
Improving Performance and Security in
Anonymity Systems

by

MOHSEN IMANI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2018

Copyright c© by Mohsen Imani 2018

All Rights Reserved

To my parents.

ACKNOWLEDGEMENTS

I would like to acknowledge and express my deepest appreciation to my supervising

professor Prof. Matthew Wright for the patient guidance, encouragement and advice he has

provided throughout my PhD study. I have been extremely lucky to have a supervisor who

cared so much about my work, and who responded to my questions and queries promptly.

The research in this dissertation would not have been possible without his constant support

and mentoring. He had introduced me to a diverse set of fascinating problems and enabled

collaboration with numerous great researchers. His teaching, mentoring, managing, and

research had a huge positive impact on me. I would also like to thank Prof. Gergely Zaruba

who helped me in my supervisors absence.

I would like to thank the rest of my committee: Prof. Manfred Huber, Prof. Farhad

Kamangar for their encouragement, and insightful comments.

I am grateful to my research collaborators who have introduced me to a number of

interesting problems. I have learned a lot from these incredible researchers by observing

their style of research. Marc Juarez and Claudia Diaz of KU Leuven, Payap Sirinam of

Rochester Institute of Technology, and, Armon Barton of the University of Texas at Ar-

lington had been my consistent source of inspiration and encouragement. I have learned an

incredible amount from them. Their intellect and hard work have always been an inspira-

tion to me.

I would also like to extend my gratitude to the department of CSE at UTA and Prof.

Wright for providing me with financial support during my graduate studies. I also like to

thank my lab mates Jees, Taiabul, John, Revanth, Mehrdad, Mahdi, Max, and Omid. Many

iv

thanks to my friends Vahidreza, Majid, Hamidreza, Bahram, Hussein, Pooria, Peyman,

Abolfazl, and Hooman for making my PhD memorable.

Finally, I would like to convey my heartfelt gratitude to my parents, brother, sisters

and my vast extended family. Their constant encouragement and support have been critical

to my success.

August 2018

v

ABSTRACT

Improving Performance and Security in
Anonymity Systems

Mohsen Imani, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Gergely Zaruba

Tor is an anonymity network that provides online privacy for the Internet users. Tor

hides the user’s traffic among the others’ traffic. The more users Tor attracts, the stronger

anonymity it provides. Unfortunately, users of the Tor anonymity system suffer from less-

than-ideal performance, in part because circuit building and selection processes are not

tuned for speed. Moreover, there are some attacks like guard fingerprinting and website

fingerprinting attacks that try to profile or de-anonymize the Tor users. In this disserta-

tion, we propose methods to address both security and performance issues in Tor. We first

examine the process of selecting among pre-built circuits and the process of selecting the

path of relays for use in building new circuits to improve performance while maintaining

anonymity. We also propose a method to improve the mechanism of picking guards in Tor.

The guard selection mechanism in Tor suffers from security problems like guard finger-

printing and from performance issues. To address this problem, we propose a new method

for forming guard sets based on Internet location. We construct a hierarchy that keeps

clients and guards together more reliably and prevents guards from easily joining arbitrary

guard sets. This approach also has the advantage of confining an attacker with access to

vi

limited locations on the Internet to a small number of guard sets. Tor is also known to be

vulnerable to the traffic analysis attacks like Website Fingerprinting (WF) attacks. In WF

attacks, the adversary attempts to identify the websites visited by the user. We also propose

a method using adversarial examples to decrease the accuracy rate of the WF attack. We

generate adversarial traces to cause misclassification in the WF attackers. We show that if

the WF attacker trains its classifier on the adversarial traces, they are not effective WF de-

fenses. We propose a method to solve this problem, and we show that our method can drop

the WF attacker’s accuracy from 98% to 60% with 47% bandwidth overhead.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xv

Chapter 1Page

1. Introduction . 1

1.1 Motivations . 3

1.2 Contributions . 4

1.3 Dissertation Outline . 5

2. Background . 6

2.0.1 Onion Services . 9

3. Performance Improvement . 11

3.1 Introduction . 11

3.2 Related work . 13

3.3 Model and Goals . 16

3.3.1 Network Model . 16

3.3.2 Attacker Model . 16

3.3.3 Design Goals . 18

3.4 Circuit Selection . 19

3.4.1 Performance in Circuit Selection 20

3.4.2 Attaching Streams to Circuits . 21

3.5 Circuit Selection Performance . 22

viii

3.5.1 Network Configuration . 22

3.5.2 CAR: Congestion-Aware Routing 24

3.5.3 Performance Results . 24

3.5.4 Circuit Creation Analysis . 26

3.6 Security Analysis . 26

3.6.1 Relay-Level Adversary . 27

3.6.2 Network Level Adversary . 28

3.7 Relay Selection . 29

3.7.1 Weight Function . 30

3.7.2 Preemptively built circuits . 33

3.7.3 Guard Selection . 34

3.7.4 Attaching streams to the circuits 35

3.8 Performance Evaluation . 36

3.9 Security analysis . 37

3.9.1 System-wide Security Metrics . 37

3.9.2 AS Adversary . 39

3.9.3 Targeted Attacks in Relay-Level Adversary 40

3.10 Discussion . 42

4. Defense against Guard Fingerprinting attacks 44

4.1 Introduction . 44

4.2 Background . 46

4.2.1 Autonomous Systems . 46

4.2.2 Tor Overview . 48

4.2.3 Related Work . 49

4.3 Attacking Guard Sets . 51

4.3.1 Hayes and Danezis Design . 51

ix

4.3.2 Evaluation . 53

4.4 Design . 56

4.4.1 Motivation . 57

4.4.2 Root Sets . 58

4.4.3 Branch Sets . 59

4.4.4 Guard Sets . 61

4.4.5 Assigning Clients to the Guard Sets 62

4.5 Evaluations . 62

4.5.1 Security Evaluation . 63

4.5.2 System Evaluation . 74

4.6 Discussion . 79

5. Defense against Website Fingerprinting attacks 85

5.1 Introduction . 85

5.2 Related work . 87

5.2.1 WF attack . 87

5.2.2 WF defense . 90

5.3 Background . 93

5.3.1 Convolutional Neural Networks (CNNs) 95

5.3.2 Dataset . 98

5.3.3 Threat Model . 100

5.4 Adversarial Examples as WF defense . 101

5.5 Onion Sites . 103

5.5.1 Designing adversarial examples 104

5.5.2 Adversarial Traces . 105

5.6 Attack Scenarios . 106

5.6.1 SCENARIO I: Defense After Attack 106

x

5.6.2 SCENARIO II: Attack After Defense 108

5.7 A New WF Defense Model . 109

5.8 Evaluations . 112

5.9 Conclusions . 115

6. Future work . 117

6.1 Future Work . 117

6.1.1 Website Fingerprinting Defense using GAN 117

REFERENCES . 120

xi

LIST OF ILLUSTRATIONS

Figure Page

3.1 Distances used to compute circuit length. 20

3.2 Circuit Selection: TTLB and TTFB for web clients. 23

3.3 CDF of the number of circuits created (a) and used (b) for web clients. . . . 25

3.4 Relay-level adversary: Distribution of compromise rates. 27

3.5 Network-level adversary: CDF of compromise rates. 28

3.6 Distance for relays for each position. 30

3.7 The effect of λ. 32

3.8 Average added distance over the shortest path for different values of λ. . . . 34

3.9 The location of the existing servers in Alexa Top 1000 websites. Red stars

show the cluster centroids. 34

3.10 Median TTFB and TTLB for web clients 36

3.11 AS Adversary. The median stream compromised rate as α and λ vary 38

3.12 Targeted Attacks: Fraction of circuits compromised. X-axis shows the

percentage of exit and guard bandwidth controlled by the attacker. 38

4.1 Customer cones: The dashed lines show customer cones, the solid arrows

are provider-to-customer links. 47

4.2 Hayes-Danezis: The fraction of compromised sets and fraction of the ad-

versary’s bandwidth to the total guard bandwidth. 54

4.3 Branch Set creation. The dashed line shows Root Set P ’s customer cone,

the black circles are guard ASes, and the solid lines show the customer cones

with bandwidth τup or greater. 60

xii

4.4 Guard Set creation. Dashed ovals represent guard ASes (GAS), rectan-

gles represent Guard Sets, and circles represent guards. Numbers inside the

circles are the guards’ bandwidths (MBps). 62

4.5 Low-resource adversary: the solid lines show the median of compromised

clients and the colored bands shows the area between the first and third quan-

tiles. 63

4.6 High-resource centralized adversary. Compromise rates for varying frac-

tions of total guard bandwidth owned by the adversary. 65

4.7 Botnet adversary. Compromise rates for varying fractions of total guard

bandwidth owned by the adversary. 67

4.8 High-resource centralized adversary. Compromise rates as τup varies,

τdown = τup/2, and the adversary controls 5% of guard bandwidth. 68

4.9 Targeted attack. CDF of time to compromise. 70

4.10 AS level adversary. CDF of vulnerable stream rates. 71

4.11 Counts of AS Root Sets, Branch Sets, and Guard Sets and BW sets. 74

4.12 Daily guard bandwidth throughout 2015. 75

4.13 CDF of anonymity set sizes. 76

4.14 Median of anonymity set sizes over time. 76

4.15 CDF of guard sets’ bandwidths. 78

4.16 Bandwidths of guard sets over time. 78

5.1 The CDF of the number of bursts in the traces 99

5.2 WF attack . 100

5.3 Bandwidth overhead: this figure shows the bandwidth overhead of gener-

ated samples as α and pool size vary. Dashed lines show the results of Case

I and solid lines show the results of Case II. 113

xiii

5.4 Accuracy: this figure shows the accuracy rate of the generated samples

against the DF attack. Dashed lines depict the cases when the input size

to the DF attack is 5,000 cells and solid lines show the results when it is

10,000 cells. 114

6.1 WF Defense . 117

6.2 GAN architecture . 118

6.3 WF GAN architecture . 119

xiv

LIST OF TABLES

Table Page

3.1 Relay adversary. System-wide security results. 37

4.1 Top 20 organizations, sorted by bandwidth, running guard relays in Sept. 1,

2015. We used CAIDA dataset to map the ASes to the organizations [1].

The columns are the organization’s name, the organization’s bandwidth, the

number of relays, the number of ASes on the organization, and whether the

organization is a VPS or Not. 83

5.1 MODEL ARCHITECTURE . 98

5.2 The evaluation of the defenses against the state-of-the-art WF attacks as the

attackers are trained on the undefended traces 107

5.3 The evaluation of the defenses against the state-of-the-art WF attacks as the

attackers are trained on the defended traces 108

xv

CHAPTER 1

Introduction

Privacy is a human right, the right to be alone and free from intrusion and interfer-

ence, and it maintains the human dignity and respect. The information privacy is about

the control on how our data and information is used, collected, stored, and shared. By the

advance of the technology, the information privacy gets more and more complicated, in a

way that any bit of our information is getting valuable. Companies and intelligence agen-

cies collect tremendous amount of data about us, sometimes without our consent. Based

on that data, they draw conclusion about us that we may disagree with them.

Security and privacy are cousins. Privacy is about the choice and having power on our

data. Security protects our data from the malicious hands. Authentication, authorization,

and encryption are the security mechanisms protecting the access level and the content of

the data. These mechanisms are actually necessary for security and protecting the data

but not sufficient for addressing the privacy. For example, in TLS-enabled applications,

although the data is encrypted and the man in the middle cannot read the content, he can

still see who is talking to whom.

Sometimes, we want people to know about something or what we do but we want to

be unknown, this part of privacy is anonymity. People choose to be anonymous for different

situations, such as charity, witness of a crime, participating in a crime, and etc. The Internet

does not provide anonymity by design. Our IP address in the Internet is like our mailing

address that releases our identity. Our IP address can be traced back to our real identity.

Our IP address is a part of an address space of the ISP (Internet Service Provider) serving

1

us. The ISPs have information about their customers and it can release the real identity

behind an IP address.

Fortunately, there are some privacy enhancing Technologies (PETs) that build an

infrastructure over the Internet and add anonymous communication feature to the Internet.

The simplest tools to achieve anonymity are technologies that use single proxies. In these

technologies, the clients do not directly contact their destinations, they first contact a proxy

and ask the proxy to contact the intended destination. Therefore, the network observer

see the client contacts the proxy but they do not know what the destination is. These

technologies consider a weak network observer and put all the trust on a single point, the

proxy. The proxy should be trusted because it knows both ends of the traffic. Even if the

proxy is trusted, a network observer watching ingress and egress in the proxy can correlate

the traffic to identify who is talking to whom and break the anonymity. The next generation

of PETs, such as Tor network [2], Mix networks [3], and I2P [4], have the distributed

structures that distribute the trust over multiple points in the network. The clients traffic

in these technologies travels through multiple random nodes in the network. No individual

node knows the complete path. Thus, the attacker needs to be on the entry and exit points

of the traffic to be able to link the client and destination by the traffic correlation. Among

the existing anonymity networks, we mainly focus on Tor because it is the most popular

low-latency anonymity network.

Tor is a volunteer-based overlay network that thousands privacy advocates donate

their bandwidth to keep Tor running and functional. Tor passes the user’s traffic through

three almost-randomly selected proxies that no single point in the network can link the

user to her destination. Tor is a low–latency anonymity network, which means it does not

modify the inter-packet delay. Tor has created a bunch of interesting services, such as web

browsing, hidden services, Tor mail, and Tor chat. These services attract almost 2 millions

daily users for Tor.

2

1.1 Motivations

Anonymity networks like Tor work by hiding the users among the users. The larger

number of users, the more anonymous the users become. Clients in Tor are both con-

sumers of anonymity and, as a part of the system, the providers of cover traffic for the

others’ anonymity. Therefore, motivating more Internet users to use Tor in their on-line life

strengthens the anonymity provided by Tor and increases the anonymity set. The anonymity

set is the number of people whom the attacker can guess to be the one involved in the some

activity of interest [5]. Usability, which is related to the users’ experience with the system,

contributes to the security. In the case of Tor, better usability and user experience will at-

tract more and more users and makes the provided anonymity stronger (larger anonymity

sets).

The usability is not only about the user experience with Tor software, the more dam-

aging issue to the Tor usability is performance. Unfortunately, Tor suffers from less-than-

optimal performance which can discourages some of the Internet users to use Tor [6]. Im-

proving the performance not only results in better user experience, but also improves the

security. Therefore, addressing the performance issue is an importance matter. In this

dissertation, we address this problem and propose some methods to improve the Tor per-

formance.

On the other hand, several attacks [7, 8, 9, 10, 11, 12, 13], have been introduced

that threaten the users’ anonymity. The existence of these attacks and emergence of new

attacks may discourage the Internet users to use Tor. This even deteriorates the damage

of the attacks because dropping the number of users causes the small anonymity sets and

weakens the anonymity. Therefore, designing some sort of defenses against these attacks

is crucial in Tor. As the next step in this dissertation, we address this problem and propose

some defenses against attacks trying to de-anonymize the Tor users.

3

1.2 Contributions

In this dissertation we address both performance and security issues in Tor and make

the following fundamental contributions:

• Improving the performance through the circuit selection (Chapter 3). The Tor client’s

traffic traverses in the network through the circuits. Circuits are the encrypted connec-

tion of (three) relays on the network. The Tor client does not consider any performance

metrics in the selection of the circuits to be used for the traffic. Without modifying the

way the circuits are built in the Tor client, we propose several performance metrics to

select the fast circuits. We found that selecting the circuits based on their round trip time

(RTT) offers high performance (20% reduction in the network responsiveness compared

to the state-of-the-art method) without losing the anonymity.

• Improving the performance through the relay selection (Chapter 3). Circuits in Tor

are the encrypted connections between three relays. The selection of the relays in the

circuit creation is biased toward the bandwidth. The high bandwidth relays have higher

selection probabilities. The relay selection based on bandwidth causes to build circuits

that have high bandwidth relays but there may be multiple intercontinental hopes due

to the relays’ location diversity. We propose a method that considers the location of the

relays along with their bandwidth in the relay selection to avoid long circuits.

• Designing a defense against the guard fingerprinting attacks (Chapter 4). The first

relay in the circuit is in a very critical position, guard position, because it is in the direct

contact with the client. Unfortunately, not all the relays have the bandwidth and uptime

capability to be selected as the first hop. The number of the relays that are eligible

to be selected in the first hop are limited and the number of clients are much larger

than guards, which causes small anonymity sets (the number of clients using the same

guard). Therefore, the guard can act as the fingerprint of the client that can lead to guard

4

fingerprinting attack [14]. We propose a method that groups the guards into few sets

and the clients select one of these sets to pick their guards from.

• Designing a defense against the website fingerprinting attacks (Chapter 5). Tor net-

work does not change the inter-packet timings and the order of the packets. An adversary

located somewhere in the first hop (between the client and the first relay of the circuit,

i.e. guard) can take advantage of this information to identify the client’s web browsing

activities. This attack is called website fingerprinting attack [15, 16, 17, 18, 19, 20].

To lower the accuracy of this attack, we propose to leverage the adversarial examples

concept in the machine learning field [21, 22, 23, 24] to reshape the traffic and cause

mis-identification in the attacker.

1.3 Dissertation Outline

We start with a background on Tor and how it works in Chapter 2. Then we address

both security and performance problem in Tor and introduce methods to improve them. In

Chapter 3, we improve the performance by modifying the circuit selection mechanism and

relay selection mechanism in Tor. We improve the performance by selecting the circuits (at

the time of stream attachment) based on some performance metrics instead of picking them

randomly. We also modify the relay selection and engage the location of the relays in the

selection as well as their bandwidth. In Chapter 4, we propose a guard selection mechanism

to improve the security of Tor against a certain class of attacks like guard fingerprinting

attacks. In Chapter 5, we introduce a defense mechanism using the adversarial machine

learning to prevent the website fingerprinting attacks.

5

CHAPTER 2

Background

The Tor network consists of around 7,000 relays, called Onion Routers (ORs). These

ORs are run by volunteers which donate a portion of their bandwidth to the Tor network.

Therefore, the number of relays and the relays contributing to the Tor network change over

time due to the leaving and joining of ORs. ORs provide information about their donated

bandwidth, IP addresses and ports, and exit policies—the addresses and ports they are

willing to be connected to external Internet destinations—to a small group of servers called

directory authorities. The directory authorities are trusted relays that information about

them is hard coded in the Tor source code. The directory authorities assign flags to the ORs

based on their availability, bandwidth and exit policies. Then, they mutually agree upon

a list of all information about the ORs in the network, this list is called as the consensus

document.

A Tor client, called the Onion Proxy (OP), first contacts one of directory authorities

or their mirrors and downloads the consensus to get the current status of the Tor network.

Since the Tor network is dynamic, with relays regularly joining and leaving, the directory

authorities update the consensus hourly. The OP uses the consensus information to select

a path of three relays to use in communicating with its destinations.

The OP first picks an exit node, the last OR in the path and the one responsible for

communicating directly with the user’s intended destinations (e.g. web servers). Only a

subset of the ORs allows exit traffic, and the directory authorities mark these ORs with the

Exit flag in the consensus. The exit node in the path is selected among the ORs with Exit

flag in the consensus. The second OR to be selected is the entry node or the guard node, the

6

one that the OP will communicate with directly. The entry node is selected among the ORs

with Guard flag in the consensus. The directory authorities flag the high uptime and high

bandwidth ORs as Guards. Finally, the OP picks a middle node from all the ORs. The OP

selects these nodes (exit node, entry node, and middle node) randomly with a bias towards

higher bandwidth relays for load balancing and performance reasons. Additionally, no two

ORs from the same /16 subnet or who are controlled by the same group of relay owners

should appear on the same path [2].

Once the OP picks this path of ORs, it then sets out to build a circuit of layered

cryptographic connections through this path. To prevent the fingerprint attack through the

packet sizes, introduced by [20], the user’ traffic goes through the circuit in fixed-size cells

of 512 bytes. The circuit is created by the following steps:

• The OP sends a CREATE cell to the guard relay. The CREATE cell includes a unique

Circuit ID, and the first half of a Diffie-Hellman handshake gx1 . The cell is encrypted

with the guard nodes public key extracted from the descriptors file downloaded from the

directory authorities.

• The guard relay responds back to the OP handshake with the CREATED cell. The cell

contains the second half of the Diffie-Hellman handshake gy1 along with a hash of the

negotiated key K1 = gy1x1 . Symmetric key K1 is used for communicating between the

OP and guard.

• The OP sends an EXTEND cell to the guard node. This cell contains the information

about the middle, and encrypted gx2 (with the middle node’s public key).

• The guard node copies the encrypted gx2 into a CREATE cell and sends it to the middle

node.

• The middle node responds back to the guard node with a CREATED cell. This cell

contains gy2 along with a hash of the negotiated key K2 = gy2x2 .

7

• The guard node wraps the payload of the CREATED cell into a EXTENDED cell and

passes it back to the OP. The circuit is now extended to the middle node.

• The OP sends an EXTEND cell to the middle node containing the information about the

exit node, and encrypted gx3 (with exit node’s public key). This cell is encrypted with

key K2 and passes through the guard node. The guard node does not know about the

content of the cell.

• The middle node copies the encrypted gx3 into a CREATE cell and sends it to the exit

node.

• The exit node responds back to middle node with CREATED cell. This cell contains gy3

along with a hash of the negotiated key K3 = gy3x3 .

• The middle node wraps the payload of the CREATED cell into a EXTENDED cell and

passes it back to the guard node. The guard adds one more layer of encryption with key

K1 and passes it to the OP.

After this process the secret keys (K1, K2, and K3) have been shared between OP

and each node on the path. Once the OP sends the cell down the circuit, it encrypts the cell

three times with key K3, K2, K1, respectively. As the cell traverses the circuit, the cell is

decrypted one layer at time. Once the circuit reaches the exit node, it has only one layer of

encryption (with K3) and the exit decrypts that layer. The traffic between the exit and the

destination is not encrypted by the Tor network.

When the user’s application makes a request through Tor, the Tor client will first

check to see if it has an open circuit available to attach the stream to it. Typically, the client

maintains one to three open circuits, as building a circuit takes time that would further slow

down the user’s experience. In particular, the client checks once per second to see whether

there are at least two open circuits and creates new circuits if needed. Circuits that have

been used for 10 minutes are marked as dirty, and they are not used for future connections,

which means that a new circuit will be needed. More circuits can also be added if the

8

user’s application requires ports that are not allowed on the exit policies of the currently

open circuits. Additionally, the Tor client maintains circuits for hidden services, which

are servers that can only be accessed through the Tor network to protect the privacy of not

only the user but the service itself, and one-hop circuits (to entries only) that are used to

download the consensus. Geddes et al. report that the Tor client maintains an average of 10

circuits [25], though we note that usually only two of these are available for web browsing.

2.0.1 Onion Services

Tor not only helps the users to hide their location and their identity, but also helps

them to offer various kinds of services, such as web publishing, chat services, and email.

These services are called Onion Services, (OSs). The OSs’ location and identity are hid-

den through Tor network. In the following paragraphs, we explain the Tor onion service

protocol.

Server Setup: The onion server randomly picks 3 to 5 Tor relays and lets them know

about its public key. These relays are called Introduction Points (IPs). The Introduction

Point is the middle point between the client and the onion server that lets the onion server

knows someone is interested in its service.

The onion server needs to announces its Introduction Points to the network. The

onion server generates a document called onion service descriptor and uploads it to a dis-

tributed hash table (DHT). The descriptor contains the server’s public key and a summary

of each introduction point, and it signed it by its private key.

Client Connection The clients find the address of the onion server through the out-of-

band channels. The address of the onion server is a 16-character name derived from the

server’s public key. The client uses the OS address to look for the relays that hold the OS’s

descriptor in the DHT to download the descriptor.

9

The client randomly picks a relay as the Rendezvous Point (RP), creates a three-hop

circuit to RP, and gives the RP a one-time secret (encrypted by the OS’s public key). The

RP does not know about the client’s location because the communication between RP and

the client is through a three-hop circuit.

The OS’s descriptor contains the Introduction Points. The client contacts one of the

Introduction Points through a three-hop circuit and asks the Introduction Point to pass an

Introduce message (encrypted by the OS’s public key) to the OS. The Introduce message

includes the address of the RP and the one-time secret.

Final Connection Once the OS receives the Introduce message, it decrypts the message

and finds out the address of RP and the one-time secret. The OS creates a circuit to the RP

and gives it the secret. The RP connects two ends of the two circuits, the client’s circuit to

the RP and the OS’s circuit to the RP.

10

CHAPTER 3

Performance Improvement

3.1 Introduction

Tor provides anonymity for millions of users around the world by routing their traffic

over paths selected from approximately 7,000 volunteer-run relays.1 Tor effectively hides

the user among all the users, so having more users and more traffic enhances anonymity

for all [26, 5]. Unfortunately, Tor users often face large delays and long download times,

which can discourage users and thereby reduce anonymity. In this paper, we examine two

approaches to improve Tor performance and evaluate them in term of both performance

and security.

Circuit Selection. The client’s traffic in Tor goes through a three-hop encrypted channel,

called a circuit. When the user makes a request, such as for a webpage, Tor attaches the

new stream (by opening a SOCKS connection) to a circuit. The Tor client builds circuits

preemptively based on the client’s use or immediately if there is no current circuit to handle

the stream. Tor currently does not use any performance criteria in selecting a circuit. In this

paper, we evaluate using the length of the circuits, their congestion, the Round Trip Time

(RTT), or a combination of them in choosing a fast circuit. We also find that the number

of available circuits in Tor is often small, between one and three circuits, such that picking

the best circuit for performance does not have much effect in practice. As the number of

available circuits increases, the chance of finding a fast and high performance circuit should

increase. To this end, for each circuit selection criteria we study, we evaluate the impact of

more available circuits in terms of both performance and security.

1https://metrics.torproject.org/, accessed August. 2016

11

https://metrics.torproject.org/

Relay Selection. For circuit selection to be effective, some of the available circuits must be

reasonably high performing. To improve the chances of this, we modify the relay selection

mechanism to build short and high-bandwidth circuits. Tor clients select paths in a way

that balances traffic load among the relays according to their advertised bandwidths, but

they do not make any consideration for the locations of relays relative to the clients, their

destinations, or the other relays in the path. Paths can jump around the globe, which is

intuitively good for anonymity but measurably bad for performance.

Prior work has examined improving path selection in Tor for better performance,

considering factors such as bandwidth [27], congestion [28], latency [29], and location [30].

Wacek et al. performed a comprehensive study of path selection [31], and they

found that congestion-aware routing [28] offers the best combination of performance and

anonymity among the tested approaches. They also found that approaches that emphasized

latency but failed to consider bandwidth had poor performance, and they suggested that an

approach that optimized both latency and bandwidth could do better than any of their tested

approaches. In this paper, we take on this suggestion and explore designs that address both

criteria.

We make the following contributions:

• We define nine circuit selection approaches using the geographical length, circuit delay,

congestion, or a combination of these. We evaluate each of the approaches and compare

them experimentally.

• In our relay selection approach, combined weighting, we explore the design of a single

weighting function that balances bandwidth and geographical inter-node distance. We

examine the design issues in our approach and compare it with the state of the art.

• To prevent delays, it is important to build circuits in advance of their use [31]. Since we

want to use destination location information to better inform our path-selection strategy,

12

we build circuits in advance, using popular destinations as the end points. We then

consider the circuits’ RTTs, base on our findings in circuit selection approaches, to

select from among these circuits.

• We show the results of experiments on our approaches in Shadow, following the method-

ology of Jansen et al. [32], and we examine a range of parameters. We find a number of

settings in our proposed methods that offer reasonable anonymity and significant perfor-

mance improvements over congestion-aware routing, the current state-of-the-art in Tor

path selection. In particular, our recommended approach provides a 20% reduction in

median time to first byte and a 11% reduction in median time to last byte compared to

congestion-aware routing.

• We also measure the security of our approaches using Gini coefficient and entropy on

first-and-last combinations, with the rate of path compromise in the presence of relay-

level and AS-level adversaries, and in the presence of four targeted relay-level attacks.

We find that both of our approaches provide anonymity in line with Tor at settings that

also provide significant performance improvements. Our recommended approach has a

slightly better Gini coefficient and entropy than Tor, with slightly fewer compromised

paths against our attackers.

3.2 Related work

Researchers have addressed Tor performance issues in a variety of ways, such as

modifying circuit scheduling [33], congestion control [28], traffic splitting [34], and incen-

tives to encourage users to offer their bandwidth [35, 36]. In this section, we first briefly

overview Tor’s current path selection mechanism and then discuss the prior works on en-

hancing performance in Tor from circuit selection and relay selection point of view.

13

Tor. Tor is a volunteer-based overlay network providing anonymity online. Details are

available at http://www.torproject.org/ and in the original design paper [37].

In Tor, the choice of relays is governed a complex weighting function2 that includes var-

ious considerations and the bandwidths of the relays. Weighting by bandwidths serves to

balance load in the system, as relays have huge variance in advertised bandwidth, with the

bottom quintile under 2 Mbps, a median of about 10 Mbps, and a maximum of 1 Gbps as

of May 2016.3

Circuit Selection. Can et al. [33] propose a circuit scheduling mechanism that gives high

priority to interactive traffic over bulk traffic on the same connection. This circuit selection

mechanism has been deployed in Tor relays, but it has no impact on the client. Our circuit

selection approaches are designed to improve the performance from the client side and are

thus orthogonal to scheduling in the relays.

Wang et al. introduce node latency as a parameter to measure a relay’s conges-

tion [28]. In their approach, congestion-aware routing (CAR), the client calculates conges-

tion delay using both active and opportunistic methods. It then uses the measured latency to

avoid congested nodes during path selection and to avoid selecting congested paths. They

use both short-term and long-term congestion in their work, where short-term congestion

is caused by current traffic levels and long-term congestion is caused by the relay’s band-

width. Their results show improvement in quality of service and load balancing. In our

evaluation of circuit selection methods, we also examine the use of congestion times and

compare them with RTTs and circuit lengths.

The current Tor client measures the Circuit Build Time (CBT), i.e. the time to con-

struct the circuit, and uses this to discard slow circuits whose CBT is above a client-specific

threshold. Annessi and Schmiedecker [38] propose that Tor should use the circuit round

2Full details at https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt.
3http://metrics.torproject.org/

14

http://www.torproject.org/
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
http://metrics.torproject.org/

trip times (RTTs) in eliminating slow circuits instead of CBTs. In this method, the circuit

RTT is actively measured after the circuit is built, and if it is longer than a timeout the

circuit is discarded from future uses. In their study, this provided only 3% improvement

in the time to download the first byte with mixed anonymity results. Our strategy in this

paper is different from both approaches. Rather than examining circuits after their creation

to discard them or keep them, we instead try to pick a high performing circuits in the first

place.

Relay Selection. A number of improvements to Tor path selection have been investi-

gated [27, 29, 30]. Wacek et al. examine Tor path selection in a comprehensive study

with experiments running many simultaneous clients [31]. They create a model of the

Tor network to evaluate the recent published papers modifying path selection and show

results for throughput, time to last byte (TTLB), and round-trip time (RTT). They tested

Tor, Snader/Borisov [27], Unweighted Tor, in which Tor relays get selected uniformly at

random, Coordinate [29] in which path selection is based on estimated pair-wise latencies,

LASTor [30], and Congestion-Aware [28]. Their investigation shows that path selection

algorithms that do not consider bandwidth as a factor in relay selection have poor perfor-

mance. Congestion-aware had nearly the best performance in throughput and time-to-first-

byte, plus it had anonymity approximately in line with Tor and significantly better than

other high-performing algorithms. We thus select it for comparison in our work.

Improving performance can also affect attackers, potentially providing them better

attacking opportunities and more accurate measurements. There are several attacks that

use latency and throughput information to de-anonymize Tor users [10, 11, 39]. Ged-

des et al. [40] introduced a new class of attacks, called induced throttling, that exploit

performance-enhancing mechanisms to throttle and unthrottle a circuit and identify the

user. They evaluated the vulnerability of performance improvements, such as congestion

15

control and traffic admission control to these attacks, and they found that there are highly

effective attacks that can uniquely identify users. While this does not directly affect our

approaches, we recognize that there is generally a trade-off between anonymity and perfor-

mance.

3.3 Model and Goals

3.3.1 Network Model

Testing new path and circuit selection strategies on the live Tor network is challeng-

ing and could compromise users’ anonymity or their harm their performance. We perform

our simulations in Shadow [41, 42], a discrete-event simulator that runs the Tor code in a

complete, but scaled-down, network. Shadow simulates the underlying network and it con-

siders network attributes such as packet loss, bandwidth upstream and downstream, jitter,

latency, and network edges. In our performance evaluations, we used a scaled-down model

of Tor, which consists of 1100 clients and 220 relays; this scaled-down model was built

based on the procedures of Jansen et al. [32] and measurements from the live Tor network

(from July 2015). In our security evaluations, we use a larger scaled-down model of 2127

relays with one client at a time.

3.3.2 Attacker Model

As with prior work in Tor performance [27, 29, 30, 31], our attention is more on per-

formance characteristics than on attacks. We only seek to validate that our approach does

not significantly weaken the anonymity provided by Tor currently. We evaluate the security

of our proposed mechanisms in terms of both relay-level and network-level adversaries.

Relay-Level Adversary Model. In the relay-level adversary model, we assume that the

adversary is running some Tor relays in the network with the goal of getting into the guard

16

and exit positions of some circuits. An adversary in such a position can observe the entry

and exit traffic and correlate them to link the clients to their destinations. To evaluate the

security of our proposed circuit selection mechanism, we simulate our proposed method,

CAR, and vanilla Tor in Shadow and randomly mark one of our guards and one of our

exits as malicious relays. We then extract the streams and identify which ones were com-

promised. We repeat this process 10 times, and measure the compromise rates all over 10

repetitions.

To evaluate the security of our proposed relay selection mechanism at the relay level,

we first follow the approach of Wacek et al., who use the Gini coefficient and entropy as

measures of the diversity of paths taken by each of their studied approaches [31]. We con-

sider a high-bandwidth attacker who adds a modest number of high-bandwidth ORs into the

Tor network. Since our path selection algorithm uses distance as well as bandwidth, leading

to our path selection algorithms pick high-bandwidth ORs with short distance more often,

this attacker is aimed at capturing a large number of circuits. We also consider four tar-

geted attack strategies in which the attacker targets a specific client, a specific destination, a

specific client and destination, or with no specific target. In all these strategies, the attacker

places his relays in the target’s exact location to have minimum distance and a high chance

to be selected. Our targeted attack scenarios are thus worst cases.

Network-Level Adversary Model. The adversary can control some network components

like ASes or IPXs. If the entry traffic and exit traffic of an anonymous connection tra-

verse through the adversary’s network components, the adversary observes both sides of

the traffic and deanonymizes the clients. We evaluate the security of our circuits selection

mechanisms and relays selection mechanisms in the network level. In circuits selection and

relay selection mechanisms, we simulate each of the proposed mechanisms in Shadow and

extract the streams, including their paths. To determine the compromised streams, we use

17

the algorithm proposed by Qiu and Gao [43] to infer the AS paths on both the entry side

of the circuit (between clients and guards) and and exit side (between exits and servers).

Qiu and Gao’s algorithm exploits known paths from BGP tables to improve the inferred

paths. In measuring the compromise rates, we consider the possibility of an asymmetric

traffic correlation attack that can happen between data path and ack path, which is one of

the RAPTOR attacks proposed by Sun et al. [44].

3.3.3 Design Goals

We seek an algorithm that meets the following goals:

1. Interactive use like web browsing should be significantly faster than Tor and prior work.

2. Performance for bulk downloads should not be significantly slowed compared to Tor.

3. Anonymity should be similar to what Tor currently provides against our selected attack

models.

4. Usage should be fairly distributed among relays according to their available capacities.

5. Clients should be able to select paths with little computational or other overhead.

6. Circuits should be available to the client for attaching streams to when needed.

7. We should avoid downloading large amounts of additional information from the direc-

tory servers.

We emphasize web traffic since delays in interactive use are more harmful to the user

experience than delays in bulk downloads. We consider both response time, measured as

time to first byte (TTFB), and total download time, measured as time to last byte (TTLB).

Note that we do not seek the optimal latency for circuits. Although having accurate

latency information instead of geographic distance could further improve performance, the

gains might be marginal given requirements for bandwidth and path diversity. Further,

18

obtaining and distributing accurate pairwise latency information may be expensive due to

the necessary measurements and directory server overhead.

3.4 Circuit Selection

When a Tor client issues a request, the new stream is handled by one of the available

circuits. In this section we explain how Tor tries to provide some available circuits for

new streams and how it attaches the streams to the circuits. Then we explain how the

stream attachment can be improved by increasing the number of circuits and considering

performance criteria in circuit selection.

Pre-Built Circuits. As the user browses the Web with Tor, the Tor client opens new cir-

cuits so that later streams can be attached to those circuits without delay. Since different

exits support different sets of ports, the Tor client aims to keep open two circuits to cover

any port that the user has used recently. In practice, one or two circuits are typically avail-

able at any given time.

On-Demand Circuits. Sometimes the user’s requested streams are not supported by cur-

rent available circuits, or all available circuits are older than 10 minutes and considered

dirty. In this case, Tor builds a circuit for the unhandled stream and attaches the stream

to this circuit. It is obvious that these streams experience more delay than streams using

pre-built circuits due to the circuit built time.

Tor Stream Attachment. When a new stream is created, the Tor client selects the most

recently created circuit or creates a new circuit if needed and attaches the new stream to

it. Then all communication on that stream, including DNS resolution, goes through the

circuit.

19

Entry

Middle

ExitDCG

DGM DME DExit

(a) When the dest. IP is known

Entry Middle

Exit

DCG DGM DME

DExit

(b) When the dest. IP is unknown

Figure 3.1. Distances used to compute circuit length..

3.4.1 Performance in Circuit Selection

The Tor client does not use performance as a criteria when selecting from available

circuits for attaching a stream. Wang et al. [28] propose to use the least congested circuit,

but there are several possible performance characteristics to use instead. The number of

available circuits are often small, such that existing circuit selection mechanisms are not

effective in practice. Also, we know of no study testing the effect of changing number of

circuits on performance-based selection.

To investigate the effect of circuit selection on Tor performance, we evaluate both the

number of available circuits for the streams and the way to choose the best circuit among

the available circuits. To set the number of circuits, we check once per second that there are

at least N circuits to support all recently used ports. If there are fewer than N circuits, then

we start building circuits to reach the threshold. We compare Vanilla Tor, which typically

offers one or two circuits, with making at least N = 3 to N = 5 circuits available at all

times. Given some number of circuits, we can then use various methods to select the best

one. We compare various combinations of geographic circuit length, congestion, and round

trip time (RTT).

20

Metrics. The three basic metrics that we use are geographic circuit length, congestion

time, and round-trip time. To find the total geographic circuit length (or simply length) L

between the client and destination, we compute:

L = DCG +DGM +DME +DExit (3.1)

DCG,DGM ,DME , andDExit are shown in Figure 3.1(a) for when the destination IP address

is known and in Figure 3.1(b) for when the IP address is not yet known. We use the

opportunistic circuit measurements and latency model proposed by Wang et al. [28] to

measure the circuit round-trip times and congestion times. Congestion time Tc is measured

as:

Tc = RTT −RTTmin (3.2)

where RTT is the round-trip time and RTTmin is the minimum RTT observed over that

circuit. Wang et al. [28] showed that five measurements can effectively identify congested

circuits. We thus measure and store the mean of the last five Tc measurements as the

congestion time of the circuit, and the mean of the last five RTTs as the circuit RTT.

3.4.2 Attaching Streams to Circuits

We consider nine different methods in handling streams using circuit length, conges-

tion, and RTT.

1. Congestion Only: Pick the circuit with the lowest congestion time.

2. Length Only: Pick the shortest circuit.

3. RTT Only: Pick the circuit with the lowest RTT.

4. Congestion then length: Select the two lowest congestion times and pick the shorter

circuit.

5. RTT then length: Select the two lowest RTTs and pick the shorter one.

21

6. Length then congestion: Select the two shortest circuits and pick the lower congestion

time.

7. Length then RTT: Select the two shortest circuits and pick the lower RTT.

8. RTT then Congestion: Select the two circuits with the lowest RTTs and pick the lower

congestion time.

9. Congestion then RTT: Select the two circuits with lowest congestion times and pick the

lower RTT.

Since these circuit selection mechanisms are deterministic, given a set of candidate

circuits, only one circuit from a set will be be used. These strategies will exploit the best

circuit for the full 10-minute window that the circuit can be used. Since this means that

the other circuits will go unused, we have the OP close any circuits that go unused for five

minutes after their creation, leading to new circuits being opened. By itself, this might

improve performance, as inferior circuits are closed in favor of untested circuits that may

be better (or worse).

3.5 Circuit Selection Performance

We now evaluate the nine methods of selecting circuits for stream attachment and

compare them with Tor and CAR.

3.5.1 Network Configuration

We largely follow the experimental procedures suggested by Jansen et al. [32] and

describe them here in brief. Shadow runs actual Tor code for accurate modeling; we used

Tor version 0.2.5.12, modifying it as necessary to implement our methods and CAR. To

generate a realistic Tor network topology, Shadow comes with topology generation tools

that model a private Tor network based on a validated research study [32]. We used these

22

Congestion Only

Congestion Then Length

Length Then Congestion

Only Length

RTT Then Length

RTT Only

Length Then RTT

RTT Then Congestion

Congestion Then RTT

0.20

0.22

0.24

0.26

0.28
Se

co
nd

s
Median of TTFB for web clients

(a) TTFB

Congestion Only

Congestion Then Length

Length Then Congestion

Only Length

RTT Then Length

RTT Only

Length Then RTT

RTT Then Congestion

Congestion Then RTT

0.90

0.95

1.00

1.05

1.10

1.15

Se
co

nd
s

Median of TTLB for web clients
3 circuits
4 circuits
5 circuits

No-change
CAR

vanilla

(b) TTLB

Figure 3.2. Circuit Selection: TTLB and TTFB for web clients..

tools and data from the Tor metrics portal to generate our private Tor network. Our Tor

network includes 1100 clients, 220 Tor relays (52 exit relays, including exit-guard relays,

and 49 guard relays), three directory authorities, and 220 HTTP destination servers.

Shadow uses an underlying topology that models the Internet. The default topology

shipped with Shadow is very small, consisting of only 183 vertices and 17,000 edges, and

is not a good representation of the Internet. For all the simulations in this paper we used

the same Internet topology that was used by Jansen at al. [45]. This topology is provided

by techniques from recent research in modeling Tor typologies [32, 46], traceroute data

from CAIDA [47], data from the Tor Metrics Portal [48] and Alexa [49], and it includes

699,029 vertices and 1,338,590 edges. In our simulation, we tried different ratios of clients

to relays, i.e. different congestion levels, and different average packet loss rates in the

Internet topology and compared our results with Torperf data [48]. We found that a clients-

to-relays ratio of 5:1 with 0.0025% packet loss provides us comparable results on TTFB

and TTLB with Torperf data.

Our clients run Tor code in client-only mode and are distributed around the world

in line with Tor usage statistics. We have two types of clients in our experiments: web

clients and bulk clients. The 900 web clients download 320 KiB of data (the average page

23

size [50]) and simulate web-surfing behavior by waiting between 1 to 20 seconds uniformly

at random before starting the next download. The 100 bulk clients download 5 MiB of data

without pausing between the end of a download and starting the next one.

3.5.2 CAR: Congestion-Aware Routing

To compare our methods, we also simulated CAR, the circuit selection technique of

Wang et al. [28]. They proposed opportunistic and active probing techniques to measure

RTTs, which allows them to compute congestion times according to Equation 3.2, and they

use these measurements to mitigate congestion using both an instant response for temporary

congestion and a long-term response for low-bandwidth conditions. In our simulation, we

follow the method of Wacek et al. [31], who also simulated CAR and ignored the long-term

response due to its small impact on performance.

When attaching streams to circuits in CAR, we randomly select three circuits from

the circuit list and pick the one that has the smallest mean congestion time from the five

most recent measurements. If the mean of last five congestion times is more than 0.5

seconds for a circuit, we stop using the circuit for new streams.

3.5.3 Performance Results

Figure 3.2 shows the median time-to-first-byte (TTFB) and time-to-last byte (TTLB)

for web clients. Vanilla represents unmodified Tor circuit selection, and No change repre-

sents the case where we do not modify the number of circuits from Tor, which typically has

one or two circuits available at a time.

As shown in Figure 3.2, RTT is the best criterion to choose the circuit, with RTT

Only as the best method overall. RTT Only has 15% lower TTFB than CAR (22% lower

than Vanilla) for three circuits and 22% lower TTFB than CAR (27% lower than Vanilla)

for five circuits. RTT Only also has 9% lower TTLB than CAR (13.8% lower than Vanilla)

24

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

(a) Number of circuits per client

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(a)

2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

(b) Number of used circuits per client

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

3 circuits
4 circuits
5 circuits

CAR
No-change

vanilla

(b)

Figure 3.3. CDF of the number of circuits created (a) and used (b) for web clients..

for three circuits and 12% lower TTLB than CAR (16% lower than Vanilla for five circuits.

We speculate that RTT is the best criteria because it effectively captures both propagation

delays and congestion time (queuing delays and transmission delays).

As expected, CAR is better than Vanilla, and Congestion Only with no change in

the number of circuits performs the same as CAR, as both use the same criteria. Length

turns out to be less effective compared to RTT or congestion times, particularly when the

number of circuits is small. We note that Length then RTT performs fairly well for three or

more circuits. Length may be suitable for gauging broad performance information, such as

comparing a circuit with multiple intercontinental hops to one with no such hops, but poor

at predicting the best circuit otherwise.

The TTFB and TTLB for RTT Then Congestion are slightly better than Congestion

Then RTT, which indicates that RTT can narrow down candidate circuits better than con-

gestion times. Results of both RTT Then Congestion and Congestion Then RTT are worse

than RTT Only, which shows that mixing congestion time with RTTs will not provide better

performance than using RTT by itself.

25

3.5.4 Circuit Creation Analysis

In our circuit selection strategies, we build more circuits than Tor’s normal behav-

ior, so it is important to understand the load this imposes on the network. Unfortunately,

Shadow does not provide results regarding the load on nodes. To estimate changes in load,

we compare the strategies based on the number of created circuits and used circuits. To see

how many circuits our clients build, we simulate the circuit selection strategies in Shadow

for one hour of simulated time, which leads to about 40 minutes of activity after 20 min-

utes of initialization. We extract the number of general-purpose circuits built by our web

clients. Note that this does not including circuits built for hidden services or downloading

the consensus, which is a consistent load across all schemes.

Figure 3.3 shows the CDF of created general purpose circuits and the CDF of used

circuits, the circuits actually being used for transferring the data. We show results for web

clients in Vanilla, CAR, and RTT Only with the same number of circuits as Tor, as well as

RTT Only with N = 3, 4, 5 circuits. The median number of created circuits in RTT Only is

17, 23, and 29 circuits as we increase the number of circuits from three to five. RTT Only

leads to building so many circuits due to proactively checking every second that there areN

circuits available for each recently used port, plus killing unused circuits after five minutes.

Fig. 3.3.b shows how many of these created circuits have been used in transferring data.

The median for used circuits in vanilla, CAR, and RTT Only with no change in the number

of circuits is around four circuits, which means that they use all the circuits created and

attach some stream to them. The median in RTT Only is 8, 10, and 13 circuits, respectively.

3.6 Security Analysis

In this section we examine the security of these circuit selection strategies, consid-

ering both relay-level and network-level adversaries. Our performance results show that

26

RTT Only outperforms all the other circuit selection strategies and CAR. Therefore, in this

section, we focus on the security analysis of RTT Only.

3circs 4circs 5circs CAR No-ch vanilla
0

0.05

0.1

0.15

Circuit Strategies

Fr
ac

tio
n

(a)

Figure 3.4. Relay-level adversary: Distribution of compromise rates..

3.6.1 Relay-Level Adversary

In the relay-level adversary model, we assume that the adversary runs both guard and

exit relays in the hope that his relays simultaneously occupy the guard and exit positions

in some circuits. If the adversary can sit on the exit and guard position on a circuit, he can

apply a traffic correlation attack and link the client to her destinations. These circuits and

the streams attached to them are called compromised circuits and compromised streams,

respectively. To analyze the security of the RTT Only strategy, we need to have access to

RTTs (which include propagation delays, queuing delays, and transmission delays), which

means we need to simulate a whole network. For this purpose, we again use Shadow to

simulate the Tor network, and we use the same Tor network configuration as our perfor-

mance evaluations in Section 3.5.1, which consists of 52 exit relays, including exit-guard

relays, and 49 guard relays.

For the relay-level adversary, we randomly mark 10% of our guard bandwidth and

10% of our exit bandwidth as malicious guards and malicious exit relays in the network.

27

Then we simulate CAR, Vanilla, and RTT Only with an unchanged number of circuits and

then RTT Only using three to five circuits. We run 10 simulations, where the malicious

guards and exits change in each run. 10 simulations for each case is reasonable considering

that we have 52 exit relays, 49 guards, and simulations taking 11 hours.

Figure 3.4 shows box plots for the stream compromise rates for clients. The median

of compromise streams is almost the same for vanilla, CAR, and RTT Only with no change

in the number of circuits because the clients build almost the same number of circuits. As

the number of circuits increases, the median of compromised streams rate increases due

to the increase in circuits created by the clients. When the number of circuits increases,

the chance of creating a circuit that has malicious relays on its guard and exit positions

increases. As we see, RTT Only with five circuits has the highest compromised streams

with a median of 1% while vanilla and CAR have a median compromised streams of 0.3%.

0 0.2 0.4 0.6 0.80
0.2
0.4
0.6
0.8

1

Fraction of streams

CD
F

vanilla
4 circuits
5 circuits
3 circuits

CAR
No-change

(a)

Figure 3.5. Network-level adversary: CDF of compromise rates..

3.6.2 Network Level Adversary

In the network-level adversary model, we assume that the adversary controls an Au-

tonomous System (AS). If the entry traffic (traffic between the client and guard) and exit

28

traffic (traffic between the exit and server) traverse over a common AS, that AS can apply

traffic correlation attack and link the client to her destinations.

To analyze the security of circuit selection strategies, we used our Shadow simulation

results from the relay-level adversary for CAR, Vanilla, and RTT Only with an unchanged

number of circuits and then RTT Only using three to five circuits. Because we did not

add any relays to the network in evaluating the relay-level adversary model, as we only

marked existing relays as malicious, we can re-use these results for this analysis. For each

circuit selection approach, we extract all the generated streams by clients. The simulations

generated approximately 730,000 streams for each circuit selection approach, or about 700

streams per client. For each stream, we used the algorithm proposed by Qiu and Gao [43]

to infer the AS paths between clients and guards and between exits and servers. This

algorithm exploits known paths from BGP tables to improve the accuracy of the inferred

paths. In measuring the compromise rates, we consider the possibility of an asymmetric

traffic correlation attack that can happen between the data path and ack path, which is one

of the RAPTOR attacks proposed by Sun et al. [44].

Figure 3.5 shows the cumulative distribution of compromise rates for each strategy.

As we see, when we increase the number of circuits from three to five, the the median

compromise rate increases from 27.2% to 28.1% while the compromise rates of CAR and

vanilla are 26% and 27%, respectively. CAR performs 1% better than Vanilla. These

results show that using RTT and increasing the number of circuits even up to five circuits

have a modest effect on the security against a network-level adversary.

3.7 Relay Selection

In this section, we describe a method for path selection in which we assign weights

to relays based on a combination of bandwidth and geographical distances. This approach

29

Exit

Dclient-exit
Dexit-dest.Client

(a) Exit

Entry

Exit

Dclient-entry
Dentry-exitClient

(b) Entry

Figure 3.6. Distance for relays for each position..

extends the idea of Tor path selection, which uses weights based on various factors in

probabilistic relay selection. The goal of the combined weighting approach is to build

circuits that still have high bandwidth relays, ensuring load balancing and good throughput,

but also relatively shorter paths between the client and her destinations.

3.7.1 Weight Function

In a large and growing network like Tor, which consists of around 7000 nodes as of

August 2016, examining all possible paths to find ones with these characteristics would be

expensive. Clustering relays into geographic areas, as in LASTor [30], can lead to uneven

distribution of bandwidth between clusters. Instead, we approach the problem much like

Tor’s current algorithm by selecting one relay at a time, starting with the exit node, then the

entry node, and finally the middle node. This greedy approach may miss the optimal path,

for some definition of optimal, but our design aims to select from a wide range of paths

with good performance and to avoid poorly performing paths. A broader selection of paths

should help us maintain anonymity.

We calculate the weight of each relay using following function:

w = α× wB + (1− α)× wD

where wB is a measure of the relay’s bandwidth and wD is a measure of distance. In this

function, α is parameter that we can use to tune the share of bandwidth and distance in the

weights. As α increases, the importance of bandwidth to the weight increases, and as α
30

decreases, the importance of distance to the weight increases. wB and wD for relay i are

computed as follows:

wBi =
Bi

Bmax

, wDi = 1− Di

Dmax

Here,Bi is the relay’s weighted bandwidth, andBmax is the maximum weighted bandwidth

among all relays. Tor assigns weights for each position in the circuit, and these weights

bias the relay selection for circuits to distribute more load to higher-bandwidth relays. Di is

a distance that is computed differently depending on the selected relay’s role in the circuit

as exit, middle, or entry. The maximum value of Di over all relays is Dmax. We subtract

the ratio from 1 so as to weight short distances more than long ones. Note that both wB and

wD will be between 0 and 1.

Figure 3.6 shows how we compute the distance for relays for exit and entry position

in the circuit. We seek to minimize total distance from the client to the destination by

minimizing the intermediate pairs of distances that are added by each relay in the sequence

used by Tor: exit, entry, middle. Intuitively, selecting one of these relays with a large

distance to its neighbors extends the path away from a straight line between client and

destination, which would theoretically be the ideal path.

Since we use geographic locations, we compute D using the great-circle distance

between two points on a sphere from their longitudes and latitudes. In choosing the circuit’s

exit node, we compute D for all relays as follows:

Dexit = (1− λ)×Dclient−exit + λ×Dexit−dest

For the circuit’s entry node:

Dentry = λ×Dclient−entry + (1− λ)×Dentry−exit

And for the circuit’s middle node

Dmiddle = Dentry−middle +Dmiddle−exit

31

Entry Middle Exit

(a) Large value of λ

Entry Middle Exit

(b) Small value of λ

Figure 3.7. The effect of λ..

Dmax in wD is the maximum computed D among the set of relays for each position (exit,

entry, or middle). The use of Dmax and Bmax ensure that wD and wB both range between

0 and 1 for more straightforward calculations.

λ is a tuning parameter that enables us to change the share of the distance between

different nodes on the path. As shown in Figure 3.7, as λ goes up, the entry nodes and

exit nodes move toward the source and destination, respectively, and a large portion of the

path between the source and destination is covered by inter-relay connections. In this case,

the selected guards are close to the clients which can decrease the threat of network level

adversaries. In particular, it causes the AS paths between clients and guards to be shorter

and involve fewer ASes, thereby decreasing the chance that a common AS appears on both

sides of the traffic, i.e. between the client and guard and between the exit and server. As λ

decreases, the path’s inter-relay portion shrinks.

To evaluate how close the short paths selected by our algorithm are to optimal, we

used a scaled-down Tor network, with 147 exit nodes, 700 middle nodes, and 170 entry

nodes, a user located in the central US, and 100 destinations from the Alexa Top 100 web-

sites [49]. We found short paths between the user and all destinations with our method for

different values of λ. To measure the average distance between our method from the actual

shortest path to each of these 100 destinations (d), we used the mean absolute percentage

deviation (MAPD):

devλ =
1

100

d=100∑
d=1

|Lλd − Ld|
Ld

32

where Lλd is the length of the shortest path found by our method for a given value of λ,

and Ld is the length of the shortest path to destination d. Figure 3.8 shows the average

deviations devλ for different values of λ, and we see that λ = 0.5 has the lowest deviations

at just 0.19% longer on average. This indicates that our greedy algorithm produces short

paths close to the optimal ones.

3.7.2 Preemptively built circuits

When computing distances, we need to know the location of the final destination.

The destination addresses can be either an IP address or a DNS hostname. If the address

is IP, we can find the destination’s location by using IP geolocation databases (we use

Maxmind [51] in this paper) and find the shortest path to these destinations. But most of

time, the addresses are DNS hostnames. To find the location, we first need to perform DNS

resolution to get the IP address. In the DNS resolution process, the party performing DNS

lookup returns the closest content provider or replica sever to itself, which in Tor’s case

means the closest ones to the exit nodes.

In Tor, however, the client saves time by having a number of circuits already built

and available for new connections. Building a new circuit takes time for numerous proto-

col messages and public-key cryptographic operations. Wacek et al. showed that LASTor,

which builds new circuits once the destination location is discovered, suffers from signifi-

cant added delay due to these delays [31].

To solve this issue, we build circuits in advance that shorten the path between the

source and the most popular destinations online. To identify popular destinations, we use

the Alexa Top 1000 websites [49]. Because some of these sites use CDNs or replica servers,

we visited them from different places in thew world. In particular, we selected 13 planet-lab

nodes based on Tor users’ statistics [52]. From each node, we visited all of the 1000 sites,

got the address of all fetchable elements in their front pages, and resolved their addresses

33

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ

0.00

0.02

0.04

0.06

0.08

0.10
d
ev

λ

Figure 3.8. Average added distance over
the shortest path for different values of
λ..

Figure 3.9. The location of the existing
servers in Alexa Top 1000 websites. Red
stars show the cluster centroids..

if needed. For example, from our planet-lab node on the US west coast, we got 46,306

hostname addresses, leading to 2894 unique IP addresses from 346 unique locations. We

clustered the obtained locations into four clusters using the k-means algorithm (we got

better performance for four rather than with three or five clusters), and we use the centroids

of these clusters as a target destination. Figure 3.9 shows all obtained locations and our

cluster centroids. From these four target destinations, we mark the one closest to the client

as the default destination, i.e. when we have no other information, we assume that the

users is more likely to visit sites located closer to her. We have the client build circuits in

advance of their use with short paths to these four target destinations. We check our circuit

list once per second to ensure that we have at least one circuit to each of these destinations

and ensure that a new connection can be handled as quickly as possible.

3.7.3 Guard Selection

In Tor, each client selects and uses one guard consistently for a period of nine to ten

months. This means that for selecting the path, the guard relay is already selected, before

the exit. We thus cannot use the exit’s location to help pick the entry and must modify

our algorithm. In selecting the guard, instead of using the exit node’s location, we use

34

the closest of the four target destinations to the client to compute Dentry. Dentry will be

computed as:

Dentry = λ×Dclient−entry + (1− λ)×Dentry−target

This can reveal some information about the client’s location, e.g. through fingerprinting

attacks that identify the guard from the exit [11]. Since we only have four popular destina-

tions, however, the anonymity sets for clients’ location will be quite large. We evaluate the

security of our design in Section 3.9. Further performance improvement can be achieved

by using Dguard−exit instead of Dclientexit in computing Dexit because we have already se-

lected the guard relay and know its location. This helps us to not have long circuits in case

the guard is relatively far from the client.

During this research, we found a bug in the Tor source code that was causing Tor

clients to choose guards from all the available relays, not the ones with the guard flag. This

harmed both anonymity and performance. The bug was reported to the Tor project4 and

was fixed in Tor version 2.7.6. We use the corrected code in all of our simulations.

3.7.4 Attaching streams to the circuits

Our relay selection mechanism tends to build short circuits to the popular destina-

tions. As a stream request a circuit, Tor client should pick a circuit among all preemptively

built circuits or build a new one if there is no circuit available. Tor does not consider any

performance metric in picking the best circuit among the preemptively built circuits. In or-

der to find the fast circuits among preemptively built circuits, we first select the two circuits

with lowest RTTs and then pick the shorter one. We use the opportunistic circuit measure-

ments and latency model proposed by Wang et al. [28] to measure the circuit RTT. This

circuit selection mechanism helps us to choose circuits which are fast and short.

4https://trac.torproject.org/projects/tor/ticket/17772

35

https://trac.torproject.org/projects/tor/ticket/17772

3.8 Performance Evaluation

In this section, we evaluate the performance of our proposed relay selection method

compared with Tor and congestion-aware routing (CAR), the current state of the art [31].

We evaluate the performance of our method as α and λ vary.

The effect of α. For evaluating different values of α, we set λ = 0.97 and vary α from

0.0 to 1.0, we have chosen λ high to stretch circuits between the clients and destinations.

Figure 3.10 shows the median of web clients’ TTLB and TTFB with respect to α, where we

plot only the median of the results for readability. Changing α from 0.0 to 1.0 yields 7% to

24% improvement in web clients’ TTFB compared to CAR, and 2% to 12% improvement

in web clients’ TTLB compared to CAR. Relay bandwidth is more important in improving

performance, which matches findings from Wacek et al. [31]. We will explore the trade-offs

in security in Section 3.9.

The effect of λ. Parameter λ controls the elasticity of the path. As λ increases, the

circuit stretches out, with guards moving toward the clients and exits moving toward the

destinations. To evaluate the effect of λ, we set α = 0.0. We find that performance changes

less than 2% as λ varies, and it is best for λ of 0.4-0.5.

0.0 0.2 0.4 0.6 0.8 1.0
0.20
0.22
0.24
0.26
0.28

α

Se
co

nd
s

λ = 0.97
CAR
vanilla

(a) TTFB

0.0 0.2 0.4 0.6 0.8 1.00.90
0.95
1.00
1.05
1.10
1.15

α

Se
co

nd
s

λ = 0.97
CAR
vanilla

(b) TTLB

Figure 3.10. Median TTFB and TTLB for web clients.

36

Strategy Gini Coef. Entropy
vanilla 0.725 9.702
α = 1.0 0.724 9.713
α = 0.9 0.590 10.326
α = 0.8 0.490 10.609
α = 0.7 0.444 10.735
α = 0.6 0.401 10.802
α = 0.5 0.370 10.872
α = 0.15 0.335 10.933
α = 0.1 0.338 10.944
α = 0.0 0.341 10.945

Table 3.1. Relay adversary. System-wide security results.

3.9 Security analysis

We now examine the impact of our path selection strategy on anonymity using three

models. First, we study broad system-wide measures of anonymity. We then examine

path compromise rates in the presence of AS adversary. Finally, we study a set of targeted

attacks in the relay level adversary.

3.9.1 System-wide Security Metrics

We simulated the proposed path-selection strategies in a 2127-relay model of the

Tor network, built by sampling approximately one-third of the nodes of each type (exit,

entry, middle) from a descriptor file from December 2015. In our simulations, 200 clients

are placed according to statistics about users from the Tor metrics portal, and each client

constructs 27,000 paths. In our location-based approaches, the clients select paths using

the four target destinations as described in Section 3.7.2. We created in total 5.4 million

paths for different values of α, with λ = 0.97.

To measure anonymity, we focus on end-to-end traffic confirmation attacks in which

the adversary controls both the exit and entry relays in a circuit. We measured the Gini co-

37

0 0.2 0.4 0.6 0.8 1.00.24

0.26

0.28

0.3

0.32

α

M
ed

ia
n

λ = 0.97
CAR
vanilla

(a) As α varies

0 0.2 0.4 0.6 0.8 1.0

0.24

0.26

0.28

λ

M
ed

ia
n

α = 0
CAR
vanilla

(b) As λ varies

Figure 3.11. AS Adversary. The median stream compromised rate as α and λ vary.

0 5 10 15 200.00
0.02
0.04
0.06
0.08
0.10

C
om

pr
om

ise
ra

te

α = 0.9
α = 0.8
α = 0.5
Vanilla

(a) Targeted Clients

0 5 10 15 200.00
0.02
0.04
0.06
0.08
0.10

C
om

pr
om

ise
ra

te
(b) Targeted Destination

0 5 10 15 200.00
0.02
0.04
0.06
0.08
0.10

C
om

pr
om

ise
ra

te

(c) Targeted Dest. and Client

0 5 10 15 200.00
0.02
0.04
0.06
0.08
0.10

C
om

pr
om

ise
ra

te

(d) Non-Targeted

Figure 3.12. Targeted Attacks: Fraction of circuits compromised. X-axis shows the per-
centage of exit and guard bandwidth controlled by the attacker..

efficient and Shannon entropy of the exit-entry combinations occurring on selected circuits.

The Gini coefficient is a measure of the equality of relay selection, where 0 represents pure

equality (i.e. each relay is selected uniformly at random) and 1 represents a state of com-

plete inequality (i.e. a given relay is always selected) [27, 31]. Table 3.9.1 shows the results

for Gini coefficient and entropy.

In our static path selection method, we cannot produce equivalent results for CAR,

since circuits dynamically change in their method. Wacek et al. report that CAR has a

lower (i.e., better) Gini coefficient than Tor but slightly lower (i.e., worse) entropy [31].

38

As shown in Table 3.9.1, as α decreases, the Gini coefficient decreases and the entropy

increases. As we expect, for α = 1.0, which selects the relays only based on bandwidth, the

results are nearly the same as vanilla. The most dramatic difference in anonymity occurs

for higher values of α, e.g. from α = 1.0 and α = 0.8, where the Gini coefficient drops

from 0.724 to 0.490 and entropy rises 0.9 bits.

Since α means increasing the share of distance in the selection weights, we see that

emphasizing distance in the weights improves the system-wide security metrics. On the

other hand, according to Figure 3.10, small values of α offer lower performance. We thus

face a trade-off between security and performance, where decreasing α improves security

but offers less performance benefits. Values of α between 0.8 and 0.5 offer both good

security and performance, with a Gini coefficient of between 0.370-0.490 and almost 20%

improvement in TTFB compared to CAR.

3.9.2 AS Adversary

In this section, we evaluate the security of our approach in the presence of AS-level

adversaries. We use Shadow with the same configuration as previous section and carry out

simulations for different α and λ values.

For evaluating the effect of α, we fix λ = 0.97 and vary α from 0.0 to 1.0. For

each value of α, we extract all the generated streams along with their attached circuits in

the simulation. For all the streams, we find the AS paths between the clients and guards

(guards and clients) and between the exits and the destinations (destinations and exits)

using the algorithm proposed by Qiu and Gao [43]. We consider the possibility of an

asymmetric traffic correlation attack that can happen between the data path and ack path.

Figure 3.11(a) shows the median stream compromise rates. As we see, by increasing α

from 0, the compromise rate starts increasing until α reaches around 0.7, where we have

39

the compromise rate equal to vanilla. The compromise rate in CAR is slightly better than

vanilla.

To evaluate the effect of λ on the security, we set α = 0.0 and vary λ from 0 to

1.0. Figure 3.11(b) shows the median compromise rate as λ varies. When λ increases, the

compromise rate decreases till it reaches 0.4 after that it keeps increasing.

3.9.3 Targeted Attacks in Relay-Level Adversary

To further explore how path selection strategies perform against attacks in the relay

level model, we now examine four types of attacks in the network and measured how often

adversaries can compromise a circuit. We assume that a circuit is compromised if both the

exit and entry nodes are controlled by the adversary.

In the targeted attacks, we consider a high-bandwidth adversary that owns a few

high-bandwidth relays such that its bandwidth is a considerable fraction of the network’s

total bandwidth. In particular, we start with our 2127-relay model of the Tor network as

described in Section 3.9.1. We select a random bandwidth in the range [20 MiB/s, 220

MiB/s], where 220 MiB/s is the maximum bandwidth in our model network. A malicious

relay with this bandwidth is added to the Tor network, where the location of the malicious

relay is based on our attack strategies. This process is repeated until the target attacker

bandwidth for this run of the experiment is reached. For each of 200 runs at each bandwidth

setting, we place one client into the network using a location based on Tor metrics data

and have it pick 9,000 paths for each of our tested strategies. We use the four popular

destinations as described in Section 3.7.2 for our strategies. In our evaluations, we consider

four different attack strategies as follows:

1. Targeted Clients: In this attack strategy, in each run that we add the client and malicious

relays, all the malicious guards are located in the exact location of the client, just as if

40

the adversary could run all of his guards in the client’s room. The malicious exit relays

are randomly placed in locations based on the geographical distribution of Tor relays.

2. Targeted Destination: In this attack strategy, in each run that we add the malicious

relays, all the malicious exits are located in the exact location of the one of the randomly

selected popular destinations, just as if the adversary could run all of its exit relays in the

same server room. The malicious guard relays are randomly placed in locations based

on Tor relays geographical distribution.

3. Targeted Destination and Client: In this attack strategy, in each run that we add the

client and the malicious relays, all the malicious exits are located in the exact location

of the one of the randomly selected popular destinations, and all the malicious guards

are located in the exact location of the client.

4. Non-targeted: In this attack strategy, in each run that we add the malicious relays, all the

malicious relays are randomly placed in locations based on the geographical distribution

of Tor relays.

Figure 4.9 shows the fraction of compromised paths with respect to the percentage of total

bandwidth controlled by the adversary’s relays for vanilla,α = 0.5,α = 0.8, and α = 0.9.As

shown in Figure 4.9, the compromise rate for Targeted Destination is almost the same

as compromise rates in vanilla. For Targeted Client and for Targeted Destination and

Client, the compromise rates for α = 0.5,0.8, and 0.9 are worse than vanilla, and as the

adversary’s bandwidth fraction increases, the gap between them and vanilla increases. For

both Targeted Client and for Targeted Destination and Client, α = 0.8 has almost the same

compromise rate as α = 0.9 but better compromise rate than α = 0.5. For Non-targeted

we observed the same compromise rate as vanilla for α = 0.5,0.8, and 0.9 because in this

attack malicious relays are randomly located in the network and all relay selection methods

pick the malicious relays with the same probability.

41

We also note that this is a trade-off with the modest, but wide-spread, security ben-

efits of using α = 0.8 on Gini coefficient, entropy, and compromise rates compared with

α = 1.0, for example. Greater emphasis on bandwidth leads to better performance and

more resilience to targeted attacks, while greater emphasis on distance leads to more dif-

fuse spreading of load on the network.

3.10 Discussion

In this section, we discuss the implications of our findings and the scope for future

research.

Circuit Selection. We evaluated the impact of different number of pre-built circuits on

Tor performance, and found that having at least three pre-built circuits ready results in

a significant improvement compared to vanilla Tor. Preparing more than three circuits,

however does not provide much additional benefit and may also add more load on the

network. Our circuit selection mechanisms also kill unused circuits after five minutes,

which raises the rate of exploring for better circuits.

Relay Selection. In relay selection, combined weighting seems to provide a trade-off

of performance and anonymity. As the weights emphasize on the bandwidth, α is high,

combined weighting provides higher performance. On the other hand, higher values of

α could not provide diverse paths. As α goes down and the weights are inclined toward

the distances, the performance improvement decreases, but the created circuits are more

diverse. Low values α suffer from a greater chance of targeted relay-level attacks. Overall,

we think that combined weighting with α = 0.8 seems to provide the best trade-off of

performance and anonymity. The best value of α may vary with network configuration,

bandwidth distribution, geographical dispersion of relays, and the client’s location. We

will examine setting α more carefully in future work.

42

Nearby guards. Our evaluations showed that the proposed defense, picking guards close

to the clients, does not effect an AS-level adversary. The AS path between the clients

and guards is not highly correlated with the geographical distance between them. The

AS path length between the guards and clients depend on the clients’ networks, guards’

networks, and their ASes relationships with other ASes. Moreover, the clients and guards

are not uniformly distributed on the globe and on the network. For example, a single AS,

AS16276, is contributing more than 170 guards to the Tor network, which is 16% of all the

guards in January 2015. The other issue is guard rotation, as currently Tor clients change

their guard after 9 to 10 months. In our 10-month TorPS simulations, the median number

of guard changes for clients was five times, with a minimum of two times and a maximum

of 29 times. Thus, even if the client is secure due to the short AS path, after guard rotation,

she may pick a guard that has a long AS path length and get compromised.

43

CHAPTER 4

Defense against Guard Fingerprinting attacks

4.1 Introduction

Tor allows clients to create anonymous connections to their desired destinations via

three-hop encrypted channels called circuits. A circuit is built over a path of three relays,

an entry, a middle, and an exit, selected from among the thousands of volunteer relays

distributed across the globe. In Tor, no single relay in the circuit nor any third party in the

network should be able to link the source with the destination.

Since relays are run by volunteers, however, it remains a risk that multiple relays on

a circuit are run by a single entity who could then break the user’s anonymity. In fact, if

all relays on the circuit were picked at random every time, a Tor user would be rolling the

dice with her privacy every few minutes. Most circuits would be fine, but eventually she

would roll a pair of malicious relays and lose her anonymity. To prevent the majority of

users from getting compromised, Tor fixes the client’s entry node to be the same in every

circuit for up to nine months. If this entry node, called a guard, is honest and does not get

compromised, then the client’s identity cannot be directly discovered by malicious relays

while the guard is still being used [53].

A key design decision around the use of guards is how to assign guards to users. If a

user picks a guard with very low bandwidth, as an extreme example, then not only will her

performance be poor over an extended period of time, she may be the only user regularly

using that guard and can thus be profiled [9, 39, 11, 54]. This is known as guard finger-

printing. More generally, there are several anonymity and performance considerations for

picking guards that have only recently been explored [55, 56, 57, 58].

44

One solution to the guard fingerprinting problem is to group all guards into guard

sets [57] and have each client pick one of the guard sets and use the guards in this guard set

for the first hop on all of its circuits. Hayes and Danezis [14] proposed the first guard set

algorithm for use in Tor. This algorithm uses guard relays’ bandwidth as the key criterion

in forming guard sets, such that all sets have almost the same amount of bandwidth. They

also presented techniques for maintaining the guard sets when there is churn.

Contributions. In this paper, we first demonstrate that the algorithms proposed by Hayes

and Danezis have vulnerabilities that allow an attacker to compromise many guard sets

in the presence of churn over time (§4.3). In particular, we describe attacks that leverage

the fact that the attacker controls the amount of bandwidth it makes available for a given

guard node. With these attacks, a low-bandwidth adversary controlling 1% of total guard

bandwidth can infiltrate around 40% of all guard sets within four months, and a high-

bandwidth adversary controlling around 25% of total guard bandwidth can infiltrate 90%

of guard sets.

To address these issues, we propose a new guard set design (§4.4) that uses location

in the Internet topology as the basis for building a hierarchy on top of the sets. Using this

hierarchy, sets are built and maintained using guards that are topologically close to each

other in the Internet. This limits an attacker’s ability to compromise guard sets beyond

whatever Internet locations he has access to. While bandwidth can be easily manipulated,

many potential attackers will have a limit on the possible Internet locations of their guards.

We evaluate the security of this approach against attackers who control a fraction

of the guards, with varying resource levels, using one network in the Internet (§4.5.1.1).

Against a single malicious guard, the compromise rate after one year of running the attack is

0.044% compared to 0.076% for the prior approach. Against an attacker who controls 10%

of Tor’s guard bandwidth, the compromise rate compared to the prior approach dropped

45

from 53% to 10% after one year and less than half of the rate for the current Tor design

(23%). Against a botnet adversary, which inherently has a presence in more AS locations,

the compromise rate fell from 53% to 37% compared to the prior approach after one year.

Moreover, the fraction of compromised targets in our approach dropped from 98% to 44%

compared to the prior approach in a targeted attack scenario (§4.5.1.2).

We also evaluate our approach against attackers who control one Autonomous System

(AS) in the Internet (§4.5.1.3). We find that our approach has very similar results to both

Tor and the prior work. Additionally, we merge our guard set design with DeNASA [59],

a recently proposed AS-aware path selection algorithm, and show that the rate of streams

being vulnerable to attack drops 80%.

Beyond this, we evaluate a number of other aspects of the proposed design (§4.5.2),

including the sizes of anonymity sets, the bandwidth distribution among guard sets, and

network performance. We conclude with a discussion (§4.6) of deployment and other issues

to be addressed in future work.

4.2 Background

In this section, we briefly overview the AS structure of the Internet and the Tor

anonymity system, and we then discuss related work.

chapter4

4.2.1 Autonomous Systems

Our approach makes use of the structure of the Internet topology, so we describe the

necessary concepts here.

The network layer of the Internet is composed of Autonomous Systems (ASes) that are

linked together by high bandwidth lines and fast routers. Each AS is owned and operated

by one authority, such as a government, university, or Internet service provider. ASes

46

AS2 AS4AS3

AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12

AS1

AS13 AS14

(a)

Figure 4.1. Customer cones: The dashed lines show customer cones, the solid arrows are
provider-to-customer links..

contain a set of servers that are linked together in a LAN and are assigned IPs from an IP

prefix that is unique to that particular AS. Relationships among ASes have been formed

based on a variety of economic and political constraints. Using publicly available BGP

table data, Gao [60] introduced a method that abstracts these relationships in three types:

customer-to-provider (c2p), provider-to-customer (p2c), and peer-to-peer (p2p). In a c2p or

p2c relationship, the customer provides monetary payment to the provider in exchange for

the provider providing bandwidth to the customer. In a p2p relationship, the two ASes save

monetary resources by exchanging traffic between one another on a quid-pro-quo basis.

Viewing ASes and their relationships in graph theoretic terms, we have a forest of

trees, with backbone providers at the root nodes and customers as leaves. We can then

define a customer cone, the set of ASes that can be reached from the root AS by only

following the p2c links. For example, AS A’s customer cone consists of AS A plus AS A’s

customers, plus AS A’s customers’ customers and so on [61]. Figure 4.1 shows an example

of how customer cones work, where AS1 has the biggest cone in the example and contains

all the ASes shown, while AS8 has only AS13 and AS14 in its customer cone. The number

of ASes in a customer cone and the number of unique IP prefixes advertised by these ASes

47

are good metrics for ranking the size and importance of an AS [62]. Our guard set design

groups the guard ASes that are in the same customer cone in the same set.

The underlying customer cone in our design can be built by different methods. The

main requirement for our system are that the cones should be relatively stable over time

compared with bandwidth fluctuations in the guard sets. We chose to use the recursive

customers method [62, 61]. In this method, the customer cone of each AS is built by

recursively visiting ASes reachable from that by p2c links. The customer cone of an AS is

a subtree of customer ASes that can be reached from that AS. The size of a customer cone is

the number of customer ASes in that cone. For the the customer cones in our experiments,

we use the AS relationships provided by CAIDA for July 2015 [63].

4.2.2 Tor Overview

Tor is a volunteer-operated network that provides anonymity and privacy online. Tor

has about 2 million daily users and 7,000 relays. Relays in Tor network, called Onion

Routers (ORs), are run by volunteers who donate their bandwidth. ORs provide information

about their donated bandwidth, IP address and ports, and exit policies—the addresses and

ports they are willing to be connected to external Internet destinations—to a small group

of servers called directory authorities. The directory authorities assign flags to some of the

ORs based on their availability, bandwidth and exit policies and then they mutually agree

upon a list called the consensus of all the information about all the ORs.

A Tor client, called the Onion Proxy (OP), first contacts one of directory authorities

or their mirrors and downloads the consensus to get the current status of the Tor network.

Since the Tor network is dynamic, with relays regularly joining and leaving, the directory

authorities update the consensus hourly. The OP uses the consensus information to select

a path of three relays to use in communicating with its destinations.

48

Once the OP picks this path of ORs, it then sets out to build a circuit of layered

cryptographic connections through this path. Since relays in the circuits are selected from

all the volunteer relays, it is possible that an adversary, who runs some guard or exit relays

in the network, sits in the exit and entry position of some path. Such an adversary can

observe the entry and exit traffic, correlate them, and link the client to her destinations [39,

11, 46, 44]. If the client chooses new relays for each circuit, she will eventually build a

circuit in which the adversary’s relays are in its entry and exit positions. To reduce the

occurrence of this attack, Tor clients stick to using a single guard relay for the first relay

on every path for months [57]. Guards should thus be stable, so that the client can rely on

the guard to be available whenever it connects to Tor, and reasonably high bandwidth to

prevent the guard from becoming a significant bottleneck to performance.

Directory servers keep track of relays’ bandwidth and availability in the network and

assign Guard flags to the relays that have the following criteria [56]:

• Have been continuously running for longer than 12.5% of the relays or at least eight

days.

• Advertise bandwidth more than the median bandwidth of all the relays, or 2.0 MBps.

• Have a weighted-fractional-uptime (WFU)1 of more than the median of all relays’ WFU

or 98% WFU.

4.2.3 Related Work

Elahi et al. [58] developed a framework called COGS to study guard selection

schemes in Tor and evaluated the impact of churn, guard rotation, and the size of the guard

list on clients’ anonymity. Their results show that guard rotation exposes the users to more

guards, increasing the chance of picking malicious guards. On the other hand, they find that

1WFU is the percentage of the time that relay has been up, adjusted with a decay of 5% per every 12 hours

the relay is off.

49

guard rotation offers better load balancing on guards, better utilization of recently joined

guards, and regaining the privacy of clients stuck using malicious guards. If Tor rotates

the guards, they report, then larger guard lists lead to more compromises of anonymity;

without guard rotation, larger guard lists lead to fewer compromises. They also find that

larger guard lists lead to better, fairer performance.

Johnson et al. [46] evaluate the vulnerability of Tor to passive end-to-end correlation

attacks from both relay- and network-level adversaries, with the settings used prior to 2014

of three guards rotated after 30 to 60 days. They define metrics that give us the probability

of path compromise for a given user and the probability of time to the first compromise.

They developed a path simulator that mimics the Tor client and implements multiple models

of user activity, such as Web users and BitTorrent clients. They found that relay-level

adversaries can maximize their resources by allocating more bandwidth to malicious guards

than to malicious exits. Against an adversary running one 83.3 MBps guard relay and one

6.7 MBps exit relay, they find that 80% of users will be compromised within six months.

Considering network-level adversaries, they find that an AS adversary can compromise

38% of Tor streams in three months, and a IXP adversary can compromise 20% of streams

in the same period. We implement our guard selection scheme in their path simulator to

analyze the security of our design at the network level.

Based on the results from Elahi et al. and Johnson et al., Dingledine et al. [57]

conclude that the guard selection mechanism in use prior to 2014 harmed users’ security.

Instead of using three guards for 30 to 60 days, they proposed using a single guard for nine

to ten months. They note that, based on Elahi et al’s findings, this proposal will provide

stronger anonymity but suffers from poor performance and poor load balancing, as the

newly joined guards will be underutilized. To fix these flaws, Dingledine et al. suggest

raising the bandwidth bar in assigning guard flags from 250 KBps to 2MBps and having

50

underutilized guards act as middle nodes. These changes were implemented in Tor and are

still in effect as of the time of writing.

Dingledine el at. also suggested the idea of guard sets [57], which Hayes and

Danezis [14] then expanded into a full proposal and evaluation. The Hayes and Danezis

design puts the guards into sets based on their bandwidths, such that each set has approxi-

mately the same bandwidth. Although this approach is intuitive, we show in the following

section how it leads to vulnerabilities that we then address in our proposed design.

4.3 Attacking Guard Sets

With guard sets, the directory authorities put all the guards into sets and include this

assignment in the consensus [57]. The client randomly picks a guard set to use for a long

period of time and then picks the guard for each circuit randomly from the selected set. The

main advantage of this scheme is that it puts all the clients using a given guard set into one

anonymity set, such that a guard fingerprinting attack could only identify one as a member

of the set.

4.3.1 Hayes and Danezis Design

Hayes and Danezis performed the first detailed study of the guard set idea, and they

propose algorithms for how to build guard sets, assign users to those sets, and maintain

the sets as the Tor network changes [14]. To ensure load balancing, their proposal uses

bandwidth as the main criteria to build the sets. In particular, it first uses the bandwidth

values from the consensus to generate bandwidth quanta, where each quantum represents

a block of bandwidth from a single guard node. Using an empirically selected threshold

of 40 MBps, a guard’s bandwidth is divided into multiple quanta such that each quantum

is above the threshold. A guard that has bandwidth BW generates bBW
40
c quanta, meaning

that guards with less than 80 MBps bandwidth make up just one quantum. For example, if

51

we have guards with bandwidths of 10, 70, and 90 MBps, we get quanta 10, 70, 45, and 45

MBps. The bandwidth quanta then are sorted from largest to smallest.

To build guard sets, the algorithm goes through the sorted list of quanta and moves

one quantum at a time from the head of the list to the current set until the total bandwidth

of the set reaches the threshold of 40 MBps. Then the current set is added to the list of sets,

and a new set is started. If the leftover bandwidth quanta in the sorted list make up less

than 40 MBps, they are not used to build sets and do not contribute to any guard sets. The

goal of sorting the quanta list is to put guard nodes with similar bandwidth in the same set,

and it also forces an attacker with many low-bandwidth guards into fewer sets with similar

bandwidths instead of being spread out into sets with mixed bandwidths.

Over time, the total guard bandwidth in Tor fluctuates, as some new guards join the

network and others go offline. These changes affect the bandwidth of guard sets and the

available bandwidth quanta. To address this, the strategy of Hayes and Danezis is to first

repair damaged guard sets with bandwidth of less than 20 MBps. When repairing a given

damaged set, the algorithm finds the leftover bandwidth quanta that fall between between

50% to 100% of the maximum guard bandwidth of the set. This list of quanta is called the

candidate list of the set. Quanta from the candidate list are added to the set one by one

until the set’s total bandwidth exceeds 40 MBps. Once all damaged guard sets are repaired,

the algorithm builds a new guard set from any remaining leftover quanta if their combined

bandwidth is more than 40 MBps.

4.3.1.1 Vulnerabilities

Using bandwidth similarity to repair the sets opens a door for the attacker. The pri-

mary issue is that the attacker can identify guard sets that are close to breaking, i.e. around

20 MBps, and then add guards or tune his guards’ bandwidths to have similar bandwidths.

For example, if the vulnerable guard set has guards with bandwidths of 3–4 MBps, and the

52

attacker has an unused guard with 5 MBps bandwidth, he can set it to offer a maximum of

3.5 MBps to Tor. Once these sets break, the repair algorithm will include the adversary’s

guards to be in the candidate list, increasing its chances of joining a particular set. Addi-

tionally, the attacker can create new compromised guard sets by adding his guards to the

network or tuning their bandwidth so that the total bandwidth of leftover quanta and his

guards is above 40 MBps, causing the algorithm to build a new set.

Another issue is that a guard set is not considered in need of repair if its bandwidth

is at least 20 MBps. This means that as soon as the adversary joins a set, it can reduce the

allocated guard bandwidth to the least possible value for being a guard, which can be as low

as 2 MBps as long as the set’s total bandwidth remains above 20 MBps. This can save the

adversary’s resources. Also, if an attacker gets one of his guards into a set, it will remain

in that set forever even if all the other guards in the set are gone. This allows the attacker to

retain a full guard sets’ allocation of users while only using half of the bandwidth needed

for building a new set.

4.3.2 Evaluation

We investigate the impact of these vulnerabilities on the adversary’s ability to infil-

trate guard sets and compromise Tor users. Jamie Hayes provided us with his implemen-

tation of the Hayes-Danezis algorithms for guard sets. We used their implementation and

exploited the possible vulnerabilities in simulation.

4.3.2.1 Attacker Model

The goal of the attacker is to get into as many guard sets as possible and thereby

compromise a large fraction of users. We run the Hayes-Danezis algorithm using consensus

documents from January to May 2013, the same time period used by Hayes and Danezis

for consistency. Like Hayes and Danezis [14], in all of our simulations we used the first

53

Feb Mar April May
0

0.2

0.4

0.6

0.8

1
Fr

ac
tio

n Compromised sets
Adversary’s bw

(a) High-bandwidth adversary

Feb Mar April May
0.05

0.15

0.25

0.35

0.45

Fr
ac

tio
n

Compromised sets
Adversary’s bw

(b) Low-bandwidth adversary

Figure 4.2. Hayes-Danezis: The fraction of compromised sets and fraction of the adver-
sary’s bandwidth to the total guard bandwidth..

consensus documents of each day, instead of hourly consensus updates, to allow for longer

studies. We allow the attacker to add his guard relays to the network in the second day of

simulation after the guard sets are formed, and the attacker aims to both get into new sets

and into previously built sets.

We assume that the attacker has access to the guard relays’ bandwidths, which he can

obtain from the consensus and refine if necessary by periodic measurements. The attacker

also keeps track of the assignment of guards to guard sets, which is also available in the

consensus. The attacker uses this information to follow the sets’ bandwidth and detect

which sets are about to break. If a set is about to break and the set is already compromised,

the attacker tunes his bandwidth to keep the set alive by keeping the set’s bandwidth above

20 MBps. Otherwise, if a set is broken and not yet compromised, the attacker adds new

guards to the network with bandwidths tuned to get added to the set’s candidate list. Instead

of adding new guard relays to the network, the attacker can reuse his unused guard relays

and tune their bandwidth. If the attacker observes new sets are forming from leftover

guards, the attacker adds new guards or re-uses his guards in the leftover quanta and tunes

their bandwidth to get to the list of candidates for the new set. Because the quantum in the

54

candidate list of a set are in descending order, The attacker only needs to tune his guard

relay bandwidth slightly higher than the last bandwidth in the list which fixes the set.

In our simulations, we assume the attacker can add the new guards the same day he

needs them. Note that the new sets are created and broken sets are repaired whenever there

is enough bandwidth or a set is broken, but the changes are announced in the next consensus

file. Also, the attacker’s relays must be assigned the guard flag by the authorities. To do

this, the attacker can run some relays that have all the criteria to get the guard flag (as

listed in Section 4.2.2) except for one. For example, the attacker can run relays with high

uptime but with bandwidth less than the minimum bandwidth required (currently 2 MBps),

which saves his bandwidth while waiting for a set to break. When the attacker needs a new

guard, he just needs to increase the bandwidth of the relay to get the Guard flag. Another

technique would be for the attacker, who typically would run exit nodes to perform end-to-

end correlation attacks together with his guards, to switch one of his exits to being a guard.

This is easily done by first having a high-uptime relay with an exit policy, which will cause

it to have the Exit-Guard flag, but it will be used exclusively as an exit due to exits being

the bandwidth bottleneck in Tor. Then, to switch it to a guard, the attacker simply removes

the exit policy.

We used two adversary models, a high-bandwidth adversary who controls about 25%

of Tor’s bandwidth and a low-bandwidth adversary who controls about 1%. The actual

bandwidths being used by the adversary vary over time, as shown by the solid lines in

Fig. 4.2. For both models, when the adversary gets into a guard set, he reduces his re-

lay’s bandwidth as long as the total bandwidth of the set remains above 20 MBps. In the

low-bandwidth adversary model, the adversary leaves a set if he is the set’s main resource

provider, which we define as providing more than 90% of the set’s bandwidth. In compro-

mising the guard sets, the adversary needs to have only one guard in the set to compromise

55

all the clients attached to that set. If more than one adversary guard is assigned to a set, the

adversary will pull one of his guards from that set to inject it into the other set.

We assume that the attacker knows exactly when guard relays will break. In real-

ity, however, the attacker will spend additional resources waiting for guard sets that are

close to 20MBps to break. Also, the attacker may miss some guard sets that have sudden

large drops in bandwidth. Thus, the results of our experiment represent an upper bound of

compromised sets for a given amount of attacker resources.

4.3.2.2 Results

Figure 4.2 shows the upper bound of the fraction of compromised sets and the ratio

of the adversary’s bandwidth to the total guard bandwidth in Tor for the first half of 2013.

As shown in Figure 4.2(a), a high-bandwidth adversary who owns around 25% of the total

guard bandwidth in the Tor network can compromise more than 90% of all the guard sets

(and thus be a guard for over 90% of all the clients) in just four months. Figure 4.2(b) shows

that a low bandwidth adversary with only 1% of total guard bandwidth can compromise

around 40% of all the guard sets in just four months. Large fluctuations in the graph are

due to large drops in guard bandwidth that occurred in early March and mid-April. Our

attacks shows that against the prior guard set design, an adversary with modest resources

can endanger the security of a large number of users.

4.4 Design

To mitigate the threat of an adversary compromising a significant number of guard

sets, we seek an approach that is more resilient in the face of frequently changing guard sets.

In particular, the method should make it harder for an attacker to join a targeted guard set

in need of repair and allow clients to keep as much of their anonymity sets as possible, even

56

when guard sets break. To this end, we propose to take advantage of the relative stability

of the underlying Internet topology by linking sets to customer cones. In this section, we

first explain our motivation for the design, and then we describe how guards are grouped

into sets using customer cones and how guard sets are assigned to clients.

4.4.1 Motivation

To prevent the attacks we describe against the guard set design of Hayes and Danezis

in the previous section, we need to prevent an attacker from easily joining arbitrary guard

sets. First, as Hayes and Danezis also argue [14], we should maintain a hierarchy of guard

sets, represented as a tree. This hierarchy dictates that when guard sets are deleted, there is

a pre-defined backup guard set for the users of the old set to join. This keeps users together

as much as possible, maintaining their anonymity sets. Beyond the Hayes and Danezis

proposal, we also would have guards remain in the same place in the hierarchy as much

as possible. When a guard set is deleted, the remaining guards should stay in the same

general area in the hierarchy, i.e. with siblings in the tree. Also, new guard sets should only

be constructed from guards in the same subtree. This prevents guards from attempting to

move from one part of the tree to another.

The other major requirement of our approach is that the attacker must not be able

to place new nodes into arbitrary locations in the hierarchy. A simple approach would be

to use a cryptographic hash of the node’s IP address as an identifier, much like in a DHT.

Unfortunately, an attacker with even a fairly small range of IP addresses to use could pick

a number of different locations in the hierarchy by computing their hash values in advance.

If the directory server were to pick the locations of new guards randomly, the attacker could

add and remove nodes until the location suited his needs.

In our design, a guard’s place in the hierarchy and guard set assignment is based on

the guard’s network location, meaning the AS it is in and that AS’s corresponding place

57

in the customer cones of the Internet. For an adversary with high bandwidth capacity and

a range of IP addresses, but only a few network locations, this would substantially limit

the number of guard sets he can join and the number of users that he can compromise.

To fully overcome this, the attacker would need to be able to place guards into arbitrary

network locations that have guards. We argue that this attacker model is unlikely in prac-

tice. A botnet-based attacker, for example, will likely face challenges with the stability

and bandwidth requirements for guards. Even if enough stable bots can be found, the bot

locations (such as consumer ISPs) may not correlate well with the locations of Tor guard

nodes (which include professional hosting services like OVH), and this further limits the

guard sets he can join.

Overview. In the rest of this section, we describe our proposed hierarchy. The hierarchy

consists of three levels: 1) Root Sets, 2) Branch Sets, and 3) Guard Sets. A Root Set is a

customer cone of a root AS that contains guard ASes. Root Sets are broken into Branch

Sets and then further into Guard Sets. Branch Sets represent smaller customer cones within

the Root Set, in which all guard ASes have the same provider. Finally, Guard Sets are

formed by selecting all guards within a Branch Set and grouping the guards such that the

number of ASes within a Guard Set are minimized and the guard bandwidth is above a

threshold. Below, we describe each part of the system in detail.

4.4.2 Root Sets

To form Root Sets, we first build a root set list – a list of ASes sorted based on

customer cone size in ascending order. Initially, the root set list contains all ASes with one

or more guards (guard ASes), and each guard AS is considered as a Root Set. Consider

Figure 4.1 as an example for this section, which means that the list would be something

like {AS13, AS14, AS5, AS6, AS7,AS9, AS10, AS11, AS12}, assuming that only the

58

leaf ASes have guards. Then we choose the Root Set with the smallest customer cone

size, say AS13. We follow all c2p links to discover all providers for this Root Set that are

also providers to at least one other Root Set in the list, e.g. AS8, AS3, and AS1. Among

these providers, we select the provider with the smallest customer cone size, e.g. AS8. This

provider becomes the new Root Set and is added to the root set list, while the Root Sets that

are in the customer cone of this provider (AS13 and AS14) are removed from the root set

list. This process is repeated until all Root Sets in the root set list contain guard bandwidths

more than a bandwidth threshold τup or the number of Root Sets in the list have decreased

below a threshold N .

Updating Root Sets As new guard ASes join the network, the algorithm first checks

whether the new guard ASes are in the customer cone of an existing Root Set. If they are

in an existing Root Set’s customer cone, they are added to that Root Set. If there are still

some guard ASes that are not in any of the Root Sets’ customer cones, they themselves are

considered as Root Sets. Then the above algorithm is run to reform the Root Sets.

4.4.3 Branch Sets

Root Sets often represent large customer cones and many guards. To better isolate

groups of guards from each other and make it harder for a malicious guard to move into

targeted guard sets, we break each Root Set into Branch sets. In building Branch Sets,

the goal is to place guard ASes that are close together in the AS relationship graph into

the same Branch Set. To this end, we first identify all customer cones within the Root

Set’s customer cone in which the guard bandwidth reaches the threshold τup.2 Note that

some cones will be contained within other, larger cones, and there can be overlaps between

cones. Among all the possible customer cones, we should pick cones such that their inter-

2This is the same threshold as used to make the Root Sets.

59

section with respect to guard ASes is empty (A ∩ B = ∅). There may be many possible

combinations of customer cones that are independent in this way. Since our goal is to have

smaller customer cones to make it harder for an attacker to join a targeted Branch Set, we

pick the combination that has the maximum number of independent cones. Each of these

independent cones will be a Branch Set within the given Root Set. At the end, we place all

guard ASes that do not meet the requirements for building Branch Set into one additional

set.

Figure 4.3 shows an example of Branch Set creation for Root Set P . There are seven

customer cones with sufficient bandwidth, but there are overlaps between some of them.

The possible combinations of independent cones are {1, 3}, {3, 4, 5}, {2, 4, 7}, {1, 6, 7},

and {4, 5, 6, 7}. Among these combinations, the algorithm picks {4, 5, 6, 7} because it has

the maximum number of independent cones. This means that Root Set P has four Branch

Sets.

P

321

7654

(a)

Figure 4.3. Branch Set creation. The dashed line shows Root Set P ’s customer cone, the
black circles are guard ASes, and the solid lines show the customer cones with bandwidth
τup or greater..

Updating Branch Sets. Guard bandwidth fluctuates over time, causing some guard ASes

to be dropped from the Branch Set and others added, which requires periodic updates. Our

60

algorithm to update the Branch Set first checks which of the new guard ASes are in our

current Branch Set’ customer cones. If a Branch Set’s bandwidth is below threshold τdown,

it dismantles the Branch Set and releases its guard ASes. The algorithm is then run again

to build Branch Set from previous Branch Set, new guard ASes, and released guard ASes.

4.4.4 Guard Sets

Once we have Branch Sets, we can break them up further into the Guard Sets. We

first randomly shuffle the guard ASes in the Branch Set. Then we add one guard at a time

from the same AS to the current Guard Set until the Guard Set’s bandwidth reaches the

threshold τup.3 If we use all the guards in an AS, we continue adding guards from the next

guard AS.

Figure 4.4 shows an example of Guard Set creation. The Branch Set’s customer cone

includes three guard ASes, GAS1, GAS2, and GAS3, and four Guard Sets are formed.

Note that a Guard Set can include all of the guards in an AS (such as in GAS2), some of

the guards in an AS (such as the leftmost Guard Set in GAS1), or guards from multiple

ASes (the two rightmost Guard Set).

Updating Guard Sets Guard Sets will need to be updated over time due to the leaving and

joining of guard ASes and changes in bandwidth. If a Guard Set’s bandwidth falls below

the threshold, τdown4, we need to repair that Guard Set to ensure load balancing. To repair

a low-bandwidth Guard Set, we add new guards to it until the bandwidth reaches at least

40 MBps. We first try to add new guards that are in the same AS, and then add from other

guard ASes in the Branch Set. If there are still some unused new guards in the Branch Set,

we try to build new Guard Sets out of them.

3Again, this is the same threshold as used for Root Sets.
4The same threshold as for updating Branch Sets

61

GAS2 GAS1 GAS3

141513151510251523228

Set

(a)

Figure 4.4. Guard Set creation. Dashed ovals represent guard ASes (GAS), rectangles
represent Guard Sets, and circles represent guards. Numbers inside the circles are the
guards’ bandwidths (MBps)..

4.4.5 Assigning Clients to the Guard Sets

A newly-joined client selects first a Root Set, then a Branch Set from among the

Branch Sets in her Root Set, and finally a Guard Set from among the Guard Sets in her

Branch Set. Each of these selections is random, weighted proportionally by bandwidth. To

create a circuit, the client picks one of the guards in her Guard Set as the entry relay. The

selection of guards from a Guard Set can be weighted in favor of bandwidth or can be done

uniformly at random.

As time passes, some guards leave the network, and this causes some Guard Sets,

Branch Sets, or even Root Sets to be no longer available. If the client’s Guard Set has been

dismantled, the client will select another Guard Set under her Branch Set. Similar recovery

methods are available for Branch Sets and Root Sets. In the worst case, if her Root Set is

gone, the client acts like a newly-joined client.

4.5 Evaluations

In this section we evaluate different aspects of our guard set design. We start by ana-

lyzing the security of the proposed guard set design in the presence of relay- and network-

62

level adversaries. Then we monitor guard set changes over time with respect to the number

of guard sets, guard set bandwidth, and client anonymity sets. In our evaluation, we set

bandwidth thresholds τup = 40 MBps and τdown = 20 MBps – the same as the thresholds

used by Hayes and Danezis [14]. We set the number of Root Sets to N = 50 to main-

tain enough Root Sets and not to be merged into only top tier ASes. For our data set, we

use consensus documents from January 2015 to December 2015 from Tor Metrics [48].

Following Hayes and Danezis, during the entire evaluation we do not rotate the guards.

Additionally, we compare our results to Hayes and Danezis’s design [14], which we refer

to as ”BW design.” We call our design ”AS design.”

4.5.1 Security Evaluation

][] Feb April June Aug Oct Dec
0

0.5

1

·10−2

C
om

pr
om

ise
ra

te

BW design
AS design
Single Guard

Figure 4.5. Low-resource adversary: the solid lines show the median of compromised
clients and the colored bands shows the area between the first and third quantiles..

Tor is known to be vulnerable to traffic correlation attacks [7, 11, 64, 46, 44]. An

adversary who observes both entry and exit traffic can use the timing of packets to link

clients to their destinations. Observing both sides of Tor traffic can happen at the relay

level or the network level. At the relay level, an adversary running guard and exit nodes

in the Tor network may deanonymize clients whose circuits traverse the adversary’s guard

and exit relays. We examine two relay-level attack scenarios, a non-targeted relay-level

63

adversary and a targeted relay-level adversary. At the network level, the adversary controls

some part of the network, such as an Autonomous System (AS) or Internet Exchange Point

(IXP), and can thus observe huge amounts of traffic, including entry and exit traffic in Tor.

In this section, we examine the security of our guard set design against both relay-level and

network-level adversaries.

Security Claims. In this section, we seek to demonstrate the following:

1. The compromise rate is lower for AS design compared to BW design for a variety of

relay-level adversaries with varying resource levels and for both non-targeted and tar-

geted attacks.

2. The vulnerable stream rate is approximately the same as both Tor and BW design against

network-level adversaries.

3. AS design is compatible with the DeNASA [59] AS-aware path selection algorithm, and

the combined algorithms provide similar vulnerable stream rates as DeNASA against

network-level adversaries.

4.5.1.1 Non-Targeted Relay-Level Adversaries

A non-targeted relay-level adversary adds guard nodes in the network to compromise

guard sets. This adversary does not target any specific guard set or client; his goal is

to compromise as many clients as possible, which means joining as many guard sets as

possible.

The adversary model. If a guard set contains one compromised guard relay, we consider

the entire guard set to be compromised; all clients using that guard set will be compro-

mised because they eventually send traffic through the compromised guard. This follows

the model of Hayes and Danezis [14]. We examine the relationship between the amount of

guard bandwidth the attacker provides to the Tor network and his success rate in compro-

64

mising guard sets. For each of the guard selection strategies, AS design, BW design, and

Single Guard (i.e. Tor), we assume that the adversary runs some guard relays such that

their total bandwidth adds up to 1%, 5%, or 10% of the total guard bandwidth of Tor for

different experiments.

Feb April June Aug Oct Dec
0

0.05

0.1

C
om

pr
om

ise
ra

te BW design
AS design
Single Guard

(a) 1% of guard bandwidth

Feb April June Aug Oct Dec
0

0.1

0.2

0.3

0.4

C
om

pr
om

ise
ra

te
BW design
AS design
Single Guard

(b) 5% of guard bandwidth

Feb April June Aug Oct Dec
0

0.2

0.4

C
om

pr
om

ise
ra

te

BW design
AS design
Single Guard

(c) 10% of guard bandwidth

Figure 4.6. High-resource centralized adversary. Compromise rates for varying fractions
of total guard bandwidth owned by the adversary..

Because AS design uses both bandwidth and AS relationships, the adversary’s net-

work (AS) matters as well. Therefore, we analyze the security of our guard set design

under three attack strategies: a low-resource adversary, a high-resource centralized adver-

sary, and a botnet adversary. In Tor, a client is considered compromised if it chooses a

malicious guard. We note that this is not completely fair to the guard set designs, since a

single guard in Tor can compromise more of the user’s traffic than any one member of a

guard set in which each guard is picked only part of the time. We allow the adversary to

inject malicious relays at the beginning of the simulation before the 500,000 users that we

simulate start picking their guards. Unlike the model used by Hayes and Danezis [14], we

assume that the adversary’s guard relays remain up and available during the entire simula-

tion, which gives the adversary an advantage.

Low-resource adversary. In this attack strategy, we assume that the adversary injects only

a single guard relay in the network. We randomly choose an AS for this malicious guard

65

and select its IP address randomly from the IP range of the selected AS. We also randomly

select a bandwidth value from Tor guards’ bandwidths in the consensus document. This

malicious guard is added to the network, and the simulation is run for the year of consensus

files. We repeat the simulation 50 times, with a new malicious guard each time.

Figure 4.5 shows the median fraction of compromised clients over 50 simulations.

At the beginning of 2015, the compromise rate of AS design is statistically similar to BW

design. The compromise rates of both AS design and BW design are greater than Single

Guard, because it is assumed that a single malicious guard within a guard set compromises

all clients who choose that guard set.

Over time, the compromise rate in BW design grows substantially from 0.036% to

0.076%, as the malicious guard moves into different guard sets. On the other other hand, AS

design’s compromise rate only grows from 0.032% to 0.044%. We note that the variance

in these results for low-resource adversaries is high, as seen by the wide quartile bands,

but the trends are consistent. The growth of the compromise rate in AS design is 37%,

much smaller than the 110% growth in BW design. The reason for this is that in AS de-

sign, malicious guards are quarantined inside a Branch Set within a Root Set. By design,

the malicious guard cannot infiltrate guard sets that are outside of the malicious guard’s

Branch Sets. In contrast, in BW design, when the bandwidth in the network changes or

the malicious guard’s bandwidth changes, the guard sets change and the malicious guard

moves from one guard set to another and compromises additional guard sets over time.

High-resource centralized adversary. In our model, the high-bandwidth adversary owns

some relays such that its total bandwidth is a considerable fraction of the network’s to-

tal bandwidth. We assume that the adversary is centralized, meaning that it injects all

malicious guards into a single AS. We select at random one guard AS in which to add

the malicious guard relays, and we select their bandwidths randomly from live Tor guard

66

Feb April June Aug Oct Dec
0

0.05

0.1

0.15
C

om
pr

om
ise

ra
te

BW design
AS design
Single Guard

(a) 1% of guard bandwidth

Feb April June Aug Oct Dec
0

0.1

0.2

0.3

0.4

C
om

pr
om

ise
ra

te

BW design
AS design
Single Guard

(b) 5% of guard bandwidth

Feb April June Aug Oct Dec
0

0.2

0.4

C
om

pr
om

ise
ra

te

BW design
AS design
Single Guard

(c) 10% of guard bandwidth

Figure 4.7. Botnet adversary. Compromise rates for varying fractions of total guard
bandwidth owned by the adversary..

bandwidths. Such relays are added to the Tor network until the target attacker bandwidth

is reached. The simulation is run 50 times, with a new guard AS and new malicious relays

each time.

Figure 4.6 shows the fraction of compromised clients for three different guard se-

lection schemes and three different adversarial bandwidth assumptions. As the adversary’s

bandwidth increases, the fraction of compromised clients increases for all three schemes.

BW design has the largest fraction of compromised clients compared to the other two

schemes. In BW design, we observed a significant increase in compromises in August

2015. We found that this was due to the large drop in Tor guard bandwidth in August 2015.

This triggered a significant churn in guard sets for BW design that allowed malicious guards

to infiltrate more guard sets. This suggests that bandwidth changes in the Tor network have

a negative impact on security for BW design due to its vulnerabilities.

After one year of simulation time, we observed significantly higher growth in the

fraction of compromised clients for Single Guard compared to AS design for all three ad-

versarial models. For 1%, 5%, and 10% simulated adversarial bandwidth, the fraction of

compromised clients for Single Guard increased by 180%, 168%, and 157% over one year,

respectively. The fraction of compromised clients for AS design remained almost constant

over one year. These results support our assertion that AS design successfully constrains

67

the adversary’s guards to guard sets within the Branch Set and Root Set. Moreover, clients

do not rotate guard sets unless their guard set is broken up. Even then, the client will choose

another guard set within its Branch Set and Root Set. These characteristics allow the AS

design to keep the compromise rate low over time.

We also explore how our results change for different bandwidth thresholds τup and

τdown in both AS design and BW design. Figure 4.8 shows the compromise rates for three

different values of τup, while keeping τdown = τup/2. The compromise rate of BW design

increases significantly as τup increases. On the last day of simulation, for example, the

compromise rate for τup = 60MBps (τdown = 30MBps) is 0.42, a 44% increase over that

of τup = 30MBps (0.29). The guard sets in BW design are more prone to breaking for

larger values of τup and τdown, which causes more guard rotation and an increased rate of

compromise. For AS design, we observe only small changes in the compromise rate for

changing bandwidth thresholds. For τup = 60MBps (τdown = 30MBps), the compromise

rate goes from 0.056 on the first day to 0.068 on the last day of simulation, where the latter

is only a 13% increase over the compromise rate when τup = 30MBps (0.06). This is due

to the use of network location rather than bandwidth as the key criteria for managing sets

in AS design. Note that for clarity, due to how close the results are, Figure 4.8 only shows

the results for τup = 40MBps.

Feb April June Aug Oct Dec
0

0.2

0.4

C
om

pr
om

ise
ra

te BW design(60MBps)
BW design(40MBps)
BW design(30MBps)
AS design(40MBps)
Single Guard

(a)

Figure 4.8. High-resource centralized adversary. Compromise rates as τup varies,
τdown = τup/2, and the adversary controls 5% of guard bandwidth..

68

Botnet adversary. This adversary is similar to the high-resource centralized adversary,

except the adversary injects his guard relays from different guard ASes instead of one

guard AS. For each simulation, the adversary adds malicious guards to the network from

different guard Ases, selected randomly from all guard ASes, until the desired bandwidth

for adversary is reached. We also repeat this simulation 50 times.

Figure 4.7 shows the fraction of compromised clients for all three guard selection

schemes in the presence of a botnet adversary with different bandwidth fractions. We see

that the results for BW design and Single Guard do not change compared to the high-

resource centralized adversary (Figure 4.6) because these two methods work with band-

width in either grouping guards or client assignments and do not use the guard ASes. Be-

cause the adversary’s relays are in different ASes, however, he can compromise many more

guard sets in the AS design. As we see in the figures, AS design’s compromise rate in this

attack is higher than its compromise rate in Figure 4.6. Nevertheless, BW design’s com-

promise rate rises much faster than AS design’s, which is almost constant over time. This

indicates that, although this adversary can compromise many sets, the AS design is good

at stopping the propagation of the adversary’s impact on the network. Single Guard has

a compromise rate less than the other two guard set designs, which is a trade-off against

the smaller anonymity sets provided by Single Guard. The growth of compromise rate

over a year against Single Guard is 194%, 168%, and 155% for 1%, 5%, and 10% simu-

lated adversarial bandwidth, respectively. These compromise rate growths are much higher

than 62%, 17% and 22% growth seen against AS design for 1%, 5%, and 10% simulated

adversarial bandwidth, respectively.

4.5.1.2 Targeted Attacks

The other case we examine is when the adversary targets a specific client, adding

guard relays to Tor with the goal of getting added to the client’s guard set. The way AS

69

design builds and repairs the sets makes it harder for the adversary to get into the targeted

client’s guard set.

Feb April June Aug
0

0.2

0.4

0.6

0.8

1

C
om

pr
om

ise
ra

te
BW design
AS design

(a)

Figure 4.9. Targeted attack. CDF of time to compromise..

The adversary model. The attacker controls one or more exit nodes and profiles a par-

ticular user of interest based on her exit traffic. We assume that this adversary can identify

the client’s guard set. Given that all clients know the assignment of guards to guard sets, an

adversary simply needs to run one Tor client to get this mapping. It is more challenging to

learn the assignment of the client of interest to her guard set. A variety of attacks, however,

reveal the clients’ guard relays [65, 12, 11, 66, 54], and we assume that the attacker uses

one of these attacks successfully to identify one of the guards and the corresponding guard

set. Then, the goal of the attacker is to get into this guard set.

We simulated the attack for BW design and AS design. In the simulations, we select

a target client and assign a guard set to this target on the first day. Then the adversary

monitors the network, measures the guard bandwidths, and waits until the target’s guard

set is about to break. We assume that the attacker can add some guard relays whenever he

chooses—we discuss the validity of this assumption in Section 4.3.

Against AS design, when the target guard set is broken, the attacker selects one of

the guard ASes used in that guard set as the AS from which he injects his guard relays. The

70

attacker finds all the broken guard sets in which this AS belongs and computes the total

amount of bandwidth needed to fix all of those broken guard sets. Then the attacker adds

guard relays from the chosen AS to the network until they reach the required bandwidth.

The attack against BW design proceeds as described in Section 4.3.

We simulated the targeted attack for the course of one year from January 2015 to

December 2015. On the first day, January 1, we added a target client and assigned a guard

set to her based on the given guard set assignment algorithm. Once the target guard set is

determined, we wait until the target guard set is broken. We then add the adversarial relays

to the network and tune their bandwidth based on the bandwidth needed to get into that set.

We continue monitoring the network, tuning the adversary’s bandwidth and adding more

guard relays as needed until the target is compromised. When the target is compromised,

the adversary tunes his bandwidth to keep the guard set alive, i.e. the target set’s bandwidth

should not be less than τdown. We repeat this process for 500 targeted clients.

0.0 0.1 0.2 0.3 0.4 0.5 0.60.0

0.2

0.4

0.6

0.8

1.0

Fraction of streams

C
um

.p
ro

ba
bi

lit
y

BW + DeNASA
AS + DeNASA
DeNASA
BW-Design
AS-Design
Single Guard

(a)

Figure 4.10. AS level adversary. CDF of vulnerable stream rates..

Results. Figure 4.9 shows the cumulative fraction of days it takes for the targeted clients to

be compromised. With BW design, almost all the targeted clients (98%) were compromised

within the year, and 50% of the targets were compromised within one month. AS design

71

protects clients better from the targeted attack, as just 44% of targets were compromised

within the year. The reason for this is that if the target guard set is broken, it is repaired by

guard relays from ASes in the same Branch Set. This limits the chances for the adversarial

AS to be picked to repair the set. Overall, we find that clients in AS design are safer than in

BW design.

4.5.1.3 AS-Level Adversaries

An adversary may be able to monitor network traffic on one or more ASes or IXPs

on the Internet and observe both sides of Tor circuits to link users with their destinations.

In this study, we consider a stream to be vulnerable if both the entry and exit sides of the

traffic traverse the same AS. To examine the security of our design at the AS level, we

implemented the guard selection schemes in TorPS [46] and generated streams from a set

of clients to a set of destinations. Then we found the AS paths on both the forward and

reverse connections from client to guard, and exit to destination [44]. We had 6,000 clients

connecting from 30 client ASes distributed over the top countries using Tor. To choose the

30 ASes, we first pick a country for a user based on the distribution of users from the top

countries according to Tor Metrics [52]. We then check whether this country has an AS in

top client ASes list given by Edman et al [67]. If so, we pick that AS and add it to our client

AS list, and remove that AS from the top client ASes list. Otherwise, we randomly select

an AS from that country and add it to our client AS list. We keep selecting countries based

on the distribution of directly connected clients distribution until we have 30 client ASes.

Over one month of simulation time (Feb. 2015), these clients generated 8 million streams

for each guard selection mechanism.

Figure 4.10 shows the CDF of vulnerable stream rates for clients using AS design,

BW design, and Single Guard. As shown, the fraction of vulnerable streams is almost the

same for the three guard selection mechanisms with a median of 28%. Thus, AS design

72

appears to provide similar anonymity as Single Guard and BW design against an AS-level

adversaries.

We combined the guard selection schemes with DeNASA [59], an AS-aware path

selection algorithm. DeNASA avoids paths with suspect ASes, mainly Tier 1 ASes that

appear frequently on the entry and exit sides of Tor traffic.

DeNASA Implementation DeNASA [59] is a recently proposed AS-aware path selection

algorithm. It avoids paths with suspect ASes, mainly Tier 1 ASes that appear frequently

on the entry and exit sides of Tor traffic. The main advantage of this approach is that

it is destination-naive, which enables Tor to preemptively build circuits for performance

reasons. The downside of DeNASA is that it is vulnerable to leakage about a clients AS

across repeated connections [68].

We implemented the g&e-select algorithm introduced by DeNASA. In combining

DeNASA with guard set designs, the client first picks a guard set (or a guard relay in Single

Guard) in such a way that is defined in each guard selection mechanism. If there is a

suspect AS on the AS path between the client and any of the guards in the chosen guard

set, the client drops that set and tries another guard set. Otherwise, she keeps the guard set.

At the time of building a circuit, DeNASA picks a guard relay from the chosen guard set;

then it picks an exit relay such that Tor picks, if the probability of appearing suspect ASes

existing on the entry path (the AS path between the client and and the guard relay) is less

than a threshold, the chosen exit is acceptable. Otherwise, it tries another exit relay. We set

the probability threshold to 0.1 in our simulations. .

The suspect ASes for the entry side, the suspect ASes which appear more frequently

on the path between the clients and guard relays, are :{ 1299, 3356}. The suspect ASes for

the exit side, the suspect ASes which appear more frequently on the path between the exit

relays and destinations, are :{ 1299, 3356, 6939, 174, 2914, 3257, 9002, 6453}.

73

The probability table is the input to DeNASA algorithm. The rows in the table are

exit ASes, which have exit relays, and columns are the suspect ASes. In the table, each

value Pij represents the probability of appearing suspect AS j on the AS paths between

exit AS i and the possible destinations. We considered the possible destinations all the

destinations visited by TorPS typical user model.

As shown in Figure 4.10, after combining the guard selection mechanisms with De-

NASA, the median vulnerable stream rate for both guard set designs and Single Guard

dropped 80% (from 0.28 to 0.05). Thus, we believe that AS design is compatible with

DeNASA for protecting against AS-level adversaries.

Feb April June Aug Oct Dec
0

100
200
300
400
500
600

BW Design
Guard Sets
Branch Sets
Root Sets

(a)

Figure 4.11. Counts of AS Root Sets, Branch Sets, and Guard Sets and BW sets..

4.5.2 System Evaluation

We now examine dynamics in the number of sets, sets’ bandwidths, and anonymity

sets.

System Claims. In this section, we seek to demonstrate the following:

1. The hierarchy derived from the customer cones is stable over time, with moderate

changes to Branch Sets and Guard Sets.

74

2. The anonymity sets of users are significantly higher for AS design over Single Guard

and approximately the same as BW design.

3. Bandwidth is distributed sufficiently evenly between guard sets in AS design to not cre-

ate bottlenecks at the guard or waste significant bandwidth.

4. Network performance in Tor is approximately the same for AS design compared with

Single Guard.

Feb April June Aug Oct Dec

1

2

3 ·104

B
an

dw
id

th
(M

B
ps

)

(a)

Figure 4.12. Daily guard bandwidth throughout 2015..

Guard Sets. Our guard set design includes Root Sets, Branch Sets, and Guard Sets.

Figure 4.11 shows the number of each of these elements over the year 2015. The number

of Root Sets was 48 and did not change throughout the experiment.

The number of Branch Sets changed modestly over time, ranging from 76 to 92 with

an average of 84. This shows that the customer cones that make up the Branch Sets do not

change greatly over time. Guard Sets increased over time because they are built at the relay

level and based on relay bandwidth. Figure 4.12 shows the daily guard bandwidth in the

Tor network, and we observe three significant increases in bandwidth: in late February, late

June, and early October. These increases in bandwidth correspond closely with the increase

of guard sets in Figure 4.11. During our simulations, on average 15 guard sets in AS design

75

got repaired each day, compared with seven guard sets in BW design. AS design often adds

guards from broken sets to existing sets, and this counts as a repair of the existing set.

0 0.5 1 1.5 2 2.5
×104

0

0.2

0.4

0.6

0.8

1

Anonymity sets sizes

C
um

ul
at

iv
e

Fr
ac

tio
n

BW design
AS design
Single Guard

(a)

Figure 4.13. CDF of anonymity set sizes..

Anonymity Sets. We define an anonymity set as a set of clients that use the same set of

guards. If the size of the anonymity set is small, then the threat of the guard fingerprinting

and statistical disclosure attacks increase. To evaluate the anonymity set sizes in our design,

we use our client assignment mechanism described in Section 4.4.5 to attach clients to

guard sets. In this experiment, we model 2,000,000 clients, which is approximately the

number of Tor daily users [48].

Feb April June Aug Oct Dec
0

2,000

4,000

6,000

8,000

M
ed

.s
et

siz
e

BW design
AS design
Single Guard

(a)

Figure 4.14. Median of anonymity set sizes over time..

76

We compare the anonymity set sizes in AS design with the ones in BW design and Tor

(Single Guard). Figure 4.13 shows the empirical CDF of anonymity set sizes. The median

anonymity set size in AS design (7300 clients) is almost the same as BW design (7700

clients), and both are far larger than in Tor currently (970 clients). Figure 4.14 depicts the

changes in median anonymity set size over time. The median for both BW design and AS

design decrease over time. Because we do not rotate guards and do not consider user churn

in our simulations, new guard sets have few users and small anonymity set sizes. The sizes

decrease particularly fast from September, which corresponds to when the number of guard

ASes starts increasing most rapidly.

Set Bandwidth. To ensure network performance remains similar to Tor, we must ensure

that guard bandwidth is distributed relatively evenly over guard sets. To do this, we test

whether all guard sets have an accumulative bandwidth above a certain threshold.

Figure 4.15 shows the CDF of bandwidths among the guard sets in AS design and

BW design and among individual guard relays in Single Guard. The results for AS design

and BW design are similar, though AS design has more high-bandwidth guard sets. This is

because it does not break up a high-bandwidth guard into multiple sets the way that BW

design does. Note that AS design retains good load balancing in this case by having clients

pick their guard sets with a weight for bandwidth.

Figure 4.16 shows the median guard set bandwidth over time in AS design and BW

design and the median guard relay bandwidth for Single Guard. The average of the median

guard set bandwidths over the year 2015 are 34 MBps and 49 MBps for AS design and

BW design, respectively. Although we used the same bandwidth thresholds τup and τdown

as Hayes and Danezis [14], BW design’s guard sets tend to have more bandwidth because

bandwidth is the primary consideration for managing guard sets. In AS design, network

location is the primary consideration and bandwidth is secondary.

77

0 50 100 1500

0.2

0.4

0.6

0.8

1

Bandwidth(MBps)
Fr

ac
tio

n

BW design
AS design
Single Guard

(a)

Figure 4.15. CDF of guard sets’ bandwidths..

Feb April June Aug Oct Dec
0

20

40

60

M
B

ps

BW design
AS Design
Single Guard

(a)

Figure 4.16. Bandwidths of guard sets over time..

Performance. To evaluate the performance of the guard selection mechanisms, we simu-

late them using Shadow [41, 42], a discrete-event network simulator that runs real applica-

tions like Tor and BitCoin on a single machine. Using Shadow, we simulate Single Guard,

AS design, and BW design on a Tor network with 742 relays (including 152 guard relays)

and 2700 clients (including 2280 web clients).

The median of the times to download the first byte (TTFB) for clients are 0.55, 0.55,

and 0.56 seconds in AS design, Single Guard, and BW design, respectively. Thus, the

responsiveness is about the same in all three approaches. The median times to download

the last byte for web clients (TTLB) are 1.221, 1.185, and 1.183 seconds in BW design,

78

AS design, and Single Guard, respectively. Here, all the mechanisms have almost the same

throughput.

4.6 Discussion

In this section, we discuss the implications of our findings and the scope for future

work.

Deployment. To implement guard sets in Tor, the Tor directory authorities would be

responsible for building and disseminating the guard sets. In particular, they would use

information on p2c links from CAIDA [47] to identify customer cones and build the tree

structure of AS design, including Root Sets, Branch Sets, and Guard Sets. They then ship

the information about the design structure such as list of Root Sets, Branch Sets, Guard

Sets, and which guard relays are in the Guard Sets to the clients using the consensus doc-

uments. The clients will get the information about the guard sets through the consensus

documents. Then clients only need to pick their guard set using the algorithm mentioned in

Section 4.4.5. We propose a format for adding guard set information to the documents. As

we mentioned, the directory authorities can build the guard sets and ship them to the clients

through the consensus documents. We propose the following format for adding the guard

set’s information to the consensus documents. This format is compatible with the formats

used in consensus documents explained in [69].

Each router entry in the consensus documents contains a set of items. Each item sits

in a separate line which is started with an identifier. To include the guard set information

to the consensus documents, we add one more item for each guard relay. This item has the

following format:

"g" SP ROOTSET-ID SP BRANCHSET-ID SP GUARDSET-ID NL

79

Where:

"g" = the identifier.

SP = white space.

ROOTSET-ID = 16–digit unique Root Set identity.

BRANCHSET-ID = 16–digit unique Branch Set identity.

GUARDSET-ID = 16–digit unique Guard Set identity.

NL = new line.

We used this format to add the guard set information to consensus documents in the

year 2015. We observed that the average document size was increased 43 Kbytes (from

1.507 to 1.550 Mbytes).

Since not all Tor clients will upgrade at once, some degree of incremental deployment

is needed. One approach is to have the directory servers provide just the existing consensus

documents to older clients and the additional guard set information to upgraded clients. To

prevent a major partitioning of clients into anonymity sets based on different behavior, Tor

can wait until many clients have upgraded before setting a flag that initiates the use of guard

sets. It may be best if transition to guard sets happens slowly, as users could continue with

their current guards and not rotate from them prematurely. Beyond this, further studies

should be conducted on the topic of incremental deployment to understand the impact of

different transition strategies on the anonymity of users and performance of the system.

Orphan guard ASes. There are some cases in which guard ASes are isolated in a cus-

tomer cone by themselves. In such cases, our algorithm may not be able to group these

guard ASes with other guard ASes, forcing them to form smaller guard sets. If these sets

do not offer enough bandwidth, they pose a risk for guard fingerprinting. To mitigate this

issue, we can ignore these low bandwidth guard sets until enough guard relays join the

80

network such that the low bandwidth guard sets will be merged to form a sufficiently high

bandwidth guard set. In our one-year simulations, we observed a median of two such ASes

and a maximum of six ASes, and the median bandwidth of these ASes were 3.6 MBps.

AS relationships and customer cones. Customer cones are not as simple in practice as

the tree model would suggest. Given the CAIDA AS relationship graph, which itself is not

completely accurate, the cones must be inferred based on some assumptions. For our work,

we apply the recursive customer algorithm [62, 61] (see §4.2.1). Other approaches might

yield different results, but the key feature we need is that the attacker cannot add guards to

arbitrary points in the hierarchy. Issues such as accuracy of the cones and the presence of

p2p traffic passing through IXPs should not affect our overall findings much because they

affect the AS graph but not the relative stability and hierarchical nature of the AS graph

that is being exploited by the proposed technique.

We note that relying on a single organization such as CAIDA to form customer cones

may be vulnerable to attacks on the organization or its information. Further thinking and

experimentation should be performed before deploying these techniques in Tor.

To evaluate the risk of AS-level adversaries, we used Qiu and Gao AS-level path

inference [43]. Although this type of inference can be inaccurate in identifying all of the

ASes on a path [70], Barton and Wright report that it is 90% accurate in identifying the

eight most common ASes that appear on both ends of a Tor path [59]. Further, they find

that these eight ASes account for about 98% of all instances of an AS appearing on both

ends of a Tor path. Thus, our findings both with and without DeNASA should provide a

reasonably accurate estimate of the risk of network-level attacks.

Finally, we note that IP-to-AS mapping is not perfect. BGP is not secure, which can

be leveraged for attacks on Tor [44]. Thus, it can be similarly attacked to undermine the AS

design, and the importance of this requires further investigation.

81

Virtual Hosting. AS design takes advantage of this fact that the placement of guard relays

in a given AS is harder than manipulating the bandwidth, which is the approach offered by

BW design. There are some organizations and hosting providers like OVH that contribute

a significant fraction of guard relays to the Tor network.

82

Organization BW Relays ASes VPS
ONLINE S.A.S. 4511 141 1 X
OVH SAS 4110 227 1 X
Hetzner Online
GmbH

2745 122 1 X

Digital Ocean,
Inc.

1367 63 7 X

myLoc managed
IT AG

813 28 1 X

SURFnet 674 9 1 ×
SG. GS 610 6 1 ×
LeaseWeb
Netherlands

489 18 2 ×

domainfactory
GmbH

438 16 1 X

Init7 (Switzer-
land) Ltd

404 12 1 ×

ISPpro Internet
KG

336 17 1 X

Contabo GmbH 240 17 1 X
ITL Company 203 13 2 ×
Strato AG 195 12 1 X
SoftLayer Tech.
Inc.

188 12 2 X

PlusServer AG 186 12 1 X
Cogent Com. 184 6 1 ×
SUNET Swedish
Uni

178 6 1 ×

Free SAS 162 7 1 ×
WorldStream 162 5 1 X

Table 4.1. Top 20 organizations, sorted by bandwidth, running guard relays in Sept. 1,
2015. We used CAIDA dataset to map the ASes to the organizations [1]. The columns are
the organization’s name, the organization’s bandwidth, the number of relays, the number
of ASes on the organization, and whether the organization is a VPS or Not.

Table 4.1 shows the top 20 organizations running guard relays. The adversary can

run a guard relay on hosting provider like OVH and get into the guard sets built based

83

on OVH’s AS. This allows the adversary to target those guard sets beyond what we have

discussed in this paper. On the other hand, for a large provider like OVH, there will be

multiple guard sets, and no single one can be targeted. Further, the adversary does remain

confined to his Branch Set and Root Set. Closer examination of this issue is needed before

AS design can be deployed in Tor.

DoS Within Sets. In AS design, if the client’s guard set is dismantled, the client will select

another Guard Set from her Branch Set. This confines the adversary better to her Branch

Set and limits the number of clients the attacker can compromise. On the other hand, the

adversary can DoS other Guard Sets in the same Branch Set and force their clients to pick

her Guard Set. This can be limited by picking the new guard set from a larger region in the

network, such as anywhere in the Root Set. Since this creates more opportunities for the

adversary to compromise guard sets, and since DoS attacks are active and detectable, we

argue that it is better to select from the Branch Set instead.

Guard set rotation. Like Hayes and Danezis [14], we did not include guard set rotation

in our system since clients may rotate to malicious guard sets [46]. On the other hand,

without guard set rotation, old guard sets will collect more users over time compared to

new guard sets. Moreover, we do not let compromised clients regain their privacy by

rotating their guard sets. This trade-off also exists in other guard selection schemes. In

Tor’s single guard selection policy, the client should rotate her guard every 9 to 10 months.

This guard rotation period is long enough that guard rotations are significantly reduced, yet

compromised clients eventually regain their privacy. Such a guard rotation policy can also

be applied to the guard set designs. We can also consider an age metric for guard sets that

keeps the number of clients from growing too much in old guard sets.

84

CHAPTER 5

Defense against Website Fingerprinting attacks

5.1 Introduction

Tor is known to be vulnerable to traffic analysis attacks. The adversary who observes

both the entry and exit sides of the traffic is able to correlate the traffic and link the client to

her destination. This type of traffic analysis attacks needs powerful adversaries. A branch

of traffic analysis attacks is Website Fingerprinting (WF) attacks. The goal of the adversary

in WF attacks is to identify which websites the client is visiting.

The WF attacker is considered to be a local and passive attacker. The local means

that the attacker is located in the client’s network, and knows her IP, for example, she can

be the client’s wireless router or cable/DSL modem, the client’s ISP, the guard node itself,

and an AS between the client and guard node. The passive attacker means that the attacker

only eavesdrops the traffic and does not manipulate the traffic, for example, by reshaping

the traffic or tagging the traffic. Being passive makes the WF attacker almost impossible

to detect. Because the WF attacker is assumed to be local and observes only the entry side

of the traffic, the WF attacker is considered to be a weak adversary and makes it a serious

threat against Tor.

The WF attack is a supervised classification problem. The websites are the labels and

the traffic traces are the instances or observations. In this work, we assume that the client

is browsing the web through Tor network. The attacker uses the same privacy enhancing

technology as the client, the Tor network, to collect a set of instances for the websites

that she is interested in. From the collected instances, the attacker extracts a set of pre-

defined features and trains a classifier on the extracted features. Then the attacker observes

85

the client’s traffic, extracts the features from the traffic, and classifies the traffic with the

trained classifier.

The WF attacks have been improved over time from both feature extraction per-

spective and the classifiers power [15, 16, 17, 18, 19, 20, 71]. The accuracy rate of the

state-of-the-art WF attack now reaches 98% [72].

In response to the threat of WF attacks, there have been proposed several defenses

against WF attacks on Tor [73, 74, 75, 76, 77, 78]. The WF defenses try to change the

pattern of the traffic in a way that confounds the classifier. The change in the pattern of

the traffic can happen by the link padding (the packet padding is already implemented in

Tor as Tor cells are padded to 512 bytes). In the link padding strategy, dummy packets

are sent to change the pattern. The WF defenses have used different strategies in applying

the link padding. In BuFlO family defenses (including BuFLO [79], CS-BuFLO [77], and

Tamaraw [78]), the upload and download transmissions happen in the fixed rates. These

defenses buffer the packets and send them at the fixed rates, whenever there is no scheduled

packets in the buffer to be sent, a dummy packet is sent. This type of defense is known to

be too expensive in terms of bandwidth usage and latency. The super-sequence family

defenses [19, 76, 73, 80] cluster the traffic into few sets. All the traffic traces in the same

set are padded to the minimum sequence that contains all the sequences on that set. Beside

the bandwidth and latency overhead, the problem with these defenses is that they need a

large database of webpage templates for building the sets. Maintaining this database and

distributing it in the Tor network is very challenging.

WTF-PAD [81] is an effective defense against WF attacks with reasonable over-

heads, such that it would be practical for deployment in Tor. WTF-PAD injects the dummy

packets to fill the gaps in the traffic and creates fake bursts. Because WTF-PAD does not

delay the real packets, it does not add latency overhead, and only comes at a fair band-

width overhead cost (around 65%). WTF-PAD successfully could drop the accuracy rate

86

of kNN [19] from 90% to 17%. A recent study [72] using a Convolutional Neural Net-

work (CNN) could break WTF-PAD and achieve accuracy rate 90% on the traffic traces

protected by WTF-PAD. In this work, we are going to introduce a new defense strategy

using adversarial samples generated by a deep neural network. We generate the adversarial

examples using the techniques in the computer vision field. We consider two different sce-

narios to evaluate the effectiveness of the adversarial examples as WF defense. In the first

scenario the attacker is not aware of the defense and has been trained on the non-defended

traces. In the second scenario we consider the case that the attacker has trained the classi-

fier on the defended traces. We show that the adversarial examples generated for the traffic

traces are not an effective defense in the second scenario. To solve this problem we pro-

pose a new method to modify the samples that causes misclassification in the classifier with

small amount of bandwidth even if the attacker is trained on the defended traces. Our de-

fense could drop the accuracy rate of state-of-the-art attack from 98% to 60% (22% worse

than the state-of-the-art WF defense) with 47% bandwidth overhead (31% better than the

state-of-the-art WF defense)

5.2 Related work

In this section we explain the previous researches in the WF. We categorize the WF

researches into WF attacks and WF defenses.

5.2.1 WF attack

Website Fingerprinting has been studied extensively. The early researches in this

field date back to 1990s when the researchers evaluated the information leak about the URL

through the encrypted HTTP requests [82, 83]. The first attempt of WF attacks against Tor

was performed by Herrmann et al. [84]. Their attack used Naive Bayes classifier with

the frequency of the packet lengths as the feature set. They evaluated the attack in the

87

closed-world setting with 775 sites. Their attack was not successful and it reached only %3

accuracy rate. The reason for this low accuracy is that they only used the packet length as

the feature. Tor already sends the traffic in the fixed 512-byte packets, known as cell, which

makes this feature ineffective. Since then the researchers revisited the attack from both the

classifier’s and feature set’s point of view. The WF attack and WF defenses are evaluated

into two different settings: closed-world and open-world setting. In the closed-world, we

assume that the client is visiting a small set of websites, called sensitive or monitored

sites, and the attacker is trained the classifier on this set of websites. In the open-world

scenario, we assume that the attacker is trained the classifier only on monitored sites, but

the client is visiting any website including monitored or non-monitored sites. Over time

the performance of the attacks has been improved such that they could reach over 98%

accuracy rate in the closed-world scenario and their false positive rate is less than 0.4% in

the open-world setting. For the rest of this section we have selected the state-of-the-art WF

attacks that are being used to benchmark other WF attacks and defenses.

k-NN attack: k-NN attack was introduced by Wang et al. [19]. The attack uses a modified

version of k-NN classifier. Instead of simply using Euclidean distance, the attack uses a

weighted distance function to measure the proximity of the samples. The attack has two

phases, weight learning phase, and classification phase. The weight learning process is an

iterative algorithm that the weights are learned. Weights indicate the importance of each

feature in computing the distance . In the classification phase, the learned weights are used

to compute the distances in the k-NN. One of the most important contributions of this work

is the feature set. They defined a diverse set of features which contains general information

about the traffic, packet ordering, concentration of the packets, and bursts in the traffic.

Using this large feature set with weight-adjusting k-NN, they obtained 91% accuracy in

100-site closed-world setting.

88

CUMUL attack: Panchenko et al. [85] proposed the CUMUL attack. The attack uses

Support Vector Machines (SVM) as the classifier. SVM had been used in the previous work

but Panchenko et al. [85] used the SVM with a new feature set. They used the sequence

of cumulative sum of packet sizes in the traffic as the feature. They also collected a data

set that is more representative of the real sites browsed in the Internet. In contrast to prior

work that they simply use most popular websites from Alexa.com [49], Panchenko et al.

assembled a list of websites from different sources such as trend links in Twitter, trends in

Google, random pages from Google searches, and censored sites in China. Moreover, for

the first time they differentiated the website fingerprinting from webpage fingerprinting.

They evaluated the detectability of both single webpages and complete websites. Their

attack obtained 92% accuracy rate in the closed world setting. To evaluate the effectiveness

of our WF defenses, we selected the CUMUL attack as one of the WF attacks to test the

defenses against with.

k-Fingerprinting (k-FP): k-FP was proposed by Hayes and Danezis [86]. They put all

the previously defined features in the literature together and added some other features,

such as the statistics on the timestamps and the volume of the traffic, to their feature list.

They used Random Forest to rank the features and found the most important features in

traffic. Then they used the important features to train their classifier. The classifier first

learns the fingerprints using Random Forest, the fingerprints are the leafs of the trees in

Random Forest. Later the fingerprints are used by k-NN to do the classification task. Their

attack could reach 91% accuracy in the closed-world setting.

All the WF attacks that we described so far used the traditional machine learning

algorithms. Since 2016 the researchers have brought Deep Learning (DL) to the WF field.

There are few researches that they have applied deep neural networks in the WF. In the next

few paragraphs, we will explain these attacks.

89

SDAE attack: Deep learning was used for the first time by Abe and Goto [87]. The

studied the application of Stacked Denoising Autoencoders (SDAE) in WF attacks. Their

attack’s accuracy rate was 88% and it was lower than the previous work. The reason of their

low accuracy rate is that they used a small dataset collected in [19] to train the SDAE and

deep neural networks need more data to train compared to other classification algorithms.

Rimmer et al. attack: Rimmer et al. [88] proposed using the deep learning to bypass

the feature engineering phase of traditional WF attacks. In order to use the DL, they col-

lected a large dataset of 900 sites and 2,500 traffic traces each. They applied different DL

algorithms, such as SDAE, Convolutional Neural Network (CNN), and Long Short-Term

Memory (LSTM), on the traffic traces. They found that CNN outperforms the other DL

algorithms and obtains 96% accuracy rate in the closed-world setting.

Deep Fingerprinting (DF): Sirinam et al. [72] extensively evaluated the use of DL in the

WF. They developed a deep CNN model that it could outperform all the previous models

and reach up to 98% accuracy rate in the closed-world setting of 100 sites with 1,000

instances each. They also evaluated their model against the state-of-the-art WF defenses,

and they showed that DF can still outperform the previous attacks even when a defense is

in place. Their attack could obtain 90% accuracy against WTF-PAD [81], a potential WF

defense candidate to be deployed on Tor.

5.2.2 WF defense

To defeat the WF attackers, the WF defenses generate a cover traffic to hide the fea-

tures in the traffic. The defense mechanisms generate the cover traffic by sending dummy

packets or delaying the real packets. Sending the dummy packets comes at the cost of band-

width overhead in the network and delaying the real packets causes the latency overhead

in the download time and hurts the users experience. Therefore, there have been several

90

studies that tried to balance the trade-off between the WF defense’s overhead and efficacy

of the defense against WF attacks. In this section we explain some of the state-of-the-art

WF defenses.

BuFLO family defense: This family of defenses transmits the traffic in the constant rate

in both directions, download and upload traffic. Their main differences are in the stop

condition and rate adjustment. This family includes BuFLO [20], CS-BuFlO [77], and

Tamaraw [78]. BuFLO is the first defense of this kind and it sends the packets in the same

constant rate in both directions. It stops the transmission when the page is loaded and

a minimum amount of time has passed. The overhead of the traffic is governed by both

the transmission rate and the minimum time threshold in the stop condition. Moreover,

although the defense covers the fine-grained features like burst information, the course-

grained features like the volume and load time of the page still leak information about the

website. To reduce the amount of overhead in BuFLO, Tamaraw and CS-BuFLO proposed

to transmit the download and upload packets in different fixed rates. To provide better cover

traffic, after the page is loaded, Tamaraw keeps padding till the total number of transmitted

bytes is a multiple of a certain parameter, and CS-BuFLO pads the traffic up to a power

of two, or to a multiple of the power of the amount of transmitted bytes. BuFLO family

defenses are expensive in terms of overhead, and they add 2 or 3 times latency overhead

and more 100% bandwidth overhead.

Super-sequence family defense: This family of defense finds the super-sequence of the

traffic traces. These defenses define some anonymity sets and cluster the websites into

these anonymity sets. For each cluster they find a representative sequence for that cluster

such that it contains all the sequences in the cluster. All the websites that are falling into

the same cluster are molded to the representative sequence. This family includes Superse-

quence [19], Glove [89], and Walkie-Talkie [90]. Super-sequence and Glove use approxi-

91

mation algorithms to find the super-sequence and they apply the molding directly to the cell

sequences that causes higher bandwidth and latency cost. Walkie-Talkie, uses anonymity

sets with size two. It applies the molding in the burst sequences instead of the cell se-

quences. Walkie-Talkie (WT) requires the sequences of the bursts in the traces. Therefore,

the communications between the client and server should be in the half-duplex mode. WT

enforces the browser to half-duplex communication and only allows the browser to send

new requests if the responses of all the previous requests have been received. WT molds

the burst sequence of a sensitive website to a burst sequence of non-sensitive website and

vice versa, which theoretically the accuracy rate of the WF attacks never goes beyond 50%.

To mold a burst sequence to another one, WT picks the maximum burst length from both

bursts sequences in the current burst location and sends a burst with that size. WT reports

31% bandwidth overhead and 34% latency overhead, which this latency overhead comes

from the half-duplex communication and drops the CUMUL’s accuracy rate from 64% to

20%.

Adaptive Padding (AP): Shmatikov and Wang [91] proposed Adaptive Padding (AP)

as a countermeasure against end-to-end traffic analysis. Juarez et al. [81] extended the

idea of AP and proposed WTF-PAD defense as the adapted version of the AP to protect

the Tor traffic against the WF attacks. WTF-PAD tries to fill the large gaps in the inter-

arrival packet times. Whenever there is a large inter-arrival packet time, WTF-PAD sends

the dummy packets. WTF-PAD previously computed the histogram of inter-arrival packet

times. If the inter-arrival packet time is larger than a random inter-arrival time drawn from

the histogram, the WTF-PAD sends a dummy packet to fill the gap. This limits the amount

of bandwidth overhead required and does not incur any latency costs. WTF-PAD also sends

dummy bursts, the consecutive dummy packets, in the large gaps. They showed that WTF-

PAD can drop the accuracy rate of k-NN attack from 92% to 17% with a cost of 60%

92

bandwidth overhead. Sirinam et al. [72] showed that their attack, DF, can achieve up to

90% over WTF-PAD.

Application Level defenses: Cherubin et al. [92] proposed the first WF defense designed

in the application layer. They proposed two WF defenses in both client-side and server-side.

The server-side defense does not need any action from the client and it needs to be deployed

in the servers. Because Onion sites are more concern about the privacy of their clients,

Cherubin et al. argued that their defense is more suitable for Onion sites. Application

Layer Padding Concerns Adversaries (ALPaCA) is the server-side defense that alters the

size distribution for each content type, e.g. PNG, HTML, CSS to an average Onion site.

The size distributions are obtained from all of the Onion sites. In the best case, this defense

leads to 41% latency overhead and 44% bandwidth overhead which drops the CUMUL’s

accuracy rate from 56% to 33%. The server-side defense may have slow deployment over

Onion sites. Thus, the authors proposed a client-side defense, Lightweight application-

Layer Masquerading Add-on (LLaMA). LLaMA adds random delay in the HTTP requests.

These delayed requests change the order of the packets, requests and responses in the traffic.

LLaMA drops the accuracy of the CUMUL attack from 56% to 34% at cost of 9% latency

overhead and 7% bandwidth overhead.

5.3 Background

Deep neural networks (DNNs) have shown that they can outperform the other ma-

chine learning algorithms in many tasks [93, 94, 95, 96, 97, 98, 99]. The high performance

of the DNNs mostly comes from the advantage of large datasets available and hardware

accelerations. DNNs need less feature engineering and expert knowledge, and can extract

the intricacy of the data from the raw data. DNNs have also shown significant progresses

93

in the WF attacks fields [72, 71] and they are independent of the hand-crafted features used

in the previous WF attacks [86, 85, 19].

A neural network can be modeled as a function F (x) = y which takes x ∈ Rn as the

input and returns y ∈ Rm. F is the model and depends on the set of model parameters θ.

We use the neural network as m–class classifier.

The output of the neural network is computed using a softmax function. The output

of the neural network is a vector of (y0, y1, y2, , ym−1) which 0 ≤ yi ≤ 1 and
∑m−1

i=0 yi =

1. Vector y shows the probability distribution of the predicted label of sample x over all

the classes. The classifier assigns label C(x) = argmaxiF (x)i, which has the highest

probability over all classes, to sample x . We depict the true label of sample x as C∗(x).

We define the output of a layer in the neural networks, except the softmax function, as

Z(x) = z, then the neural network including the softmax function is as follows:

F (x) = softmax(Z(x)) = y

The input to the softmax function is called logit. A neural network consists of multiple

layers can be formulated as follows:

F = softmax ◦ Fn ◦ Fn−1 ◦ ... ◦ F0

Where:

Fi(x) = σ(θi · x) + θ̂i

σ is the activation function which can be tanh [100], sigmoid, ReLU [101], or ELU [102].

θ and θ̂ are the model weights and the model biases, respectively.

We are going to use the vulnerability of machine learning algorithms to adversarial

examples [103, 104, 105] as a defense against the WF attacks. Adversarial examples are

crafted inputs that cause misclassification in the machine learning algorithms . The ad-

versarial examples have the transferability property that the adversarial examples crafted

on a specific machine learning model are highly effective against the other machine learn-

ing models [106]. This property leads to black-box attacks against the machine learning

94

models that the attacker has no idea about the architecture or the parameters of the victim

model, and has only access to the output of chosen inputs. Papernot et al. [106] devel-

oped the generalized black-box attacks against a wide class of machine learning models

and evaluated within and between classes transferability of the adversarial examples. They

showed that the adversarial examples are highly transferable. Moreover, most of the tech-

niques in generating adversarial examples leverage the gradient of the training algorithm,

which is used to update the weights, to modify the input and cause the misclassification in

DNNs [104, 105, 107]. Therefore, in order to create the adversarial examples over traffic

traces, we consider a DNN model as a WF attacker and generate adversarial traces based

on this model. We evaluate the effectiveness and transferability of the crafted adversarial

traces against the other WF attacks.

There are few DNN models that are introduced as WF attacks [72, 71]. Sirinam

et al.’s model [72] is the state-of-the-art model and could outperform all the previously

designed WF attacks. Their model is a deep Convolutional Neural Network (CNN) with 8

convolutional layers and 3 full connected layers. Because their model is deep, using this

model to craft the adversarial traces would slow down the process. Therefore, we define a

CNN model that is not too deep but provides us descent accuracy rate. We use our defined

model to generate adversarial traces and then we test the transferability of the generated

traces to other models, such as CUMUL attack (an SVM model) and DF attack (a deep

CNN model).

5.3.1 Convolutional Neural Networks (CNNs)

CNNs are similar to the regular neural networks and consist of multiple stacked

layers of neurons with trainable weights and biases. In the regular neural networks, each

neuron is connected to all the neurons in the previous layer. The neuron performs a dot

product between the weights and the previous layer, and passes the output from a non-

95

linear function, called the activation function. The whole neural network is like a function

that gets an input and returns the class scores.

Because each neuron is fully connected to the previous layer, the regular networks

are not scalable very well. In the first layer of the regular neural networks, as the input

size increases, the number of weights increases because the weights in the first layer corre-

sponds to the number input features. This fully connected manner leads to large number of

trainable weights, complexity of the model, and overfitting. In contrast, in CNN, each neu-

ron is connected to small region of the previous layer that causes the number of trainable

weights to be independent of the input size.

There are three main layers to build the CNN architecture, convolutional layers,

pooling layers, and fully connected layers.

Convolutional layers consist of a set of filters. Filters in each layer have fixed lengths

and they get connected to small region of the previous layer. Each filter is convolved with

the input. The convolution is the dot product of the weights (and the bias) of the filter with

a small region of the previous layer overlapping with the filter. The filter drifts slowly over

the input and the dot product is computed again. The output of convolution of the filters

are passed through an activation function to add non-linearity to the network. Standard

activation functions are Sigmoid and Rectified Linear Unit (ReLU), tanh, Leaky ReLU

(LReLU), Parametrized ReLU (PReLU) and Exponential Linear Unit (ELU). The output

of the convolutional layer followed by the activation function is called feature maps. Each

filter in the convolutional layer learns different features that stacking them together provides

the different representations of the input.

The feature map further passes through a pooling layer. The pooling layer performs

a down-sampling operation along the spatial dimensions, which leads to the reduction in

the computational cost. The pooling layer combines several values into single value by

getting either their maximum (max pooling), or their average (average pooling). Because

96

this layer smashes several values of features into the same bin, they make the model more

robust to shifts in the input and generalizes the model.

Several convolutional layers followed by the activation function and pooling layer are

stacked together. Each of these combined layers (convolutional layer + activation function

+ pooling layer) learns different representation of the data. In the very first combined

convolutional layers, they learn the low level representation of the data, and as we go

deeper these layers learn high level representation of the data. The number of trainable

variables (weights and biases) depends on the size of the filters and the number of filters in

the convolutional layers. Therefore, the number of the trainable variables are much smaller

than regular neural networks that enables us to go as deep as 10,000 layers [108].

The output of the combined convolutional layers is then attached to a set of fully-

connected layers. These fully-connected layers are like the regular neural networks and

their main task is to compute the classification scores.

Although CNNs have small number of trainable variables compared to the regular

neural networks which make them faster to train or more generalized, other techniques

used in the regular neural networks for improving the performance and regularization, such

as Batch Normalization and Dropout, are widely used in CNNs. Batch Normalization

normalizes the output of hidden layers that causes better optimization and makes the model

more robust. The Dropout technique randomly shuts down a fraction of neurons in the

hidden layers in the training phase. The Dropout actually makes the training of the model

harder by adding randomness to the training and does not let the model memorize the data.

To generate the adversarial examples, we define a simple and shallow CNN model.

We want our model to be simple and fast. Our architecture contains three convolutional

layers followed by two fully-connected layers. We used ReLU as the activation function

on our architecture. Table 5.1 shows our model architecture. This model gives us 92%

accuracy rate on our dataset, we will discuss about our dataset in Section 5.3.2.

97

Table 5.1. MODEL ARCHITECTURE

Layer type size
Convolution + ReLU 1 × 8 × 32
Convolution + ReLU 1 × 8 × 64
Convolution + ReLU 1 × 8 × 128
Fully Connected + ReLU 512
Fully Connected + Softmax 83 (number of classes)

5.3.2 Dataset

We apply our algorithms for generating adversarial examples on the traffic traces on

the burst level. The bursts are the sum of consecutive packets in the same direction. To

get the traffic traces in the burst level, we can’t simply convert traffic traces, which are the

sequences of packets, to the sequence of bursts by adding up the consecutive packets in

the same direction. The traffic traces in [19, 92, 86] were collected as the communications

between clients and servers were in the full-duplex mode. This means that the incoming

(outgoing) bursts might be interrupted by outgoing (incoming) bursts because before re-

ceiving the full response from the previous request, the client may send new requests. We

need to collect the traffic on the half-duplex communication. Walkie-Talkie (WT) [90] also

works on the half-duplex communication and it finds the supersequence in the burst level.

Sirinam el al. [72] collected a big dataset of traffic traces over the half-duplex mode. Their

dataset contains 100 sites, top 100 sites in Alexa.com [49], with 900 instances for each

class. This data collected in half-duplex mode over Tor network. For our evaluation, we

use their dataset. We cleaned their data and removed the traces shorter than 50 packets, and

the ones that their first packets are incoming packets. After the cleaning process we ended

up with 83 classes with 720 instances per class. Moreover. Sirinam el al.’s dataset contains

40,000 instances from 40,000 different sites, one instance per site. We call this set of traces

as Open-World dataset.

98

0 250 500 750 1,000 1,250 1,500
0

0.2

0.4

0.6

0.8

1

Number of bursts

C
um

ul
at

iv
e

fr
ac

tio
n

Figure 5.1. The CDF of the number of bursts in the traces.

The length of the burst sequences are different through the different websites or even

through different visits of the same website. The input to the machine learning models

needs to be in the fixed sizes. We need to consider a fixed burst sequence length for all the

traces. Figure 5.1 shows the CDF of the burst sequence lengths in our dataset. The figure

shows that more than 80% of traces have less than 750 bursts. We examined the accuracy

rate of the model, described in Section 5.3.1, with the input size of 750 bursts and 1500

bursts, in both cases the accuracy rates were 92% and 93%, respectively. The difference

between the full size input (1500 bursts) and its short form (750 bursts) is negligible. To

decrease the computational cost and speed up the process, we used the input size of 750

bursts in our evaluations.

Note that the defense that we are proposing is more suited for Onion sites because

Onion Sites are more willing to collaborate in deploying the defense on their servers to

protect their users. For the sake of evaluation we used the data from the regular web. We

believe that the results should be consistent on the Onion sites given that the WF attacks

are less effective on Onion sites [109], which means the defenses are more effective.

99

5.3.3 Threat Model

We assume that the client browses the Internet through the Tor network to hide her

activities (see Figure 5.2). The adversary that we are investigating is local which means

the attacker already knows the identity of the client and his goal is to detect websites she is

visiting. A local adversary can be an eavesdroppers on the users local network, local system

administrators, Internet Service Providers (ISP), Autonomous Systems (AS) between the

user and the entry node, and the operators of the entry node. Moreover, we suppose that

the adversary is passive, meaning that the adversary only taps the traffic between the client

and the entry node, he just observes and records the traffic traces, he does not drop, delay,

or modify the real packets, and he does not inject fingerprints in the traffic traces.

Figure 5.2. WF attack.

WF defenses require two parties in the network to control the both sides of the traffic,

upload traffic and download traffic. We assume the part of the defense controlling the

upload traffic is located in the client side. The part of the defense controlling the download

side of the traffic can be deployed on a bridge. The bridge is located somewhere between

the adversary and the webservers. The possible options for deploying the bridge can be

the entry node or webservers. We assume that the padding packets by the WF defenses are

not distinguishable by WF attackers from the real packets and they are performed by two

trusted end points of the WF defense.

100

5.4 Adversarial Examples as WF defense

Szegedy et al. [110] first discovered that several machining models, including neu-

ral networks, are vulnerable to the adversarial examples. These machine learning models

misclassify the adversarial examples with high confidence. The adversarial examples are

the crafted inputs with slight, but intentional, perturbation to the correctly classified sam-

ples from the data distribution. In many cases, adversarial examples can be general and

transformable, the adversarial examples crafted for a certain machine learning model are

misclassified in other models trained on different subsets of the data, even they are some-

times misclassified to the same class.

The goal of the adversarial examples is to generate samples that are similar to the

samples of a certain class but misclassified to other classes. Given an input sample x and

target class t (C∗(x) 6= t), the goal is to find x
′ which is close to x according to some

distance metrics and C(x
′
) = t. In this case, x′ is called the targeted adversarial example

because x′ is misclassified to a certain target label t. The other class of adversarial examples

are untargeted adversarial examples that we are interested to generate example x′ which is

mis-classified to any other classes except the true class (C∗(x)).

The reason behind the existence of adversarial examples is a mystery. There are

several speculations about the cause of the adversarial examples, such as extreme non-

linearity of deep neural networks, overfitting, insufficient model averaging, and insufficient

regularization. There is an arm race between defenses against adversarial examples and

the new types of adversarial examples. Carlini et al [24] showed that none of the recent

defenses against adversarial examples work and they can be broken.

Based on the fact that the adversarial examples are transformable and strong such that

can avoid the defenses, these examples can be a good candidate to act as a defense against

WF attacks. The goal in WF defenses is to insert dummy packets to the traffic to fool the

classifier, the WF attacker. The number of dummy packets in the traffic should be as small

101

as possible to keep the bandwidth overhead low. These properties of WF defenses, low

overhead and misclassification, correspond to the properties of the adversarial examples,

which are generated based on a small perturbation to the examples to fool the classifier.

Challenges in Adversarial Examples In order for designing a WF defense, the adver-

sarial examples can be generated from web traffic traces. Generating adversarial examples

from web traffic traces is more challenging than adversarial examples in other fields such

as image classification, voice recognition, and text classification. These challenges make

the use of existing techniques in generating adversarial examples ineffective. The main

challenges we face in crafting adversarial examples for web traffic traces are as follows:

• Crafting adversarial examples on the fly: In crafting the adversarial examples from traf-

fic traces we are dealing with transmission of packets. The traffic trace is captured packet

by packet and the adversarial examples should be generated as we send or receive the

packets. The entire trace is not accessible to the algorithm to generate the adversarial

example. The adversarial example should be generated on the fly. To tackle this chal-

lenge, we propose to generate adversarial traces in the burst level rather than the cell

level. In this case, the server will provide the adversarial trace for its traffic and sends

it back to the client. Both the client and server will follow the agreed traffic pattern in

their communication.

• No packet dropping, only insertion: the perturbation to the traffic traces should be done

only through the sending of the dummy packets. Dropping the real packets to perturb the

traffic is not recommended due to the retransmission, bandwidth and latency overhead,

and hurting the users experience.

• Two parties are involved: Traffic traces are a combination of download and upload

streams. Both the client and the server do not have a full control on both streams. The

download stream is mainly controlled by the server and the upload traffic is controlled

102

by the client. Therefore, the WF defenses have two elements to control both sides of

the traffic, the client side and a bridge in the network. The client side controls the up

streams and the bridge controls the down streams. Generating the adversarial traces in

the burst level enables us to generate them in the server and send them to the client.

Addressing the above challenges may be too hard and inefficient without involving

the web servers in generating the adversarial traces. Asking the regular web servers to take

some of tasks in generating adversarial traces or traffic perturbation is infeasible because

of inefficiency caused in their services for their non-Tor users. Instead of focusing on the

generating adversarial traces for the regular web traffic, we propose to use adversarial traces

for the Onion Sites traffics. Fortunately, the onion servers are more willing to contribute in

defending their clients. Therefore, in following sections we propose methods to generate

the adversarial examples for OSs.

5.5 Onion Sites

Onion sites, formerly known as hidden services are types of services provided by Tor

that not only provide anonymity for the clients but also keep the servers anonymous. The

location of onion servers are unknown by Tor. Onion sites provide various kinds of services

such as web publishing, messaging, and chat.

Recent studies [109, 111] showed that the onion sites’ traffic can be easily recogniz-

able from the rest of Tor traffic. Therefore, the adversary can easily filter out the onion

sites’ traffic from the rest of Tor traffic and apply WF attack to detect the onion sites visited

by the clients. Given that the number of onion sites is very small compared to the regular

web, the WF attacker is dealing with a small open world. Thus, the WF attack on the onion

sites are more serious issue compared to the rest of Tor.

103

Fortunately, the onion sites are more concerned than regular websites on the anonymity

of their users, and they may be willing to contribute in defending their clients against po-

tential threats like WF attack.

Cherubin et al. [92] leveraged this technique and developed a defense that is im-

plemented on the onion servers. Their defense was effective at reducing the accuracy of

state-of-the-art attacks from 70% down to 10-40% but it leads to 40-60% latency over-

head. We propose to extend this approach by creating adversarial examples based on the

server’s knowledge of its own page profile. Creating adversarial examples for onion sites

are less challenging. The onion server can generate the adversarial examples for its traffic

and ship them to the client. Both, the client and server, follow that traffic pattern during the

transmission.

5.5.1 Designing adversarial examples

To tackle these challenges, we first consider the traffic as a sequence of incoming

(server to client) and outgoing (client to server) bursts. The burst themselves are a se-

quence of consecutive packets in the same direction. We can use the half duplex commu-

nication method proposed in Walkie-Talkie [90] to convert the traffic from a sequence of

incoming and outgoing packets to a sequence of bursts. By this definition of the burst,

we can increase the length of the burst by sending the dummy packets in the direction of

the burst. Moreover, we can decrease the length of the burst by sending dummy packets

in the opposite direction of the burst but in our methods we are not going to decrease the

size of the real bursts. To generate adversarial traces over the burst sequences we borrow

the techniques used in the computer vision for generating adversarial examples. Different

algorithms have been proposed for generating adversarial examples in the computer vision,

such as the Fast Gradient Sign Method (FGSM) [21], and Jacobian-Based Saliency Map

Attack (JSMA) [105], and optimization-based methods [24, 112]. Carlini and Wagner pro-

104

posed [24] an powerful optimization-based algorithm to generate adversarial examples that

can defeat the state-of-the-art defenses [113] against the adversarial examples. We used

their technique and modified it based our needs to generate adversarial traces out of the

burst sequences.

5.5.2 Adversarial Traces

Carlini and Wagner [24] proposed a strong method for creating adversarial examples

in both targeted and non-targeted scenarios. Their method could bypass the state-of-the-

art defense, the defensive distillation [113], against adversarial examples. Their attack

algorithm is successful with 100% probability in both defended and undefended models.

Given a sample x and a model F , the algorithm finds a perturbation δ that makes

x′ = x + δ to be misclassified to any other class than C(x) (C(x) = argmaxiF (x)i), or

in the case of targeted attack it is classified to target class t. The algorithm tries to find x′

that is similar to x based on some distance metric D. The distance metrics can be L0, L2,

or L∞. The algorithm is formulated as below:

minimize ‖ δ ‖p + c.f(x+ δ)

such that x+ δ ∈ [0, 1]n

The algorithm will find δ such that minimizes the distance metric, which here is lp

norm, and the objective function f(x+ δ). c is the chosen constant parameter to scale both

the distance metric and the objective function in the same range. Carlini and Wagner [24]

used binary search to find the proper c. Carlini and Wagner [24] defined several objective

105

functions, and at the end they found that the following objective function generates the best

performing loss function: For targeted attack scenario with target class t:

f(x
′
) = max

i 6=t
(F (x

′
)i)− F (x

′
)t

For non-targeted attack scenario as the true class for sample x is y, the objective function

is:

f(x
′
) = F (x′)y −max

i 6=y
(F (x

′
)i)

Carlini and Wagner [24] showed that their algorithm can bypass the state-of-the-art

defense against the adversarial examples. However, Carlini and Wagner in [107] showed

that previously designed defenses can be defeated by constructing new loss functions, and

the adversarial examples are harder to detect than previous thoughts.

5.6 Attack Scenarios

In order to evaluate the efficacy of the adversarial traces generated by the above-

mentioned method, we consider two different attack scenarios based on when the defenses

are applied. The defense can be applied either after the attack or before the attack. we

evaluate the both scenarios in the following sections.

5.6.1 SCENARIO I: Defense After Attack

In this scenario, we assume that the attacker has trained its classifier on the traces

that have not been defended. We assume that the attacker is unaware of a defense in place.

Such a scenario can be valid in the case that we have an attacker that does not target any

specific client and his goal is to identify the behavior of large number of users, but some of

the clients may use some defense to protect their traffic, which the attacker is unaware of

the defense or his goal is to monitor the majority of the clients.

106

Table 5.2. The evaluation of the defenses against the state-of-the-art WF attacks as the
attackers are trained on the undefended traces

BW overhead Simple CNN DF [72] CUMUL [85]
Undefended - 92% 98% 92%
Adversarial Traces 62% 2% 3% 31%
Walkie-Talkie(WT) [90] 69% 13% 23% 18.5%

For this scenario, we first train a classifier on our undefended traces and then we

generate the adversarial traces. We examine the efficacy of the generated samples by testing

them against the trained model.

In our evaluation we break the data into two sets, Attacker Set, and Defender Set, each

set has 83 classes with 360 instances each. The attacker trains the classifier on the Attacker

Set. The traces in Attacker Set are not protected by any defenses. The WF attacks that we

apply on the Attacker Set are Simple CNN, DF, and CUMUL attacks. We chose DF attack

as a state-of-the-art WF attack representing Deep Learning WF attacks, and CUMUL attack

as the representative of the traditional machine learning algorithms, CUMUL attack uses

SVM classifier and has high performance compared to other traditional WF attacks [72].

We apply the method described in 5.5.2 to generate adversarial traces from the traces

in Defender Set, we call these traces in our evaluation as Adversarial Traces. We also apply

Walkie-Talkie on Defender Set’s traces. To generate Adversarial Traces, we use our Simple

CNN as the target model (F) and the adversarial traces will be generated based on Simple

CNN. We also apply Walkie-Talkie on Defender Set and evaluate the protected traces with

Simple CNN, DF, and CUMUL attacks trained on traces in Attacker Set. Table 5.6.1 shows

the results of our evaluations. According to the table, Adversarial Traces add 62% band-

width overhead which is 10% less than Walkie-Talkie’s bandwidth overhead (69%). Adver-

sarial Traces generated for Simple CNN can confound the target model 98% of the times.

107

Table 5.3. The evaluation of the defenses against the state-of-the-art WF attacks as the
attackers are trained on the defended traces

BW Overhead Simple CNN DF [72] CUMUL [85]
Undefended - 92% 98% 92%
Adversarial Traces 62% 91% 97% 91%
Walkie-Talkie(WT) [90] 69% 38% 48% 39%

Moreover, the accuracy rate of DF and CUMUL attacks are 3% and 31%. This means that

Adversarial Traces generated based on a target model with Simple CNN architecture can

be highly transferable to other machine learning models. Almost all the adversarial traces

generated by Simple CNN can confound DF attack, which is also a DL model. The results

show that the adversarial traces are more transferable to DNN model than traditional ma-

chine learning models. The accuracy rate of DF and CUMUL attacks over traces protected

by Walkie-Talkie are 23% and 18.5%, respectively. Adversarial Traces are more indistin-

guishable than Walkie-Talkie traces against the DF attack. However, Walkie-Talkie traces

perform better against the CUMUL attack than Adversarial Traces.

5.6.2 SCENARIO II: Attack After Defense

In this scenario, we assume that the attacker knows that the client is using some

sort of defense mechanisms to protect her traffic. The attacker then collects the traces

protected by the same method as the client and trains his classifier with those traces. In this

scenario, the training set and testing set are both traces protected by the same WF defense

method. This scenario is more realistic because it has been shown that the effectiveness of

the WF attacks defends on the attacker’s knowledge of the clients [114]. Moreover, once a

defense is deployed it is supposed to be accessible for all the users and used by all the users.

Therefore, the attacker can also use the same defense as other clients. For evaluation in

108

this scenario, we protect the traces in Defender Set by Adversarial Traces (described in

Section 5.5.2 using a target model with the architecture in Table 5.1) and Walkie-Talkie.

Then we train the WF attacks, Simple CNN, DF, and CUMUL attacks, on 90% defended

traces in Defender Set and test them with the remaining 10% of defended traces.

To generate Adversarial Traces, we train a target model with the same architecture

as Simple CNN with the traces in Attacker Set. Thus, the target model (F) is trained on

Attacker Set and used in generating Adversarial Traces on Defender Set. The generated

traces will fool the target model. The results of the evaluation in this scenario are shown

in Table 5.6.2. As shown in the table, even if Adversarial Traces are generated based on a

target model with similar architecture as Simple CNN, they are highly detectable on Simple

CNN as we train Simple CNN on the adversarial traces, and its accuracy is 91%. Moreover,

DF and CUMUL attacks can also detect the adversarial traces with high accuracy rate, 97%

and 91%, respectively. This means that generated adversarial traces are ineffective as the

attacker is trained on the adversarial traces. Generating the adversarial traces works like

a data augmentation technique in this case, if the attacker is trained on them, the attacker

will detect them correctly. On the other hand, the traces protected by Walkie-Talkie are

still highly undetectable in this scenario as the accuracy rate of DF and CUMUL attacks

are 48% and 30%, receptively. However, training the attacker on the Walkie-Talkie traces

improves the accuracy rate of the attack compared to Scenario I.

5.7 A New WF Defense Model

As we evaluated in the previous sections, generating adversarial traces using the

proposed method in 5.5.2 is not effective as the WF attacker trains the classifier over the

defended traces. In fact, generating adversarial examples works like the data augmentation

109

that if the attacker trains the classifier on the adversarial examples, he will be able to detect

them.

In this section we introduce a new mechanism to perturb the traffic traces such that

the classifier is not able to detect them. We borrow the same idea as the targeted adversarial

examples. In order to defend a traffic trace, our defense picks a target sample and we keep

changing the source sample (the trace we are going to defend) in a direction to get closer

to the target sample and not being classified to the original class.

Assume that we have a set of sensitive sites S that we want to protect their traffic and

we have a model f(x) (called detector) that is trained on a set of data from S (we will later

discuss the cases whether f(x) should be trained on only sensitive sites or both sensitive

and non-sensitive sites). We consider traffic trace Is as an instance of source class s ∈ S

that we want to alter it such that it is classified to T = f(Is) and T 6= s. Is is a sequence

of the bursts, Is =
[
bI0, b

I
1, ..., b

I
n

]
. The only allowed operation on a burst, bIi , is to add some

positive values, δi >= 0, to that burst, bIi = bIi + δi. The reason for δi >= 0 is that we

want to increase the volume of the bursts with sending dummy packets. If δi < 0, it means

that we should drop some packets to reduce the burst volume. Dropping real packets is not

recommended due to intensifying the bandwidth overhead, delay, and retransmissions in

the network.

In order to protect source sample Is, we pick p random samples from other classes,

PIs = [I0T0 , I
1
T1 ,, I

p
Tm ,]. PIs is the pool for source sample Is and it is a list of p

randomly selected samples. IjTi is the j-th sample in the pool which belongs to target class

Ti 6= s. We want to pick a target class and re-cast the source sample to be classified as that

target class. To decrease amount of change to the source sample, which can be perceived

as bandwidth overhead, we pick the nearest sample from the pool. Then we modify the

source sample to move toward the nearest target sample.

110

We compute the l2 norm distance between Is and all the elements in PIs . From all

the computed distances, we find the sample that has the minimum distance to the source

sample, and we set it as our target sample IT

D(x, y) = l2(x− y)

IT = argmin
It∈PIs

D(Is, It)

Our goal is to increase the volumes of the bursts in the source sample such that the

source sample is not classified as class s and the amount of change is as least as possible

to lower the bandwidth overhead. To make the source sample to leave the source class, we

move toward the nearest sample (IT). We define ∆ as the perturbation vector that we will

add to the source sample to generate its defended form Inews .

∆ = [δ0, δ1, · · · , δn] (∀i ∈ [0, · · · , n] : δi > 0)

Inews = Is + ∆

To find ∆ that minimizes the overhead, we should minimize D(Inews , IT). To mini-

mize the distance, we compute the gradient of the distance with respect to the input. The

gradient points in the direction of steepest ascent, which makes the distance to be maxi-

mized. Therefore, we compute the gradient of the negative of the distance with respect to

the input. The output of the gradient will give us the direction that we should move in the

space to get to the target sample.

∇(−D(I, IT)) = −∂D(I, IT)

∂I
=

[
−∂D(I, IT)

∂bi

]
i∈0,··· ,n

Where bi is the i-th burst in input I . To modify the source sample, we change bursts

that their corresponding values in (−D(I, IT)) is positive. Our perturbation vector ∆ is:

∆ =

−α×
∂D(I,IT)

∂bi
−∂D(I,IT)

∂bi
> 0

0 −∂D(I,IT)
∂bi

6 0

111

where α is constant value that amplifies the output of the gradient and it has an

impact on the convergence and the bandwidth overhead. If we pick large value for α, we

will take bigger steps toward the target sample and we will add more overhead. We modify

the source sample by summing it with ∆, (Inews = Is+∆). We iterate this process, compute

∆ for each Is, and update the source sample until we leave the source class, f(Inews) 6= s

or the number of iterations passes maximum allowed iterations (we set it as 200 iterations).

Because we only increase the bursts where −∂D(I,IT)
∂bi

> 0, we may run into the

cases that after some iterations ∇(−D(I, IT)) does not have any positive values or all the

positive values are extremely small that they do not make any significant changes to Is. In

such cases, if Inews − Is is smaller than a threshold (we used threshold 0.001) for a few

iterations (we used 10 iterations) and we are still in the source class, we refill the pool with

new samples and pick a new target sample IT and we continue the process with this new

IT .

5.8 Evaluations

In this section we examine the overhead and undetectability of traces protected by

our method. We only evaluate Scenario II, explained in Section 5.6.2, because it was the

case that the attacker has high accuracy rate on the Adversarial Traces.

We use traces in Defender Set and generated the defended form of them by the

method described in the previous section. We first require a detector (f(x)) to identify

when the generated samples leave their source class. Thus, we define the detector a CNN

model with the same architecture as Simple CNN, and train it on the traces in Attacker Set.

In our evaluations we investigate two cases:

• Case I: We fill the pool with instances from Attacker Set. In this case, the detector has

been trained on the target classes.

112

0 2 4 6 8 10 12 14

0.4

0.6

α

O
ve

rh
ea

d
(%

)
p = 1 p = 3
p = 5 WT

Figure 5.3. Bandwidth overhead: this figure shows the bandwidth overhead of generated
samples as α and pool size vary. Dashed lines show the results of Case I and solid lines
show the results of Case II..

• Case II: We fill the pool with instances from Open-World dataset. In this case, the

detector has not been trained on the target samples.

We generated defended samples in various settings. We varied α and p to evaluate

their effect on the strength of the defended traces and the overhead. We measured the

detectability of the defended samples by applying DF attack on them. In DF attack, the

default input size to the CNN recommended by Sirinam el al. [72] is 5,000 packets. Because

both Walkie-Talkie and our method increase the size of the bursts, the number of packets

in the traces increases. Therefore, the first 5,000 packets in the defended traces contain less

information compared to the undefended traces. To solve this problem, we pick the 80th

percentile packet sequence lengths in the defended traces as the input size of CNN in DF

attack. The 80th percentile of packet sequence lengths in the defended traces were around

10,000 packets in both Walkie-Talkie and our defense. Therefore, we set the input size to

10,000.

Figure 5.3 shows the bandwidth overhead in both Walkie-Talkie (WT) and our method

for Case I (solid lines) and II (dashed lines) as α and p vary. As shown in the figure, as we

increase α the amount of bandwidth overhead increases. The reason for the increase is that

113

0 5 10 15

0.4

0.6

0.8

α

A
cc

ur
ac

y
(%

)

p = 1 p = 3

p = 5 WT

(a) Case I

0 5 10 15

0.4

0.6

0.8

α

A
cc

ur
ac

y
(%

)

p = 1 p = 3

p = 5 WT

(b) Case II

Figure 5.4. Accuracy: this figure shows the accuracy rate of the generated samples against
the DF attack. Dashed lines depict the cases when the input size to the DF attack is 5,000
cells and solid lines show the results when it is 10,000 cells..

α controls the size of the steps that we take toward the target samples. the longer steps,

the more overhead. Moreover, the pool size does not seem to have significant impact on

the bandwidth overhead. However, the smaller pool sizes has a little bit higher overhead in

small values of α. The results indicate that Case I leads to lower bandwidth overhead com-

pared to Case II. Therefore, picking target samples from classes that the detector has been

trained on will drop the overhead. In all the evaluated settings, the bandwidth overhead of

our method is lower than Walkie-Talkie’s bandwidth overhead. As α = 1 and p = 5 in Case

I, the bandwidth overhead of our defense is 27% and it is 60% lower than Walkie-Talkie.

On the other end, as α = 15 and p = 5 in Case I, the bandwidth overhead of our defense is

56% and it is 18% lower that Walkie-Talkie’s.

Figure 5.4 depicts the accuracy rate of DF attack as α and p vary. The figure shows

the accuracy rate of DF attack with 5,000 packets and 10,000 packets input sizes. Fig-

ure 5.4(a) and 5.4(b) depict the results of the evaluations in Case I and Case II, respectively.

As p increases in both cases, the accuracy rate drops to its minimum and then it slightly

starts increasing. On the other hand, increasing α raises the bandwidth overhead monoton-

ically. Changing p does not have significant effect on the accuracy, specially on Case II.

114

According to Figure 5.4(a), the lowest accuracy rate is 59% as α = 10 and p = 1 and its

corresponding bandwidth overhead is 53%. However, in α = 5 and p = 1, the accuracy rate

is 60%, almost the same as α = 10 but with bandwidth overhead of 47%. α = 10 and p = 1

in Case II provides the lowest accuracy rate (55%) with bandwidth overhead 63%. In Case

II, if we choose α = 5 and p = 1, the bandwidth overhead drops to 58% but the accuracy

rate goes up to 59%.

Our evaluations show that Case I provides lower bandwidth overhead than Case II

(between 15% to 27% lower) and the detectability of the generated samples is comparable

with Case II. It means that it we train the detector with target classes, or pick the target

samples from the classes that the detector trained on, it will causes lower bandwidth over-

head. According to our results, the best setting is to pick target samples from the classes

that the detector trained on and the pool size (p) 1 and α = 5. Walkie-Talkie performs better

than our proposed defense mechanism in terms of detectability of the defended traces, and

DF accuracy rate is 49% on Walkie-Talkie, which is 18% better than our defense in the best

setting (60%), and its bandwidth overhead is 46% higher than our defense (in α = 10 and p

= 1 in Case I).

5.9 Conclusions

Website Fingerprinting (WF) attacks are a kind of traffic correlation attacks that do

not rely on a powerful adversary. An adversary who has access to the ingress traffic can

perform the attack. The accuracy rate of these attacks reach up to 98%. In response to WF

attacks, some defenses have been proposed to lower the success rate of the WF attacks.

These defenses come at a cost, and they add bandwidth and latency overhead to the traffic.

Designing a defense that optimizes the trade-off between the success rate of the attack and

bandwidth

115

latency overhead is challenging. In this chapter we proposed a new WF defense mechanism

that offers lower bandwidth overhead with comparable success rate with state-of-the-art

WF defense mechanism. We first used the idea of adversarial examples in the machine

learning to generate Adversarial Traces to cause misclassification in WF attacker. The

generated Adversarial Traces are successfully confound the attacker when the attacker is

trained on the undefended traces. We showed that Adversarial Traces are highly transfer-

able. We showed that the Adversarial Traces will be identifiable if the attacker is trained on

the Adversarial Traces. To solve this problem, we proposed a new mechanism to generate

the adversarial traces to confound the adversary even he is trained on the adversarial traces.

To protect a traffic trace, we select a target sample (belonging to any class other than the

source sample’s class), and we add fake packets to the source trace to shorten the distance

between the source sample and target sample. Our defense mechanism leads to 47% band-

width overhead and drops the accuracy rate of the state-of-the-art WF attack from 98% to

60%.

116

CHAPTER 6

Future work

6.1 Future Work

In this chapter we discuss about the future work that is in line with our work. We

propose a new method to ease the problems in the WF defenses.

6.1.1 Website Fingerprinting Defense using GAN

In Chapter 5, we proposed a defense mechanism to defeat the Website Fingerprinting

attackers with reasonable cost. One of the disadvantages of the proposed method is that it

relies on some target samples to cast the source sample. Which target samples lead to lower

overhead?, how many target samples do we require to leave the source class? Do we leave

the source class at last? These are the problems with the proposed method.

The goal of the designing a defense is to change the distribution of the data in each

site so that they all have almost the same distribution. We want to make the data not to

be separable such that no classifiers can classify them. This is the opposite of the goal of

Generative Adversarial Networks (GANs).

Figure 6.1. WF Defense.

117

GAN is an unsupervised machine learning technique. GAN generates samples that

are superficially authentic and have many characteristics of real samples. GAN is im-

plemented by two neural networks (see Figure 6.2), Generator and Discriminator. The

Generator is a neural network that gets a randomized input drawn from a latent distribu-

tion and outputs the synthesized samples. The Generator should be trained such that the

synthesized samples look like to be drawn from the data distribution. The Generator acts

like a counterfeiter that generates fake notes. The Discriminator acts like a police, and its

task is to detect whether its input is a synthesized sample or a real sample. The Discrim-

inator is a neural network binary classifier. The Generator’s objective is to increase the

error in the Discriminator by causing misclassification in the Discriminator. The objec-

tive of Discriminator is to discriminate the authentic samples from synthesized ones. Two

networks compete with each other in Zero-sum game framework to reach the equilibrium

point. Afterward, the Generator learns to map the latent distribution to the data distribution

and generate the synthesized samples which look authentic.

Figure 6.2. GAN architecture.

On the other hand, in designing a WF defense, our goal is to map the data distribution

to a latent distribution. The latent distribution can be a random noise distribution, or some

target distribution. This is the opposite of the GAN’s goal, GAN is mapping the latent

distribution to the data distribution. Therefore, we can flip the latent and data distribution’s

118

position in GAN to reach our goal. Figure 6.3 shows the modified architecture of GAN for

designing a WF defense.

Figure 6.3. WF GAN architecture.

As shown in Figure 6.3, the Generator gets the traffic traces (burst sequences),X ,

as the input and generates the padding (N) that should be added to the burst sequences,

depending on the input traces. The Generator learns to adjust the padding to mimic the

latent distribution. The Generator’s objective is to raise the error in the Discriminator

and keep the amount of padding added to the traffic traces as low as possible to limit the

bandwidth overhead. The Discriminator is responsible to detect whether its input drawn

from the latent distribution or synthesized by the Generator. The latent distribution can be

a normal distribution. This case is suitable for the un-targeted scenario which the defended

traces are all casted to the normal distribution, their distributions are not changed to a

particular target distribution. If we want to reshape the data distributions in the websites to

the data distribution of a set of target websites, we can use the targets’ data distributions as

the latent distribution. Therefore, the Generator learns to change the data distribution of

the sites to the target distribution.

119

REFERENCES

[1] “AS Organizations Dataset,” https://www.caida.org/data/as-organizations/.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion

router,” in USENIX Security, 2004.

[3] D. Chaum, “Untraceable electronic mail, return addresses, and digital pseudonyms,”

Communications of the ACM, vol. 24, no. 2, February 1981.

[4] I2P, “I2P anonymous network,” http://www.i2p2.de/index.html, 2003.

[5] R. Dingledine and N. Mathewson, “Anonymity loves company: Usability and the

network effect,” in WEIS, June 2006.

[6] R. Dingledine and S. J. Murdoch, “Performance improvements on tor or, why

tor is slow and what were going to do about it,” he Tor Project, Tech. Rep.,

November 2009. [Online]. Available: https://research.torproject.org/techreports/

performance-2009-11-09.pdf

[7] B. N. Levine, M. Reiter, C. Wang, and M. Wright, “Timing analysis in low-latency

mix systems,” in FC, Feb. 2004.

[8] A. Johnson, J. Feigenbaum, and P. Syverson, “Preventing active timing attacks in

low-latency anonymous communication,” in Proceedings of the 10th Privacy En-

hancing Technologies Symposium (PETS 2010), July 2010.

[9] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in S&P, May 2005.

[10] N. Evans, R. Dingledine, and C. Grothoff, “A practical congestion attack on Tor

using long paths,” in USENIX Security, August 2009.

[11] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity does network

latency leak?” ACM TISSEC, vol. 13, no. 2, February 2010.

120

https://www.caida.org/data/as-organizations/.
http://www.i2p2.de/index.html
https://research.torproject.org/techreports/performance-2009-11-09.pdf
https://research.torproject.org/techreports/performance-2009-11-09.pdf

[12] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy traffic analysis

of low-latency anonymous communication using throughput-fingerprinting,” 2011,

available at http://netfiles.uiuc.edu/mittal2/www/throughput-fingerprinting.pdf.

[13] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service or denial of

security?” in CCS, 2007.

[14] J. Hayes and G. Danezis, “Guard sets for onion routing,” in Proceedings on Privacy

Enhancing Technologies, 2015.

[15] D. Herrmann, R. Wendolsky, and H. Federrath, “Website Fingerprinting: Attacking

Popular Privacy Enhancing Technologies with the Multinomial Naı̈ve-Bayes Classi-

fier,” in ACM Workshop on Cloud Computing Security. ACM, 2009, pp. 31–42.

[16] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website Fingerprinting in

Onion Routing Based Anonymization Networks,” in ACM Workshop on Privacy in

the Electronic Society (WPES). ACM, 2011, pp. 103–114.

[17] T. Wang and I. Goldberg, “Comparing Website Fingerprinting Attacks and De-

fenses,” Tech. Rep., 2014, technical report.

[18] T. Wang and I. Goldberg, “Improved Website Fingerprinting on Tor,” in ACM Work-

shop on Privacy in the Electronic Society (WPES). ACM, 2013, pp. 201–212.

[19] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective Attacks

and Provable Defenses for Website Fingerprinting,” in USENIX Security Symposium.

USENIX Association, 2014, pp. 143–157.

[20] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still see you:

Why efficient traffic analysis countermeasures fail,” in S&P, 2012.

[21] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” 2014.

[22] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep text classification can be

fooled,” 2017.

121

http://netfiles.uiuc.edu/mittal2/www/throughput-fingerprinting.pdf

[23] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accu-

rate method to fool deep neural networks,” 2015.

[24] N. Carlini and D. A. Wagner, “Adversarial examples are not easily detected: By-

passing ten detection methods,” in AISec@CCS, 2017.

[25] J. Geddes, M. Schliep, and N. Hopper, “Anarchy in tor: Performance cost of decen-

tralization,” https://arxiv.org/pdf/1606.02385.pdf/, 2017.

[26] A. Acquisti, R. Dingledine, and P. Syverson, “On the economics of anonymity,” in

FC, Jan. 2003.

[27] R. Snader and N. Borisov, “A tune-up for Tor: Improving security and performance

in the Tor network,” in NDSS, February 2008.

[28] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware path selection

for Tor,” in FC, February 2012.

[29] M. Sherr, M. Blaze, and B. T. Loo, “Scalable link-based relay selection for anony-

mous routing,” in PETS, August 2009.

[30] M. Akhoondi, C. Yu, and H. V. Madhyastha, “LASTor: A low-latency AS-aware Tor

client,” in IEEE S&P, 2012.

[31] C. Wacek, H. Tan, K. Bauer, and M. Sherr, “An empirical evaluation of relay selec-

tion in Tor,” in NDSS, February 2013.

[32] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine, “Methodically modeling the tor

network,” in CSET 2012, August 2012.

[33] C. Tang and I. Goldberg, “An improved algorithm for Tor circuit scheduling,” in

CCS, October 2010.

[34] M. Alsabah, K. Bauer, T. Elahi, and I. Goldberg, “The path less travelled: Overcom-

ing tor’s bottlenecks with traffic splitting,” in PETS, July 2013.

[35] R. Dingledine, D. S. Wallach, et al., “Building incentives into Tor,” in FC. Springer,

2010, pp. 238–256.

122

https://arxiv.org/pdf/1606.02385.pdf/

[36] R. Jansen, N. Hopper, and Y. Kim, “Recruiting new Tor relays with BRAIDS,” in

CCS, 2010.

[37] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The next-generation onion

router,” in USENIX Security, Aug. 2004.

[38] R. Annessi and M. Schmiedecker, “NavigaTor: Finding faster paths to anonymity,”

in Euro S&P, 2016.

[39] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov, “Stealthy traffic analysis

of low-latency anonymous communication using throughput fingerprinting,” in CCS,

October 2011.

[40] J. Geddes, R. Jansen, and N. Hopper, “How low can you go: Balancing performance

with anonymity in tor,” in PETS, July 2013.

[41] R. Jansen and N. Hopper, “Shadow: Running Tor in a box for accurate and efficient

experimentation,” in NDSS, February 2012.

[42] “Shadow,” http://shadow.github.io/.

[43] J. Qiu and L. Gao, “AS path inference by exploiting known AS paths,” in GLOBE-

COM, 2005.

[44] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and P. Mittal,

“RAPTOR: Routing attacks on privacy in Tor,” in USENIX Security, Aug. 2015.

[45] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syverson, “Never been KIST:

Tor’s congestion management blossoms with kernel-informed socket transport,” in

USENIX Security, Aug. 2014.

[46] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get routed:

Traffic correlation on tor by realistic adversaries,” in CCS, 2013.

[47] “CAIDA data,” http://www.caida.org/data.

[48] The Tor Project, “Tor metrics portal,” http://metrics.torproject.org/.

[49] “Alexa,” http://www.alexa.com.

123

http://shadow.github.io/
http://www.caida.org/data.
http://www.alexa.com.

[50] S. Ramachandran, “Web metrics: Size and number of resources,” http://code.google.

com/speed/articles/web-metrics.html, 2010.

[51] “Maxmind IP geolocation database,” http://dev.maxmind.com/geoip/legacy/geolite/.

[52] “Tor users statistics,” https://metrics.torproject.org/userstats-relay-table.html.

[53] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “Passive-logging attacks

against anonymous communications systems,” ACM TISSEC, vol. 11, no. 2, 2008.

[54] L. Overlier and P. Syverson, “Locating hidden servers,” in IEEE S&P, 2006.

[55] A. Biryukov, I. Pustogarov, and R.-P. Weinmann, “Trawling for Tor hidden services:

Detection, measurement, deanonymization,” in Proceedings of the 2013 IEEE Sym-

posium on Security and Privacy, May 2013.

[56] R. D. (arma), “Better guard rotation parameters,” https://blog.torproject.org/

category/tags/guard-relays, Aug. 2011.

[57] R. Dingledine and G. Kadianakis, “One fast guard for life (or 9 months),” in Hot-

PETs, 2014.

[58] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and I. Goldberg, “Changing of the

guards: A framework for understanding and improving entry guard selection in Tor,”

in WPES, 2012.

[59] A. Barton and M. Wright, “Denasa: Destination-naive as-awareness in anonymous

communications,” in Proceedings on Privacy Enhancing Technologies, 2016.

[60] L. Gao, “On inferring autonomous system relationships in the Internet,” ACM/IEEE

Transactions on Networks (TON), vol. 9, no. 6, 2001.

[61] M. Luckie, B. Huffaker, k. claffy, A. Dhamdhere, and V. Giotsas, “AS relationships,

customer cones, and validation,” in Internet Measurement Conference (IMC), Oct

2013, pp. 243–256.

[62] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, and kc claffy,

“AS relationships: Inference and validation,” in CCR, 2007.

124

http://code.google.com/speed/articles/web-metrics.html
http://code.google.com/speed/articles/web-metrics.html
http://dev.maxmind.com/geoip/legacy/geolite/
https://metrics.torproject.org/userstats-relay-table.html
https://blog.torproject.org/category/tags/guard-relays
https://blog.torproject.org/category/tags/guard-relays

[63] CAIDA, “The CAIDA AS relationships,” January 2016, http://www.caida.org/data/

as-relationships/.

[64] N. Mathewson and R. Dingledine, “Practical traffic analysis: Extending and resisting

statistical disclosure,” in Proc. Privacy Enhancing Technologies workshop (PET),

May 2004.

[65] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in IEEE S&P,

2005.

[66] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical congestion attack on Tor

using long paths,” in USENIX Security, 2009.

[67] M. Edman and P. F. Syverson, “AS-awareness in Tor path selection,” in CCS,

November 2009.

[68] A. Johnson, R. Jansen, A. Jaggard, J. Feigenbaum, and P. Syverson, “Avoiding the

man on the wire: Improving tors security with trust-aware path selection,” in 24th

Symposium on Network and Distributed System Security (NDSS 2017).

[69] “Tor directory protocol, version 3,” https://gitweb.torproject.org/torspec.git/tree/

dir-spec.txt.

[70] Joshua Juen, Aaron Johnson, Anupam Das, Nikita Borisov, and Matthew Caesar,

“Defending tor from network adversaries: A case study of network path prediction,”

in Proceedings on Privacy Enhancing Technologies, 2015.

[71] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen, “Automated

feature extraction for website fingerprinting through deep learning,” 2017.

[72] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting: Undermining

website fingerprinting defenses with deep learning,” 2018.

[73] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient defense

against statistical traffic analysis,” in Network & Distributed System Security Sym-

posium (NDSS), 2009.

125

http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt.
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt.

[74] X. Luo, P. Zhou, E. Chan, and W. Lee, “HTTPOS: Sealing Information Leaks with

Browser-side Obfuscation of Encrypted Flows,” in Network & Distributed System

Security Symposium (NDSS). IEEE Computer Society, 2011.

[75] M. Perry, “Experimental Defense for Website Traffic Fin-

gerprinting,” Tor project Blog. ”https://blog.torproject.org/blog/

experimental-defense-website-traffic-fingerprinting”, 2011, (accessed: Octo-

ber 10, 2013).

[76] X. Cai, R. Nithyanand, and R. Johnson, “Glove: A Bespoke Website Fingerprinting

Defense,” in Workshop on Privacy in the Electronic Society (WPES). ACM, 2014,

pp. 131–134.

[77] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A Congestion Sensitive Web-

site Fingerprinting Defense,” in Workshop on Privacy in the Electronic Society

(WPES). ACM, 2014, pp. 121–130.

[78] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A Systematic Ap-

proach to Developing and Evaluating Website Fingerprinting Defenses,” in ACM

Conference on Computer and Communications Security (CCS). ACM, 2014, pp.

227–238.

[79] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a Distance: Web-

site Fingerprinting Attacks and Defenses,” in ACM Conference on Computer and

Communications Security (CCS), 2012, pp. 605–616.

[80] L. Lu, E. Chang, and M. Chan, “Website Fingerprinting and Identification Using

Ordered Feature Sequences,” in European Symposium on Research in Computer Se-

curity (ESORICS). Springer, 2010, pp. 199–214.

[81] M. Juárez, M. Imani, M. Perry, C. Dı́az, and M. Wright, “Toward an efficient

website fingerprinting defense,” in Computer Security - ESORICS 2016 - 21st

European Symposium on Research in Computer Security, Heraklion, Greece,

126

https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting

September 26-30, 2016, Proceedings, Part I, 2016, pp. 27–46. [Online]. Available:

https://doi.org/10.1007/978-3-319-45744-4 2

[82] D. Wagner and B. Schneier, “Analysis of the ssl 3.0 protocol,” in Proceedings

of the 2Nd Conference on Proceedings of the Second USENIX Workshop on

Electronic Commerce - Volume 2, ser. WOEC’96. Berkeley, CA, USA: USENIX

Association, 1996, pp. 4–4. [Online]. Available: http://dl.acm.org/citation.cfm?id=

1267167.1267171

[83] H. Cheng, , H. Cheng, and R. Avnur, “Traffic analysis of ssl encrypted web brows-

ing,” 1998.

[84] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting: attacking

popular privacy enhancing technologies with the multinomial naı̈ve-bayes classifier,”

in Proceedings of the 2009 ACM workshop on Cloud computing security. ACM,

2009, pp. 31–42.

[85] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze, and

K. Wehrle, “Website fingerprinting at internet scale,” in Proceedings of the Network

and Distributed Security Symposium - NDSS ’16. Internet Society, February 2016.

[86] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website fingerprinting

technique,” in 25th USENIX Security Symposium (USENIX Security 16). Austin,

TX: USENIX Association, 2016, pp. 1187–1203. [Online]. Available: https://www.

usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes

[87] K. Abe and S. Goto, “Fingerprinting attack on tor anonymity using deep learning,”

in in the Asia Pacific Advanced Network (APAN), 2016.

[88] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen, “Automated

website fingerprinting through deep learning,” in Proceedings of the 25nd Network

and Distributed System Security Symposium (NDSS 2018). Internet Society, 2018.

127

https://doi.org/10.1007/978-3-319-45744-4_2
http://dl.acm.org/citation.cfm?id=1267167.1267171
http://dl.acm.org/citation.cfm?id=1267167.1267171
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes

[89] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website fingerprinting

defense,” in Proceedings of the 13th Workshop on Privacy in the Electronic Society,

ser. WPES ’14. New York, NY, USA: ACM, 2014, pp. 131–134. [Online].

Available: http://doi.acm.org/10.1145/2665943.2665950

[90] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against passive web-

site fingerprinting attacks,” in USENIX Security Symposium. USENIX Association,

2017, pp. 1375–1390.

[91] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix networks:

Attacks and defenses,” in Proceedings of the 11th European Conference on Research

in Computer Security, ser. ESORICS’06. Berlin, Heidelberg: Springer-Verlag,

2006, pp. 18–33. [Online]. Available: http://dx.doi.org/10.1007/11863908 2

[92] G. Cherubin, J. Hayes, and M. Juarez, “”Website fingerprinting defenses at the appli-

cation layer”,” in Privacy Enhancing Technologies Symposium (PETS). De Gruyter,

2017, pp. 168–185.

[93] T. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long short-term mem-

ory, fully connected deep neural networks,” in ICASSP, 2015.

[94] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model

for raw audio,” in Arxiv, 2016. [Online]. Available: https://arxiv.org/abs/1609.03499

[95] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2, ser. NIPS’14. Cambridge,

MA, USA: MIT Press, 2014, pp. 3104–3112. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2969033.2969173

[96] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition,” Trans. Audio, Speech

128

http://doi.acm.org/10.1145/2665943.2665950
http://dx.doi.org/10.1007/11863908_2
https://arxiv.org/abs/1609.03499
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173

and Lang. Proc., vol. 20, no. 1, pp. 30–42, Jan. 2012. [Online]. Available:

https://doi.org/10.1109/TASL.2011.2134090

[97] R. Collobert and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” in Proceedings

of the 25th International Conference on Machine Learning, ser. ICML

’08. New York, NY, USA: ACM, 2008, pp. 160–167. [Online]. Available:

http://doi.acm.org/10.1145/1390156.1390177

[98] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap

to human-level performance in face verification,” in Proceedings of the 2014

IEEE Conference on Computer Vision and Pattern Recognition, ser. CVPR ’14.

Washington, DC, USA: IEEE Computer Society, 2014, pp. 1701–1708. [Online].

Available: https://doi.org/10.1109/CVPR.2014.220

[99] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Sys-

tems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran

Associates, Inc., 2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/

paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[100] D. Mishkin and J. Matas, “All you need is a good init,” 2015.

[101] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neu-

ral network acoustic models,” in in ICML Workshop on Deep Learning for Audio,

Speech and Language Processing, 2013.

[102] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus),” 2015.

[103] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-

gus, “Intriguing properties of neural networks,” 2013.

129

https://doi.org/10.1109/TASL.2011.2134090
http://doi.acm.org/10.1145/1390156.1390177
https://doi.org/10.1109/CVPR.2014.220
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[104] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” in International Conference on Learning Representations, 2015.

[Online]. Available: http://arxiv.org/abs/1412.6572

[105] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The

limitations of deep learning in adversarial settings,” 2015.

[106] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learning:

from phenomena to black-box attacks using adversarial samples,” 2016.

[107] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing

ten detection methods,” 2017.

[108] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. S. Schoenholz, and J. Pennington, “Dynam-

ical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla

convolutional neural networks,” 2018.

[109] R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and C. Diaz, “How unique is your

.onion? an analysis of the fingerprintability of Tor onion services,” in Proceedings of

the 23rd ACM Conference on Computer and Communications Security (CCS ’17),

November 2017.

[110] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” in International Conference

on Learning Representations (ICLR’13), 2013.

[111] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas, “Circuit fingerprint-

ing attacks: Passive deanonymization of Tor hidden services,” in USENIX Security

Symposium. USENIX Association, 2015, pp. 287–302.

[112] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial exam-

ples and black-box attacks,” 2016.

[113] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense

to adversarial perturbations against deep neural networks,” 2015.

130

http://arxiv.org/abs/1412.6572

[114] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical

evaluation of website fingerprinting attacks,” in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, ser. CCS

’14. New York, NY, USA: ACM, 2014, pp. 263–274. [Online]. Available:

http://doi.acm.org/10.1145/2660267.2660368

131

http://doi.acm.org/10.1145/2660267.2660368

