section 3.4 for the proof.

3.2.3 Sequential Penalized Relaxation

Motivated by Theorems 3.1 and 3.2, this section presents a sequential approach that

solves a sequence of penalized relaxations of the form (3.5a) – (3.5e) to infer high-quality

feasible points for the non-convex problem (3.1a) – (3.1c). The proposed scheme starts

from an initial point P̌ on the Stiefel manifold. In each round, the solution of the penalized

relaxation (3.5a) – (3.5e) is projected onto the Stiefel manifold and then the projected point

is employed as an initialization for the next round. Once a feasible point for (3.1a) – (3.1c)

is obtained, according to Theorem 3.1, the proposed scheme preserves feasibility and gen-

erates a sequence of points whose objective values monotonically improves. The details of

the sequential scheme are delineated in Algorithm 1.
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Algorithm 1 Sequential Penalized Relaxation

Input: P̌ ∈Sn,m, a fixed parameter µ > 0, and k = 0,

1: repeat

2: k ← k + 1

3: P k ← solve (3.5a) – (3.5e) with the penalty µ〈P , P̌ 〉

4: P̌ ← projSn,mP
k

5: until stopping criteria is met

Output: P k
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Figure 3.1: Two dimensional data representation on a training set from the synthetic data
set. Left: MMDA [4], middle: SPR-S, right: SPR-Q. The results show that the SPR-S and
SPR-Q algorithms have provided more discriminative 2D representations compared to the
MMDA method.

3.3 Experimental Results

In this section, we conduct numerical experiments on real and synthetic datasets

to verify the effectiveness of the proposed sequential approach, termed SPR, in solving

non-convex optimization problems with orthogonality constraints. In Subsections 3.3.1

and 3.3.2, we apply SPR on two practical problems involving orthogonality constraints.

We use SPR-S and SPR-Q to refer to the combination of Algorithm 1 with the SDP relax-

ation and the proposed convex quadratic relaxation, respectively. To solve the penalized

relaxations in each round of the algorithm, we use MOSEK version 7.0 [8]. Through the

experiments, we leverage the inherent sparsity patterns of the problems to reduce the com-
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putational cost of solving large-scale semidefinite programs. This enables us to break down

large-scale conic constraints into a set of smaller ones [141]. Since finding a feasible point

for (3.1a) – (3.1c) can be computationally demanding, we initialize Algorithm 1 with an

arbitrary starting point on the Stiefel manifold and aim to improve the quality of the point.

If the algorithm can recover a feasible point for (3.1a) – (3.1c), according to Theorem 3.1, it

can generate a sequence of feasible points whose objective values monotonically improve.

To measure the level of infeasibility, define tr{X̄− P̄ P̄>} as the feasibility violation of an

arbitrary feasible point (P̄ , X̄) of the problem (3.5a) – (3.5e). We terminate the sequential

algorithm once the feasibility violation and objective value improvement are less than 10-5

or if the round number exceeds 100. Notice that the Nesterov acceleration technique can

be employed to improve the convergence behaviour of the SPR algorithm. However, in this

case, the algorithm may fail to preserve the monotonically decreasing order of the objective

values even if the initial point is feasible.

We apply the sequential algorithm on two fundamental machine learning problems

of discriminative dimensionality reduction and graph clustering. Notice that each of these

problems are well-studied in the literature and several approaches have been developed to

efficiently target these applications. Therefore, it is not the intent of this work to compete

with these state-of-the-art problem-specific approaches, but rather to demonstrate the po-

tential of Algorithm 1 in solving the problems of form (3.1a) – (3.1c) that widely arise in

different areas of machine learning.

3.3.1 Experiment I: Discriminative Dimensionality Reduction

Given a collection of high-dimensional data points from c different classes, the prob-

lem of discriminative dimensionality reduction aims to learn a low-dimensional subspace

on which the projection of different classes are well-separated. To this end, [4] proposed

a max-min distance analysis (MMDA) that maximizes the minimum distance between all
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class pairs. This problem can be cast as a non-convex and non-smooth optimization prob-

lem of form

maximize
P∈Rn×m

min
1≤i<j≤c

〈Aij,PP>〉 (3.12a)

subject to P>P = Im, (3.12b)

where each Aij ∈ Sn is a given weighted distance matrix between the ith and jth classes.

In this experiment, we evaluate the performance of the SPR algorithm for solving the prob-

lems of form (3.12a) – (3.12b). Closely related to our work, [4] uses a sequence of local

SDP relaxations to find the solution of problem (3.12a) – (3.12b). We benchmark the SPR

method against the MMDA on both real and synthetic datasets. To ensure the comparison

is fair, both methods use the same initial point and the same distance matrices Aij which

are computed based on [4]. Other parameter settings of the MMDA are set to their default

values. Following [4], we conduct 100 independent experiments on 10-dimensional syn-

thetic data from seven classes. For each class i, a mean vector ηi ∈ R10 is sampled from

10-dimensional zero mean Gaussian distribution with co-variance matrix 2I10 and then a

pair of training and testing sets, each with 100 members, is generated based on the Gaussian

distribution N (ηi, I10).

To compare the classification error rate, we project each test set into subspaces with

varying dimensions, learned on its corresponding training set. The projected instances are

then classified using the nearest mean classifier. Figure 3.2 (left) shows the average clas-

sification error rate with respect to the reduced dimensionality on the synthetic datasets.

To run the experiment on the synthetic datasets, we set µ to 100 and 200 for SPR-S and

SPR-Q, respectively. Moreover, we conduct this experiment on the YALE dataset consist-

ing of 165 frontal face images of 15 individuals under different illumination and lightening

conditions [142]. Each image is of size 32 × 32 pixels. The results of this experiment are

illustrated in Figure 3.2 (right). According to Figure 3.2, SPR-S and SPR-Q perform on
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Figure 3.2: Performance of SPR comparing to MMDA [4] on left: synthetic dataset, right:
YALE dataset [5]. Best viewed in color.

par or better than the MMDA algorithm on both real and synthetic datasets in the problem

of discriminative dimensionality reduction. In the experiment on the YALE dataset, we

set µ to 5000 and 10000 for SPR-S and SPR-Q, respectively. To qualitatively compare the

methods, Figure 3.1 visualizes the results of projecting a randomly chosen training set from

the synthetic dataset on the 2D space. Observe that comparing to the MMDA method, the

SPR-based algorithms learn more discriminative 2D representations that are suitable for

classification tasks.

To assess the sensitivity of the SPR algorithm with respect to the parameter µ, we

perform the discriminative dimensionality reduction experiment with m = 2 on YALE

dataset and report the results in Figure 3.3 for various choices of µ. Observe that the

final solution obtained by the proposed algorithm is not very sensitive to the choice of µ.

According to the figure, the SPR-S requires smaller values of µ to recover feasible points,

e.g. µ = 5000, while SPR-Q fails to find feasible points for such choice of µ. Moreover, it

can be seen that if µ exceeds a certain threshold, both SPR-S and SPR-Q provide the same

sequence of feasible points.
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Figure 3.3: Sensitivity analysis of SPR-S (left) and SPR-Q (right) with respect to different
choices of parameter µ for the discriminative dimensionality reduction problem, where
m=2. This experiment is performed on the YALE dataset. Best viewed in color.

3.3.2 Experiment II: Graph Clustering

Given a weighted graph G with n vertices, the graph clustering problem aims to par-

tition G into a set of sub-graphs such that the vertices within each one are more densely

connected to each other than those belonging to different sub-graphs. Inspired by the

well-known spectral clustering technique [143], this experiment incorporates a set of non-

negative constraints to formulate the graph clustering problem as the following optimiza-

tion [44]:

minimize
P∈Rn×m

〈L,PP>〉 (3.13a)

subject to P>P = Im, (3.13b)

P ≥ 0, (3.13c)

where L denotes the Laplacian matrix of the weighted graph G and ≥ is the element-wise

inequality operator. Comparing to the spectral clustering, formulation (3.13a) – (3.13c)

offers a more interpretable clustering framework which requires no further post-processing

steps to identify the cluster members. Given
∗
P , the optimal solution of the above problem,

each vertex i is assigned to a cluster with label argmax
j

∗
Pij . [44] proposed a fast and

scalable heuristic, denoted by ONGR, to solve large-scale instances of the form (3.13a) –
44



Dataset n Dim. m ONGR SPR-S SPR-Q

Iris 150 4 3 79.84 86.71 81.23
Spiral 312 2 3 87.44 95.76 94.15
Jain 373 2 2 88.42 92.33 90.26
Compound 399 2 6 74.57 74.25 76.48
R15 600 2 15 86.07 85.36 86.94
Aggregation 788 2 7 87.84 86.39 84.66

Table 3.1: Clustering performance (%) on the UCI datasets [9] and shape sets [10, 11, 12].

(3.13c). Due to the fact that this problem is a special case of (3.1a) – (3.1c), we apply the

SPR algorithm to find the solution of (3.13a) – (3.13c) and use the same procedure as [44] to

create the Laplacian matrixL. To make a fair comparison between the ONGR and SPR, we

use the same initialization for both methods. Table 3.1 reports the clustering performance

of the SPR against [44] on well-known datasets from the UCI machine learning repository

[9] and shape sets [10, 12]. For each dataset, n, Dim, and m refer to the number of sample

points, dimension of each point, and the number of classes, respectively. The scores for

each method is computed by averaging over 30 independent runs for each dataset. As the

results indicate, SPR-S and SPR-Q exhibit better performance compared to [44] on most

of the datasets. Through this experiment, we set µ= 1000 in the SPR algorithm and use

the default parameter settings for the ONGR algorithm.

3.4 Proofs

This section presents the proof of Theorems 3.1 and 3.2. Before proceeding with the

proofs, we provide some prerequisite lemmas.

Using the well-known epigraph technique [13], the non-smooth term g0(P ) in (3.3a)

can be removed by adding a pair of linear constraints and incorporating an additional term

into the objective function. This reformulation of (3.3a) – (3.3d) leads to the following

penalized non-convex problem:
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minimize
P∈Rn×m
t∈Rw

1>t+〈M0,PP
>〉+〈N0,P 〉−µ〈P̌ ,P 〉 (3.14a)

subject to γ̄ :+α(P ) + b ≤ t, (3.14b)

¯
γ :−α(P )− b ≤ t, (3.14c)

λ :〈Mk,PP
>〉+〈Nk,P 〉+qk≤0, k∈K, (3.14d)

Ω :P>P = Im, (3.14e)

with γ̄ ∈ Rw,
¯
γ ∈ Rw, λ ∈ R|K|, and Ω ∈ Sm as the dual variables associated with the

constraints (3.14b), (3.14c), (3.14d), and (3.14e), respectively. Observe that the problems

(3.14a) – (3.14e) and (3.1a) – (3.1c) are equivalent, if µ = 0. In what follows, we show

that under certain conditions, the optimal solution of (3.14a) – (3.14e) can be obtained in

polynomial time via convex relaxation.

The next lemma guarantees the existence of Lagrange multipliers corresponding op-

timal solutions of the problem (3.14a) – (3.14e).

Lemma 3.1. Consider an arbitrary P̌ ∈ Sn,m that satisfies

s(P̌ )− κ dF(P̌ ) > 0. (3.15)

If the following inequality holds true,

µ > 4β[κ−1s(P̌ )− dF(P̌ )]−2, (3.16)
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then for every primal optimal pair (
∗
P ,

∗
t) of (3.14a) – (3.14e), there exists Lagrange multi-

pliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×Rw×R|K|×Sm that satisfy the following Karush–Kuhn–Tucker

(KKT) conditions

∇PL(
∗
P ,

∗
t,
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) = 0, (3.17a)

1 +
∗
γ̄ +

∗

¯
γ = 0, (3.17b)

∗
γ̄ ◦ (+α(

∗
P ) + b−

∗
t) = 0, (3.17c)

∗

¯
γ ◦ (−α(

∗
P )− b−

∗
t) = 0, (3.17d)

∗
λk(〈Mk,

∗
P
∗
P>〉+ 〈Nk,

∗
P 〉+ qk) = 0 k ∈ K, (3.17e)

∗
γ̄ ≤ 0,

∗

¯
γ ≤ 0,

∗
λ ≤ 0, (3.17f)

where L(P , t, γ̄,
¯
γ,λ,Ω) represents the Lagrangian function of (3.14a) – (3.14e), defined

as

L(P, t,γ̄,
¯
γ,λ,Ω),1>t+〈M0,PP

>〉+〈N0,P 〉−µ〈P̌ ,P 〉

− γ̄>(α(P )+b−t) +
¯
γ>(α(P )+b+t)

−
∑
k∈K

λk(〈Mk,PP
>〉+〈Nk,P 〉+qk)−〈Ω,P>P−Im〉.

and, β and κ are defined in (3.8a) and (3.8c).

The next lemma provides an upper bound on the Lagrange multipliers of the problem

(3.14a) – (3.14e), that will be used to show that this problem can be relaxed to (3.5a) – (3.5e)

with no effect on the solution.

Lemma 3.2. Consider an arbitrary P̌ ∈ Sn,m that satisfies (3.15) and let µ satisfy (3.16).

For every solution (
∗
P ,

∗
t) of (3.14a) – (3.14e), there exist Lagrange multipliers (

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈

Rw×Rw×Rp×Sm that satisfy the KKT conditions (3.17a) – (3.17f) as well as the inequalities:

−1>
∗
λ

µ
≤ dF(P̌ ) + µ−1ψ+2

√
βµ−1

s(P̌ )− κ(dF(P̌ ) + 2
√
βµ−1)

(3.18a)

∥∥ 2

µ

∗
Ω+Im

∥∥
F
≤κ2

(
− 1>

∗
λ

µ

)
+dF(P̌ )+µ−1ψ+2

√
βµ−1 (3.18b)
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where constant κ2 is given by

κ2 , 2 max
k∈K
{‖Mk‖F}+ max

k∈K
{‖Nk‖F}, (3.19)

and β, ψ and κ are defined in (3.8a) – (3.8c).

Using Lemma 3.2, the next lemma offers conditions to guarantee that penalized re-

laxations give feasible points for (3.14a) – (3.14e).

Lemma 3.3. Consider an initial point P̌ ∈ Sn,m and µ > 0. Let (
∗
P ,

∗
t) be a primal optimal

solution of (3.14a) – (3.14e) with the corresponding Lagrange multipliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) that

satisfy the KKT conditions (3.17a) – (3.17e). Define

ε ,
1

4

(
1− dF(P̌ )− κ dF(P̌ )

s(P̌ )− κ dF(P̌ )

)
. (3.20)

If the following inequalities hold true

2µ−1‖M0‖ ≤ ε, (3.21a)

−1>
∗
λ

µ
≤ dF(P̌ )

s(P̌ )− κ dF(P̌ )
+

ε

2κ2

, (3.21b)

∥∥ 2

µ

∗
Ω + Im

∥∥
F
≤ κ2

(
− 1>

∗
λ

µ

)
+ dF(P̌ ) + ε, (3.21c)

then the pair (
∗
P ,

∗
P
∗
P>) is the unique primal solution of the penalized convex relaxation

(3.5a) – (3.5d), where κ and κ2 are defined in (3.8c) and (3.19), respectively.

Proof of Theorem 3.1. Due to the main assumption, it is straightforward to verify the fol-

lowing three inequalities:

µ−1ψ <
√
βµ−1, (3.22a)

2κ
√
βµ−1 < 13−1s(P̌ ), (3.22b)√
βµ−1 < 12−1. (3.22c)
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Consider an arbitrary optimal solution (
∗
P ,

∗
t) of (3.14a) – (3.14e). The point

∗
P is conse-

quently feasible for (3.1a) – (3.1c). Therefore dF(P̌ ) = 0 and the inequalities (3.15) and

(3.16) are satisfied. According to Lemma 3.2, there exist Lagrange multipliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈

Rw×Rw×Rp×Sm corresponding to (
∗
P ,

∗
t) that satisfy the KKT conditions (3.17a) – (3.17f)

as well as the inequalities (3.18a) and (3.18b). Based on Lemma 3.3 and since dF(P̌ ) = 0,

in order to prove the theorem, it suffices to show that:

2µ−1‖M0‖ ≤ 4−1 (3.23a)

−1>
∗
λ

µ
≤ 4−1

2κ2

(3.23b)

∥∥ 2

µ

∗
Ω + Im

∥∥
F
≤ κ2

(
− 1>

∗
λ

µ

)
+ 4−1. (3.23c)

• (3.23a) is the direct consequence of (3.22a):

2µ−1‖M0‖ ≤ µ−1ψ ≤
√
βµ−1 ≤ 12−1<4−1. (3.24)

• (3.23b) is the direct consequence of (3.18a), (3.22b), and (3.22c):

−1>
∗
λ

µ
≤ µ−1ψ+2

√
βµ−1

s(P̌ )−2κ
√
βµ−1

≤
√
βµ−1+2

√
βµ−1

s(P̌ )−2κ
√
βµ−1

(3.25a)

≤
√
βµ−1 + 2

√
βµ−1

s(P̌ )− 13−1s(P̌ )
=

3
√
βµ−1

(1− 13−1)s(P̌ )
(3.25b)

≤ 3× 13−1(2κ)−1s(P̌ )

(1− 13−1)s(P̌ )
=

4−1

2κ
<

4−1

2κ2

. (3.25c)

• (3.23c) can be concluded from (3.18b), (3.22a), and (3.22c):

∥∥ 2

µ

∗
Ω+Im

∥∥
F
≤κ2

(
−1>

∗
λ

µ

)
+µ−1ψ+2

√
βµ−1 (3.26a)

≤κ2

(
−1>

∗
λ

µ

)
+3
√
βµ−1 (3.26b)

≤κ2

(
−1>

∗
λ

µ

)
+4−1. (3.26c)
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Hence, according to Lemma 3.3, the point (
∗
P ,

∗
P
∗
P>) is the unique optimal solution for the

penalized relaxation (3.5a) – (3.5e), for which the relaxed constraints (3.3c) and (3.3d) are

satisfied. Finally, due to the feasibility of pair (P̌ , P̌ P̌>), we have:

f̄0(P̌)+g0(P̌)−µm=f0(P̌,P̌ P̌>)+g0(P̌)−µ〈P̌,P̌ 〉 (3.27a)

≥f0(
∗
P,

∗
P
∗
P>)+g0(

∗
P)−µ〈

∗
P,P̌ 〉 (3.27b)

≥ f̄0(P̌ )+g0(P̌ )−µm (3.27c)

and the proof is completed.

Proof of Theorem 3.2. Consider an arbitrary optimal solution (
∗
P ,

∗
t) of (3.14a) – (3.14e).

Due to the main assumption, (3.15) is satisfied and if µ is large, then (3.16) is satisfied as

well. Moreover, according to Lemma 3.2, there exist Lagrange multipliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈

Rw×Rw×Rp×Sm corresponding to (
∗
P ,

∗
t) that satisfy the KKT conditions (3.17a) – (3.17f)

as well as the inequalities (3.18a) and (3.18b). According to Lemma 3.3, the proof follows

directly from the fact that

ε =
1

4

(
1− dF(P̌ )− κ dF(P̌ )

s(P̌ )− κ dF(P̌ )

)
> 0, (3.28)

and therefore, if µ is sufficiently large, the inequalities (3.18a) and (3.18b) conclude (3.21a) –

(3.21c). As a result, if µ is large, (
∗
P ,

∗
P
∗
P>) is the unique primal solution of the penalized

convex relaxation (3.5a) – (3.5d).

3.5 Conclusions

This work introduces convex relaxations for solving a broad class of non-convex

and non-smooth optimization problems involving orthogonality constraints. The proposed

approach relies on solving a sequence of penalized convex relaxations to find feasible and

near-globally optimal points for a given non-convex orthogonality-constrained problem.
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Experimental results on two fundamental problems in machine learning demonstrate the

potential and effectiveness of the proposed approach in solving practical problems.
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CHAPTER 4

Convex Relaxations for Training Neural Networks

This chapter investigates the application of convex optimization in training neural

networks (NNs). Our main contribution is a convex relaxation tailored for NNs that can

serve as an alternative to the existing relaxations from the area of nonlinear optimization.

We prove that by incorporating a family of regularization terms the proposed relaxation is

guaranteed to be exact, using which the training task can be cast as a convergent sequence

of convex problems. This approach improves upon the common-practice gradient-based

methods by enabling the incorporation of hard constraints. Lastly, the potential of the

proposed approach is corroborated on the problem of imbalanced classification.

4.1 Introduction

Neural networks (NNs) have been demonstrated to have special abilities in extract-

ing sophisticated information from raw data. This renders them as suitable tools for a wide

variety of applications in artificial intelligence and machine learning including classifica-

tion [70, 71, 72, 73] and depth estimation [74, 75], image-to-image translation [144, 145]

among many. Despite the widespread use of NNs, a complete understanding of their suc-

cess is still lacking and theoretical studies are mainly limited to the networks with special

architectures [80, 83].

The primary challenge in training NNs arises from the non-convexity of the train-

ing problems. Gradient-based approaches such as stochastic gradient descent, conjugate

gradient, and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) are among

the most popular numerical methods for training NNs [146, 147, 32, 33, 148, 149]. These

52



approaches rely descent directions obtained via recursively calculation of gradient with

respect to network parameter. There is considerable theoretical and empirical evidence in-

dicating the effectiveness of the gradient-based methods in converging to global optimality

(or satisfactory local optimality), under various assumptions [150, 151, 152]. However,

for general network architectures, gradient-based methods often suffer from several prob-

lems such as the vanishing/exploding gradient phenomena. Moreover, they cannot incor-

porate hard constraints which have been proven to be advantageous in many applications

[153, 154].

In the light of empirical success of NNs, a question arises as to whether more so-

phisticated optimization techniques can be leveraged to train these networks. In response

to this question, we investigate a well-studied technique in nonlinear optimization litera-

ture, namely convex relaxation, which reduces non-convex problems into convex surrogate.

Among various relaxation approaches, semidefinite programming (SDP) [49] stands out

for offering high-quality solutions. However, its applicability is limited to moderate size

problems since they increase the problem size quadratically and require computationally

expensive conic inequalities. Moreover, in the presence of constraints, the optimal solu-

tions of these relaxations are not necessarily feasible for the original non-convex problem

[155].

4.1.1 Contributions

In this work, we aim to establish a bridge between the areas of artificial neural net-

works and convex optimization by developing a powerful and flexible training approach.

To serve this purpose, we first transform the training problem into an equivalent constrained

optimization. Then, we convexify this constrained optimization by means of a novel con-

vex quadratic relaxation and the well-known difference of convex programming technique.
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To ensure that the convexified problem provides a feasible point to the training problem, a

novel regularization term is incorporated into the objective of the relaxed problems.

On the theoretical front, we derive certain conditions under which the regularized

relaxation is guaranteed to provide feasible points for the training problem. Moreover, we

theoretically prove that, if certain assumptions are met, solving a sequence of the regu-

larized problem results in a convergent sequence of feasible points whose objective values

monotonically improve. The proposed approach, called Convex-NN, offers various theoret-

ical and practical advantages: it jointly estimates the network parameters, admits additional

convex constraints, and provides a flexible framework for further study and exploration.

The potential of the proposed approach is corroborated on the problem of imbalanced clas-

sification.

4.1.2 Notation

Throughout this work, symbols Rn, Rn×m, and Sn denote the set of real n-dimensional

vectors, real n×m matrices, and n×n real symmetric matrices, respectively. For a given

matrix a, the notations aij and ai∗ respectively refer to the (i, j)th element and the ith row

of a. In addition, given matrices a and b of the same size, symbols a ◦ b and 〈a, b〉 stand

for their Hadamard product and inner product. Notation ‖.‖p refers to either the matrix

norm or the vector norm depending on the context, ‖.‖F shows the Frobenius norm, and |.|

indicates the absolute value. Symbols tr{.} and (.)>, respectively, denote the trace operator

and transpose operator. The notation In represents the index set {1, . . . , n}. Notations 1n

and In refer to n× 1 column vector of all ones and identity matrix of size n× n.

4.2 Problem Formulation

Consider a general neural network consists of L layers, each of which is defined by a

linear function with weightswl∈Rnl-1×nl and biases bl∈Rnl, and nonlinear activation function

54



hl : R→R, where nl denotes the number of hidden units in layer l. This network can be

seen as a mapping function f( · ;w, b): Rn0→RnL that maps the input vector x ∈ Rn0 into

the following output:

f(x;w, b) = wL>hL-1(...w2>h1(w1>x+ b1)...) + bL, (4.1)

where b={bl}l∈IL and w={wl}l∈IL . Following the common practice, we assume that hL

is the identity function [156, 157]. Let {(xi,yi) ∈ Rn0 × RnL}i∈Im be a set of m data

points where xi∈Rn0 and yi∈RnL denote the ith feature data and its corresponding label,

respectively. Training the neural network (4.1) is tantamount to learning parametersw and

b such that the misfit between the predicted output and the true labels is minimized in terms

of a desired loss function. Using the `2-norm loss function, this problem can be formulated

as:

minimize
w,b

C(w, b), (4.2)

where C(w, b) =
∑

i∈Im‖f(xi;w, b)−yi‖2
2. The training problem (4.2) is non-convex and

computationally challenging, due to nonlinearity of the nested function f [152, 158, 159].

Despite the efficiency of common-practice local search algorithms for solving the problem

(4.2), they suffer from several issues including vanishing gradients, wherein the gradient

elements corresponding to the network parameters in early layers become considerably

small and provide little information about the loss function, resulting in slow convergence

[78, 160, 161, 156].

To break the functional dependencies of function f , define auxiliary variables z=

{zl ∈ Rnl×m}l∈IL and a = {al ∈ Rnl×m}l∈IL-1
, where zl and al, respectively, account for

the output of layer l linear transformation and nonlinear activation function. Using the

auxiliary variables, the problem (4.2) can be equivalently written as:
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minimize
w,b,z,a

‖zL − y‖2

F
(4.3a)

subject to zl = wl>al-1 + bl1>m, l ∈ IL, (4.3b)

al = hl(zl), l ∈ IL-1, (4.3c)

where a0 ∈ Rn0×m and y ∈ RnL×m are fixed matrices obtained by concatenating column

vectors {xi}i∈Im and {yi}i∈Im , respectively. Notice that the problem (4.3a) – (4.3c) offers a

more interpretable reformulation of (4.2) in which bilinear terms {wl>al-1}l∈IL and nonlin-

ear activation functions {hl}l∈IL-1
are the sources of nonconvexity. In this work, we trans-

form (4.3a) – (4.3c) into a class of computationally tractable convex programs by means

of a novel relaxation and the classical difference of convex programming technique. The

following section offers brief survey of the relevant literature.

4.3 Related Work

There has been a recent surge of interest in developing convex formulations of neural

network and its variant [162, 163, 164, 161, 165]. [162] showed that training a neural

network can be seen as a convex optimization problem involving an infinite number of

parameters. [164] developed a convex formulation of multi-layer learning using normalized

kernels. [81] cast the problem of training a convolutional neural network as a low-rank

minimization problem which is further relaxed to obtain a convex formulation.

From a different viewpoint, an alternative line of research has considered replacing

the training problem (4.2) with a constrained non-convex problem of form (4.3a) – (4.3c)

or its variants [161, 156, 166]. [161] proposed the method of auxiliary coordinates (MAC)

which introduces auxiliary variables as a proxy of the network activations and then incor-

porate a quadratic penalty term into the objective function to approximately impose the

non-convex relation between them. Closely related to MAC, [156] proposed to solve the

problem (4.3a) – (4.3c) using a highly parallelizable approach based on the alternating di-
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rection method of multipliers. The proposed approach alternatively solves a sequence of

minimization sub-steps that each enjoys a closed-form solution. However, their proposed

approach is not necessary compatible with additional hard constraints.

4.4 Convexified Neural Networks

This section describes our proposed approach, called convexified neural network

(Convex-NN). We first introduce a computationally tractable convex relaxation for the

problem (4.3a) – (4.3c). Then, we present a regularization method to ensure that the so-

lution of the relaxed problem satisfies the constraints of the original problem. Finally, we

devise a sequential approach to obtain high-quality feasible points.

4.4.1 Convex Relaxation

Problem (4.3a) – (4.3c) is non-convex and possibly intractable. The first source of

non-convexity arises from the presence of bilinear products wlal-1. In order to tackle the

non-convexity, we propose a novel convex relaxation which transforms the constraint (4.3b)

to a set of convex quadratic inequalities. For every l∈IL, let W l∈Rnl×nl and Al-1∈Rm×m

account for the quadratic termswl>wl and al-1>al-1, respectively. The constraint (4.3b) can be

equivalently reformulated as: W l (zl−bl1>m)

(zl−bl1>m)> Al-1

=
wl>

al-1>

[wl al-1

]
, (4.4)

for every l ∈ IL. To obtain a computationally tractable surrogate, we relax the constraint

(4.4) to the following quadratic constraints:
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W l

ii +Al-1

jj +2 (zlij−bli)≥‖wl

∗i +a
l-1

∗j ‖2, i, j∈Inl, Im (4.5a)

W l

ii +Al-1

jj −2 (zlij−bli)≥‖wl

∗i−al-1

∗j ‖2, i, j∈Inl, Im (4.5b)

W l

ii ≥‖wl

∗i‖2, i∈Inl (4.5c)

Al-1

jj ≥‖al-1

∗j ‖2, j∈Im (4.5d)

Notice that the off-diagonal elements of W l and Al-1 do not appear in the relaxed inequal-

ities (4.5a) – (4.5d). Hence, the proposed relaxation requires a single auxiliary variable W l

ii

for every hidden unit i∈Inl and a single auxiliary variable Al-1

jj for each data point j ∈Im.

As a result, the problem size grows linearly with respect to the data points and hidden units.

This is the primary strength of the proposed relaxation compared to the common-practice

methods such as the semidefinite programming relaxations [167].

Definition 4.1. For every l∈IL, defineQ l to be the set of all quadruplets (wl,al-1,W l,Al-1)

that satisfy (4.5a) – (4.5d).

The second source of non-convexity is induced by the non-linearity of the activation

functions {hl}l∈IL-1
, for which we employ the difference of convex (DC) programming

method.

Proposition 4.1. Any energy function with bounded Hessian can be decomposed as a dif-

ference of convex functions [168].

Proposition 4.1 states that every activation function hl with bounded Hessian can be

decomposed as hl(zl)=pl(zl)−ql(zl) where pl :R→ R and ql :R→ R are convex functions.

To illustrate, as shown in Figure 4.1, the widely-used Sigmoid activation function hsig(z)=

1
1+e−z

can be written as the difference of convex functions psig(z)=g(z)− z
4
−1

2
and qsig(z)=

g(−z)−1, where

g(z)=


1

1+e−z z ≤ 0

z
4 + 1

2 z > 0

.

58



Sigmoid

g1
g2
g3

70 % 80 % 90 % 100 %
30

40

50

60

Proportion of the majority class

Te
st

er
ro

r%

Baseline
Random
Proportion
Convex-NN

Figure 4.1: Left: Convex-decomposition of Sigmoid activation function. Sigmoid function
can be cast as difference of convex functions g1 + g2 and −g3. Right: Comparison of
Convex-NN with hard constraint (4.9) to the existing tricks for the imbalance classification
problem.

Similarly, the Softplus activation function hsoft(z) = 1
τ

log(1+eτz) [169] which is a smoothed

version of the ReLU function, can be decomposed as psoft(z)− qsoft(z) where psoft(z) =

1
τ

log(1+eτz) and qsoft(z) = 0.

Given the decompositions hl(zl) = pl(zl)− ql(zl), for every l∈IL-1, we can cast the

constraint (4.3c) into the following equations:

ul + al

2
= pl(zl) ∧ ul − al

2
= ql(zl), ∀l ∈ IL-1,

where for every l ∈ IL-1, the auxiliary variable ul∈Rnl×m accounts for pl(zl) + ql(zl). Next,

we relax the above equations to the following convex inequalities:

ul + al

2
≥ pl(zl) ∧ ul − al

2
≥ ql(zl), ∀l ∈ IL-1. (4.6)

Definition 4.2. For every l∈IL-1, define U l to be the set of all triplets (zl,al,ul) that satisfy

equations (4.6).

Given the proposed convex relaxations, the relaxed problem can be formulated as an

optimization problem with objective function (4.3a) and convex constraints (4.5a) – (4.5c)

and (4.6). In practice, the optimal solution obtained by solving the relaxed problem may

not be feasible for the original non-convex problem (4.3a) – (4.3c). To provide insight into
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the extent of this issue, consider a trivial in-feasible point (w, b, z,a) for the problem

(4.3a) – (4.3c), in which all variables except zL are equal to zero, and zL = y. While

this solution minimizes objective function (4.3a), it cannot be considered as a meaningful

solution for the original training problem; since all the weight and bias parameters are equal

to zero. Next, we address this issue by incorporating a regularization term into the objective

function of the relaxation.

4.4.2 Regularization

In order to enforce the equality constraints (4.3b) – (4.3c), we introduce a regular-

ization technique that promotes feasible and meaningful solutions for the problem (4.3a) –

(4.3c). To this end, consider arbitrary weights and biases w̌ = {w̌l ∈ Rnl-1×nl}l∈IL and

b̌ = {b̌l ∈Rnl}l∈IL . Let ǎ0 , a0 and define:

žl , w̌l>ǎl-1 + b̌l1>m, l ∈ IL, (4.7a)

ǎl, pl(žl)− ql(žl), ǔl, pl(žl) + ql(žl), l ∈ IL-1. (4.7b)

We employ regularization terms of the form

R̄(w, b,a,u, z,W ,A) ,
∑
l∈IL

R̄l

1(w
l, bl,al-1,W l,Al-1) +

∑
l∈IL-1

R̄l

2(a
l,ul, zl).

whose first and second terms enforce the equations (4.3b) and (4.3c), respectively. Define

R̄l

1(w
l, bl,al-1,W l,Al-1) , µl

w × tr{W l − 2w̌lwl> + w̌lw̌l>}

+ µl

h × tr{Al-1− 2ǎl-1al-1> + ǎl-1ǎl-1>}+ µl

b × ‖bl− b̌l‖2,

for every l ∈ IL and define

R̄l

2(a
l,ul, zl), µl

p × tr
{(ul − ǔl) + (al − ǎl)

2
1m×nl − ṗ(žl)(zl − žl)

}
+ µl

q × tr
{(ul − ǔl)− (al − ǎl)

2
1m×nl − q̇(žl)(zl − žl)

}
,

for every l∈IL-1, where µl

w, µl

h, µ
l

b, µ
l

p and µl

q are positive constants. Using the introduced

regularization functions, the regularized relaxation problem can be formulated as:
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minimize
w,b,z,a,u
W,A

‖zL−y‖2

F
+η×R̄(w,b,a,u,z,W,A) (4.8a)

subject to (wl,al-1,W l,Al-1) ∈ Q l, l∈IL, (4.8b)

(zl,al,ul) ∈ U l, l∈IL-1, (4.8c)

where the parameter η > 0 controls the importance of the regularization term. Observe that

the problem (4.8a) – (4.8c) is convex and can be solved effectively using standard solvers.

The following theorem provides a sufficient condition to guarantee that the proposed

regularized relaxations produce feasible points for the original non-convex problem (4.3a)

– (4.3c).

Theorem 4.1. If η̌ is sufficiently large, then the optimal solution (
∗
w,

∗
b,
∗
z,
∗
a,

∗
u,

∗
W,

∗
A) of

the convex problem (4.8a) – (4.8c) satisfies the non-convex constraints (4.3b) and (4.3c).

Moreover, C(
∗
w,

∗
b) ≤ C(w̌, b̌).

Proof. See Section 4.7 for the proof.

In the light of Theorem 4.1, the relaxation of non-convex constraints (4.3b) – (4.3c)

to (4.8b) – (4.8c) is lossless if η is sufficiently large.

4.4.3 Sequential Regularized Relaxation

In this section, we propose Algorithm 2 to infer feasible and high-quality points

for the non-convex problem (4.3a) – (4.3c) by solving the regularized relaxation problem

(4.8a) – (4.8c) sequentially. The algorithm is terminated when the improvement of the ob-

jective value, between two consecutive round, is less than a positive value ε (e.g. ε = 10-7).

Notice that the main purpose of this work is to study and investigate the applications of con-

vex relaxation in training neural networks and it is not our intention to compete with the

gradient-based approaches.
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Algorithm 2 Sequential Regularized Relaxation.

Input: w̌, b̌, and a fixed η > 0

1: repeat

2: Obtain ∗
w,

∗
b, ∗z, ∗a, and ∗

u by solving the optimization problem (4.8a) – (4.8c).

3: (w̌, b̌)← (
∗
w,

∗
b).

4: until stopping criteria is met.

Output: w̌, b̌

The following theorem offers a sufficient condition for the convergence of Algo-

rithm 2 to a minimizer of the original training problem (4.2).

Theorem 4.2. Let (wopt, bopt) be an isolated minimizer of (4.2). There exists ε̄>0 such that

if ‖wopt− w̌‖F+‖bopt− b̌‖F<ε̄ and η is sufficiently large, then the sequence of weight and

bias parameters generated by Algorithm 2 converges to (wopt, bopt).

Proof. See Section 4.7 for the proof.

4.5 Experiments

This section demonstrates the potential of sequential convex relaxation in imposing

hard constraints on training problems. There has been a recent surge of interest in impos-

ing task-specific constraints on the output of neural networks for improving the quality of

predictions [153, 170, 154, 171]. Such constraints are often incorporated as penalty terms

into the loss function. Despite the simplicity and empirical success, this strategy suffers

from two major drawbacks. Firstly, adjusting relative weights between the loss function

and penalty terms can be extremely challenging. Secondly, there is no guarantee that the

resulting solution satisfies the hard constraints. Recently, [170] has demonstrated that re-

placing the soft constraints by the hard ones improves the behavioral performance of neural

networks and can effectively address the aforementioned drawbacks.
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We consider the problem of imbalanced classification [172, 173, 174, 175] in which

the training samples are distributed highly unbalanced in different classes. The traditional

classifiers exhibit poor performance in solving this problem as they tend to misclassify the

minority class instances as the majority. In what follows, we present experimental results

that compare the performance of Convex-NN against two commonly used tricks for the

problem of imbalanced classification. Notice that, it is not the intention of this work to

compete with the existing algorithms that specifically target the imbalanced classification

problem, but rather to show the potential and applicability of Convex-NN on real-world

problems. We use the Yeast dataset from the UCI machine learning repository [176] and

subsample classes 2 and 3 to create an imbalanced binary classification problem. We train

a simple neural network architecture with two fully-connected hidden layers of 6 nodes

each, and Sigmoid activation function. Constraints of the form:∑
i∈Cj

‖zL∗i − yi ‖1
≤ κj, (4.9)

are imposed to reduce the effect of unbalanced training samples, where zL

∗i denotes the

ith column of zL and index set Cj ⊆ Im refers to the training samples belonging to the

jth class. Intuitively, the constraint (4.9) ensures that the misfit between predicted outputs

and the true labels for class j does not exceed κj. We impose the constraint (4.9) on both

majority and minority classes with κj = 0.5|Cj|. This enables Convex-NN to automatically

assign the relative weights and avoid generating a biased classifier.

Following [175], we compare our results with conventional techniques for the imbal-

anced classification problem: 1) Proportion method weights the training samples of each

class in proportion to the inverse of the class size; 2) Random approach weights the sam-

ples based on a rectified Gaussian distribution. We run these methods on the same network

architecture and employ the Adam optimizer [33] with β1 = 0.9, β2 = 0.999, and learning

rate 0.005 to train the network. Note that these parameters are well-tuned to obtain the
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best performance of the Adam optimizer. The results of this experiment are demonstrated

in Figure 4.1 as the value of test classification error across various imbalance ratios. The

scores in Figure 4.1 are obtained by averaging 10 independent runs with random splits and

random starting points, where the weights are randomly initialized using He’s initializer

[177] and the bias parameters are all set to zero. Observe that imposing hard constraints

using Convex-NN has resulted in better test accuracy.

4.6 Conclusion

In this work, we presented a novel convexification approach, called Convex-NN,

which reduces the problem of training neural networks into solving a sequence of con-

vex programs. We theoretically proved that under certain assumptions, the proposed ap-

proach results in a convergent sequence of feasible points whose objective values monoton-

ically improve. Convex-NN improves upon the common-practice gradient-based methods

by jointly estimating the network parameters and admitting additional convex constraints.

Numerical results corroborated the potential of the proposed approach on the problem of

imbalanced classification.

4.7 Proofs

This section presents detailed proofs of Theorem 4.1 and 4.2. Before proceeding to

the proofs, we introduce some prerequisite definitions and notations.

Definition 4.3. For every r ∈ IL, define function sr as

sr({wl,bl}rl=1) , w
r>hr-1

(
· · ·h1(w1>x+b11>m)· · ·)+br1>m,

which denotes the output of layer l linear transformation.

Definition 4.4. Define function R as:

R(w,b) ,
∑
r∈IL

Rr

1({wl, bl}rl=1) +
∑
l∈IL-1

Rr

2({wl, bl}rl=1),
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where Rr

1 for every r ∈ IL is defined as

Rr

1({wl, bl}rl=1) , µr

w × ‖wr − w̌r‖2F + µr

b × ‖br − b̌r‖2F + µr

h × ‖hr(sr)− hr(šr)‖2F,

and Rr

2 for every r ∈ IL-1 is formulated as

Rr

2({wl, bl}rl=1) ,µ
r

ptr
{(
pr(sr)− pr(šr)

)
1m×nr − ṗr(šr)(sr − šr)>

}
+µr

qtr
{(
qr(sr)− qr(šr)

)
1m×nr − q̇r(šr)(sr − šr)>

}
,

where sr and šr refer to sr({wl, bl}rl=1) and sr({w̌l, b̌l}rl=1), respectively.

To prove Theorem 4.1, consider a regularized formulation of the problem (4.2) as

minimize
w,b

C(w, b) + η ×R(w,b). (4.10)

It can be easily verified that problems (4.10) and (4.2) are equivalent if η = 0. In what

follows, we state a lemma to show that for appropriate choices of η, the optimal solution of

(4.10) can be obtained by solving convex program (4.8a) – (4.8c) whose solution approxi-

mates the optimal solution of (4.3a) – (4.3c).

Consider the following reformulation of (4.3a) – (4.3c):

minimize
w,b,u,a,z
W,A

‖zL−y‖2F + η×R̄(w,b,a,u,z,W,A) (4.11a)

subject to

 W l zl−bl1>m

(zl−bl1>m)> Al-1

=
wl>

al-1>

[wl al-1

]
l∈IL, (4.11b)

ul+ al

2
= pl(zl) l∈IL, (4.11c)

ul− al

2
= ql(zl) l∈IL, (4.11d)

where matrices W l and Al-1, respectively, account for wl>wl and al-1>al-1, and functions pL

and qL are chosen such that hL becomes identity function. Notice that if η = 0, the problems
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(4.3a) – (4.3c) and (4.11a) – (4.11d) are equivalent and have the same minimizers. For every

l ∈ IL, define matrices

Λl,

λl

W λl

z

λl

z

>
λl-1

A

∈Snl+m, λ
l

p∈Rnl×m, λl

q∈Rnl×m

as the dual variables associated with (4.11b), (4.11c), and (4.11d), respectively. For ease

of notation, let
∗
λA,

∗
λW ,

∗
λz,

∗
λp, and

∗
λq denote the set of all

∗
λl

A,
∗
λl

W ,
∗
λl

z,
∗
λl

p,
∗
λl

q, for every

l ∈ IL, respectively. By augmenting constraints (4.11b) – (4.11d) to the objective function

(4.11a), we can verify that for every l∈IL,
∗
λl

A = ηµl

hI ,
∗
λl

W = ηµl

wI , and the remaining dual

variables for an arbitrary minimizer (
∗
w,

∗
b,
∗
u,

∗
a,
∗
z,

∗
W,

∗
A) can be computed recursively as

follows:
∗
λl

z =
∗
wl+1> ∗λl+1

z ◦ ḣl(
∗
zl) +

∗
clḣ +

∗
clp +

∗
clq, (4.12a)

∗
λl

p =
∗
wl+1> ∗λl+1

z +
∗
clh + ηµl

p, (4.12b)

∗
λl

q = − ∗wl+1> ∗λl+1

z −
∗
clh + ηµl

q, (4.12c)

∗
clp = ηµl

p

(
ṗl(
∗
zl)− ṗl(žl)

)
, (4.12d)

∗
clq = ηµl

q

(
q̇l(
∗
zl)− q̇l(žl)

)
, (4.12e)

∗
clh = 2ηµl

h

(
hl(
∗
zl)− hl(žl)

)
, (4.12f)

∗
clḣ =

∗
clh ◦ ḣl(

∗
zl), (4.12g)

for every l ∈ IL-1 and
∗
λL

z = 2(
∗
zL−y)+

∗
cLḣ +

∗
cLp +

∗
cLq ,

∗
λL

p =
∗
cLh + ηµL

p , and
∗
λL

q =− ∗cLh + ηµL

q . In

what follows, we aim to show that the optimal dual solutions of (4.11a) – (4.11d) can serve

as certificate of optimality for the solutions of relaxed problem (4.8a) – (4.8c).

Lemma 4.1. Let (w̌, b̌) be an initial point. For every layer l ∈ IL, there exist continuous

functions θlz(w, b) and θlpq(w, b) such that the inequalities

1

η
‖
∗
λl

z‖F ≤
1
√
η
θlz(w̌, b̌), ∀l ∈ IL, (4.13a)

1

η
‖ ∗wl+1>∗λl+1

z +
∗
clh‖max

≤ 1
√
η
θlpq(w̌, b̌), ∀l ∈ IL-1. (4.13b)
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are satisfied for every minimizer (
∗
w,

∗
b,
∗
u,

∗
a,
∗
z,

∗
W,

∗
A) of (4.11a) – (4.11d) and every η > 1.

Proof. Refer to the supplementary materials.

Proof of Theorem 4.1. Consider an arbitrary minimizer (
∗
w,

∗
b,
∗
u,

∗
a,
∗
z,

∗
W,

∗
A) of the prob-

lem (4.11a) – (4.11d) with the corresponding Lagrange multiplier (
∗
λW ,

∗
λA,

∗
λz,

∗
λp,

∗
λq). If

η > (µl

p)
−2θlpq(w̌, b̌)

2, η > (µl

q)
−2θlpq(w̌, b̌)

2,

η > m(µl

h)
−2 θlz(w̌, b̌)

2, η > nl(µ
l

w)−2 θlz(w̌, b̌)
2,

are satisfied for every l ∈ IL, then equations (4.12b) – (4.12c) together with the results of

Lemma 4.1 implies that

µl

p−
∗
λl

p

η
≤
‖ ∗wl+1> ∗λl+1

z +
∗
clh‖max

η
≤
θrpq(w̌, b̌)√

η
< µl

p, (4.15a)

µl

q−
∗
λl

q

η
≤
‖ ∗wl+1> ∗λl+1

z +
∗
clh‖max

η
≤
θrpq(w̌, b̌)√

η
< µl

q, (4.15b)

‖
∗
λl
>

z ‖1
η
≤
‖
∗
λl

z‖F
√
m

η
≤
√
m

η
θlz(w̌, b̌) < µl

h, (4.15c)

‖
∗
λl

z‖1
η
≤
‖
∗
λl

z‖F
√
nl

η
≤
√
nl

η
θlz(w̌, b̌) < µl

w. (4.15d)

According to the inequalities (4.15a) and (4.15b), we can conclude
∗
λl

p > 0 and
∗
λl

q > 0,

for every l ∈ IL. This implies that the relaxation of the non-convex constraints (4.11c)

and (4.11d) into the convex constraints (4.8c) is lossless. Moreover, according to (4.15c)

and (4.15d), for every l∈IL, matrix
∗
Λl is diagonally-dominant and hence the non-convex

constraint (4.11b) can be equivalently relaxed to W l zl−bl1>m

(zl−bl1>m)> Al-1

−
wl>

al-1>

[wl al-1

]
∈DD∗nl+m, (4.16)

where DD∗nl+m denotes the dual cone of the symmetric diagonally-dominant matrices of

size nl +m. Observe that constraint (4.16) is equivalent to the convex constraint (4.8b).

Therefore, optimal solution (
∗
w,

∗
b,
∗
u,

∗
a,
∗
z,

∗
W,

∗
A) can be considered as a minimizer of the
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problem (4.8a) – (4.8c), as well. In addition, due to the convexity of (4.8a) – (4.8c), point

(
∗
w,

∗
b,
∗
u,

∗
a,
∗
z,

∗
W,

∗
A) is a globally optimal solution and the following relations are valid

C(
∗
w,

∗
b) ≤ ‖ ∗zL−y‖2F + η R̄(

∗
w,

∗
b,
∗
z,
∗
a,
∗
u,

∗
W,

∗
A)

≤ ‖žL−y‖2F + η R̄(w̌, b̌, ž, ǎ, ǔ, W̌, Ǎ)

= ‖žL−y‖2F = C(w̌, b̌),

which completes the proof.

Proof of Theorem 4.2. For every δ, ε> 0, define set Aδ as the connected component of

{(w, b) | C(w, b)<C(
∗
w,

∗
b)+δ} that contains (

∗
w,

∗
b) and define Bε,{(w, b)| ‖w−

∗
w‖F+

‖b−
∗
b‖F≤ε}. Due to the fact that (

∗
w,

∗
b) is an isolated local minimizer, there exists a suffi-

ciently small δ̄ such thatAδ̄ contains no local minimizer other than (
∗
w,

∗
b). SinceC is a con-

tinous function on its domain,Aδ̄ is an open set and there exists ε̄>0 such thatBε̄⊆Aδ̄. Define

η̄lpq(w, b) = max{(µl

p)
-2, (µl

q)
-2}θlpq(w, b)2, η̄lz(w, b) = max{m(µl

h)
-2, nl(µ

l

w)
-2}θlz(w, b)2,

and

ηl , max
(w,b)∈Bε̄

{η̄lpq(w, b), η̄lz(w, b)},

whose existence is concluded from the compactness of set Bε̄ and the continuity of func-

tions θlpq and θlz for every l ∈ IL. In addition, define ηmax , max{1, η1, . . . , ηL}. According

to Theorem 4.1, if (w̌, b̌) ∈ Bε̄ and η > ηmax then the optimal point (
∗
w,

∗
b,
∗
z,
∗
a,

∗
u,

∗
W,

∗
A)

of the convex problem (4.11a) – (4.11d) satisfies the non-convex constraints (4.3b) and

(4.3c) and C(
∗
w,

∗
b) ≤ C(w̌, b̌) which implies that (

∗
w,

∗
b) ∈ Bε̄. Given that, if the initial

point belongs to Bε̄ and η is sufficiently large, Algorithm 2 generates a sequence of points

whose objective values monotonically decreases and they are all within set Bε̄. Since the
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sequence of objective values is lower-bounded by C(w̌opt, b̌opt), it is guaranteed to be con-

vergent. Hence, the following relations are valid at every round of the algorithm:∑
l∈IL

µl

w‖
∗
wl−w̌l‖2F + µl

b‖
∗
bl−b̌l‖2F ≤ R(

∗
w,

∗
b)

=
C(

∗
w,

∗
b)+η R(

∗
w,

∗
b)−C(

∗
w,

∗
b)

η

≤ C(w̌, b̌)+η R(w̌, b̌)−C(
∗
w,

∗
b)

η

=
C(w̌, b̌)−C(

∗
w,

∗
b)

η
→ 0

which indicates that the sequence of weights and biases generated by Algorithm 2 is

Cauchy and it converges to a point (w̄, b̄) ∈ Bε̄. Moreover, due to optimality of every

generated pair (
∗
w,

∗
b) for the problem (4.10), we have:

∇C(
∗
w,
∗
b) + η∇

∑
l∈IL

µl

w‖
∗
wl−w̌l‖2F + µl

b‖
∗
bl−b̌l‖2F = 0

⇒
∥∥∇C(

∗
w,
∗
b)
∥∥

F
≤ 2η

∑
l∈IL

µl

w‖
∗
wl−w̌l‖F + µl

b‖
∗
bl−b̌l‖F.

As a result, the gradient of the original loss function C at (w̄,b̄) is equal to zero and hence

it is a minimizer of the loss function C. Given the fact hat pointt(w̄, b̄) belongs to Aδ̄, we

can conclude that w̄ = wopt and b̄ = bopt.
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4.8 Supplementary Materials

This supplementary material gives a detailed proof of Lemma 4.1 which is discussed

in Section 4.7. Before proceeding to the proofs, we introduce a prerequisite definition.
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Definition 4.5. For every layer l ∈ IL, let strongly convex and Lipschitz gradient functions

pl : R → R and ql : R → R decompose the activation function hl as hl(x) = pl(x)−ql(x).

The convexity of p and q implies that there exist σl

p>0 and σl

q>0 such that

∀x,y∈dom(pl), pl(y)−pl(x)−ṗl(x)(y−x)≥σl

p(y−x)2,

∀x,y∈dom(ql), ql(y)−ql(x)−q̇l(x)(y−x)≥σl

q(y−x)2,

and the Lipschitz continuous gradient assumption states that there are γ l

p > 0 and γ l

q > 0

such that the following inequalities hold:

∀x,y∈dom(ṗl), |ṗl(x)−ṗl(y)|≤γ lp|x−y|,

∀x,y∈dom(q̇l), |q̇l(x)−q̇l(y)|≤γ lq|x−y|.

Lemma 4.2. Let (
∗
w,

∗
b) be an optimal solution of the problem (4.10). The following in-

equality holds: ∑
l∈IL

µl

w × ‖
∗
wl−w̌l‖2F+µl

b × ‖
∗
bl−b̌l‖2F≤

C(w̌, b̌)

η
. (4.18)

Proof. Follows from Definitions 4.4 and 4.5, for every l ∈ IL, function R is non-negative

and R(w̌, b̌)=0. Therefore, the optimality of (
∗
w,
∗
b) implies that

C(w̌, b̌) ≥ C(
∗
w,

∗
b)+η R(

∗
w,

∗
b) ≥ η R(

∗
w,

∗
b)

⇒ C(w̌, b̌)

η
≥ R(

∗
w,

∗
b) (4.19)

Additionally, according to Definition 4.4 we have∑
l∈IL

µl

w × ‖
∗
wl−w̌l‖2F+µl

b × ‖
∗
bl−b̌l‖2F≤R(

∗
w,
∗
b). (4.20)

Given the relations (4.19) and (4.20), we can conclude that (4.18) holds true for point

(
∗
w,

∗
b).

Lemma 4.3. Let (w̌, b̌) be an initial point. There exists a continuous function φ(w, b)

such that the following inequality holds true for every η > 0 and every minimizer of

(
∗
w,

∗
b,
∗
u,

∗
a,
∗
z,

∗
W,

∗
A) of the problem (4.11a) – (4.11d):

1

η

(∑
l∈IL

‖∗clp‖F+‖∗clq‖F+‖∗clh‖F+‖∗clḣ‖F
)
≤ φ(w̌, b̌)
√
η

. (4.21)
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where {( ∗cp,
∗
cq,

∗
ch,

∗
cḣ)}l∈IL are given by (4.12a) – (4.12g).

Proof. The Lipschitz continuity of function hl implies that there exists constant glh ∈ R

such that |ḣl(zl)| ≤ |glh|, for every z belonging to the feasible set of the problem (4.11a) –

(4.11d). Given that, we can upper-bound ‖ ∗clh‖F+‖
∗
clḣ‖F by (1+|glh|)‖

∗
clh‖F. Define αl

p,(γ l

p)
-2
(µl

p)
-1
σl

p,

αl

q,(γ l

q)
-2
(µl

q)
-1
σl

q, αl

h,(µl

h)
-1
(
2(1+|glh|)

)-2, and
¯
α,min{α1

p,· · · ,α
L

p,α
1

q, · · · ,α
L

q ,(1+|g1

h|)-1α1

h, · · · ,(1+|gLh |)-1αL

h}. Using

the defined parameters, it can be observed that:

¯
α

η

(∑
l∈IL

‖∗clp‖F+‖∗clq‖F+(1+|glh|)‖
∗
clh‖F

)
≤ 1

η

(∑
l∈IL

αl

p‖
∗
clp‖F+αl

q‖
∗
clq‖F+αl

h‖
∗
clh‖F

)
.

Given the above equation, we can use the Cauchy-Schwarz inequality to write the following

relations:
1

η2

(∑
l∈IL

αl

p‖
∗
clp‖F+αl

q‖
∗
clq‖F+αl

h‖
∗
clh‖F

)2

≤ 1

η2

(∑
l∈IL

αl

p‖
∗
clp‖2

F+αl

q‖
∗
clq‖2

F+αl

h‖
∗
clh‖2

F

)(∑
l∈IL

αl

p+α
l

q+α
l

h

)
≤ R̄×

(∑
l∈IL

αl

p+α
l

q+α
l

h

)
,

where R̄ refers to R̄(
∗
w,

∗
b,
∗
a,

∗
u,

∗
z,

∗
W,

∗
A), and is upperbounded by

‖ ∗zL−y‖2

F+η R̄≤C(w̌, b̌)

⇒ R̄≤ C(w̌, b̌)

η
.

Using the above upperbound, we can conclude that (4.21) holds true

φ(w̌, b̌) =
C(w̌, b̌)

1
2

¯
α

(∑
l∈IL

αl

p+α
l

q+α
l

h

) 1
2
.

This completes the proof.

Proof of Lemma 4.1 – (4.13a). We use backward induction to prove the existence of func-

tion θlz(w, b) for every l ∈ IL. For the case l = L, define function θLz (w, b) as

θLz (w, b) , 2‖žL − y‖F + φ(w, b). (4.22)
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For dual variable
∗
λL

z , we have

1

η
‖
∗
λL

z‖F =
1

η

∥∥2(
∗
zL−y)+

∗
cLp+

∗
cLq+

∗
cLḣ
∥∥

F

≤ 2

η
‖ ∗zL−y‖F+

1

η
‖∗cLp +

∗
cLq+

∗
cLḣ‖F. (4.23)

Additionally, the optimality of ∗z implies that

‖ ∗zL−y‖2

F ≤ ‖
∗
zL−y‖2

F+η R̄ ≤ ‖žL−y‖2

F. (4.24)

Putting inequalities (4.23), (4.24), and Lemma 4.3 together, we can conclude that
1

η
‖
∗
λL

z‖F≤
2

η
‖žL−y‖F+

1
√
η
φ(w̌, b̌)

≤ 1
√
η

(
2‖žL−y‖F+φ(w̌, b̌)

)
=

1
√
η
θLz (w̌, b̌).

Next, for every l ∈ IL-1, define function θl-1

z (w, b) as

θl-1

z (w, b),
(
(µl

w)- 1
2C(w, b)+‖w̌l‖F

)
|gl-1

h |θlz(w, b)+φ(w, b).

We can conclude the following relations from the equation (4.12a):
1

η
‖
∗
λl-1

z ‖F =
1

η
‖ ∗wl>∗λl

z◦ḣl-1(
∗
zl-1)+

∗
cl-1

p +
∗
cl-1

q +
∗
cl-1

ḣ ‖F

≤ 1

η
‖ ∗wl>∗λl

z◦ḣl-1(
∗
zl-1)‖F+

1

η
‖∗cl-1

p +
∗
cl-1

q +
∗
cl-1

ḣ ‖F

≤
|gl-1

h |
η
‖ ∗wl>∗λl

z‖F+
1
√
η
φ(w̌, b̌)

≤
|gl-1

h |
η

(
‖ ∗wl−w̌l‖F+‖w̌l‖F

)
‖
∗
λl

z‖F+
1
√
η
φ(w̌, b̌),

where gl-1

h denotes the Lipschitz constant of function hl-1. Using the results of Lemma 4.2,

we can easily verify that

‖ ∗wl−w̌l‖F ≤ (ηµl

w)- 1
2C(w̌, b̌) ≤ (µl

w)- 1
2C(w̌, b̌),

and consequently

‖
∗
λl-1

z ‖F
η
≤
‖
∗
λl

z‖F
η

(
(µl

w)- 1
2C(w̌,b̌)+‖w̌l‖F

)
|gl-1

h |+
1
√
η
φ(w̌, b̌)

≤
θl-1

z (w̌, b̌)
√
η

.

which completes the proof.
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Proof of Lemma 4.1 – (4.13b). Define function θlpq(w, b) for every l ∈ IL-1 as

θlpq(w, b) , θl+1

z (w, b)
(
(µl+1

w )- 1
2C(w,b)+‖w̌l+1‖F

)
+φ(w, b).

We use the triangle inequality to write the following relations

1

η
‖ ∗wl+1>

∗
λl+1

z +
∗
clh‖max

≤ 1

η
‖ ∗wl+1>

∗
λl+1

z ‖max
+

1

η
‖∗clh‖max

≤ 1

η
‖ ∗wl+1>

∗
λl+1

z ‖F +
1

η
‖∗clh‖F

≤
‖
∗
λl+1

z ‖F
η

(
‖ ∗wl+1−w̌l+1‖F+‖w̌l+1‖F

)
+

1
√
η
φ(w̌, b̌)

≤
θl+1

z (w̌, b̌)
√
η

(
(µl+1

w )- 1
2C(w̌,b̌)+‖w̌l+1‖F

)
+

1
√
η
φ(w̌, b̌)

=
1
√
η
θlpq(w̌, b̌).

This completes the proof.
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CHAPTER 5

Class Subset Selection for Partial Domain Adaptation

Domain adaptation is the task of transferring knowledge from a labeled source dataset

to an unlabeled target dataset. Partial domain adaptation (PDA) investigates the scenarios

in which the target label space is a subset of the source label space. The main purpose

of the PDA is to identify the shared classes between the domains and promote learning

transferable knowledge from these classes. Inspired by the idea of subset selection, we

propose an adversarial PDA approach which aims to not only automatically select the most

relevant subset of source domain classes but also ignore the samples that are less transfer-

able across the domains. In the absence of target labels, the proposed approach is able to

effectively learn domain-invariant feature representations, which in turn can facilitate and

enhance the classification performance in the target domain. Empirical results on Office-

31 and Office-Home datasets demonstrate the high potential of the proposed approach in

addressing different partial domain adaptation tasks.

5.1 Introduction

Deep neural networks have demonstrated superior performance in a variety of ma-

chine learning problems such as semantic image segmentation [85, 84, 86], object detec-

tion, and classification [70, 88, 87], etc. These impressive achievements heavily depend on

the availability of large amounts of labeled training data. However, in many applications,

the acquisition of sufficient labeled data is difficult and time-consuming. One potential

solution to reduce the labeling consumption is to build an effective predictive model us-

ing richly-annotated datasets from different but related domains. However, this paradigm
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generally suffers from the domain shift between the distributions of the source and the tar-

get datasets. As a result, deep networks trained on labeled source datasets often exhibit

unsatisfactory performance on the target domain classification task. In the absence of tar-

get labels, unsupervised domain adaptation (UDA) seeks to bridge different domains by

learning feature representations that are discriminative and domain-invariant [91, 90, 89].

Recently, various approaches have been proposed to combine both domain adap-

tation and deep feature learning in a unified framework for exploiting more transferable

knowledge across domains [178, 179, 145, 180, 181, 182] (see [183] for a comprehensive

survey on deep domain adaptation methods). A class of deep domain adaptation methods

aims to reduce the misfit between the distributions of the source and target domains through

minimizing discrepancy measures such as maximum mean discrepancy [145, 180], correla-

tion distance [184, 185], etc. In this way, they map the domains into the same latent space,

which results in learning feature representations that are domain-invariant. A new line of

research has recently emerged which uses the concept of generative adversarial networks

[186] to align feature distributions across the domains and learn discriminators that are

able to predict the domain labels of different samples [187, 188, 189]. Specifically, these

methods try to generate feature representations that are difficult for the discriminators to

differentiate.

Despite the advantages offered by the existing UDA methods, they mostly exhibit

superior performance in scenarios in which the source and target domains share the same

label space. With the goal of considering more realistic cases, [92] introduced partial do-

main adaptation (PDA) as a new adaptation scenario which assumes the target domain

label space is a subset of the source domain label space. The primary challenge in PDA

is to identify and reject the source domain classes that do not appear in the target domain,

known as outlier classes, since they may have negative impacts on the transfer performance

[93, 190]. Addressing this challenge enables the PDA methods to effectively transfer mod-
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els learned on large labeled datasets (e.g. ImageNet) to small-scale datasets from different

but related domains.

In this work, we propose an adversarial approach for partial domain adaptation,

which aims to not only automatically reject the outlier source classes, but also down-weight

the relative importance of irrelevant samples, i.e. those samples that are highly dissimilar

across different domains. Our method uses the same network architecture as partial adver-

sarial domain adaptation (PADA) [92] and incorporates two additional regularization terms

to boost the target domain classification performance. Inspired by the idea of subset se-

lection, the first regularization is a row-sparsity term on the output of the classifier, which

promotes the selection of a small subset of classes that are in common between the source

and target domains. The second regularization is a minimum entropy term which utilizes

the output of the discriminator to down-weight the relative importance of irrelevant sam-

ples from both domains. We empirically observe that our method can effectively enhance

the target classification accuracy on different PDA tasks.

5.2 Related Work

To date, various deep unsupervised domain adaptation methods have been developed

to extract domain-invariant feature representations from different domains. Some stud-

ies [191, 145, 180, 192, 193] have proposed to minimize the maximum mean discrepancy

between the source and target distributions. In [194], a correlation alignment (CORAL)

method is proposed that utilizes a linear transformation to match the second-order statis-

tics between the domains. [185] presented an extension of the CORAL method that aligns

correlations of layer activations in deep networks by learning a non-linear transformation.

Despite the practical success of the aforementioned methods in aligning the domain distri-

butions, it is shown that they are unable to completely eliminate the domain shift [179, 182].
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Recently, adversarial learning has been widely employed to enhance the performance

of UDA methods [195, 196, 197, 187, 198]. The basic idea behind the adversarial-based

methods is to train a discriminator for predicting domain labels and a deep network for

extracting features that are indistinguishable by the discriminator. By doing so, the discrep-

ancy between the source and target domains can be efficiently eliminated, which results in

significant improvement in the overall classification performance [196, 188, 198]. [199]

developed an incremental adversarial scheme which gradually reduces the gap between

the domain distributions by iteratively selecting the high confidence pseudo-labeled target

samples to enlarge the training set.

Towards the task of PDA, great studies have been recently developed which simul-

taneously promote positive transfer from the common classes between the domains and

alleviate the negative transfer from the outlier classes [93, 92, 200]. Selective adversar-

ial network [93] trains separate domain discriminators for each source class to align the

distributions of the source and target domains across the shared label space and to ignore

the outlier classes. Partial adversarial domain adaptation (PADA) [92] proposed a new

architecture which assigns a weight to each source domain class based on the target la-

bel prediction and automatically reduces the weights of the outlier classes. Importance

weighted adversarial nets [200] develops a two-domain classifier strategy to estimate the

relative importance of the source domain samples.

Closely related to our work, transferable attention for domain adaptation (TADA)

[189] proposed an attention-based mechanism for UDA, which can highlight transferable

regions or images. Unlike TADA, our method is focused on the PDA problem and utilizes

a different network architecture with a novel loss function that efficiently assigns weights

to both classes and samples. Our method differs from PADA [92] in the sense that we

incorporate two novel regularization terms which not only able to discover and reject the
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Figure 5.1: Overview of the proposed adversarial network for partial transfer learning. The
network consists of a feature extractor, a classifier, and a domain discriminator, denoted by
Gf , Gy, and Gd, respectively. The blue and green arrows depict the source flow and target
flow. Loss functions Ly, Ld, Le, and L∞ denote the classification loss, the discriminative
loss, the entropy loss, and the selection loss. Best viewed in color.

outlier classes more effectively but also down-weight the relative importance of the irrele-

vant samples in the training procedure.

5.3 Problem Formulation

This section briefly reviews two well-established domain adaptation methods and

then provides a detailed explanation on how our proposed method relates to them. Let

{(xis,yis)}
ns
i=1 be a set of ns sample points drawn i.i.d from the source domain Ds, where

xis denotes the ith source image with label yis. Similarly, let {xit}nti=1 be a set of nt sample

points collected i.i.d from the target domain Dt, where xit indicates the ith target image.

To clarify notation, let X =Xs∪Xt be the set of entire images from both domains, where

Xs = {xi
s
}nsi=1 and Xt = {xit}nti=1. The UDA methods assume that the source and target do-

mains possess the same label space, denoted as Cs and Ct, respectively. In the absence of

target labels, the primary goal of the UDA is to learn domain-invariant feature represen-

tations that can reduce the domain shift. One promising direction to achieve this goal is
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to train a domain adversarial neural network [196] which consists of a discriminator Gd

for predicting the domain labels, a feature extractor Gf for confusing the discriminator by

learning transferable feature representations, and a classifier Gy that classifies the source

domain samples. Training the adversarial network is equivalent to solve the following op-

timization problem

max
θd

min
θy,θf

λ

ns

∑
xi∈Xs

Ly(Gy(Gf(x
i;θf);θy),y

i)− 1

n

∑
xi∈X

Ld(Gd(Gf(x
i;θf);θd), d

i),

where n=ns+ nt, λ>0 is a regularization parameter, yi is the one-hot class label of image

xi and d i ∈ {0, 1} denotes its domain label; d i = 0 if xi belongs to the source domain

and d i = 1 otherwise. Ly and Ld are cross-entropy loss functions corresponding to the

classifier Gy and the domain discriminator Gd, respectively. Moreover, variables θf , θy,

and θd are parameters associated with the networks Gf , Gy, and Gd, respectively. For the

brevity of notation, we drop the reference to the parameters θf , θy, and θd in the subsequent

formulations.

As noted earlier, standard domain adaptation approaches assume that the source and

target possess the same label space, i.e. Cs = Ct. This assumption may not be fulfilled

in a wide range of practical applications in which Cs is large and diverse (e.g., ImageNet)

and Ct only contains a small subset of source classes, i.e. Ct⊂Cs. Under this assumption,

aligning the domain distributions may not necessarily facilitate the classification task in the

target domain due to the adverse effect of transferring information from the outlier classes

Cs\Ct [92, 93]. Hence, the primary goal in partial domain adaptation is to learn a feature

extractor that can align the distributions of the source and target domains across the shared

label space and simultaneously identify and reject the outlier classes. A classifier trained

along such feature extractor can generalize well to the target domain. To this end, PADA
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[92] proposed the following weighting procedure to highlight the shared classes and reduce

the importance of outlier classes

γ =
1

nt

nt∑
i=1

ŷit

where ŷit = Gy(Gf(x
i

t)) denotes the output of Gy to the target sample xi

t. The weighting

vector γ is further normalized as γ ← γ \max(γ) to show the relative weights of the

classes.

The weights associated with the outlier classes are expected to be much smaller than

that of the shared classes, mainly because the target samples are significantly dissimilar to

the samples belonging to the outlier classes. Ideally, γ is expected to be a vector whose

elements are non-zero except those corresponding to the outlier classes. Given that PADA

proposes to train the adversarial network through solving the following minimax optimiza-

tion problem

max
θd

min
θy,θf

λ

ns

∑
xi∈Xs

γci Ly(Gy(Gf(x
i)),yi)

− 1

ns

∑
xi∈Xs

γci Ld(Gd(Gf(x
i)), d i)

− 1

nt

∑
xi∈Xt

Ld(Gd(Gf(x
i)), d i),

where ci=argmaxj y
i
j denotes the index of the largest element in yi.

Besides the outlier classes, the irrelevant samples are inherently less transferable and

they may significantly degrade the target classification performance in different PDA tasks.

In the next section, we present a novel algorithm to simultaneously identify and reject the

outlier classes and down-weight the relative importance of the irrelevant samples.

80



5.4 Proposed Method

We adopt the same network architecture as PADA and employ two novel regulariza-

tion terms to better align the source and target distributions across the shared classes and

learn more transferable features.

The first regularization is a row-sparsity term which promotes the selection of a small

subset of source domain classes that appear in the target domain. This, in turn, encourages

γ to be a vector of zeros except for the elements corresponding to the shared classes. This

selection regularization can be defined as follows

L∞(Xt,θf ,θy) =
µ

|Cs|
∥∥Gy(Gf(x

1

t)), . . . ,Gy(Gf(x
|Xt|
t ))

∥∥
1,∞
,

where |.| denotes the cardinality of its input set, ‖.‖1,∞ computes the sum of the infinity

norms of the rows of an input matrix, and µ is a regularization parameter. Imposing the

above term takes into account the relation between the entire target samples and encourages

the classifier to generate a sparse output vector with its non-zero entries located at certain

indices correspond to the shared classes.

The second regularization term seeks to reduce the importance of irrelevant samples

in the training procedure by leveraging the following entropy minimization term

Le(Xs,Xt,θf,θd,θy)=
1

ns

∑
xi∈Xs

γci(1+Led(Gd(Gf(x
i))))Ley(Gy(Gf(x

i)))

+
1

nt

∑
xi∈Xt

(1+Led(Gd(Gf(x
i))))Ley(Gy(Gf(x

i))),

where Ley and Led are the entropy loss functions corresponding to the classifier Gy and

the domain discriminator Gd, respectively. The above regularization encourages assign-

ing higher weights to those samples whose domain labels are confidently predicted by the

discriminator. This, in turn, reduces the relative importance of the irrelevant samples and

helps to learn more transferable features for classification.
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Figure 5.2: Example images of the Office-31 dataset.

By integrating both regularization terms into the total loss function, our method can

not only automatically identify and reject the outlier classes, but also down-weight the

irrelevant samples that are inherently not transferable across domains. Figure 5.1 illustrates

the architecture of our proposed network in details.

5.5 Experiments

In this section, we conduct empirical experiments on two benchmark datasets to

evaluate the efficacy of our approach, named SSPDA, for partial domain adaptation (PDA)

across different tasks. The experiments are performed in an unsupervised setting, where

the target labels are unknown. In what follows, we briefly explain the datasets, the PDA

tasks, and the network hyperparameters used in the experiments.

5.5.1 Setup

Dataset: We evaluate the performance of SSPDA on two commonly used datasets for do-

main adaptation: Office-31 and Office-Home. The Office-31 object dataset [201] consists

of 4, 652 images from 31 classes, where the images are collected from three different do-

mains: Amazon (A), Webcam (W), and DSLR (D). We follow the procedure presented in

82



Method A→W D→W W→ D A→ D D→ A W→ A Avg

ResNet 54.52 94.57 94.27 65.61 73.17 71.71 75.64
DAN 46.44 53.56 58.60 42.68 65.66 65.34 55.38
DANN 41.35 46.78 38.85 41.36 41.34 44.68 42.39
ADDA 43.65 46.48 40.12 43.66 42.76 45.95 43.77
RTN 75.25 97.12 98.32 66.88 85.59 85.70 84.81
SAN 80.02 98.64 100 81.28 80.58 83.09 87.27
IWAN 76.27 98.98 100 78.98 89.46 81.73 87.57
PADA 86.54 99.32 100 82.17 92.69 95.41 92.69

SSPDA-selection 87.45 95.31 98.48 82.25 91.89 95.34 91.79
SSPDA-entropy 90.51 96.59 97.45 89.08 92.38 95.30 93.55
SSPDA 93.42 97.62 100 90.43 93.45 95.53 95.07

Table 5.1: Accuracy of partial domain adaptation tasks on Office-31 (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet 38.57 60.78 75.21 39.94 48.12 52.90 49.68 30.91 70.79 65.38 41.79 70.42 53.71
DAN 44.36 61.79 74.49 41.78 45.21 54.11 46.92 38.14 68.42 64.37 45.37 68.85 54.48
DANN 44.89 54.06 68.97 36.27 34.34 45.22 44.08 38.03 68.69 52.98 34.68 46.50 47.39
RTN 49.37 64.33 76.19 47.56 51.74 57.67 50.38 41.45 75.53 70.17 51.82 74.78 59.25
PADA 51.95 67 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.6 77.09 62.06

SSPDA 52.31 68.35 80.17 50.79 51.29 60.87 56.68 42.53 79.15 70.94 56.43 78.92 62.37

Table 5.2: Accuracy of partial domain adaptation tasks on Office-Home (ResNet-50).

[92] to transfer knowledge from a source domain with 31 classes to a target domain with

10 classes. The results are provided as the target domain classification accuracy across six

different PDA tasks: A→W, W→ A, D→W, W→ D, A→ D, and D→ A.

The Office-Home [202] is a more complex dataset consisting of around 15, 500 im-

ages collected from four distinct domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-

World (Rw), where each domain has 65 classes. Following the procedure presented in [92],

we aim to transfer information from a source domain containing 65 classes to a target do-

main with 25 classes. The results on this dataset are also reported as the target classification

accuracy on twelve pairs of source-target domains: Ar→ Cl, Ar→ Pr, Ar→ Rw, Cl→

Ar, Cl→ Pr, Cl→ Rw, Pr→ Ar, Pr→ Cl, Pr→ Rw, Rw→ Ar, Rw→ Cl, and Rw→

Pr.

For each of the aforementioned tasks, we report the average target classification accu-

racy of five independent runs with different initialization as generated in [92]. We compare

the performance of SSPDA against several deep transfer learning methods: Deep Adapta-
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tion Network (DAN) [180], Domain Adversarial Neural Network (DANN) [196], Residual

Transfer Networks (RTN) [192], Adversarial Discriminative Domain Adaptation (ADDA)

[198], Importance Weighted Adversarial Nets (IWAN) [200], Selective Adversarial Net-

work (SAN) [93], and Partial Adversarial Domain Adaptation (PADA) [92].

Parameter: We adopt ResNet-50 [73] pre-trained on ImageNet [203] as the backbone for

the network Gf . Also, we fine-tune the entire feature layers and apply back-propagation to

train the domain discriminator Gd and the classifier Gy. Through the experiments, param-

eter λ is set to 1.0 and 2.0 for the Office-31 dataset and Office-Home dataset, respectively.

Also, we set µ = 0.1 for both datasets. Notice that since the classifier is not appropri-

ately trained in the first few epochs, we gradually increase parameter µ from 0 to 0.1. To

minimize the loss function, we use mini-batch stochastic gradient descent (SGD) with a

momentum of 0.95 and the learning rate is adjusted during SGD by: η =
η0

(1+α×ρ)β
where

η0 = 10-2, α = 10, β = 0.75, and ρ is the training progress linearly changing from 0 to 1

[92, 196]. We use a batch size of 72 with 36 samples for each domain.

5.5.2 Results

Tables 5.1 and 5.2 show the target domain classification accuracy of various methods

on different PDA tasks including 6 tasks of Office-31 dataset and 12 tasks of Office-Home

dataset. All the results are reported based on the ResNet-50 and the scores of the competitor

methods are directly obtained from [92, 93, 200].

Observe that some deep domain adaptation methods such as DAN and DANN have

exhibited worse performance than the standard ResNet-50 on few PDA tasks in both datasets.

This can be attributed to the fact that these methods aim to align the marginal distributions

across the domains and hence are prone to the negative transfer resulted from the outlier

classes. On the other hand, the PDA methods, such as PADA, SAN, and IWAN, achieve

promising results on most of the PDA tasks since they leverage weighting mechanisms to
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highlight a subset of samples that are more transferable. By doing so, these methods can

effectively mitigate transferring knowledge from the outlier source classes and promote

learning from the shared classes between the domains, which in turn enhance the classifi-

cation accuracy in the target domain.

Notice that SSPDA uses the same network architecture as PADA, but introduce a

novel loss function to identify and reject the outlier classes and irrelevant samples. The

results in Table 5.1 indicate that SSPDA performs better than or close to the state-of-the-

art methods at all PDA tasks on Office-31 dataset. In particular, it achieves considerable

improvement on A→W and A→ D, and generally increases the average accuracy of all

tasks by almost 2.4%. Moreover, Table 5.2 shows that SSPDA maintains the performance

of PADA and exhibits slight improvement in the average classification accuracy over all

partial domain adaptation tasks on Office-Home dataset. The numerical results provided in

the above tables imply that SSPDA has high potential in transferring semantic information

and learning domain-invariant features in different tasks of partial domain adaptation.

Ablation Study: To demonstrate the improvements obtained by each of the proposed reg-

ularizations, in this part, we conduct an ablation study by discarding the selection regular-

ization (SSPDA-selection) or the entropy minimization term (SSPDA-entropy). The results

are reported in Table 5.1. It can be seen that both SSPDA-selection and SSPDA-entropy

generally obtain better or close results than the baselines. In particular, SSPDA-entropy

works better on some difficult tasks such as A→W and A→ D.

5.6 Conclusion

This work presented an adversarial approach for the task of partial domain adap-

tation. The proposed approach minimizes a novel loss function to reduce the effect of

the outlier classes and the irrelevant samples, which results in learning more transferable
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feature representations for classification. The experiments conducted on standard bench-

mark datasets demonstrate the high potential of our approach for partial domain adaptation

tasks.
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CHAPTER 6

Conclusion

In this dissertation, we first developed a novel and highly parallelizable convex model

which automatically estimates the optimal number of coherent regions and pixel assign-

ments to form final segments. To solve the model, a computationally efficient algorithm

is presented based on the alternating direction method of multiplier. Extensive experi-

ments corroborate the robustness and effectiveness of the proposed methods compared to

the other state-of-the-art approaches. Second, we developed a sequential approach based

on parabolic relaxation which finds an orthogonal matrix that minimizes a non-convex and

non-smooth objective function subject to additional quadratic constraints. We prove that

under very mild assumptions, the proposed approach is guaranteed to provide a feasible

solution for the original non-convex problem. The effectiveness of the proposed scheme

is corroborated for the problem of discriminative dimensionality reduction and graph clus-

tering. Third, we proposed a novel convexification approach that reduces the problem of

training neural networks into solving a sequence of polynomial-time solvable convex sur-

rogates. The proposed approach jointly estimates the network parameters of all layers and

can admit a wide range of additional convex constraints. We theoretically prove that the

proposed approach is guaranteed to converge under mild conditions and perform empirical

experiments to corroborate the effectiveness of the method. Fourth, we presented an adver-

sarial approach for the task of partial domain adaptation. The proposed approach minimizes

a novel loss function to reduce the effect of the outlier classes and the irrelevant samples,

which results in learning more transferable feature representations for classification. The
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experiments conducted on standard benchmark datasets demonstrate the high potential of

our approach for partial domain adaptation tasks.
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