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ABSTRACT

Improving Performance and Security in
Anonymity Systems

Mohsen Imani, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Gergely Zaruba

Tor is an anonymity network that provides online privacy for the Internet users. Tor
hides the user’s traffic among the others’ traffic. The more users Tor attracts, the stronger
anonymity it provides. Unfortunately, users of the Tor anonymity system suffer from less-
than-ideal performance, in part because circuit building and selection processes are not
tuned for speed. Moreover, there are some attacks like guard fingerprinting and website
fingerprinting attacks that try to profile or de-anonymize the Tor users. In this disserta-
tion, we propose methods to address both security and performance issues in Tor. We first
examine the process of selecting among pre-built circuits and the process of selecting the
path of relays for use in building new circuits to improve performance while maintaining
anonymity. We also propose a method to improve the mechanism of picking guards in Tor.
The guard selection mechanism in Tor suffers from security problems like guard finger-
printing and from performance issues. To address this problem, we propose a new method
for forming guard sets based on Internet location. We construct a hierarchy that keeps
clients and guards together more reliably and prevents guards from easily joining arbitrary

guard sets. This approach also has the advantage of confining an attacker with access to

vi



limited locations on the Internet to a small number of guard sets. Tor is also known to be
vulnerable to the traffic analysis attacks like Website Fingerprinting (WF) attacks. In WF
attacks, the adversary attempts to identify the websites visited by the user. We also propose
a method using adversarial examples to decrease the accuracy rate of the WF attack. We
generate adversarial traces to cause misclassification in the WF attackers. We show that if
the WF attacker trains its classifier on the adversarial traces, they are not effective WF de-
fenses. We propose a method to solve this problem, and we show that our method can drop

the WF attacker’s accuracy from 98% to 60% with 47% bandwidth overhead.
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CHAPTER 1
Introduction

Privacy is a human right, the right to be alone and free from intrusion and interfer-
ence, and it maintains the human dignity and respect. The information privacy is about
the control on how our data and information is used, collected, stored, and shared. By the
advance of the technology, the information privacy gets more and more complicated, in a
way that any bit of our information is getting valuable. Companies and intelligence agen-
cies collect tremendous amount of data about us, sometimes without our consent. Based
on that data, they draw conclusion about us that we may disagree with them.

Security and privacy are cousins. Privacy is about the choice and having power on our
data. Security protects our data from the malicious hands. Authentication, authorization,
and encryption are the security mechanisms protecting the access level and the content of
the data. These mechanisms are actually necessary for security and protecting the data
but not sufficient for addressing the privacy. For example, in TLS-enabled applications,
although the data is encrypted and the man in the middle cannot read the content, he can
still see who is talking to whom.

Sometimes, we want people to know about something or what we do but we want to
be unknown, this part of privacy is anonymity. People choose to be anonymous for different
situations, such as charity, witness of a crime, participating in a crime, and etc. The Internet
does not provide anonymity by design. Our IP address in the Internet is like our mailing
address that releases our identity. Our IP address can be traced back to our real identity.

Our IP address is a part of an address space of the ISP (Internet Service Provider) serving



us. The ISPs have information about their customers and it can release the real identity
behind an IP address.

Fortunately, there are some privacy enhancing Technologies (PETs) that build an
infrastructure over the Internet and add anonymous communication feature to the Internet.
The simplest tools to achieve anonymity are technologies that use single proxies. In these
technologies, the clients do not directly contact their destinations, they first contact a proxy
and ask the proxy to contact the intended destination. Therefore, the network observer
see the client contacts the proxy but they do not know what the destination is. These
technologies consider a weak network observer and put all the trust on a single point, the
proxy. The proxy should be trusted because it knows both ends of the traffic. Even if the
proxy is trusted, a network observer watching ingress and egress in the proxy can correlate
the traffic to identify who is talking to whom and break the anonymity. The next generation
of PETs, such as Tor network [2], Mix networks [3], and I2P [4], have the distributed
structures that distribute the trust over multiple points in the network. The clients traffic
in these technologies travels through multiple random nodes in the network. No individual
node knows the complete path. Thus, the attacker needs to be on the entry and exit points
of the traffic to be able to link the client and destination by the traffic correlation. Among
the existing anonymity networks, we mainly focus on Tor because it is the most popular
low-latency anonymity network.

Tor is a volunteer-based overlay network that thousands privacy advocates donate
their bandwidth to keep Tor running and functional. Tor passes the user’s traffic through
three almost-randomly selected proxies that no single point in the network can link the
user to her destination. Tor is a low—latency anonymity network, which means it does not
modify the inter-packet delay. Tor has created a bunch of interesting services, such as web
browsing, hidden services, Tor mail, and Tor chat. These services attract almost 2 millions

daily users for Tor.



1.1 Motivations

Anonymity networks like Tor work by hiding the users among the users. The larger
number of users, the more anonymous the users become. Clients in Tor are both con-
sumers of anonymity and, as a part of the system, the providers of cover traffic for the
others’ anonymity. Therefore, motivating more Internet users to use Tor in their on-line life
strengthens the anonymity provided by Tor and increases the anonymity set. The anonymity
set is the number of people whom the attacker can guess to be the one involved in the some
activity of interest [5]. Usability, which is related to the users’ experience with the system,
contributes to the security. In the case of Tor, better usability and user experience will at-
tract more and more users and makes the provided anonymity stronger (larger anonymity
sets).

The usability is not only about the user experience with Tor software, the more dam-
aging issue to the Tor usability is performance. Unfortunately, Tor suffers from less-than-
optimal performance which can discourages some of the Internet users to use Tor [6]. Im-
proving the performance not only results in better user experience, but also improves the
security. Therefore, addressing the performance issue is an importance matter. In this
dissertation, we address this problem and propose some methods to improve the Tor per-
formance.

On the other hand, several attacks [7, 8, 9, 10, 11, 12, 13], have been introduced
that threaten the users’ anonymity. The existence of these attacks and emergence of new
attacks may discourage the Internet users to use Tor. This even deteriorates the damage
of the attacks because dropping the number of users causes the small anonymity sets and
weakens the anonymity. Therefore, designing some sort of defenses against these attacks
is crucial in Tor. As the next step in this dissertation, we address this problem and propose

some defenses against attacks trying to de-anonymize the Tor users.



1.2 Contributions
In this dissertation we address both performance and security issues in Tor and make
the following fundamental contributions:

e Improving the performance through the circuit selection (Chapter 3). The Tor client’s
traffic traverses in the network through the circuits. Circuits are the encrypted connec-
tion of (three) relays on the network. The Tor client does not consider any performance
metrics in the selection of the circuits to be used for the traffic. Without modifying the
way the circuits are built in the Tor client, we propose several performance metrics to
select the fast circuits. We found that selecting the circuits based on their round trip time
(RTT) offers high performance (20% reduction in the network responsiveness compared
to the state-of-the-art method) without losing the anonymity.

e Improving the performance through the relay selection (Chapter 3). Circuits in Tor
are the encrypted connections between three relays. The selection of the relays in the
circuit creation is biased toward the bandwidth. The high bandwidth relays have higher
selection probabilities. The relay selection based on bandwidth causes to build circuits
that have high bandwidth relays but there may be multiple intercontinental hopes due
to the relays’ location diversity. We propose a method that considers the location of the
relays along with their bandwidth in the relay selection to avoid long circuits.

e Designing a defense against the guard fingerprinting attacks (Chapter 4). The first
relay in the circuit is in a very critical position, guard position, because it is in the direct
contact with the client. Unfortunately, not all the relays have the bandwidth and uptime
capability to be selected as the first hop. The number of the relays that are eligible
to be selected in the first hop are limited and the number of clients are much larger
than guards, which causes small anonymity sets (the number of clients using the same

guard). Therefore, the guard can act as the fingerprint of the client that can lead to guard



fingerprinting attack [14]. We propose a method that groups the guards into few sets
and the clients select one of these sets to pick their guards from.

e Designing a defense against the website fingerprinting attacks (Chapter 5). Tor net-
work does not change the inter-packet timings and the order of the packets. An adversary
located somewhere in the first hop (between the client and the first relay of the circuit,
i.e. guard) can take advantage of this information to identify the client’s web browsing
activities. This attack is called website fingerprinting attack [15, 16, 17, 18, 19, 20].
To lower the accuracy of this attack, we propose to leverage the adversarial examples
concept in the machine learning field [21, 22, 23, 24] to reshape the traffic and cause

mis-identification in the attacker.

1.3 Dissertation Outline

We start with a background on Tor and how it works in Chapter 2. Then we address
both security and performance problem in Tor and introduce methods to improve them. In
Chapter 3, we improve the performance by modifying the circuit selection mechanism and
relay selection mechanism in Tor. We improve the performance by selecting the circuits (at
the time of stream attachment) based on some performance metrics instead of picking them
randomly. We also modify the relay selection and engage the location of the relays in the
selection as well as their bandwidth. In Chapter 4, we propose a guard selection mechanism
to improve the security of Tor against a certain class of attacks like guard fingerprinting
attacks. In Chapter 5, we introduce a defense mechanism using the adversarial machine

learning to prevent the website fingerprinting attacks.



CHAPTER 2
Background

The Tor network consists of around 7,000 relays, called Onion Routers (ORs). These
ORs are run by volunteers which donate a portion of their bandwidth to the Tor network.
Therefore, the number of relays and the relays contributing to the Tor network change over
time due to the leaving and joining of ORs. ORs provide information about their donated
bandwidth, IP addresses and ports, and exit policies—the addresses and ports they are
willing to be connected to external Internet destinations—to a small group of servers called
directory authorities. The directory authorities are trusted relays that information about
them is hard coded in the Tor source code. The directory authorities assign flags to the ORs
based on their availability, bandwidth and exit policies. Then, they mutually agree upon
a list of all information about the ORs in the network, this list is called as the consensus
document.

A Tor client, called the Onion Proxy (OP), first contacts one of directory authorities
or their mirrors and downloads the consensus to get the current status of the Tor network.
Since the Tor network is dynamic, with relays regularly joining and leaving, the directory
authorities update the consensus hourly. The OP uses the consensus information to select
a path of three relays to use in communicating with its destinations.

The OP first picks an exit node, the last OR in the path and the one responsible for
communicating directly with the user’s intended destinations (e.g. web servers). Only a
subset of the ORs allows exit traffic, and the directory authorities mark these ORs with the
Exit flag in the consensus. The exit node in the path is selected among the ORs with Exit

flag in the consensus. The second OR to be selected is the entry node or the guard node, the



one that the OP will communicate with directly. The entry node is selected among the ORs

with Guard flag in the consensus. The directory authorities flag the high uptime and high

bandwidth ORs as Guards. Finally, the OP picks a middle node from all the ORs. The OP
selects these nodes (exit node, entry node, and middle node) randomly with a bias towards
higher bandwidth relays for load balancing and performance reasons. Additionally, no two

ORs from the same /16 subnet or who are controlled by the same group of relay owners

should appear on the same path [2].

Once the OP picks this path of ORs, it then sets out to build a circuit of layered
cryptographic connections through this path. To prevent the fingerprint attack through the
packet sizes, introduced by [20], the user’ traffic goes through the circuit in fixed-size cells
of 512 bytes. The circuit is created by the following steps:

e The OP sends a CREATE cell to the guard relay. The CREATE cell includes a unique
Circuit ID, and the first half of a Diffie-Hellman handshake ¢g**. The cell is encrypted
with the guard nodes public key extracted from the descriptors file downloaded from the
directory authorities.

e The guard relay responds back to the OP handshake with the CREATED cell. The cell
contains the second half of the Diffie-Hellman handshake ¢¥' along with a hash of the
negotiated key K; = ¢¥'**. Symmetric key K is used for communicating between the
OP and guard.

e The OP sends an EXTEND cell to the guard node. This cell contains the information
about the middle, and encrypted ¢g** (with the middle node’s public key).

e The guard node copies the encrypted g*2 into a CREATE cell and sends it to the middle
node.

e The middle node responds back to the guard node with a CREATED cell. This cell

contains ¢¥?> along with a hash of the negotiated key Ky = g¥>*2.



e The guard node wraps the payload of the CREATED cell into a EXTENDED cell and
passes it back to the OP. The circuit is now extended to the middle node.

e The OP sends an EXTEND cell to the middle node containing the information about the
exit node, and encrypted ¢g** (with exit node’s public key). This cell is encrypted with
key K and passes through the guard node. The guard node does not know about the
content of the cell.

e The middle node copies the encrypted ¢g*® into a CREATE cell and sends it to the exit
node.

e The exit node responds back to middle node with CREATED cell. This cell contains g¥3
along with a hash of the negotiated key K3 = g¥3"3.

e The middle node wraps the payload of the CREATED cell into a EXTENDED cell and
passes it back to the guard node. The guard adds one more layer of encryption with key
K and passes it to the OP.

After this process the secret keys (K7, K5, and K3) have been shared between OP
and each node on the path. Once the OP sends the cell down the circuit, it encrypts the cell
three times with key K5, K, K1, respectively. As the cell traverses the circuit, the cell is
decrypted one layer at time. Once the circuit reaches the exit node, it has only one layer of
encryption (with K3) and the exit decrypts that layer. The traffic between the exit and the
destination is not encrypted by the Tor network.

When the user’s application makes a request through Tor, the Tor client will first
check to see if it has an open circuit available to attach the stream to it. Typically, the client
maintains one to three open circuits, as building a circuit takes time that would further slow
down the user’s experience. In particular, the client checks once per second to see whether
there are at least two open circuits and creates new circuits if needed. Circuits that have
been used for 10 minutes are marked as dirty, and they are not used for future connections,

which means that a new circuit will be needed. More circuits can also be added if the
8



user’s application requires ports that are not allowed on the exit policies of the currently
open circuits. Additionally, the Tor client maintains circuits for hidden services, which
are servers that can only be accessed through the Tor network to protect the privacy of not
only the user but the service itself, and one-hop circuits (to entries only) that are used to
download the consensus. Geddes et al. report that the Tor client maintains an average of 10

circuits [25], though we note that usually only two of these are available for web browsing.

2.0.1 Onion Services

Tor not only helps the users to hide their location and their identity, but also helps
them to offer various kinds of services, such as web publishing, chat services, and email.
These services are called Onion Services, (OSs). The OSs’ location and identity are hid-
den through Tor network. In the following paragraphs, we explain the Tor onion service

protocol.

Server Setup: The onion server randomly picks 3 to 5 Tor relays and lets them know
about its public key. These relays are called Introduction Points (IPs). The Introduction
Point is the middle point between the client and the onion server that lets the onion server
knows someone is interested in its service.

The onion server needs to announces its Introduction Points to the network. The
onion server generates a document called onion service descriptor and uploads it to a dis-
tributed hash table (DHT). The descriptor contains the server’s public key and a summary

of each introduction point, and it signed it by its private key.

Client Connection The clients find the address of the onion server through the out-of-
band channels. The address of the onion server is a 16-character name derived from the
server’s public key. The client uses the OS address to look for the relays that hold the OS’s

descriptor in the DHT to download the descriptor.



The client randomly picks a relay as the Rendezvous Point (RP), creates a three-hop
circuit to RP, and gives the RP a one-time secret (encrypted by the OS’s public key). The
RP does not know about the client’s location because the communication between RP and
the client is through a three-hop circuit.

The OS’s descriptor contains the Introduction Points. The client contacts one of the
Introduction Points through a three-hop circuit and asks the Introduction Point to pass an
Introduce message (encrypted by the OS’s public key) to the OS. The Introduce message

includes the address of the RP and the one-time secret.

Final Connection Once the OS receives the Introduce message, it decrypts the message
and finds out the address of RP and the one-time secret. The OS creates a circuit to the RP
and gives it the secret. The RP connects two ends of the two circuits, the client’s circuit to

the RP and the OS’s circuit to the RP.

10



CHAPTER 3
Performance Improvement

3.1 Introduction

Tor provides anonymity for millions of users around the world by routing their traffic
over paths selected from approximately 7,000 volunteer-run relays.! Tor effectively hides
the user among all the users, so having more users and more traffic enhances anonymity
for all [26, 5]. Unfortunately, Tor users often face large delays and long download times,
which can discourage users and thereby reduce anonymity. In this paper, we examine two
approaches to improve Tor performance and evaluate them in term of both performance

and security.

Circuit Selection. The client’s traffic in Tor goes through a three-hop encrypted channel,
called a circuit. When the user makes a request, such as for a webpage, Tor attaches the
new stream (by opening a SOCKS connection) to a circuit. The Tor client builds circuits
preemptively based on the client’s use or immediately if there is no current circuit to handle
the stream. Tor currently does not use any performance criteria in selecting a circuit. In this
paper, we evaluate using the length of the circuits, their congestion, the Round Trip Time
(RTT), or a combination of them in choosing a fast circuit. We also find that the number
of available circuits in Tor 1s often small, between one and three circuits, such that picking
the best circuit for performance does not have much effect in practice. As the number of
available circuits increases, the chance of finding a fast and high performance circuit should
increase. To this end, for each circuit selection criteria we study, we evaluate the impact of

more available circuits in terms of both performance and security.

'https://metrics.torproject.org/, accessed August. 2016
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Relay Selection. For circuit selection to be effective, some of the available circuits must be
reasonably high performing. To improve the chances of this, we modify the relay selection
mechanism to build short and high-bandwidth circuits. Tor clients select paths in a way
that balances traffic load among the relays according to their advertised bandwidths, but
they do not make any consideration for the locations of relays relative to the clients, their
destinations, or the other relays in the path. Paths can jump around the globe, which is
intuitively good for anonymity but measurably bad for performance.

Prior work has examined improving path selection in Tor for better performance,
considering factors such as bandwidth [27], congestion [28], latency [29], and location [30].

Wacek et al. performed a comprehensive study of path selection [31], and they
found that congestion-aware routing [28] offers the best combination of performance and
anonymity among the tested approaches. They also found that approaches that emphasized
latency but failed to consider bandwidth had poor performance, and they suggested that an
approach that optimized both latency and bandwidth could do better than any of their tested
approaches. In this paper, we take on this suggestion and explore designs that address both

criteria.

We make the following contributions:

e We define nine circuit selection approaches using the geographical length, circuit delay,
congestion, or a combination of these. We evaluate each of the approaches and compare
them experimentally.

e In our relay selection approach, combined weighting, we explore the design of a single
weighting function that balances bandwidth and geographical inter-node distance. We
examine the design issues in our approach and compare it with the state of the art.

e To prevent delays, it is important to build circuits in advance of their use [31]. Since we

want to use destination location information to better inform our path-selection strategy,
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we build circuits in advance, using popular destinations as the end points. We then
consider the circuits’ RTTs, base on our findings in circuit selection approaches, to
select from among these circuits.

e We show the results of experiments on our approaches in Shadow, following the method-
ology of Jansen et al. [32], and we examine a range of parameters. We find a number of
settings in our proposed methods that offer reasonable anonymity and significant perfor-
mance improvements over congestion-aware routing, the current state-of-the-art in Tor
path selection. In particular, our recommended approach provides a 20% reduction in
median time to first byte and a 11% reduction in median time to last byte compared to
congestion-aware routing.

e We also measure the security of our approaches using Gini coefficient and entropy on
first-and-last combinations, with the rate of path compromise in the presence of relay-
level and AS-level adversaries, and in the presence of four targeted relay-level attacks.
We find that both of our approaches provide anonymity in line with Tor at settings that
also provide significant performance improvements. Our recommended approach has a
slightly better Gini coefficient and entropy than Tor, with slightly fewer compromised

paths against our attackers.

3.2 Related work

Researchers have addressed Tor performance issues in a variety of ways, such as
modifying circuit scheduling [33], congestion control [28], traffic splitting [34], and incen-
tives to encourage users to offer their bandwidth [35, 36]. In this section, we first briefly
overview Tor’s current path selection mechanism and then discuss the prior works on en-

hancing performance in Tor from circuit selection and relay selection point of view.
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Tor. Tor is a volunteer-based overlay network providing anonymity online. Details are
available at http://www.torproject.org/ and in the original design paper [37].
In Tor, the choice of relays is governed a complex weighting function? that includes var-
ious considerations and the bandwidths of the relays. Weighting by bandwidths serves to
balance load in the system, as relays have huge variance in advertised bandwidth, with the
bottom quintile under 2 Mbps, a median of about 10 Mbps, and a maximum of 1 Gbps as

of May 2016.°

Circuit Selection. Can et al. [33] propose a circuit scheduling mechanism that gives high
priority to interactive traffic over bulk traffic on the same connection. This circuit selection
mechanism has been deployed in Tor relays, but it has no impact on the client. Our circuit
selection approaches are designed to improve the performance from the client side and are
thus orthogonal to scheduling in the relays.

Wang et al. introduce node latency as a parameter to measure a relay’s conges-
tion [28]. In their approach, congestion-aware routing (CAR), the client calculates conges-
tion delay using both active and opportunistic methods. It then uses the measured latency to
avoid congested nodes during path selection and to avoid selecting congested paths. They
use both short-term and long-term congestion in their work, where short-term congestion
is caused by current traffic levels and long-term congestion is caused by the relay’s band-
width. Their results show improvement in quality of service and load balancing. In our
evaluation of circuit selection methods, we also examine the use of congestion times and
compare them with RTTs and circuit lengths.

The current Tor client measures the Circuit Build Time (CBT), i.e. the time to con-
struct the circuit, and uses this to discard slow circuits whose CBT is above a client-specific

threshold. Annessi and Schmiedecker [38] propose that Tor should use the circuit round

2Full details at https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt.
3http://metrics.torproject.org/
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trip times (RTTs) in eliminating slow circuits instead of CBTs. In this method, the circuit
RTT is actively measured after the circuit is built, and if it is longer than a timeout the
circuit is discarded from future uses. In their study, this provided only 3% improvement
in the time to download the first byte with mixed anonymity results. Our strategy in this
paper is different from both approaches. Rather than examining circuits after their creation
to discard them or keep them, we instead try to pick a high performing circuits in the first

place.

Relay Selection. A number of improvements to Tor path selection have been investi-
gated [27, 29, 30]. Wacek et al. examine Tor path selection in a comprehensive study
with experiments running many simultaneous clients [31]. They create a model of the
Tor network to evaluate the recent published papers modifying path selection and show
results for throughput, time to last byte (TTLB), and round-trip time (RTT). They tested
Tor, Snader/Borisov [27], Unweighted Tor, in which Tor relays get selected uniformly at
random, Coordinate [29] in which path selection is based on estimated pair-wise latencies,
LASTor [30], and Congestion-Aware [28]. Their investigation shows that path selection
algorithms that do not consider bandwidth as a factor in relay selection have poor perfor-
mance. Congestion-aware had nearly the best performance in throughput and time-to-first-
byte, plus it had anonymity approximately in line with Tor and significantly better than
other high-performing algorithms. We thus select it for comparison in our work.
Improving performance can also affect attackers, potentially providing them better
attacking opportunities and more accurate measurements. There are several attacks that
use latency and throughput information to de-anonymize Tor users [10, 11, 39]. Ged-
des et al. [40] introduced a new class of attacks, called induced throttling, that exploit
performance-enhancing mechanisms to throttle and unthrottle a circuit and identify the

user. They evaluated the vulnerability of performance improvements, such as congestion
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control and traffic admission control to these attacks, and they found that there are highly
effective attacks that can uniquely identify users. While this does not directly affect our
approaches, we recognize that there is generally a trade-off between anonymity and perfor-

mance.

3.3 Model and Goals
3.3.1 Network Model

Testing new path and circuit selection strategies on the live Tor network is challeng-
ing and could compromise users’ anonymity or their harm their performance. We perform
our simulations in Shadow [41, 42], a discrete-event simulator that runs the Tor code in a
complete, but scaled-down, network. Shadow simulates the underlying network and it con-
siders network attributes such as packet loss, bandwidth upstream and downstream, jitter,
latency, and network edges. In our performance evaluations, we used a scaled-down model
of Tor, which consists of 1100 clients and 220 relays; this scaled-down model was built
based on the procedures of Jansen et al. [32] and measurements from the live Tor network
(from July 2015). In our security evaluations, we use a larger scaled-down model of 2127

relays with one client at a time.

3.3.2  Attacker Model

As with prior work in Tor performance [27, 29, 30, 31], our attention is more on per-
formance characteristics than on attacks. We only seek to validate that our approach does
not significantly weaken the anonymity provided by Tor currently. We evaluate the security

of our proposed mechanisms in terms of both relay-level and network-level adversaries.

Relay-Level Adversary Model. In the relay-level adversary model, we assume that the

adversary is running some Tor relays in the network with the goal of getting into the guard
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and exit positions of some circuits. An adversary in such a position can observe the entry
and exit traffic and correlate them to link the clients to their destinations. To evaluate the
security of our proposed circuit selection mechanism, we simulate our proposed method,
CAR, and vanilla Tor in Shadow and randomly mark one of our guards and one of our
exits as malicious relays. We then extract the streams and identify which ones were com-
promised. We repeat this process 10 times, and measure the compromise rates all over 10
repetitions.

To evaluate the security of our proposed relay selection mechanism at the relay level,
we first follow the approach of Wacek et al., who use the Gini coefficient and entropy as
measures of the diversity of paths taken by each of their studied approaches [31]. We con-
sider a high-bandwidth attacker who adds a modest number of high-bandwidth ORs into the
Tor network. Since our path selection algorithm uses distance as well as bandwidth, leading
to our path selection algorithms pick high-bandwidth ORs with short distance more often,
this attacker is aimed at capturing a large number of circuits. We also consider four tar-
geted attack strategies in which the attacker targets a specific client, a specific destination, a
specific client and destination, or with no specific target. In all these strategies, the attacker
places his relays in the target’s exact location to have minimum distance and a high chance

to be selected. Our targeted attack scenarios are thus worst cases.

Network-Level Adversary Model. The adversary can control some network components
like ASes or IPXs. If the entry traffic and exit traffic of an anonymous connection tra-
verse through the adversary’s network components, the adversary observes both sides of
the traffic and deanonymizes the clients. We evaluate the security of our circuits selection
mechanisms and relays selection mechanisms in the network level. In circuits selection and
relay selection mechanisms, we simulate each of the proposed mechanisms in Shadow and

extract the streams, including their paths. To determine the compromised streams, we use
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the algorithm proposed by Qiu and Gao [43] to infer the AS paths on both the entry side
of the circuit (between clients and guards) and and exit side (between exits and servers).
Qiu and Gao’s algorithm exploits known paths from BGP tables to improve the inferred
paths. In measuring the compromise rates, we consider the possibility of an asymmetric
traffic correlation attack that can happen between data path and ack path, which is one of

the RAPTOR attacks proposed by Sun et al. [44].

3.3.3 Design Goals

We seek an algorithm that meets the following goals:

1. Interactive use like web browsing should be significantly faster than Tor and prior work.

2. Performance for bulk downloads should not be significantly slowed compared to Tor.

3. Anonymity should be similar to what Tor currently provides against our selected attack
models.

4. Usage should be fairly distributed among relays according to their available capacities.

5. Clients should be able to select paths with little computational or other overhead.

6. Circuits should be available to the client for attaching streams to when needed.

7. We should avoid downloading large amounts of additional information from the direc-
tory servers.

We emphasize web traffic since delays in interactive use are more harmful to the user
experience than delays in bulk downloads. We consider both response time, measured as
time to first byte (TTFB), and total download time, measured as time to last byte (TTLB).

Note that we do not seek the optimal latency for circuits. Although having accurate
latency information instead of geographic distance could further improve performance, the

gains might be marginal given requirements for bandwidth and path diversity. Further,
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obtaining and distributing accurate pairwise latency information may be expensive due to

the necessary measurements and directory server overhead.

3.4 Circuit Selection

When a Tor client issues a request, the new stream is handled by one of the available
circuits. In this section we explain how Tor tries to provide some available circuits for
new streams and how it attaches the streams to the circuits. Then we explain how the
stream attachment can be improved by increasing the number of circuits and considering

performance criteria in circuit selection.

Pre-Built Circuits. As the user browses the Web with Tor, the Tor client opens new cir-
cuits so that later streams can be attached to those circuits without delay. Since different
exits support different sets of ports, the Tor client aims to keep open two circuits to cover
any port that the user has used recently. In practice, one or two circuits are typically avail-

able at any given time.

On-Demand Circuits. Sometimes the user’s requested streams are not supported by cur-
rent available circuits, or all available circuits are older than 10 minutes and considered
dirty. In this case, Tor builds a circuit for the unhandled stream and attaches the stream
to this circuit. It is obvious that these streams experience more delay than streams using

pre-built circuits due to the circuit built time.

Tor Stream Attachment. When a new stream is created, the Tor client selects the most
recently created circuit or creates a new circuit if needed and attaches the new stream to
it. Then all communication on that stream, including DNS resolution, goes through the

circuit.

19



N Entry +DCM DME DExit s o
o, o DcGen - Dcm " DME
S (S S
Middle Entry Middle
(a) When the dest. IP is known (b) When the dest. IP is unknown

Figure 3.1. Distances used to compute circuit length..

3.4.1 Performance in Circuit Selection

The Tor client does not use performance as a criteria when selecting from available
circuits for attaching a stream. Wang et al. [28] propose to use the least congested circuit,
but there are several possible performance characteristics to use instead. The number of
available circuits are often small, such that existing circuit selection mechanisms are not
effective in practice. Also, we know of no study testing the effect of changing number of
circuits on performance-based selection.

To investigate the effect of circuit selection on Tor performance, we evaluate both the
number of available circuits for the streams and the way to choose the best circuit among
the available circuits. To set th